if_ti.c revision 58698
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/ti/if_ti.c 58698 2000-03-27 19:14:27Z jlemon $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include "vlan.h"
82
83#include <sys/param.h>
84#include <sys/systm.h>
85#include <sys/sockio.h>
86#include <sys/mbuf.h>
87#include <sys/malloc.h>
88#include <sys/kernel.h>
89#include <sys/socket.h>
90#include <sys/queue.h>
91
92#include <net/if.h>
93#include <net/if_arp.h>
94#include <net/ethernet.h>
95#include <net/if_dl.h>
96#include <net/if_media.h>
97
98#include <net/bpf.h>
99
100#if NVLAN > 0
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103#endif
104
105#include <netinet/in_systm.h>
106#include <netinet/in.h>
107#include <netinet/ip.h>
108
109#include <vm/vm.h>              /* for vtophys */
110#include <vm/pmap.h>            /* for vtophys */
111#include <machine/clock.h>      /* for DELAY */
112#include <machine/bus_memio.h>
113#include <machine/bus.h>
114#include <machine/resource.h>
115#include <sys/bus.h>
116#include <sys/rman.h>
117
118#include <pci/pcireg.h>
119#include <pci/pcivar.h>
120
121#include <pci/if_tireg.h>
122#include <pci/ti_fw.h>
123#include <pci/ti_fw2.h>
124
125#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
126
127#if !defined(lint)
128static const char rcsid[] =
129  "$FreeBSD: head/sys/dev/ti/if_ti.c 58698 2000-03-27 19:14:27Z jlemon $";
130#endif
131
132/*
133 * Various supported device vendors/types and their names.
134 */
135
136static struct ti_type ti_devs[] = {
137	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
138		"Alteon AceNIC Gigabit Ethernet" },
139	{ TC_VENDORID,	TC_DEVICEID_3C985,
140		"3Com 3c985-SX Gigabit Ethernet" },
141	{ NG_VENDORID, NG_DEVICEID_GA620,
142		"Netgear GA620 Gigabit Ethernet" },
143	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
144		"Silicon Graphics Gigabit Ethernet" },
145	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
146		"Farallon PN9000SX Gigabit Ethernet" },
147	{ 0, 0, NULL }
148};
149
150static int ti_probe		__P((device_t));
151static int ti_attach		__P((device_t));
152static int ti_detach		__P((device_t));
153static void ti_txeof		__P((struct ti_softc *));
154static void ti_rxeof		__P((struct ti_softc *));
155
156static void ti_stats_update	__P((struct ti_softc *));
157static int ti_encap		__P((struct ti_softc *, struct mbuf *,
158					u_int32_t *));
159
160static void ti_intr		__P((void *));
161static void ti_start		__P((struct ifnet *));
162static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
163static void ti_init		__P((void *));
164static void ti_init2		__P((struct ti_softc *));
165static void ti_stop		__P((struct ti_softc *));
166static void ti_watchdog		__P((struct ifnet *));
167static void ti_shutdown		__P((device_t));
168static int ti_ifmedia_upd	__P((struct ifnet *));
169static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
170
171static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
172static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
173						int, u_int8_t *));
174static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
175
176static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
177static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
178static void ti_setmulti		__P((struct ti_softc *));
179
180static void ti_mem		__P((struct ti_softc *, u_int32_t,
181					u_int32_t, caddr_t));
182static void ti_loadfw		__P((struct ti_softc *));
183static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
184static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
185					caddr_t, int));
186static void ti_handle_events	__P((struct ti_softc *));
187static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
188static void *ti_jalloc		__P((struct ti_softc *));
189static void ti_jfree		__P((caddr_t, u_int));
190static void ti_jref		__P((caddr_t, u_int));
191static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
192static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
193static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
194static int ti_init_rx_ring_std	__P((struct ti_softc *));
195static void ti_free_rx_ring_std	__P((struct ti_softc *));
196static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
197static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
198static int ti_init_rx_ring_mini	__P((struct ti_softc *));
199static void ti_free_rx_ring_mini	__P((struct ti_softc *));
200static void ti_free_tx_ring	__P((struct ti_softc *));
201static int ti_init_tx_ring	__P((struct ti_softc *));
202
203static int ti_64bitslot_war	__P((struct ti_softc *));
204static int ti_chipinit		__P((struct ti_softc *));
205static int ti_gibinit		__P((struct ti_softc *));
206
207static device_method_t ti_methods[] = {
208	/* Device interface */
209	DEVMETHOD(device_probe,		ti_probe),
210	DEVMETHOD(device_attach,	ti_attach),
211	DEVMETHOD(device_detach,	ti_detach),
212	DEVMETHOD(device_shutdown,	ti_shutdown),
213	{ 0, 0 }
214};
215
216static driver_t ti_driver = {
217	"ti",
218	ti_methods,
219	sizeof(struct ti_softc)
220};
221
222static devclass_t ti_devclass;
223
224DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
225
226/*
227 * Send an instruction or address to the EEPROM, check for ACK.
228 */
229static u_int32_t ti_eeprom_putbyte(sc, byte)
230	struct ti_softc		*sc;
231	int			byte;
232{
233	register int		i, ack = 0;
234
235	/*
236	 * Make sure we're in TX mode.
237	 */
238	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
239
240	/*
241	 * Feed in each bit and stobe the clock.
242	 */
243	for (i = 0x80; i; i >>= 1) {
244		if (byte & i) {
245			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
246		} else {
247			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248		}
249		DELAY(1);
250		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
251		DELAY(1);
252		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253	}
254
255	/*
256	 * Turn off TX mode.
257	 */
258	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
259
260	/*
261	 * Check for ack.
262	 */
263	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
264	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
265	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266
267	return(ack);
268}
269
270/*
271 * Read a byte of data stored in the EEPROM at address 'addr.'
272 * We have to send two address bytes since the EEPROM can hold
273 * more than 256 bytes of data.
274 */
275static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
276	struct ti_softc		*sc;
277	int			addr;
278	u_int8_t		*dest;
279{
280	register int		i;
281	u_int8_t		byte = 0;
282
283	EEPROM_START;
284
285	/*
286	 * Send write control code to EEPROM.
287	 */
288	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
289		printf("ti%d: failed to send write command, status: %x\n",
290		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
291		return(1);
292	}
293
294	/*
295	 * Send first byte of address of byte we want to read.
296	 */
297	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
298		printf("ti%d: failed to send address, status: %x\n",
299		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
300		return(1);
301	}
302	/*
303	 * Send second byte address of byte we want to read.
304	 */
305	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
306		printf("ti%d: failed to send address, status: %x\n",
307		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
308		return(1);
309	}
310
311	EEPROM_STOP;
312	EEPROM_START;
313	/*
314	 * Send read control code to EEPROM.
315	 */
316	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
317		printf("ti%d: failed to send read command, status: %x\n",
318		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
319		return(1);
320	}
321
322	/*
323	 * Start reading bits from EEPROM.
324	 */
325	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
326	for (i = 0x80; i; i >>= 1) {
327		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
328		DELAY(1);
329		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
330			byte |= i;
331		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
332		DELAY(1);
333	}
334
335	EEPROM_STOP;
336
337	/*
338	 * No ACK generated for read, so just return byte.
339	 */
340
341	*dest = byte;
342
343	return(0);
344}
345
346/*
347 * Read a sequence of bytes from the EEPROM.
348 */
349static int ti_read_eeprom(sc, dest, off, cnt)
350	struct ti_softc		*sc;
351	caddr_t			dest;
352	int			off;
353	int			cnt;
354{
355	int			err = 0, i;
356	u_int8_t		byte = 0;
357
358	for (i = 0; i < cnt; i++) {
359		err = ti_eeprom_getbyte(sc, off + i, &byte);
360		if (err)
361			break;
362		*(dest + i) = byte;
363	}
364
365	return(err ? 1 : 0);
366}
367
368/*
369 * NIC memory access function. Can be used to either clear a section
370 * of NIC local memory or (if buf is non-NULL) copy data into it.
371 */
372static void ti_mem(sc, addr, len, buf)
373	struct ti_softc		*sc;
374	u_int32_t		addr, len;
375	caddr_t			buf;
376{
377	int			segptr, segsize, cnt;
378	caddr_t			ti_winbase, ptr;
379
380	segptr = addr;
381	cnt = len;
382	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
383	ptr = buf;
384
385	while(cnt) {
386		if (cnt < TI_WINLEN)
387			segsize = cnt;
388		else
389			segsize = TI_WINLEN - (segptr % TI_WINLEN);
390		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
391		if (buf == NULL)
392			bzero((char *)ti_winbase + (segptr &
393			    (TI_WINLEN - 1)), segsize);
394		else {
395			bcopy((char *)ptr, (char *)ti_winbase +
396			    (segptr & (TI_WINLEN - 1)), segsize);
397			ptr += segsize;
398		}
399		segptr += segsize;
400		cnt -= segsize;
401	}
402
403	return;
404}
405
406/*
407 * Load firmware image into the NIC. Check that the firmware revision
408 * is acceptable and see if we want the firmware for the Tigon 1 or
409 * Tigon 2.
410 */
411static void ti_loadfw(sc)
412	struct ti_softc		*sc;
413{
414	switch(sc->ti_hwrev) {
415	case TI_HWREV_TIGON:
416		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
417		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
418		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
419			printf("ti%d: firmware revision mismatch; want "
420			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
421			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
422			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
423			    tigonFwReleaseMinor, tigonFwReleaseFix);
424			return;
425		}
426		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
427		    (caddr_t)tigonFwText);
428		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
429		    (caddr_t)tigonFwData);
430		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
431		    (caddr_t)tigonFwRodata);
432		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
433		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
434		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
435		break;
436	case TI_HWREV_TIGON_II:
437		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
438		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
439		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
440			printf("ti%d: firmware revision mismatch; want "
441			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
442			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
443			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
444			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
445			return;
446		}
447		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
448		    (caddr_t)tigon2FwText);
449		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
450		    (caddr_t)tigon2FwData);
451		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
452		    (caddr_t)tigon2FwRodata);
453		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
454		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
455		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
456		break;
457	default:
458		printf("ti%d: can't load firmware: unknown hardware rev\n",
459		    sc->ti_unit);
460		break;
461	}
462
463	return;
464}
465
466/*
467 * Send the NIC a command via the command ring.
468 */
469static void ti_cmd(sc, cmd)
470	struct ti_softc		*sc;
471	struct ti_cmd_desc	*cmd;
472{
473	u_int32_t		index;
474
475	if (sc->ti_rdata->ti_cmd_ring == NULL)
476		return;
477
478	index = sc->ti_cmd_saved_prodidx;
479	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
480	TI_INC(index, TI_CMD_RING_CNT);
481	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
482	sc->ti_cmd_saved_prodidx = index;
483
484	return;
485}
486
487/*
488 * Send the NIC an extended command. The 'len' parameter specifies the
489 * number of command slots to include after the initial command.
490 */
491static void ti_cmd_ext(sc, cmd, arg, len)
492	struct ti_softc		*sc;
493	struct ti_cmd_desc	*cmd;
494	caddr_t			arg;
495	int			len;
496{
497	u_int32_t		index;
498	register int		i;
499
500	if (sc->ti_rdata->ti_cmd_ring == NULL)
501		return;
502
503	index = sc->ti_cmd_saved_prodidx;
504	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
505	TI_INC(index, TI_CMD_RING_CNT);
506	for (i = 0; i < len; i++) {
507		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
508		    *(u_int32_t *)(&arg[i * 4]));
509		TI_INC(index, TI_CMD_RING_CNT);
510	}
511	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
512	sc->ti_cmd_saved_prodidx = index;
513
514	return;
515}
516
517/*
518 * Handle events that have triggered interrupts.
519 */
520static void ti_handle_events(sc)
521	struct ti_softc		*sc;
522{
523	struct ti_event_desc	*e;
524
525	if (sc->ti_rdata->ti_event_ring == NULL)
526		return;
527
528	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
529		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
530		switch(e->ti_event) {
531		case TI_EV_LINKSTAT_CHANGED:
532			sc->ti_linkstat = e->ti_code;
533			if (e->ti_code == TI_EV_CODE_LINK_UP)
534				printf("ti%d: 10/100 link up\n", sc->ti_unit);
535			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
536				printf("ti%d: gigabit link up\n", sc->ti_unit);
537			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
538				printf("ti%d: link down\n", sc->ti_unit);
539			break;
540		case TI_EV_ERROR:
541			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
542				printf("ti%d: invalid command\n", sc->ti_unit);
543			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
544				printf("ti%d: unknown command\n", sc->ti_unit);
545			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
546				printf("ti%d: bad config data\n", sc->ti_unit);
547			break;
548		case TI_EV_FIRMWARE_UP:
549			ti_init2(sc);
550			break;
551		case TI_EV_STATS_UPDATED:
552			ti_stats_update(sc);
553			break;
554		case TI_EV_RESET_JUMBO_RING:
555		case TI_EV_MCAST_UPDATED:
556			/* Who cares. */
557			break;
558		default:
559			printf("ti%d: unknown event: %d\n",
560			    sc->ti_unit, e->ti_event);
561			break;
562		}
563		/* Advance the consumer index. */
564		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
565		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
566	}
567
568	return;
569}
570
571/*
572 * Memory management for the jumbo receive ring is a pain in the
573 * butt. We need to allocate at least 9018 bytes of space per frame,
574 * _and_ it has to be contiguous (unless you use the extended
575 * jumbo descriptor format). Using malloc() all the time won't
576 * work: malloc() allocates memory in powers of two, which means we
577 * would end up wasting a considerable amount of space by allocating
578 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
579 * to do our own memory management.
580 *
581 * The driver needs to allocate a contiguous chunk of memory at boot
582 * time. We then chop this up ourselves into 9K pieces and use them
583 * as external mbuf storage.
584 *
585 * One issue here is how much memory to allocate. The jumbo ring has
586 * 256 slots in it, but at 9K per slot than can consume over 2MB of
587 * RAM. This is a bit much, especially considering we also need
588 * RAM for the standard ring and mini ring (on the Tigon 2). To
589 * save space, we only actually allocate enough memory for 64 slots
590 * by default, which works out to between 500 and 600K. This can
591 * be tuned by changing a #define in if_tireg.h.
592 */
593
594static int ti_alloc_jumbo_mem(sc)
595	struct ti_softc		*sc;
596{
597	caddr_t			ptr;
598	register int		i;
599	struct ti_jpool_entry   *entry;
600
601	/* Grab a big chunk o' storage. */
602	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
603		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
604
605	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
606		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
607		return(ENOBUFS);
608	}
609
610	SLIST_INIT(&sc->ti_jfree_listhead);
611	SLIST_INIT(&sc->ti_jinuse_listhead);
612
613	/*
614	 * Now divide it up into 9K pieces and save the addresses
615	 * in an array. Note that we play an evil trick here by using
616	 * the first few bytes in the buffer to hold the the address
617	 * of the softc structure for this interface. This is because
618	 * ti_jfree() needs it, but it is called by the mbuf management
619	 * code which will not pass it to us explicitly.
620	 */
621	ptr = sc->ti_cdata.ti_jumbo_buf;
622	for (i = 0; i < TI_JSLOTS; i++) {
623		u_int64_t		**aptr;
624		aptr = (u_int64_t **)ptr;
625		aptr[0] = (u_int64_t *)sc;
626		ptr += sizeof(u_int64_t);
627		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
628		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
629		ptr += (TI_JLEN - sizeof(u_int64_t));
630		entry = malloc(sizeof(struct ti_jpool_entry),
631			       M_DEVBUF, M_NOWAIT);
632		if (entry == NULL) {
633			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
634			sc->ti_cdata.ti_jumbo_buf = NULL;
635			printf("ti%d: no memory for jumbo "
636			    "buffer queue!\n", sc->ti_unit);
637			return(ENOBUFS);
638		}
639		entry->slot = i;
640		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
641	}
642
643	return(0);
644}
645
646/*
647 * Allocate a jumbo buffer.
648 */
649static void *ti_jalloc(sc)
650	struct ti_softc		*sc;
651{
652	struct ti_jpool_entry   *entry;
653
654	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
655
656	if (entry == NULL) {
657		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
658		return(NULL);
659	}
660
661	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
662	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
663	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
664	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
665}
666
667/*
668 * Adjust usage count on a jumbo buffer. In general this doesn't
669 * get used much because our jumbo buffers don't get passed around
670 * too much, but it's implemented for correctness.
671 */
672static void ti_jref(buf, size)
673	caddr_t			buf;
674	u_int			size;
675{
676	struct ti_softc		*sc;
677	u_int64_t		**aptr;
678	register int		i;
679
680	/* Extract the softc struct pointer. */
681	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
682	sc = (struct ti_softc *)(aptr[0]);
683
684	if (sc == NULL)
685		panic("ti_jref: can't find softc pointer!");
686
687	if (size != TI_JUMBO_FRAMELEN)
688		panic("ti_jref: adjusting refcount of buf of wrong size!");
689
690	/* calculate the slot this buffer belongs to */
691
692	i = ((vm_offset_t)aptr
693	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
694
695	if ((i < 0) || (i >= TI_JSLOTS))
696		panic("ti_jref: asked to reference buffer "
697		    "that we don't manage!");
698	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
699		panic("ti_jref: buffer already free!");
700	else
701		sc->ti_cdata.ti_jslots[i].ti_inuse++;
702
703	return;
704}
705
706/*
707 * Release a jumbo buffer.
708 */
709static void ti_jfree(buf, size)
710	caddr_t			buf;
711	u_int			size;
712{
713	struct ti_softc		*sc;
714	u_int64_t		**aptr;
715	int		        i;
716	struct ti_jpool_entry   *entry;
717
718	/* Extract the softc struct pointer. */
719	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
720	sc = (struct ti_softc *)(aptr[0]);
721
722	if (sc == NULL)
723		panic("ti_jfree: can't find softc pointer!");
724
725	if (size != TI_JUMBO_FRAMELEN)
726		panic("ti_jfree: freeing buffer of wrong size!");
727
728	/* calculate the slot this buffer belongs to */
729
730	i = ((vm_offset_t)aptr
731	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
732
733	if ((i < 0) || (i >= TI_JSLOTS))
734		panic("ti_jfree: asked to free buffer that we don't manage!");
735	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
736		panic("ti_jfree: buffer already free!");
737	else {
738		sc->ti_cdata.ti_jslots[i].ti_inuse--;
739		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
740			entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
741			if (entry == NULL)
742				panic("ti_jfree: buffer not in use!");
743			entry->slot = i;
744			SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
745					  jpool_entries);
746			SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
747					  entry, jpool_entries);
748		}
749	}
750
751	return;
752}
753
754
755/*
756 * Intialize a standard receive ring descriptor.
757 */
758static int ti_newbuf_std(sc, i, m)
759	struct ti_softc		*sc;
760	int			i;
761	struct mbuf		*m;
762{
763	struct mbuf		*m_new = NULL;
764	struct ti_rx_desc	*r;
765
766	if (m == NULL) {
767		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
768		if (m_new == NULL) {
769			printf("ti%d: mbuf allocation failed "
770			    "-- packet dropped!\n", sc->ti_unit);
771			return(ENOBUFS);
772		}
773
774		MCLGET(m_new, M_DONTWAIT);
775		if (!(m_new->m_flags & M_EXT)) {
776			printf("ti%d: cluster allocation failed "
777			    "-- packet dropped!\n", sc->ti_unit);
778			m_freem(m_new);
779			return(ENOBUFS);
780		}
781		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
782	} else {
783		m_new = m;
784		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
785		m_new->m_data = m_new->m_ext.ext_buf;
786	}
787
788	m_adj(m_new, ETHER_ALIGN);
789	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
790	r = &sc->ti_rdata->ti_rx_std_ring[i];
791	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
792	r->ti_type = TI_BDTYPE_RECV_BD;
793	r->ti_flags = 0;
794	if (sc->arpcom.ac_if.if_hwassist)
795		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
796	r->ti_len = m_new->m_len;
797	r->ti_idx = i;
798
799	return(0);
800}
801
802/*
803 * Intialize a mini receive ring descriptor. This only applies to
804 * the Tigon 2.
805 */
806static int ti_newbuf_mini(sc, i, m)
807	struct ti_softc		*sc;
808	int			i;
809	struct mbuf		*m;
810{
811	struct mbuf		*m_new = NULL;
812	struct ti_rx_desc	*r;
813
814	if (m == NULL) {
815		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
816		if (m_new == NULL) {
817			printf("ti%d: mbuf allocation failed "
818			    "-- packet dropped!\n", sc->ti_unit);
819			return(ENOBUFS);
820		}
821		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
822	} else {
823		m_new = m;
824		m_new->m_data = m_new->m_pktdat;
825		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
826	}
827
828	m_adj(m_new, ETHER_ALIGN);
829	r = &sc->ti_rdata->ti_rx_mini_ring[i];
830	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
831	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
832	r->ti_type = TI_BDTYPE_RECV_BD;
833	r->ti_flags = TI_BDFLAG_MINI_RING;
834	if (sc->arpcom.ac_if.if_hwassist)
835		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
836	r->ti_len = m_new->m_len;
837	r->ti_idx = i;
838
839	return(0);
840}
841
842/*
843 * Initialize a jumbo receive ring descriptor. This allocates
844 * a jumbo buffer from the pool managed internally by the driver.
845 */
846static int ti_newbuf_jumbo(sc, i, m)
847	struct ti_softc		*sc;
848	int			i;
849	struct mbuf		*m;
850{
851	struct mbuf		*m_new = NULL;
852	struct ti_rx_desc	*r;
853
854	if (m == NULL) {
855		caddr_t			*buf = NULL;
856
857		/* Allocate the mbuf. */
858		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
859		if (m_new == NULL) {
860			printf("ti%d: mbuf allocation failed "
861			    "-- packet dropped!\n", sc->ti_unit);
862			return(ENOBUFS);
863		}
864
865		/* Allocate the jumbo buffer */
866		buf = ti_jalloc(sc);
867		if (buf == NULL) {
868			m_freem(m_new);
869			printf("ti%d: jumbo allocation failed "
870			    "-- packet dropped!\n", sc->ti_unit);
871			return(ENOBUFS);
872		}
873
874		/* Attach the buffer to the mbuf. */
875		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
876		m_new->m_flags |= M_EXT;
877		m_new->m_len = m_new->m_pkthdr.len =
878		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
879		m_new->m_ext.ext_free = ti_jfree;
880		m_new->m_ext.ext_ref = ti_jref;
881	} else {
882		m_new = m;
883		m_new->m_data = m_new->m_ext.ext_buf;
884		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
885	}
886
887	m_adj(m_new, ETHER_ALIGN);
888	/* Set up the descriptor. */
889	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
890	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
891	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
892	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
893	r->ti_flags = TI_BDFLAG_JUMBO_RING;
894	if (sc->arpcom.ac_if.if_hwassist)
895		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
896	r->ti_len = m_new->m_len;
897	r->ti_idx = i;
898
899	return(0);
900}
901
902/*
903 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
904 * that's 1MB or memory, which is a lot. For now, we fill only the first
905 * 256 ring entries and hope that our CPU is fast enough to keep up with
906 * the NIC.
907 */
908static int ti_init_rx_ring_std(sc)
909	struct ti_softc		*sc;
910{
911	register int		i;
912	struct ti_cmd_desc	cmd;
913
914	for (i = 0; i < TI_SSLOTS; i++) {
915		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
916			return(ENOBUFS);
917	};
918
919	TI_UPDATE_STDPROD(sc, i - 1);
920	sc->ti_std = i - 1;
921
922	return(0);
923}
924
925static void ti_free_rx_ring_std(sc)
926	struct ti_softc		*sc;
927{
928	register int		i;
929
930	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
931		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
932			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
933			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
934		}
935		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
936		    sizeof(struct ti_rx_desc));
937	}
938
939	return;
940}
941
942static int ti_init_rx_ring_jumbo(sc)
943	struct ti_softc		*sc;
944{
945	register int		i;
946	struct ti_cmd_desc	cmd;
947
948	for (i = 0; i < (TI_JSLOTS - 20); i++) {
949		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
950			return(ENOBUFS);
951	};
952
953	TI_UPDATE_JUMBOPROD(sc, i - 1);
954	sc->ti_jumbo = i - 1;
955
956	return(0);
957}
958
959static void ti_free_rx_ring_jumbo(sc)
960	struct ti_softc		*sc;
961{
962	register int		i;
963
964	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
965		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
966			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
967			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
968		}
969		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
970		    sizeof(struct ti_rx_desc));
971	}
972
973	return;
974}
975
976static int ti_init_rx_ring_mini(sc)
977	struct ti_softc		*sc;
978{
979	register int		i;
980
981	for (i = 0; i < TI_MSLOTS; i++) {
982		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
983			return(ENOBUFS);
984	};
985
986	TI_UPDATE_MINIPROD(sc, i - 1);
987	sc->ti_mini = i - 1;
988
989	return(0);
990}
991
992static void ti_free_rx_ring_mini(sc)
993	struct ti_softc		*sc;
994{
995	register int		i;
996
997	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
998		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
999			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1000			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1001		}
1002		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1003		    sizeof(struct ti_rx_desc));
1004	}
1005
1006	return;
1007}
1008
1009static void ti_free_tx_ring(sc)
1010	struct ti_softc		*sc;
1011{
1012	register int		i;
1013
1014	if (sc->ti_rdata->ti_tx_ring == NULL)
1015		return;
1016
1017	for (i = 0; i < TI_TX_RING_CNT; i++) {
1018		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1019			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1020			sc->ti_cdata.ti_tx_chain[i] = NULL;
1021		}
1022		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1023		    sizeof(struct ti_tx_desc));
1024	}
1025
1026	return;
1027}
1028
1029static int ti_init_tx_ring(sc)
1030	struct ti_softc		*sc;
1031{
1032	sc->ti_txcnt = 0;
1033	sc->ti_tx_saved_considx = 0;
1034	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1035	return(0);
1036}
1037
1038/*
1039 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1040 * but we have to support the old way too so that Tigon 1 cards will
1041 * work.
1042 */
1043void ti_add_mcast(sc, addr)
1044	struct ti_softc		*sc;
1045	struct ether_addr	*addr;
1046{
1047	struct ti_cmd_desc	cmd;
1048	u_int16_t		*m;
1049	u_int32_t		ext[2] = {0, 0};
1050
1051	m = (u_int16_t *)&addr->octet[0];
1052
1053	switch(sc->ti_hwrev) {
1054	case TI_HWREV_TIGON:
1055		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1056		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1057		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1058		break;
1059	case TI_HWREV_TIGON_II:
1060		ext[0] = htons(m[0]);
1061		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1062		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1063		break;
1064	default:
1065		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1066		break;
1067	}
1068
1069	return;
1070}
1071
1072void ti_del_mcast(sc, addr)
1073	struct ti_softc		*sc;
1074	struct ether_addr	*addr;
1075{
1076	struct ti_cmd_desc	cmd;
1077	u_int16_t		*m;
1078	u_int32_t		ext[2] = {0, 0};
1079
1080	m = (u_int16_t *)&addr->octet[0];
1081
1082	switch(sc->ti_hwrev) {
1083	case TI_HWREV_TIGON:
1084		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1085		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1086		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1087		break;
1088	case TI_HWREV_TIGON_II:
1089		ext[0] = htons(m[0]);
1090		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1091		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1092		break;
1093	default:
1094		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1095		break;
1096	}
1097
1098	return;
1099}
1100
1101/*
1102 * Configure the Tigon's multicast address filter.
1103 *
1104 * The actual multicast table management is a bit of a pain, thanks to
1105 * slight brain damage on the part of both Alteon and us. With our
1106 * multicast code, we are only alerted when the multicast address table
1107 * changes and at that point we only have the current list of addresses:
1108 * we only know the current state, not the previous state, so we don't
1109 * actually know what addresses were removed or added. The firmware has
1110 * state, but we can't get our grubby mits on it, and there is no 'delete
1111 * all multicast addresses' command. Hence, we have to maintain our own
1112 * state so we know what addresses have been programmed into the NIC at
1113 * any given time.
1114 */
1115static void ti_setmulti(sc)
1116	struct ti_softc		*sc;
1117{
1118	struct ifnet		*ifp;
1119	struct ifmultiaddr	*ifma;
1120	struct ti_cmd_desc	cmd;
1121	struct ti_mc_entry	*mc;
1122	u_int32_t		intrs;
1123
1124	ifp = &sc->arpcom.ac_if;
1125
1126	if (ifp->if_flags & IFF_ALLMULTI) {
1127		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1128		return;
1129	} else {
1130		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1131	}
1132
1133	/* Disable interrupts. */
1134	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1135	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1136
1137	/* First, zot all the existing filters. */
1138	while (sc->ti_mc_listhead.slh_first != NULL) {
1139		mc = sc->ti_mc_listhead.slh_first;
1140		ti_del_mcast(sc, &mc->mc_addr);
1141		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1142		free(mc, M_DEVBUF);
1143	}
1144
1145	/* Now program new ones. */
1146	for (ifma = ifp->if_multiaddrs.lh_first;
1147	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1148		if (ifma->ifma_addr->sa_family != AF_LINK)
1149			continue;
1150		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1151		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1152		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1153		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1154		ti_add_mcast(sc, &mc->mc_addr);
1155	}
1156
1157	/* Re-enable interrupts. */
1158	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1159
1160	return;
1161}
1162
1163/*
1164 * Check to see if the BIOS has configured us for a 64 bit slot when
1165 * we aren't actually in one. If we detect this condition, we can work
1166 * around it on the Tigon 2 by setting a bit in the PCI state register,
1167 * but for the Tigon 1 we must give up and abort the interface attach.
1168 */
1169static int ti_64bitslot_war(sc)
1170	struct ti_softc		*sc;
1171{
1172	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1173		CSR_WRITE_4(sc, 0x600, 0);
1174		CSR_WRITE_4(sc, 0x604, 0);
1175		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1176		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1177			if (sc->ti_hwrev == TI_HWREV_TIGON)
1178				return(EINVAL);
1179			else {
1180				TI_SETBIT(sc, TI_PCI_STATE,
1181				    TI_PCISTATE_32BIT_BUS);
1182				return(0);
1183			}
1184		}
1185	}
1186
1187	return(0);
1188}
1189
1190/*
1191 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1192 * self-test results.
1193 */
1194static int ti_chipinit(sc)
1195	struct ti_softc		*sc;
1196{
1197	u_int32_t		cacheline;
1198	u_int32_t		pci_writemax = 0;
1199
1200	/* Initialize link to down state. */
1201	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1202
1203	sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1204
1205	/* Set endianness before we access any non-PCI registers. */
1206#if BYTE_ORDER == BIG_ENDIAN
1207	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1208	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1209#else
1210	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1211	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1212#endif
1213
1214	/* Check the ROM failed bit to see if self-tests passed. */
1215	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1216		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1217		return(ENODEV);
1218	}
1219
1220	/* Halt the CPU. */
1221	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1222
1223	/* Figure out the hardware revision. */
1224	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1225	case TI_REV_TIGON_I:
1226		sc->ti_hwrev = TI_HWREV_TIGON;
1227		break;
1228	case TI_REV_TIGON_II:
1229		sc->ti_hwrev = TI_HWREV_TIGON_II;
1230		break;
1231	default:
1232		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1233		return(ENODEV);
1234	}
1235
1236	/* Do special setup for Tigon 2. */
1237	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1238		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1239		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1240		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1241	}
1242
1243	/* Set up the PCI state register. */
1244	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1245	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1246		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1247	}
1248
1249	/* Clear the read/write max DMA parameters. */
1250	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1251	    TI_PCISTATE_READ_MAXDMA));
1252
1253	/* Get cache line size. */
1254	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1255
1256	/*
1257	 * If the system has set enabled the PCI memory write
1258	 * and invalidate command in the command register, set
1259	 * the write max parameter accordingly. This is necessary
1260	 * to use MWI with the Tigon 2.
1261	 */
1262	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1263		switch(cacheline) {
1264		case 1:
1265		case 4:
1266		case 8:
1267		case 16:
1268		case 32:
1269		case 64:
1270			break;
1271		default:
1272		/* Disable PCI memory write and invalidate. */
1273			if (bootverbose)
1274				printf("ti%d: cache line size %d not "
1275				    "supported; disabling PCI MWI\n",
1276				    sc->ti_unit, cacheline);
1277			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1278			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1279			break;
1280		}
1281	}
1282
1283#ifdef __brokenalpha__
1284	/*
1285	 * From the Alteon sample driver:
1286	 * Must insure that we do not cross an 8K (bytes) boundary
1287	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1288	 * restriction on some ALPHA platforms with early revision
1289	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1290	 */
1291	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1292#else
1293	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1294#endif
1295
1296	/* This sets the min dma param all the way up (0xff). */
1297	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1298
1299	/* Configure DMA variables. */
1300#if BYTE_ORDER == BIG_ENDIAN
1301	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1302	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1303	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1304	    TI_OPMODE_DONT_FRAG_JUMBO);
1305#else
1306	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1307	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1308	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1309#endif
1310
1311	/*
1312	 * Only allow 1 DMA channel to be active at a time.
1313	 * I don't think this is a good idea, but without it
1314	 * the firmware racks up lots of nicDmaReadRingFull
1315	 * errors.  This is not compatible with hardware checksums.
1316	 */
1317	if (sc->arpcom.ac_if.if_hwassist == 0)
1318		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1319
1320	/* Recommended settings from Tigon manual. */
1321	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1322	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1323
1324	if (ti_64bitslot_war(sc)) {
1325		printf("ti%d: bios thinks we're in a 64 bit slot, "
1326		    "but we aren't", sc->ti_unit);
1327		return(EINVAL);
1328	}
1329
1330	return(0);
1331}
1332
1333/*
1334 * Initialize the general information block and firmware, and
1335 * start the CPU(s) running.
1336 */
1337static int ti_gibinit(sc)
1338	struct ti_softc		*sc;
1339{
1340	struct ti_rcb		*rcb;
1341	int			i;
1342	struct ifnet		*ifp;
1343
1344	ifp = &sc->arpcom.ac_if;
1345
1346	/* Disable interrupts for now. */
1347	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1348
1349	/* Tell the chip where to find the general information block. */
1350	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1351	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1352
1353	/* Load the firmware into SRAM. */
1354	ti_loadfw(sc);
1355
1356	/* Set up the contents of the general info and ring control blocks. */
1357
1358	/* Set up the event ring and producer pointer. */
1359	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1360
1361	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1362	rcb->ti_flags = 0;
1363	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1364	    vtophys(&sc->ti_ev_prodidx);
1365	sc->ti_ev_prodidx.ti_idx = 0;
1366	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1367	sc->ti_ev_saved_considx = 0;
1368
1369	/* Set up the command ring and producer mailbox. */
1370	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1371
1372	sc->ti_rdata->ti_cmd_ring =
1373	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1374	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1375	rcb->ti_flags = 0;
1376	rcb->ti_max_len = 0;
1377	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1378		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1379	}
1380	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1381	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1382	sc->ti_cmd_saved_prodidx = 0;
1383
1384	/*
1385	 * Assign the address of the stats refresh buffer.
1386	 * We re-use the current stats buffer for this to
1387	 * conserve memory.
1388	 */
1389	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1390	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1391
1392	/* Set up the standard receive ring. */
1393	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1394	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1395	rcb->ti_max_len = TI_FRAMELEN;
1396	rcb->ti_flags = 0;
1397	if (sc->arpcom.ac_if.if_hwassist)
1398		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1399		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1400#if NVLAN > 0
1401	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1402#endif
1403
1404	/* Set up the jumbo receive ring. */
1405	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1406	TI_HOSTADDR(rcb->ti_hostaddr) =
1407	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1408	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1409	rcb->ti_flags = 0;
1410	if (sc->arpcom.ac_if.if_hwassist)
1411		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1412		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1413#if NVLAN > 0
1414	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1415#endif
1416
1417	/*
1418	 * Set up the mini ring. Only activated on the
1419	 * Tigon 2 but the slot in the config block is
1420	 * still there on the Tigon 1.
1421	 */
1422	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1423	TI_HOSTADDR(rcb->ti_hostaddr) =
1424	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1425	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1426	if (sc->ti_hwrev == TI_HWREV_TIGON)
1427		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1428	else
1429		rcb->ti_flags = 0;
1430	if (sc->arpcom.ac_if.if_hwassist)
1431		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1432		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1433#if NVLAN > 0
1434	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1435#endif
1436
1437	/*
1438	 * Set up the receive return ring.
1439	 */
1440	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1441	TI_HOSTADDR(rcb->ti_hostaddr) =
1442	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1443	rcb->ti_flags = 0;
1444	rcb->ti_max_len = TI_RETURN_RING_CNT;
1445	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1446	    vtophys(&sc->ti_return_prodidx);
1447
1448	/*
1449	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1450	 * of putting the transmit ring in the host's address space and
1451	 * letting the chip DMA it instead of leaving the ring in the NIC's
1452	 * memory and accessing it through the shared memory region. We
1453	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1454	 * so we have to revert to the shared memory scheme if we detect
1455	 * a Tigon 1 chip.
1456	 */
1457	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1458	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1459		sc->ti_rdata->ti_tx_ring_nic =
1460		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1461	}
1462	bzero((char *)sc->ti_rdata->ti_tx_ring,
1463	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1464	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1465	if (sc->ti_hwrev == TI_HWREV_TIGON)
1466		rcb->ti_flags = 0;
1467	else
1468		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1469#if NVLAN > 0
1470	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1471#endif
1472	if (sc->arpcom.ac_if.if_hwassist)
1473		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1474		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1475	rcb->ti_max_len = TI_TX_RING_CNT;
1476	if (sc->ti_hwrev == TI_HWREV_TIGON)
1477		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1478	else
1479		TI_HOSTADDR(rcb->ti_hostaddr) =
1480		    vtophys(&sc->ti_rdata->ti_tx_ring);
1481	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1482	    vtophys(&sc->ti_tx_considx);
1483
1484	/* Set up tuneables */
1485	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1486		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1487		    (sc->ti_rx_coal_ticks / 10));
1488	else
1489		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1490	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1491	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1492	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1493	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1494	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1495
1496	/* Turn interrupts on. */
1497	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1498	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1499
1500	/* Start CPU. */
1501	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1502
1503	return(0);
1504}
1505
1506/*
1507 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1508 * against our list and return its name if we find a match.
1509 */
1510static int ti_probe(dev)
1511	device_t		dev;
1512{
1513	struct ti_type		*t;
1514
1515	t = ti_devs;
1516
1517	while(t->ti_name != NULL) {
1518		if ((pci_get_vendor(dev) == t->ti_vid) &&
1519		    (pci_get_device(dev) == t->ti_did)) {
1520			device_set_desc(dev, t->ti_name);
1521			return(0);
1522		}
1523		t++;
1524	}
1525
1526	return(ENXIO);
1527}
1528
1529static int ti_attach(dev)
1530	device_t		dev;
1531{
1532	int			s;
1533	u_int32_t		command;
1534	struct ifnet		*ifp;
1535	struct ti_softc		*sc;
1536	int			unit, error = 0, rid;
1537
1538	s = splimp();
1539
1540	sc = device_get_softc(dev);
1541	unit = device_get_unit(dev);
1542	bzero(sc, sizeof(struct ti_softc));
1543
1544	/*
1545	 * Map control/status registers.
1546	 */
1547	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1548	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1549	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
1550	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1551
1552	if (!(command & PCIM_CMD_MEMEN)) {
1553		printf("ti%d: failed to enable memory mapping!\n", unit);
1554		error = ENXIO;
1555		goto fail;
1556	}
1557
1558	rid = TI_PCI_LOMEM;
1559	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1560	    0, ~0, 1, RF_ACTIVE);
1561
1562	if (sc->ti_res == NULL) {
1563		printf ("ti%d: couldn't map memory\n", unit);
1564		error = ENXIO;
1565		goto fail;
1566	}
1567
1568	sc->ti_btag = rman_get_bustag(sc->ti_res);
1569	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1570	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1571
1572	/*
1573	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1574	 * broken and returns a physical address instead of a kernel
1575	 * virtual address. Consequently, we need to do a little
1576	 * extra mangling of the vhandle on the alpha. This should
1577	 * eventually be fixed! The whole idea here is to get rid
1578	 * of platform dependencies.
1579	 */
1580#ifdef __alpha__
1581	if (pci_cvt_to_bwx(sc->ti_vhandle))
1582		sc->ti_vhandle = pci_cvt_to_bwx(sc->ti_vhandle);
1583	else
1584		sc->ti_vhandle = pci_cvt_to_dense(sc->ti_vhandle);
1585	sc->ti_vhandle = ALPHA_PHYS_TO_K0SEG(sc->ti_vhandle);
1586#endif
1587
1588	/* Allocate interrupt */
1589	rid = 0;
1590
1591	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1592	    RF_SHAREABLE | RF_ACTIVE);
1593
1594	if (sc->ti_irq == NULL) {
1595		printf("ti%d: couldn't map interrupt\n", unit);
1596		error = ENXIO;
1597		goto fail;
1598	}
1599
1600	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1601	   ti_intr, sc, &sc->ti_intrhand);
1602
1603	if (error) {
1604		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1605		bus_release_resource(dev, SYS_RES_MEMORY,
1606		    TI_PCI_LOMEM, sc->ti_res);
1607		printf("ti%d: couldn't set up irq\n", unit);
1608		goto fail;
1609	}
1610
1611	sc->ti_unit = unit;
1612
1613	if (ti_chipinit(sc)) {
1614		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1615		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1616		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1617		bus_release_resource(dev, SYS_RES_MEMORY,
1618		    TI_PCI_LOMEM, sc->ti_res);
1619		error = ENXIO;
1620		goto fail;
1621	}
1622
1623	/* Zero out the NIC's on-board SRAM. */
1624	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1625
1626	/* Init again -- zeroing memory may have clobbered some registers. */
1627	if (ti_chipinit(sc)) {
1628		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1629		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1630		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1631		bus_release_resource(dev, SYS_RES_MEMORY,
1632		    TI_PCI_LOMEM, sc->ti_res);
1633		error = ENXIO;
1634		goto fail;
1635	}
1636
1637	/*
1638	 * Get station address from the EEPROM. Note: the manual states
1639	 * that the MAC address is at offset 0x8c, however the data is
1640	 * stored as two longwords (since that's how it's loaded into
1641	 * the NIC). This means the MAC address is actually preceeded
1642	 * by two zero bytes. We need to skip over those.
1643	 */
1644	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1645				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1646		printf("ti%d: failed to read station address\n", unit);
1647		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1648		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1649		bus_release_resource(dev, SYS_RES_MEMORY,
1650		    TI_PCI_LOMEM, sc->ti_res);
1651		error = ENXIO;
1652		goto fail;
1653	}
1654
1655	/*
1656	 * A Tigon chip was detected. Inform the world.
1657	 */
1658	printf("ti%d: Ethernet address: %6D\n", unit,
1659				sc->arpcom.ac_enaddr, ":");
1660
1661	/* Allocate the general information block and ring buffers. */
1662	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1663	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1664
1665	if (sc->ti_rdata == NULL) {
1666		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1667		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1668		bus_release_resource(dev, SYS_RES_MEMORY,
1669		    TI_PCI_LOMEM, sc->ti_res);
1670		error = ENXIO;
1671		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1672		goto fail;
1673	}
1674
1675	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1676
1677	/* Try to allocate memory for jumbo buffers. */
1678	if (ti_alloc_jumbo_mem(sc)) {
1679		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1680		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1681		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1682		bus_release_resource(dev, SYS_RES_MEMORY,
1683		    TI_PCI_LOMEM, sc->ti_res);
1684		free(sc->ti_rdata, M_DEVBUF);
1685		error = ENXIO;
1686		goto fail;
1687	}
1688
1689	/* Set default tuneable values. */
1690	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1691	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1692	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1693	sc->ti_rx_max_coal_bds = 64;
1694	sc->ti_tx_max_coal_bds = 128;
1695	sc->ti_tx_buf_ratio = 21;
1696
1697	/* Set up ifnet structure */
1698	ifp = &sc->arpcom.ac_if;
1699	ifp->if_softc = sc;
1700	ifp->if_unit = sc->ti_unit;
1701	ifp->if_name = "ti";
1702	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1703	ifp->if_ioctl = ti_ioctl;
1704	ifp->if_output = ether_output;
1705	ifp->if_start = ti_start;
1706	ifp->if_watchdog = ti_watchdog;
1707	ifp->if_init = ti_init;
1708	ifp->if_mtu = ETHERMTU;
1709	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1710
1711	/* Set up ifmedia support. */
1712	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1713	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1714	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1715	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1716	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1717	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1718	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1719	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1720	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1721
1722	/*
1723	 * Call MI attach routines.
1724	 */
1725	if_attach(ifp);
1726	ether_ifattach(ifp);
1727
1728	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1729
1730fail:
1731	splx(s);
1732
1733	return(error);
1734}
1735
1736static int ti_detach(dev)
1737	device_t		dev;
1738{
1739	struct ti_softc		*sc;
1740	struct ifnet		*ifp;
1741	int			s;
1742
1743	s = splimp();
1744
1745	sc = device_get_softc(dev);
1746	ifp = &sc->arpcom.ac_if;
1747
1748	if_detach(ifp);
1749	ti_stop(sc);
1750
1751	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1752	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1753	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1754
1755	free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
1756	free(sc->ti_rdata, M_DEVBUF);
1757	ifmedia_removeall(&sc->ifmedia);
1758
1759	splx(s);
1760
1761	return(0);
1762}
1763
1764/*
1765 * Frame reception handling. This is called if there's a frame
1766 * on the receive return list.
1767 *
1768 * Note: we have to be able to handle three possibilities here:
1769 * 1) the frame is from the mini receive ring (can only happen)
1770 *    on Tigon 2 boards)
1771 * 2) the frame is from the jumbo recieve ring
1772 * 3) the frame is from the standard receive ring
1773 */
1774
1775static void ti_rxeof(sc)
1776	struct ti_softc		*sc;
1777{
1778	struct ifnet		*ifp;
1779	struct ti_cmd_desc	cmd;
1780
1781	ifp = &sc->arpcom.ac_if;
1782
1783	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1784		struct ti_rx_desc	*cur_rx;
1785		u_int32_t		rxidx;
1786		struct ether_header	*eh;
1787		struct mbuf		*m = NULL;
1788#if NVLAN > 0
1789		u_int16_t		vlan_tag = 0;
1790		int			have_tag = 0;
1791#endif
1792
1793		cur_rx =
1794		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1795		rxidx = cur_rx->ti_idx;
1796		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1797
1798#if NVLAN > 0
1799		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1800			have_tag = 1;
1801			vlan_tag = cur_rx->ti_vlan_tag;
1802		}
1803#endif
1804
1805		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1806			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1807			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1808			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1809			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1810				ifp->if_ierrors++;
1811				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1812				continue;
1813			}
1814			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1815				ifp->if_ierrors++;
1816				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1817				continue;
1818			}
1819		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1820			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1821			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1822			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1823			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1824				ifp->if_ierrors++;
1825				ti_newbuf_mini(sc, sc->ti_mini, m);
1826				continue;
1827			}
1828			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1829				ifp->if_ierrors++;
1830				ti_newbuf_mini(sc, sc->ti_mini, m);
1831				continue;
1832			}
1833		} else {
1834			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1835			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1836			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1837			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1838				ifp->if_ierrors++;
1839				ti_newbuf_std(sc, sc->ti_std, m);
1840				continue;
1841			}
1842			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1843				ifp->if_ierrors++;
1844				ti_newbuf_std(sc, sc->ti_std, m);
1845				continue;
1846			}
1847		}
1848
1849		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1850		ifp->if_ipackets++;
1851		eh = mtod(m, struct ether_header *);
1852		m->m_pkthdr.rcvif = ifp;
1853
1854		/*
1855	 	 * Handle BPF listeners. Let the BPF user see the packet, but
1856	 	 * don't pass it up to the ether_input() layer unless it's
1857	 	 * a broadcast packet, multicast packet, matches our ethernet
1858	 	 * address or the interface is in promiscuous mode.
1859	 	 */
1860		if (ifp->if_bpf) {
1861			bpf_mtap(ifp, m);
1862			if (ifp->if_flags & IFF_PROMISC &&
1863				(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1864		 			ETHER_ADDR_LEN) &&
1865					(eh->ether_dhost[0] & 1) == 0)) {
1866				m_freem(m);
1867				continue;
1868			}
1869		}
1870
1871		/* Remove header from mbuf and pass it on. */
1872		m_adj(m, sizeof(struct ether_header));
1873
1874		if (ifp->if_hwassist) {
1875			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1876			    CSUM_DATA_VALID;
1877			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1878				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1879			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1880		}
1881
1882#if NVLAN > 0
1883		/*
1884		 * If we received a packet with a vlan tag, pass it
1885		 * to vlan_input() instead of ether_input().
1886		 */
1887		if (have_tag) {
1888			vlan_input_tag(eh, m, vlan_tag);
1889			have_tag = vlan_tag = 0;
1890			continue;
1891		}
1892#endif
1893		ether_input(ifp, eh, m);
1894	}
1895
1896	/* Only necessary on the Tigon 1. */
1897	if (sc->ti_hwrev == TI_HWREV_TIGON)
1898		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1899		    sc->ti_rx_saved_considx);
1900
1901	TI_UPDATE_STDPROD(sc, sc->ti_std);
1902	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1903	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1904
1905	return;
1906}
1907
1908static void ti_txeof(sc)
1909	struct ti_softc		*sc;
1910{
1911	struct ti_tx_desc	*cur_tx = NULL;
1912	struct ifnet		*ifp;
1913
1914	ifp = &sc->arpcom.ac_if;
1915
1916	/*
1917	 * Go through our tx ring and free mbufs for those
1918	 * frames that have been sent.
1919	 */
1920	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1921		u_int32_t		idx = 0;
1922
1923		idx = sc->ti_tx_saved_considx;
1924		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1925			if (idx > 383)
1926				CSR_WRITE_4(sc, TI_WINBASE,
1927				    TI_TX_RING_BASE + 6144);
1928			else if (idx > 255)
1929				CSR_WRITE_4(sc, TI_WINBASE,
1930				    TI_TX_RING_BASE + 4096);
1931			else if (idx > 127)
1932				CSR_WRITE_4(sc, TI_WINBASE,
1933				    TI_TX_RING_BASE + 2048);
1934			else
1935				CSR_WRITE_4(sc, TI_WINBASE,
1936				    TI_TX_RING_BASE);
1937			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1938		} else
1939			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1940		if (cur_tx->ti_flags & TI_BDFLAG_END)
1941			ifp->if_opackets++;
1942		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1943			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1944			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1945		}
1946		sc->ti_txcnt--;
1947		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1948		ifp->if_timer = 0;
1949	}
1950
1951	if (cur_tx != NULL)
1952		ifp->if_flags &= ~IFF_OACTIVE;
1953
1954	return;
1955}
1956
1957static void ti_intr(xsc)
1958	void			*xsc;
1959{
1960	struct ti_softc		*sc;
1961	struct ifnet		*ifp;
1962
1963	sc = xsc;
1964	ifp = &sc->arpcom.ac_if;
1965
1966#ifdef notdef
1967	/* Avoid this for now -- checking this register is expensive. */
1968	/* Make sure this is really our interrupt. */
1969	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1970		return;
1971#endif
1972
1973	/* Ack interrupt and stop others from occuring. */
1974	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1975
1976	if (ifp->if_flags & IFF_RUNNING) {
1977		/* Check RX return ring producer/consumer */
1978		ti_rxeof(sc);
1979
1980		/* Check TX ring producer/consumer */
1981		ti_txeof(sc);
1982	}
1983
1984	ti_handle_events(sc);
1985
1986	/* Re-enable interrupts. */
1987	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1988
1989	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1990		ti_start(ifp);
1991
1992	return;
1993}
1994
1995static void ti_stats_update(sc)
1996	struct ti_softc		*sc;
1997{
1998	struct ifnet		*ifp;
1999
2000	ifp = &sc->arpcom.ac_if;
2001
2002	ifp->if_collisions +=
2003	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2004	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2005	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2006	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2007	   ifp->if_collisions;
2008
2009	return;
2010}
2011
2012/*
2013 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2014 * pointers to descriptors.
2015 */
2016static int ti_encap(sc, m_head, txidx)
2017	struct ti_softc		*sc;
2018	struct mbuf		*m_head;
2019	u_int32_t		*txidx;
2020{
2021	struct ti_tx_desc	*f = NULL;
2022	struct mbuf		*m;
2023	u_int32_t		frag, cur, cnt = 0;
2024	u_int16_t		csum_flags = 0;
2025#if NVLAN > 0
2026	struct ifvlan		*ifv = NULL;
2027
2028	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2029	    m_head->m_pkthdr.rcvif != NULL &&
2030	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2031		ifv = m_head->m_pkthdr.rcvif->if_softc;
2032#endif
2033
2034	m = m_head;
2035	cur = frag = *txidx;
2036
2037	if (m_head->m_pkthdr.csum_flags) {
2038		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2039			csum_flags |= TI_BDFLAG_IP_CKSUM;
2040		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2041			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2042		if (m_head->m_flags & M_LASTFRAG)
2043			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2044		else if (m_head->m_flags & M_FRAG)
2045			csum_flags |= TI_BDFLAG_IP_FRAG;
2046	}
2047	/*
2048 	 * Start packing the mbufs in this chain into
2049	 * the fragment pointers. Stop when we run out
2050 	 * of fragments or hit the end of the mbuf chain.
2051	 */
2052	for (m = m_head; m != NULL; m = m->m_next) {
2053		if (m->m_len != 0) {
2054			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2055				if (frag > 383)
2056					CSR_WRITE_4(sc, TI_WINBASE,
2057					    TI_TX_RING_BASE + 6144);
2058				else if (frag > 255)
2059					CSR_WRITE_4(sc, TI_WINBASE,
2060					    TI_TX_RING_BASE + 4096);
2061				else if (frag > 127)
2062					CSR_WRITE_4(sc, TI_WINBASE,
2063					    TI_TX_RING_BASE + 2048);
2064				else
2065					CSR_WRITE_4(sc, TI_WINBASE,
2066					    TI_TX_RING_BASE);
2067				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2068			} else
2069				f = &sc->ti_rdata->ti_tx_ring[frag];
2070			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2071				break;
2072			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2073			f->ti_len = m->m_len;
2074			f->ti_flags = csum_flags;
2075#if NVLAN > 0
2076			if (ifv != NULL) {
2077				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2078				f->ti_vlan_tag = ifv->ifv_tag;
2079			} else {
2080				f->ti_vlan_tag = 0;
2081			}
2082#endif
2083			/*
2084			 * Sanity check: avoid coming within 16 descriptors
2085			 * of the end of the ring.
2086			 */
2087			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2088				return(ENOBUFS);
2089			cur = frag;
2090			TI_INC(frag, TI_TX_RING_CNT);
2091			cnt++;
2092		}
2093	}
2094
2095	if (m != NULL)
2096		return(ENOBUFS);
2097
2098	if (frag == sc->ti_tx_saved_considx)
2099		return(ENOBUFS);
2100
2101	if (sc->ti_hwrev == TI_HWREV_TIGON)
2102		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2103		    TI_BDFLAG_END;
2104	else
2105		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2106	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2107	sc->ti_txcnt += cnt;
2108
2109	*txidx = frag;
2110
2111	return(0);
2112}
2113
2114/*
2115 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2116 * to the mbuf data regions directly in the transmit descriptors.
2117 */
2118static void ti_start(ifp)
2119	struct ifnet		*ifp;
2120{
2121	struct ti_softc		*sc;
2122	struct mbuf		*m_head = NULL;
2123	u_int32_t		prodidx = 0;
2124
2125	sc = ifp->if_softc;
2126
2127	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2128
2129	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2130		IF_DEQUEUE(&ifp->if_snd, m_head);
2131		if (m_head == NULL)
2132			break;
2133
2134		/*
2135		 * XXX
2136		 * safety overkill.  If this is a fragmented packet chain
2137		 * with delayed TCP/UDP checksums, then only encapsulate
2138		 * it if we have enough descriptors to handle the entire
2139		 * chain at once.
2140		 * (paranoia -- may not actually be needed)
2141		 */
2142		if (m_head->m_flags & M_FIRSTFRAG &&
2143		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2144			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2145			    m_head->m_pkthdr.csum_data + 16) {
2146				IF_PREPEND(&ifp->if_snd, m_head);
2147				ifp->if_flags |= IFF_OACTIVE;
2148				break;
2149			}
2150		}
2151
2152		/*
2153		 * Pack the data into the transmit ring. If we
2154		 * don't have room, set the OACTIVE flag and wait
2155		 * for the NIC to drain the ring.
2156		 */
2157		if (ti_encap(sc, m_head, &prodidx)) {
2158			IF_PREPEND(&ifp->if_snd, m_head);
2159			ifp->if_flags |= IFF_OACTIVE;
2160			break;
2161		}
2162
2163		/*
2164		 * If there's a BPF listener, bounce a copy of this frame
2165		 * to him.
2166		 */
2167		if (ifp->if_bpf)
2168			bpf_mtap(ifp, m_head);
2169	}
2170
2171	/* Transmit */
2172	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2173
2174	/*
2175	 * Set a timeout in case the chip goes out to lunch.
2176	 */
2177	ifp->if_timer = 5;
2178
2179	return;
2180}
2181
2182static void ti_init(xsc)
2183	void			*xsc;
2184{
2185	struct ti_softc		*sc = xsc;
2186        int			s;
2187
2188	s = splimp();
2189
2190	/* Cancel pending I/O and flush buffers. */
2191	ti_stop(sc);
2192
2193	/* Init the gen info block, ring control blocks and firmware. */
2194	if (ti_gibinit(sc)) {
2195		printf("ti%d: initialization failure\n", sc->ti_unit);
2196		splx(s);
2197		return;
2198	}
2199
2200	splx(s);
2201
2202	return;
2203}
2204
2205static void ti_init2(sc)
2206	struct ti_softc		*sc;
2207{
2208	struct ti_cmd_desc	cmd;
2209	struct ifnet		*ifp;
2210	u_int16_t		*m;
2211	struct ifmedia		*ifm;
2212	int			tmp;
2213
2214	ifp = &sc->arpcom.ac_if;
2215
2216	/* Specify MTU and interface index. */
2217	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2218	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2219	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2220	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2221
2222	/* Load our MAC address. */
2223	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2224	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2225	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2226	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2227
2228	/* Enable or disable promiscuous mode as needed. */
2229	if (ifp->if_flags & IFF_PROMISC) {
2230		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2231	} else {
2232		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2233	}
2234
2235	/* Program multicast filter. */
2236	ti_setmulti(sc);
2237
2238	/*
2239	 * If this is a Tigon 1, we should tell the
2240	 * firmware to use software packet filtering.
2241	 */
2242	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2243		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2244	}
2245
2246	/* Init RX ring. */
2247	ti_init_rx_ring_std(sc);
2248
2249	/* Init jumbo RX ring. */
2250	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2251		ti_init_rx_ring_jumbo(sc);
2252
2253	/*
2254	 * If this is a Tigon 2, we can also configure the
2255	 * mini ring.
2256	 */
2257	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2258		ti_init_rx_ring_mini(sc);
2259
2260	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2261	sc->ti_rx_saved_considx = 0;
2262
2263	/* Init TX ring. */
2264	ti_init_tx_ring(sc);
2265
2266	/* Tell firmware we're alive. */
2267	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2268
2269	/* Enable host interrupts. */
2270	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2271
2272	ifp->if_flags |= IFF_RUNNING;
2273	ifp->if_flags &= ~IFF_OACTIVE;
2274
2275	/*
2276	 * Make sure to set media properly. We have to do this
2277	 * here since we have to issue commands in order to set
2278	 * the link negotiation and we can't issue commands until
2279	 * the firmware is running.
2280	 */
2281	ifm = &sc->ifmedia;
2282	tmp = ifm->ifm_media;
2283	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2284	ti_ifmedia_upd(ifp);
2285	ifm->ifm_media = tmp;
2286
2287	return;
2288}
2289
2290/*
2291 * Set media options.
2292 */
2293static int ti_ifmedia_upd(ifp)
2294	struct ifnet		*ifp;
2295{
2296	struct ti_softc		*sc;
2297	struct ifmedia		*ifm;
2298	struct ti_cmd_desc	cmd;
2299
2300	sc = ifp->if_softc;
2301	ifm = &sc->ifmedia;
2302
2303	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2304		return(EINVAL);
2305
2306	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2307	case IFM_AUTO:
2308		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2309		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2310		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2311		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2312		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2313		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2314		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2315		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2316		break;
2317	case IFM_1000_SX:
2318		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2319		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2320		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2321		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2322		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2323		break;
2324	case IFM_100_FX:
2325	case IFM_10_FL:
2326		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2327		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2328		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2329			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2330		} else {
2331			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2332		}
2333		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2334			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2335		} else {
2336			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2337		}
2338		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2339		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2340		break;
2341	}
2342
2343	return(0);
2344}
2345
2346/*
2347 * Report current media status.
2348 */
2349static void ti_ifmedia_sts(ifp, ifmr)
2350	struct ifnet		*ifp;
2351	struct ifmediareq	*ifmr;
2352{
2353	struct ti_softc		*sc;
2354
2355	sc = ifp->if_softc;
2356
2357	ifmr->ifm_status = IFM_AVALID;
2358	ifmr->ifm_active = IFM_ETHER;
2359
2360	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2361		return;
2362
2363	ifmr->ifm_status |= IFM_ACTIVE;
2364
2365	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2366		ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
2367	else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2368		u_int32_t		media;
2369		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2370		if (media & TI_LNK_100MB)
2371			ifmr->ifm_active |= IFM_100_FX;
2372		if (media & TI_LNK_10MB)
2373			ifmr->ifm_active |= IFM_10_FL;
2374		if (media & TI_LNK_FULL_DUPLEX)
2375			ifmr->ifm_active |= IFM_FDX;
2376		if (media & TI_LNK_HALF_DUPLEX)
2377			ifmr->ifm_active |= IFM_HDX;
2378	}
2379
2380	return;
2381}
2382
2383static int ti_ioctl(ifp, command, data)
2384	struct ifnet		*ifp;
2385	u_long			command;
2386	caddr_t			data;
2387{
2388	struct ti_softc		*sc = ifp->if_softc;
2389	struct ifreq		*ifr = (struct ifreq *) data;
2390	int			s, error = 0;
2391	struct ti_cmd_desc	cmd;
2392
2393	s = splimp();
2394
2395	switch(command) {
2396	case SIOCSIFADDR:
2397	case SIOCGIFADDR:
2398		error = ether_ioctl(ifp, command, data);
2399		break;
2400	case SIOCSIFMTU:
2401		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2402			error = EINVAL;
2403		else {
2404			ifp->if_mtu = ifr->ifr_mtu;
2405			ti_init(sc);
2406		}
2407		break;
2408	case SIOCSIFFLAGS:
2409		if (ifp->if_flags & IFF_UP) {
2410			/*
2411			 * If only the state of the PROMISC flag changed,
2412			 * then just use the 'set promisc mode' command
2413			 * instead of reinitializing the entire NIC. Doing
2414			 * a full re-init means reloading the firmware and
2415			 * waiting for it to start up, which may take a
2416			 * second or two.
2417			 */
2418			if (ifp->if_flags & IFF_RUNNING &&
2419			    ifp->if_flags & IFF_PROMISC &&
2420			    !(sc->ti_if_flags & IFF_PROMISC)) {
2421				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2422				    TI_CMD_CODE_PROMISC_ENB, 0);
2423			} else if (ifp->if_flags & IFF_RUNNING &&
2424			    !(ifp->if_flags & IFF_PROMISC) &&
2425			    sc->ti_if_flags & IFF_PROMISC) {
2426				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2427				    TI_CMD_CODE_PROMISC_DIS, 0);
2428			} else
2429				ti_init(sc);
2430		} else {
2431			if (ifp->if_flags & IFF_RUNNING) {
2432				ti_stop(sc);
2433			}
2434		}
2435		sc->ti_if_flags = ifp->if_flags;
2436		error = 0;
2437		break;
2438	case SIOCADDMULTI:
2439	case SIOCDELMULTI:
2440		if (ifp->if_flags & IFF_RUNNING) {
2441			ti_setmulti(sc);
2442			error = 0;
2443		}
2444		break;
2445	case SIOCSIFMEDIA:
2446	case SIOCGIFMEDIA:
2447		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2448		break;
2449	default:
2450		error = EINVAL;
2451		break;
2452	}
2453
2454	(void)splx(s);
2455
2456	return(error);
2457}
2458
2459static void ti_watchdog(ifp)
2460	struct ifnet		*ifp;
2461{
2462	struct ti_softc		*sc;
2463
2464	sc = ifp->if_softc;
2465
2466	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2467	ti_stop(sc);
2468	ti_init(sc);
2469
2470	ifp->if_oerrors++;
2471
2472	return;
2473}
2474
2475/*
2476 * Stop the adapter and free any mbufs allocated to the
2477 * RX and TX lists.
2478 */
2479static void ti_stop(sc)
2480	struct ti_softc		*sc;
2481{
2482	struct ifnet		*ifp;
2483	struct ti_cmd_desc	cmd;
2484
2485	ifp = &sc->arpcom.ac_if;
2486
2487	/* Disable host interrupts. */
2488	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2489	/*
2490	 * Tell firmware we're shutting down.
2491	 */
2492	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2493
2494	/* Halt and reinitialize. */
2495	ti_chipinit(sc);
2496	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2497	ti_chipinit(sc);
2498
2499	/* Free the RX lists. */
2500	ti_free_rx_ring_std(sc);
2501
2502	/* Free jumbo RX list. */
2503	ti_free_rx_ring_jumbo(sc);
2504
2505	/* Free mini RX list. */
2506	ti_free_rx_ring_mini(sc);
2507
2508	/* Free TX buffers. */
2509	ti_free_tx_ring(sc);
2510
2511	sc->ti_ev_prodidx.ti_idx = 0;
2512	sc->ti_return_prodidx.ti_idx = 0;
2513	sc->ti_tx_considx.ti_idx = 0;
2514	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2515
2516	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2517
2518	return;
2519}
2520
2521/*
2522 * Stop all chip I/O so that the kernel's probe routines don't
2523 * get confused by errant DMAs when rebooting.
2524 */
2525static void ti_shutdown(dev)
2526	device_t		dev;
2527{
2528	struct ti_softc		*sc;
2529
2530	sc = device_get_softc(dev);
2531
2532	ti_chipinit(sc);
2533
2534	return;
2535}
2536