if_ti.c revision 127135
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 127135 2004-03-17 17:50:55Z njl $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/socket.h>
91#include <sys/queue.h>
92#include <sys/conf.h>
93
94#include <net/if.h>
95#include <net/if_arp.h>
96#include <net/ethernet.h>
97#include <net/if_dl.h>
98#include <net/if_media.h>
99#include <net/if_types.h>
100#include <net/if_vlan_var.h>
101
102#include <net/bpf.h>
103
104#include <netinet/in_systm.h>
105#include <netinet/in.h>
106#include <netinet/ip.h>
107
108#include <vm/vm.h>              /* for vtophys */
109#include <vm/pmap.h>            /* for vtophys */
110#include <machine/bus_memio.h>
111#include <machine/bus.h>
112#include <machine/resource.h>
113#include <sys/bus.h>
114#include <sys/rman.h>
115
116/* #define TI_PRIVATE_JUMBOS */
117
118#if !defined(TI_PRIVATE_JUMBOS)
119#include <sys/sockio.h>
120#include <sys/uio.h>
121#include <sys/lock.h>
122#include <vm/vm_extern.h>
123#include <vm/pmap.h>
124#include <vm/vm_map.h>
125#include <vm/vm_map.h>
126#include <vm/vm_param.h>
127#include <vm/vm_pageout.h>
128#include <sys/vmmeter.h>
129#include <vm/vm_page.h>
130#include <vm/vm_object.h>
131#include <vm/vm_kern.h>
132#include <sys/proc.h>
133#include <sys/jumbo.h>
134#endif /* !TI_PRIVATE_JUMBOS */
135
136#include <dev/pci/pcireg.h>
137#include <dev/pci/pcivar.h>
138
139#include <sys/tiio.h>
140#include <pci/if_tireg.h>
141#include <pci/ti_fw.h>
142#include <pci/ti_fw2.h>
143
144#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
145/*
146 * We can only turn on header splitting if we're using extended receive
147 * BDs.
148 */
149#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
150#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
151#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
152
153struct ti_softc *tis[8];
154
155typedef enum {
156	TI_SWAP_HTON,
157	TI_SWAP_NTOH
158} ti_swap_type;
159
160
161/*
162 * Various supported device vendors/types and their names.
163 */
164
165static struct ti_type ti_devs[] = {
166	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
167		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
168	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
169		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
170	{ TC_VENDORID,	TC_DEVICEID_3C985,
171		"3Com 3c985-SX Gigabit Ethernet" },
172	{ NG_VENDORID, NG_DEVICEID_GA620,
173		"Netgear GA620 1000baseSX Gigabit Ethernet" },
174	{ NG_VENDORID, NG_DEVICEID_GA620T,
175		"Netgear GA620 1000baseT Gigabit Ethernet" },
176	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
177		"Silicon Graphics Gigabit Ethernet" },
178	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
179		"Farallon PN9000SX Gigabit Ethernet" },
180	{ 0, 0, NULL }
181};
182
183
184static	d_open_t	ti_open;
185static	d_close_t	ti_close;
186static	d_ioctl_t	ti_ioctl2;
187
188static struct cdevsw ti_cdevsw = {
189	.d_version =	D_VERSION,
190	.d_flags =	D_NEEDGIANT,
191	.d_open =	ti_open,
192	.d_close =	ti_close,
193	.d_ioctl =	ti_ioctl2,
194	.d_name =	"ti",
195};
196
197static int ti_probe		(device_t);
198static int ti_attach		(device_t);
199static int ti_detach		(device_t);
200static void ti_txeof		(struct ti_softc *);
201static void ti_rxeof		(struct ti_softc *);
202
203static void ti_stats_update	(struct ti_softc *);
204static int ti_encap		(struct ti_softc *, struct mbuf *, u_int32_t *);
205
206static void ti_intr		(void *);
207static void ti_start		(struct ifnet *);
208static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
209static void ti_init		(void *);
210static void ti_init2		(struct ti_softc *);
211static void ti_stop		(struct ti_softc *);
212static void ti_watchdog		(struct ifnet *);
213static void ti_shutdown		(device_t);
214static int ti_ifmedia_upd	(struct ifnet *);
215static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
216
217static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
218static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *, int, u_int8_t *);
219static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
220
221static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
222static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
223static void ti_setmulti		(struct ti_softc *);
224
225static void ti_mem		(struct ti_softc *, u_int32_t,
226					u_int32_t, caddr_t);
227static int ti_copy_mem		(struct ti_softc *, u_int32_t,
228					u_int32_t, caddr_t, int, int);
229static int ti_copy_scratch	(struct ti_softc *, u_int32_t,
230					u_int32_t, caddr_t, int, int, int);
231static int ti_bcopy_swap	(const void *, void *, size_t,
232					ti_swap_type);
233static void ti_loadfw		(struct ti_softc *);
234static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
235static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
236					caddr_t, int);
237static void ti_handle_events	(struct ti_softc *);
238#ifdef TI_PRIVATE_JUMBOS
239static int ti_alloc_jumbo_mem	(struct ti_softc *);
240static void *ti_jalloc		(struct ti_softc *);
241static void ti_jfree		(void *, void *);
242#endif /* TI_PRIVATE_JUMBOS */
243static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
244static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
245static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
246static int ti_init_rx_ring_std	(struct ti_softc *);
247static void ti_free_rx_ring_std	(struct ti_softc *);
248static int ti_init_rx_ring_jumbo	(struct ti_softc *);
249static void ti_free_rx_ring_jumbo	(struct ti_softc *);
250static int ti_init_rx_ring_mini	(struct ti_softc *);
251static void ti_free_rx_ring_mini	(struct ti_softc *);
252static void ti_free_tx_ring	(struct ti_softc *);
253static int ti_init_tx_ring	(struct ti_softc *);
254
255static int ti_64bitslot_war	(struct ti_softc *);
256static int ti_chipinit		(struct ti_softc *);
257static int ti_gibinit		(struct ti_softc *);
258
259#ifdef TI_JUMBO_HDRSPLIT
260static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
261					     int pkt_len, int idx);
262#endif /* TI_JUMBO_HDRSPLIT */
263
264static device_method_t ti_methods[] = {
265	/* Device interface */
266	DEVMETHOD(device_probe,		ti_probe),
267	DEVMETHOD(device_attach,	ti_attach),
268	DEVMETHOD(device_detach,	ti_detach),
269	DEVMETHOD(device_shutdown,	ti_shutdown),
270	{ 0, 0 }
271};
272
273static driver_t ti_driver = {
274	"ti",
275	ti_methods,
276	sizeof(struct ti_softc)
277};
278
279static devclass_t ti_devclass;
280
281DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
282MODULE_DEPEND(ti, pci, 1, 1, 1);
283MODULE_DEPEND(ti, ether, 1, 1, 1);
284
285/*
286 * Send an instruction or address to the EEPROM, check for ACK.
287 */
288static u_int32_t ti_eeprom_putbyte(sc, byte)
289	struct ti_softc		*sc;
290	int			byte;
291{
292	register int		i, ack = 0;
293
294	/*
295	 * Make sure we're in TX mode.
296	 */
297	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
298
299	/*
300	 * Feed in each bit and stobe the clock.
301	 */
302	for (i = 0x80; i; i >>= 1) {
303		if (byte & i) {
304			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
305		} else {
306			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
307		}
308		DELAY(1);
309		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310		DELAY(1);
311		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
312	}
313
314	/*
315	 * Turn off TX mode.
316	 */
317	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
318
319	/*
320	 * Check for ack.
321	 */
322	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
323	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
324	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
325
326	return(ack);
327}
328
329/*
330 * Read a byte of data stored in the EEPROM at address 'addr.'
331 * We have to send two address bytes since the EEPROM can hold
332 * more than 256 bytes of data.
333 */
334static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
335	struct ti_softc		*sc;
336	int			addr;
337	u_int8_t		*dest;
338{
339	register int		i;
340	u_int8_t		byte = 0;
341
342	EEPROM_START;
343
344	/*
345	 * Send write control code to EEPROM.
346	 */
347	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
348		printf("ti%d: failed to send write command, status: %x\n",
349		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
350		return(1);
351	}
352
353	/*
354	 * Send first byte of address of byte we want to read.
355	 */
356	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
357		printf("ti%d: failed to send address, status: %x\n",
358		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
359		return(1);
360	}
361	/*
362	 * Send second byte address of byte we want to read.
363	 */
364	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
365		printf("ti%d: failed to send address, status: %x\n",
366		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
367		return(1);
368	}
369
370	EEPROM_STOP;
371	EEPROM_START;
372	/*
373	 * Send read control code to EEPROM.
374	 */
375	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
376		printf("ti%d: failed to send read command, status: %x\n",
377		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
378		return(1);
379	}
380
381	/*
382	 * Start reading bits from EEPROM.
383	 */
384	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
385	for (i = 0x80; i; i >>= 1) {
386		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
387		DELAY(1);
388		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
389			byte |= i;
390		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
391		DELAY(1);
392	}
393
394	EEPROM_STOP;
395
396	/*
397	 * No ACK generated for read, so just return byte.
398	 */
399
400	*dest = byte;
401
402	return(0);
403}
404
405/*
406 * Read a sequence of bytes from the EEPROM.
407 */
408static int
409ti_read_eeprom(sc, dest, off, cnt)
410	struct ti_softc		*sc;
411	caddr_t			dest;
412	int			off;
413	int			cnt;
414{
415	int			err = 0, i;
416	u_int8_t		byte = 0;
417
418	for (i = 0; i < cnt; i++) {
419		err = ti_eeprom_getbyte(sc, off + i, &byte);
420		if (err)
421			break;
422		*(dest + i) = byte;
423	}
424
425	return(err ? 1 : 0);
426}
427
428/*
429 * NIC memory access function. Can be used to either clear a section
430 * of NIC local memory or (if buf is non-NULL) copy data into it.
431 */
432static void
433ti_mem(sc, addr, len, buf)
434	struct ti_softc		*sc;
435	u_int32_t		addr, len;
436	caddr_t			buf;
437{
438	int			segptr, segsize, cnt;
439	caddr_t			ti_winbase, ptr;
440
441	segptr = addr;
442	cnt = len;
443	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
444	ptr = buf;
445
446	while(cnt) {
447		if (cnt < TI_WINLEN)
448			segsize = cnt;
449		else
450			segsize = TI_WINLEN - (segptr % TI_WINLEN);
451		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
452		if (buf == NULL)
453			bzero((char *)ti_winbase + (segptr &
454			    (TI_WINLEN - 1)), segsize);
455		else {
456			bcopy((char *)ptr, (char *)ti_winbase +
457			    (segptr & (TI_WINLEN - 1)), segsize);
458			ptr += segsize;
459		}
460		segptr += segsize;
461		cnt -= segsize;
462	}
463
464	return;
465}
466
467static int
468ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
469	struct ti_softc		*sc;
470	u_int32_t		tigon_addr, len;
471	caddr_t			buf;
472	int			useraddr, readdata;
473{
474	int		segptr, segsize, cnt;
475	caddr_t		ptr;
476	u_int32_t	origwin;
477	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
478	int		resid, segresid;
479	int		first_pass;
480
481	/*
482	 * At the moment, we don't handle non-aligned cases, we just bail.
483	 * If this proves to be a problem, it will be fixed.
484	 */
485	if ((readdata == 0)
486	 && (tigon_addr & 0x3)) {
487		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
488		       "word-aligned\n", sc->ti_unit, tigon_addr);
489		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
490		       "supported\n", sc->ti_unit);
491		return(EINVAL);
492	}
493
494	segptr = tigon_addr & ~0x3;
495	segresid = tigon_addr - segptr;
496
497	/*
498	 * This is the non-aligned amount left over that we'll need to
499	 * copy.
500	 */
501	resid = len & 0x3;
502
503	/* Add in the left over amount at the front of the buffer */
504	resid += segresid;
505
506	cnt = len & ~0x3;
507	/*
508	 * If resid + segresid is >= 4, add multiples of 4 to the count and
509	 * decrease the residual by that much.
510	 */
511	cnt += resid & ~0x3;
512	resid -= resid & ~0x3;
513
514	ptr = buf;
515
516	first_pass = 1;
517
518	/*
519	 * Make sure we aren't interrupted while we're changing the window
520	 * pointer.
521	 */
522	TI_LOCK(sc);
523
524	/*
525	 * Save the old window base value.
526	 */
527	origwin = CSR_READ_4(sc, TI_WINBASE);
528
529	while(cnt) {
530		bus_size_t ti_offset;
531
532		if (cnt < TI_WINLEN)
533			segsize = cnt;
534		else
535			segsize = TI_WINLEN - (segptr % TI_WINLEN);
536		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
537
538		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
539
540		if (readdata) {
541
542			bus_space_read_region_4(sc->ti_btag,
543						sc->ti_bhandle, ti_offset,
544						(u_int32_t *)tmparray,
545						segsize >> 2);
546			if (useraddr) {
547				/*
548				 * Yeah, this is a little on the kludgy
549				 * side, but at least this code is only
550				 * used for debugging.
551				 */
552				ti_bcopy_swap(tmparray, tmparray2, segsize,
553					      TI_SWAP_NTOH);
554
555				if (first_pass) {
556					copyout(&tmparray2[segresid], ptr,
557						segsize - segresid);
558					first_pass = 0;
559				} else
560					copyout(tmparray2, ptr, segsize);
561			} else {
562				if (first_pass) {
563
564					ti_bcopy_swap(tmparray, tmparray2,
565						      segsize, TI_SWAP_NTOH);
566					bcopy(&tmparray2[segresid], ptr,
567					      segsize - segresid);
568					first_pass = 0;
569				} else
570					ti_bcopy_swap(tmparray, ptr, segsize,
571						      TI_SWAP_NTOH);
572			}
573
574		} else {
575			if (useraddr) {
576				copyin(ptr, tmparray2, segsize);
577				ti_bcopy_swap(tmparray2, tmparray, segsize,
578					      TI_SWAP_HTON);
579			} else
580				ti_bcopy_swap(ptr, tmparray, segsize,
581					      TI_SWAP_HTON);
582
583			bus_space_write_region_4(sc->ti_btag,
584						 sc->ti_bhandle, ti_offset,
585						 (u_int32_t *)tmparray,
586						 segsize >> 2);
587		}
588		segptr += segsize;
589		ptr += segsize;
590		cnt -= segsize;
591	}
592
593	/*
594	 * Handle leftover, non-word-aligned bytes.
595	 */
596	if (resid != 0) {
597		u_int32_t	tmpval, tmpval2;
598		bus_size_t	ti_offset;
599
600		/*
601		 * Set the segment pointer.
602		 */
603		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
604
605		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
606
607		/*
608		 * First, grab whatever is in our source/destination.
609		 * We'll obviously need this for reads, but also for
610		 * writes, since we'll be doing read/modify/write.
611		 */
612		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
613					ti_offset, &tmpval, 1);
614
615		/*
616		 * Next, translate this from little-endian to big-endian
617		 * (at least on i386 boxes).
618		 */
619		tmpval2 = ntohl(tmpval);
620
621		if (readdata) {
622			/*
623			 * If we're reading, just copy the leftover number
624			 * of bytes from the host byte order buffer to
625			 * the user's buffer.
626			 */
627			if (useraddr)
628				copyout(&tmpval2, ptr, resid);
629			else
630				bcopy(&tmpval2, ptr, resid);
631		} else {
632			/*
633			 * If we're writing, first copy the bytes to be
634			 * written into the network byte order buffer,
635			 * leaving the rest of the buffer with whatever was
636			 * originally in there.  Then, swap the bytes
637			 * around into host order and write them out.
638			 *
639			 * XXX KDM the read side of this has been verified
640			 * to work, but the write side of it has not been
641			 * verified.  So user beware.
642			 */
643			if (useraddr)
644				copyin(ptr, &tmpval2, resid);
645			else
646				bcopy(ptr, &tmpval2, resid);
647
648			tmpval = htonl(tmpval2);
649
650			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
651						 ti_offset, &tmpval, 1);
652		}
653	}
654
655	CSR_WRITE_4(sc, TI_WINBASE, origwin);
656
657	TI_UNLOCK(sc);
658
659	return(0);
660}
661
662static int
663ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
664	struct ti_softc		*sc;
665	u_int32_t		tigon_addr, len;
666	caddr_t			buf;
667	int			useraddr, readdata;
668	int			cpu;
669{
670	u_int32_t	segptr;
671	int		cnt;
672	u_int32_t	tmpval, tmpval2;
673	caddr_t		ptr;
674
675	/*
676	 * At the moment, we don't handle non-aligned cases, we just bail.
677	 * If this proves to be a problem, it will be fixed.
678	 */
679	if (tigon_addr & 0x3) {
680		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
681		       "word-aligned\n", sc->ti_unit, tigon_addr);
682		return(EINVAL);
683	}
684
685	if (len & 0x3) {
686		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
687		       "word-aligned\n", sc->ti_unit, len);
688		return(EINVAL);
689	}
690
691	segptr = tigon_addr;
692	cnt = len;
693	ptr = buf;
694
695	TI_LOCK(sc);
696
697	while (cnt) {
698		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
699
700		if (readdata) {
701			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
702
703			tmpval = ntohl(tmpval2);
704
705			/*
706			 * Note:  I've used this debugging interface
707			 * extensively with Alteon's 12.3.15 firmware,
708			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
709			 *
710			 * When you compile the firmware without
711			 * optimization, which is necessary sometimes in
712			 * order to properly step through it, you sometimes
713			 * read out a bogus value of 0xc0017c instead of
714			 * whatever was supposed to be in that scratchpad
715			 * location.  That value is on the stack somewhere,
716			 * but I've never been able to figure out what was
717			 * causing the problem.
718			 *
719			 * The address seems to pop up in random places,
720			 * often not in the same place on two subsequent
721			 * reads.
722			 *
723			 * In any case, the underlying data doesn't seem
724			 * to be affected, just the value read out.
725			 *
726			 * KDM, 3/7/2000
727			 */
728
729			if (tmpval2 == 0xc0017c)
730				printf("ti%d: found 0xc0017c at %#x "
731				       "(tmpval2)\n", sc->ti_unit, segptr);
732
733			if (tmpval == 0xc0017c)
734				printf("ti%d: found 0xc0017c at %#x "
735				       "(tmpval)\n", sc->ti_unit, segptr);
736
737			if (useraddr)
738				copyout(&tmpval, ptr, 4);
739			else
740				bcopy(&tmpval, ptr, 4);
741		} else {
742			if (useraddr)
743				copyin(ptr, &tmpval2, 4);
744			else
745				bcopy(ptr, &tmpval2, 4);
746
747			tmpval = htonl(tmpval2);
748
749			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
750		}
751
752		cnt -= 4;
753		segptr += 4;
754		ptr += 4;
755	}
756
757	TI_UNLOCK(sc);
758
759	return(0);
760}
761
762static int
763ti_bcopy_swap(src, dst, len, swap_type)
764	const void	*src;
765	void		*dst;
766	size_t		len;
767	ti_swap_type	swap_type;
768{
769	const u_int8_t *tmpsrc;
770	u_int8_t *tmpdst;
771	size_t tmplen;
772
773	if (len & 0x3) {
774		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
775		       len);
776		return(-1);
777	}
778
779	tmpsrc = src;
780	tmpdst = dst;
781	tmplen = len;
782
783	while (tmplen) {
784		if (swap_type == TI_SWAP_NTOH)
785			*(u_int32_t *)tmpdst =
786				ntohl(*(const u_int32_t *)tmpsrc);
787		else
788			*(u_int32_t *)tmpdst =
789				htonl(*(const u_int32_t *)tmpsrc);
790
791		tmpsrc += 4;
792		tmpdst += 4;
793		tmplen -= 4;
794	}
795
796	return(0);
797}
798
799/*
800 * Load firmware image into the NIC. Check that the firmware revision
801 * is acceptable and see if we want the firmware for the Tigon 1 or
802 * Tigon 2.
803 */
804static void
805ti_loadfw(sc)
806	struct ti_softc		*sc;
807{
808	switch(sc->ti_hwrev) {
809	case TI_HWREV_TIGON:
810		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
811		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
812		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
813			printf("ti%d: firmware revision mismatch; want "
814			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
815			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
816			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
817			    tigonFwReleaseMinor, tigonFwReleaseFix);
818			return;
819		}
820		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
821		    (caddr_t)tigonFwText);
822		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
823		    (caddr_t)tigonFwData);
824		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
825		    (caddr_t)tigonFwRodata);
826		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
827		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
828		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
829		break;
830	case TI_HWREV_TIGON_II:
831		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
832		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
833		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
834			printf("ti%d: firmware revision mismatch; want "
835			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
836			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
837			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
838			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
839			return;
840		}
841		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
842		    (caddr_t)tigon2FwText);
843		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
844		    (caddr_t)tigon2FwData);
845		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
846		    (caddr_t)tigon2FwRodata);
847		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
848		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
849		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
850		break;
851	default:
852		printf("ti%d: can't load firmware: unknown hardware rev\n",
853		    sc->ti_unit);
854		break;
855	}
856
857	return;
858}
859
860/*
861 * Send the NIC a command via the command ring.
862 */
863static void
864ti_cmd(sc, cmd)
865	struct ti_softc		*sc;
866	struct ti_cmd_desc	*cmd;
867{
868	u_int32_t		index;
869
870	if (sc->ti_rdata->ti_cmd_ring == NULL)
871		return;
872
873	index = sc->ti_cmd_saved_prodidx;
874	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
875	TI_INC(index, TI_CMD_RING_CNT);
876	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
877	sc->ti_cmd_saved_prodidx = index;
878
879	return;
880}
881
882/*
883 * Send the NIC an extended command. The 'len' parameter specifies the
884 * number of command slots to include after the initial command.
885 */
886static void
887ti_cmd_ext(sc, cmd, arg, len)
888	struct ti_softc		*sc;
889	struct ti_cmd_desc	*cmd;
890	caddr_t			arg;
891	int			len;
892{
893	u_int32_t		index;
894	register int		i;
895
896	if (sc->ti_rdata->ti_cmd_ring == NULL)
897		return;
898
899	index = sc->ti_cmd_saved_prodidx;
900	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
901	TI_INC(index, TI_CMD_RING_CNT);
902	for (i = 0; i < len; i++) {
903		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
904		    *(u_int32_t *)(&arg[i * 4]));
905		TI_INC(index, TI_CMD_RING_CNT);
906	}
907	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
908	sc->ti_cmd_saved_prodidx = index;
909
910	return;
911}
912
913/*
914 * Handle events that have triggered interrupts.
915 */
916static void
917ti_handle_events(sc)
918	struct ti_softc		*sc;
919{
920	struct ti_event_desc	*e;
921
922	if (sc->ti_rdata->ti_event_ring == NULL)
923		return;
924
925	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
926		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
927		switch(e->ti_event) {
928		case TI_EV_LINKSTAT_CHANGED:
929			sc->ti_linkstat = e->ti_code;
930			if (e->ti_code == TI_EV_CODE_LINK_UP)
931				printf("ti%d: 10/100 link up\n", sc->ti_unit);
932			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
933				printf("ti%d: gigabit link up\n", sc->ti_unit);
934			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
935				printf("ti%d: link down\n", sc->ti_unit);
936			break;
937		case TI_EV_ERROR:
938			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
939				printf("ti%d: invalid command\n", sc->ti_unit);
940			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
941				printf("ti%d: unknown command\n", sc->ti_unit);
942			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
943				printf("ti%d: bad config data\n", sc->ti_unit);
944			break;
945		case TI_EV_FIRMWARE_UP:
946			ti_init2(sc);
947			break;
948		case TI_EV_STATS_UPDATED:
949			ti_stats_update(sc);
950			break;
951		case TI_EV_RESET_JUMBO_RING:
952		case TI_EV_MCAST_UPDATED:
953			/* Who cares. */
954			break;
955		default:
956			printf("ti%d: unknown event: %d\n",
957			    sc->ti_unit, e->ti_event);
958			break;
959		}
960		/* Advance the consumer index. */
961		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
962		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
963	}
964
965	return;
966}
967
968#ifdef TI_PRIVATE_JUMBOS
969
970/*
971 * Memory management for the jumbo receive ring is a pain in the
972 * butt. We need to allocate at least 9018 bytes of space per frame,
973 * _and_ it has to be contiguous (unless you use the extended
974 * jumbo descriptor format). Using malloc() all the time won't
975 * work: malloc() allocates memory in powers of two, which means we
976 * would end up wasting a considerable amount of space by allocating
977 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
978 * to do our own memory management.
979 *
980 * The driver needs to allocate a contiguous chunk of memory at boot
981 * time. We then chop this up ourselves into 9K pieces and use them
982 * as external mbuf storage.
983 *
984 * One issue here is how much memory to allocate. The jumbo ring has
985 * 256 slots in it, but at 9K per slot than can consume over 2MB of
986 * RAM. This is a bit much, especially considering we also need
987 * RAM for the standard ring and mini ring (on the Tigon 2). To
988 * save space, we only actually allocate enough memory for 64 slots
989 * by default, which works out to between 500 and 600K. This can
990 * be tuned by changing a #define in if_tireg.h.
991 */
992
993static int
994ti_alloc_jumbo_mem(sc)
995	struct ti_softc		*sc;
996{
997	caddr_t			ptr;
998	register int		i;
999	struct ti_jpool_entry   *entry;
1000
1001	/* Grab a big chunk o' storage. */
1002	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
1003		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1004
1005	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
1006		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
1007		return(ENOBUFS);
1008	}
1009
1010	SLIST_INIT(&sc->ti_jfree_listhead);
1011	SLIST_INIT(&sc->ti_jinuse_listhead);
1012
1013	/*
1014	 * Now divide it up into 9K pieces and save the addresses
1015	 * in an array.
1016	 */
1017	ptr = sc->ti_cdata.ti_jumbo_buf;
1018	for (i = 0; i < TI_JSLOTS; i++) {
1019		sc->ti_cdata.ti_jslots[i] = ptr;
1020		ptr += TI_JLEN;
1021		entry = malloc(sizeof(struct ti_jpool_entry),
1022			       M_DEVBUF, M_NOWAIT);
1023		if (entry == NULL) {
1024			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1025			           M_DEVBUF);
1026			sc->ti_cdata.ti_jumbo_buf = NULL;
1027			printf("ti%d: no memory for jumbo "
1028			    "buffer queue!\n", sc->ti_unit);
1029			return(ENOBUFS);
1030		}
1031		entry->slot = i;
1032		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1033	}
1034
1035	return(0);
1036}
1037
1038/*
1039 * Allocate a jumbo buffer.
1040 */
1041static void *ti_jalloc(sc)
1042	struct ti_softc		*sc;
1043{
1044	struct ti_jpool_entry   *entry;
1045
1046	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1047
1048	if (entry == NULL) {
1049		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1050		return(NULL);
1051	}
1052
1053	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1054	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1055	return(sc->ti_cdata.ti_jslots[entry->slot]);
1056}
1057
1058/*
1059 * Release a jumbo buffer.
1060 */
1061static void
1062ti_jfree(buf, args)
1063	void			*buf;
1064	void			*args;
1065{
1066	struct ti_softc		*sc;
1067	int		        i;
1068	struct ti_jpool_entry   *entry;
1069
1070	/* Extract the softc struct pointer. */
1071	sc = (struct ti_softc *)args;
1072
1073	if (sc == NULL)
1074		panic("ti_jfree: didn't get softc pointer!");
1075
1076	/* calculate the slot this buffer belongs to */
1077	i = ((vm_offset_t)buf
1078	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1079
1080	if ((i < 0) || (i >= TI_JSLOTS))
1081		panic("ti_jfree: asked to free buffer that we don't manage!");
1082
1083	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1084	if (entry == NULL)
1085		panic("ti_jfree: buffer not in use!");
1086	entry->slot = i;
1087	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1088	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1089
1090	return;
1091}
1092
1093#endif /* TI_PRIVATE_JUMBOS */
1094
1095/*
1096 * Intialize a standard receive ring descriptor.
1097 */
1098static int
1099ti_newbuf_std(sc, i, m)
1100	struct ti_softc		*sc;
1101	int			i;
1102	struct mbuf		*m;
1103{
1104	struct mbuf		*m_new = NULL;
1105	struct ti_rx_desc	*r;
1106
1107	if (m == NULL) {
1108		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1109		if (m_new == NULL)
1110			return(ENOBUFS);
1111
1112		MCLGET(m_new, M_DONTWAIT);
1113		if (!(m_new->m_flags & M_EXT)) {
1114			m_freem(m_new);
1115			return(ENOBUFS);
1116		}
1117		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1118	} else {
1119		m_new = m;
1120		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1121		m_new->m_data = m_new->m_ext.ext_buf;
1122	}
1123
1124	m_adj(m_new, ETHER_ALIGN);
1125	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1126	r = &sc->ti_rdata->ti_rx_std_ring[i];
1127	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1128	r->ti_type = TI_BDTYPE_RECV_BD;
1129	r->ti_flags = 0;
1130	if (sc->arpcom.ac_if.if_hwassist)
1131		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1132	r->ti_len = m_new->m_len;
1133	r->ti_idx = i;
1134
1135	return(0);
1136}
1137
1138/*
1139 * Intialize a mini receive ring descriptor. This only applies to
1140 * the Tigon 2.
1141 */
1142static int
1143ti_newbuf_mini(sc, i, m)
1144	struct ti_softc		*sc;
1145	int			i;
1146	struct mbuf		*m;
1147{
1148	struct mbuf		*m_new = NULL;
1149	struct ti_rx_desc	*r;
1150
1151	if (m == NULL) {
1152		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1153		if (m_new == NULL) {
1154			return(ENOBUFS);
1155		}
1156		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1157	} else {
1158		m_new = m;
1159		m_new->m_data = m_new->m_pktdat;
1160		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1161	}
1162
1163	m_adj(m_new, ETHER_ALIGN);
1164	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1165	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1166	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1167	r->ti_type = TI_BDTYPE_RECV_BD;
1168	r->ti_flags = TI_BDFLAG_MINI_RING;
1169	if (sc->arpcom.ac_if.if_hwassist)
1170		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1171	r->ti_len = m_new->m_len;
1172	r->ti_idx = i;
1173
1174	return(0);
1175}
1176
1177#ifdef TI_PRIVATE_JUMBOS
1178
1179/*
1180 * Initialize a jumbo receive ring descriptor. This allocates
1181 * a jumbo buffer from the pool managed internally by the driver.
1182 */
1183static int
1184ti_newbuf_jumbo(sc, i, m)
1185	struct ti_softc		*sc;
1186	int			i;
1187	struct mbuf		*m;
1188{
1189	struct mbuf		*m_new = NULL;
1190	struct ti_rx_desc	*r;
1191
1192	if (m == NULL) {
1193		caddr_t			*buf = NULL;
1194
1195		/* Allocate the mbuf. */
1196		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1197		if (m_new == NULL) {
1198			return(ENOBUFS);
1199		}
1200
1201		/* Allocate the jumbo buffer */
1202		buf = ti_jalloc(sc);
1203		if (buf == NULL) {
1204			m_freem(m_new);
1205			printf("ti%d: jumbo allocation failed "
1206			    "-- packet dropped!\n", sc->ti_unit);
1207			return(ENOBUFS);
1208		}
1209
1210		/* Attach the buffer to the mbuf. */
1211		m_new->m_data = (void *) buf;
1212		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1213		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1214		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1215	} else {
1216		m_new = m;
1217		m_new->m_data = m_new->m_ext.ext_buf;
1218		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1219	}
1220
1221	m_adj(m_new, ETHER_ALIGN);
1222	/* Set up the descriptor. */
1223	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1224	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1225	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1226	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1227	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1228	if (sc->arpcom.ac_if.if_hwassist)
1229		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1230	r->ti_len = m_new->m_len;
1231	r->ti_idx = i;
1232
1233	return(0);
1234}
1235
1236#else
1237#include <vm/vm_page.h>
1238
1239#if (PAGE_SIZE == 4096)
1240#define NPAYLOAD 2
1241#else
1242#define NPAYLOAD 1
1243#endif
1244
1245#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1246#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1247#define NFS_HDR_LEN (UDP_HDR_LEN)
1248static int HDR_LEN =  TCP_HDR_LEN;
1249
1250
1251 /*
1252  * Initialize a jumbo receive ring descriptor. This allocates
1253  * a jumbo buffer from the pool managed internally by the driver.
1254  */
1255static int
1256ti_newbuf_jumbo(sc, idx, m_old)
1257        struct ti_softc         *sc;
1258        int                     idx;
1259        struct mbuf             *m_old;
1260{
1261	struct mbuf		*cur, *m_new = NULL;
1262	struct mbuf		*m[3] = {NULL, NULL, NULL};
1263	struct ti_rx_desc_ext	*r;
1264	vm_page_t		frame;
1265				/* 1 extra buf to make nobufs easy*/
1266	caddr_t			buf[3] = {NULL, NULL, NULL};
1267	int			i;
1268
1269	if (m_old != NULL) {
1270		m_new = m_old;
1271		cur = m_old->m_next;
1272		for (i = 0; i <= NPAYLOAD; i++){
1273			m[i] = cur;
1274			cur = cur->m_next;
1275		}
1276	} else {
1277		/* Allocate the mbufs. */
1278		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1279		if (m_new == NULL) {
1280			printf("ti%d: mbuf allocation failed "
1281   			       "-- packet dropped!\n", sc->ti_unit);
1282			goto nobufs;
1283		}
1284		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1285		if (m[NPAYLOAD] == NULL) {
1286			printf("ti%d: cluster mbuf allocation failed "
1287			       "-- packet dropped!\n", sc->ti_unit);
1288			goto nobufs;
1289		}
1290		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1291		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1292			printf("ti%d: mbuf allocation failed "
1293			       "-- packet dropped!\n", sc->ti_unit);
1294			goto nobufs;
1295		}
1296		m[NPAYLOAD]->m_len = MCLBYTES;
1297
1298		for (i = 0; i < NPAYLOAD; i++){
1299			MGET(m[i], M_DONTWAIT, MT_DATA);
1300			if (m[i] == NULL) {
1301				printf("ti%d: mbuf allocation failed "
1302				       "-- packet dropped!\n", sc->ti_unit);
1303				goto nobufs;
1304			}
1305			if (!(frame = jumbo_pg_alloc())){
1306  				printf("ti%d: buffer allocation failed "
1307   				       "-- packet dropped!\n", sc->ti_unit);
1308				printf("      index %d page %d\n", idx, i);
1309   				goto nobufs;
1310			}
1311			buf[i] = jumbo_phys_to_kva(VM_PAGE_TO_PHYS(frame));
1312		}
1313		for (i = 0; i < NPAYLOAD; i++){
1314  		/* Attach the buffer to the mbuf. */
1315   			m[i]->m_data = (void *)buf[i];
1316			m[i]->m_len = PAGE_SIZE;
1317			MEXTADD(m[i], (void *)buf[i], PAGE_SIZE,
1318				jumbo_freem, NULL, 0, EXT_DISPOSABLE);
1319			m[i]->m_next = m[i+1];
1320		}
1321		/* link the buffers to the header */
1322		m_new->m_next = m[0];
1323		m_new->m_data += ETHER_ALIGN;
1324		if (sc->ti_hdrsplit)
1325			m_new->m_len = MHLEN - ETHER_ALIGN;
1326		else
1327   			m_new->m_len = HDR_LEN;
1328		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1329	}
1330
1331	/* Set up the descriptor. */
1332	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1333	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1334	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1335	r->ti_len0 = m_new->m_len;
1336
1337	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1338	r->ti_len1 = PAGE_SIZE;
1339
1340	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1341	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1342
1343	if (PAGE_SIZE == 4096) {
1344		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1345		r->ti_len3 = MCLBYTES;
1346	} else {
1347		r->ti_len3 = 0;
1348	}
1349        r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1350
1351        r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1352
1353	if (sc->arpcom.ac_if.if_hwassist)
1354		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1355
1356        r->ti_idx = idx;
1357
1358        return(0);
1359
1360 nobufs:
1361
1362	/*
1363	 * Warning! :
1364	 * This can only be called before the mbufs are strung together.
1365	 * If the mbufs are strung together, m_freem() will free the chain,
1366	 * so that the later mbufs will be freed multiple times.
1367	 */
1368        if (m_new)
1369                m_freem(m_new);
1370
1371        for(i = 0; i < 3; i++){
1372                if (m[i])
1373                        m_freem(m[i]);
1374                if (buf[i])
1375                        jumbo_pg_free((vm_offset_t)buf[i]);
1376        }
1377        return ENOBUFS;
1378}
1379#endif
1380
1381
1382
1383/*
1384 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1385 * that's 1MB or memory, which is a lot. For now, we fill only the first
1386 * 256 ring entries and hope that our CPU is fast enough to keep up with
1387 * the NIC.
1388 */
1389static int
1390ti_init_rx_ring_std(sc)
1391	struct ti_softc		*sc;
1392{
1393	register int		i;
1394	struct ti_cmd_desc	cmd;
1395
1396	for (i = 0; i < TI_SSLOTS; i++) {
1397		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1398			return(ENOBUFS);
1399	};
1400
1401	TI_UPDATE_STDPROD(sc, i - 1);
1402	sc->ti_std = i - 1;
1403
1404	return(0);
1405}
1406
1407static void
1408ti_free_rx_ring_std(sc)
1409	struct ti_softc		*sc;
1410{
1411	register int		i;
1412
1413	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1414		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1415			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1416			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1417		}
1418		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1419		    sizeof(struct ti_rx_desc));
1420	}
1421
1422	return;
1423}
1424
1425static int
1426ti_init_rx_ring_jumbo(sc)
1427	struct ti_softc		*sc;
1428{
1429	register int		i;
1430	struct ti_cmd_desc	cmd;
1431
1432	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1433		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1434			return(ENOBUFS);
1435	};
1436
1437	TI_UPDATE_JUMBOPROD(sc, i - 1);
1438	sc->ti_jumbo = i - 1;
1439
1440	return(0);
1441}
1442
1443static void
1444ti_free_rx_ring_jumbo(sc)
1445	struct ti_softc		*sc;
1446{
1447	register int		i;
1448
1449	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1450		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1451			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1452			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1453		}
1454		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1455		    sizeof(struct ti_rx_desc));
1456	}
1457
1458	return;
1459}
1460
1461static int
1462ti_init_rx_ring_mini(sc)
1463	struct ti_softc		*sc;
1464{
1465	register int		i;
1466
1467	for (i = 0; i < TI_MSLOTS; i++) {
1468		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1469			return(ENOBUFS);
1470	};
1471
1472	TI_UPDATE_MINIPROD(sc, i - 1);
1473	sc->ti_mini = i - 1;
1474
1475	return(0);
1476}
1477
1478static void
1479ti_free_rx_ring_mini(sc)
1480	struct ti_softc		*sc;
1481{
1482	register int		i;
1483
1484	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1485		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1486			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1487			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1488		}
1489		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1490		    sizeof(struct ti_rx_desc));
1491	}
1492
1493	return;
1494}
1495
1496static void
1497ti_free_tx_ring(sc)
1498	struct ti_softc		*sc;
1499{
1500	register int		i;
1501
1502	if (sc->ti_rdata->ti_tx_ring == NULL)
1503		return;
1504
1505	for (i = 0; i < TI_TX_RING_CNT; i++) {
1506		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1507			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1508			sc->ti_cdata.ti_tx_chain[i] = NULL;
1509		}
1510		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1511		    sizeof(struct ti_tx_desc));
1512	}
1513
1514	return;
1515}
1516
1517static int
1518ti_init_tx_ring(sc)
1519	struct ti_softc		*sc;
1520{
1521	sc->ti_txcnt = 0;
1522	sc->ti_tx_saved_considx = 0;
1523	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1524	return(0);
1525}
1526
1527/*
1528 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1529 * but we have to support the old way too so that Tigon 1 cards will
1530 * work.
1531 */
1532static void
1533ti_add_mcast(sc, addr)
1534	struct ti_softc		*sc;
1535	struct ether_addr	*addr;
1536{
1537	struct ti_cmd_desc	cmd;
1538	u_int16_t		*m;
1539	u_int32_t		ext[2] = {0, 0};
1540
1541	m = (u_int16_t *)&addr->octet[0];
1542
1543	switch(sc->ti_hwrev) {
1544	case TI_HWREV_TIGON:
1545		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1546		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1547		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1548		break;
1549	case TI_HWREV_TIGON_II:
1550		ext[0] = htons(m[0]);
1551		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1552		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1553		break;
1554	default:
1555		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1556		break;
1557	}
1558
1559	return;
1560}
1561
1562static void
1563ti_del_mcast(sc, addr)
1564	struct ti_softc		*sc;
1565	struct ether_addr	*addr;
1566{
1567	struct ti_cmd_desc	cmd;
1568	u_int16_t		*m;
1569	u_int32_t		ext[2] = {0, 0};
1570
1571	m = (u_int16_t *)&addr->octet[0];
1572
1573	switch(sc->ti_hwrev) {
1574	case TI_HWREV_TIGON:
1575		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1576		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1577		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1578		break;
1579	case TI_HWREV_TIGON_II:
1580		ext[0] = htons(m[0]);
1581		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1582		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1583		break;
1584	default:
1585		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1586		break;
1587	}
1588
1589	return;
1590}
1591
1592/*
1593 * Configure the Tigon's multicast address filter.
1594 *
1595 * The actual multicast table management is a bit of a pain, thanks to
1596 * slight brain damage on the part of both Alteon and us. With our
1597 * multicast code, we are only alerted when the multicast address table
1598 * changes and at that point we only have the current list of addresses:
1599 * we only know the current state, not the previous state, so we don't
1600 * actually know what addresses were removed or added. The firmware has
1601 * state, but we can't get our grubby mits on it, and there is no 'delete
1602 * all multicast addresses' command. Hence, we have to maintain our own
1603 * state so we know what addresses have been programmed into the NIC at
1604 * any given time.
1605 */
1606static void
1607ti_setmulti(sc)
1608	struct ti_softc		*sc;
1609{
1610	struct ifnet		*ifp;
1611	struct ifmultiaddr	*ifma;
1612	struct ti_cmd_desc	cmd;
1613	struct ti_mc_entry	*mc;
1614	u_int32_t		intrs;
1615
1616	ifp = &sc->arpcom.ac_if;
1617
1618	if (ifp->if_flags & IFF_ALLMULTI) {
1619		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1620		return;
1621	} else {
1622		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1623	}
1624
1625	/* Disable interrupts. */
1626	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1627	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1628
1629	/* First, zot all the existing filters. */
1630	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1631		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1632		ti_del_mcast(sc, &mc->mc_addr);
1633		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1634		free(mc, M_DEVBUF);
1635	}
1636
1637	/* Now program new ones. */
1638	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1639		if (ifma->ifma_addr->sa_family != AF_LINK)
1640			continue;
1641		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1642		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1643		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1644		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1645		ti_add_mcast(sc, &mc->mc_addr);
1646	}
1647
1648	/* Re-enable interrupts. */
1649	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1650
1651	return;
1652}
1653
1654/*
1655 * Check to see if the BIOS has configured us for a 64 bit slot when
1656 * we aren't actually in one. If we detect this condition, we can work
1657 * around it on the Tigon 2 by setting a bit in the PCI state register,
1658 * but for the Tigon 1 we must give up and abort the interface attach.
1659 */
1660static int ti_64bitslot_war(sc)
1661	struct ti_softc		*sc;
1662{
1663	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1664		CSR_WRITE_4(sc, 0x600, 0);
1665		CSR_WRITE_4(sc, 0x604, 0);
1666		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1667		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1668			if (sc->ti_hwrev == TI_HWREV_TIGON)
1669				return(EINVAL);
1670			else {
1671				TI_SETBIT(sc, TI_PCI_STATE,
1672				    TI_PCISTATE_32BIT_BUS);
1673				return(0);
1674			}
1675		}
1676	}
1677
1678	return(0);
1679}
1680
1681/*
1682 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1683 * self-test results.
1684 */
1685static int
1686ti_chipinit(sc)
1687	struct ti_softc		*sc;
1688{
1689	u_int32_t		cacheline;
1690	u_int32_t		pci_writemax = 0;
1691	u_int32_t		hdrsplit;
1692
1693	/* Initialize link to down state. */
1694	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1695
1696	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1697		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1698	else
1699		sc->arpcom.ac_if.if_hwassist = 0;
1700
1701	/* Set endianness before we access any non-PCI registers. */
1702#if BYTE_ORDER == BIG_ENDIAN
1703	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1704	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1705#else
1706	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1707	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1708#endif
1709
1710	/* Check the ROM failed bit to see if self-tests passed. */
1711	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1712		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1713		return(ENODEV);
1714	}
1715
1716	/* Halt the CPU. */
1717	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1718
1719	/* Figure out the hardware revision. */
1720	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1721	case TI_REV_TIGON_I:
1722		sc->ti_hwrev = TI_HWREV_TIGON;
1723		break;
1724	case TI_REV_TIGON_II:
1725		sc->ti_hwrev = TI_HWREV_TIGON_II;
1726		break;
1727	default:
1728		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1729		return(ENODEV);
1730	}
1731
1732	/* Do special setup for Tigon 2. */
1733	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1734		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1735		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1736		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1737	}
1738
1739	/*
1740	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1741	 * can't do header splitting.
1742	 */
1743#ifdef TI_JUMBO_HDRSPLIT
1744	if (sc->ti_hwrev != TI_HWREV_TIGON)
1745		sc->ti_hdrsplit = 1;
1746	else
1747		printf("ti%d: can't do header splitting on a Tigon I board\n",
1748		       sc->ti_unit);
1749#endif /* TI_JUMBO_HDRSPLIT */
1750
1751	/* Set up the PCI state register. */
1752	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1753	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1754		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1755	}
1756
1757	/* Clear the read/write max DMA parameters. */
1758	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1759	    TI_PCISTATE_READ_MAXDMA));
1760
1761	/* Get cache line size. */
1762	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1763
1764	/*
1765	 * If the system has set enabled the PCI memory write
1766	 * and invalidate command in the command register, set
1767	 * the write max parameter accordingly. This is necessary
1768	 * to use MWI with the Tigon 2.
1769	 */
1770	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1771		switch(cacheline) {
1772		case 1:
1773		case 4:
1774		case 8:
1775		case 16:
1776		case 32:
1777		case 64:
1778			break;
1779		default:
1780		/* Disable PCI memory write and invalidate. */
1781			if (bootverbose)
1782				printf("ti%d: cache line size %d not "
1783				    "supported; disabling PCI MWI\n",
1784				    sc->ti_unit, cacheline);
1785			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1786			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1787			break;
1788		}
1789	}
1790
1791#ifdef __brokenalpha__
1792	/*
1793	 * From the Alteon sample driver:
1794	 * Must insure that we do not cross an 8K (bytes) boundary
1795	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1796	 * restriction on some ALPHA platforms with early revision
1797	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1798	 */
1799	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1800#else
1801	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1802#endif
1803
1804	/* This sets the min dma param all the way up (0xff). */
1805	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1806
1807	if (sc->ti_hdrsplit)
1808		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1809	else
1810		hdrsplit = 0;
1811
1812	/* Configure DMA variables. */
1813#if BYTE_ORDER == BIG_ENDIAN
1814	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1815	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1816	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1817	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1818#else /* BYTE_ORDER */
1819	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1820	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1821	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1822#endif /* BYTE_ORDER */
1823
1824	/*
1825	 * Only allow 1 DMA channel to be active at a time.
1826	 * I don't think this is a good idea, but without it
1827	 * the firmware racks up lots of nicDmaReadRingFull
1828	 * errors.  This is not compatible with hardware checksums.
1829	 */
1830	if (sc->arpcom.ac_if.if_hwassist == 0)
1831		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1832
1833	/* Recommended settings from Tigon manual. */
1834	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1835	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1836
1837	if (ti_64bitslot_war(sc)) {
1838		printf("ti%d: bios thinks we're in a 64 bit slot, "
1839		    "but we aren't", sc->ti_unit);
1840		return(EINVAL);
1841	}
1842
1843	return(0);
1844}
1845
1846/*
1847 * Initialize the general information block and firmware, and
1848 * start the CPU(s) running.
1849 */
1850static int
1851ti_gibinit(sc)
1852	struct ti_softc		*sc;
1853{
1854	struct ti_rcb		*rcb;
1855	int			i;
1856	struct ifnet		*ifp;
1857
1858	ifp = &sc->arpcom.ac_if;
1859
1860	/* Disable interrupts for now. */
1861	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1862
1863	/* Tell the chip where to find the general information block. */
1864	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1865	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1866
1867	/* Load the firmware into SRAM. */
1868	ti_loadfw(sc);
1869
1870	/* Set up the contents of the general info and ring control blocks. */
1871
1872	/* Set up the event ring and producer pointer. */
1873	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1874
1875	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1876	rcb->ti_flags = 0;
1877	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1878	    vtophys(&sc->ti_ev_prodidx);
1879	sc->ti_ev_prodidx.ti_idx = 0;
1880	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1881	sc->ti_ev_saved_considx = 0;
1882
1883	/* Set up the command ring and producer mailbox. */
1884	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1885
1886	sc->ti_rdata->ti_cmd_ring =
1887	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1888	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1889	rcb->ti_flags = 0;
1890	rcb->ti_max_len = 0;
1891	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1892		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1893	}
1894	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1895	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1896	sc->ti_cmd_saved_prodidx = 0;
1897
1898	/*
1899	 * Assign the address of the stats refresh buffer.
1900	 * We re-use the current stats buffer for this to
1901	 * conserve memory.
1902	 */
1903	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1904	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1905
1906	/* Set up the standard receive ring. */
1907	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1908	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1909	rcb->ti_max_len = TI_FRAMELEN;
1910	rcb->ti_flags = 0;
1911	if (sc->arpcom.ac_if.if_hwassist)
1912		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1913		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1914	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1915
1916	/* Set up the jumbo receive ring. */
1917	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1918	TI_HOSTADDR(rcb->ti_hostaddr) =
1919	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1920
1921#ifdef TI_PRIVATE_JUMBOS
1922	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1923	rcb->ti_flags = 0;
1924#else
1925	rcb->ti_max_len = PAGE_SIZE;
1926	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1927#endif
1928	if (sc->arpcom.ac_if.if_hwassist)
1929		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1930		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1931	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1932
1933	/*
1934	 * Set up the mini ring. Only activated on the
1935	 * Tigon 2 but the slot in the config block is
1936	 * still there on the Tigon 1.
1937	 */
1938	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1939	TI_HOSTADDR(rcb->ti_hostaddr) =
1940	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1941	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1942	if (sc->ti_hwrev == TI_HWREV_TIGON)
1943		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1944	else
1945		rcb->ti_flags = 0;
1946	if (sc->arpcom.ac_if.if_hwassist)
1947		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1948		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1949	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1950
1951	/*
1952	 * Set up the receive return ring.
1953	 */
1954	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1955	TI_HOSTADDR(rcb->ti_hostaddr) =
1956	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1957	rcb->ti_flags = 0;
1958	rcb->ti_max_len = TI_RETURN_RING_CNT;
1959	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1960	    vtophys(&sc->ti_return_prodidx);
1961
1962	/*
1963	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1964	 * of putting the transmit ring in the host's address space and
1965	 * letting the chip DMA it instead of leaving the ring in the NIC's
1966	 * memory and accessing it through the shared memory region. We
1967	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1968	 * so we have to revert to the shared memory scheme if we detect
1969	 * a Tigon 1 chip.
1970	 */
1971	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1972	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1973		sc->ti_rdata->ti_tx_ring_nic =
1974		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1975	}
1976	bzero((char *)sc->ti_rdata->ti_tx_ring,
1977	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1978	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1979	if (sc->ti_hwrev == TI_HWREV_TIGON)
1980		rcb->ti_flags = 0;
1981	else
1982		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1983	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1984	if (sc->arpcom.ac_if.if_hwassist)
1985		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1986		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1987	rcb->ti_max_len = TI_TX_RING_CNT;
1988	if (sc->ti_hwrev == TI_HWREV_TIGON)
1989		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1990	else
1991		TI_HOSTADDR(rcb->ti_hostaddr) =
1992		    vtophys(&sc->ti_rdata->ti_tx_ring);
1993	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1994	    vtophys(&sc->ti_tx_considx);
1995
1996	/* Set up tuneables */
1997#if 0
1998	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1999		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2000		    (sc->ti_rx_coal_ticks / 10));
2001	else
2002#endif
2003		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2004	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2005	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2006	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2007	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2008	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2009
2010	/* Turn interrupts on. */
2011	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2012	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2013
2014	/* Start CPU. */
2015	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2016
2017	return(0);
2018}
2019
2020/*
2021 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2022 * against our list and return its name if we find a match.
2023 */
2024static int
2025ti_probe(dev)
2026	device_t		dev;
2027{
2028	struct ti_type		*t;
2029
2030	t = ti_devs;
2031
2032	while(t->ti_name != NULL) {
2033		if ((pci_get_vendor(dev) == t->ti_vid) &&
2034		    (pci_get_device(dev) == t->ti_did)) {
2035			device_set_desc(dev, t->ti_name);
2036			return(0);
2037		}
2038		t++;
2039	}
2040
2041	return(ENXIO);
2042}
2043
2044static int
2045ti_attach(dev)
2046	device_t		dev;
2047{
2048	struct ifnet		*ifp;
2049	struct ti_softc		*sc;
2050	int			unit, error = 0, rid;
2051
2052	sc = device_get_softc(dev);
2053	unit = device_get_unit(dev);
2054
2055	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2056	    MTX_DEF | MTX_RECURSE);
2057	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2058	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM |
2059	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2060	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2061
2062	/*
2063	 * Map control/status registers.
2064	 */
2065	pci_enable_busmaster(dev);
2066
2067	rid = TI_PCI_LOMEM;
2068	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2069	    RF_ACTIVE|PCI_RF_DENSE);
2070
2071	if (sc->ti_res == NULL) {
2072		printf ("ti%d: couldn't map memory\n", unit);
2073		error = ENXIO;
2074		goto fail;
2075	}
2076
2077	sc->ti_btag = rman_get_bustag(sc->ti_res);
2078	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2079	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2080
2081	/* Allocate interrupt */
2082	rid = 0;
2083
2084	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2085	    RF_SHAREABLE | RF_ACTIVE);
2086
2087	if (sc->ti_irq == NULL) {
2088		printf("ti%d: couldn't map interrupt\n", unit);
2089		error = ENXIO;
2090		goto fail;
2091	}
2092
2093	sc->ti_unit = unit;
2094
2095	if (ti_chipinit(sc)) {
2096		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2097		error = ENXIO;
2098		goto fail;
2099	}
2100
2101	/* Zero out the NIC's on-board SRAM. */
2102	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2103
2104	/* Init again -- zeroing memory may have clobbered some registers. */
2105	if (ti_chipinit(sc)) {
2106		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2107		error = ENXIO;
2108		goto fail;
2109	}
2110
2111	/*
2112	 * Get station address from the EEPROM. Note: the manual states
2113	 * that the MAC address is at offset 0x8c, however the data is
2114	 * stored as two longwords (since that's how it's loaded into
2115	 * the NIC). This means the MAC address is actually preceded
2116	 * by two zero bytes. We need to skip over those.
2117	 */
2118	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2119				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2120		printf("ti%d: failed to read station address\n", unit);
2121		error = ENXIO;
2122		goto fail;
2123	}
2124
2125	/* Allocate the general information block and ring buffers. */
2126	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
2127	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2128
2129	if (sc->ti_rdata == NULL) {
2130		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
2131		error = ENXIO;
2132		goto fail;
2133	}
2134
2135	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2136
2137	/* Try to allocate memory for jumbo buffers. */
2138#ifdef TI_PRIVATE_JUMBOS
2139	if (ti_alloc_jumbo_mem(sc)) {
2140		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2141		error = ENXIO;
2142		goto fail;
2143	}
2144#else
2145	if (!jumbo_vm_init()) {
2146		printf("ti%d: VM initialization failed!\n", sc->ti_unit);
2147		error = ENOMEM;
2148		goto fail;
2149	}
2150#endif
2151
2152	/*
2153	 * We really need a better way to tell a 1000baseTX card
2154	 * from a 1000baseSX one, since in theory there could be
2155	 * OEMed 1000baseTX cards from lame vendors who aren't
2156	 * clever enough to change the PCI ID. For the moment
2157	 * though, the AceNIC is the only copper card available.
2158	 */
2159	if (pci_get_vendor(dev) == ALT_VENDORID &&
2160	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2161		sc->ti_copper = 1;
2162	/* Ok, it's not the only copper card available. */
2163	if (pci_get_vendor(dev) == NG_VENDORID &&
2164	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2165		sc->ti_copper = 1;
2166
2167	/* Set default tuneable values. */
2168	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2169#if 0
2170	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2171#endif
2172	sc->ti_rx_coal_ticks = 170;
2173	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2174	sc->ti_rx_max_coal_bds = 64;
2175#if 0
2176	sc->ti_tx_max_coal_bds = 128;
2177#endif
2178	sc->ti_tx_max_coal_bds = 32;
2179	sc->ti_tx_buf_ratio = 21;
2180
2181	/* Set up ifnet structure */
2182	ifp = &sc->arpcom.ac_if;
2183	ifp->if_softc = sc;
2184	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2185	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2186	tis[unit] = sc;
2187	ifp->if_ioctl = ti_ioctl;
2188	ifp->if_start = ti_start;
2189	ifp->if_watchdog = ti_watchdog;
2190	ifp->if_init = ti_init;
2191	ifp->if_mtu = ETHERMTU;
2192	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2193
2194	/* Set up ifmedia support. */
2195	if (sc->ti_copper) {
2196		/*
2197		 * Copper cards allow manual 10/100 mode selection,
2198		 * but not manual 1000baseTX mode selection. Why?
2199		 * Becuase currently there's no way to specify the
2200		 * master/slave setting through the firmware interface,
2201		 * so Alteon decided to just bag it and handle it
2202		 * via autonegotiation.
2203		 */
2204		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2205		ifmedia_add(&sc->ifmedia,
2206		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2207		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2208		ifmedia_add(&sc->ifmedia,
2209		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2210		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2211		ifmedia_add(&sc->ifmedia,
2212		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2213	} else {
2214		/* Fiber cards don't support 10/100 modes. */
2215		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2216		ifmedia_add(&sc->ifmedia,
2217		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2218	}
2219	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2220	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2221
2222	/*
2223	 * We're assuming here that card initialization is a sequential
2224	 * thing.  If it isn't, multiple cards probing at the same time
2225	 * could stomp on the list of softcs here.
2226	 */
2227
2228	/* Register the device */
2229	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2230			   0600, "ti%d", sc->ti_unit);
2231	sc->dev->si_drv1 = sc;
2232
2233	/*
2234	 * Call MI attach routine.
2235	 */
2236	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
2237
2238	/* Hook interrupt last to avoid having to lock softc */
2239	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2240	   ti_intr, sc, &sc->ti_intrhand);
2241
2242	if (error) {
2243		printf("ti%d: couldn't set up irq\n", unit);
2244		ether_ifdetach(ifp);
2245		goto fail;
2246	}
2247
2248fail:
2249	if (sc && error)
2250		ti_detach(dev);
2251
2252	return(error);
2253}
2254
2255/*
2256 * Shutdown hardware and free up resources. This can be called any
2257 * time after the mutex has been initialized. It is called in both
2258 * the error case in attach and the normal detach case so it needs
2259 * to be careful about only freeing resources that have actually been
2260 * allocated.
2261 */
2262static int
2263ti_detach(dev)
2264	device_t		dev;
2265{
2266	struct ti_softc		*sc;
2267	struct ifnet		*ifp;
2268
2269	sc = device_get_softc(dev);
2270	destroy_dev(sc->dev);
2271	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2272	TI_LOCK(sc);
2273	ifp = &sc->arpcom.ac_if;
2274
2275	/* These should only be active if attach succeeded */
2276	if (device_is_attached(dev)) {
2277		ti_stop(sc);
2278		ether_ifdetach(ifp);
2279		bus_generic_detach(dev);
2280	}
2281	ifmedia_removeall(&sc->ifmedia);
2282
2283	if (sc->ti_intrhand)
2284		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2285	if (sc->ti_irq)
2286		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2287	if (sc->ti_res) {
2288		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2289		    sc->ti_res);
2290	}
2291
2292#ifdef TI_PRIVATE_JUMBOS
2293	if (sc->ti_cdata.ti_jumbo_buf)
2294		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2295#endif
2296	if (sc->ti_rdata)
2297		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2298
2299	TI_UNLOCK(sc);
2300	mtx_destroy(&sc->ti_mtx);
2301
2302	return(0);
2303}
2304
2305#ifdef TI_JUMBO_HDRSPLIT
2306/*
2307 * If hdr_len is 0, that means that header splitting wasn't done on
2308 * this packet for some reason.  The two most likely reasons are that
2309 * the protocol isn't a supported protocol for splitting, or this
2310 * packet had a fragment offset that wasn't 0.
2311 *
2312 * The header length, if it is non-zero, will always be the length of
2313 * the headers on the packet, but that length could be longer than the
2314 * first mbuf.  So we take the minimum of the two as the actual
2315 * length.
2316 */
2317static __inline void
2318ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2319{
2320	int i = 0;
2321	int lengths[4] = {0, 0, 0, 0};
2322	struct mbuf *m, *mp;
2323
2324	if (hdr_len != 0)
2325		top->m_len = min(hdr_len, top->m_len);
2326	pkt_len -= top->m_len;
2327	lengths[i++] = top->m_len;
2328
2329	mp = top;
2330	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2331		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2332		pkt_len -= m->m_len;
2333		lengths[i++] = m->m_len;
2334		mp = m;
2335	}
2336
2337#if 0
2338	if (hdr_len != 0)
2339		printf("got split packet: ");
2340	else
2341		printf("got non-split packet: ");
2342
2343	printf("%d,%d,%d,%d = %d\n", lengths[0],
2344	    lengths[1], lengths[2], lengths[3],
2345	    lengths[0] + lengths[1] + lengths[2] +
2346	    lengths[3]);
2347#endif
2348
2349	if (pkt_len)
2350		panic("header splitting didn't");
2351
2352	if (m) {
2353		m_freem(m);
2354		mp->m_next = NULL;
2355
2356	}
2357	if (mp->m_next != NULL)
2358		panic("ti_hdr_split: last mbuf in chain should be null");
2359}
2360#endif /* TI_JUMBO_HDRSPLIT */
2361
2362/*
2363 * Frame reception handling. This is called if there's a frame
2364 * on the receive return list.
2365 *
2366 * Note: we have to be able to handle three possibilities here:
2367 * 1) the frame is from the mini receive ring (can only happen)
2368 *    on Tigon 2 boards)
2369 * 2) the frame is from the jumbo recieve ring
2370 * 3) the frame is from the standard receive ring
2371 */
2372
2373static void
2374ti_rxeof(sc)
2375	struct ti_softc		*sc;
2376{
2377	struct ifnet		*ifp;
2378	struct ti_cmd_desc	cmd;
2379
2380	TI_LOCK_ASSERT(sc);
2381
2382	ifp = &sc->arpcom.ac_if;
2383
2384	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2385		struct ti_rx_desc	*cur_rx;
2386		u_int32_t		rxidx;
2387		struct mbuf		*m = NULL;
2388		u_int16_t		vlan_tag = 0;
2389		int			have_tag = 0;
2390
2391		cur_rx =
2392		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2393		rxidx = cur_rx->ti_idx;
2394		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2395
2396		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2397			have_tag = 1;
2398			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2399		}
2400
2401		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2402
2403			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2404			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2405			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2406			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2407				ifp->if_ierrors++;
2408				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2409				continue;
2410			}
2411			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2412				ifp->if_ierrors++;
2413				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2414				continue;
2415			}
2416#ifdef TI_PRIVATE_JUMBOS
2417                        m->m_len = cur_rx->ti_len;
2418#else /* TI_PRIVATE_JUMBOS */
2419#ifdef TI_JUMBO_HDRSPLIT
2420			if (sc->ti_hdrsplit)
2421				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2422					     cur_rx->ti_len, rxidx);
2423			else
2424#endif /* TI_JUMBO_HDRSPLIT */
2425                        	m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2426#endif /* TI_PRIVATE_JUMBOS */
2427		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2428			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2429			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2430			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2431			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2432				ifp->if_ierrors++;
2433				ti_newbuf_mini(sc, sc->ti_mini, m);
2434				continue;
2435			}
2436			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2437				ifp->if_ierrors++;
2438				ti_newbuf_mini(sc, sc->ti_mini, m);
2439				continue;
2440			}
2441			m->m_len = cur_rx->ti_len;
2442		} else {
2443			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2444			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2445			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2446			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2447				ifp->if_ierrors++;
2448				ti_newbuf_std(sc, sc->ti_std, m);
2449				continue;
2450			}
2451			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2452				ifp->if_ierrors++;
2453				ti_newbuf_std(sc, sc->ti_std, m);
2454				continue;
2455			}
2456			m->m_len = cur_rx->ti_len;
2457		}
2458
2459		m->m_pkthdr.len = cur_rx->ti_len;
2460		ifp->if_ipackets++;
2461		m->m_pkthdr.rcvif = ifp;
2462
2463		if (ifp->if_hwassist) {
2464			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2465			    CSUM_DATA_VALID;
2466			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2467				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2468			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2469		}
2470
2471		/*
2472		 * If we received a packet with a vlan tag,
2473		 * tag it before passing the packet upward.
2474		 */
2475		if (have_tag)
2476			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2477		TI_UNLOCK(sc);
2478		(*ifp->if_input)(ifp, m);
2479		TI_LOCK(sc);
2480	}
2481
2482	/* Only necessary on the Tigon 1. */
2483	if (sc->ti_hwrev == TI_HWREV_TIGON)
2484		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2485		    sc->ti_rx_saved_considx);
2486
2487	TI_UPDATE_STDPROD(sc, sc->ti_std);
2488	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2489	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2490
2491	return;
2492}
2493
2494static void
2495ti_txeof(sc)
2496	struct ti_softc		*sc;
2497{
2498	struct ti_tx_desc	*cur_tx = NULL;
2499	struct ifnet		*ifp;
2500
2501	ifp = &sc->arpcom.ac_if;
2502
2503	/*
2504	 * Go through our tx ring and free mbufs for those
2505	 * frames that have been sent.
2506	 */
2507	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2508		u_int32_t		idx = 0;
2509
2510		idx = sc->ti_tx_saved_considx;
2511		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2512			if (idx > 383)
2513				CSR_WRITE_4(sc, TI_WINBASE,
2514				    TI_TX_RING_BASE + 6144);
2515			else if (idx > 255)
2516				CSR_WRITE_4(sc, TI_WINBASE,
2517				    TI_TX_RING_BASE + 4096);
2518			else if (idx > 127)
2519				CSR_WRITE_4(sc, TI_WINBASE,
2520				    TI_TX_RING_BASE + 2048);
2521			else
2522				CSR_WRITE_4(sc, TI_WINBASE,
2523				    TI_TX_RING_BASE);
2524			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2525		} else
2526			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2527		if (cur_tx->ti_flags & TI_BDFLAG_END)
2528			ifp->if_opackets++;
2529		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2530			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2531			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2532		}
2533		sc->ti_txcnt--;
2534		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2535		ifp->if_timer = 0;
2536	}
2537
2538	if (cur_tx != NULL)
2539		ifp->if_flags &= ~IFF_OACTIVE;
2540
2541	return;
2542}
2543
2544static void
2545ti_intr(xsc)
2546	void			*xsc;
2547{
2548	struct ti_softc		*sc;
2549	struct ifnet		*ifp;
2550
2551	sc = xsc;
2552	TI_LOCK(sc);
2553	ifp = &sc->arpcom.ac_if;
2554
2555/*#ifdef notdef*/
2556	/* Avoid this for now -- checking this register is expensive. */
2557	/* Make sure this is really our interrupt. */
2558	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2559		TI_UNLOCK(sc);
2560		return;
2561	}
2562/*#endif*/
2563
2564	/* Ack interrupt and stop others from occuring. */
2565	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2566
2567	if (ifp->if_flags & IFF_RUNNING) {
2568		/* Check RX return ring producer/consumer */
2569		ti_rxeof(sc);
2570
2571		/* Check TX ring producer/consumer */
2572		ti_txeof(sc);
2573	}
2574
2575	ti_handle_events(sc);
2576
2577	/* Re-enable interrupts. */
2578	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2579
2580	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2581		ti_start(ifp);
2582
2583	TI_UNLOCK(sc);
2584
2585	return;
2586}
2587
2588static void
2589ti_stats_update(sc)
2590	struct ti_softc		*sc;
2591{
2592	struct ifnet		*ifp;
2593
2594	ifp = &sc->arpcom.ac_if;
2595
2596	ifp->if_collisions +=
2597	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2598	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2599	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2600	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2601	   ifp->if_collisions;
2602
2603	return;
2604}
2605
2606/*
2607 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2608 * pointers to descriptors.
2609 */
2610static int
2611ti_encap(sc, m_head, txidx)
2612	struct ti_softc		*sc;
2613	struct mbuf		*m_head;
2614	u_int32_t		*txidx;
2615{
2616	struct ti_tx_desc	*f = NULL;
2617	struct mbuf		*m;
2618	u_int32_t		frag, cur, cnt = 0;
2619	u_int16_t		csum_flags = 0;
2620	struct m_tag		*mtag;
2621
2622	m = m_head;
2623	cur = frag = *txidx;
2624
2625	if (m_head->m_pkthdr.csum_flags) {
2626		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2627			csum_flags |= TI_BDFLAG_IP_CKSUM;
2628		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2629			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2630		if (m_head->m_flags & M_LASTFRAG)
2631			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2632		else if (m_head->m_flags & M_FRAG)
2633			csum_flags |= TI_BDFLAG_IP_FRAG;
2634	}
2635
2636	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
2637
2638	/*
2639 	 * Start packing the mbufs in this chain into
2640	 * the fragment pointers. Stop when we run out
2641 	 * of fragments or hit the end of the mbuf chain.
2642	 */
2643	for (m = m_head; m != NULL; m = m->m_next) {
2644		if (m->m_len != 0) {
2645			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2646				if (frag > 383)
2647					CSR_WRITE_4(sc, TI_WINBASE,
2648					    TI_TX_RING_BASE + 6144);
2649				else if (frag > 255)
2650					CSR_WRITE_4(sc, TI_WINBASE,
2651					    TI_TX_RING_BASE + 4096);
2652				else if (frag > 127)
2653					CSR_WRITE_4(sc, TI_WINBASE,
2654					    TI_TX_RING_BASE + 2048);
2655				else
2656					CSR_WRITE_4(sc, TI_WINBASE,
2657					    TI_TX_RING_BASE);
2658				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2659			} else
2660				f = &sc->ti_rdata->ti_tx_ring[frag];
2661			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2662				break;
2663			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2664			f->ti_len = m->m_len;
2665			f->ti_flags = csum_flags;
2666
2667			if (mtag != NULL) {
2668				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2669				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2670			} else {
2671				f->ti_vlan_tag = 0;
2672			}
2673
2674			/*
2675			 * Sanity check: avoid coming within 16 descriptors
2676			 * of the end of the ring.
2677			 */
2678			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2679				return(ENOBUFS);
2680			cur = frag;
2681			TI_INC(frag, TI_TX_RING_CNT);
2682			cnt++;
2683		}
2684	}
2685
2686	if (m != NULL)
2687		return(ENOBUFS);
2688
2689	if (frag == sc->ti_tx_saved_considx)
2690		return(ENOBUFS);
2691
2692	if (sc->ti_hwrev == TI_HWREV_TIGON)
2693		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2694	            TI_BDFLAG_END;
2695	else
2696		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2697	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2698	sc->ti_txcnt += cnt;
2699
2700	*txidx = frag;
2701
2702	return(0);
2703}
2704
2705/*
2706 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2707 * to the mbuf data regions directly in the transmit descriptors.
2708 */
2709static void
2710ti_start(ifp)
2711	struct ifnet		*ifp;
2712{
2713	struct ti_softc		*sc;
2714	struct mbuf		*m_head = NULL;
2715	u_int32_t		prodidx = 0;
2716
2717	sc = ifp->if_softc;
2718	TI_LOCK(sc);
2719
2720	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2721
2722	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2723		IF_DEQUEUE(&ifp->if_snd, m_head);
2724		if (m_head == NULL)
2725			break;
2726
2727		/*
2728		 * XXX
2729		 * safety overkill.  If this is a fragmented packet chain
2730		 * with delayed TCP/UDP checksums, then only encapsulate
2731		 * it if we have enough descriptors to handle the entire
2732		 * chain at once.
2733		 * (paranoia -- may not actually be needed)
2734		 */
2735		if (m_head->m_flags & M_FIRSTFRAG &&
2736		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2737			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2738			    m_head->m_pkthdr.csum_data + 16) {
2739				IF_PREPEND(&ifp->if_snd, m_head);
2740				ifp->if_flags |= IFF_OACTIVE;
2741				break;
2742			}
2743		}
2744
2745		/*
2746		 * Pack the data into the transmit ring. If we
2747		 * don't have room, set the OACTIVE flag and wait
2748		 * for the NIC to drain the ring.
2749		 */
2750		if (ti_encap(sc, m_head, &prodidx)) {
2751			IF_PREPEND(&ifp->if_snd, m_head);
2752			ifp->if_flags |= IFF_OACTIVE;
2753			break;
2754		}
2755
2756		/*
2757		 * If there's a BPF listener, bounce a copy of this frame
2758		 * to him.
2759		 */
2760		BPF_MTAP(ifp, m_head);
2761	}
2762
2763	/* Transmit */
2764	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2765
2766	/*
2767	 * Set a timeout in case the chip goes out to lunch.
2768	 */
2769	ifp->if_timer = 5;
2770	TI_UNLOCK(sc);
2771
2772	return;
2773}
2774
2775static void
2776ti_init(xsc)
2777	void			*xsc;
2778{
2779	struct ti_softc		*sc = xsc;
2780
2781	/* Cancel pending I/O and flush buffers. */
2782	ti_stop(sc);
2783
2784	TI_LOCK(sc);
2785	/* Init the gen info block, ring control blocks and firmware. */
2786	if (ti_gibinit(sc)) {
2787		printf("ti%d: initialization failure\n", sc->ti_unit);
2788		TI_UNLOCK(sc);
2789		return;
2790	}
2791
2792	TI_UNLOCK(sc);
2793
2794	return;
2795}
2796
2797static void ti_init2(sc)
2798	struct ti_softc		*sc;
2799{
2800	struct ti_cmd_desc	cmd;
2801	struct ifnet		*ifp;
2802	u_int16_t		*m;
2803	struct ifmedia		*ifm;
2804	int			tmp;
2805
2806	ifp = &sc->arpcom.ac_if;
2807
2808	/* Specify MTU and interface index. */
2809	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
2810	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2811	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
2812	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2813
2814	/* Load our MAC address. */
2815	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2816	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2817	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2818	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2819
2820	/* Enable or disable promiscuous mode as needed. */
2821	if (ifp->if_flags & IFF_PROMISC) {
2822		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2823	} else {
2824		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2825	}
2826
2827	/* Program multicast filter. */
2828	ti_setmulti(sc);
2829
2830	/*
2831	 * If this is a Tigon 1, we should tell the
2832	 * firmware to use software packet filtering.
2833	 */
2834	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2835		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2836	}
2837
2838	/* Init RX ring. */
2839	ti_init_rx_ring_std(sc);
2840
2841	/* Init jumbo RX ring. */
2842	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2843		ti_init_rx_ring_jumbo(sc);
2844
2845	/*
2846	 * If this is a Tigon 2, we can also configure the
2847	 * mini ring.
2848	 */
2849	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2850		ti_init_rx_ring_mini(sc);
2851
2852	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2853	sc->ti_rx_saved_considx = 0;
2854
2855	/* Init TX ring. */
2856	ti_init_tx_ring(sc);
2857
2858	/* Tell firmware we're alive. */
2859	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2860
2861	/* Enable host interrupts. */
2862	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2863
2864	ifp->if_flags |= IFF_RUNNING;
2865	ifp->if_flags &= ~IFF_OACTIVE;
2866
2867	/*
2868	 * Make sure to set media properly. We have to do this
2869	 * here since we have to issue commands in order to set
2870	 * the link negotiation and we can't issue commands until
2871	 * the firmware is running.
2872	 */
2873	ifm = &sc->ifmedia;
2874	tmp = ifm->ifm_media;
2875	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2876	ti_ifmedia_upd(ifp);
2877	ifm->ifm_media = tmp;
2878
2879	return;
2880}
2881
2882/*
2883 * Set media options.
2884 */
2885static int
2886ti_ifmedia_upd(ifp)
2887	struct ifnet		*ifp;
2888{
2889	struct ti_softc		*sc;
2890	struct ifmedia		*ifm;
2891	struct ti_cmd_desc	cmd;
2892	u_int32_t		flowctl;
2893
2894	sc = ifp->if_softc;
2895	ifm = &sc->ifmedia;
2896
2897	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2898		return(EINVAL);
2899
2900	flowctl = 0;
2901
2902	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2903	case IFM_AUTO:
2904		/*
2905		 * Transmit flow control doesn't work on the Tigon 1.
2906		 */
2907		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2908
2909		/*
2910		 * Transmit flow control can also cause problems on the
2911		 * Tigon 2, apparantly with both the copper and fiber
2912		 * boards.  The symptom is that the interface will just
2913		 * hang.  This was reproduced with Alteon 180 switches.
2914		 */
2915#if 0
2916		if (sc->ti_hwrev != TI_HWREV_TIGON)
2917			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2918#endif
2919
2920		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2921		    TI_GLNK_FULL_DUPLEX| flowctl |
2922		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2923
2924		flowctl = TI_LNK_RX_FLOWCTL_Y;
2925#if 0
2926		if (sc->ti_hwrev != TI_HWREV_TIGON)
2927			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2928#endif
2929
2930		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2931		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
2932		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2933		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2934		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2935		break;
2936	case IFM_1000_SX:
2937	case IFM_1000_T:
2938		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2939#if 0
2940		if (sc->ti_hwrev != TI_HWREV_TIGON)
2941			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2942#endif
2943
2944		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2945		    flowctl |TI_GLNK_ENB);
2946		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2947		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2948			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2949		}
2950		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2951		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2952		break;
2953	case IFM_100_FX:
2954	case IFM_10_FL:
2955	case IFM_100_TX:
2956	case IFM_10_T:
2957		flowctl = TI_LNK_RX_FLOWCTL_Y;
2958#if 0
2959		if (sc->ti_hwrev != TI_HWREV_TIGON)
2960			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2961#endif
2962
2963		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2964		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
2965		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2966		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2967			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2968		} else {
2969			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2970		}
2971		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2972			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2973		} else {
2974			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2975		}
2976		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2977		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2978		break;
2979	}
2980
2981	return(0);
2982}
2983
2984/*
2985 * Report current media status.
2986 */
2987static void
2988ti_ifmedia_sts(ifp, ifmr)
2989	struct ifnet		*ifp;
2990	struct ifmediareq	*ifmr;
2991{
2992	struct ti_softc		*sc;
2993	u_int32_t		media = 0;
2994
2995	sc = ifp->if_softc;
2996
2997	ifmr->ifm_status = IFM_AVALID;
2998	ifmr->ifm_active = IFM_ETHER;
2999
3000	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3001		return;
3002
3003	ifmr->ifm_status |= IFM_ACTIVE;
3004
3005	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3006		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3007		if (sc->ti_copper)
3008			ifmr->ifm_active |= IFM_1000_T;
3009		else
3010			ifmr->ifm_active |= IFM_1000_SX;
3011		if (media & TI_GLNK_FULL_DUPLEX)
3012			ifmr->ifm_active |= IFM_FDX;
3013		else
3014			ifmr->ifm_active |= IFM_HDX;
3015	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3016		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3017		if (sc->ti_copper) {
3018			if (media & TI_LNK_100MB)
3019				ifmr->ifm_active |= IFM_100_TX;
3020			if (media & TI_LNK_10MB)
3021				ifmr->ifm_active |= IFM_10_T;
3022		} else {
3023			if (media & TI_LNK_100MB)
3024				ifmr->ifm_active |= IFM_100_FX;
3025			if (media & TI_LNK_10MB)
3026				ifmr->ifm_active |= IFM_10_FL;
3027		}
3028		if (media & TI_LNK_FULL_DUPLEX)
3029			ifmr->ifm_active |= IFM_FDX;
3030		if (media & TI_LNK_HALF_DUPLEX)
3031			ifmr->ifm_active |= IFM_HDX;
3032	}
3033
3034	return;
3035}
3036
3037static int
3038ti_ioctl(ifp, command, data)
3039	struct ifnet		*ifp;
3040	u_long			command;
3041	caddr_t			data;
3042{
3043	struct ti_softc		*sc = ifp->if_softc;
3044	struct ifreq		*ifr = (struct ifreq *) data;
3045	int			mask, error = 0;
3046	struct ti_cmd_desc	cmd;
3047
3048	TI_LOCK(sc);
3049
3050	switch(command) {
3051	case SIOCSIFMTU:
3052		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3053			error = EINVAL;
3054		else {
3055			ifp->if_mtu = ifr->ifr_mtu;
3056			ti_init(sc);
3057		}
3058		break;
3059	case SIOCSIFFLAGS:
3060		if (ifp->if_flags & IFF_UP) {
3061			/*
3062			 * If only the state of the PROMISC flag changed,
3063			 * then just use the 'set promisc mode' command
3064			 * instead of reinitializing the entire NIC. Doing
3065			 * a full re-init means reloading the firmware and
3066			 * waiting for it to start up, which may take a
3067			 * second or two.
3068			 */
3069			if (ifp->if_flags & IFF_RUNNING &&
3070			    ifp->if_flags & IFF_PROMISC &&
3071			    !(sc->ti_if_flags & IFF_PROMISC)) {
3072				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3073				    TI_CMD_CODE_PROMISC_ENB, 0);
3074			} else if (ifp->if_flags & IFF_RUNNING &&
3075			    !(ifp->if_flags & IFF_PROMISC) &&
3076			    sc->ti_if_flags & IFF_PROMISC) {
3077				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3078				    TI_CMD_CODE_PROMISC_DIS, 0);
3079			} else
3080				ti_init(sc);
3081		} else {
3082			if (ifp->if_flags & IFF_RUNNING) {
3083				ti_stop(sc);
3084			}
3085		}
3086		sc->ti_if_flags = ifp->if_flags;
3087		error = 0;
3088		break;
3089	case SIOCADDMULTI:
3090	case SIOCDELMULTI:
3091		if (ifp->if_flags & IFF_RUNNING) {
3092			ti_setmulti(sc);
3093			error = 0;
3094		}
3095		break;
3096	case SIOCSIFMEDIA:
3097	case SIOCGIFMEDIA:
3098		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3099		break;
3100	case SIOCSIFCAP:
3101		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3102		if (mask & IFCAP_HWCSUM) {
3103			if (IFCAP_HWCSUM & ifp->if_capenable)
3104				ifp->if_capenable &= ~IFCAP_HWCSUM;
3105                        else
3106                                ifp->if_capenable |= IFCAP_HWCSUM;
3107			if (ifp->if_flags & IFF_RUNNING)
3108				ti_init(sc);
3109                }
3110		error = 0;
3111		break;
3112	default:
3113		error = ether_ioctl(ifp, command, data);
3114		break;
3115	}
3116
3117	TI_UNLOCK(sc);
3118
3119	return(error);
3120}
3121
3122static int
3123ti_open(dev_t dev, int flags, int fmt, struct thread *td)
3124{
3125	struct ti_softc *sc;
3126
3127	sc = dev->si_drv1;
3128	if (sc == NULL)
3129		return(ENODEV);
3130
3131	TI_LOCK(sc);
3132	sc->ti_flags |= TI_FLAG_DEBUGING;
3133	TI_UNLOCK(sc);
3134
3135	return(0);
3136}
3137
3138static int
3139ti_close(dev_t dev, int flag, int fmt, struct thread *td)
3140{
3141	struct ti_softc *sc;
3142
3143	sc = dev->si_drv1;
3144	if (sc == NULL)
3145		return(ENODEV);
3146
3147	TI_LOCK(sc);
3148	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3149	TI_UNLOCK(sc);
3150
3151	return(0);
3152}
3153
3154/*
3155 * This ioctl routine goes along with the Tigon character device.
3156 */
3157static int
3158ti_ioctl2(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3159{
3160	int error;
3161	struct ti_softc *sc;
3162
3163	sc = dev->si_drv1;
3164	if (sc == NULL)
3165		return(ENODEV);
3166
3167	error = 0;
3168
3169	switch(cmd) {
3170	case TIIOCGETSTATS:
3171	{
3172		struct ti_stats *outstats;
3173
3174		outstats = (struct ti_stats *)addr;
3175
3176		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3177		      sizeof(struct ti_stats));
3178		break;
3179	}
3180	case TIIOCGETPARAMS:
3181	{
3182		struct ti_params	*params;
3183
3184		params = (struct ti_params *)addr;
3185
3186		params->ti_stat_ticks = sc->ti_stat_ticks;
3187		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3188		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3189		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3190		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3191		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3192		params->param_mask = TI_PARAM_ALL;
3193
3194		error = 0;
3195
3196		break;
3197	}
3198	case TIIOCSETPARAMS:
3199	{
3200		struct ti_params *params;
3201
3202		params = (struct ti_params *)addr;
3203
3204		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3205			sc->ti_stat_ticks = params->ti_stat_ticks;
3206			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3207		}
3208
3209		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3210			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3211			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3212				    sc->ti_rx_coal_ticks);
3213		}
3214
3215		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3216			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3217			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3218				    sc->ti_tx_coal_ticks);
3219		}
3220
3221		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3222			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3223			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3224				    sc->ti_rx_max_coal_bds);
3225		}
3226
3227		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3228			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3229			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3230				    sc->ti_tx_max_coal_bds);
3231		}
3232
3233		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3234			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3235			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3236				    sc->ti_tx_buf_ratio);
3237		}
3238
3239		error = 0;
3240
3241		break;
3242	}
3243	case TIIOCSETTRACE: {
3244		ti_trace_type	trace_type;
3245
3246		trace_type = *(ti_trace_type *)addr;
3247
3248		/*
3249		 * Set tracing to whatever the user asked for.  Setting
3250		 * this register to 0 should have the effect of disabling
3251		 * tracing.
3252		 */
3253		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3254
3255		error = 0;
3256
3257		break;
3258	}
3259	case TIIOCGETTRACE: {
3260		struct ti_trace_buf	*trace_buf;
3261		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3262
3263		trace_buf = (struct ti_trace_buf *)addr;
3264
3265		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3266		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3267		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3268
3269#if 0
3270		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3271		       "trace_len = %d\n", sc->ti_unit, trace_start,
3272		       cur_trace_ptr, trace_len);
3273		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3274		       trace_buf->buf_len);
3275#endif
3276
3277		error = ti_copy_mem(sc, trace_start, min(trace_len,
3278				    trace_buf->buf_len),
3279				    (caddr_t)trace_buf->buf, 1, 1);
3280
3281		if (error == 0) {
3282			trace_buf->fill_len = min(trace_len,
3283						  trace_buf->buf_len);
3284			if (cur_trace_ptr < trace_start)
3285				trace_buf->cur_trace_ptr =
3286					trace_start - cur_trace_ptr;
3287			else
3288				trace_buf->cur_trace_ptr =
3289					cur_trace_ptr - trace_start;
3290		} else
3291			trace_buf->fill_len = 0;
3292
3293
3294		break;
3295	}
3296
3297	/*
3298	 * For debugging, five ioctls are needed:
3299	 * ALT_ATTACH
3300	 * ALT_READ_TG_REG
3301	 * ALT_WRITE_TG_REG
3302	 * ALT_READ_TG_MEM
3303	 * ALT_WRITE_TG_MEM
3304	 */
3305	case ALT_ATTACH:
3306		/*
3307		 * From what I can tell, Alteon's Solaris Tigon driver
3308		 * only has one character device, so you have to attach
3309		 * to the Tigon board you're interested in.  This seems
3310		 * like a not-so-good way to do things, since unless you
3311		 * subsequently specify the unit number of the device
3312		 * you're interested in in every ioctl, you'll only be
3313		 * able to debug one board at a time.
3314		 */
3315		error = 0;
3316		break;
3317	case ALT_READ_TG_MEM:
3318	case ALT_WRITE_TG_MEM:
3319	{
3320		struct tg_mem *mem_param;
3321		u_int32_t sram_end, scratch_end;
3322
3323		mem_param = (struct tg_mem *)addr;
3324
3325		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3326			sram_end = TI_END_SRAM_I;
3327			scratch_end = TI_END_SCRATCH_I;
3328		} else {
3329			sram_end = TI_END_SRAM_II;
3330			scratch_end = TI_END_SCRATCH_II;
3331		}
3332
3333		/*
3334		 * For now, we'll only handle accessing regular SRAM,
3335		 * nothing else.
3336		 */
3337		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3338		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3339			/*
3340			 * In this instance, we always copy to/from user
3341			 * space, so the user space argument is set to 1.
3342			 */
3343			error = ti_copy_mem(sc, mem_param->tgAddr,
3344					    mem_param->len,
3345					    mem_param->userAddr, 1,
3346					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3347		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3348			&& (mem_param->tgAddr <= scratch_end)) {
3349			error = ti_copy_scratch(sc, mem_param->tgAddr,
3350						mem_param->len,
3351						mem_param->userAddr, 1,
3352						(cmd == ALT_READ_TG_MEM) ?
3353						1 : 0, TI_PROCESSOR_A);
3354		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3355			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3356			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3357				printf("ti%d:  invalid memory range for "
3358				       "Tigon I\n", sc->ti_unit);
3359				error = EINVAL;
3360				break;
3361			}
3362			error = ti_copy_scratch(sc, mem_param->tgAddr -
3363						TI_SCRATCH_DEBUG_OFF,
3364						mem_param->len,
3365						mem_param->userAddr, 1,
3366						(cmd == ALT_READ_TG_MEM) ?
3367						1 : 0, TI_PROCESSOR_B);
3368		} else {
3369			printf("ti%d: memory address %#x len %d is out of "
3370			       "supported range\n", sc->ti_unit,
3371			        mem_param->tgAddr, mem_param->len);
3372			error = EINVAL;
3373		}
3374
3375		break;
3376	}
3377	case ALT_READ_TG_REG:
3378	case ALT_WRITE_TG_REG:
3379	{
3380		struct tg_reg	*regs;
3381		u_int32_t	tmpval;
3382
3383		regs = (struct tg_reg *)addr;
3384
3385		/*
3386		 * Make sure the address in question isn't out of range.
3387		 */
3388		if (regs->addr > TI_REG_MAX) {
3389			error = EINVAL;
3390			break;
3391		}
3392		if (cmd == ALT_READ_TG_REG) {
3393			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3394						regs->addr, &tmpval, 1);
3395			regs->data = ntohl(tmpval);
3396#if 0
3397			if ((regs->addr == TI_CPU_STATE)
3398			 || (regs->addr == TI_CPU_CTL_B)) {
3399				printf("ti%d: register %#x = %#x\n",
3400				       sc->ti_unit, regs->addr, tmpval);
3401			}
3402#endif
3403		} else {
3404			tmpval = htonl(regs->data);
3405			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3406						 regs->addr, &tmpval, 1);
3407		}
3408
3409		break;
3410	}
3411	default:
3412		error = ENOTTY;
3413		break;
3414	}
3415	return(error);
3416}
3417
3418static void
3419ti_watchdog(ifp)
3420	struct ifnet		*ifp;
3421{
3422	struct ti_softc		*sc;
3423
3424	sc = ifp->if_softc;
3425	TI_LOCK(sc);
3426
3427	/*
3428	 * When we're debugging, the chip is often stopped for long periods
3429	 * of time, and that would normally cause the watchdog timer to fire.
3430	 * Since that impedes debugging, we don't want to do that.
3431	 */
3432	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3433		TI_UNLOCK(sc);
3434		return;
3435	}
3436
3437	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3438	ti_stop(sc);
3439	ti_init(sc);
3440
3441	ifp->if_oerrors++;
3442	TI_UNLOCK(sc);
3443
3444	return;
3445}
3446
3447/*
3448 * Stop the adapter and free any mbufs allocated to the
3449 * RX and TX lists.
3450 */
3451static void
3452ti_stop(sc)
3453	struct ti_softc		*sc;
3454{
3455	struct ifnet		*ifp;
3456	struct ti_cmd_desc	cmd;
3457
3458	TI_LOCK(sc);
3459
3460	ifp = &sc->arpcom.ac_if;
3461
3462	/* Disable host interrupts. */
3463	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3464	/*
3465	 * Tell firmware we're shutting down.
3466	 */
3467	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3468
3469	/* Halt and reinitialize. */
3470	ti_chipinit(sc);
3471	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3472	ti_chipinit(sc);
3473
3474	/* Free the RX lists. */
3475	ti_free_rx_ring_std(sc);
3476
3477	/* Free jumbo RX list. */
3478	ti_free_rx_ring_jumbo(sc);
3479
3480	/* Free mini RX list. */
3481	ti_free_rx_ring_mini(sc);
3482
3483	/* Free TX buffers. */
3484	ti_free_tx_ring(sc);
3485
3486	sc->ti_ev_prodidx.ti_idx = 0;
3487	sc->ti_return_prodidx.ti_idx = 0;
3488	sc->ti_tx_considx.ti_idx = 0;
3489	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3490
3491	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3492	TI_UNLOCK(sc);
3493
3494	return;
3495}
3496
3497/*
3498 * Stop all chip I/O so that the kernel's probe routines don't
3499 * get confused by errant DMAs when rebooting.
3500 */
3501static void
3502ti_shutdown(dev)
3503	device_t		dev;
3504{
3505	struct ti_softc		*sc;
3506
3507	sc = device_get_softc(dev);
3508	TI_LOCK(sc);
3509	ti_chipinit(sc);
3510	TI_UNLOCK(sc);
3511
3512	return;
3513}
3514