if_ti.c revision 144165
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 144165 2005-03-26 23:26:49Z sam $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94
95#include <net/if.h>
96#include <net/if_arp.h>
97#include <net/ethernet.h>
98#include <net/if_dl.h>
99#include <net/if_media.h>
100#include <net/if_types.h>
101#include <net/if_vlan_var.h>
102
103#include <net/bpf.h>
104
105#include <netinet/in_systm.h>
106#include <netinet/in.h>
107#include <netinet/ip.h>
108
109#include <vm/vm.h>		/* for vtophys */
110#include <vm/pmap.h>		/* for vtophys */
111#include <machine/bus_memio.h>
112#include <machine/bus.h>
113#include <machine/resource.h>
114#include <sys/bus.h>
115#include <sys/rman.h>
116
117/* #define TI_PRIVATE_JUMBOS */
118
119#if !defined(TI_PRIVATE_JUMBOS)
120#include <sys/sockio.h>
121#include <sys/uio.h>
122#include <sys/lock.h>
123#include <sys/sf_buf.h>
124#include <vm/vm_extern.h>
125#include <vm/pmap.h>
126#include <vm/vm_map.h>
127#include <vm/vm_map.h>
128#include <vm/vm_param.h>
129#include <vm/vm_pageout.h>
130#include <sys/vmmeter.h>
131#include <vm/vm_page.h>
132#include <vm/vm_object.h>
133#include <vm/vm_kern.h>
134#include <sys/proc.h>
135#endif /* !TI_PRIVATE_JUMBOS */
136
137#include <dev/pci/pcireg.h>
138#include <dev/pci/pcivar.h>
139
140#include <sys/tiio.h>
141#include <pci/if_tireg.h>
142#include <pci/ti_fw.h>
143#include <pci/ti_fw2.h>
144
145#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
146/*
147 * We can only turn on header splitting if we're using extended receive
148 * BDs.
149 */
150#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
151#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
152#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
153
154struct ti_softc *tis[8];
155
156typedef enum {
157	TI_SWAP_HTON,
158	TI_SWAP_NTOH
159} ti_swap_type;
160
161
162/*
163 * Various supported device vendors/types and their names.
164 */
165
166static struct ti_type ti_devs[] = {
167	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
168		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
169	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
170		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
171	{ TC_VENDORID,	TC_DEVICEID_3C985,
172		"3Com 3c985-SX Gigabit Ethernet" },
173	{ NG_VENDORID, NG_DEVICEID_GA620,
174		"Netgear GA620 1000baseSX Gigabit Ethernet" },
175	{ NG_VENDORID, NG_DEVICEID_GA620T,
176		"Netgear GA620 1000baseT Gigabit Ethernet" },
177	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
178		"Silicon Graphics Gigabit Ethernet" },
179	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
180		"Farallon PN9000SX Gigabit Ethernet" },
181	{ 0, 0, NULL }
182};
183
184
185static	d_open_t	ti_open;
186static	d_close_t	ti_close;
187static	d_ioctl_t	ti_ioctl2;
188
189static struct cdevsw ti_cdevsw = {
190	.d_version =	D_VERSION,
191	.d_flags =	D_NEEDGIANT,
192	.d_open =	ti_open,
193	.d_close =	ti_close,
194	.d_ioctl =	ti_ioctl2,
195	.d_name =	"ti",
196};
197
198static int ti_probe(device_t);
199static int ti_attach(device_t);
200static int ti_detach(device_t);
201static void ti_txeof(struct ti_softc *);
202static void ti_rxeof(struct ti_softc *);
203
204static void ti_stats_update(struct ti_softc *);
205static int ti_encap(struct ti_softc *, struct mbuf *, u_int32_t *);
206
207static void ti_intr(void *);
208static void ti_start(struct ifnet *);
209static int ti_ioctl(struct ifnet *, u_long, caddr_t);
210static void ti_init(void *);
211static void ti_init2(struct ti_softc *);
212static void ti_stop(struct ti_softc *);
213static void ti_watchdog(struct ifnet *);
214static void ti_shutdown(device_t);
215static int ti_ifmedia_upd(struct ifnet *);
216static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
219static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
220static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
221
222static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
223static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
224static void ti_setmulti(struct ti_softc *);
225
226static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t);
227static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
228static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
229		int, int, int);
230static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
231static void ti_loadfw(struct ti_softc *);
232static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
233static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
234static void ti_handle_events(struct ti_softc *);
235#ifdef TI_PRIVATE_JUMBOS
236static int ti_alloc_jumbo_mem(struct ti_softc *);
237static void *ti_jalloc(struct ti_softc *);
238static void ti_jfree(void *, void *);
239#endif /* TI_PRIVATE_JUMBOS */
240static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
241static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
242static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
243static int ti_init_rx_ring_std(struct ti_softc *);
244static void ti_free_rx_ring_std(struct ti_softc *);
245static int ti_init_rx_ring_jumbo(struct ti_softc *);
246static void ti_free_rx_ring_jumbo(struct ti_softc *);
247static int ti_init_rx_ring_mini(struct ti_softc *);
248static void ti_free_rx_ring_mini(struct ti_softc *);
249static void ti_free_tx_ring(struct ti_softc *);
250static int ti_init_tx_ring(struct ti_softc *);
251
252static int ti_64bitslot_war(struct ti_softc *);
253static int ti_chipinit(struct ti_softc *);
254static int ti_gibinit(struct ti_softc *);
255
256#ifdef TI_JUMBO_HDRSPLIT
257static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
258					     int pkt_len, int idx);
259#endif /* TI_JUMBO_HDRSPLIT */
260
261static device_method_t ti_methods[] = {
262	/* Device interface */
263	DEVMETHOD(device_probe,		ti_probe),
264	DEVMETHOD(device_attach,	ti_attach),
265	DEVMETHOD(device_detach,	ti_detach),
266	DEVMETHOD(device_shutdown,	ti_shutdown),
267	{ 0, 0 }
268};
269
270static driver_t ti_driver = {
271	"ti",
272	ti_methods,
273	sizeof(struct ti_softc)
274};
275
276static devclass_t ti_devclass;
277
278DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
279MODULE_DEPEND(ti, pci, 1, 1, 1);
280MODULE_DEPEND(ti, ether, 1, 1, 1);
281
282/*
283 * Send an instruction or address to the EEPROM, check for ACK.
284 */
285static u_int32_t ti_eeprom_putbyte(sc, byte)
286	struct ti_softc		*sc;
287	int			byte;
288{
289	register int		i, ack = 0;
290
291	/*
292	 * Make sure we're in TX mode.
293	 */
294	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
295
296	/*
297	 * Feed in each bit and stobe the clock.
298	 */
299	for (i = 0x80; i; i >>= 1) {
300		if (byte & i) {
301			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
302		} else {
303			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
304		}
305		DELAY(1);
306		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
307		DELAY(1);
308		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
309	}
310
311	/*
312	 * Turn off TX mode.
313	 */
314	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
315
316	/*
317	 * Check for ack.
318	 */
319	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
320	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
321	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322
323	return (ack);
324}
325
326/*
327 * Read a byte of data stored in the EEPROM at address 'addr.'
328 * We have to send two address bytes since the EEPROM can hold
329 * more than 256 bytes of data.
330 */
331static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
332	struct ti_softc		*sc;
333	int			addr;
334	u_int8_t		*dest;
335{
336	register int		i;
337	u_int8_t		byte = 0;
338
339	EEPROM_START;
340
341	/*
342	 * Send write control code to EEPROM.
343	 */
344	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
345		printf("ti%d: failed to send write command, status: %x\n",
346		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
347		return (1);
348	}
349
350	/*
351	 * Send first byte of address of byte we want to read.
352	 */
353	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
354		printf("ti%d: failed to send address, status: %x\n",
355		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
356		return (1);
357	}
358	/*
359	 * Send second byte address of byte we want to read.
360	 */
361	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
362		printf("ti%d: failed to send address, status: %x\n",
363		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
364		return (1);
365	}
366
367	EEPROM_STOP;
368	EEPROM_START;
369	/*
370	 * Send read control code to EEPROM.
371	 */
372	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
373		printf("ti%d: failed to send read command, status: %x\n",
374		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
375		return (1);
376	}
377
378	/*
379	 * Start reading bits from EEPROM.
380	 */
381	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
382	for (i = 0x80; i; i >>= 1) {
383		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
384		DELAY(1);
385		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
386			byte |= i;
387		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
388		DELAY(1);
389	}
390
391	EEPROM_STOP;
392
393	/*
394	 * No ACK generated for read, so just return byte.
395	 */
396
397	*dest = byte;
398
399	return (0);
400}
401
402/*
403 * Read a sequence of bytes from the EEPROM.
404 */
405static int
406ti_read_eeprom(sc, dest, off, cnt)
407	struct ti_softc		*sc;
408	caddr_t			dest;
409	int			off;
410	int			cnt;
411{
412	int			err = 0, i;
413	u_int8_t		byte = 0;
414
415	for (i = 0; i < cnt; i++) {
416		err = ti_eeprom_getbyte(sc, off + i, &byte);
417		if (err)
418			break;
419		*(dest + i) = byte;
420	}
421
422	return (err ? 1 : 0);
423}
424
425/*
426 * NIC memory access function. Can be used to either clear a section
427 * of NIC local memory or (if buf is non-NULL) copy data into it.
428 */
429static void
430ti_mem(sc, addr, len, buf)
431	struct ti_softc		*sc;
432	u_int32_t		addr, len;
433	caddr_t			buf;
434{
435	int			segptr, segsize, cnt;
436	caddr_t			ti_winbase, ptr;
437
438	segptr = addr;
439	cnt = len;
440	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
441	ptr = buf;
442
443	while (cnt) {
444		if (cnt < TI_WINLEN)
445			segsize = cnt;
446		else
447			segsize = TI_WINLEN - (segptr % TI_WINLEN);
448		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
449		if (buf == NULL)
450			bzero((char *)ti_winbase + (segptr &
451			    (TI_WINLEN - 1)), segsize);
452		else {
453			bcopy((char *)ptr, (char *)ti_winbase +
454			    (segptr & (TI_WINLEN - 1)), segsize);
455			ptr += segsize;
456		}
457		segptr += segsize;
458		cnt -= segsize;
459	}
460}
461
462static int
463ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
464	struct ti_softc		*sc;
465	u_int32_t		tigon_addr, len;
466	caddr_t			buf;
467	int			useraddr, readdata;
468{
469	int		segptr, segsize, cnt;
470	caddr_t		ptr;
471	u_int32_t	origwin;
472	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
473	int		resid, segresid;
474	int		first_pass;
475
476	/*
477	 * At the moment, we don't handle non-aligned cases, we just bail.
478	 * If this proves to be a problem, it will be fixed.
479	 */
480	if ((readdata == 0)
481	 && (tigon_addr & 0x3)) {
482		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
483		       "word-aligned\n", sc->ti_unit, tigon_addr);
484		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
485		       "supported\n", sc->ti_unit);
486		return (EINVAL);
487	}
488
489	segptr = tigon_addr & ~0x3;
490	segresid = tigon_addr - segptr;
491
492	/*
493	 * This is the non-aligned amount left over that we'll need to
494	 * copy.
495	 */
496	resid = len & 0x3;
497
498	/* Add in the left over amount at the front of the buffer */
499	resid += segresid;
500
501	cnt = len & ~0x3;
502	/*
503	 * If resid + segresid is >= 4, add multiples of 4 to the count and
504	 * decrease the residual by that much.
505	 */
506	cnt += resid & ~0x3;
507	resid -= resid & ~0x3;
508
509	ptr = buf;
510
511	first_pass = 1;
512
513	/*
514	 * Make sure we aren't interrupted while we're changing the window
515	 * pointer.
516	 */
517	TI_LOCK(sc);
518
519	/*
520	 * Save the old window base value.
521	 */
522	origwin = CSR_READ_4(sc, TI_WINBASE);
523
524	while (cnt) {
525		bus_size_t ti_offset;
526
527		if (cnt < TI_WINLEN)
528			segsize = cnt;
529		else
530			segsize = TI_WINLEN - (segptr % TI_WINLEN);
531		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
532
533		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
534
535		if (readdata) {
536
537			bus_space_read_region_4(sc->ti_btag,
538						sc->ti_bhandle, ti_offset,
539						(u_int32_t *)tmparray,
540						segsize >> 2);
541			if (useraddr) {
542				/*
543				 * Yeah, this is a little on the kludgy
544				 * side, but at least this code is only
545				 * used for debugging.
546				 */
547				ti_bcopy_swap(tmparray, tmparray2, segsize,
548					      TI_SWAP_NTOH);
549
550				if (first_pass) {
551					copyout(&tmparray2[segresid], ptr,
552						segsize - segresid);
553					first_pass = 0;
554				} else
555					copyout(tmparray2, ptr, segsize);
556			} else {
557				if (first_pass) {
558
559					ti_bcopy_swap(tmparray, tmparray2,
560						      segsize, TI_SWAP_NTOH);
561					bcopy(&tmparray2[segresid], ptr,
562					      segsize - segresid);
563					first_pass = 0;
564				} else
565					ti_bcopy_swap(tmparray, ptr, segsize,
566						      TI_SWAP_NTOH);
567			}
568
569		} else {
570			if (useraddr) {
571				copyin(ptr, tmparray2, segsize);
572				ti_bcopy_swap(tmparray2, tmparray, segsize,
573					      TI_SWAP_HTON);
574			} else
575				ti_bcopy_swap(ptr, tmparray, segsize,
576					      TI_SWAP_HTON);
577
578			bus_space_write_region_4(sc->ti_btag,
579						 sc->ti_bhandle, ti_offset,
580						 (u_int32_t *)tmparray,
581						 segsize >> 2);
582		}
583		segptr += segsize;
584		ptr += segsize;
585		cnt -= segsize;
586	}
587
588	/*
589	 * Handle leftover, non-word-aligned bytes.
590	 */
591	if (resid != 0) {
592		u_int32_t	tmpval, tmpval2;
593		bus_size_t	ti_offset;
594
595		/*
596		 * Set the segment pointer.
597		 */
598		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
599
600		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
601
602		/*
603		 * First, grab whatever is in our source/destination.
604		 * We'll obviously need this for reads, but also for
605		 * writes, since we'll be doing read/modify/write.
606		 */
607		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
608					ti_offset, &tmpval, 1);
609
610		/*
611		 * Next, translate this from little-endian to big-endian
612		 * (at least on i386 boxes).
613		 */
614		tmpval2 = ntohl(tmpval);
615
616		if (readdata) {
617			/*
618			 * If we're reading, just copy the leftover number
619			 * of bytes from the host byte order buffer to
620			 * the user's buffer.
621			 */
622			if (useraddr)
623				copyout(&tmpval2, ptr, resid);
624			else
625				bcopy(&tmpval2, ptr, resid);
626		} else {
627			/*
628			 * If we're writing, first copy the bytes to be
629			 * written into the network byte order buffer,
630			 * leaving the rest of the buffer with whatever was
631			 * originally in there.  Then, swap the bytes
632			 * around into host order and write them out.
633			 *
634			 * XXX KDM the read side of this has been verified
635			 * to work, but the write side of it has not been
636			 * verified.  So user beware.
637			 */
638			if (useraddr)
639				copyin(ptr, &tmpval2, resid);
640			else
641				bcopy(ptr, &tmpval2, resid);
642
643			tmpval = htonl(tmpval2);
644
645			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
646						 ti_offset, &tmpval, 1);
647		}
648	}
649
650	CSR_WRITE_4(sc, TI_WINBASE, origwin);
651
652	TI_UNLOCK(sc);
653
654	return (0);
655}
656
657static int
658ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
659	struct ti_softc		*sc;
660	u_int32_t		tigon_addr, len;
661	caddr_t			buf;
662	int			useraddr, readdata;
663	int			cpu;
664{
665	u_int32_t	segptr;
666	int		cnt;
667	u_int32_t	tmpval, tmpval2;
668	caddr_t		ptr;
669
670	/*
671	 * At the moment, we don't handle non-aligned cases, we just bail.
672	 * If this proves to be a problem, it will be fixed.
673	 */
674	if (tigon_addr & 0x3) {
675		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
676		       "word-aligned\n", sc->ti_unit, tigon_addr);
677		return (EINVAL);
678	}
679
680	if (len & 0x3) {
681		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
682		       "word-aligned\n", sc->ti_unit, len);
683		return (EINVAL);
684	}
685
686	segptr = tigon_addr;
687	cnt = len;
688	ptr = buf;
689
690	TI_LOCK(sc);
691
692	while (cnt) {
693		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
694
695		if (readdata) {
696			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
697
698			tmpval = ntohl(tmpval2);
699
700			/*
701			 * Note:  I've used this debugging interface
702			 * extensively with Alteon's 12.3.15 firmware,
703			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
704			 *
705			 * When you compile the firmware without
706			 * optimization, which is necessary sometimes in
707			 * order to properly step through it, you sometimes
708			 * read out a bogus value of 0xc0017c instead of
709			 * whatever was supposed to be in that scratchpad
710			 * location.  That value is on the stack somewhere,
711			 * but I've never been able to figure out what was
712			 * causing the problem.
713			 *
714			 * The address seems to pop up in random places,
715			 * often not in the same place on two subsequent
716			 * reads.
717			 *
718			 * In any case, the underlying data doesn't seem
719			 * to be affected, just the value read out.
720			 *
721			 * KDM, 3/7/2000
722			 */
723
724			if (tmpval2 == 0xc0017c)
725				printf("ti%d: found 0xc0017c at %#x "
726				       "(tmpval2)\n", sc->ti_unit, segptr);
727
728			if (tmpval == 0xc0017c)
729				printf("ti%d: found 0xc0017c at %#x "
730				       "(tmpval)\n", sc->ti_unit, segptr);
731
732			if (useraddr)
733				copyout(&tmpval, ptr, 4);
734			else
735				bcopy(&tmpval, ptr, 4);
736		} else {
737			if (useraddr)
738				copyin(ptr, &tmpval2, 4);
739			else
740				bcopy(ptr, &tmpval2, 4);
741
742			tmpval = htonl(tmpval2);
743
744			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
745		}
746
747		cnt -= 4;
748		segptr += 4;
749		ptr += 4;
750	}
751
752	TI_UNLOCK(sc);
753
754	return (0);
755}
756
757static int
758ti_bcopy_swap(src, dst, len, swap_type)
759	const void	*src;
760	void		*dst;
761	size_t		len;
762	ti_swap_type	swap_type;
763{
764	const u_int8_t *tmpsrc;
765	u_int8_t *tmpdst;
766	size_t tmplen;
767
768	if (len & 0x3) {
769		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
770		       len);
771		return (-1);
772	}
773
774	tmpsrc = src;
775	tmpdst = dst;
776	tmplen = len;
777
778	while (tmplen) {
779		if (swap_type == TI_SWAP_NTOH)
780			*(u_int32_t *)tmpdst =
781				ntohl(*(const u_int32_t *)tmpsrc);
782		else
783			*(u_int32_t *)tmpdst =
784				htonl(*(const u_int32_t *)tmpsrc);
785
786		tmpsrc += 4;
787		tmpdst += 4;
788		tmplen -= 4;
789	}
790
791	return (0);
792}
793
794/*
795 * Load firmware image into the NIC. Check that the firmware revision
796 * is acceptable and see if we want the firmware for the Tigon 1 or
797 * Tigon 2.
798 */
799static void
800ti_loadfw(sc)
801	struct ti_softc		*sc;
802{
803	switch (sc->ti_hwrev) {
804	case TI_HWREV_TIGON:
805		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
806		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
807		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
808			printf("ti%d: firmware revision mismatch; want "
809			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
810			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
811			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
812			    tigonFwReleaseMinor, tigonFwReleaseFix);
813			return;
814		}
815		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
816		    (caddr_t)tigonFwText);
817		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
818		    (caddr_t)tigonFwData);
819		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
820		    (caddr_t)tigonFwRodata);
821		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
822		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
823		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
824		break;
825	case TI_HWREV_TIGON_II:
826		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
827		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
828		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
829			printf("ti%d: firmware revision mismatch; want "
830			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
831			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
832			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
833			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
834			return;
835		}
836		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
837		    (caddr_t)tigon2FwText);
838		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
839		    (caddr_t)tigon2FwData);
840		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
841		    (caddr_t)tigon2FwRodata);
842		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
843		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
844		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
845		break;
846	default:
847		printf("ti%d: can't load firmware: unknown hardware rev\n",
848		    sc->ti_unit);
849		break;
850	}
851}
852
853/*
854 * Send the NIC a command via the command ring.
855 */
856static void
857ti_cmd(sc, cmd)
858	struct ti_softc		*sc;
859	struct ti_cmd_desc	*cmd;
860{
861	u_int32_t		index;
862
863	if (sc->ti_rdata->ti_cmd_ring == NULL)
864		return;
865
866	index = sc->ti_cmd_saved_prodidx;
867	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
868	TI_INC(index, TI_CMD_RING_CNT);
869	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
870	sc->ti_cmd_saved_prodidx = index;
871}
872
873/*
874 * Send the NIC an extended command. The 'len' parameter specifies the
875 * number of command slots to include after the initial command.
876 */
877static void
878ti_cmd_ext(sc, cmd, arg, len)
879	struct ti_softc		*sc;
880	struct ti_cmd_desc	*cmd;
881	caddr_t			arg;
882	int			len;
883{
884	u_int32_t		index;
885	register int		i;
886
887	if (sc->ti_rdata->ti_cmd_ring == NULL)
888		return;
889
890	index = sc->ti_cmd_saved_prodidx;
891	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
892	TI_INC(index, TI_CMD_RING_CNT);
893	for (i = 0; i < len; i++) {
894		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
895		    *(u_int32_t *)(&arg[i * 4]));
896		TI_INC(index, TI_CMD_RING_CNT);
897	}
898	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
899	sc->ti_cmd_saved_prodidx = index;
900}
901
902/*
903 * Handle events that have triggered interrupts.
904 */
905static void
906ti_handle_events(sc)
907	struct ti_softc		*sc;
908{
909	struct ti_event_desc	*e;
910
911	if (sc->ti_rdata->ti_event_ring == NULL)
912		return;
913
914	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
915		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
916		switch (e->ti_event) {
917		case TI_EV_LINKSTAT_CHANGED:
918			sc->ti_linkstat = e->ti_code;
919			if (e->ti_code == TI_EV_CODE_LINK_UP)
920				printf("ti%d: 10/100 link up\n", sc->ti_unit);
921			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
922				printf("ti%d: gigabit link up\n", sc->ti_unit);
923			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
924				printf("ti%d: link down\n", sc->ti_unit);
925			break;
926		case TI_EV_ERROR:
927			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
928				printf("ti%d: invalid command\n", sc->ti_unit);
929			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
930				printf("ti%d: unknown command\n", sc->ti_unit);
931			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
932				printf("ti%d: bad config data\n", sc->ti_unit);
933			break;
934		case TI_EV_FIRMWARE_UP:
935			ti_init2(sc);
936			break;
937		case TI_EV_STATS_UPDATED:
938			ti_stats_update(sc);
939			break;
940		case TI_EV_RESET_JUMBO_RING:
941		case TI_EV_MCAST_UPDATED:
942			/* Who cares. */
943			break;
944		default:
945			printf("ti%d: unknown event: %d\n",
946			    sc->ti_unit, e->ti_event);
947			break;
948		}
949		/* Advance the consumer index. */
950		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
951		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
952	}
953}
954
955#ifdef TI_PRIVATE_JUMBOS
956
957/*
958 * Memory management for the jumbo receive ring is a pain in the
959 * butt. We need to allocate at least 9018 bytes of space per frame,
960 * _and_ it has to be contiguous (unless you use the extended
961 * jumbo descriptor format). Using malloc() all the time won't
962 * work: malloc() allocates memory in powers of two, which means we
963 * would end up wasting a considerable amount of space by allocating
964 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
965 * to do our own memory management.
966 *
967 * The driver needs to allocate a contiguous chunk of memory at boot
968 * time. We then chop this up ourselves into 9K pieces and use them
969 * as external mbuf storage.
970 *
971 * One issue here is how much memory to allocate. The jumbo ring has
972 * 256 slots in it, but at 9K per slot than can consume over 2MB of
973 * RAM. This is a bit much, especially considering we also need
974 * RAM for the standard ring and mini ring (on the Tigon 2). To
975 * save space, we only actually allocate enough memory for 64 slots
976 * by default, which works out to between 500 and 600K. This can
977 * be tuned by changing a #define in if_tireg.h.
978 */
979
980static int
981ti_alloc_jumbo_mem(sc)
982	struct ti_softc		*sc;
983{
984	caddr_t			ptr;
985	register int		i;
986	struct ti_jpool_entry   *entry;
987
988	/* Grab a big chunk o' storage. */
989	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
990		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
991
992	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
993		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
994		return (ENOBUFS);
995	}
996
997	SLIST_INIT(&sc->ti_jfree_listhead);
998	SLIST_INIT(&sc->ti_jinuse_listhead);
999
1000	/*
1001	 * Now divide it up into 9K pieces and save the addresses
1002	 * in an array.
1003	 */
1004	ptr = sc->ti_cdata.ti_jumbo_buf;
1005	for (i = 0; i < TI_JSLOTS; i++) {
1006		sc->ti_cdata.ti_jslots[i] = ptr;
1007		ptr += TI_JLEN;
1008		entry = malloc(sizeof(struct ti_jpool_entry),
1009			       M_DEVBUF, M_NOWAIT);
1010		if (entry == NULL) {
1011			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1012			           M_DEVBUF);
1013			sc->ti_cdata.ti_jumbo_buf = NULL;
1014			printf("ti%d: no memory for jumbo "
1015			    "buffer queue!\n", sc->ti_unit);
1016			return (ENOBUFS);
1017		}
1018		entry->slot = i;
1019		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1020	}
1021
1022	return (0);
1023}
1024
1025/*
1026 * Allocate a jumbo buffer.
1027 */
1028static void *ti_jalloc(sc)
1029	struct ti_softc		*sc;
1030{
1031	struct ti_jpool_entry	*entry;
1032
1033	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1034
1035	if (entry == NULL) {
1036		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1037		return (NULL);
1038	}
1039
1040	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1041	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1042	return (sc->ti_cdata.ti_jslots[entry->slot]);
1043}
1044
1045/*
1046 * Release a jumbo buffer.
1047 */
1048static void
1049ti_jfree(buf, args)
1050	void			*buf;
1051	void			*args;
1052{
1053	struct ti_softc		*sc;
1054	int			i;
1055	struct ti_jpool_entry	*entry;
1056
1057	/* Extract the softc struct pointer. */
1058	sc = (struct ti_softc *)args;
1059
1060	if (sc == NULL)
1061		panic("ti_jfree: didn't get softc pointer!");
1062
1063	/* calculate the slot this buffer belongs to */
1064	i = ((vm_offset_t)buf
1065	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1066
1067	if ((i < 0) || (i >= TI_JSLOTS))
1068		panic("ti_jfree: asked to free buffer that we don't manage!");
1069
1070	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1071	if (entry == NULL)
1072		panic("ti_jfree: buffer not in use!");
1073	entry->slot = i;
1074	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1075	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1076}
1077
1078#endif /* TI_PRIVATE_JUMBOS */
1079
1080/*
1081 * Intialize a standard receive ring descriptor.
1082 */
1083static int
1084ti_newbuf_std(sc, i, m)
1085	struct ti_softc		*sc;
1086	int			i;
1087	struct mbuf		*m;
1088{
1089	struct mbuf		*m_new = NULL;
1090	struct ti_rx_desc	*r;
1091
1092	if (m == NULL) {
1093		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1094		if (m_new == NULL)
1095			return (ENOBUFS);
1096
1097		MCLGET(m_new, M_DONTWAIT);
1098		if (!(m_new->m_flags & M_EXT)) {
1099			m_freem(m_new);
1100			return (ENOBUFS);
1101		}
1102		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1103	} else {
1104		m_new = m;
1105		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1106		m_new->m_data = m_new->m_ext.ext_buf;
1107	}
1108
1109	m_adj(m_new, ETHER_ALIGN);
1110	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1111	r = &sc->ti_rdata->ti_rx_std_ring[i];
1112	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1113	r->ti_type = TI_BDTYPE_RECV_BD;
1114	r->ti_flags = 0;
1115	if (sc->arpcom.ac_if.if_hwassist)
1116		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1117	r->ti_len = m_new->m_len;
1118	r->ti_idx = i;
1119
1120	return (0);
1121}
1122
1123/*
1124 * Intialize a mini receive ring descriptor. This only applies to
1125 * the Tigon 2.
1126 */
1127static int
1128ti_newbuf_mini(sc, i, m)
1129	struct ti_softc		*sc;
1130	int			i;
1131	struct mbuf		*m;
1132{
1133	struct mbuf		*m_new = NULL;
1134	struct ti_rx_desc	*r;
1135
1136	if (m == NULL) {
1137		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1138		if (m_new == NULL) {
1139			return (ENOBUFS);
1140		}
1141		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1142	} else {
1143		m_new = m;
1144		m_new->m_data = m_new->m_pktdat;
1145		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1146	}
1147
1148	m_adj(m_new, ETHER_ALIGN);
1149	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1150	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1151	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1152	r->ti_type = TI_BDTYPE_RECV_BD;
1153	r->ti_flags = TI_BDFLAG_MINI_RING;
1154	if (sc->arpcom.ac_if.if_hwassist)
1155		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1156	r->ti_len = m_new->m_len;
1157	r->ti_idx = i;
1158
1159	return (0);
1160}
1161
1162#ifdef TI_PRIVATE_JUMBOS
1163
1164/*
1165 * Initialize a jumbo receive ring descriptor. This allocates
1166 * a jumbo buffer from the pool managed internally by the driver.
1167 */
1168static int
1169ti_newbuf_jumbo(sc, i, m)
1170	struct ti_softc		*sc;
1171	int			i;
1172	struct mbuf		*m;
1173{
1174	struct mbuf		*m_new = NULL;
1175	struct ti_rx_desc	*r;
1176
1177	if (m == NULL) {
1178		caddr_t			*buf = NULL;
1179
1180		/* Allocate the mbuf. */
1181		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1182		if (m_new == NULL) {
1183			return (ENOBUFS);
1184		}
1185
1186		/* Allocate the jumbo buffer */
1187		buf = ti_jalloc(sc);
1188		if (buf == NULL) {
1189			m_freem(m_new);
1190			printf("ti%d: jumbo allocation failed "
1191			    "-- packet dropped!\n", sc->ti_unit);
1192			return (ENOBUFS);
1193		}
1194
1195		/* Attach the buffer to the mbuf. */
1196		m_new->m_data = (void *) buf;
1197		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1198		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1199		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1200	} else {
1201		m_new = m;
1202		m_new->m_data = m_new->m_ext.ext_buf;
1203		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1204	}
1205
1206	m_adj(m_new, ETHER_ALIGN);
1207	/* Set up the descriptor. */
1208	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1209	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1210	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1211	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1212	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1213	if (sc->arpcom.ac_if.if_hwassist)
1214		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1215	r->ti_len = m_new->m_len;
1216	r->ti_idx = i;
1217
1218	return (0);
1219}
1220
1221#else
1222#include <vm/vm_page.h>
1223
1224#if (PAGE_SIZE == 4096)
1225#define NPAYLOAD 2
1226#else
1227#define NPAYLOAD 1
1228#endif
1229
1230#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1231#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1232#define NFS_HDR_LEN (UDP_HDR_LEN)
1233static int HDR_LEN =  TCP_HDR_LEN;
1234
1235
1236/*
1237 * Initialize a jumbo receive ring descriptor. This allocates
1238 * a jumbo buffer from the pool managed internally by the driver.
1239 */
1240static int
1241ti_newbuf_jumbo(sc, idx, m_old)
1242	struct ti_softc		*sc;
1243	int			idx;
1244	struct mbuf		*m_old;
1245{
1246	struct mbuf		*cur, *m_new = NULL;
1247	struct mbuf		*m[3] = {NULL, NULL, NULL};
1248	struct ti_rx_desc_ext	*r;
1249	vm_page_t		frame;
1250	static int		color;
1251				/* 1 extra buf to make nobufs easy*/
1252	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1253	int			i;
1254
1255	if (m_old != NULL) {
1256		m_new = m_old;
1257		cur = m_old->m_next;
1258		for (i = 0; i <= NPAYLOAD; i++){
1259			m[i] = cur;
1260			cur = cur->m_next;
1261		}
1262	} else {
1263		/* Allocate the mbufs. */
1264		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1265		if (m_new == NULL) {
1266			printf("ti%d: mbuf allocation failed "
1267			       "-- packet dropped!\n", sc->ti_unit);
1268			goto nobufs;
1269		}
1270		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1271		if (m[NPAYLOAD] == NULL) {
1272			printf("ti%d: cluster mbuf allocation failed "
1273			       "-- packet dropped!\n", sc->ti_unit);
1274			goto nobufs;
1275		}
1276		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1277		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1278			printf("ti%d: mbuf allocation failed "
1279			       "-- packet dropped!\n", sc->ti_unit);
1280			goto nobufs;
1281		}
1282		m[NPAYLOAD]->m_len = MCLBYTES;
1283
1284		for (i = 0; i < NPAYLOAD; i++){
1285			MGET(m[i], M_DONTWAIT, MT_DATA);
1286			if (m[i] == NULL) {
1287				printf("ti%d: mbuf allocation failed "
1288				       "-- packet dropped!\n", sc->ti_unit);
1289				goto nobufs;
1290			}
1291			frame = vm_page_alloc(NULL, color++,
1292			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1293			    VM_ALLOC_WIRED);
1294			if (frame == NULL) {
1295				printf("ti%d: buffer allocation failed "
1296				       "-- packet dropped!\n", sc->ti_unit);
1297				printf("      index %d page %d\n", idx, i);
1298				goto nobufs;
1299			}
1300			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1301			if (sf[i] == NULL) {
1302				vm_page_lock_queues();
1303				vm_page_unwire(frame, 0);
1304				vm_page_free(frame);
1305				vm_page_unlock_queues();
1306				printf("ti%d: buffer allocation failed "
1307				       "-- packet dropped!\n", sc->ti_unit);
1308				printf("      index %d page %d\n", idx, i);
1309				goto nobufs;
1310			}
1311		}
1312		for (i = 0; i < NPAYLOAD; i++){
1313		/* Attach the buffer to the mbuf. */
1314			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1315			m[i]->m_len = PAGE_SIZE;
1316			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1317			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1318			m[i]->m_next = m[i+1];
1319		}
1320		/* link the buffers to the header */
1321		m_new->m_next = m[0];
1322		m_new->m_data += ETHER_ALIGN;
1323		if (sc->ti_hdrsplit)
1324			m_new->m_len = MHLEN - ETHER_ALIGN;
1325		else
1326			m_new->m_len = HDR_LEN;
1327		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1328	}
1329
1330	/* Set up the descriptor. */
1331	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1332	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1333	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1334	r->ti_len0 = m_new->m_len;
1335
1336	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1337	r->ti_len1 = PAGE_SIZE;
1338
1339	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1340	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1341
1342	if (PAGE_SIZE == 4096) {
1343		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1344		r->ti_len3 = MCLBYTES;
1345	} else {
1346		r->ti_len3 = 0;
1347	}
1348	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1349
1350	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1351
1352	if (sc->arpcom.ac_if.if_hwassist)
1353		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1354
1355	r->ti_idx = idx;
1356
1357	return (0);
1358
1359nobufs:
1360
1361	/*
1362	 * Warning! :
1363	 * This can only be called before the mbufs are strung together.
1364	 * If the mbufs are strung together, m_freem() will free the chain,
1365	 * so that the later mbufs will be freed multiple times.
1366	 */
1367	if (m_new)
1368		m_freem(m_new);
1369
1370	for (i = 0; i < 3; i++) {
1371		if (m[i])
1372			m_freem(m[i]);
1373		if (sf[i])
1374			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1375	}
1376	return (ENOBUFS);
1377}
1378#endif
1379
1380
1381
1382/*
1383 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1384 * that's 1MB or memory, which is a lot. For now, we fill only the first
1385 * 256 ring entries and hope that our CPU is fast enough to keep up with
1386 * the NIC.
1387 */
1388static int
1389ti_init_rx_ring_std(sc)
1390	struct ti_softc		*sc;
1391{
1392	register int		i;
1393	struct ti_cmd_desc	cmd;
1394
1395	for (i = 0; i < TI_SSLOTS; i++) {
1396		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1397			return (ENOBUFS);
1398	};
1399
1400	TI_UPDATE_STDPROD(sc, i - 1);
1401	sc->ti_std = i - 1;
1402
1403	return (0);
1404}
1405
1406static void
1407ti_free_rx_ring_std(sc)
1408	struct ti_softc		*sc;
1409{
1410	register int		i;
1411
1412	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1413		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1414			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1415			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1416		}
1417		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1418		    sizeof(struct ti_rx_desc));
1419	}
1420}
1421
1422static int
1423ti_init_rx_ring_jumbo(sc)
1424	struct ti_softc		*sc;
1425{
1426	register int		i;
1427	struct ti_cmd_desc	cmd;
1428
1429	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1430		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1431			return (ENOBUFS);
1432	};
1433
1434	TI_UPDATE_JUMBOPROD(sc, i - 1);
1435	sc->ti_jumbo = i - 1;
1436
1437	return (0);
1438}
1439
1440static void
1441ti_free_rx_ring_jumbo(sc)
1442	struct ti_softc		*sc;
1443{
1444	register int		i;
1445
1446	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1447		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1448			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1449			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1450		}
1451		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1452		    sizeof(struct ti_rx_desc));
1453	}
1454}
1455
1456static int
1457ti_init_rx_ring_mini(sc)
1458	struct ti_softc		*sc;
1459{
1460	register int		i;
1461
1462	for (i = 0; i < TI_MSLOTS; i++) {
1463		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1464			return (ENOBUFS);
1465	};
1466
1467	TI_UPDATE_MINIPROD(sc, i - 1);
1468	sc->ti_mini = i - 1;
1469
1470	return (0);
1471}
1472
1473static void
1474ti_free_rx_ring_mini(sc)
1475	struct ti_softc		*sc;
1476{
1477	register int		i;
1478
1479	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1480		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1481			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1482			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1483		}
1484		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1485		    sizeof(struct ti_rx_desc));
1486	}
1487}
1488
1489static void
1490ti_free_tx_ring(sc)
1491	struct ti_softc		*sc;
1492{
1493	register int		i;
1494
1495	if (sc->ti_rdata->ti_tx_ring == NULL)
1496		return;
1497
1498	for (i = 0; i < TI_TX_RING_CNT; i++) {
1499		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1500			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1501			sc->ti_cdata.ti_tx_chain[i] = NULL;
1502		}
1503		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1504		    sizeof(struct ti_tx_desc));
1505	}
1506}
1507
1508static int
1509ti_init_tx_ring(sc)
1510	struct ti_softc		*sc;
1511{
1512	sc->ti_txcnt = 0;
1513	sc->ti_tx_saved_considx = 0;
1514	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1515	return (0);
1516}
1517
1518/*
1519 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1520 * but we have to support the old way too so that Tigon 1 cards will
1521 * work.
1522 */
1523static void
1524ti_add_mcast(sc, addr)
1525	struct ti_softc		*sc;
1526	struct ether_addr	*addr;
1527{
1528	struct ti_cmd_desc	cmd;
1529	u_int16_t		*m;
1530	u_int32_t		ext[2] = {0, 0};
1531
1532	m = (u_int16_t *)&addr->octet[0];
1533
1534	switch (sc->ti_hwrev) {
1535	case TI_HWREV_TIGON:
1536		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1537		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1538		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1539		break;
1540	case TI_HWREV_TIGON_II:
1541		ext[0] = htons(m[0]);
1542		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1543		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1544		break;
1545	default:
1546		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1547		break;
1548	}
1549}
1550
1551static void
1552ti_del_mcast(sc, addr)
1553	struct ti_softc		*sc;
1554	struct ether_addr	*addr;
1555{
1556	struct ti_cmd_desc	cmd;
1557	u_int16_t		*m;
1558	u_int32_t		ext[2] = {0, 0};
1559
1560	m = (u_int16_t *)&addr->octet[0];
1561
1562	switch (sc->ti_hwrev) {
1563	case TI_HWREV_TIGON:
1564		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1565		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1566		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1567		break;
1568	case TI_HWREV_TIGON_II:
1569		ext[0] = htons(m[0]);
1570		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1571		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1572		break;
1573	default:
1574		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1575		break;
1576	}
1577}
1578
1579/*
1580 * Configure the Tigon's multicast address filter.
1581 *
1582 * The actual multicast table management is a bit of a pain, thanks to
1583 * slight brain damage on the part of both Alteon and us. With our
1584 * multicast code, we are only alerted when the multicast address table
1585 * changes and at that point we only have the current list of addresses:
1586 * we only know the current state, not the previous state, so we don't
1587 * actually know what addresses were removed or added. The firmware has
1588 * state, but we can't get our grubby mits on it, and there is no 'delete
1589 * all multicast addresses' command. Hence, we have to maintain our own
1590 * state so we know what addresses have been programmed into the NIC at
1591 * any given time.
1592 */
1593static void
1594ti_setmulti(sc)
1595	struct ti_softc		*sc;
1596{
1597	struct ifnet		*ifp;
1598	struct ifmultiaddr	*ifma;
1599	struct ti_cmd_desc	cmd;
1600	struct ti_mc_entry	*mc;
1601	u_int32_t		intrs;
1602
1603	ifp = &sc->arpcom.ac_if;
1604
1605	if (ifp->if_flags & IFF_ALLMULTI) {
1606		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1607		return;
1608	} else {
1609		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1610	}
1611
1612	/* Disable interrupts. */
1613	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1614	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1615
1616	/* First, zot all the existing filters. */
1617	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1618		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1619		ti_del_mcast(sc, &mc->mc_addr);
1620		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1621		free(mc, M_DEVBUF);
1622	}
1623
1624	/* Now program new ones. */
1625	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1626		if (ifma->ifma_addr->sa_family != AF_LINK)
1627			continue;
1628		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1629		if (mc == NULL) {
1630			if_printf(ifp, "no memory for mcast filter entry\n");
1631			continue;
1632		}
1633		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1634		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1635		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1636		ti_add_mcast(sc, &mc->mc_addr);
1637	}
1638
1639	/* Re-enable interrupts. */
1640	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1641}
1642
1643/*
1644 * Check to see if the BIOS has configured us for a 64 bit slot when
1645 * we aren't actually in one. If we detect this condition, we can work
1646 * around it on the Tigon 2 by setting a bit in the PCI state register,
1647 * but for the Tigon 1 we must give up and abort the interface attach.
1648 */
1649static int ti_64bitslot_war(sc)
1650	struct ti_softc		*sc;
1651{
1652	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1653		CSR_WRITE_4(sc, 0x600, 0);
1654		CSR_WRITE_4(sc, 0x604, 0);
1655		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1656		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1657			if (sc->ti_hwrev == TI_HWREV_TIGON)
1658				return (EINVAL);
1659			else {
1660				TI_SETBIT(sc, TI_PCI_STATE,
1661				    TI_PCISTATE_32BIT_BUS);
1662				return (0);
1663			}
1664		}
1665	}
1666
1667	return (0);
1668}
1669
1670/*
1671 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1672 * self-test results.
1673 */
1674static int
1675ti_chipinit(sc)
1676	struct ti_softc		*sc;
1677{
1678	u_int32_t		cacheline;
1679	u_int32_t		pci_writemax = 0;
1680	u_int32_t		hdrsplit;
1681
1682	/* Initialize link to down state. */
1683	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1684
1685	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1686		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1687	else
1688		sc->arpcom.ac_if.if_hwassist = 0;
1689
1690	/* Set endianness before we access any non-PCI registers. */
1691#if BYTE_ORDER == BIG_ENDIAN
1692	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1693	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1694#else
1695	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1696	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1697#endif
1698
1699	/* Check the ROM failed bit to see if self-tests passed. */
1700	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1701		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1702		return (ENODEV);
1703	}
1704
1705	/* Halt the CPU. */
1706	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1707
1708	/* Figure out the hardware revision. */
1709	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1710	case TI_REV_TIGON_I:
1711		sc->ti_hwrev = TI_HWREV_TIGON;
1712		break;
1713	case TI_REV_TIGON_II:
1714		sc->ti_hwrev = TI_HWREV_TIGON_II;
1715		break;
1716	default:
1717		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1718		return (ENODEV);
1719	}
1720
1721	/* Do special setup for Tigon 2. */
1722	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1723		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1724		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1725		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1726	}
1727
1728	/*
1729	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1730	 * can't do header splitting.
1731	 */
1732#ifdef TI_JUMBO_HDRSPLIT
1733	if (sc->ti_hwrev != TI_HWREV_TIGON)
1734		sc->ti_hdrsplit = 1;
1735	else
1736		printf("ti%d: can't do header splitting on a Tigon I board\n",
1737		       sc->ti_unit);
1738#endif /* TI_JUMBO_HDRSPLIT */
1739
1740	/* Set up the PCI state register. */
1741	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1742	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1743		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1744	}
1745
1746	/* Clear the read/write max DMA parameters. */
1747	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1748	    TI_PCISTATE_READ_MAXDMA));
1749
1750	/* Get cache line size. */
1751	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1752
1753	/*
1754	 * If the system has set enabled the PCI memory write
1755	 * and invalidate command in the command register, set
1756	 * the write max parameter accordingly. This is necessary
1757	 * to use MWI with the Tigon 2.
1758	 */
1759	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1760		switch (cacheline) {
1761		case 1:
1762		case 4:
1763		case 8:
1764		case 16:
1765		case 32:
1766		case 64:
1767			break;
1768		default:
1769		/* Disable PCI memory write and invalidate. */
1770			if (bootverbose)
1771				printf("ti%d: cache line size %d not "
1772				    "supported; disabling PCI MWI\n",
1773				    sc->ti_unit, cacheline);
1774			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1775			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1776			break;
1777		}
1778	}
1779
1780#ifdef __brokenalpha__
1781	/*
1782	 * From the Alteon sample driver:
1783	 * Must insure that we do not cross an 8K (bytes) boundary
1784	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1785	 * restriction on some ALPHA platforms with early revision
1786	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1787	 */
1788	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1789#else
1790	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1791#endif
1792
1793	/* This sets the min dma param all the way up (0xff). */
1794	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1795
1796	if (sc->ti_hdrsplit)
1797		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1798	else
1799		hdrsplit = 0;
1800
1801	/* Configure DMA variables. */
1802#if BYTE_ORDER == BIG_ENDIAN
1803	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1804	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1805	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1806	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1807#else /* BYTE_ORDER */
1808	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1809	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1810	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1811#endif /* BYTE_ORDER */
1812
1813	/*
1814	 * Only allow 1 DMA channel to be active at a time.
1815	 * I don't think this is a good idea, but without it
1816	 * the firmware racks up lots of nicDmaReadRingFull
1817	 * errors.  This is not compatible with hardware checksums.
1818	 */
1819	if (sc->arpcom.ac_if.if_hwassist == 0)
1820		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1821
1822	/* Recommended settings from Tigon manual. */
1823	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1824	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1825
1826	if (ti_64bitslot_war(sc)) {
1827		printf("ti%d: bios thinks we're in a 64 bit slot, "
1828		    "but we aren't", sc->ti_unit);
1829		return (EINVAL);
1830	}
1831
1832	return (0);
1833}
1834
1835#define	TI_RD_OFF(x)	offsetof(struct ti_ring_data, x)
1836
1837/*
1838 * Initialize the general information block and firmware, and
1839 * start the CPU(s) running.
1840 */
1841static int
1842ti_gibinit(sc)
1843	struct ti_softc		*sc;
1844{
1845	struct ti_rcb		*rcb;
1846	int			i;
1847	struct ifnet		*ifp;
1848	uint32_t		rdphys;
1849
1850	ifp = &sc->arpcom.ac_if;
1851	rdphys = sc->ti_rdata_phys;
1852
1853	/* Disable interrupts for now. */
1854	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1855
1856	/*
1857	 * Tell the chip where to find the general information block.
1858	 * While this struct could go into >4GB memory, we allocate it in a
1859	 * single slab with the other descriptors, and those don't seem to
1860	 * support being located in a 64-bit region.
1861	 */
1862	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1863	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
1864
1865	/* Load the firmware into SRAM. */
1866	ti_loadfw(sc);
1867
1868	/* Set up the contents of the general info and ring control blocks. */
1869
1870	/* Set up the event ring and producer pointer. */
1871	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1872
1873	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
1874	rcb->ti_flags = 0;
1875	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1876	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
1877	sc->ti_ev_prodidx.ti_idx = 0;
1878	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1879	sc->ti_ev_saved_considx = 0;
1880
1881	/* Set up the command ring and producer mailbox. */
1882	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1883
1884	sc->ti_rdata->ti_cmd_ring =
1885	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1886	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1887	rcb->ti_flags = 0;
1888	rcb->ti_max_len = 0;
1889	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1890		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1891	}
1892	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1893	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1894	sc->ti_cmd_saved_prodidx = 0;
1895
1896	/*
1897	 * Assign the address of the stats refresh buffer.
1898	 * We re-use the current stats buffer for this to
1899	 * conserve memory.
1900	 */
1901	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1902	    rdphys + TI_RD_OFF(ti_info.ti_stats);
1903
1904	/* Set up the standard receive ring. */
1905	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1906	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
1907	rcb->ti_max_len = TI_FRAMELEN;
1908	rcb->ti_flags = 0;
1909	if (sc->arpcom.ac_if.if_hwassist)
1910		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1911		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1912	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1913
1914	/* Set up the jumbo receive ring. */
1915	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1916	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
1917
1918#ifdef TI_PRIVATE_JUMBOS
1919	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1920	rcb->ti_flags = 0;
1921#else
1922	rcb->ti_max_len = PAGE_SIZE;
1923	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1924#endif
1925	if (sc->arpcom.ac_if.if_hwassist)
1926		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1927		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1928	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1929
1930	/*
1931	 * Set up the mini ring. Only activated on the
1932	 * Tigon 2 but the slot in the config block is
1933	 * still there on the Tigon 1.
1934	 */
1935	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1936	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
1937	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1938	if (sc->ti_hwrev == TI_HWREV_TIGON)
1939		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1940	else
1941		rcb->ti_flags = 0;
1942	if (sc->arpcom.ac_if.if_hwassist)
1943		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1944		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1945	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1946
1947	/*
1948	 * Set up the receive return ring.
1949	 */
1950	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1951	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
1952	rcb->ti_flags = 0;
1953	rcb->ti_max_len = TI_RETURN_RING_CNT;
1954	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1955	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
1956
1957	/*
1958	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1959	 * of putting the transmit ring in the host's address space and
1960	 * letting the chip DMA it instead of leaving the ring in the NIC's
1961	 * memory and accessing it through the shared memory region. We
1962	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1963	 * so we have to revert to the shared memory scheme if we detect
1964	 * a Tigon 1 chip.
1965	 */
1966	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1967	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1968		sc->ti_rdata->ti_tx_ring_nic =
1969		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1970	}
1971	bzero((char *)sc->ti_rdata->ti_tx_ring,
1972	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1973	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1974	if (sc->ti_hwrev == TI_HWREV_TIGON)
1975		rcb->ti_flags = 0;
1976	else
1977		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1978	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1979	if (sc->arpcom.ac_if.if_hwassist)
1980		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1981		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1982	rcb->ti_max_len = TI_TX_RING_CNT;
1983	if (sc->ti_hwrev == TI_HWREV_TIGON)
1984		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1985	else
1986		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
1987	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1988	    rdphys + TI_RD_OFF(ti_tx_considx_r);
1989
1990	/* Set up tuneables */
1991#if 0
1992	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1993		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1994		    (sc->ti_rx_coal_ticks / 10));
1995	else
1996#endif
1997		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1998	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1999	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2000	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2001	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2002	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2003
2004	/* Turn interrupts on. */
2005	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2006	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2007
2008	/* Start CPU. */
2009	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2010
2011	return (0);
2012}
2013
2014static void
2015ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2016{
2017	struct ti_softc *sc;
2018
2019	sc = arg;
2020	if (error || nseg != 1)
2021		return;
2022
2023	/*
2024	 * All of the Tigon data structures need to live at <4GB.  This
2025	 * cast is fine since busdma was told about this constraint.
2026	 */
2027	sc->ti_rdata_phys = (uint32_t)segs[0].ds_addr;
2028	return;
2029}
2030
2031/*
2032 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2033 * against our list and return its name if we find a match.
2034 */
2035static int
2036ti_probe(dev)
2037	device_t		dev;
2038{
2039	struct ti_type		*t;
2040
2041	t = ti_devs;
2042
2043	while (t->ti_name != NULL) {
2044		if ((pci_get_vendor(dev) == t->ti_vid) &&
2045		    (pci_get_device(dev) == t->ti_did)) {
2046			device_set_desc(dev, t->ti_name);
2047			return (BUS_PROBE_DEFAULT);
2048		}
2049		t++;
2050	}
2051
2052	return (ENXIO);
2053}
2054
2055static int
2056ti_attach(dev)
2057	device_t		dev;
2058{
2059	struct ifnet		*ifp;
2060	struct ti_softc		*sc;
2061	int			unit, error = 0, rid;
2062
2063	sc = device_get_softc(dev);
2064	unit = device_get_unit(dev);
2065
2066	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2067	    MTX_DEF | MTX_RECURSE);
2068	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2069	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM |
2070	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2071	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2072
2073	/*
2074	 * Map control/status registers.
2075	 */
2076	pci_enable_busmaster(dev);
2077
2078	rid = TI_PCI_LOMEM;
2079	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2080	    RF_ACTIVE|PCI_RF_DENSE);
2081
2082	if (sc->ti_res == NULL) {
2083		printf ("ti%d: couldn't map memory\n", unit);
2084		error = ENXIO;
2085		goto fail;
2086	}
2087
2088	sc->ti_btag = rman_get_bustag(sc->ti_res);
2089	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2090	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2091
2092	/* Allocate interrupt */
2093	rid = 0;
2094
2095	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2096	    RF_SHAREABLE | RF_ACTIVE);
2097
2098	if (sc->ti_irq == NULL) {
2099		printf("ti%d: couldn't map interrupt\n", unit);
2100		error = ENXIO;
2101		goto fail;
2102	}
2103
2104	sc->ti_unit = unit;
2105
2106	if (ti_chipinit(sc)) {
2107		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2108		error = ENXIO;
2109		goto fail;
2110	}
2111
2112	/* Zero out the NIC's on-board SRAM. */
2113	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2114
2115	/* Init again -- zeroing memory may have clobbered some registers. */
2116	if (ti_chipinit(sc)) {
2117		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2118		error = ENXIO;
2119		goto fail;
2120	}
2121
2122	/*
2123	 * Get station address from the EEPROM. Note: the manual states
2124	 * that the MAC address is at offset 0x8c, however the data is
2125	 * stored as two longwords (since that's how it's loaded into
2126	 * the NIC). This means the MAC address is actually preceded
2127	 * by two zero bytes. We need to skip over those.
2128	 */
2129	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2130				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2131		printf("ti%d: failed to read station address\n", unit);
2132		error = ENXIO;
2133		goto fail;
2134	}
2135
2136	/* Allocate the general information block and ring buffers. */
2137	if (bus_dma_tag_create(NULL,			/* parent */
2138				1, 0,			/* algnmnt, boundary */
2139				BUS_SPACE_MAXADDR,	/* lowaddr */
2140				BUS_SPACE_MAXADDR,	/* highaddr */
2141				NULL, NULL,		/* filter, filterarg */
2142				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2143				0,			/* nsegments */
2144				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2145				0,			/* flags */
2146				NULL, NULL,		/* lockfunc, lockarg */
2147				&sc->ti_parent_dmat) != 0) {
2148		printf("ti%d: Failed to allocate parent dmat\n", sc->ti_unit);
2149		error = ENOMEM;
2150		goto fail;
2151	}
2152
2153	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2154				PAGE_SIZE, 0,		/* algnmnt, boundary */
2155				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2156				BUS_SPACE_MAXADDR,	/* highaddr */
2157				NULL, NULL,		/* filter, filterarg */
2158				sizeof(struct ti_ring_data),	/* maxsize */
2159				1,			/* nsegments */
2160				sizeof(struct ti_ring_data),	/* maxsegsize */
2161				0,			/* flags */
2162				NULL, NULL,		/* lockfunc, lockarg */
2163				&sc->ti_rdata_dmat) != 0) {
2164		printf("ti%d: Failed to allocate rdata dmat\n", sc->ti_unit);
2165		error = ENOMEM;
2166		goto fail;
2167	}
2168
2169	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2170			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2171		printf("ti%d: Failed to allocate rdata memory\n", sc->ti_unit);
2172		error = ENOMEM;
2173		goto fail;
2174	}
2175
2176	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2177			    sc->ti_rdata, sizeof(struct ti_ring_data),
2178			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2179		printf("ti%d: Failed to load rdata segments\n", sc->ti_unit);
2180		error = ENOMEM;
2181		goto fail;
2182	}
2183
2184	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2185
2186	/* Try to allocate memory for jumbo buffers. */
2187#ifdef TI_PRIVATE_JUMBOS
2188	if (ti_alloc_jumbo_mem(sc)) {
2189		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2190		error = ENXIO;
2191		goto fail;
2192	}
2193#endif
2194
2195	/*
2196	 * We really need a better way to tell a 1000baseTX card
2197	 * from a 1000baseSX one, since in theory there could be
2198	 * OEMed 1000baseTX cards from lame vendors who aren't
2199	 * clever enough to change the PCI ID. For the moment
2200	 * though, the AceNIC is the only copper card available.
2201	 */
2202	if (pci_get_vendor(dev) == ALT_VENDORID &&
2203	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2204		sc->ti_copper = 1;
2205	/* Ok, it's not the only copper card available. */
2206	if (pci_get_vendor(dev) == NG_VENDORID &&
2207	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2208		sc->ti_copper = 1;
2209
2210	/* Set default tuneable values. */
2211	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2212#if 0
2213	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2214#endif
2215	sc->ti_rx_coal_ticks = 170;
2216	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2217	sc->ti_rx_max_coal_bds = 64;
2218#if 0
2219	sc->ti_tx_max_coal_bds = 128;
2220#endif
2221	sc->ti_tx_max_coal_bds = 32;
2222	sc->ti_tx_buf_ratio = 21;
2223
2224	/* Set up ifnet structure */
2225	ifp = &sc->arpcom.ac_if;
2226	ifp->if_softc = sc;
2227	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2228	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2229	    IFF_NEEDSGIANT;
2230	tis[unit] = sc;
2231	ifp->if_ioctl = ti_ioctl;
2232	ifp->if_start = ti_start;
2233	ifp->if_watchdog = ti_watchdog;
2234	ifp->if_init = ti_init;
2235	ifp->if_mtu = ETHERMTU;
2236	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2237
2238	/* Set up ifmedia support. */
2239	if (sc->ti_copper) {
2240		/*
2241		 * Copper cards allow manual 10/100 mode selection,
2242		 * but not manual 1000baseTX mode selection. Why?
2243		 * Becuase currently there's no way to specify the
2244		 * master/slave setting through the firmware interface,
2245		 * so Alteon decided to just bag it and handle it
2246		 * via autonegotiation.
2247		 */
2248		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2249		ifmedia_add(&sc->ifmedia,
2250		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2251		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2252		ifmedia_add(&sc->ifmedia,
2253		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2254		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2255		ifmedia_add(&sc->ifmedia,
2256		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2257	} else {
2258		/* Fiber cards don't support 10/100 modes. */
2259		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2260		ifmedia_add(&sc->ifmedia,
2261		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2262	}
2263	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2264	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2265
2266	/*
2267	 * We're assuming here that card initialization is a sequential
2268	 * thing.  If it isn't, multiple cards probing at the same time
2269	 * could stomp on the list of softcs here.
2270	 */
2271
2272	/* Register the device */
2273	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2274			   0600, "ti%d", sc->ti_unit);
2275	sc->dev->si_drv1 = sc;
2276
2277	/*
2278	 * Call MI attach routine.
2279	 */
2280	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
2281
2282	/* Hook interrupt last to avoid having to lock softc */
2283	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2284	   ti_intr, sc, &sc->ti_intrhand);
2285
2286	if (error) {
2287		printf("ti%d: couldn't set up irq\n", unit);
2288		ether_ifdetach(ifp);
2289		goto fail;
2290	}
2291
2292fail:
2293	if (sc && error)
2294		ti_detach(dev);
2295
2296	return (error);
2297}
2298
2299/*
2300 * Shutdown hardware and free up resources. This can be called any
2301 * time after the mutex has been initialized. It is called in both
2302 * the error case in attach and the normal detach case so it needs
2303 * to be careful about only freeing resources that have actually been
2304 * allocated.
2305 */
2306static int
2307ti_detach(dev)
2308	device_t		dev;
2309{
2310	struct ti_softc		*sc;
2311	struct ifnet		*ifp;
2312
2313	sc = device_get_softc(dev);
2314	destroy_dev(sc->dev);
2315	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2316	TI_LOCK(sc);
2317	ifp = &sc->arpcom.ac_if;
2318
2319	/* These should only be active if attach succeeded */
2320	if (device_is_attached(dev)) {
2321		ti_stop(sc);
2322		ether_ifdetach(ifp);
2323		bus_generic_detach(dev);
2324	}
2325	ifmedia_removeall(&sc->ifmedia);
2326
2327	if (sc->ti_rdata)
2328		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2329				sc->ti_rdata_dmamap);
2330	if (sc->ti_rdata_dmat)
2331		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2332	if (sc->ti_parent_dmat)
2333		bus_dma_tag_destroy(sc->ti_parent_dmat);
2334	if (sc->ti_intrhand)
2335		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2336	if (sc->ti_irq)
2337		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2338	if (sc->ti_res) {
2339		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2340		    sc->ti_res);
2341	}
2342
2343#ifdef TI_PRIVATE_JUMBOS
2344	if (sc->ti_cdata.ti_jumbo_buf)
2345		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2346#endif
2347	if (sc->ti_rdata)
2348		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2349
2350	TI_UNLOCK(sc);
2351	mtx_destroy(&sc->ti_mtx);
2352
2353	return (0);
2354}
2355
2356#ifdef TI_JUMBO_HDRSPLIT
2357/*
2358 * If hdr_len is 0, that means that header splitting wasn't done on
2359 * this packet for some reason.  The two most likely reasons are that
2360 * the protocol isn't a supported protocol for splitting, or this
2361 * packet had a fragment offset that wasn't 0.
2362 *
2363 * The header length, if it is non-zero, will always be the length of
2364 * the headers on the packet, but that length could be longer than the
2365 * first mbuf.  So we take the minimum of the two as the actual
2366 * length.
2367 */
2368static __inline void
2369ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2370{
2371	int i = 0;
2372	int lengths[4] = {0, 0, 0, 0};
2373	struct mbuf *m, *mp;
2374
2375	if (hdr_len != 0)
2376		top->m_len = min(hdr_len, top->m_len);
2377	pkt_len -= top->m_len;
2378	lengths[i++] = top->m_len;
2379
2380	mp = top;
2381	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2382		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2383		pkt_len -= m->m_len;
2384		lengths[i++] = m->m_len;
2385		mp = m;
2386	}
2387
2388#if 0
2389	if (hdr_len != 0)
2390		printf("got split packet: ");
2391	else
2392		printf("got non-split packet: ");
2393
2394	printf("%d,%d,%d,%d = %d\n", lengths[0],
2395	    lengths[1], lengths[2], lengths[3],
2396	    lengths[0] + lengths[1] + lengths[2] +
2397	    lengths[3]);
2398#endif
2399
2400	if (pkt_len)
2401		panic("header splitting didn't");
2402
2403	if (m) {
2404		m_freem(m);
2405		mp->m_next = NULL;
2406
2407	}
2408	if (mp->m_next != NULL)
2409		panic("ti_hdr_split: last mbuf in chain should be null");
2410}
2411#endif /* TI_JUMBO_HDRSPLIT */
2412
2413/*
2414 * Frame reception handling. This is called if there's a frame
2415 * on the receive return list.
2416 *
2417 * Note: we have to be able to handle three possibilities here:
2418 * 1) the frame is from the mini receive ring (can only happen)
2419 *    on Tigon 2 boards)
2420 * 2) the frame is from the jumbo recieve ring
2421 * 3) the frame is from the standard receive ring
2422 */
2423
2424static void
2425ti_rxeof(sc)
2426	struct ti_softc		*sc;
2427{
2428	struct ifnet		*ifp;
2429	struct ti_cmd_desc	cmd;
2430
2431	TI_LOCK_ASSERT(sc);
2432
2433	ifp = &sc->arpcom.ac_if;
2434
2435	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2436		struct ti_rx_desc	*cur_rx;
2437		u_int32_t		rxidx;
2438		struct mbuf		*m = NULL;
2439		u_int16_t		vlan_tag = 0;
2440		int			have_tag = 0;
2441
2442		cur_rx =
2443		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2444		rxidx = cur_rx->ti_idx;
2445		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2446
2447		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2448			have_tag = 1;
2449			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2450		}
2451
2452		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2453
2454			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2455			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2456			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2457			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2458				ifp->if_ierrors++;
2459				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2460				continue;
2461			}
2462			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2463				ifp->if_ierrors++;
2464				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2465				continue;
2466			}
2467#ifdef TI_PRIVATE_JUMBOS
2468			m->m_len = cur_rx->ti_len;
2469#else /* TI_PRIVATE_JUMBOS */
2470#ifdef TI_JUMBO_HDRSPLIT
2471			if (sc->ti_hdrsplit)
2472				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2473					     cur_rx->ti_len, rxidx);
2474			else
2475#endif /* TI_JUMBO_HDRSPLIT */
2476			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2477#endif /* TI_PRIVATE_JUMBOS */
2478		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2479			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2480			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2481			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2482			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2483				ifp->if_ierrors++;
2484				ti_newbuf_mini(sc, sc->ti_mini, m);
2485				continue;
2486			}
2487			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2488				ifp->if_ierrors++;
2489				ti_newbuf_mini(sc, sc->ti_mini, m);
2490				continue;
2491			}
2492			m->m_len = cur_rx->ti_len;
2493		} else {
2494			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2495			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2496			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2497			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2498				ifp->if_ierrors++;
2499				ti_newbuf_std(sc, sc->ti_std, m);
2500				continue;
2501			}
2502			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2503				ifp->if_ierrors++;
2504				ti_newbuf_std(sc, sc->ti_std, m);
2505				continue;
2506			}
2507			m->m_len = cur_rx->ti_len;
2508		}
2509
2510		m->m_pkthdr.len = cur_rx->ti_len;
2511		ifp->if_ipackets++;
2512		m->m_pkthdr.rcvif = ifp;
2513
2514		if (ifp->if_hwassist) {
2515			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2516			    CSUM_DATA_VALID;
2517			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2518				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2519			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2520		}
2521
2522		/*
2523		 * If we received a packet with a vlan tag,
2524		 * tag it before passing the packet upward.
2525		 */
2526		if (have_tag)
2527			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2528		TI_UNLOCK(sc);
2529		(*ifp->if_input)(ifp, m);
2530		TI_LOCK(sc);
2531	}
2532
2533	/* Only necessary on the Tigon 1. */
2534	if (sc->ti_hwrev == TI_HWREV_TIGON)
2535		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2536		    sc->ti_rx_saved_considx);
2537
2538	TI_UPDATE_STDPROD(sc, sc->ti_std);
2539	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2540	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2541}
2542
2543static void
2544ti_txeof(sc)
2545	struct ti_softc		*sc;
2546{
2547	struct ti_tx_desc	*cur_tx = NULL;
2548	struct ifnet		*ifp;
2549
2550	ifp = &sc->arpcom.ac_if;
2551
2552	/*
2553	 * Go through our tx ring and free mbufs for those
2554	 * frames that have been sent.
2555	 */
2556	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2557		u_int32_t		idx = 0;
2558
2559		idx = sc->ti_tx_saved_considx;
2560		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2561			if (idx > 383)
2562				CSR_WRITE_4(sc, TI_WINBASE,
2563				    TI_TX_RING_BASE + 6144);
2564			else if (idx > 255)
2565				CSR_WRITE_4(sc, TI_WINBASE,
2566				    TI_TX_RING_BASE + 4096);
2567			else if (idx > 127)
2568				CSR_WRITE_4(sc, TI_WINBASE,
2569				    TI_TX_RING_BASE + 2048);
2570			else
2571				CSR_WRITE_4(sc, TI_WINBASE,
2572				    TI_TX_RING_BASE);
2573			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2574		} else
2575			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2576		if (cur_tx->ti_flags & TI_BDFLAG_END)
2577			ifp->if_opackets++;
2578		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2579			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2580			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2581		}
2582		sc->ti_txcnt--;
2583		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2584		ifp->if_timer = 0;
2585	}
2586
2587	if (cur_tx != NULL)
2588		ifp->if_flags &= ~IFF_OACTIVE;
2589}
2590
2591static void
2592ti_intr(xsc)
2593	void			*xsc;
2594{
2595	struct ti_softc		*sc;
2596	struct ifnet		*ifp;
2597
2598	sc = xsc;
2599	TI_LOCK(sc);
2600	ifp = &sc->arpcom.ac_if;
2601
2602/*#ifdef notdef*/
2603	/* Avoid this for now -- checking this register is expensive. */
2604	/* Make sure this is really our interrupt. */
2605	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2606		TI_UNLOCK(sc);
2607		return;
2608	}
2609/*#endif*/
2610
2611	/* Ack interrupt and stop others from occuring. */
2612	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2613
2614	if (ifp->if_flags & IFF_RUNNING) {
2615		/* Check RX return ring producer/consumer */
2616		ti_rxeof(sc);
2617
2618		/* Check TX ring producer/consumer */
2619		ti_txeof(sc);
2620	}
2621
2622	ti_handle_events(sc);
2623
2624	/* Re-enable interrupts. */
2625	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2626
2627	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2628		ti_start(ifp);
2629
2630	TI_UNLOCK(sc);
2631}
2632
2633static void
2634ti_stats_update(sc)
2635	struct ti_softc		*sc;
2636{
2637	struct ifnet		*ifp;
2638
2639	ifp = &sc->arpcom.ac_if;
2640
2641	ifp->if_collisions +=
2642	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2643	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2644	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2645	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2646	   ifp->if_collisions;
2647}
2648
2649/*
2650 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2651 * pointers to descriptors.
2652 */
2653static int
2654ti_encap(sc, m_head, txidx)
2655	struct ti_softc		*sc;
2656	struct mbuf		*m_head;
2657	u_int32_t		*txidx;
2658{
2659	struct ti_tx_desc	*f = NULL;
2660	struct mbuf		*m;
2661	u_int32_t		frag, cur, cnt = 0;
2662	u_int16_t		csum_flags = 0;
2663	struct m_tag		*mtag;
2664
2665	m = m_head;
2666	cur = frag = *txidx;
2667
2668	if (m_head->m_pkthdr.csum_flags) {
2669		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2670			csum_flags |= TI_BDFLAG_IP_CKSUM;
2671		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2672			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2673		if (m_head->m_flags & M_LASTFRAG)
2674			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2675		else if (m_head->m_flags & M_FRAG)
2676			csum_flags |= TI_BDFLAG_IP_FRAG;
2677	}
2678
2679	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
2680
2681	/*
2682	 * Start packing the mbufs in this chain into
2683	 * the fragment pointers. Stop when we run out
2684	 * of fragments or hit the end of the mbuf chain.
2685	 */
2686	for (m = m_head; m != NULL; m = m->m_next) {
2687		if (m->m_len != 0) {
2688			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2689				if (frag > 383)
2690					CSR_WRITE_4(sc, TI_WINBASE,
2691					    TI_TX_RING_BASE + 6144);
2692				else if (frag > 255)
2693					CSR_WRITE_4(sc, TI_WINBASE,
2694					    TI_TX_RING_BASE + 4096);
2695				else if (frag > 127)
2696					CSR_WRITE_4(sc, TI_WINBASE,
2697					    TI_TX_RING_BASE + 2048);
2698				else
2699					CSR_WRITE_4(sc, TI_WINBASE,
2700					    TI_TX_RING_BASE);
2701				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2702			} else
2703				f = &sc->ti_rdata->ti_tx_ring[frag];
2704			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2705				break;
2706			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2707			f->ti_len = m->m_len;
2708			f->ti_flags = csum_flags;
2709
2710			if (mtag != NULL) {
2711				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2712				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2713			} else {
2714				f->ti_vlan_tag = 0;
2715			}
2716
2717			/*
2718			 * Sanity check: avoid coming within 16 descriptors
2719			 * of the end of the ring.
2720			 */
2721			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2722				return (ENOBUFS);
2723			cur = frag;
2724			TI_INC(frag, TI_TX_RING_CNT);
2725			cnt++;
2726		}
2727	}
2728
2729	if (m != NULL)
2730		return (ENOBUFS);
2731
2732	if (frag == sc->ti_tx_saved_considx)
2733		return (ENOBUFS);
2734
2735	if (sc->ti_hwrev == TI_HWREV_TIGON)
2736		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2737	            TI_BDFLAG_END;
2738	else
2739		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2740	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2741	sc->ti_txcnt += cnt;
2742
2743	*txidx = frag;
2744
2745	return (0);
2746}
2747
2748/*
2749 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2750 * to the mbuf data regions directly in the transmit descriptors.
2751 */
2752static void
2753ti_start(ifp)
2754	struct ifnet		*ifp;
2755{
2756	struct ti_softc		*sc;
2757	struct mbuf		*m_head = NULL;
2758	u_int32_t		prodidx = 0;
2759
2760	sc = ifp->if_softc;
2761	TI_LOCK(sc);
2762
2763	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2764
2765	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2766		IF_DEQUEUE(&ifp->if_snd, m_head);
2767		if (m_head == NULL)
2768			break;
2769
2770		/*
2771		 * XXX
2772		 * safety overkill.  If this is a fragmented packet chain
2773		 * with delayed TCP/UDP checksums, then only encapsulate
2774		 * it if we have enough descriptors to handle the entire
2775		 * chain at once.
2776		 * (paranoia -- may not actually be needed)
2777		 */
2778		if (m_head->m_flags & M_FIRSTFRAG &&
2779		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2780			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2781			    m_head->m_pkthdr.csum_data + 16) {
2782				IF_PREPEND(&ifp->if_snd, m_head);
2783				ifp->if_flags |= IFF_OACTIVE;
2784				break;
2785			}
2786		}
2787
2788		/*
2789		 * Pack the data into the transmit ring. If we
2790		 * don't have room, set the OACTIVE flag and wait
2791		 * for the NIC to drain the ring.
2792		 */
2793		if (ti_encap(sc, m_head, &prodidx)) {
2794			IF_PREPEND(&ifp->if_snd, m_head);
2795			ifp->if_flags |= IFF_OACTIVE;
2796			break;
2797		}
2798
2799		/*
2800		 * If there's a BPF listener, bounce a copy of this frame
2801		 * to him.
2802		 */
2803		BPF_MTAP(ifp, m_head);
2804	}
2805
2806	/* Transmit */
2807	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2808
2809	/*
2810	 * Set a timeout in case the chip goes out to lunch.
2811	 */
2812	ifp->if_timer = 5;
2813	TI_UNLOCK(sc);
2814}
2815
2816static void
2817ti_init(xsc)
2818	void			*xsc;
2819{
2820	struct ti_softc		*sc = xsc;
2821
2822	/* Cancel pending I/O and flush buffers. */
2823	ti_stop(sc);
2824
2825	TI_LOCK(sc);
2826	/* Init the gen info block, ring control blocks and firmware. */
2827	if (ti_gibinit(sc)) {
2828		printf("ti%d: initialization failure\n", sc->ti_unit);
2829		TI_UNLOCK(sc);
2830		return;
2831	}
2832
2833	TI_UNLOCK(sc);
2834}
2835
2836static void ti_init2(sc)
2837	struct ti_softc		*sc;
2838{
2839	struct ti_cmd_desc	cmd;
2840	struct ifnet		*ifp;
2841	u_int16_t		*m;
2842	struct ifmedia		*ifm;
2843	int			tmp;
2844
2845	ifp = &sc->arpcom.ac_if;
2846
2847	/* Specify MTU and interface index. */
2848	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
2849	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2850	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
2851	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2852
2853	/* Load our MAC address. */
2854	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2855	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2856	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2857	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2858
2859	/* Enable or disable promiscuous mode as needed. */
2860	if (ifp->if_flags & IFF_PROMISC) {
2861		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2862	} else {
2863		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2864	}
2865
2866	/* Program multicast filter. */
2867	ti_setmulti(sc);
2868
2869	/*
2870	 * If this is a Tigon 1, we should tell the
2871	 * firmware to use software packet filtering.
2872	 */
2873	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2874		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2875	}
2876
2877	/* Init RX ring. */
2878	ti_init_rx_ring_std(sc);
2879
2880	/* Init jumbo RX ring. */
2881	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2882		ti_init_rx_ring_jumbo(sc);
2883
2884	/*
2885	 * If this is a Tigon 2, we can also configure the
2886	 * mini ring.
2887	 */
2888	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2889		ti_init_rx_ring_mini(sc);
2890
2891	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2892	sc->ti_rx_saved_considx = 0;
2893
2894	/* Init TX ring. */
2895	ti_init_tx_ring(sc);
2896
2897	/* Tell firmware we're alive. */
2898	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2899
2900	/* Enable host interrupts. */
2901	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2902
2903	ifp->if_flags |= IFF_RUNNING;
2904	ifp->if_flags &= ~IFF_OACTIVE;
2905
2906	/*
2907	 * Make sure to set media properly. We have to do this
2908	 * here since we have to issue commands in order to set
2909	 * the link negotiation and we can't issue commands until
2910	 * the firmware is running.
2911	 */
2912	ifm = &sc->ifmedia;
2913	tmp = ifm->ifm_media;
2914	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2915	ti_ifmedia_upd(ifp);
2916	ifm->ifm_media = tmp;
2917}
2918
2919/*
2920 * Set media options.
2921 */
2922static int
2923ti_ifmedia_upd(ifp)
2924	struct ifnet		*ifp;
2925{
2926	struct ti_softc		*sc;
2927	struct ifmedia		*ifm;
2928	struct ti_cmd_desc	cmd;
2929	u_int32_t		flowctl;
2930
2931	sc = ifp->if_softc;
2932	ifm = &sc->ifmedia;
2933
2934	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2935		return (EINVAL);
2936
2937	flowctl = 0;
2938
2939	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2940	case IFM_AUTO:
2941		/*
2942		 * Transmit flow control doesn't work on the Tigon 1.
2943		 */
2944		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2945
2946		/*
2947		 * Transmit flow control can also cause problems on the
2948		 * Tigon 2, apparantly with both the copper and fiber
2949		 * boards.  The symptom is that the interface will just
2950		 * hang.  This was reproduced with Alteon 180 switches.
2951		 */
2952#if 0
2953		if (sc->ti_hwrev != TI_HWREV_TIGON)
2954			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2955#endif
2956
2957		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2958		    TI_GLNK_FULL_DUPLEX| flowctl |
2959		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2960
2961		flowctl = TI_LNK_RX_FLOWCTL_Y;
2962#if 0
2963		if (sc->ti_hwrev != TI_HWREV_TIGON)
2964			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2965#endif
2966
2967		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2968		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
2969		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2970		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2971		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2972		break;
2973	case IFM_1000_SX:
2974	case IFM_1000_T:
2975		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2976#if 0
2977		if (sc->ti_hwrev != TI_HWREV_TIGON)
2978			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2979#endif
2980
2981		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2982		    flowctl |TI_GLNK_ENB);
2983		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2984		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2985			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2986		}
2987		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2988		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2989		break;
2990	case IFM_100_FX:
2991	case IFM_10_FL:
2992	case IFM_100_TX:
2993	case IFM_10_T:
2994		flowctl = TI_LNK_RX_FLOWCTL_Y;
2995#if 0
2996		if (sc->ti_hwrev != TI_HWREV_TIGON)
2997			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2998#endif
2999
3000		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3001		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3002		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3003		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3004			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3005		} else {
3006			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3007		}
3008		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3009			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3010		} else {
3011			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3012		}
3013		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3014		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3015		break;
3016	}
3017
3018	return (0);
3019}
3020
3021/*
3022 * Report current media status.
3023 */
3024static void
3025ti_ifmedia_sts(ifp, ifmr)
3026	struct ifnet		*ifp;
3027	struct ifmediareq	*ifmr;
3028{
3029	struct ti_softc		*sc;
3030	u_int32_t		media = 0;
3031
3032	sc = ifp->if_softc;
3033
3034	ifmr->ifm_status = IFM_AVALID;
3035	ifmr->ifm_active = IFM_ETHER;
3036
3037	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3038		return;
3039
3040	ifmr->ifm_status |= IFM_ACTIVE;
3041
3042	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3043		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3044		if (sc->ti_copper)
3045			ifmr->ifm_active |= IFM_1000_T;
3046		else
3047			ifmr->ifm_active |= IFM_1000_SX;
3048		if (media & TI_GLNK_FULL_DUPLEX)
3049			ifmr->ifm_active |= IFM_FDX;
3050		else
3051			ifmr->ifm_active |= IFM_HDX;
3052	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3053		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3054		if (sc->ti_copper) {
3055			if (media & TI_LNK_100MB)
3056				ifmr->ifm_active |= IFM_100_TX;
3057			if (media & TI_LNK_10MB)
3058				ifmr->ifm_active |= IFM_10_T;
3059		} else {
3060			if (media & TI_LNK_100MB)
3061				ifmr->ifm_active |= IFM_100_FX;
3062			if (media & TI_LNK_10MB)
3063				ifmr->ifm_active |= IFM_10_FL;
3064		}
3065		if (media & TI_LNK_FULL_DUPLEX)
3066			ifmr->ifm_active |= IFM_FDX;
3067		if (media & TI_LNK_HALF_DUPLEX)
3068			ifmr->ifm_active |= IFM_HDX;
3069	}
3070}
3071
3072static int
3073ti_ioctl(ifp, command, data)
3074	struct ifnet		*ifp;
3075	u_long			command;
3076	caddr_t			data;
3077{
3078	struct ti_softc		*sc = ifp->if_softc;
3079	struct ifreq		*ifr = (struct ifreq *) data;
3080	int			mask, error = 0;
3081	struct ti_cmd_desc	cmd;
3082
3083	TI_LOCK(sc);
3084
3085	switch (command) {
3086	case SIOCSIFMTU:
3087		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3088			error = EINVAL;
3089		else {
3090			ifp->if_mtu = ifr->ifr_mtu;
3091			ti_init(sc);
3092		}
3093		break;
3094	case SIOCSIFFLAGS:
3095		if (ifp->if_flags & IFF_UP) {
3096			/*
3097			 * If only the state of the PROMISC flag changed,
3098			 * then just use the 'set promisc mode' command
3099			 * instead of reinitializing the entire NIC. Doing
3100			 * a full re-init means reloading the firmware and
3101			 * waiting for it to start up, which may take a
3102			 * second or two.
3103			 */
3104			if (ifp->if_flags & IFF_RUNNING &&
3105			    ifp->if_flags & IFF_PROMISC &&
3106			    !(sc->ti_if_flags & IFF_PROMISC)) {
3107				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3108				    TI_CMD_CODE_PROMISC_ENB, 0);
3109			} else if (ifp->if_flags & IFF_RUNNING &&
3110			    !(ifp->if_flags & IFF_PROMISC) &&
3111			    sc->ti_if_flags & IFF_PROMISC) {
3112				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3113				    TI_CMD_CODE_PROMISC_DIS, 0);
3114			} else
3115				ti_init(sc);
3116		} else {
3117			if (ifp->if_flags & IFF_RUNNING) {
3118				ti_stop(sc);
3119			}
3120		}
3121		sc->ti_if_flags = ifp->if_flags;
3122		error = 0;
3123		break;
3124	case SIOCADDMULTI:
3125	case SIOCDELMULTI:
3126		if (ifp->if_flags & IFF_RUNNING) {
3127			ti_setmulti(sc);
3128			error = 0;
3129		}
3130		break;
3131	case SIOCSIFMEDIA:
3132	case SIOCGIFMEDIA:
3133		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3134		break;
3135	case SIOCSIFCAP:
3136		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3137		if (mask & IFCAP_HWCSUM) {
3138			if (IFCAP_HWCSUM & ifp->if_capenable)
3139				ifp->if_capenable &= ~IFCAP_HWCSUM;
3140			else
3141				ifp->if_capenable |= IFCAP_HWCSUM;
3142			if (ifp->if_flags & IFF_RUNNING)
3143				ti_init(sc);
3144		}
3145		error = 0;
3146		break;
3147	default:
3148		error = ether_ioctl(ifp, command, data);
3149		break;
3150	}
3151
3152	TI_UNLOCK(sc);
3153
3154	return (error);
3155}
3156
3157static int
3158ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3159{
3160	struct ti_softc *sc;
3161
3162	sc = dev->si_drv1;
3163	if (sc == NULL)
3164		return (ENODEV);
3165
3166	TI_LOCK(sc);
3167	sc->ti_flags |= TI_FLAG_DEBUGING;
3168	TI_UNLOCK(sc);
3169
3170	return (0);
3171}
3172
3173static int
3174ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3175{
3176	struct ti_softc *sc;
3177
3178	sc = dev->si_drv1;
3179	if (sc == NULL)
3180		return (ENODEV);
3181
3182	TI_LOCK(sc);
3183	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3184	TI_UNLOCK(sc);
3185
3186	return (0);
3187}
3188
3189/*
3190 * This ioctl routine goes along with the Tigon character device.
3191 */
3192static int
3193ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3194{
3195	int error;
3196	struct ti_softc *sc;
3197
3198	sc = dev->si_drv1;
3199	if (sc == NULL)
3200		return (ENODEV);
3201
3202	error = 0;
3203
3204	switch (cmd) {
3205	case TIIOCGETSTATS:
3206	{
3207		struct ti_stats *outstats;
3208
3209		outstats = (struct ti_stats *)addr;
3210
3211		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3212		      sizeof(struct ti_stats));
3213		break;
3214	}
3215	case TIIOCGETPARAMS:
3216	{
3217		struct ti_params	*params;
3218
3219		params = (struct ti_params *)addr;
3220
3221		params->ti_stat_ticks = sc->ti_stat_ticks;
3222		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3223		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3224		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3225		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3226		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3227		params->param_mask = TI_PARAM_ALL;
3228
3229		error = 0;
3230
3231		break;
3232	}
3233	case TIIOCSETPARAMS:
3234	{
3235		struct ti_params *params;
3236
3237		params = (struct ti_params *)addr;
3238
3239		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3240			sc->ti_stat_ticks = params->ti_stat_ticks;
3241			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3242		}
3243
3244		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3245			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3246			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3247				    sc->ti_rx_coal_ticks);
3248		}
3249
3250		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3251			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3252			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3253				    sc->ti_tx_coal_ticks);
3254		}
3255
3256		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3257			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3258			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3259				    sc->ti_rx_max_coal_bds);
3260		}
3261
3262		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3263			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3264			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3265				    sc->ti_tx_max_coal_bds);
3266		}
3267
3268		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3269			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3270			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3271				    sc->ti_tx_buf_ratio);
3272		}
3273
3274		error = 0;
3275
3276		break;
3277	}
3278	case TIIOCSETTRACE: {
3279		ti_trace_type	trace_type;
3280
3281		trace_type = *(ti_trace_type *)addr;
3282
3283		/*
3284		 * Set tracing to whatever the user asked for.  Setting
3285		 * this register to 0 should have the effect of disabling
3286		 * tracing.
3287		 */
3288		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3289
3290		error = 0;
3291
3292		break;
3293	}
3294	case TIIOCGETTRACE: {
3295		struct ti_trace_buf	*trace_buf;
3296		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3297
3298		trace_buf = (struct ti_trace_buf *)addr;
3299
3300		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3301		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3302		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3303
3304#if 0
3305		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3306		       "trace_len = %d\n", sc->ti_unit, trace_start,
3307		       cur_trace_ptr, trace_len);
3308		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3309		       trace_buf->buf_len);
3310#endif
3311
3312		error = ti_copy_mem(sc, trace_start, min(trace_len,
3313				    trace_buf->buf_len),
3314				    (caddr_t)trace_buf->buf, 1, 1);
3315
3316		if (error == 0) {
3317			trace_buf->fill_len = min(trace_len,
3318						  trace_buf->buf_len);
3319			if (cur_trace_ptr < trace_start)
3320				trace_buf->cur_trace_ptr =
3321					trace_start - cur_trace_ptr;
3322			else
3323				trace_buf->cur_trace_ptr =
3324					cur_trace_ptr - trace_start;
3325		} else
3326			trace_buf->fill_len = 0;
3327
3328		break;
3329	}
3330
3331	/*
3332	 * For debugging, five ioctls are needed:
3333	 * ALT_ATTACH
3334	 * ALT_READ_TG_REG
3335	 * ALT_WRITE_TG_REG
3336	 * ALT_READ_TG_MEM
3337	 * ALT_WRITE_TG_MEM
3338	 */
3339	case ALT_ATTACH:
3340		/*
3341		 * From what I can tell, Alteon's Solaris Tigon driver
3342		 * only has one character device, so you have to attach
3343		 * to the Tigon board you're interested in.  This seems
3344		 * like a not-so-good way to do things, since unless you
3345		 * subsequently specify the unit number of the device
3346		 * you're interested in in every ioctl, you'll only be
3347		 * able to debug one board at a time.
3348		 */
3349		error = 0;
3350		break;
3351	case ALT_READ_TG_MEM:
3352	case ALT_WRITE_TG_MEM:
3353	{
3354		struct tg_mem *mem_param;
3355		u_int32_t sram_end, scratch_end;
3356
3357		mem_param = (struct tg_mem *)addr;
3358
3359		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3360			sram_end = TI_END_SRAM_I;
3361			scratch_end = TI_END_SCRATCH_I;
3362		} else {
3363			sram_end = TI_END_SRAM_II;
3364			scratch_end = TI_END_SCRATCH_II;
3365		}
3366
3367		/*
3368		 * For now, we'll only handle accessing regular SRAM,
3369		 * nothing else.
3370		 */
3371		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3372		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3373			/*
3374			 * In this instance, we always copy to/from user
3375			 * space, so the user space argument is set to 1.
3376			 */
3377			error = ti_copy_mem(sc, mem_param->tgAddr,
3378					    mem_param->len,
3379					    mem_param->userAddr, 1,
3380					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3381		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3382			&& (mem_param->tgAddr <= scratch_end)) {
3383			error = ti_copy_scratch(sc, mem_param->tgAddr,
3384						mem_param->len,
3385						mem_param->userAddr, 1,
3386						(cmd == ALT_READ_TG_MEM) ?
3387						1 : 0, TI_PROCESSOR_A);
3388		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3389			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3390			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3391				printf("ti%d:  invalid memory range for "
3392				       "Tigon I\n", sc->ti_unit);
3393				error = EINVAL;
3394				break;
3395			}
3396			error = ti_copy_scratch(sc, mem_param->tgAddr -
3397						TI_SCRATCH_DEBUG_OFF,
3398						mem_param->len,
3399						mem_param->userAddr, 1,
3400						(cmd == ALT_READ_TG_MEM) ?
3401						1 : 0, TI_PROCESSOR_B);
3402		} else {
3403			printf("ti%d: memory address %#x len %d is out of "
3404			       "supported range\n", sc->ti_unit,
3405			        mem_param->tgAddr, mem_param->len);
3406			error = EINVAL;
3407		}
3408
3409		break;
3410	}
3411	case ALT_READ_TG_REG:
3412	case ALT_WRITE_TG_REG:
3413	{
3414		struct tg_reg	*regs;
3415		u_int32_t	tmpval;
3416
3417		regs = (struct tg_reg *)addr;
3418
3419		/*
3420		 * Make sure the address in question isn't out of range.
3421		 */
3422		if (regs->addr > TI_REG_MAX) {
3423			error = EINVAL;
3424			break;
3425		}
3426		if (cmd == ALT_READ_TG_REG) {
3427			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3428						regs->addr, &tmpval, 1);
3429			regs->data = ntohl(tmpval);
3430#if 0
3431			if ((regs->addr == TI_CPU_STATE)
3432			 || (regs->addr == TI_CPU_CTL_B)) {
3433				printf("ti%d: register %#x = %#x\n",
3434				       sc->ti_unit, regs->addr, tmpval);
3435			}
3436#endif
3437		} else {
3438			tmpval = htonl(regs->data);
3439			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3440						 regs->addr, &tmpval, 1);
3441		}
3442
3443		break;
3444	}
3445	default:
3446		error = ENOTTY;
3447		break;
3448	}
3449	return (error);
3450}
3451
3452static void
3453ti_watchdog(ifp)
3454	struct ifnet		*ifp;
3455{
3456	struct ti_softc		*sc;
3457
3458	sc = ifp->if_softc;
3459	TI_LOCK(sc);
3460
3461	/*
3462	 * When we're debugging, the chip is often stopped for long periods
3463	 * of time, and that would normally cause the watchdog timer to fire.
3464	 * Since that impedes debugging, we don't want to do that.
3465	 */
3466	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3467		TI_UNLOCK(sc);
3468		return;
3469	}
3470
3471	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3472	ti_stop(sc);
3473	ti_init(sc);
3474
3475	ifp->if_oerrors++;
3476	TI_UNLOCK(sc);
3477}
3478
3479/*
3480 * Stop the adapter and free any mbufs allocated to the
3481 * RX and TX lists.
3482 */
3483static void
3484ti_stop(sc)
3485	struct ti_softc		*sc;
3486{
3487	struct ifnet		*ifp;
3488	struct ti_cmd_desc	cmd;
3489
3490	TI_LOCK(sc);
3491
3492	ifp = &sc->arpcom.ac_if;
3493
3494	/* Disable host interrupts. */
3495	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3496	/*
3497	 * Tell firmware we're shutting down.
3498	 */
3499	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3500
3501	/* Halt and reinitialize. */
3502	ti_chipinit(sc);
3503	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3504	ti_chipinit(sc);
3505
3506	/* Free the RX lists. */
3507	ti_free_rx_ring_std(sc);
3508
3509	/* Free jumbo RX list. */
3510	ti_free_rx_ring_jumbo(sc);
3511
3512	/* Free mini RX list. */
3513	ti_free_rx_ring_mini(sc);
3514
3515	/* Free TX buffers. */
3516	ti_free_tx_ring(sc);
3517
3518	sc->ti_ev_prodidx.ti_idx = 0;
3519	sc->ti_return_prodidx.ti_idx = 0;
3520	sc->ti_tx_considx.ti_idx = 0;
3521	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3522
3523	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3524	TI_UNLOCK(sc);
3525}
3526
3527/*
3528 * Stop all chip I/O so that the kernel's probe routines don't
3529 * get confused by errant DMAs when rebooting.
3530 */
3531static void
3532ti_shutdown(dev)
3533	device_t		dev;
3534{
3535	struct ti_softc		*sc;
3536
3537	sc = device_get_softc(dev);
3538	TI_LOCK(sc);
3539	ti_chipinit(sc);
3540	TI_UNLOCK(sc);
3541}
3542