if_ti.c revision 227092
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 227092 2011-11-04 20:43:37Z yongari $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94#include <sys/sf_buf.h>
95
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/ethernet.h>
99#include <net/if_dl.h>
100#include <net/if_media.h>
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103
104#include <net/bpf.h>
105
106#include <netinet/in_systm.h>
107#include <netinet/in.h>
108#include <netinet/ip.h>
109
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115/* #define TI_PRIVATE_JUMBOS */
116#ifndef TI_PRIVATE_JUMBOS
117#include <vm/vm.h>
118#include <vm/vm_page.h>
119#endif
120
121#include <dev/pci/pcireg.h>
122#include <dev/pci/pcivar.h>
123
124#include <sys/tiio.h>
125#include <dev/ti/if_tireg.h>
126#include <dev/ti/ti_fw.h>
127#include <dev/ti/ti_fw2.h>
128
129#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130/*
131 * We can only turn on header splitting if we're using extended receive
132 * BDs.
133 */
134#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137
138typedef enum {
139	TI_SWAP_HTON,
140	TI_SWAP_NTOH
141} ti_swap_type;
142
143/*
144 * Various supported device vendors/types and their names.
145 */
146
147static const struct ti_type const ti_devs[] = {
148	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
149		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
150	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
151		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
152	{ TC_VENDORID,	TC_DEVICEID_3C985,
153		"3Com 3c985-SX Gigabit Ethernet" },
154	{ NG_VENDORID, NG_DEVICEID_GA620,
155		"Netgear GA620 1000baseSX Gigabit Ethernet" },
156	{ NG_VENDORID, NG_DEVICEID_GA620T,
157		"Netgear GA620 1000baseT Gigabit Ethernet" },
158	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
159		"Silicon Graphics Gigabit Ethernet" },
160	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
161		"Farallon PN9000SX Gigabit Ethernet" },
162	{ 0, 0, NULL }
163};
164
165
166static	d_open_t	ti_open;
167static	d_close_t	ti_close;
168static	d_ioctl_t	ti_ioctl2;
169
170static struct cdevsw ti_cdevsw = {
171	.d_version =	D_VERSION,
172	.d_flags =	0,
173	.d_open =	ti_open,
174	.d_close =	ti_close,
175	.d_ioctl =	ti_ioctl2,
176	.d_name =	"ti",
177};
178
179static int ti_probe(device_t);
180static int ti_attach(device_t);
181static int ti_detach(device_t);
182static void ti_txeof(struct ti_softc *);
183static void ti_rxeof(struct ti_softc *);
184
185static void ti_stats_update(struct ti_softc *);
186static int ti_encap(struct ti_softc *, struct mbuf **);
187
188static void ti_intr(void *);
189static void ti_start(struct ifnet *);
190static void ti_start_locked(struct ifnet *);
191static int ti_ioctl(struct ifnet *, u_long, caddr_t);
192static void ti_init(void *);
193static void ti_init_locked(void *);
194static void ti_init2(struct ti_softc *);
195static void ti_stop(struct ti_softc *);
196static void ti_watchdog(void *);
197static int ti_shutdown(device_t);
198static int ti_ifmedia_upd(struct ifnet *);
199static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
200
201static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
202static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
203static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
204
205static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
206static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
207static void ti_setmulti(struct ti_softc *);
208
209static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
210static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
211static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
212static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
213    int);
214static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
215    int, int, int);
216static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217static void ti_loadfw(struct ti_softc *);
218static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220static void ti_handle_events(struct ti_softc *);
221static int ti_alloc_dmamaps(struct ti_softc *);
222static void ti_free_dmamaps(struct ti_softc *);
223static int ti_alloc_jumbo_mem(struct ti_softc *);
224#ifdef TI_PRIVATE_JUMBOS
225static void *ti_jalloc(struct ti_softc *);
226static void ti_jfree(void *, void *);
227#endif /* TI_PRIVATE_JUMBOS */
228static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
229static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
230static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
231static int ti_init_rx_ring_std(struct ti_softc *);
232static void ti_free_rx_ring_std(struct ti_softc *);
233static int ti_init_rx_ring_jumbo(struct ti_softc *);
234static void ti_free_rx_ring_jumbo(struct ti_softc *);
235static int ti_init_rx_ring_mini(struct ti_softc *);
236static void ti_free_rx_ring_mini(struct ti_softc *);
237static void ti_free_tx_ring(struct ti_softc *);
238static int ti_init_tx_ring(struct ti_softc *);
239
240static int ti_64bitslot_war(struct ti_softc *);
241static int ti_chipinit(struct ti_softc *);
242static int ti_gibinit(struct ti_softc *);
243
244#ifdef TI_JUMBO_HDRSPLIT
245static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
246    int idx);
247#endif /* TI_JUMBO_HDRSPLIT */
248
249static device_method_t ti_methods[] = {
250	/* Device interface */
251	DEVMETHOD(device_probe,		ti_probe),
252	DEVMETHOD(device_attach,	ti_attach),
253	DEVMETHOD(device_detach,	ti_detach),
254	DEVMETHOD(device_shutdown,	ti_shutdown),
255	{ 0, 0 }
256};
257
258static driver_t ti_driver = {
259	"ti",
260	ti_methods,
261	sizeof(struct ti_softc)
262};
263
264static devclass_t ti_devclass;
265
266DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
267MODULE_DEPEND(ti, pci, 1, 1, 1);
268MODULE_DEPEND(ti, ether, 1, 1, 1);
269
270/*
271 * Send an instruction or address to the EEPROM, check for ACK.
272 */
273static uint32_t
274ti_eeprom_putbyte(struct ti_softc *sc, int byte)
275{
276	int i, ack = 0;
277
278	/*
279	 * Make sure we're in TX mode.
280	 */
281	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
282
283	/*
284	 * Feed in each bit and stobe the clock.
285	 */
286	for (i = 0x80; i; i >>= 1) {
287		if (byte & i) {
288			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
289		} else {
290			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
291		}
292		DELAY(1);
293		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
294		DELAY(1);
295		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
296	}
297
298	/*
299	 * Turn off TX mode.
300	 */
301	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
302
303	/*
304	 * Check for ack.
305	 */
306	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
307	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
308	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
309
310	return (ack);
311}
312
313/*
314 * Read a byte of data stored in the EEPROM at address 'addr.'
315 * We have to send two address bytes since the EEPROM can hold
316 * more than 256 bytes of data.
317 */
318static uint8_t
319ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
320{
321	int i;
322	uint8_t byte = 0;
323
324	EEPROM_START;
325
326	/*
327	 * Send write control code to EEPROM.
328	 */
329	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
330		device_printf(sc->ti_dev,
331		    "failed to send write command, status: %x\n",
332		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
333		return (1);
334	}
335
336	/*
337	 * Send first byte of address of byte we want to read.
338	 */
339	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
340		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
341		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
342		return (1);
343	}
344	/*
345	 * Send second byte address of byte we want to read.
346	 */
347	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
348		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
349		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
350		return (1);
351	}
352
353	EEPROM_STOP;
354	EEPROM_START;
355	/*
356	 * Send read control code to EEPROM.
357	 */
358	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
359		device_printf(sc->ti_dev,
360		    "failed to send read command, status: %x\n",
361		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
362		return (1);
363	}
364
365	/*
366	 * Start reading bits from EEPROM.
367	 */
368	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
369	for (i = 0x80; i; i >>= 1) {
370		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
371		DELAY(1);
372		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
373			byte |= i;
374		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
375		DELAY(1);
376	}
377
378	EEPROM_STOP;
379
380	/*
381	 * No ACK generated for read, so just return byte.
382	 */
383
384	*dest = byte;
385
386	return (0);
387}
388
389/*
390 * Read a sequence of bytes from the EEPROM.
391 */
392static int
393ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
394{
395	int err = 0, i;
396	uint8_t byte = 0;
397
398	for (i = 0; i < cnt; i++) {
399		err = ti_eeprom_getbyte(sc, off + i, &byte);
400		if (err)
401			break;
402		*(dest + i) = byte;
403	}
404
405	return (err ? 1 : 0);
406}
407
408/*
409 * NIC memory read function.
410 * Can be used to copy data from NIC local memory.
411 */
412static void
413ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
414{
415	int segptr, segsize, cnt;
416	char *ptr;
417
418	segptr = addr;
419	cnt = len;
420	ptr = buf;
421
422	while (cnt) {
423		if (cnt < TI_WINLEN)
424			segsize = cnt;
425		else
426			segsize = TI_WINLEN - (segptr % TI_WINLEN);
427		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
428		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
429		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
430		    segsize / 4);
431		ptr += segsize;
432		segptr += segsize;
433		cnt -= segsize;
434	}
435}
436
437
438/*
439 * NIC memory write function.
440 * Can be used to copy data into NIC local memory.
441 */
442static void
443ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
444{
445	int segptr, segsize, cnt;
446	char *ptr;
447
448	segptr = addr;
449	cnt = len;
450	ptr = buf;
451
452	while (cnt) {
453		if (cnt < TI_WINLEN)
454			segsize = cnt;
455		else
456			segsize = TI_WINLEN - (segptr % TI_WINLEN);
457		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
458		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
459		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
460		    segsize / 4);
461		ptr += segsize;
462		segptr += segsize;
463		cnt -= segsize;
464	}
465}
466
467/*
468 * NIC memory read function.
469 * Can be used to clear a section of NIC local memory.
470 */
471static void
472ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
473{
474	int segptr, segsize, cnt;
475
476	segptr = addr;
477	cnt = len;
478
479	while (cnt) {
480		if (cnt < TI_WINLEN)
481			segsize = cnt;
482		else
483			segsize = TI_WINLEN - (segptr % TI_WINLEN);
484		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
485		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
486		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
487		segptr += segsize;
488		cnt -= segsize;
489	}
490}
491
492static int
493ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
494    caddr_t buf, int useraddr, int readdata)
495{
496	int segptr, segsize, cnt;
497	caddr_t ptr;
498	uint32_t origwin;
499	uint8_t tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
500	int resid, segresid;
501	int first_pass;
502
503	TI_LOCK_ASSERT(sc);
504
505	/*
506	 * At the moment, we don't handle non-aligned cases, we just bail.
507	 * If this proves to be a problem, it will be fixed.
508	 */
509	if ((readdata == 0)
510	 && (tigon_addr & 0x3)) {
511		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
512		    "word-aligned\n", __func__, tigon_addr);
513		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
514		    "yet supported\n", __func__);
515		return (EINVAL);
516	}
517
518	segptr = tigon_addr & ~0x3;
519	segresid = tigon_addr - segptr;
520
521	/*
522	 * This is the non-aligned amount left over that we'll need to
523	 * copy.
524	 */
525	resid = len & 0x3;
526
527	/* Add in the left over amount at the front of the buffer */
528	resid += segresid;
529
530	cnt = len & ~0x3;
531	/*
532	 * If resid + segresid is >= 4, add multiples of 4 to the count and
533	 * decrease the residual by that much.
534	 */
535	cnt += resid & ~0x3;
536	resid -= resid & ~0x3;
537
538	ptr = buf;
539
540	first_pass = 1;
541
542	/*
543	 * Save the old window base value.
544	 */
545	origwin = CSR_READ_4(sc, TI_WINBASE);
546
547	while (cnt) {
548		bus_size_t ti_offset;
549
550		if (cnt < TI_WINLEN)
551			segsize = cnt;
552		else
553			segsize = TI_WINLEN - (segptr % TI_WINLEN);
554		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
555
556		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
557
558		if (readdata) {
559
560			bus_space_read_region_4(sc->ti_btag,
561						sc->ti_bhandle, ti_offset,
562						(uint32_t *)tmparray,
563						segsize >> 2);
564			if (useraddr) {
565				/*
566				 * Yeah, this is a little on the kludgy
567				 * side, but at least this code is only
568				 * used for debugging.
569				 */
570				ti_bcopy_swap(tmparray, tmparray2, segsize,
571					      TI_SWAP_NTOH);
572
573				TI_UNLOCK(sc);
574				if (first_pass) {
575					copyout(&tmparray2[segresid], ptr,
576						segsize - segresid);
577					first_pass = 0;
578				} else
579					copyout(tmparray2, ptr, segsize);
580				TI_LOCK(sc);
581			} else {
582				if (first_pass) {
583
584					ti_bcopy_swap(tmparray, tmparray2,
585						      segsize, TI_SWAP_NTOH);
586					TI_UNLOCK(sc);
587					bcopy(&tmparray2[segresid], ptr,
588					      segsize - segresid);
589					TI_LOCK(sc);
590					first_pass = 0;
591				} else
592					ti_bcopy_swap(tmparray, ptr, segsize,
593						      TI_SWAP_NTOH);
594			}
595
596		} else {
597			if (useraddr) {
598				TI_UNLOCK(sc);
599				copyin(ptr, tmparray2, segsize);
600				TI_LOCK(sc);
601				ti_bcopy_swap(tmparray2, tmparray, segsize,
602					      TI_SWAP_HTON);
603			} else
604				ti_bcopy_swap(ptr, tmparray, segsize,
605					      TI_SWAP_HTON);
606
607			bus_space_write_region_4(sc->ti_btag,
608						 sc->ti_bhandle, ti_offset,
609						 (uint32_t *)tmparray,
610						 segsize >> 2);
611		}
612		segptr += segsize;
613		ptr += segsize;
614		cnt -= segsize;
615	}
616
617	/*
618	 * Handle leftover, non-word-aligned bytes.
619	 */
620	if (resid != 0) {
621		uint32_t	tmpval, tmpval2;
622		bus_size_t	ti_offset;
623
624		/*
625		 * Set the segment pointer.
626		 */
627		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
628
629		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
630
631		/*
632		 * First, grab whatever is in our source/destination.
633		 * We'll obviously need this for reads, but also for
634		 * writes, since we'll be doing read/modify/write.
635		 */
636		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
637					ti_offset, &tmpval, 1);
638
639		/*
640		 * Next, translate this from little-endian to big-endian
641		 * (at least on i386 boxes).
642		 */
643		tmpval2 = ntohl(tmpval);
644
645		if (readdata) {
646			/*
647			 * If we're reading, just copy the leftover number
648			 * of bytes from the host byte order buffer to
649			 * the user's buffer.
650			 */
651			if (useraddr) {
652				TI_UNLOCK(sc);
653				copyout(&tmpval2, ptr, resid);
654				TI_LOCK(sc);
655			} else
656				bcopy(&tmpval2, ptr, resid);
657		} else {
658			/*
659			 * If we're writing, first copy the bytes to be
660			 * written into the network byte order buffer,
661			 * leaving the rest of the buffer with whatever was
662			 * originally in there.  Then, swap the bytes
663			 * around into host order and write them out.
664			 *
665			 * XXX KDM the read side of this has been verified
666			 * to work, but the write side of it has not been
667			 * verified.  So user beware.
668			 */
669			if (useraddr) {
670				TI_UNLOCK(sc);
671				copyin(ptr, &tmpval2, resid);
672				TI_LOCK(sc);
673			} else
674				bcopy(ptr, &tmpval2, resid);
675
676			tmpval = htonl(tmpval2);
677
678			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
679						 ti_offset, &tmpval, 1);
680		}
681	}
682
683	CSR_WRITE_4(sc, TI_WINBASE, origwin);
684
685	return (0);
686}
687
688static int
689ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
690    caddr_t buf, int useraddr, int readdata, int cpu)
691{
692	uint32_t segptr;
693	int cnt;
694	uint32_t tmpval, tmpval2;
695	caddr_t ptr;
696
697	TI_LOCK_ASSERT(sc);
698
699	/*
700	 * At the moment, we don't handle non-aligned cases, we just bail.
701	 * If this proves to be a problem, it will be fixed.
702	 */
703	if (tigon_addr & 0x3) {
704		device_printf(sc->ti_dev, "%s: tigon address %#x "
705		    "isn't word-aligned\n", __func__, tigon_addr);
706		return (EINVAL);
707	}
708
709	if (len & 0x3) {
710		device_printf(sc->ti_dev, "%s: transfer length %d "
711		    "isn't word-aligned\n", __func__, len);
712		return (EINVAL);
713	}
714
715	segptr = tigon_addr;
716	cnt = len;
717	ptr = buf;
718
719	while (cnt) {
720		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
721
722		if (readdata) {
723			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
724
725			tmpval = ntohl(tmpval2);
726
727			/*
728			 * Note:  I've used this debugging interface
729			 * extensively with Alteon's 12.3.15 firmware,
730			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
731			 *
732			 * When you compile the firmware without
733			 * optimization, which is necessary sometimes in
734			 * order to properly step through it, you sometimes
735			 * read out a bogus value of 0xc0017c instead of
736			 * whatever was supposed to be in that scratchpad
737			 * location.  That value is on the stack somewhere,
738			 * but I've never been able to figure out what was
739			 * causing the problem.
740			 *
741			 * The address seems to pop up in random places,
742			 * often not in the same place on two subsequent
743			 * reads.
744			 *
745			 * In any case, the underlying data doesn't seem
746			 * to be affected, just the value read out.
747			 *
748			 * KDM, 3/7/2000
749			 */
750
751			if (tmpval2 == 0xc0017c)
752				device_printf(sc->ti_dev, "found 0xc0017c at "
753				    "%#x (tmpval2)\n", segptr);
754
755			if (tmpval == 0xc0017c)
756				device_printf(sc->ti_dev, "found 0xc0017c at "
757				    "%#x (tmpval)\n", segptr);
758
759			if (useraddr)
760				copyout(&tmpval, ptr, 4);
761			else
762				bcopy(&tmpval, ptr, 4);
763		} else {
764			if (useraddr)
765				copyin(ptr, &tmpval2, 4);
766			else
767				bcopy(ptr, &tmpval2, 4);
768
769			tmpval = htonl(tmpval2);
770
771			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
772		}
773
774		cnt -= 4;
775		segptr += 4;
776		ptr += 4;
777	}
778
779	return (0);
780}
781
782static int
783ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
784{
785	const uint8_t *tmpsrc;
786	uint8_t *tmpdst;
787	size_t tmplen;
788
789	if (len & 0x3) {
790		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
791		       len);
792		return (-1);
793	}
794
795	tmpsrc = src;
796	tmpdst = dst;
797	tmplen = len;
798
799	while (tmplen) {
800		if (swap_type == TI_SWAP_NTOH)
801			*(uint32_t *)tmpdst =
802				ntohl(*(const uint32_t *)tmpsrc);
803		else
804			*(uint32_t *)tmpdst =
805				htonl(*(const uint32_t *)tmpsrc);
806
807		tmpsrc += 4;
808		tmpdst += 4;
809		tmplen -= 4;
810	}
811
812	return (0);
813}
814
815/*
816 * Load firmware image into the NIC. Check that the firmware revision
817 * is acceptable and see if we want the firmware for the Tigon 1 or
818 * Tigon 2.
819 */
820static void
821ti_loadfw(struct ti_softc *sc)
822{
823
824	TI_LOCK_ASSERT(sc);
825
826	switch (sc->ti_hwrev) {
827	case TI_HWREV_TIGON:
828		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
829		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
830		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
831			device_printf(sc->ti_dev, "firmware revision mismatch; "
832			    "want %d.%d.%d, got %d.%d.%d\n",
833			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
834			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
835			    tigonFwReleaseMinor, tigonFwReleaseFix);
836			return;
837		}
838		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
839		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
840		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
841		    tigonFwRodata);
842		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
843		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
844		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
845		break;
846	case TI_HWREV_TIGON_II:
847		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
848		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
849		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
850			device_printf(sc->ti_dev, "firmware revision mismatch; "
851			    "want %d.%d.%d, got %d.%d.%d\n",
852			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
853			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
854			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
855			return;
856		}
857		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
858		    tigon2FwText);
859		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
860		    tigon2FwData);
861		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
862		    tigon2FwRodata);
863		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
864		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
865		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
866		break;
867	default:
868		device_printf(sc->ti_dev,
869		    "can't load firmware: unknown hardware rev\n");
870		break;
871	}
872}
873
874/*
875 * Send the NIC a command via the command ring.
876 */
877static void
878ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
879{
880	int index;
881
882	index = sc->ti_cmd_saved_prodidx;
883	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
884	TI_INC(index, TI_CMD_RING_CNT);
885	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
886	sc->ti_cmd_saved_prodidx = index;
887}
888
889/*
890 * Send the NIC an extended command. The 'len' parameter specifies the
891 * number of command slots to include after the initial command.
892 */
893static void
894ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
895{
896	int index;
897	int i;
898
899	index = sc->ti_cmd_saved_prodidx;
900	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
901	TI_INC(index, TI_CMD_RING_CNT);
902	for (i = 0; i < len; i++) {
903		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
904		    *(uint32_t *)(&arg[i * 4]));
905		TI_INC(index, TI_CMD_RING_CNT);
906	}
907	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
908	sc->ti_cmd_saved_prodidx = index;
909}
910
911/*
912 * Handle events that have triggered interrupts.
913 */
914static void
915ti_handle_events(struct ti_softc *sc)
916{
917	struct ti_event_desc *e;
918
919	if (sc->ti_rdata->ti_event_ring == NULL)
920		return;
921
922	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
923		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
924		switch (TI_EVENT_EVENT(e)) {
925		case TI_EV_LINKSTAT_CHANGED:
926			sc->ti_linkstat = TI_EVENT_CODE(e);
927			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
928				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
929				sc->ti_ifp->if_baudrate = IF_Mbps(100);
930				if (bootverbose)
931					device_printf(sc->ti_dev,
932					    "10/100 link up\n");
933			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
934				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
935				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
936				if (bootverbose)
937					device_printf(sc->ti_dev,
938					    "gigabit link up\n");
939			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
940				if_link_state_change(sc->ti_ifp,
941				    LINK_STATE_DOWN);
942				sc->ti_ifp->if_baudrate = 0;
943				if (bootverbose)
944					device_printf(sc->ti_dev,
945					    "link down\n");
946			}
947			break;
948		case TI_EV_ERROR:
949			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
950				device_printf(sc->ti_dev, "invalid command\n");
951			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
952				device_printf(sc->ti_dev, "unknown command\n");
953			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
954				device_printf(sc->ti_dev, "bad config data\n");
955			break;
956		case TI_EV_FIRMWARE_UP:
957			ti_init2(sc);
958			break;
959		case TI_EV_STATS_UPDATED:
960			ti_stats_update(sc);
961			break;
962		case TI_EV_RESET_JUMBO_RING:
963		case TI_EV_MCAST_UPDATED:
964			/* Who cares. */
965			break;
966		default:
967			device_printf(sc->ti_dev, "unknown event: %d\n",
968			    TI_EVENT_EVENT(e));
969			break;
970		}
971		/* Advance the consumer index. */
972		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
973		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
974	}
975}
976
977static int
978ti_alloc_dmamaps(struct ti_softc *sc)
979{
980	int i;
981
982	for (i = 0; i < TI_TX_RING_CNT; i++) {
983		sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
984		sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
985		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
986				      &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
987			return (ENOBUFS);
988	}
989	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
990		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
991				      &sc->ti_cdata.ti_rx_std_maps[i]))
992			return (ENOBUFS);
993	}
994
995	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
996		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
997				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
998			return (ENOBUFS);
999	}
1000	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1001		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1002				      &sc->ti_cdata.ti_rx_mini_maps[i]))
1003			return (ENOBUFS);
1004	}
1005
1006	return (0);
1007}
1008
1009static void
1010ti_free_dmamaps(struct ti_softc *sc)
1011{
1012	int i;
1013
1014	if (sc->ti_mbuftx_dmat)
1015		for (i = 0; i < TI_TX_RING_CNT; i++)
1016			if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1017				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1018				    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1019				sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1020			}
1021
1022	if (sc->ti_mbufrx_dmat)
1023		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1024			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1025				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1026				    sc->ti_cdata.ti_rx_std_maps[i]);
1027				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1028			}
1029
1030	if (sc->ti_jumbo_dmat)
1031		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1032			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1033				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1034				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1035				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1036			}
1037	if (sc->ti_mbufrx_dmat)
1038		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1039			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1040				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1041				    sc->ti_cdata.ti_rx_mini_maps[i]);
1042				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1043			}
1044}
1045
1046#ifdef TI_PRIVATE_JUMBOS
1047
1048/*
1049 * Memory management for the jumbo receive ring is a pain in the
1050 * butt. We need to allocate at least 9018 bytes of space per frame,
1051 * _and_ it has to be contiguous (unless you use the extended
1052 * jumbo descriptor format). Using malloc() all the time won't
1053 * work: malloc() allocates memory in powers of two, which means we
1054 * would end up wasting a considerable amount of space by allocating
1055 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1056 * to do our own memory management.
1057 *
1058 * The driver needs to allocate a contiguous chunk of memory at boot
1059 * time. We then chop this up ourselves into 9K pieces and use them
1060 * as external mbuf storage.
1061 *
1062 * One issue here is how much memory to allocate. The jumbo ring has
1063 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1064 * RAM. This is a bit much, especially considering we also need
1065 * RAM for the standard ring and mini ring (on the Tigon 2). To
1066 * save space, we only actually allocate enough memory for 64 slots
1067 * by default, which works out to between 500 and 600K. This can
1068 * be tuned by changing a #define in if_tireg.h.
1069 */
1070
1071static int
1072ti_alloc_jumbo_mem(struct ti_softc *sc)
1073{
1074	struct ti_jpool_entry *entry;
1075	caddr_t ptr;
1076	int i;
1077
1078	/*
1079	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1080	 * into ~9k chunks, there doesn't appear to be a need to use page
1081	 * alignment.
1082	 */
1083	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1084				1, 0,			/* algnmnt, boundary */
1085				BUS_SPACE_MAXADDR,	/* lowaddr */
1086				BUS_SPACE_MAXADDR,	/* highaddr */
1087				NULL, NULL,		/* filter, filterarg */
1088				TI_JMEM,		/* maxsize */
1089				1,			/* nsegments */
1090				TI_JMEM,		/* maxsegsize */
1091				0,			/* flags */
1092				NULL, NULL,		/* lockfunc, lockarg */
1093				&sc->ti_jumbo_dmat) != 0) {
1094		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1095		return (ENOBUFS);
1096	}
1097
1098	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1099			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1100			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1101			     &sc->ti_jumbo_dmamap) != 0) {
1102		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1103		return (ENOBUFS);
1104	}
1105
1106	SLIST_INIT(&sc->ti_jfree_listhead);
1107	SLIST_INIT(&sc->ti_jinuse_listhead);
1108
1109	/*
1110	 * Now divide it up into 9K pieces and save the addresses
1111	 * in an array.
1112	 */
1113	ptr = sc->ti_cdata.ti_jumbo_buf;
1114	for (i = 0; i < TI_JSLOTS; i++) {
1115		sc->ti_cdata.ti_jslots[i] = ptr;
1116		ptr += TI_JLEN;
1117		entry = malloc(sizeof(struct ti_jpool_entry),
1118			       M_DEVBUF, M_NOWAIT);
1119		if (entry == NULL) {
1120			device_printf(sc->ti_dev, "no memory for jumbo "
1121			    "buffer queue!\n");
1122			return (ENOBUFS);
1123		}
1124		entry->slot = i;
1125		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1126	}
1127
1128	return (0);
1129}
1130
1131/*
1132 * Allocate a jumbo buffer.
1133 */
1134static void *ti_jalloc(struct ti_softc *sc)
1135{
1136	struct ti_jpool_entry *entry;
1137
1138	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1139
1140	if (entry == NULL) {
1141		device_printf(sc->ti_dev, "no free jumbo buffers\n");
1142		return (NULL);
1143	}
1144
1145	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1146	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1147	return (sc->ti_cdata.ti_jslots[entry->slot]);
1148}
1149
1150/*
1151 * Release a jumbo buffer.
1152 */
1153static void
1154ti_jfree(void *buf, void *args)
1155{
1156	struct ti_softc *sc;
1157	int i;
1158	struct ti_jpool_entry *entry;
1159
1160	/* Extract the softc struct pointer. */
1161	sc = (struct ti_softc *)args;
1162
1163	if (sc == NULL)
1164		panic("ti_jfree: didn't get softc pointer!");
1165
1166	/* calculate the slot this buffer belongs to */
1167	i = ((vm_offset_t)buf
1168	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1169
1170	if ((i < 0) || (i >= TI_JSLOTS))
1171		panic("ti_jfree: asked to free buffer that we don't manage!");
1172
1173	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1174	if (entry == NULL)
1175		panic("ti_jfree: buffer not in use!");
1176	entry->slot = i;
1177	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1178	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1179}
1180
1181#else
1182
1183static int
1184ti_alloc_jumbo_mem(struct ti_softc *sc)
1185{
1186
1187	/*
1188	 * The VM system will take care of providing aligned pages.  Alignment
1189	 * is set to 1 here so that busdma resources won't be wasted.
1190	 */
1191	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1192				1, 0,			/* algnmnt, boundary */
1193				BUS_SPACE_MAXADDR,	/* lowaddr */
1194				BUS_SPACE_MAXADDR,	/* highaddr */
1195				NULL, NULL,		/* filter, filterarg */
1196				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1197				4,			/* nsegments */
1198				PAGE_SIZE,		/* maxsegsize */
1199				0,			/* flags */
1200				NULL, NULL,		/* lockfunc, lockarg */
1201				&sc->ti_jumbo_dmat) != 0) {
1202		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1203		return (ENOBUFS);
1204	}
1205
1206	return (0);
1207}
1208
1209#endif /* TI_PRIVATE_JUMBOS */
1210
1211/*
1212 * Intialize a standard receive ring descriptor.
1213 */
1214static int
1215ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
1216{
1217	bus_dmamap_t map;
1218	bus_dma_segment_t segs;
1219	struct mbuf *m_new = NULL;
1220	struct ti_rx_desc *r;
1221	int nsegs;
1222
1223	nsegs = 0;
1224	if (m == NULL) {
1225		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1226		if (m_new == NULL)
1227			return (ENOBUFS);
1228
1229		MCLGET(m_new, M_DONTWAIT);
1230		if (!(m_new->m_flags & M_EXT)) {
1231			m_freem(m_new);
1232			return (ENOBUFS);
1233		}
1234		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1235	} else {
1236		m_new = m;
1237		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1238		m_new->m_data = m_new->m_ext.ext_buf;
1239	}
1240
1241	m_adj(m_new, ETHER_ALIGN);
1242	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1243	r = &sc->ti_rdata->ti_rx_std_ring[i];
1244	map = sc->ti_cdata.ti_rx_std_maps[i];
1245	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1246				    &nsegs, 0))
1247		return (ENOBUFS);
1248	if (nsegs != 1)
1249		return (ENOBUFS);
1250	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1251	r->ti_len = segs.ds_len;
1252	r->ti_type = TI_BDTYPE_RECV_BD;
1253	r->ti_flags = 0;
1254	if (sc->ti_ifp->if_hwassist)
1255		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1256	r->ti_idx = i;
1257
1258	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1259	return (0);
1260}
1261
1262/*
1263 * Intialize a mini receive ring descriptor. This only applies to
1264 * the Tigon 2.
1265 */
1266static int
1267ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
1268{
1269	bus_dma_segment_t segs;
1270	bus_dmamap_t map;
1271	struct mbuf *m_new = NULL;
1272	struct ti_rx_desc *r;
1273	int nsegs;
1274
1275	nsegs = 0;
1276	if (m == NULL) {
1277		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1278		if (m_new == NULL) {
1279			return (ENOBUFS);
1280		}
1281		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1282	} else {
1283		m_new = m;
1284		m_new->m_data = m_new->m_pktdat;
1285		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1286	}
1287
1288	m_adj(m_new, ETHER_ALIGN);
1289	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1290	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1291	map = sc->ti_cdata.ti_rx_mini_maps[i];
1292	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1293				    &nsegs, 0))
1294		return (ENOBUFS);
1295	if (nsegs != 1)
1296		return (ENOBUFS);
1297	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1298	r->ti_len = segs.ds_len;
1299	r->ti_type = TI_BDTYPE_RECV_BD;
1300	r->ti_flags = TI_BDFLAG_MINI_RING;
1301	if (sc->ti_ifp->if_hwassist)
1302		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1303	r->ti_idx = i;
1304
1305	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1306	return (0);
1307}
1308
1309#ifdef TI_PRIVATE_JUMBOS
1310
1311/*
1312 * Initialize a jumbo receive ring descriptor. This allocates
1313 * a jumbo buffer from the pool managed internally by the driver.
1314 */
1315static int
1316ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
1317{
1318	bus_dmamap_t map;
1319	struct mbuf *m_new = NULL;
1320	struct ti_rx_desc *r;
1321	int nsegs;
1322	bus_dma_segment_t segs;
1323
1324	if (m == NULL) {
1325		caddr_t *buf = NULL;
1326
1327		/* Allocate the mbuf. */
1328		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1329		if (m_new == NULL) {
1330			return (ENOBUFS);
1331		}
1332
1333		/* Allocate the jumbo buffer */
1334		buf = ti_jalloc(sc);
1335		if (buf == NULL) {
1336			m_freem(m_new);
1337			device_printf(sc->ti_dev, "jumbo allocation failed "
1338			    "-- packet dropped!\n");
1339			return (ENOBUFS);
1340		}
1341
1342		/* Attach the buffer to the mbuf. */
1343		m_new->m_data = (void *) buf;
1344		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1345		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree, buf,
1346		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1347	} else {
1348		m_new = m;
1349		m_new->m_data = m_new->m_ext.ext_buf;
1350		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1351	}
1352
1353	m_adj(m_new, ETHER_ALIGN);
1354	/* Set up the descriptor. */
1355	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1356	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1357	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1358	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1359				    &nsegs, 0))
1360		return (ENOBUFS);
1361	if (nsegs != 1)
1362		return (ENOBUFS);
1363	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1364	r->ti_len = segs.ds_len;
1365	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1366	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1367	if (sc->ti_ifp->if_hwassist)
1368		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1369	r->ti_idx = i;
1370
1371	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1372	return (0);
1373}
1374
1375#else
1376
1377#if (PAGE_SIZE == 4096)
1378#define NPAYLOAD 2
1379#else
1380#define NPAYLOAD 1
1381#endif
1382
1383#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1384#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1385#define NFS_HDR_LEN (UDP_HDR_LEN)
1386static int HDR_LEN = TCP_HDR_LEN;
1387
1388/*
1389 * Initialize a jumbo receive ring descriptor. This allocates
1390 * a jumbo buffer from the pool managed internally by the driver.
1391 */
1392static int
1393ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1394{
1395	bus_dmamap_t map;
1396	struct mbuf *cur, *m_new = NULL;
1397	struct mbuf *m[3] = {NULL, NULL, NULL};
1398	struct ti_rx_desc_ext *r;
1399	vm_page_t frame;
1400	static int color;
1401	/* 1 extra buf to make nobufs easy*/
1402	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1403	int i;
1404	bus_dma_segment_t segs[4];
1405	int nsegs;
1406
1407	if (m_old != NULL) {
1408		m_new = m_old;
1409		cur = m_old->m_next;
1410		for (i = 0; i <= NPAYLOAD; i++){
1411			m[i] = cur;
1412			cur = cur->m_next;
1413		}
1414	} else {
1415		/* Allocate the mbufs. */
1416		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1417		if (m_new == NULL) {
1418			device_printf(sc->ti_dev, "mbuf allocation failed "
1419			    "-- packet dropped!\n");
1420			goto nobufs;
1421		}
1422		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1423		if (m[NPAYLOAD] == NULL) {
1424			device_printf(sc->ti_dev, "cluster mbuf allocation "
1425			    "failed -- packet dropped!\n");
1426			goto nobufs;
1427		}
1428		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1429		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1430			device_printf(sc->ti_dev, "mbuf allocation failed "
1431			    "-- packet dropped!\n");
1432			goto nobufs;
1433		}
1434		m[NPAYLOAD]->m_len = MCLBYTES;
1435
1436		for (i = 0; i < NPAYLOAD; i++){
1437			MGET(m[i], M_DONTWAIT, MT_DATA);
1438			if (m[i] == NULL) {
1439				device_printf(sc->ti_dev, "mbuf allocation "
1440				    "failed -- packet dropped!\n");
1441				goto nobufs;
1442			}
1443			frame = vm_page_alloc(NULL, color++,
1444			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1445			    VM_ALLOC_WIRED);
1446			if (frame == NULL) {
1447				device_printf(sc->ti_dev, "buffer allocation "
1448				    "failed -- packet dropped!\n");
1449				printf("      index %d page %d\n", idx, i);
1450				goto nobufs;
1451			}
1452			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1453			if (sf[i] == NULL) {
1454				vm_page_unwire(frame, 0);
1455				vm_page_free(frame);
1456				device_printf(sc->ti_dev, "buffer allocation "
1457				    "failed -- packet dropped!\n");
1458				printf("      index %d page %d\n", idx, i);
1459				goto nobufs;
1460			}
1461		}
1462		for (i = 0; i < NPAYLOAD; i++){
1463		/* Attach the buffer to the mbuf. */
1464			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1465			m[i]->m_len = PAGE_SIZE;
1466			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1467			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1468			    0, EXT_DISPOSABLE);
1469			m[i]->m_next = m[i+1];
1470		}
1471		/* link the buffers to the header */
1472		m_new->m_next = m[0];
1473		m_new->m_data += ETHER_ALIGN;
1474		if (sc->ti_hdrsplit)
1475			m_new->m_len = MHLEN - ETHER_ALIGN;
1476		else
1477			m_new->m_len = HDR_LEN;
1478		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1479	}
1480
1481	/* Set up the descriptor. */
1482	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1483	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1484	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1485	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1486				    &nsegs, 0))
1487		return (ENOBUFS);
1488	if ((nsegs < 1) || (nsegs > 4))
1489		return (ENOBUFS);
1490	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1491	r->ti_len0 = m_new->m_len;
1492
1493	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1494	r->ti_len1 = PAGE_SIZE;
1495
1496	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1497	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1498
1499	if (PAGE_SIZE == 4096) {
1500		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1501		r->ti_len3 = MCLBYTES;
1502	} else {
1503		r->ti_len3 = 0;
1504	}
1505	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1506
1507	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1508
1509	if (sc->ti_ifp->if_hwassist)
1510		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1511
1512	r->ti_idx = idx;
1513
1514	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1515	return (0);
1516
1517nobufs:
1518
1519	/*
1520	 * Warning! :
1521	 * This can only be called before the mbufs are strung together.
1522	 * If the mbufs are strung together, m_freem() will free the chain,
1523	 * so that the later mbufs will be freed multiple times.
1524	 */
1525	if (m_new)
1526		m_freem(m_new);
1527
1528	for (i = 0; i < 3; i++) {
1529		if (m[i])
1530			m_freem(m[i]);
1531		if (sf[i])
1532			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1533	}
1534	return (ENOBUFS);
1535}
1536#endif
1537
1538/*
1539 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1540 * that's 1MB or memory, which is a lot. For now, we fill only the first
1541 * 256 ring entries and hope that our CPU is fast enough to keep up with
1542 * the NIC.
1543 */
1544static int
1545ti_init_rx_ring_std(struct ti_softc *sc)
1546{
1547	int i;
1548	struct ti_cmd_desc cmd;
1549
1550	for (i = 0; i < TI_SSLOTS; i++) {
1551		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1552			return (ENOBUFS);
1553	};
1554
1555	TI_UPDATE_STDPROD(sc, i - 1);
1556	sc->ti_std = i - 1;
1557
1558	return (0);
1559}
1560
1561static void
1562ti_free_rx_ring_std(struct ti_softc *sc)
1563{
1564	bus_dmamap_t map;
1565	int i;
1566
1567	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1568		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1569			map = sc->ti_cdata.ti_rx_std_maps[i];
1570			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1571			    BUS_DMASYNC_POSTREAD);
1572			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1573			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1574			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1575		}
1576		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1577		    sizeof(struct ti_rx_desc));
1578	}
1579}
1580
1581static int
1582ti_init_rx_ring_jumbo(struct ti_softc *sc)
1583{
1584	struct ti_cmd_desc cmd;
1585	int i;
1586
1587	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1588		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1589			return (ENOBUFS);
1590	};
1591
1592	TI_UPDATE_JUMBOPROD(sc, i - 1);
1593	sc->ti_jumbo = i - 1;
1594
1595	return (0);
1596}
1597
1598static void
1599ti_free_rx_ring_jumbo(struct ti_softc *sc)
1600{
1601	bus_dmamap_t map;
1602	int i;
1603
1604	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1605		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1606			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1607			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1608			    BUS_DMASYNC_POSTREAD);
1609			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1610			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1611			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1612		}
1613		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1614		    sizeof(struct ti_rx_desc));
1615	}
1616}
1617
1618static int
1619ti_init_rx_ring_mini(struct ti_softc *sc)
1620{
1621	int i;
1622
1623	for (i = 0; i < TI_MSLOTS; i++) {
1624		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1625			return (ENOBUFS);
1626	};
1627
1628	TI_UPDATE_MINIPROD(sc, i - 1);
1629	sc->ti_mini = i - 1;
1630
1631	return (0);
1632}
1633
1634static void
1635ti_free_rx_ring_mini(struct ti_softc *sc)
1636{
1637	bus_dmamap_t map;
1638	int i;
1639
1640	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1641		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1642			map = sc->ti_cdata.ti_rx_mini_maps[i];
1643			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1644			    BUS_DMASYNC_POSTREAD);
1645			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1646			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1647			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1648		}
1649		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1650		    sizeof(struct ti_rx_desc));
1651	}
1652}
1653
1654static void
1655ti_free_tx_ring(struct ti_softc *sc)
1656{
1657	struct ti_txdesc *txd;
1658	int i;
1659
1660	if (sc->ti_rdata->ti_tx_ring == NULL)
1661		return;
1662
1663	for (i = 0; i < TI_TX_RING_CNT; i++) {
1664		txd = &sc->ti_cdata.ti_txdesc[i];
1665		if (txd->tx_m != NULL) {
1666			bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1667			    BUS_DMASYNC_POSTWRITE);
1668			bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1669			m_freem(txd->tx_m);
1670			txd->tx_m = NULL;
1671		}
1672		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1673		    sizeof(struct ti_tx_desc));
1674	}
1675}
1676
1677static int
1678ti_init_tx_ring(struct ti_softc *sc)
1679{
1680	struct ti_txdesc *txd;
1681	int i;
1682
1683	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1684	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1685	for (i = 0; i < TI_TX_RING_CNT; i++) {
1686		txd = &sc->ti_cdata.ti_txdesc[i];
1687		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1688	}
1689	sc->ti_txcnt = 0;
1690	sc->ti_tx_saved_considx = 0;
1691	sc->ti_tx_saved_prodidx = 0;
1692	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1693	return (0);
1694}
1695
1696/*
1697 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1698 * but we have to support the old way too so that Tigon 1 cards will
1699 * work.
1700 */
1701static void
1702ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1703{
1704	struct ti_cmd_desc cmd;
1705	uint16_t *m;
1706	uint32_t ext[2] = {0, 0};
1707
1708	m = (uint16_t *)&addr->octet[0];
1709
1710	switch (sc->ti_hwrev) {
1711	case TI_HWREV_TIGON:
1712		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1713		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1714		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1715		break;
1716	case TI_HWREV_TIGON_II:
1717		ext[0] = htons(m[0]);
1718		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1719		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1720		break;
1721	default:
1722		device_printf(sc->ti_dev, "unknown hwrev\n");
1723		break;
1724	}
1725}
1726
1727static void
1728ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1729{
1730	struct ti_cmd_desc cmd;
1731	uint16_t *m;
1732	uint32_t ext[2] = {0, 0};
1733
1734	m = (uint16_t *)&addr->octet[0];
1735
1736	switch (sc->ti_hwrev) {
1737	case TI_HWREV_TIGON:
1738		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1739		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1740		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1741		break;
1742	case TI_HWREV_TIGON_II:
1743		ext[0] = htons(m[0]);
1744		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1745		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1746		break;
1747	default:
1748		device_printf(sc->ti_dev, "unknown hwrev\n");
1749		break;
1750	}
1751}
1752
1753/*
1754 * Configure the Tigon's multicast address filter.
1755 *
1756 * The actual multicast table management is a bit of a pain, thanks to
1757 * slight brain damage on the part of both Alteon and us. With our
1758 * multicast code, we are only alerted when the multicast address table
1759 * changes and at that point we only have the current list of addresses:
1760 * we only know the current state, not the previous state, so we don't
1761 * actually know what addresses were removed or added. The firmware has
1762 * state, but we can't get our grubby mits on it, and there is no 'delete
1763 * all multicast addresses' command. Hence, we have to maintain our own
1764 * state so we know what addresses have been programmed into the NIC at
1765 * any given time.
1766 */
1767static void
1768ti_setmulti(struct ti_softc *sc)
1769{
1770	struct ifnet *ifp;
1771	struct ifmultiaddr *ifma;
1772	struct ti_cmd_desc cmd;
1773	struct ti_mc_entry *mc;
1774	uint32_t intrs;
1775
1776	TI_LOCK_ASSERT(sc);
1777
1778	ifp = sc->ti_ifp;
1779
1780	if (ifp->if_flags & IFF_ALLMULTI) {
1781		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1782		return;
1783	} else {
1784		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1785	}
1786
1787	/* Disable interrupts. */
1788	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1789	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1790
1791	/* First, zot all the existing filters. */
1792	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1793		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1794		ti_del_mcast(sc, &mc->mc_addr);
1795		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1796		free(mc, M_DEVBUF);
1797	}
1798
1799	/* Now program new ones. */
1800	if_maddr_rlock(ifp);
1801	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1802		if (ifma->ifma_addr->sa_family != AF_LINK)
1803			continue;
1804		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1805		if (mc == NULL) {
1806			device_printf(sc->ti_dev,
1807			    "no memory for mcast filter entry\n");
1808			continue;
1809		}
1810		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1811		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1812		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1813		ti_add_mcast(sc, &mc->mc_addr);
1814	}
1815	if_maddr_runlock(ifp);
1816
1817	/* Re-enable interrupts. */
1818	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1819}
1820
1821/*
1822 * Check to see if the BIOS has configured us for a 64 bit slot when
1823 * we aren't actually in one. If we detect this condition, we can work
1824 * around it on the Tigon 2 by setting a bit in the PCI state register,
1825 * but for the Tigon 1 we must give up and abort the interface attach.
1826 */
1827static int ti_64bitslot_war(struct ti_softc *sc)
1828{
1829
1830	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1831		CSR_WRITE_4(sc, 0x600, 0);
1832		CSR_WRITE_4(sc, 0x604, 0);
1833		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1834		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1835			if (sc->ti_hwrev == TI_HWREV_TIGON)
1836				return (EINVAL);
1837			else {
1838				TI_SETBIT(sc, TI_PCI_STATE,
1839				    TI_PCISTATE_32BIT_BUS);
1840				return (0);
1841			}
1842		}
1843	}
1844
1845	return (0);
1846}
1847
1848/*
1849 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1850 * self-test results.
1851 */
1852static int
1853ti_chipinit(struct ti_softc *sc)
1854{
1855	uint32_t cacheline;
1856	uint32_t pci_writemax = 0;
1857	uint32_t hdrsplit;
1858
1859	/* Initialize link to down state. */
1860	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1861
1862	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1863		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1864	else
1865		sc->ti_ifp->if_hwassist = 0;
1866
1867	/* Set endianness before we access any non-PCI registers. */
1868#if 0 && BYTE_ORDER == BIG_ENDIAN
1869	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1870	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1871#else
1872	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1873	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1874#endif
1875
1876	/* Check the ROM failed bit to see if self-tests passed. */
1877	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1878		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1879		return (ENODEV);
1880	}
1881
1882	/* Halt the CPU. */
1883	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1884
1885	/* Figure out the hardware revision. */
1886	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1887	case TI_REV_TIGON_I:
1888		sc->ti_hwrev = TI_HWREV_TIGON;
1889		break;
1890	case TI_REV_TIGON_II:
1891		sc->ti_hwrev = TI_HWREV_TIGON_II;
1892		break;
1893	default:
1894		device_printf(sc->ti_dev, "unsupported chip revision\n");
1895		return (ENODEV);
1896	}
1897
1898	/* Do special setup for Tigon 2. */
1899	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1900		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1901		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1902		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1903	}
1904
1905	/*
1906	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1907	 * can't do header splitting.
1908	 */
1909#ifdef TI_JUMBO_HDRSPLIT
1910	if (sc->ti_hwrev != TI_HWREV_TIGON)
1911		sc->ti_hdrsplit = 1;
1912	else
1913		device_printf(sc->ti_dev,
1914		    "can't do header splitting on a Tigon I board\n");
1915#endif /* TI_JUMBO_HDRSPLIT */
1916
1917	/* Set up the PCI state register. */
1918	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1919	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1920		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1921	}
1922
1923	/* Clear the read/write max DMA parameters. */
1924	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1925	    TI_PCISTATE_READ_MAXDMA));
1926
1927	/* Get cache line size. */
1928	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1929
1930	/*
1931	 * If the system has set enabled the PCI memory write
1932	 * and invalidate command in the command register, set
1933	 * the write max parameter accordingly. This is necessary
1934	 * to use MWI with the Tigon 2.
1935	 */
1936	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1937		switch (cacheline) {
1938		case 1:
1939		case 4:
1940		case 8:
1941		case 16:
1942		case 32:
1943		case 64:
1944			break;
1945		default:
1946		/* Disable PCI memory write and invalidate. */
1947			if (bootverbose)
1948				device_printf(sc->ti_dev, "cache line size %d"
1949				    " not supported; disabling PCI MWI\n",
1950				    cacheline);
1951			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1952			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1953			break;
1954		}
1955	}
1956
1957	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1958
1959	/* This sets the min dma param all the way up (0xff). */
1960	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1961
1962	if (sc->ti_hdrsplit)
1963		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1964	else
1965		hdrsplit = 0;
1966
1967	/* Configure DMA variables. */
1968#if BYTE_ORDER == BIG_ENDIAN
1969	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1970	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1971	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1972	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1973#else /* BYTE_ORDER */
1974	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1975	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1976	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1977#endif /* BYTE_ORDER */
1978
1979	/*
1980	 * Only allow 1 DMA channel to be active at a time.
1981	 * I don't think this is a good idea, but without it
1982	 * the firmware racks up lots of nicDmaReadRingFull
1983	 * errors.  This is not compatible with hardware checksums.
1984	 */
1985	if (sc->ti_ifp->if_hwassist == 0)
1986		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1987
1988	/* Recommended settings from Tigon manual. */
1989	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1990	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1991
1992	if (ti_64bitslot_war(sc)) {
1993		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
1994		    "but we aren't");
1995		return (EINVAL);
1996	}
1997
1998	return (0);
1999}
2000
2001/*
2002 * Initialize the general information block and firmware, and
2003 * start the CPU(s) running.
2004 */
2005static int
2006ti_gibinit(struct ti_softc *sc)
2007{
2008	struct ifnet *ifp;
2009	struct ti_rcb *rcb;
2010	uint32_t rdphys;
2011	int i;
2012
2013	TI_LOCK_ASSERT(sc);
2014
2015	ifp = sc->ti_ifp;
2016	rdphys = sc->ti_rdata_phys;
2017
2018	/* Disable interrupts for now. */
2019	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2020
2021	/*
2022	 * Tell the chip where to find the general information block.
2023	 * While this struct could go into >4GB memory, we allocate it in a
2024	 * single slab with the other descriptors, and those don't seem to
2025	 * support being located in a 64-bit region.
2026	 */
2027	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2028	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2029
2030	/* Load the firmware into SRAM. */
2031	ti_loadfw(sc);
2032
2033	/* Set up the contents of the general info and ring control blocks. */
2034
2035	/* Set up the event ring and producer pointer. */
2036	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2037
2038	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2039	rcb->ti_flags = 0;
2040	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2041	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2042	sc->ti_ev_prodidx.ti_idx = 0;
2043	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2044	sc->ti_ev_saved_considx = 0;
2045
2046	/* Set up the command ring and producer mailbox. */
2047	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2048
2049	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2050	rcb->ti_flags = 0;
2051	rcb->ti_max_len = 0;
2052	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2053		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2054	}
2055	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2056	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2057	sc->ti_cmd_saved_prodidx = 0;
2058
2059	/*
2060	 * Assign the address of the stats refresh buffer.
2061	 * We re-use the current stats buffer for this to
2062	 * conserve memory.
2063	 */
2064	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2065	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2066
2067	/* Set up the standard receive ring. */
2068	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2069	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2070	rcb->ti_max_len = TI_FRAMELEN;
2071	rcb->ti_flags = 0;
2072	if (sc->ti_ifp->if_hwassist)
2073		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2074		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2075	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2076
2077	/* Set up the jumbo receive ring. */
2078	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2079	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2080
2081#ifdef TI_PRIVATE_JUMBOS
2082	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2083	rcb->ti_flags = 0;
2084#else
2085	rcb->ti_max_len = PAGE_SIZE;
2086	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2087#endif
2088	if (sc->ti_ifp->if_hwassist)
2089		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2090		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2091	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2092
2093	/*
2094	 * Set up the mini ring. Only activated on the
2095	 * Tigon 2 but the slot in the config block is
2096	 * still there on the Tigon 1.
2097	 */
2098	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2099	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2100	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2101	if (sc->ti_hwrev == TI_HWREV_TIGON)
2102		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2103	else
2104		rcb->ti_flags = 0;
2105	if (sc->ti_ifp->if_hwassist)
2106		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2107		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2108	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2109
2110	/*
2111	 * Set up the receive return ring.
2112	 */
2113	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2114	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2115	rcb->ti_flags = 0;
2116	rcb->ti_max_len = TI_RETURN_RING_CNT;
2117	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2118	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2119
2120	/*
2121	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2122	 * of putting the transmit ring in the host's address space and
2123	 * letting the chip DMA it instead of leaving the ring in the NIC's
2124	 * memory and accessing it through the shared memory region. We
2125	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2126	 * so we have to revert to the shared memory scheme if we detect
2127	 * a Tigon 1 chip.
2128	 */
2129	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2130	bzero((char *)sc->ti_rdata->ti_tx_ring,
2131	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2132	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2133	if (sc->ti_hwrev == TI_HWREV_TIGON)
2134		rcb->ti_flags = 0;
2135	else
2136		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2137	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2138	if (sc->ti_ifp->if_hwassist)
2139		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2140		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2141	rcb->ti_max_len = TI_TX_RING_CNT;
2142	if (sc->ti_hwrev == TI_HWREV_TIGON)
2143		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2144	else
2145		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2146	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2147	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2148
2149	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2150	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2151
2152	/* Set up tuneables */
2153#if 0
2154	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2155		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2156		    (sc->ti_rx_coal_ticks / 10));
2157	else
2158#endif
2159		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2160	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2161	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2162	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2163	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2164	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2165
2166	/* Turn interrupts on. */
2167	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2168	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2169
2170	/* Start CPU. */
2171	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2172
2173	return (0);
2174}
2175
2176static void
2177ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2178{
2179	struct ti_softc *sc;
2180
2181	sc = arg;
2182	if (error || nseg != 1)
2183		return;
2184
2185	/*
2186	 * All of the Tigon data structures need to live at <4GB.  This
2187	 * cast is fine since busdma was told about this constraint.
2188	 */
2189	sc->ti_rdata_phys = segs[0].ds_addr;
2190	return;
2191}
2192
2193/*
2194 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2195 * against our list and return its name if we find a match.
2196 */
2197static int
2198ti_probe(device_t dev)
2199{
2200	const struct ti_type *t;
2201
2202	t = ti_devs;
2203
2204	while (t->ti_name != NULL) {
2205		if ((pci_get_vendor(dev) == t->ti_vid) &&
2206		    (pci_get_device(dev) == t->ti_did)) {
2207			device_set_desc(dev, t->ti_name);
2208			return (BUS_PROBE_DEFAULT);
2209		}
2210		t++;
2211	}
2212
2213	return (ENXIO);
2214}
2215
2216static int
2217ti_attach(device_t dev)
2218{
2219	struct ifnet *ifp;
2220	struct ti_softc *sc;
2221	int error = 0, rid;
2222	u_char eaddr[6];
2223
2224	sc = device_get_softc(dev);
2225	sc->ti_unit = device_get_unit(dev);
2226	sc->ti_dev = dev;
2227
2228	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2229	    MTX_DEF);
2230	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2231	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2232	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2233	if (ifp == NULL) {
2234		device_printf(dev, "can not if_alloc()\n");
2235		error = ENOSPC;
2236		goto fail;
2237	}
2238	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2239	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2240	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2241
2242	/*
2243	 * Map control/status registers.
2244	 */
2245	pci_enable_busmaster(dev);
2246
2247	rid = TI_PCI_LOMEM;
2248	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2249	    RF_ACTIVE);
2250
2251	if (sc->ti_res == NULL) {
2252		device_printf(dev, "couldn't map memory\n");
2253		error = ENXIO;
2254		goto fail;
2255	}
2256
2257	sc->ti_btag = rman_get_bustag(sc->ti_res);
2258	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2259
2260	/* Allocate interrupt */
2261	rid = 0;
2262
2263	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2264	    RF_SHAREABLE | RF_ACTIVE);
2265
2266	if (sc->ti_irq == NULL) {
2267		device_printf(dev, "couldn't map interrupt\n");
2268		error = ENXIO;
2269		goto fail;
2270	}
2271
2272	if (ti_chipinit(sc)) {
2273		device_printf(dev, "chip initialization failed\n");
2274		error = ENXIO;
2275		goto fail;
2276	}
2277
2278	/* Zero out the NIC's on-board SRAM. */
2279	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2280
2281	/* Init again -- zeroing memory may have clobbered some registers. */
2282	if (ti_chipinit(sc)) {
2283		device_printf(dev, "chip initialization failed\n");
2284		error = ENXIO;
2285		goto fail;
2286	}
2287
2288	/*
2289	 * Get station address from the EEPROM. Note: the manual states
2290	 * that the MAC address is at offset 0x8c, however the data is
2291	 * stored as two longwords (since that's how it's loaded into
2292	 * the NIC). This means the MAC address is actually preceded
2293	 * by two zero bytes. We need to skip over those.
2294	 */
2295	if (ti_read_eeprom(sc, eaddr,
2296				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2297		device_printf(dev, "failed to read station address\n");
2298		error = ENXIO;
2299		goto fail;
2300	}
2301
2302	/* Allocate the general information block and ring buffers. */
2303	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
2304				1, 0,			/* algnmnt, boundary */
2305				BUS_SPACE_MAXADDR,	/* lowaddr */
2306				BUS_SPACE_MAXADDR,	/* highaddr */
2307				NULL, NULL,		/* filter, filterarg */
2308				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2309				0,			/* nsegments */
2310				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2311				0,			/* flags */
2312				NULL, NULL,		/* lockfunc, lockarg */
2313				&sc->ti_parent_dmat) != 0) {
2314		device_printf(dev, "Failed to allocate parent dmat\n");
2315		error = ENOMEM;
2316		goto fail;
2317	}
2318
2319	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2320				PAGE_SIZE, 0,		/* algnmnt, boundary */
2321				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2322				BUS_SPACE_MAXADDR,	/* highaddr */
2323				NULL, NULL,		/* filter, filterarg */
2324				sizeof(struct ti_ring_data),	/* maxsize */
2325				1,			/* nsegments */
2326				sizeof(struct ti_ring_data),	/* maxsegsize */
2327				0,			/* flags */
2328				NULL, NULL,		/* lockfunc, lockarg */
2329				&sc->ti_rdata_dmat) != 0) {
2330		device_printf(dev, "Failed to allocate rdata dmat\n");
2331		error = ENOMEM;
2332		goto fail;
2333	}
2334
2335	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2336			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2337			     &sc->ti_rdata_dmamap) != 0) {
2338		device_printf(dev, "Failed to allocate rdata memory\n");
2339		error = ENOMEM;
2340		goto fail;
2341	}
2342
2343	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2344			    sc->ti_rdata, sizeof(struct ti_ring_data),
2345			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2346		device_printf(dev, "Failed to load rdata segments\n");
2347		error = ENOMEM;
2348		goto fail;
2349	}
2350
2351	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2352
2353	/* Try to allocate memory for jumbo buffers. */
2354	if (ti_alloc_jumbo_mem(sc)) {
2355		device_printf(dev, "jumbo buffer allocation failed\n");
2356		error = ENXIO;
2357		goto fail;
2358	}
2359
2360	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2361				1, 0,			/* algnmnt, boundary */
2362				BUS_SPACE_MAXADDR,	/* lowaddr */
2363				BUS_SPACE_MAXADDR,	/* highaddr */
2364				NULL, NULL,		/* filter, filterarg */
2365				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2366				TI_MAXTXSEGS,		/* nsegments */
2367				MCLBYTES,		/* maxsegsize */
2368				0,			/* flags */
2369				NULL, NULL,		/* lockfunc, lockarg */
2370				&sc->ti_mbuftx_dmat) != 0) {
2371		device_printf(dev, "Failed to allocate rdata dmat\n");
2372		error = ENOMEM;
2373		goto fail;
2374	}
2375
2376	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2377				1, 0,			/* algnmnt, boundary */
2378				BUS_SPACE_MAXADDR,	/* lowaddr */
2379				BUS_SPACE_MAXADDR,	/* highaddr */
2380				NULL, NULL,		/* filter, filterarg */
2381				MCLBYTES,		/* maxsize */
2382				1,			/* nsegments */
2383				MCLBYTES,		/* maxsegsize */
2384				0,			/* flags */
2385				NULL, NULL,		/* lockfunc, lockarg */
2386				&sc->ti_mbufrx_dmat) != 0) {
2387		device_printf(dev, "Failed to allocate rdata dmat\n");
2388		error = ENOMEM;
2389		goto fail;
2390	}
2391
2392	if (ti_alloc_dmamaps(sc)) {
2393		device_printf(dev, "dma map creation failed\n");
2394		error = ENXIO;
2395		goto fail;
2396	}
2397
2398	/*
2399	 * We really need a better way to tell a 1000baseTX card
2400	 * from a 1000baseSX one, since in theory there could be
2401	 * OEMed 1000baseTX cards from lame vendors who aren't
2402	 * clever enough to change the PCI ID. For the moment
2403	 * though, the AceNIC is the only copper card available.
2404	 */
2405	if (pci_get_vendor(dev) == ALT_VENDORID &&
2406	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2407		sc->ti_copper = 1;
2408	/* Ok, it's not the only copper card available. */
2409	if (pci_get_vendor(dev) == NG_VENDORID &&
2410	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2411		sc->ti_copper = 1;
2412
2413	/* Set default tuneable values. */
2414	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2415#if 0
2416	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2417#endif
2418	sc->ti_rx_coal_ticks = 170;
2419	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2420	sc->ti_rx_max_coal_bds = 64;
2421#if 0
2422	sc->ti_tx_max_coal_bds = 128;
2423#endif
2424	sc->ti_tx_max_coal_bds = 32;
2425	sc->ti_tx_buf_ratio = 21;
2426
2427	/* Set up ifnet structure */
2428	ifp->if_softc = sc;
2429	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2430	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2431	ifp->if_ioctl = ti_ioctl;
2432	ifp->if_start = ti_start;
2433	ifp->if_init = ti_init;
2434	ifp->if_baudrate = IF_Gbps(1UL);
2435	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2436
2437	/* Set up ifmedia support. */
2438	if (sc->ti_copper) {
2439		/*
2440		 * Copper cards allow manual 10/100 mode selection,
2441		 * but not manual 1000baseTX mode selection. Why?
2442		 * Becuase currently there's no way to specify the
2443		 * master/slave setting through the firmware interface,
2444		 * so Alteon decided to just bag it and handle it
2445		 * via autonegotiation.
2446		 */
2447		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2448		ifmedia_add(&sc->ifmedia,
2449		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2450		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2451		ifmedia_add(&sc->ifmedia,
2452		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2453		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2454		ifmedia_add(&sc->ifmedia,
2455		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2456	} else {
2457		/* Fiber cards don't support 10/100 modes. */
2458		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2459		ifmedia_add(&sc->ifmedia,
2460		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2461	}
2462	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2463	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2464
2465	/*
2466	 * We're assuming here that card initialization is a sequential
2467	 * thing.  If it isn't, multiple cards probing at the same time
2468	 * could stomp on the list of softcs here.
2469	 */
2470
2471	/* Register the device */
2472	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2473			   0600, "ti%d", sc->ti_unit);
2474	sc->dev->si_drv1 = sc;
2475
2476	/*
2477	 * Call MI attach routine.
2478	 */
2479	ether_ifattach(ifp, eaddr);
2480
2481	/* Driver supports link state tracking. */
2482	ifp->if_capabilities |= IFCAP_LINKSTATE;
2483	ifp->if_capenable |= IFCAP_LINKSTATE;
2484
2485	/* Hook interrupt last to avoid having to lock softc */
2486	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2487	   NULL, ti_intr, sc, &sc->ti_intrhand);
2488
2489	if (error) {
2490		device_printf(dev, "couldn't set up irq\n");
2491		goto fail;
2492	}
2493
2494fail:
2495	if (error)
2496		ti_detach(dev);
2497
2498	return (error);
2499}
2500
2501/*
2502 * Shutdown hardware and free up resources. This can be called any
2503 * time after the mutex has been initialized. It is called in both
2504 * the error case in attach and the normal detach case so it needs
2505 * to be careful about only freeing resources that have actually been
2506 * allocated.
2507 */
2508static int
2509ti_detach(device_t dev)
2510{
2511	struct ti_softc *sc;
2512	struct ifnet *ifp;
2513
2514	sc = device_get_softc(dev);
2515	if (sc->dev)
2516		destroy_dev(sc->dev);
2517	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2518	ifp = sc->ti_ifp;
2519	if (device_is_attached(dev)) {
2520		ether_ifdetach(ifp);
2521		TI_LOCK(sc);
2522		ti_stop(sc);
2523		TI_UNLOCK(sc);
2524	}
2525
2526	/* These should only be active if attach succeeded */
2527	callout_drain(&sc->ti_watchdog);
2528	bus_generic_detach(dev);
2529	ti_free_dmamaps(sc);
2530	ifmedia_removeall(&sc->ifmedia);
2531
2532#ifdef TI_PRIVATE_JUMBOS
2533	if (sc->ti_cdata.ti_jumbo_buf)
2534		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2535		    sc->ti_jumbo_dmamap);
2536#endif
2537	if (sc->ti_jumbo_dmat)
2538		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2539	if (sc->ti_mbuftx_dmat)
2540		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2541	if (sc->ti_mbufrx_dmat)
2542		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2543	if (sc->ti_rdata && sc->ti_rdata_dmamap)
2544		bus_dmamap_unload(sc->ti_rdata_dmat, sc->ti_rdata_dmamap);
2545	if (sc->ti_rdata)
2546		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2547				sc->ti_rdata_dmamap);
2548	if (sc->ti_rdata_dmat)
2549		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2550	if (sc->ti_parent_dmat)
2551		bus_dma_tag_destroy(sc->ti_parent_dmat);
2552	if (sc->ti_intrhand)
2553		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2554	if (sc->ti_irq)
2555		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2556	if (sc->ti_res) {
2557		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2558		    sc->ti_res);
2559	}
2560	if (ifp)
2561		if_free(ifp);
2562
2563	mtx_destroy(&sc->ti_mtx);
2564
2565	return (0);
2566}
2567
2568#ifdef TI_JUMBO_HDRSPLIT
2569/*
2570 * If hdr_len is 0, that means that header splitting wasn't done on
2571 * this packet for some reason.  The two most likely reasons are that
2572 * the protocol isn't a supported protocol for splitting, or this
2573 * packet had a fragment offset that wasn't 0.
2574 *
2575 * The header length, if it is non-zero, will always be the length of
2576 * the headers on the packet, but that length could be longer than the
2577 * first mbuf.  So we take the minimum of the two as the actual
2578 * length.
2579 */
2580static __inline void
2581ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2582{
2583	int i = 0;
2584	int lengths[4] = {0, 0, 0, 0};
2585	struct mbuf *m, *mp;
2586
2587	if (hdr_len != 0)
2588		top->m_len = min(hdr_len, top->m_len);
2589	pkt_len -= top->m_len;
2590	lengths[i++] = top->m_len;
2591
2592	mp = top;
2593	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2594		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2595		pkt_len -= m->m_len;
2596		lengths[i++] = m->m_len;
2597		mp = m;
2598	}
2599
2600#if 0
2601	if (hdr_len != 0)
2602		printf("got split packet: ");
2603	else
2604		printf("got non-split packet: ");
2605
2606	printf("%d,%d,%d,%d = %d\n", lengths[0],
2607	    lengths[1], lengths[2], lengths[3],
2608	    lengths[0] + lengths[1] + lengths[2] +
2609	    lengths[3]);
2610#endif
2611
2612	if (pkt_len)
2613		panic("header splitting didn't");
2614
2615	if (m) {
2616		m_freem(m);
2617		mp->m_next = NULL;
2618
2619	}
2620	if (mp->m_next != NULL)
2621		panic("ti_hdr_split: last mbuf in chain should be null");
2622}
2623#endif /* TI_JUMBO_HDRSPLIT */
2624
2625/*
2626 * Frame reception handling. This is called if there's a frame
2627 * on the receive return list.
2628 *
2629 * Note: we have to be able to handle three possibilities here:
2630 * 1) the frame is from the mini receive ring (can only happen)
2631 *    on Tigon 2 boards)
2632 * 2) the frame is from the jumbo recieve ring
2633 * 3) the frame is from the standard receive ring
2634 */
2635
2636static void
2637ti_rxeof(struct ti_softc *sc)
2638{
2639	struct ifnet *ifp;
2640	bus_dmamap_t map;
2641	struct ti_cmd_desc cmd;
2642
2643	TI_LOCK_ASSERT(sc);
2644
2645	ifp = sc->ti_ifp;
2646
2647	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2648		struct ti_rx_desc *cur_rx;
2649		struct mbuf *m = NULL;
2650		uint32_t rxidx;
2651		uint16_t vlan_tag = 0;
2652		int have_tag = 0;
2653
2654		cur_rx =
2655		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2656		rxidx = cur_rx->ti_idx;
2657		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2658
2659		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2660			have_tag = 1;
2661			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2662		}
2663
2664		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2665
2666			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2667			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2668			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2669			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2670			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2671			    BUS_DMASYNC_POSTREAD);
2672			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2673			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2674				ifp->if_ierrors++;
2675				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2676				continue;
2677			}
2678			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2679				ifp->if_ierrors++;
2680				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2681				continue;
2682			}
2683#ifdef TI_PRIVATE_JUMBOS
2684			m->m_len = cur_rx->ti_len;
2685#else /* TI_PRIVATE_JUMBOS */
2686#ifdef TI_JUMBO_HDRSPLIT
2687			if (sc->ti_hdrsplit)
2688				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2689					     cur_rx->ti_len, rxidx);
2690			else
2691#endif /* TI_JUMBO_HDRSPLIT */
2692			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2693#endif /* TI_PRIVATE_JUMBOS */
2694		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2695			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2696			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2697			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2698			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2699			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2700			    BUS_DMASYNC_POSTREAD);
2701			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2702			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2703				ifp->if_ierrors++;
2704				ti_newbuf_mini(sc, sc->ti_mini, m);
2705				continue;
2706			}
2707			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2708				ifp->if_ierrors++;
2709				ti_newbuf_mini(sc, sc->ti_mini, m);
2710				continue;
2711			}
2712			m->m_len = cur_rx->ti_len;
2713		} else {
2714			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2715			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2716			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2717			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2718			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2719			    BUS_DMASYNC_POSTREAD);
2720			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2721			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2722				ifp->if_ierrors++;
2723				ti_newbuf_std(sc, sc->ti_std, m);
2724				continue;
2725			}
2726			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2727				ifp->if_ierrors++;
2728				ti_newbuf_std(sc, sc->ti_std, m);
2729				continue;
2730			}
2731			m->m_len = cur_rx->ti_len;
2732		}
2733
2734		m->m_pkthdr.len = cur_rx->ti_len;
2735		ifp->if_ipackets++;
2736		m->m_pkthdr.rcvif = ifp;
2737
2738		if (ifp->if_hwassist) {
2739			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2740			    CSUM_DATA_VALID;
2741			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2742				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2743			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2744		}
2745
2746		/*
2747		 * If we received a packet with a vlan tag,
2748		 * tag it before passing the packet upward.
2749		 */
2750		if (have_tag) {
2751			m->m_pkthdr.ether_vtag = vlan_tag;
2752			m->m_flags |= M_VLANTAG;
2753		}
2754		TI_UNLOCK(sc);
2755		(*ifp->if_input)(ifp, m);
2756		TI_LOCK(sc);
2757	}
2758
2759	/* Only necessary on the Tigon 1. */
2760	if (sc->ti_hwrev == TI_HWREV_TIGON)
2761		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2762		    sc->ti_rx_saved_considx);
2763
2764	TI_UPDATE_STDPROD(sc, sc->ti_std);
2765	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2766	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2767}
2768
2769static void
2770ti_txeof(struct ti_softc *sc)
2771{
2772	struct ti_txdesc *txd;
2773	struct ti_tx_desc txdesc;
2774	struct ti_tx_desc *cur_tx = NULL;
2775	struct ifnet *ifp;
2776	int idx;
2777
2778	ifp = sc->ti_ifp;
2779
2780	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2781	if (txd == NULL)
2782		return;
2783	/*
2784	 * Go through our tx ring and free mbufs for those
2785	 * frames that have been sent.
2786	 */
2787	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2788	    TI_INC(idx, TI_TX_RING_CNT)) {
2789		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2790			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2791			    sizeof(txdesc), &txdesc);
2792			cur_tx = &txdesc;
2793		} else
2794			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2795		sc->ti_txcnt--;
2796		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2797		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2798			continue;
2799		bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2800		    BUS_DMASYNC_POSTWRITE);
2801		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2802
2803		ifp->if_opackets++;
2804		m_freem(txd->tx_m);
2805		txd->tx_m = NULL;
2806		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2807		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2808		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2809	}
2810	sc->ti_tx_saved_considx = idx;
2811
2812	sc->ti_timer = sc->ti_txcnt > 0 ? 5 : 0;
2813}
2814
2815static void
2816ti_intr(void *xsc)
2817{
2818	struct ti_softc *sc;
2819	struct ifnet *ifp;
2820
2821	sc = xsc;
2822	TI_LOCK(sc);
2823	ifp = sc->ti_ifp;
2824
2825/*#ifdef notdef*/
2826	/* Avoid this for now -- checking this register is expensive. */
2827	/* Make sure this is really our interrupt. */
2828	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2829		TI_UNLOCK(sc);
2830		return;
2831	}
2832/*#endif*/
2833
2834	/* Ack interrupt and stop others from occuring. */
2835	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2836
2837	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2838		/* Check RX return ring producer/consumer */
2839		ti_rxeof(sc);
2840
2841		/* Check TX ring producer/consumer */
2842		ti_txeof(sc);
2843	}
2844
2845	ti_handle_events(sc);
2846
2847	/* Re-enable interrupts. */
2848	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2849
2850	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2851	    ifp->if_snd.ifq_head != NULL)
2852		ti_start_locked(ifp);
2853
2854	TI_UNLOCK(sc);
2855}
2856
2857static void
2858ti_stats_update(struct ti_softc *sc)
2859{
2860	struct ifnet *ifp;
2861
2862	ifp = sc->ti_ifp;
2863
2864	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2865	    BUS_DMASYNC_POSTREAD);
2866
2867	ifp->if_collisions +=
2868	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2869	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2870	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2871	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2872	   ifp->if_collisions;
2873
2874	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2875	    BUS_DMASYNC_PREREAD);
2876}
2877
2878/*
2879 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2880 * pointers to descriptors.
2881 */
2882static int
2883ti_encap(struct ti_softc *sc, struct mbuf **m_head)
2884{
2885	struct ti_txdesc *txd;
2886	struct ti_tx_desc *f;
2887	struct ti_tx_desc txdesc;
2888	struct mbuf *m;
2889	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
2890	uint16_t csum_flags;
2891	int error, frag, i, nseg;
2892
2893	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2894		return (ENOBUFS);
2895
2896	error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2897	    *m_head, txsegs, &nseg, 0);
2898	if (error == EFBIG) {
2899		m = m_defrag(*m_head, M_DONTWAIT);
2900		if (m == NULL) {
2901			m_freem(*m_head);
2902			*m_head = NULL;
2903			return (ENOMEM);
2904		}
2905		*m_head = m;
2906		error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2907		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2908		if (error) {
2909			m_freem(*m_head);
2910			*m_head = NULL;
2911			return (error);
2912		}
2913	} else if (error != 0)
2914		return (error);
2915	if (nseg == 0) {
2916		m_freem(*m_head);
2917		*m_head = NULL;
2918		return (EIO);
2919	}
2920
2921	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2922		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2923		return (ENOBUFS);
2924	}
2925
2926	m = *m_head;
2927	csum_flags = 0;
2928	if (m->m_pkthdr.csum_flags) {
2929		if (m->m_pkthdr.csum_flags & CSUM_IP)
2930			csum_flags |= TI_BDFLAG_IP_CKSUM;
2931		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2932			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2933		if (m->m_flags & M_LASTFRAG)
2934			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2935		else if (m->m_flags & M_FRAG)
2936			csum_flags |= TI_BDFLAG_IP_FRAG;
2937	}
2938
2939	bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2940	    BUS_DMASYNC_PREWRITE);
2941	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2942	    BUS_DMASYNC_PREWRITE);
2943
2944	frag = sc->ti_tx_saved_prodidx;
2945	for (i = 0; i < nseg; i++) {
2946		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2947			bzero(&txdesc, sizeof(txdesc));
2948			f = &txdesc;
2949		} else
2950			f = &sc->ti_rdata->ti_tx_ring[frag];
2951		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
2952		f->ti_len = txsegs[i].ds_len;
2953		f->ti_flags = csum_flags;
2954		if (m->m_flags & M_VLANTAG) {
2955			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2956			f->ti_vlan_tag = m->m_pkthdr.ether_vtag & 0xfff;
2957		} else {
2958			f->ti_vlan_tag = 0;
2959		}
2960
2961		if (sc->ti_hwrev == TI_HWREV_TIGON)
2962			ti_mem_write(sc, TI_TX_RING_BASE + frag *
2963			    sizeof(txdesc), sizeof(txdesc), &txdesc);
2964		TI_INC(frag, TI_TX_RING_CNT);
2965	}
2966
2967	sc->ti_tx_saved_prodidx = frag;
2968	/* set TI_BDFLAG_END on the last descriptor */
2969	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
2970	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2971		txdesc.ti_flags |= TI_BDFLAG_END;
2972		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
2973		    sizeof(txdesc), &txdesc);
2974	} else
2975		sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
2976
2977	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
2978	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
2979	txd->tx_m = m;
2980	sc->ti_txcnt += nseg;
2981
2982	return (0);
2983}
2984
2985static void
2986ti_start(struct ifnet *ifp)
2987{
2988	struct ti_softc *sc;
2989
2990	sc = ifp->if_softc;
2991	TI_LOCK(sc);
2992	ti_start_locked(ifp);
2993	TI_UNLOCK(sc);
2994}
2995
2996/*
2997 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2998 * to the mbuf data regions directly in the transmit descriptors.
2999 */
3000static void
3001ti_start_locked(struct ifnet *ifp)
3002{
3003	struct ti_softc *sc;
3004	struct mbuf *m_head = NULL;
3005	int enq = 0;
3006
3007	sc = ifp->if_softc;
3008
3009	for (; ifp->if_snd.ifq_head != NULL &&
3010	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3011		IF_DEQUEUE(&ifp->if_snd, m_head);
3012		if (m_head == NULL)
3013			break;
3014
3015		/*
3016		 * XXX
3017		 * safety overkill.  If this is a fragmented packet chain
3018		 * with delayed TCP/UDP checksums, then only encapsulate
3019		 * it if we have enough descriptors to handle the entire
3020		 * chain at once.
3021		 * (paranoia -- may not actually be needed)
3022		 */
3023		if (m_head->m_flags & M_FIRSTFRAG &&
3024		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3025			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3026			    m_head->m_pkthdr.csum_data + 16) {
3027				IF_PREPEND(&ifp->if_snd, m_head);
3028				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3029				break;
3030			}
3031		}
3032
3033		/*
3034		 * Pack the data into the transmit ring. If we
3035		 * don't have room, set the OACTIVE flag and wait
3036		 * for the NIC to drain the ring.
3037		 */
3038		if (ti_encap(sc, &m_head)) {
3039			if (m_head == NULL)
3040				break;
3041			IF_PREPEND(&ifp->if_snd, m_head);
3042			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3043			break;
3044		}
3045
3046		enq++;
3047		/*
3048		 * If there's a BPF listener, bounce a copy of this frame
3049		 * to him.
3050		 */
3051		ETHER_BPF_MTAP(ifp, m_head);
3052	}
3053
3054	if (enq > 0) {
3055		/* Transmit */
3056		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3057
3058		/*
3059		 * Set a timeout in case the chip goes out to lunch.
3060		 */
3061		sc->ti_timer = 5;
3062	}
3063}
3064
3065static void
3066ti_init(void *xsc)
3067{
3068	struct ti_softc *sc;
3069
3070	sc = xsc;
3071	TI_LOCK(sc);
3072	ti_init_locked(sc);
3073	TI_UNLOCK(sc);
3074}
3075
3076static void
3077ti_init_locked(void *xsc)
3078{
3079	struct ti_softc *sc = xsc;
3080
3081	/* Cancel pending I/O and flush buffers. */
3082	ti_stop(sc);
3083
3084	/* Init the gen info block, ring control blocks and firmware. */
3085	if (ti_gibinit(sc)) {
3086		device_printf(sc->ti_dev, "initialization failure\n");
3087		return;
3088	}
3089}
3090
3091static void ti_init2(struct ti_softc *sc)
3092{
3093	struct ti_cmd_desc cmd;
3094	struct ifnet *ifp;
3095	uint8_t *ea;
3096	struct ifmedia *ifm;
3097	int tmp;
3098
3099	TI_LOCK_ASSERT(sc);
3100
3101	ifp = sc->ti_ifp;
3102
3103	/* Specify MTU and interface index. */
3104	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3105	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3106	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3107	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3108
3109	/* Load our MAC address. */
3110	ea = IF_LLADDR(sc->ti_ifp);
3111	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3112	CSR_WRITE_4(sc, TI_GCR_PAR1,
3113	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3114	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3115
3116	/* Enable or disable promiscuous mode as needed. */
3117	if (ifp->if_flags & IFF_PROMISC) {
3118		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3119	} else {
3120		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3121	}
3122
3123	/* Program multicast filter. */
3124	ti_setmulti(sc);
3125
3126	/*
3127	 * If this is a Tigon 1, we should tell the
3128	 * firmware to use software packet filtering.
3129	 */
3130	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3131		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3132	}
3133
3134	/* Init RX ring. */
3135	ti_init_rx_ring_std(sc);
3136
3137	/* Init jumbo RX ring. */
3138	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3139		ti_init_rx_ring_jumbo(sc);
3140
3141	/*
3142	 * If this is a Tigon 2, we can also configure the
3143	 * mini ring.
3144	 */
3145	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3146		ti_init_rx_ring_mini(sc);
3147
3148	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3149	sc->ti_rx_saved_considx = 0;
3150
3151	/* Init TX ring. */
3152	ti_init_tx_ring(sc);
3153
3154	/* Tell firmware we're alive. */
3155	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3156
3157	/* Enable host interrupts. */
3158	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3159
3160	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3161	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3162	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3163
3164	/*
3165	 * Make sure to set media properly. We have to do this
3166	 * here since we have to issue commands in order to set
3167	 * the link negotiation and we can't issue commands until
3168	 * the firmware is running.
3169	 */
3170	ifm = &sc->ifmedia;
3171	tmp = ifm->ifm_media;
3172	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3173	ti_ifmedia_upd(ifp);
3174	ifm->ifm_media = tmp;
3175}
3176
3177/*
3178 * Set media options.
3179 */
3180static int
3181ti_ifmedia_upd(struct ifnet *ifp)
3182{
3183	struct ti_softc *sc;
3184	struct ifmedia *ifm;
3185	struct ti_cmd_desc cmd;
3186	uint32_t flowctl;
3187
3188	sc = ifp->if_softc;
3189	ifm = &sc->ifmedia;
3190
3191	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3192		return (EINVAL);
3193
3194	flowctl = 0;
3195
3196	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3197	case IFM_AUTO:
3198		/*
3199		 * Transmit flow control doesn't work on the Tigon 1.
3200		 */
3201		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3202
3203		/*
3204		 * Transmit flow control can also cause problems on the
3205		 * Tigon 2, apparantly with both the copper and fiber
3206		 * boards.  The symptom is that the interface will just
3207		 * hang.  This was reproduced with Alteon 180 switches.
3208		 */
3209#if 0
3210		if (sc->ti_hwrev != TI_HWREV_TIGON)
3211			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3212#endif
3213
3214		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3215		    TI_GLNK_FULL_DUPLEX| flowctl |
3216		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3217
3218		flowctl = TI_LNK_RX_FLOWCTL_Y;
3219#if 0
3220		if (sc->ti_hwrev != TI_HWREV_TIGON)
3221			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3222#endif
3223
3224		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3225		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3226		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3227		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3228		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3229		break;
3230	case IFM_1000_SX:
3231	case IFM_1000_T:
3232		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3233#if 0
3234		if (sc->ti_hwrev != TI_HWREV_TIGON)
3235			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3236#endif
3237
3238		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3239		    flowctl |TI_GLNK_ENB);
3240		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3241		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3242			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3243		}
3244		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3245		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3246		break;
3247	case IFM_100_FX:
3248	case IFM_10_FL:
3249	case IFM_100_TX:
3250	case IFM_10_T:
3251		flowctl = TI_LNK_RX_FLOWCTL_Y;
3252#if 0
3253		if (sc->ti_hwrev != TI_HWREV_TIGON)
3254			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3255#endif
3256
3257		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3258		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3259		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3260		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3261			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3262		} else {
3263			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3264		}
3265		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3266			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3267		} else {
3268			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3269		}
3270		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3271		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3272		break;
3273	}
3274
3275	return (0);
3276}
3277
3278/*
3279 * Report current media status.
3280 */
3281static void
3282ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3283{
3284	struct ti_softc *sc;
3285	uint32_t media = 0;
3286
3287	sc = ifp->if_softc;
3288
3289	ifmr->ifm_status = IFM_AVALID;
3290	ifmr->ifm_active = IFM_ETHER;
3291
3292	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3293		return;
3294
3295	ifmr->ifm_status |= IFM_ACTIVE;
3296
3297	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3298		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3299		if (sc->ti_copper)
3300			ifmr->ifm_active |= IFM_1000_T;
3301		else
3302			ifmr->ifm_active |= IFM_1000_SX;
3303		if (media & TI_GLNK_FULL_DUPLEX)
3304			ifmr->ifm_active |= IFM_FDX;
3305		else
3306			ifmr->ifm_active |= IFM_HDX;
3307	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3308		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3309		if (sc->ti_copper) {
3310			if (media & TI_LNK_100MB)
3311				ifmr->ifm_active |= IFM_100_TX;
3312			if (media & TI_LNK_10MB)
3313				ifmr->ifm_active |= IFM_10_T;
3314		} else {
3315			if (media & TI_LNK_100MB)
3316				ifmr->ifm_active |= IFM_100_FX;
3317			if (media & TI_LNK_10MB)
3318				ifmr->ifm_active |= IFM_10_FL;
3319		}
3320		if (media & TI_LNK_FULL_DUPLEX)
3321			ifmr->ifm_active |= IFM_FDX;
3322		if (media & TI_LNK_HALF_DUPLEX)
3323			ifmr->ifm_active |= IFM_HDX;
3324	}
3325}
3326
3327static int
3328ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3329{
3330	struct ti_softc *sc = ifp->if_softc;
3331	struct ifreq *ifr = (struct ifreq *) data;
3332	struct ti_cmd_desc cmd;
3333	int mask, error = 0;
3334
3335	switch (command) {
3336	case SIOCSIFMTU:
3337		TI_LOCK(sc);
3338		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3339			error = EINVAL;
3340		else {
3341			ifp->if_mtu = ifr->ifr_mtu;
3342			ti_init_locked(sc);
3343		}
3344		TI_UNLOCK(sc);
3345		break;
3346	case SIOCSIFFLAGS:
3347		TI_LOCK(sc);
3348		if (ifp->if_flags & IFF_UP) {
3349			/*
3350			 * If only the state of the PROMISC flag changed,
3351			 * then just use the 'set promisc mode' command
3352			 * instead of reinitializing the entire NIC. Doing
3353			 * a full re-init means reloading the firmware and
3354			 * waiting for it to start up, which may take a
3355			 * second or two.
3356			 */
3357			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3358			    ifp->if_flags & IFF_PROMISC &&
3359			    !(sc->ti_if_flags & IFF_PROMISC)) {
3360				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3361				    TI_CMD_CODE_PROMISC_ENB, 0);
3362			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3363			    !(ifp->if_flags & IFF_PROMISC) &&
3364			    sc->ti_if_flags & IFF_PROMISC) {
3365				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3366				    TI_CMD_CODE_PROMISC_DIS, 0);
3367			} else
3368				ti_init_locked(sc);
3369		} else {
3370			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3371				ti_stop(sc);
3372			}
3373		}
3374		sc->ti_if_flags = ifp->if_flags;
3375		TI_UNLOCK(sc);
3376		break;
3377	case SIOCADDMULTI:
3378	case SIOCDELMULTI:
3379		TI_LOCK(sc);
3380		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3381			ti_setmulti(sc);
3382		TI_UNLOCK(sc);
3383		break;
3384	case SIOCSIFMEDIA:
3385	case SIOCGIFMEDIA:
3386		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3387		break;
3388	case SIOCSIFCAP:
3389		TI_LOCK(sc);
3390		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3391		if (mask & IFCAP_HWCSUM) {
3392			if (IFCAP_HWCSUM & ifp->if_capenable)
3393				ifp->if_capenable &= ~IFCAP_HWCSUM;
3394			else
3395				ifp->if_capenable |= IFCAP_HWCSUM;
3396			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3397				ti_init_locked(sc);
3398		}
3399		TI_UNLOCK(sc);
3400		break;
3401	default:
3402		error = ether_ioctl(ifp, command, data);
3403		break;
3404	}
3405
3406	return (error);
3407}
3408
3409static int
3410ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3411{
3412	struct ti_softc *sc;
3413
3414	sc = dev->si_drv1;
3415	if (sc == NULL)
3416		return (ENODEV);
3417
3418	TI_LOCK(sc);
3419	sc->ti_flags |= TI_FLAG_DEBUGING;
3420	TI_UNLOCK(sc);
3421
3422	return (0);
3423}
3424
3425static int
3426ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3427{
3428	struct ti_softc *sc;
3429
3430	sc = dev->si_drv1;
3431	if (sc == NULL)
3432		return (ENODEV);
3433
3434	TI_LOCK(sc);
3435	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3436	TI_UNLOCK(sc);
3437
3438	return (0);
3439}
3440
3441/*
3442 * This ioctl routine goes along with the Tigon character device.
3443 */
3444static int
3445ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3446    struct thread *td)
3447{
3448	struct ti_softc *sc;
3449	int error;
3450
3451	sc = dev->si_drv1;
3452	if (sc == NULL)
3453		return (ENODEV);
3454
3455	error = 0;
3456
3457	switch (cmd) {
3458	case TIIOCGETSTATS:
3459	{
3460		struct ti_stats *outstats;
3461
3462		outstats = (struct ti_stats *)addr;
3463
3464		TI_LOCK(sc);
3465		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3466		      sizeof(struct ti_stats));
3467		TI_UNLOCK(sc);
3468		break;
3469	}
3470	case TIIOCGETPARAMS:
3471	{
3472		struct ti_params *params;
3473
3474		params = (struct ti_params *)addr;
3475
3476		TI_LOCK(sc);
3477		params->ti_stat_ticks = sc->ti_stat_ticks;
3478		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3479		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3480		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3481		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3482		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3483		params->param_mask = TI_PARAM_ALL;
3484		TI_UNLOCK(sc);
3485
3486		error = 0;
3487
3488		break;
3489	}
3490	case TIIOCSETPARAMS:
3491	{
3492		struct ti_params *params;
3493
3494		params = (struct ti_params *)addr;
3495
3496		TI_LOCK(sc);
3497		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3498			sc->ti_stat_ticks = params->ti_stat_ticks;
3499			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3500		}
3501
3502		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3503			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3504			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3505				    sc->ti_rx_coal_ticks);
3506		}
3507
3508		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3509			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3510			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3511				    sc->ti_tx_coal_ticks);
3512		}
3513
3514		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3515			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3516			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3517				    sc->ti_rx_max_coal_bds);
3518		}
3519
3520		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3521			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3522			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3523				    sc->ti_tx_max_coal_bds);
3524		}
3525
3526		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3527			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3528			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3529				    sc->ti_tx_buf_ratio);
3530		}
3531		TI_UNLOCK(sc);
3532
3533		error = 0;
3534
3535		break;
3536	}
3537	case TIIOCSETTRACE: {
3538		ti_trace_type	trace_type;
3539
3540		trace_type = *(ti_trace_type *)addr;
3541
3542		/*
3543		 * Set tracing to whatever the user asked for.  Setting
3544		 * this register to 0 should have the effect of disabling
3545		 * tracing.
3546		 */
3547		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3548
3549		error = 0;
3550
3551		break;
3552	}
3553	case TIIOCGETTRACE: {
3554		struct ti_trace_buf *trace_buf;
3555		uint32_t trace_start, cur_trace_ptr, trace_len;
3556
3557		trace_buf = (struct ti_trace_buf *)addr;
3558
3559		TI_LOCK(sc);
3560		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3561		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3562		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3563
3564#if 0
3565		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3566		       "trace_len = %d\n", trace_start,
3567		       cur_trace_ptr, trace_len);
3568		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3569		       trace_buf->buf_len);
3570#endif
3571
3572		error = ti_copy_mem(sc, trace_start, min(trace_len,
3573				    trace_buf->buf_len),
3574				    (caddr_t)trace_buf->buf, 1, 1);
3575
3576		if (error == 0) {
3577			trace_buf->fill_len = min(trace_len,
3578						  trace_buf->buf_len);
3579			if (cur_trace_ptr < trace_start)
3580				trace_buf->cur_trace_ptr =
3581					trace_start - cur_trace_ptr;
3582			else
3583				trace_buf->cur_trace_ptr =
3584					cur_trace_ptr - trace_start;
3585		} else
3586			trace_buf->fill_len = 0;
3587		TI_UNLOCK(sc);
3588
3589		break;
3590	}
3591
3592	/*
3593	 * For debugging, five ioctls are needed:
3594	 * ALT_ATTACH
3595	 * ALT_READ_TG_REG
3596	 * ALT_WRITE_TG_REG
3597	 * ALT_READ_TG_MEM
3598	 * ALT_WRITE_TG_MEM
3599	 */
3600	case ALT_ATTACH:
3601		/*
3602		 * From what I can tell, Alteon's Solaris Tigon driver
3603		 * only has one character device, so you have to attach
3604		 * to the Tigon board you're interested in.  This seems
3605		 * like a not-so-good way to do things, since unless you
3606		 * subsequently specify the unit number of the device
3607		 * you're interested in every ioctl, you'll only be
3608		 * able to debug one board at a time.
3609		 */
3610		error = 0;
3611		break;
3612	case ALT_READ_TG_MEM:
3613	case ALT_WRITE_TG_MEM:
3614	{
3615		struct tg_mem *mem_param;
3616		uint32_t sram_end, scratch_end;
3617
3618		mem_param = (struct tg_mem *)addr;
3619
3620		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3621			sram_end = TI_END_SRAM_I;
3622			scratch_end = TI_END_SCRATCH_I;
3623		} else {
3624			sram_end = TI_END_SRAM_II;
3625			scratch_end = TI_END_SCRATCH_II;
3626		}
3627
3628		/*
3629		 * For now, we'll only handle accessing regular SRAM,
3630		 * nothing else.
3631		 */
3632		TI_LOCK(sc);
3633		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3634		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3635			/*
3636			 * In this instance, we always copy to/from user
3637			 * space, so the user space argument is set to 1.
3638			 */
3639			error = ti_copy_mem(sc, mem_param->tgAddr,
3640					    mem_param->len,
3641					    mem_param->userAddr, 1,
3642					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3643		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3644			&& (mem_param->tgAddr <= scratch_end)) {
3645			error = ti_copy_scratch(sc, mem_param->tgAddr,
3646						mem_param->len,
3647						mem_param->userAddr, 1,
3648						(cmd == ALT_READ_TG_MEM) ?
3649						1 : 0, TI_PROCESSOR_A);
3650		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3651			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3652			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3653				if_printf(sc->ti_ifp,
3654				    "invalid memory range for Tigon I\n");
3655				error = EINVAL;
3656				break;
3657			}
3658			error = ti_copy_scratch(sc, mem_param->tgAddr -
3659						TI_SCRATCH_DEBUG_OFF,
3660						mem_param->len,
3661						mem_param->userAddr, 1,
3662						(cmd == ALT_READ_TG_MEM) ?
3663						1 : 0, TI_PROCESSOR_B);
3664		} else {
3665			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3666			        "out of supported range\n",
3667			        mem_param->tgAddr, mem_param->len);
3668			error = EINVAL;
3669		}
3670		TI_UNLOCK(sc);
3671
3672		break;
3673	}
3674	case ALT_READ_TG_REG:
3675	case ALT_WRITE_TG_REG:
3676	{
3677		struct tg_reg	*regs;
3678		uint32_t	tmpval;
3679
3680		regs = (struct tg_reg *)addr;
3681
3682		/*
3683		 * Make sure the address in question isn't out of range.
3684		 */
3685		if (regs->addr > TI_REG_MAX) {
3686			error = EINVAL;
3687			break;
3688		}
3689		TI_LOCK(sc);
3690		if (cmd == ALT_READ_TG_REG) {
3691			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3692						regs->addr, &tmpval, 1);
3693			regs->data = ntohl(tmpval);
3694#if 0
3695			if ((regs->addr == TI_CPU_STATE)
3696			 || (regs->addr == TI_CPU_CTL_B)) {
3697				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3698				       regs->addr, tmpval);
3699			}
3700#endif
3701		} else {
3702			tmpval = htonl(regs->data);
3703			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3704						 regs->addr, &tmpval, 1);
3705		}
3706		TI_UNLOCK(sc);
3707
3708		break;
3709	}
3710	default:
3711		error = ENOTTY;
3712		break;
3713	}
3714	return (error);
3715}
3716
3717static void
3718ti_watchdog(void *arg)
3719{
3720	struct ti_softc *sc;
3721	struct ifnet *ifp;
3722
3723	sc = arg;
3724	TI_LOCK_ASSERT(sc);
3725	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3726	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3727		return;
3728
3729	/*
3730	 * When we're debugging, the chip is often stopped for long periods
3731	 * of time, and that would normally cause the watchdog timer to fire.
3732	 * Since that impedes debugging, we don't want to do that.
3733	 */
3734	if (sc->ti_flags & TI_FLAG_DEBUGING)
3735		return;
3736
3737	ifp = sc->ti_ifp;
3738	if_printf(ifp, "watchdog timeout -- resetting\n");
3739	ti_stop(sc);
3740	ti_init_locked(sc);
3741
3742	ifp->if_oerrors++;
3743}
3744
3745/*
3746 * Stop the adapter and free any mbufs allocated to the
3747 * RX and TX lists.
3748 */
3749static void
3750ti_stop(struct ti_softc *sc)
3751{
3752	struct ifnet *ifp;
3753	struct ti_cmd_desc cmd;
3754
3755	TI_LOCK_ASSERT(sc);
3756
3757	ifp = sc->ti_ifp;
3758
3759	/* Disable host interrupts. */
3760	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3761	/*
3762	 * Tell firmware we're shutting down.
3763	 */
3764	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3765
3766	/* Halt and reinitialize. */
3767	if (ti_chipinit(sc) != 0)
3768		return;
3769	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3770	if (ti_chipinit(sc) != 0)
3771		return;
3772
3773	/* Free the RX lists. */
3774	ti_free_rx_ring_std(sc);
3775
3776	/* Free jumbo RX list. */
3777	ti_free_rx_ring_jumbo(sc);
3778
3779	/* Free mini RX list. */
3780	ti_free_rx_ring_mini(sc);
3781
3782	/* Free TX buffers. */
3783	ti_free_tx_ring(sc);
3784
3785	sc->ti_ev_prodidx.ti_idx = 0;
3786	sc->ti_return_prodidx.ti_idx = 0;
3787	sc->ti_tx_considx.ti_idx = 0;
3788	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3789
3790	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3791	callout_stop(&sc->ti_watchdog);
3792}
3793
3794/*
3795 * Stop all chip I/O so that the kernel's probe routines don't
3796 * get confused by errant DMAs when rebooting.
3797 */
3798static int
3799ti_shutdown(device_t dev)
3800{
3801	struct ti_softc *sc;
3802
3803	sc = device_get_softc(dev);
3804	TI_LOCK(sc);
3805	ti_chipinit(sc);
3806	TI_UNLOCK(sc);
3807
3808	return (0);
3809}
3810