if_ti.c revision 56206
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/ti/if_ti.c 56206 2000-01-18 00:26:29Z wpaul $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include "vlan.h"
82
83#include <sys/param.h>
84#include <sys/systm.h>
85#include <sys/sockio.h>
86#include <sys/mbuf.h>
87#include <sys/malloc.h>
88#include <sys/kernel.h>
89#include <sys/socket.h>
90#include <sys/queue.h>
91
92#include <net/if.h>
93#include <net/if_arp.h>
94#include <net/ethernet.h>
95#include <net/if_dl.h>
96#include <net/if_media.h>
97
98#include <net/bpf.h>
99
100#if NVLAN > 0
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103#endif
104
105#include <netinet/in_systm.h>
106#include <netinet/in.h>
107#include <netinet/ip.h>
108
109#include <vm/vm.h>              /* for vtophys */
110#include <vm/pmap.h>            /* for vtophys */
111#include <machine/clock.h>      /* for DELAY */
112#include <machine/bus_memio.h>
113#include <machine/bus.h>
114#include <machine/resource.h>
115#include <sys/bus.h>
116#include <sys/rman.h>
117
118#include <pci/pcireg.h>
119#include <pci/pcivar.h>
120
121#include <pci/if_tireg.h>
122#include <pci/ti_fw.h>
123#include <pci/ti_fw2.h>
124
125#ifdef M_HWCKSUM
126/*#define TI_CSUM_OFFLOAD*/
127#endif
128
129#if !defined(lint)
130static const char rcsid[] =
131  "$FreeBSD: head/sys/dev/ti/if_ti.c 56206 2000-01-18 00:26:29Z wpaul $";
132#endif
133
134/*
135 * Various supported device vendors/types and their names.
136 */
137
138static struct ti_type ti_devs[] = {
139	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
140		"Alteon AceNIC Gigabit Ethernet" },
141	{ TC_VENDORID,	TC_DEVICEID_3C985,
142		"3Com 3c985-SX Gigabit Ethernet" },
143	{ NG_VENDORID, NG_DEVICEID_GA620,
144		"Netgear GA620 Gigabit Ethernet" },
145	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
146		"Silicon Graphics Gigabit Ethernet" },
147	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
148		"Farallon PN9000SX Gigabit Ethernet" },
149	{ 0, 0, NULL }
150};
151
152static int ti_probe		__P((device_t));
153static int ti_attach		__P((device_t));
154static int ti_detach		__P((device_t));
155static void ti_txeof		__P((struct ti_softc *));
156static void ti_rxeof		__P((struct ti_softc *));
157
158static void ti_stats_update	__P((struct ti_softc *));
159static int ti_encap		__P((struct ti_softc *, struct mbuf *,
160					u_int32_t *));
161
162static void ti_intr		__P((void *));
163static void ti_start		__P((struct ifnet *));
164static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
165static void ti_init		__P((void *));
166static void ti_init2		__P((struct ti_softc *));
167static void ti_stop		__P((struct ti_softc *));
168static void ti_watchdog		__P((struct ifnet *));
169static void ti_shutdown		__P((device_t));
170static int ti_ifmedia_upd	__P((struct ifnet *));
171static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
172
173static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
174static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
175						int, u_int8_t *));
176static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
177
178static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
179static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
180static void ti_setmulti		__P((struct ti_softc *));
181
182static void ti_mem		__P((struct ti_softc *, u_int32_t,
183					u_int32_t, caddr_t));
184static void ti_loadfw		__P((struct ti_softc *));
185static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
186static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
187					caddr_t, int));
188static void ti_handle_events	__P((struct ti_softc *));
189static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
190static void *ti_jalloc		__P((struct ti_softc *));
191static void ti_jfree		__P((caddr_t, u_int));
192static void ti_jref		__P((caddr_t, u_int));
193static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
194static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
195static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
196static int ti_init_rx_ring_std	__P((struct ti_softc *));
197static void ti_free_rx_ring_std	__P((struct ti_softc *));
198static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
199static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
200static int ti_init_rx_ring_mini	__P((struct ti_softc *));
201static void ti_free_rx_ring_mini	__P((struct ti_softc *));
202static void ti_free_tx_ring	__P((struct ti_softc *));
203static int ti_init_tx_ring	__P((struct ti_softc *));
204
205static int ti_64bitslot_war	__P((struct ti_softc *));
206static int ti_chipinit		__P((struct ti_softc *));
207static int ti_gibinit		__P((struct ti_softc *));
208
209static device_method_t ti_methods[] = {
210	/* Device interface */
211	DEVMETHOD(device_probe,		ti_probe),
212	DEVMETHOD(device_attach,	ti_attach),
213	DEVMETHOD(device_detach,	ti_detach),
214	DEVMETHOD(device_shutdown,	ti_shutdown),
215	{ 0, 0 }
216};
217
218static driver_t ti_driver = {
219	"ti",
220	ti_methods,
221	sizeof(struct ti_softc)
222};
223
224static devclass_t ti_devclass;
225
226DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
227
228/*
229 * Send an instruction or address to the EEPROM, check for ACK.
230 */
231static u_int32_t ti_eeprom_putbyte(sc, byte)
232	struct ti_softc		*sc;
233	int			byte;
234{
235	register int		i, ack = 0;
236
237	/*
238	 * Make sure we're in TX mode.
239	 */
240	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241
242	/*
243	 * Feed in each bit and stobe the clock.
244	 */
245	for (i = 0x80; i; i >>= 1) {
246		if (byte & i) {
247			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248		} else {
249			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250		}
251		DELAY(1);
252		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253		DELAY(1);
254		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255	}
256
257	/*
258	 * Turn off TX mode.
259	 */
260	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
261
262	/*
263	 * Check for ack.
264	 */
265	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
267	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
268
269	return(ack);
270}
271
272/*
273 * Read a byte of data stored in the EEPROM at address 'addr.'
274 * We have to send two address bytes since the EEPROM can hold
275 * more than 256 bytes of data.
276 */
277static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
278	struct ti_softc		*sc;
279	int			addr;
280	u_int8_t		*dest;
281{
282	register int		i;
283	u_int8_t		byte = 0;
284
285	EEPROM_START;
286
287	/*
288	 * Send write control code to EEPROM.
289	 */
290	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
291		printf("ti%d: failed to send write command, status: %x\n",
292		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
293		return(1);
294	}
295
296	/*
297	 * Send first byte of address of byte we want to read.
298	 */
299	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
300		printf("ti%d: failed to send address, status: %x\n",
301		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302		return(1);
303	}
304	/*
305	 * Send second byte address of byte we want to read.
306	 */
307	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
308		printf("ti%d: failed to send address, status: %x\n",
309		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310		return(1);
311	}
312
313	EEPROM_STOP;
314	EEPROM_START;
315	/*
316	 * Send read control code to EEPROM.
317	 */
318	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
319		printf("ti%d: failed to send read command, status: %x\n",
320		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
321		return(1);
322	}
323
324	/*
325	 * Start reading bits from EEPROM.
326	 */
327	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
328	for (i = 0x80; i; i >>= 1) {
329		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330		DELAY(1);
331		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
332			byte |= i;
333		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
334		DELAY(1);
335	}
336
337	EEPROM_STOP;
338
339	/*
340	 * No ACK generated for read, so just return byte.
341	 */
342
343	*dest = byte;
344
345	return(0);
346}
347
348/*
349 * Read a sequence of bytes from the EEPROM.
350 */
351static int ti_read_eeprom(sc, dest, off, cnt)
352	struct ti_softc		*sc;
353	caddr_t			dest;
354	int			off;
355	int			cnt;
356{
357	int			err = 0, i;
358	u_int8_t		byte = 0;
359
360	for (i = 0; i < cnt; i++) {
361		err = ti_eeprom_getbyte(sc, off + i, &byte);
362		if (err)
363			break;
364		*(dest + i) = byte;
365	}
366
367	return(err ? 1 : 0);
368}
369
370/*
371 * NIC memory access function. Can be used to either clear a section
372 * of NIC local memory or (if buf is non-NULL) copy data into it.
373 */
374static void ti_mem(sc, addr, len, buf)
375	struct ti_softc		*sc;
376	u_int32_t		addr, len;
377	caddr_t			buf;
378{
379	int			segptr, segsize, cnt;
380	caddr_t			ti_winbase, ptr;
381
382	segptr = addr;
383	cnt = len;
384	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
385	ptr = buf;
386
387	while(cnt) {
388		if (cnt < TI_WINLEN)
389			segsize = cnt;
390		else
391			segsize = TI_WINLEN - (segptr % TI_WINLEN);
392		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
393		if (buf == NULL)
394			bzero((char *)ti_winbase + (segptr &
395			    (TI_WINLEN - 1)), segsize);
396		else {
397			bcopy((char *)ptr, (char *)ti_winbase +
398			    (segptr & (TI_WINLEN - 1)), segsize);
399			ptr += segsize;
400		}
401		segptr += segsize;
402		cnt -= segsize;
403	}
404
405	return;
406}
407
408/*
409 * Load firmware image into the NIC. Check that the firmware revision
410 * is acceptable and see if we want the firmware for the Tigon 1 or
411 * Tigon 2.
412 */
413static void ti_loadfw(sc)
414	struct ti_softc		*sc;
415{
416	switch(sc->ti_hwrev) {
417	case TI_HWREV_TIGON:
418		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421			printf("ti%d: firmware revision mismatch; want "
422			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
423			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425			    tigonFwReleaseMinor, tigonFwReleaseFix);
426			return;
427		}
428		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429		    (caddr_t)tigonFwText);
430		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431		    (caddr_t)tigonFwData);
432		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433		    (caddr_t)tigonFwRodata);
434		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437		break;
438	case TI_HWREV_TIGON_II:
439		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442			printf("ti%d: firmware revision mismatch; want "
443			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
444			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
447			return;
448		}
449		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450		    (caddr_t)tigon2FwText);
451		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452		    (caddr_t)tigon2FwData);
453		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454		    (caddr_t)tigon2FwRodata);
455		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458		break;
459	default:
460		printf("ti%d: can't load firmware: unknown hardware rev\n",
461		    sc->ti_unit);
462		break;
463	}
464
465	return;
466}
467
468/*
469 * Send the NIC a command via the command ring.
470 */
471static void ti_cmd(sc, cmd)
472	struct ti_softc		*sc;
473	struct ti_cmd_desc	*cmd;
474{
475	u_int32_t		index;
476
477	if (sc->ti_rdata->ti_cmd_ring == NULL)
478		return;
479
480	index = sc->ti_cmd_saved_prodidx;
481	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
482	TI_INC(index, TI_CMD_RING_CNT);
483	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
484	sc->ti_cmd_saved_prodidx = index;
485
486	return;
487}
488
489/*
490 * Send the NIC an extended command. The 'len' parameter specifies the
491 * number of command slots to include after the initial command.
492 */
493static void ti_cmd_ext(sc, cmd, arg, len)
494	struct ti_softc		*sc;
495	struct ti_cmd_desc	*cmd;
496	caddr_t			arg;
497	int			len;
498{
499	u_int32_t		index;
500	register int		i;
501
502	if (sc->ti_rdata->ti_cmd_ring == NULL)
503		return;
504
505	index = sc->ti_cmd_saved_prodidx;
506	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
507	TI_INC(index, TI_CMD_RING_CNT);
508	for (i = 0; i < len; i++) {
509		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
510		    *(u_int32_t *)(&arg[i * 4]));
511		TI_INC(index, TI_CMD_RING_CNT);
512	}
513	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
514	sc->ti_cmd_saved_prodidx = index;
515
516	return;
517}
518
519/*
520 * Handle events that have triggered interrupts.
521 */
522static void ti_handle_events(sc)
523	struct ti_softc		*sc;
524{
525	struct ti_event_desc	*e;
526
527	if (sc->ti_rdata->ti_event_ring == NULL)
528		return;
529
530	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
531		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
532		switch(e->ti_event) {
533		case TI_EV_LINKSTAT_CHANGED:
534			sc->ti_linkstat = e->ti_code;
535			if (e->ti_code == TI_EV_CODE_LINK_UP)
536				printf("ti%d: 10/100 link up\n", sc->ti_unit);
537			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
538				printf("ti%d: gigabit link up\n", sc->ti_unit);
539			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
540				printf("ti%d: link down\n", sc->ti_unit);
541			break;
542		case TI_EV_ERROR:
543			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
544				printf("ti%d: invalid command\n", sc->ti_unit);
545			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
546				printf("ti%d: unknown command\n", sc->ti_unit);
547			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
548				printf("ti%d: bad config data\n", sc->ti_unit);
549			break;
550		case TI_EV_FIRMWARE_UP:
551			ti_init2(sc);
552			break;
553		case TI_EV_STATS_UPDATED:
554			ti_stats_update(sc);
555			break;
556		case TI_EV_RESET_JUMBO_RING:
557		case TI_EV_MCAST_UPDATED:
558			/* Who cares. */
559			break;
560		default:
561			printf("ti%d: unknown event: %d\n",
562			    sc->ti_unit, e->ti_event);
563			break;
564		}
565		/* Advance the consumer index. */
566		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568	}
569
570	return;
571}
572
573/*
574 * Memory management for the jumbo receive ring is a pain in the
575 * butt. We need to allocate at least 9018 bytes of space per frame,
576 * _and_ it has to be contiguous (unless you use the extended
577 * jumbo descriptor format). Using malloc() all the time won't
578 * work: malloc() allocates memory in powers of two, which means we
579 * would end up wasting a considerable amount of space by allocating
580 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581 * to do our own memory management.
582 *
583 * The driver needs to allocate a contiguous chunk of memory at boot
584 * time. We then chop this up ourselves into 9K pieces and use them
585 * as external mbuf storage.
586 *
587 * One issue here is how much memory to allocate. The jumbo ring has
588 * 256 slots in it, but at 9K per slot than can consume over 2MB of
589 * RAM. This is a bit much, especially considering we also need
590 * RAM for the standard ring and mini ring (on the Tigon 2). To
591 * save space, we only actually allocate enough memory for 64 slots
592 * by default, which works out to between 500 and 600K. This can
593 * be tuned by changing a #define in if_tireg.h.
594 */
595
596static int ti_alloc_jumbo_mem(sc)
597	struct ti_softc		*sc;
598{
599	caddr_t			ptr;
600	register int		i;
601	struct ti_jpool_entry   *entry;
602
603	/* Grab a big chunk o' storage. */
604	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
605		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
606
607	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
608		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
609		return(ENOBUFS);
610	}
611
612	SLIST_INIT(&sc->ti_jfree_listhead);
613	SLIST_INIT(&sc->ti_jinuse_listhead);
614
615	/*
616	 * Now divide it up into 9K pieces and save the addresses
617	 * in an array. Note that we play an evil trick here by using
618	 * the first few bytes in the buffer to hold the the address
619	 * of the softc structure for this interface. This is because
620	 * ti_jfree() needs it, but it is called by the mbuf management
621	 * code which will not pass it to us explicitly.
622	 */
623	ptr = sc->ti_cdata.ti_jumbo_buf;
624	for (i = 0; i < TI_JSLOTS; i++) {
625		u_int64_t		**aptr;
626		aptr = (u_int64_t **)ptr;
627		aptr[0] = (u_int64_t *)sc;
628		ptr += sizeof(u_int64_t);
629		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
630		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
631		ptr += (TI_JLEN - sizeof(u_int64_t));
632		entry = malloc(sizeof(struct ti_jpool_entry),
633			       M_DEVBUF, M_NOWAIT);
634		if (entry == NULL) {
635			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
636			sc->ti_cdata.ti_jumbo_buf = NULL;
637			printf("ti%d: no memory for jumbo "
638			    "buffer queue!\n", sc->ti_unit);
639			return(ENOBUFS);
640		}
641		entry->slot = i;
642		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
643	}
644
645	return(0);
646}
647
648/*
649 * Allocate a jumbo buffer.
650 */
651static void *ti_jalloc(sc)
652	struct ti_softc		*sc;
653{
654	struct ti_jpool_entry   *entry;
655
656	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
657
658	if (entry == NULL) {
659		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
660		return(NULL);
661	}
662
663	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
664	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
665	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
666	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
667}
668
669/*
670 * Adjust usage count on a jumbo buffer. In general this doesn't
671 * get used much because our jumbo buffers don't get passed around
672 * too much, but it's implemented for correctness.
673 */
674static void ti_jref(buf, size)
675	caddr_t			buf;
676	u_int			size;
677{
678	struct ti_softc		*sc;
679	u_int64_t		**aptr;
680	register int		i;
681
682	/* Extract the softc struct pointer. */
683	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
684	sc = (struct ti_softc *)(aptr[0]);
685
686	if (sc == NULL)
687		panic("ti_jref: can't find softc pointer!");
688
689	if (size != TI_JUMBO_FRAMELEN)
690		panic("ti_jref: adjusting refcount of buf of wrong size!");
691
692	/* calculate the slot this buffer belongs to */
693
694	i = ((vm_offset_t)aptr
695	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
696
697	if ((i < 0) || (i >= TI_JSLOTS))
698		panic("ti_jref: asked to reference buffer "
699		    "that we don't manage!");
700	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
701		panic("ti_jref: buffer already free!");
702	else
703		sc->ti_cdata.ti_jslots[i].ti_inuse++;
704
705	return;
706}
707
708/*
709 * Release a jumbo buffer.
710 */
711static void ti_jfree(buf, size)
712	caddr_t			buf;
713	u_int			size;
714{
715	struct ti_softc		*sc;
716	u_int64_t		**aptr;
717	int		        i;
718	struct ti_jpool_entry   *entry;
719
720	/* Extract the softc struct pointer. */
721	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
722	sc = (struct ti_softc *)(aptr[0]);
723
724	if (sc == NULL)
725		panic("ti_jfree: can't find softc pointer!");
726
727	if (size != TI_JUMBO_FRAMELEN)
728		panic("ti_jfree: freeing buffer of wrong size!");
729
730	/* calculate the slot this buffer belongs to */
731
732	i = ((vm_offset_t)aptr
733	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
734
735	if ((i < 0) || (i >= TI_JSLOTS))
736		panic("ti_jfree: asked to free buffer that we don't manage!");
737	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
738		panic("ti_jfree: buffer already free!");
739	else {
740		sc->ti_cdata.ti_jslots[i].ti_inuse--;
741		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
742			entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
743			if (entry == NULL)
744				panic("ti_jfree: buffer not in use!");
745			entry->slot = i;
746			SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
747					  jpool_entries);
748			SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
749					  entry, jpool_entries);
750		}
751	}
752
753	return;
754}
755
756
757/*
758 * Intialize a standard receive ring descriptor.
759 */
760static int ti_newbuf_std(sc, i, m)
761	struct ti_softc		*sc;
762	int			i;
763	struct mbuf		*m;
764{
765	struct mbuf		*m_new = NULL;
766	struct ti_rx_desc	*r;
767
768	if (m == NULL) {
769		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
770		if (m_new == NULL) {
771			printf("ti%d: mbuf allocation failed "
772			    "-- packet dropped!\n", sc->ti_unit);
773			return(ENOBUFS);
774		}
775
776		MCLGET(m_new, M_DONTWAIT);
777		if (!(m_new->m_flags & M_EXT)) {
778			printf("ti%d: cluster allocation failed "
779			    "-- packet dropped!\n", sc->ti_unit);
780			m_freem(m_new);
781			return(ENOBUFS);
782		}
783		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
784	} else {
785		m_new = m;
786		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
787		m_new->m_data = m_new->m_ext.ext_buf;
788	}
789
790	m_adj(m_new, ETHER_ALIGN);
791	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
792	r = &sc->ti_rdata->ti_rx_std_ring[i];
793	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
794	r->ti_type = TI_BDTYPE_RECV_BD;
795#ifdef TI_CSUM_OFFLOAD
796	r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
797#else
798	r->ti_flags = 0;
799#endif
800	r->ti_len = m_new->m_len;
801	r->ti_idx = i;
802
803	return(0);
804}
805
806/*
807 * Intialize a mini receive ring descriptor. This only applies to
808 * the Tigon 2.
809 */
810static int ti_newbuf_mini(sc, i, m)
811	struct ti_softc		*sc;
812	int			i;
813	struct mbuf		*m;
814{
815	struct mbuf		*m_new = NULL;
816	struct ti_rx_desc	*r;
817
818	if (m == NULL) {
819		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
820		if (m_new == NULL) {
821			printf("ti%d: mbuf allocation failed "
822			    "-- packet dropped!\n", sc->ti_unit);
823			return(ENOBUFS);
824		}
825		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
826	} else {
827		m_new = m;
828		m_new->m_data = m_new->m_pktdat;
829		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
830	}
831
832	m_adj(m_new, ETHER_ALIGN);
833	r = &sc->ti_rdata->ti_rx_mini_ring[i];
834	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
835	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
836	r->ti_type = TI_BDTYPE_RECV_BD;
837	r->ti_flags = TI_BDFLAG_MINI_RING;
838#ifdef TI_CSUM_OFFLOAD
839	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
840#endif
841	r->ti_len = m_new->m_len;
842	r->ti_idx = i;
843
844	return(0);
845}
846
847/*
848 * Initialize a jumbo receive ring descriptor. This allocates
849 * a jumbo buffer from the pool managed internally by the driver.
850 */
851static int ti_newbuf_jumbo(sc, i, m)
852	struct ti_softc		*sc;
853	int			i;
854	struct mbuf		*m;
855{
856	struct mbuf		*m_new = NULL;
857	struct ti_rx_desc	*r;
858
859	if (m == NULL) {
860		caddr_t			*buf = NULL;
861
862		/* Allocate the mbuf. */
863		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
864		if (m_new == NULL) {
865			printf("ti%d: mbuf allocation failed "
866			    "-- packet dropped!\n", sc->ti_unit);
867			return(ENOBUFS);
868		}
869
870		/* Allocate the jumbo buffer */
871		buf = ti_jalloc(sc);
872		if (buf == NULL) {
873			m_freem(m_new);
874			printf("ti%d: jumbo allocation failed "
875			    "-- packet dropped!\n", sc->ti_unit);
876			return(ENOBUFS);
877		}
878
879		/* Attach the buffer to the mbuf. */
880		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
881		m_new->m_flags |= M_EXT;
882		m_new->m_len = m_new->m_pkthdr.len =
883		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
884		m_new->m_ext.ext_free = ti_jfree;
885		m_new->m_ext.ext_ref = ti_jref;
886	} else {
887		m_new = m;
888		m_new->m_data = m_new->m_ext.ext_buf;
889		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
890	}
891
892	m_adj(m_new, ETHER_ALIGN);
893	/* Set up the descriptor. */
894	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
895	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
896	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
897	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
898	r->ti_flags = TI_BDFLAG_JUMBO_RING;
899#ifdef TI_CSUM_OFFLOAD
900	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
901#endif
902	r->ti_len = m_new->m_len;
903	r->ti_idx = i;
904
905	return(0);
906}
907
908/*
909 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
910 * that's 1MB or memory, which is a lot. For now, we fill only the first
911 * 256 ring entries and hope that our CPU is fast enough to keep up with
912 * the NIC.
913 */
914static int ti_init_rx_ring_std(sc)
915	struct ti_softc		*sc;
916{
917	register int		i;
918	struct ti_cmd_desc	cmd;
919
920	for (i = 0; i < TI_SSLOTS; i++) {
921		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
922			return(ENOBUFS);
923	};
924
925	TI_UPDATE_STDPROD(sc, i - 1);
926	sc->ti_std = i - 1;
927
928	return(0);
929}
930
931static void ti_free_rx_ring_std(sc)
932	struct ti_softc		*sc;
933{
934	register int		i;
935
936	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
937		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
938			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
939			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
940		}
941		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
942		    sizeof(struct ti_rx_desc));
943	}
944
945	return;
946}
947
948static int ti_init_rx_ring_jumbo(sc)
949	struct ti_softc		*sc;
950{
951	register int		i;
952	struct ti_cmd_desc	cmd;
953
954	for (i = 0; i < (TI_JSLOTS - 20); i++) {
955		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
956			return(ENOBUFS);
957	};
958
959	TI_UPDATE_JUMBOPROD(sc, i - 1);
960	sc->ti_jumbo = i - 1;
961
962	return(0);
963}
964
965static void ti_free_rx_ring_jumbo(sc)
966	struct ti_softc		*sc;
967{
968	register int		i;
969
970	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
971		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
972			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
973			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
974		}
975		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
976		    sizeof(struct ti_rx_desc));
977	}
978
979	return;
980}
981
982static int ti_init_rx_ring_mini(sc)
983	struct ti_softc		*sc;
984{
985	register int		i;
986
987	for (i = 0; i < TI_MSLOTS; i++) {
988		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
989			return(ENOBUFS);
990	};
991
992	TI_UPDATE_MINIPROD(sc, i - 1);
993	sc->ti_mini = i - 1;
994
995	return(0);
996}
997
998static void ti_free_rx_ring_mini(sc)
999	struct ti_softc		*sc;
1000{
1001	register int		i;
1002
1003	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1004		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1005			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1006			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1007		}
1008		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1009		    sizeof(struct ti_rx_desc));
1010	}
1011
1012	return;
1013}
1014
1015static void ti_free_tx_ring(sc)
1016	struct ti_softc		*sc;
1017{
1018	register int		i;
1019
1020	if (sc->ti_rdata->ti_tx_ring == NULL)
1021		return;
1022
1023	for (i = 0; i < TI_TX_RING_CNT; i++) {
1024		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1025			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1026			sc->ti_cdata.ti_tx_chain[i] = NULL;
1027		}
1028		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1029		    sizeof(struct ti_tx_desc));
1030	}
1031
1032	return;
1033}
1034
1035static int ti_init_tx_ring(sc)
1036	struct ti_softc		*sc;
1037{
1038	sc->ti_txcnt = 0;
1039	sc->ti_tx_saved_considx = 0;
1040	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1041	return(0);
1042}
1043
1044/*
1045 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1046 * but we have to support the old way too so that Tigon 1 cards will
1047 * work.
1048 */
1049void ti_add_mcast(sc, addr)
1050	struct ti_softc		*sc;
1051	struct ether_addr	*addr;
1052{
1053	struct ti_cmd_desc	cmd;
1054	u_int16_t		*m;
1055	u_int32_t		ext[2] = {0, 0};
1056
1057	m = (u_int16_t *)&addr->octet[0];
1058
1059	switch(sc->ti_hwrev) {
1060	case TI_HWREV_TIGON:
1061		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1062		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1063		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1064		break;
1065	case TI_HWREV_TIGON_II:
1066		ext[0] = htons(m[0]);
1067		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1068		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1069		break;
1070	default:
1071		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1072		break;
1073	}
1074
1075	return;
1076}
1077
1078void ti_del_mcast(sc, addr)
1079	struct ti_softc		*sc;
1080	struct ether_addr	*addr;
1081{
1082	struct ti_cmd_desc	cmd;
1083	u_int16_t		*m;
1084	u_int32_t		ext[2] = {0, 0};
1085
1086	m = (u_int16_t *)&addr->octet[0];
1087
1088	switch(sc->ti_hwrev) {
1089	case TI_HWREV_TIGON:
1090		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1091		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1092		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1093		break;
1094	case TI_HWREV_TIGON_II:
1095		ext[0] = htons(m[0]);
1096		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1097		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1098		break;
1099	default:
1100		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1101		break;
1102	}
1103
1104	return;
1105}
1106
1107/*
1108 * Configure the Tigon's multicast address filter.
1109 *
1110 * The actual multicast table management is a bit of a pain, thanks to
1111 * slight brain damage on the part of both Alteon and us. With our
1112 * multicast code, we are only alerted when the multicast address table
1113 * changes and at that point we only have the current list of addresses:
1114 * we only know the current state, not the previous state, so we don't
1115 * actually know what addresses were removed or added. The firmware has
1116 * state, but we can't get our grubby mits on it, and there is no 'delete
1117 * all multicast addresses' command. Hence, we have to maintain our own
1118 * state so we know what addresses have been programmed into the NIC at
1119 * any given time.
1120 */
1121static void ti_setmulti(sc)
1122	struct ti_softc		*sc;
1123{
1124	struct ifnet		*ifp;
1125	struct ifmultiaddr	*ifma;
1126	struct ti_cmd_desc	cmd;
1127	struct ti_mc_entry	*mc;
1128	u_int32_t		intrs;
1129
1130	ifp = &sc->arpcom.ac_if;
1131
1132	if (ifp->if_flags & IFF_ALLMULTI) {
1133		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1134		return;
1135	} else {
1136		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1137	}
1138
1139	/* Disable interrupts. */
1140	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1141	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1142
1143	/* First, zot all the existing filters. */
1144	while (sc->ti_mc_listhead.slh_first != NULL) {
1145		mc = sc->ti_mc_listhead.slh_first;
1146		ti_del_mcast(sc, &mc->mc_addr);
1147		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1148		free(mc, M_DEVBUF);
1149	}
1150
1151	/* Now program new ones. */
1152	for (ifma = ifp->if_multiaddrs.lh_first;
1153	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1154		if (ifma->ifma_addr->sa_family != AF_LINK)
1155			continue;
1156		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1157		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1158		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1159		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1160		ti_add_mcast(sc, &mc->mc_addr);
1161	}
1162
1163	/* Re-enable interrupts. */
1164	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1165
1166	return;
1167}
1168
1169/*
1170 * Check to see if the BIOS has configured us for a 64 bit slot when
1171 * we aren't actually in one. If we detect this condition, we can work
1172 * around it on the Tigon 2 by setting a bit in the PCI state register,
1173 * but for the Tigon 1 we must give up and abort the interface attach.
1174 */
1175static int ti_64bitslot_war(sc)
1176	struct ti_softc		*sc;
1177{
1178	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1179		CSR_WRITE_4(sc, 0x600, 0);
1180		CSR_WRITE_4(sc, 0x604, 0);
1181		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1182		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1183			if (sc->ti_hwrev == TI_HWREV_TIGON)
1184				return(EINVAL);
1185			else {
1186				TI_SETBIT(sc, TI_PCI_STATE,
1187				    TI_PCISTATE_32BIT_BUS);
1188				return(0);
1189			}
1190		}
1191	}
1192
1193	return(0);
1194}
1195
1196/*
1197 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1198 * self-test results.
1199 */
1200static int ti_chipinit(sc)
1201	struct ti_softc		*sc;
1202{
1203	u_int32_t		cacheline;
1204	u_int32_t		pci_writemax = 0;
1205
1206	/* Initialize link to down state. */
1207	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1208
1209	/* Set endianness before we access any non-PCI registers. */
1210#if BYTE_ORDER == BIG_ENDIAN
1211	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1212	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1213#else
1214	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1215	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1216#endif
1217
1218	/* Check the ROM failed bit to see if self-tests passed. */
1219	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1220		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1221		return(ENODEV);
1222	}
1223
1224	/* Halt the CPU. */
1225	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1226
1227	/* Figure out the hardware revision. */
1228	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1229	case TI_REV_TIGON_I:
1230		sc->ti_hwrev = TI_HWREV_TIGON;
1231		break;
1232	case TI_REV_TIGON_II:
1233		sc->ti_hwrev = TI_HWREV_TIGON_II;
1234		break;
1235	default:
1236		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1237		return(ENODEV);
1238	}
1239
1240	/* Do special setup for Tigon 2. */
1241	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1242		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1243		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1244		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1245	}
1246
1247	/* Set up the PCI state register. */
1248	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1249	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1250		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1251	}
1252
1253	/* Clear the read/write max DMA parameters. */
1254	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1255	    TI_PCISTATE_READ_MAXDMA));
1256
1257	/* Get cache line size. */
1258	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1259
1260	/*
1261	 * If the system has set enabled the PCI memory write
1262	 * and invalidate command in the command register, set
1263	 * the write max parameter accordingly. This is necessary
1264	 * to use MWI with the Tigon 2.
1265	 */
1266	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1267		switch(cacheline) {
1268		case 1:
1269		case 4:
1270		case 8:
1271		case 16:
1272		case 32:
1273		case 64:
1274			break;
1275		default:
1276		/* Disable PCI memory write and invalidate. */
1277			if (bootverbose)
1278				printf("ti%d: cache line size %d not "
1279				    "supported; disabling PCI MWI\n",
1280				    sc->ti_unit, cacheline);
1281			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1282			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1283			break;
1284		}
1285	}
1286
1287#ifdef __brokenalpha__
1288	/*
1289	 * From the Alteon sample driver:
1290	 * Must insure that we do not cross an 8K (bytes) boundary
1291	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1292	 * restriction on some ALPHA platforms with early revision
1293	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1294	 */
1295	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1296#else
1297	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1298#endif
1299
1300	/* This sets the min dma param all the way up (0xff). */
1301	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1302
1303	/* Configure DMA variables. */
1304#if BYTE_ORDER == BIG_ENDIAN
1305	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1306	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1307	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1308	    TI_OPMODE_DONT_FRAG_JUMBO);
1309#else
1310	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1311	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1312	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1313#endif
1314
1315	/*
1316	 * Only allow 1 DMA channel to be active at a time.
1317	 * I don't think this is a good idea, but without it
1318	 * the firmware racks up lots of nicDmaReadRingFull
1319	 * errors.
1320	 */
1321#ifndef TI_CSUM_OFFLOAD
1322	TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1323#endif
1324
1325	/* Recommended settings from Tigon manual. */
1326	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1327	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1328
1329	if (ti_64bitslot_war(sc)) {
1330		printf("ti%d: bios thinks we're in a 64 bit slot, "
1331		    "but we aren't", sc->ti_unit);
1332		return(EINVAL);
1333	}
1334
1335	return(0);
1336}
1337
1338/*
1339 * Initialize the general information block and firmware, and
1340 * start the CPU(s) running.
1341 */
1342static int ti_gibinit(sc)
1343	struct ti_softc		*sc;
1344{
1345	struct ti_rcb		*rcb;
1346	int			i;
1347	struct ifnet		*ifp;
1348
1349	ifp = &sc->arpcom.ac_if;
1350
1351	/* Disable interrupts for now. */
1352	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1353
1354	/* Tell the chip where to find the general information block. */
1355	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1356	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1357
1358	/* Load the firmware into SRAM. */
1359	ti_loadfw(sc);
1360
1361	/* Set up the contents of the general info and ring control blocks. */
1362
1363	/* Set up the event ring and producer pointer. */
1364	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1365
1366	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1367	rcb->ti_flags = 0;
1368	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1369	    vtophys(&sc->ti_ev_prodidx);
1370	sc->ti_ev_prodidx.ti_idx = 0;
1371	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1372	sc->ti_ev_saved_considx = 0;
1373
1374	/* Set up the command ring and producer mailbox. */
1375	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1376
1377	sc->ti_rdata->ti_cmd_ring =
1378	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1379	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1380	rcb->ti_flags = 0;
1381	rcb->ti_max_len = 0;
1382	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1383		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1384	}
1385	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1386	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1387	sc->ti_cmd_saved_prodidx = 0;
1388
1389	/*
1390	 * Assign the address of the stats refresh buffer.
1391	 * We re-use the current stats buffer for this to
1392	 * conserve memory.
1393	 */
1394	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1395	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1396
1397	/* Set up the standard receive ring. */
1398	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1399	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1400	rcb->ti_max_len = TI_FRAMELEN;
1401	rcb->ti_flags = 0;
1402#ifdef TI_CSUM_OFFLOAD
1403	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1404#endif
1405#if NVLAN > 0
1406	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1407#endif
1408
1409	/* Set up the jumbo receive ring. */
1410	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1411	TI_HOSTADDR(rcb->ti_hostaddr) =
1412	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1413	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1414	rcb->ti_flags = 0;
1415#ifdef TI_CSUM_OFFLOAD
1416	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1417#endif
1418#if NVLAN > 0
1419	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1420#endif
1421
1422	/*
1423	 * Set up the mini ring. Only activated on the
1424	 * Tigon 2 but the slot in the config block is
1425	 * still there on the Tigon 1.
1426	 */
1427	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1428	TI_HOSTADDR(rcb->ti_hostaddr) =
1429	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1430	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1431	if (sc->ti_hwrev == TI_HWREV_TIGON)
1432		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1433	else
1434		rcb->ti_flags = 0;
1435#ifdef TI_CSUM_OFFLOAD
1436	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1437#endif
1438#if NVLAN > 0
1439	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1440#endif
1441
1442	/*
1443	 * Set up the receive return ring.
1444	 */
1445	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1446	TI_HOSTADDR(rcb->ti_hostaddr) =
1447	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1448	rcb->ti_flags = 0;
1449	rcb->ti_max_len = TI_RETURN_RING_CNT;
1450	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1451	    vtophys(&sc->ti_return_prodidx);
1452
1453	/*
1454	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1455	 * of putting the transmit ring in the host's address space and
1456	 * letting the chip DMA it instead of leaving the ring in the NIC's
1457	 * memory and accessing it through the shared memory region. We
1458	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1459	 * so we have to revert to the shared memory scheme if we detect
1460	 * a Tigon 1 chip.
1461	 */
1462	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1463	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1464		sc->ti_rdata->ti_tx_ring_nic =
1465		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1466	}
1467	bzero((char *)sc->ti_rdata->ti_tx_ring,
1468	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1469	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1470	if (sc->ti_hwrev == TI_HWREV_TIGON)
1471		rcb->ti_flags = 0;
1472	else
1473		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1474#if NVLAN > 0
1475	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1476#endif
1477	rcb->ti_max_len = TI_TX_RING_CNT;
1478	if (sc->ti_hwrev == TI_HWREV_TIGON)
1479		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1480	else
1481		TI_HOSTADDR(rcb->ti_hostaddr) =
1482		    vtophys(&sc->ti_rdata->ti_tx_ring);
1483	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1484	    vtophys(&sc->ti_tx_considx);
1485
1486	/* Set up tuneables */
1487	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1488		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1489		    (sc->ti_rx_coal_ticks / 10));
1490	else
1491		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1492	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1493	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1494	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1495	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1496	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1497
1498	/* Turn interrupts on. */
1499	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1500	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1501
1502	/* Start CPU. */
1503	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1504
1505	return(0);
1506}
1507
1508/*
1509 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1510 * against our list and return its name if we find a match.
1511 */
1512static int ti_probe(dev)
1513	device_t		dev;
1514{
1515	struct ti_type		*t;
1516
1517	t = ti_devs;
1518
1519	while(t->ti_name != NULL) {
1520		if ((pci_get_vendor(dev) == t->ti_vid) &&
1521		    (pci_get_device(dev) == t->ti_did)) {
1522			device_set_desc(dev, t->ti_name);
1523			return(0);
1524		}
1525		t++;
1526	}
1527
1528	return(ENXIO);
1529}
1530
1531static int ti_attach(dev)
1532	device_t		dev;
1533{
1534	int			s;
1535	u_int32_t		command;
1536	struct ifnet		*ifp;
1537	struct ti_softc		*sc;
1538	int			unit, error = 0, rid;
1539
1540	s = splimp();
1541
1542	sc = device_get_softc(dev);
1543	unit = device_get_unit(dev);
1544	bzero(sc, sizeof(struct ti_softc));
1545
1546	/*
1547	 * Map control/status registers.
1548	 */
1549	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1550	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1551	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
1552	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1553
1554	if (!(command & PCIM_CMD_MEMEN)) {
1555		printf("ti%d: failed to enable memory mapping!\n", unit);
1556		error = ENXIO;
1557		goto fail;
1558	}
1559
1560	rid = TI_PCI_LOMEM;
1561	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1562	    0, ~0, 1, RF_ACTIVE);
1563
1564	if (sc->ti_res == NULL) {
1565		printf ("ti%d: couldn't map memory\n", unit);
1566		error = ENXIO;
1567		goto fail;
1568	}
1569
1570	sc->ti_btag = rman_get_bustag(sc->ti_res);
1571	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1572	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1573
1574	/*
1575	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1576	 * broken and returns a physical address instead of a kernel
1577	 * virtual address. Consequently, we need to do a little
1578	 * extra mangling of the vhandle on the alpha. This should
1579	 * eventually be fixed! The whole idea here is to get rid
1580	 * of platform dependencies.
1581	 */
1582#ifdef __alpha__
1583	if (pci_cvt_to_bwx(sc->ti_vhandle))
1584		sc->ti_vhandle = pci_cvt_to_bwx(sc->ti_vhandle);
1585	else
1586		sc->ti_vhandle = pci_cvt_to_dense(sc->ti_vhandle);
1587	sc->ti_vhandle = ALPHA_PHYS_TO_K0SEG(sc->ti_vhandle);
1588#endif
1589
1590	/* Allocate interrupt */
1591	rid = 0;
1592
1593	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1594	    RF_SHAREABLE | RF_ACTIVE);
1595
1596	if (sc->ti_irq == NULL) {
1597		printf("ti%d: couldn't map interrupt\n", unit);
1598		error = ENXIO;
1599		goto fail;
1600	}
1601
1602	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1603	   ti_intr, sc, &sc->ti_intrhand);
1604
1605	if (error) {
1606		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1607		bus_release_resource(dev, SYS_RES_MEMORY,
1608		    TI_PCI_LOMEM, sc->ti_res);
1609		printf("ti%d: couldn't set up irq\n", unit);
1610		goto fail;
1611	}
1612
1613	sc->ti_unit = unit;
1614
1615	if (ti_chipinit(sc)) {
1616		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1617		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1618		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1619		bus_release_resource(dev, SYS_RES_MEMORY,
1620		    TI_PCI_LOMEM, sc->ti_res);
1621		error = ENXIO;
1622		goto fail;
1623	}
1624
1625	/* Zero out the NIC's on-board SRAM. */
1626	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1627
1628	/* Init again -- zeroing memory may have clobbered some registers. */
1629	if (ti_chipinit(sc)) {
1630		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1631		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1632		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1633		bus_release_resource(dev, SYS_RES_MEMORY,
1634		    TI_PCI_LOMEM, sc->ti_res);
1635		error = ENXIO;
1636		goto fail;
1637	}
1638
1639	/*
1640	 * Get station address from the EEPROM. Note: the manual states
1641	 * that the MAC address is at offset 0x8c, however the data is
1642	 * stored as two longwords (since that's how it's loaded into
1643	 * the NIC). This means the MAC address is actually preceeded
1644	 * by two zero bytes. We need to skip over those.
1645	 */
1646	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1647				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1648		printf("ti%d: failed to read station address\n", unit);
1649		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1650		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1651		bus_release_resource(dev, SYS_RES_MEMORY,
1652		    TI_PCI_LOMEM, sc->ti_res);
1653		error = ENXIO;
1654		goto fail;
1655	}
1656
1657	/*
1658	 * A Tigon chip was detected. Inform the world.
1659	 */
1660	printf("ti%d: Ethernet address: %6D\n", unit,
1661				sc->arpcom.ac_enaddr, ":");
1662
1663	/* Allocate the general information block and ring buffers. */
1664	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1665	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1666
1667	if (sc->ti_rdata == NULL) {
1668		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1669		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1670		bus_release_resource(dev, SYS_RES_MEMORY,
1671		    TI_PCI_LOMEM, sc->ti_res);
1672		error = ENXIO;
1673		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1674		goto fail;
1675	}
1676
1677	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1678
1679	/* Try to allocate memory for jumbo buffers. */
1680	if (ti_alloc_jumbo_mem(sc)) {
1681		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1682		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1683		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1684		bus_release_resource(dev, SYS_RES_MEMORY,
1685		    TI_PCI_LOMEM, sc->ti_res);
1686		free(sc->ti_rdata, M_DEVBUF);
1687		error = ENXIO;
1688		goto fail;
1689	}
1690
1691	/* Set default tuneable values. */
1692	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1693	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1694	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1695	sc->ti_rx_max_coal_bds = 64;
1696	sc->ti_tx_max_coal_bds = 128;
1697	sc->ti_tx_buf_ratio = 21;
1698
1699	/* Set up ifnet structure */
1700	ifp = &sc->arpcom.ac_if;
1701	ifp->if_softc = sc;
1702	ifp->if_unit = sc->ti_unit;
1703	ifp->if_name = "ti";
1704	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1705	ifp->if_ioctl = ti_ioctl;
1706	ifp->if_output = ether_output;
1707	ifp->if_start = ti_start;
1708	ifp->if_watchdog = ti_watchdog;
1709	ifp->if_init = ti_init;
1710	ifp->if_mtu = ETHERMTU;
1711	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1712
1713	/* Set up ifmedia support. */
1714	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1715	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1716	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1717	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1718	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1719	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1720	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1721	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1722	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1723
1724	/*
1725	 * Call MI attach routines.
1726	 */
1727	if_attach(ifp);
1728	ether_ifattach(ifp);
1729
1730	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1731
1732fail:
1733	splx(s);
1734
1735	return(error);
1736}
1737
1738static int ti_detach(dev)
1739	device_t		dev;
1740{
1741	struct ti_softc		*sc;
1742	struct ifnet		*ifp;
1743	int			s;
1744
1745	s = splimp();
1746
1747	sc = device_get_softc(dev);
1748	ifp = &sc->arpcom.ac_if;
1749
1750	if_detach(ifp);
1751	ti_stop(sc);
1752
1753	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1754	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1755	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1756
1757	free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
1758	free(sc->ti_rdata, M_DEVBUF);
1759	ifmedia_removeall(&sc->ifmedia);
1760
1761	splx(s);
1762
1763	return(0);
1764}
1765
1766/*
1767 * Frame reception handling. This is called if there's a frame
1768 * on the receive return list.
1769 *
1770 * Note: we have to be able to handle three possibilities here:
1771 * 1) the frame is from the mini receive ring (can only happen)
1772 *    on Tigon 2 boards)
1773 * 2) the frame is from the jumbo recieve ring
1774 * 3) the frame is from the standard receive ring
1775 */
1776
1777static void ti_rxeof(sc)
1778	struct ti_softc		*sc;
1779{
1780	struct ifnet		*ifp;
1781	struct ti_cmd_desc	cmd;
1782
1783	ifp = &sc->arpcom.ac_if;
1784
1785	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1786		struct ti_rx_desc	*cur_rx;
1787		u_int32_t		rxidx;
1788		struct ether_header	*eh;
1789		struct mbuf		*m = NULL;
1790#if NVLAN > 0
1791		u_int16_t		vlan_tag = 0;
1792		int			have_tag = 0;
1793#endif
1794#ifdef TI_CSUM_OFFLOAD
1795		struct ip		*ip;
1796#endif
1797
1798		cur_rx =
1799		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1800		rxidx = cur_rx->ti_idx;
1801		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1802
1803#if NVLAN > 0
1804		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1805			have_tag = 1;
1806			vlan_tag = cur_rx->ti_vlan_tag;
1807		}
1808#endif
1809
1810		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1811			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1812			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1813			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1814			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1815				ifp->if_ierrors++;
1816				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1817				continue;
1818			}
1819			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1820				ifp->if_ierrors++;
1821				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1822				continue;
1823			}
1824		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1825			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1826			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1827			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1828			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1829				ifp->if_ierrors++;
1830				ti_newbuf_mini(sc, sc->ti_mini, m);
1831				continue;
1832			}
1833			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1834				ifp->if_ierrors++;
1835				ti_newbuf_mini(sc, sc->ti_mini, m);
1836				continue;
1837			}
1838		} else {
1839			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1840			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1841			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1842			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1843				ifp->if_ierrors++;
1844				ti_newbuf_std(sc, sc->ti_std, m);
1845				continue;
1846			}
1847			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1848				ifp->if_ierrors++;
1849				ti_newbuf_std(sc, sc->ti_std, m);
1850				continue;
1851			}
1852		}
1853
1854		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1855		ifp->if_ipackets++;
1856		eh = mtod(m, struct ether_header *);
1857		m->m_pkthdr.rcvif = ifp;
1858
1859		/*
1860	 	 * Handle BPF listeners. Let the BPF user see the packet, but
1861	 	 * don't pass it up to the ether_input() layer unless it's
1862	 	 * a broadcast packet, multicast packet, matches our ethernet
1863	 	 * address or the interface is in promiscuous mode.
1864	 	 */
1865		if (ifp->if_bpf) {
1866			bpf_mtap(ifp, m);
1867			if (ifp->if_flags & IFF_PROMISC &&
1868				(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1869		 			ETHER_ADDR_LEN) &&
1870					(eh->ether_dhost[0] & 1) == 0)) {
1871				m_freem(m);
1872				continue;
1873			}
1874		}
1875
1876		/* Remove header from mbuf and pass it on. */
1877		m_adj(m, sizeof(struct ether_header));
1878
1879#ifdef TI_CSUM_OFFLOAD
1880		ip = mtod(m, struct ip *);
1881		if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1882		    !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1883			m->m_flags |= M_HWCKSUM;
1884#endif
1885
1886#if NVLAN > 0
1887		/*
1888		 * If we received a packet with a vlan tag, pass it
1889		 * to vlan_input() instead of ether_input().
1890		 */
1891		if (have_tag) {
1892			vlan_input_tag(eh, m, vlan_tag);
1893			have_tag = vlan_tag = 0;
1894			continue;
1895		}
1896#endif
1897		ether_input(ifp, eh, m);
1898	}
1899
1900	/* Only necessary on the Tigon 1. */
1901	if (sc->ti_hwrev == TI_HWREV_TIGON)
1902		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1903		    sc->ti_rx_saved_considx);
1904
1905	TI_UPDATE_STDPROD(sc, sc->ti_std);
1906	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1907	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1908
1909	return;
1910}
1911
1912static void ti_txeof(sc)
1913	struct ti_softc		*sc;
1914{
1915	struct ti_tx_desc	*cur_tx = NULL;
1916	struct ifnet		*ifp;
1917
1918	ifp = &sc->arpcom.ac_if;
1919
1920	/*
1921	 * Go through our tx ring and free mbufs for those
1922	 * frames that have been sent.
1923	 */
1924	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1925		u_int32_t		idx = 0;
1926
1927		idx = sc->ti_tx_saved_considx;
1928		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1929			if (idx > 383)
1930				CSR_WRITE_4(sc, TI_WINBASE,
1931				    TI_TX_RING_BASE + 6144);
1932			else if (idx > 255)
1933				CSR_WRITE_4(sc, TI_WINBASE,
1934				    TI_TX_RING_BASE + 4096);
1935			else if (idx > 127)
1936				CSR_WRITE_4(sc, TI_WINBASE,
1937				    TI_TX_RING_BASE + 2048);
1938			else
1939				CSR_WRITE_4(sc, TI_WINBASE,
1940				    TI_TX_RING_BASE);
1941			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1942		} else
1943			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1944		if (cur_tx->ti_flags & TI_BDFLAG_END)
1945			ifp->if_opackets++;
1946		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1947			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1948			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1949		}
1950		sc->ti_txcnt--;
1951		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1952		ifp->if_timer = 0;
1953	}
1954
1955	if (cur_tx != NULL)
1956		ifp->if_flags &= ~IFF_OACTIVE;
1957
1958	return;
1959}
1960
1961static void ti_intr(xsc)
1962	void			*xsc;
1963{
1964	struct ti_softc		*sc;
1965	struct ifnet		*ifp;
1966
1967	sc = xsc;
1968	ifp = &sc->arpcom.ac_if;
1969
1970#ifdef notdef
1971	/* Avoid this for now -- checking this register is expensive. */
1972	/* Make sure this is really our interrupt. */
1973	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1974		return;
1975#endif
1976
1977	/* Ack interrupt and stop others from occuring. */
1978	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1979
1980	if (ifp->if_flags & IFF_RUNNING) {
1981		/* Check RX return ring producer/consumer */
1982		ti_rxeof(sc);
1983
1984		/* Check TX ring producer/consumer */
1985		ti_txeof(sc);
1986	}
1987
1988	ti_handle_events(sc);
1989
1990	/* Re-enable interrupts. */
1991	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1992
1993	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1994		ti_start(ifp);
1995
1996	return;
1997}
1998
1999static void ti_stats_update(sc)
2000	struct ti_softc		*sc;
2001{
2002	struct ifnet		*ifp;
2003
2004	ifp = &sc->arpcom.ac_if;
2005
2006	ifp->if_collisions +=
2007	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2008	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2009	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2010	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2011	   ifp->if_collisions;
2012
2013	return;
2014}
2015
2016/*
2017 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2018 * pointers to descriptors.
2019 */
2020static int ti_encap(sc, m_head, txidx)
2021	struct ti_softc		*sc;
2022	struct mbuf		*m_head;
2023	u_int32_t		*txidx;
2024{
2025	struct ti_tx_desc	*f = NULL;
2026	struct mbuf		*m;
2027	u_int32_t		frag, cur, cnt = 0;
2028#if NVLAN > 0
2029	struct ifvlan		*ifv = NULL;
2030
2031	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2032	    m_head->m_pkthdr.rcvif != NULL &&
2033	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2034		ifv = m_head->m_pkthdr.rcvif->if_softc;
2035#endif
2036
2037	m = m_head;
2038	cur = frag = *txidx;
2039
2040	/*
2041 	 * Start packing the mbufs in this chain into
2042	 * the fragment pointers. Stop when we run out
2043 	 * of fragments or hit the end of the mbuf chain.
2044	 */
2045	for (m = m_head; m != NULL; m = m->m_next) {
2046		if (m->m_len != 0) {
2047			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2048				if (frag > 383)
2049					CSR_WRITE_4(sc, TI_WINBASE,
2050					    TI_TX_RING_BASE + 6144);
2051				else if (frag > 255)
2052					CSR_WRITE_4(sc, TI_WINBASE,
2053					    TI_TX_RING_BASE + 4096);
2054				else if (frag > 127)
2055					CSR_WRITE_4(sc, TI_WINBASE,
2056					    TI_TX_RING_BASE + 2048);
2057				else
2058					CSR_WRITE_4(sc, TI_WINBASE,
2059					    TI_TX_RING_BASE);
2060				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2061			} else
2062				f = &sc->ti_rdata->ti_tx_ring[frag];
2063			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2064				break;
2065			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2066			f->ti_len = m->m_len;
2067			f->ti_flags = 0;
2068#if NVLAN > 0
2069			if (ifv != NULL) {
2070				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2071				f->ti_vlan_tag = ifv->ifv_tag;
2072			} else {
2073				f->ti_vlan_tag = 0;
2074			}
2075#endif
2076			/*
2077			 * Sanity check: avoid coming within 16 descriptors
2078			 * of the end of the ring.
2079			 */
2080			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2081				return(ENOBUFS);
2082			cur = frag;
2083			TI_INC(frag, TI_TX_RING_CNT);
2084			cnt++;
2085		}
2086	}
2087
2088	if (m != NULL)
2089		return(ENOBUFS);
2090
2091	if (frag == sc->ti_tx_saved_considx)
2092		return(ENOBUFS);
2093
2094	if (sc->ti_hwrev == TI_HWREV_TIGON)
2095		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2096		    TI_BDFLAG_END;
2097	else
2098		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2099	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2100	sc->ti_txcnt += cnt;
2101
2102	*txidx = frag;
2103
2104	return(0);
2105}
2106
2107/*
2108 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2109 * to the mbuf data regions directly in the transmit descriptors.
2110 */
2111static void ti_start(ifp)
2112	struct ifnet		*ifp;
2113{
2114	struct ti_softc		*sc;
2115	struct mbuf		*m_head = NULL;
2116	u_int32_t		prodidx = 0;
2117
2118	sc = ifp->if_softc;
2119
2120	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2121
2122	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2123		IF_DEQUEUE(&ifp->if_snd, m_head);
2124		if (m_head == NULL)
2125			break;
2126
2127		/*
2128		 * Pack the data into the transmit ring. If we
2129		 * don't have room, set the OACTIVE flag and wait
2130		 * for the NIC to drain the ring.
2131		 */
2132		if (ti_encap(sc, m_head, &prodidx)) {
2133			IF_PREPEND(&ifp->if_snd, m_head);
2134			ifp->if_flags |= IFF_OACTIVE;
2135			break;
2136		}
2137
2138		/*
2139		 * If there's a BPF listener, bounce a copy of this frame
2140		 * to him.
2141		 */
2142		if (ifp->if_bpf)
2143			bpf_mtap(ifp, m_head);
2144	}
2145
2146	/* Transmit */
2147	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2148
2149	/*
2150	 * Set a timeout in case the chip goes out to lunch.
2151	 */
2152	ifp->if_timer = 5;
2153
2154	return;
2155}
2156
2157static void ti_init(xsc)
2158	void			*xsc;
2159{
2160	struct ti_softc		*sc = xsc;
2161        int			s;
2162
2163	s = splimp();
2164
2165	/* Cancel pending I/O and flush buffers. */
2166	ti_stop(sc);
2167
2168	/* Init the gen info block, ring control blocks and firmware. */
2169	if (ti_gibinit(sc)) {
2170		printf("ti%d: initialization failure\n", sc->ti_unit);
2171		splx(s);
2172		return;
2173	}
2174
2175	splx(s);
2176
2177	return;
2178}
2179
2180static void ti_init2(sc)
2181	struct ti_softc		*sc;
2182{
2183	struct ti_cmd_desc	cmd;
2184	struct ifnet		*ifp;
2185	u_int16_t		*m;
2186	struct ifmedia		*ifm;
2187	int			tmp;
2188
2189	ifp = &sc->arpcom.ac_if;
2190
2191	/* Specify MTU and interface index. */
2192	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2193	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2194	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2195	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2196
2197	/* Load our MAC address. */
2198	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2199	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2200	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2201	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2202
2203	/* Enable or disable promiscuous mode as needed. */
2204	if (ifp->if_flags & IFF_PROMISC) {
2205		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2206	} else {
2207		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2208	}
2209
2210	/* Program multicast filter. */
2211	ti_setmulti(sc);
2212
2213	/*
2214	 * If this is a Tigon 1, we should tell the
2215	 * firmware to use software packet filtering.
2216	 */
2217	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2218		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2219	}
2220
2221	/* Init RX ring. */
2222	ti_init_rx_ring_std(sc);
2223
2224	/* Init jumbo RX ring. */
2225	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2226		ti_init_rx_ring_jumbo(sc);
2227
2228	/*
2229	 * If this is a Tigon 2, we can also configure the
2230	 * mini ring.
2231	 */
2232	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2233		ti_init_rx_ring_mini(sc);
2234
2235	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2236	sc->ti_rx_saved_considx = 0;
2237
2238	/* Init TX ring. */
2239	ti_init_tx_ring(sc);
2240
2241	/* Tell firmware we're alive. */
2242	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2243
2244	/* Enable host interrupts. */
2245	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2246
2247	ifp->if_flags |= IFF_RUNNING;
2248	ifp->if_flags &= ~IFF_OACTIVE;
2249
2250	/*
2251	 * Make sure to set media properly. We have to do this
2252	 * here since we have to issue commands in order to set
2253	 * the link negotiation and we can't issue commands until
2254	 * the firmware is running.
2255	 */
2256	ifm = &sc->ifmedia;
2257	tmp = ifm->ifm_media;
2258	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2259	ti_ifmedia_upd(ifp);
2260	ifm->ifm_media = tmp;
2261
2262	return;
2263}
2264
2265/*
2266 * Set media options.
2267 */
2268static int ti_ifmedia_upd(ifp)
2269	struct ifnet		*ifp;
2270{
2271	struct ti_softc		*sc;
2272	struct ifmedia		*ifm;
2273	struct ti_cmd_desc	cmd;
2274
2275	sc = ifp->if_softc;
2276	ifm = &sc->ifmedia;
2277
2278	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2279		return(EINVAL);
2280
2281	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2282	case IFM_AUTO:
2283		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2284		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2285		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2286		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2287		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2288		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2289		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2290		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2291		break;
2292	case IFM_1000_SX:
2293		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2294		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2295		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2296		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2297		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2298		break;
2299	case IFM_100_FX:
2300	case IFM_10_FL:
2301		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2302		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2303		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2304			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2305		} else {
2306			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2307		}
2308		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2309			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2310		} else {
2311			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2312		}
2313		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2314		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2315		break;
2316	}
2317
2318	return(0);
2319}
2320
2321/*
2322 * Report current media status.
2323 */
2324static void ti_ifmedia_sts(ifp, ifmr)
2325	struct ifnet		*ifp;
2326	struct ifmediareq	*ifmr;
2327{
2328	struct ti_softc		*sc;
2329
2330	sc = ifp->if_softc;
2331
2332	ifmr->ifm_status = IFM_AVALID;
2333	ifmr->ifm_active = IFM_ETHER;
2334
2335	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2336		return;
2337
2338	ifmr->ifm_status |= IFM_ACTIVE;
2339
2340	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2341		ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
2342	else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2343		u_int32_t		media;
2344		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2345		if (media & TI_LNK_100MB)
2346			ifmr->ifm_active |= IFM_100_FX;
2347		if (media & TI_LNK_10MB)
2348			ifmr->ifm_active |= IFM_10_FL;
2349		if (media & TI_LNK_FULL_DUPLEX)
2350			ifmr->ifm_active |= IFM_FDX;
2351		if (media & TI_LNK_HALF_DUPLEX)
2352			ifmr->ifm_active |= IFM_HDX;
2353	}
2354
2355	return;
2356}
2357
2358static int ti_ioctl(ifp, command, data)
2359	struct ifnet		*ifp;
2360	u_long			command;
2361	caddr_t			data;
2362{
2363	struct ti_softc		*sc = ifp->if_softc;
2364	struct ifreq		*ifr = (struct ifreq *) data;
2365	int			s, error = 0;
2366	struct ti_cmd_desc	cmd;
2367
2368	s = splimp();
2369
2370	switch(command) {
2371	case SIOCSIFADDR:
2372	case SIOCGIFADDR:
2373		error = ether_ioctl(ifp, command, data);
2374		break;
2375	case SIOCSIFMTU:
2376		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2377			error = EINVAL;
2378		else {
2379			ifp->if_mtu = ifr->ifr_mtu;
2380			ti_init(sc);
2381		}
2382		break;
2383	case SIOCSIFFLAGS:
2384		if (ifp->if_flags & IFF_UP) {
2385			/*
2386			 * If only the state of the PROMISC flag changed,
2387			 * then just use the 'set promisc mode' command
2388			 * instead of reinitializing the entire NIC. Doing
2389			 * a full re-init means reloading the firmware and
2390			 * waiting for it to start up, which may take a
2391			 * second or two.
2392			 */
2393			if (ifp->if_flags & IFF_RUNNING &&
2394			    ifp->if_flags & IFF_PROMISC &&
2395			    !(sc->ti_if_flags & IFF_PROMISC)) {
2396				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2397				    TI_CMD_CODE_PROMISC_ENB, 0);
2398			} else if (ifp->if_flags & IFF_RUNNING &&
2399			    !(ifp->if_flags & IFF_PROMISC) &&
2400			    sc->ti_if_flags & IFF_PROMISC) {
2401				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2402				    TI_CMD_CODE_PROMISC_DIS, 0);
2403			} else
2404				ti_init(sc);
2405		} else {
2406			if (ifp->if_flags & IFF_RUNNING) {
2407				ti_stop(sc);
2408			}
2409		}
2410		sc->ti_if_flags = ifp->if_flags;
2411		error = 0;
2412		break;
2413	case SIOCADDMULTI:
2414	case SIOCDELMULTI:
2415		if (ifp->if_flags & IFF_RUNNING) {
2416			ti_setmulti(sc);
2417			error = 0;
2418		}
2419		break;
2420	case SIOCSIFMEDIA:
2421	case SIOCGIFMEDIA:
2422		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2423		break;
2424	default:
2425		error = EINVAL;
2426		break;
2427	}
2428
2429	(void)splx(s);
2430
2431	return(error);
2432}
2433
2434static void ti_watchdog(ifp)
2435	struct ifnet		*ifp;
2436{
2437	struct ti_softc		*sc;
2438
2439	sc = ifp->if_softc;
2440
2441	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2442	ti_stop(sc);
2443	ti_init(sc);
2444
2445	ifp->if_oerrors++;
2446
2447	return;
2448}
2449
2450/*
2451 * Stop the adapter and free any mbufs allocated to the
2452 * RX and TX lists.
2453 */
2454static void ti_stop(sc)
2455	struct ti_softc		*sc;
2456{
2457	struct ifnet		*ifp;
2458	struct ti_cmd_desc	cmd;
2459
2460	ifp = &sc->arpcom.ac_if;
2461
2462	/* Disable host interrupts. */
2463	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2464	/*
2465	 * Tell firmware we're shutting down.
2466	 */
2467	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2468
2469	/* Halt and reinitialize. */
2470	ti_chipinit(sc);
2471	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2472	ti_chipinit(sc);
2473
2474	/* Free the RX lists. */
2475	ti_free_rx_ring_std(sc);
2476
2477	/* Free jumbo RX list. */
2478	ti_free_rx_ring_jumbo(sc);
2479
2480	/* Free mini RX list. */
2481	ti_free_rx_ring_mini(sc);
2482
2483	/* Free TX buffers. */
2484	ti_free_tx_ring(sc);
2485
2486	sc->ti_ev_prodidx.ti_idx = 0;
2487	sc->ti_return_prodidx.ti_idx = 0;
2488	sc->ti_tx_considx.ti_idx = 0;
2489	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2490
2491	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2492
2493	return;
2494}
2495
2496/*
2497 * Stop all chip I/O so that the kernel's probe routines don't
2498 * get confused by errant DMAs when rebooting.
2499 */
2500static void ti_shutdown(dev)
2501	device_t		dev;
2502{
2503	struct ti_softc		*sc;
2504
2505	sc = device_get_softc(dev);
2506
2507	ti_chipinit(sc);
2508
2509	return;
2510}
2511