if_ti.c revision 113609
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 113609 2003-04-17 20:32:06Z njl $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/socket.h>
91#include <sys/queue.h>
92#include <sys/conf.h>
93
94#include <net/if.h>
95#include <net/if_arp.h>
96#include <net/ethernet.h>
97#include <net/if_dl.h>
98#include <net/if_media.h>
99#include <net/if_types.h>
100#include <net/if_vlan_var.h>
101
102#include <net/bpf.h>
103
104#include <netinet/in_systm.h>
105#include <netinet/in.h>
106#include <netinet/ip.h>
107
108#include <vm/vm.h>              /* for vtophys */
109#include <vm/pmap.h>            /* for vtophys */
110#include <machine/bus_memio.h>
111#include <machine/bus.h>
112#include <machine/resource.h>
113#include <sys/bus.h>
114#include <sys/rman.h>
115
116/* #define TI_PRIVATE_JUMBOS */
117
118#if !defined(TI_PRIVATE_JUMBOS)
119#include <sys/sockio.h>
120#include <sys/uio.h>
121#include <sys/lock.h>
122#include <vm/vm_extern.h>
123#include <vm/pmap.h>
124#include <vm/vm_map.h>
125#include <vm/vm_map.h>
126#include <vm/vm_param.h>
127#include <vm/vm_pageout.h>
128#include <sys/vmmeter.h>
129#include <vm/vm_page.h>
130#include <vm/vm_object.h>
131#include <vm/vm_kern.h>
132#include <sys/proc.h>
133#include <sys/jumbo.h>
134#endif /* !TI_PRIVATE_JUMBOS */
135#include <sys/vnode.h> /* for vfindev, vgone */
136
137#include <pci/pcireg.h>
138#include <pci/pcivar.h>
139
140#include <sys/tiio.h>
141#include <pci/if_tireg.h>
142#include <pci/ti_fw.h>
143#include <pci/ti_fw2.h>
144
145#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
146/*
147 * We can only turn on header splitting if we're using extended receive
148 * BDs.
149 */
150#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
151#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
152#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
153
154struct ti_softc *tis[8];
155
156typedef enum {
157	TI_SWAP_HTON,
158	TI_SWAP_NTOH
159} ti_swap_type;
160
161
162/*
163 * Various supported device vendors/types and their names.
164 */
165
166static struct ti_type ti_devs[] = {
167	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
168		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
169	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
170		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
171	{ TC_VENDORID,	TC_DEVICEID_3C985,
172		"3Com 3c985-SX Gigabit Ethernet" },
173	{ NG_VENDORID, NG_DEVICEID_GA620,
174		"Netgear GA620 1000baseSX Gigabit Ethernet" },
175	{ NG_VENDORID, NG_DEVICEID_GA620T,
176		"Netgear GA620 1000baseT Gigabit Ethernet" },
177	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
178		"Silicon Graphics Gigabit Ethernet" },
179	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
180		"Farallon PN9000SX Gigabit Ethernet" },
181	{ 0, 0, NULL }
182};
183
184#define	TI_CDEV_MAJOR	153
185
186static	d_open_t	ti_open;
187static	d_close_t	ti_close;
188static	d_ioctl_t	ti_ioctl2;
189
190static struct cdevsw ti_cdevsw = {
191	.d_open =	ti_open,
192	.d_close =	ti_close,
193	.d_ioctl =	ti_ioctl2,
194	.d_name =	"ti",
195	.d_maj =	TI_CDEV_MAJOR,
196};
197
198static int ti_probe		(device_t);
199static int ti_attach		(device_t);
200static int ti_detach		(device_t);
201static void ti_txeof		(struct ti_softc *);
202static void ti_rxeof		(struct ti_softc *);
203
204static void ti_stats_update	(struct ti_softc *);
205static int ti_encap		(struct ti_softc *, struct mbuf *, u_int32_t *);
206
207static void ti_intr		(void *);
208static void ti_start		(struct ifnet *);
209static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
210static void ti_init		(void *);
211static void ti_init2		(struct ti_softc *);
212static void ti_stop		(struct ti_softc *);
213static void ti_watchdog		(struct ifnet *);
214static void ti_shutdown		(device_t);
215static int ti_ifmedia_upd	(struct ifnet *);
216static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217
218static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
219static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *, int, u_int8_t *);
220static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
221
222static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
223static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
224static void ti_setmulti		(struct ti_softc *);
225
226static void ti_mem		(struct ti_softc *, u_int32_t,
227					u_int32_t, caddr_t);
228static int ti_copy_mem		(struct ti_softc *, u_int32_t,
229					u_int32_t, caddr_t, int, int);
230static int ti_copy_scratch	(struct ti_softc *, u_int32_t,
231					u_int32_t, caddr_t, int, int, int);
232static int ti_bcopy_swap	(const void *, void *, size_t,
233					ti_swap_type);
234static void ti_loadfw		(struct ti_softc *);
235static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
236static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
237					caddr_t, int);
238static void ti_handle_events	(struct ti_softc *);
239#ifdef TI_PRIVATE_JUMBOS
240static int ti_alloc_jumbo_mem	(struct ti_softc *);
241static void *ti_jalloc		(struct ti_softc *);
242static void ti_jfree		(void *, void *);
243#endif /* TI_PRIVATE_JUMBOS */
244static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
245static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
246static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
247static int ti_init_rx_ring_std	(struct ti_softc *);
248static void ti_free_rx_ring_std	(struct ti_softc *);
249static int ti_init_rx_ring_jumbo	(struct ti_softc *);
250static void ti_free_rx_ring_jumbo	(struct ti_softc *);
251static int ti_init_rx_ring_mini	(struct ti_softc *);
252static void ti_free_rx_ring_mini	(struct ti_softc *);
253static void ti_free_tx_ring	(struct ti_softc *);
254static int ti_init_tx_ring	(struct ti_softc *);
255
256static int ti_64bitslot_war	(struct ti_softc *);
257static int ti_chipinit		(struct ti_softc *);
258static int ti_gibinit		(struct ti_softc *);
259
260#ifdef TI_JUMBO_HDRSPLIT
261static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
262					     int pkt_len, int idx);
263#endif /* TI_JUMBO_HDRSPLIT */
264
265static device_method_t ti_methods[] = {
266	/* Device interface */
267	DEVMETHOD(device_probe,		ti_probe),
268	DEVMETHOD(device_attach,	ti_attach),
269	DEVMETHOD(device_detach,	ti_detach),
270	DEVMETHOD(device_shutdown,	ti_shutdown),
271	{ 0, 0 }
272};
273
274static driver_t ti_driver = {
275	"ti",
276	ti_methods,
277	sizeof(struct ti_softc)
278};
279
280static devclass_t ti_devclass;
281
282DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
283MODULE_DEPEND(ti, pci, 1, 1, 1);
284MODULE_DEPEND(ti, ether, 1, 1, 1);
285
286/* List of Tigon softcs */
287static STAILQ_HEAD(ti_softc_list, ti_softc) ti_sc_list;
288
289static struct ti_softc *
290ti_lookup_softc(int unit)
291{
292	struct ti_softc *sc;
293	for (sc = STAILQ_FIRST(&ti_sc_list); sc != NULL;
294	     sc = STAILQ_NEXT(sc, ti_links))
295		if (sc->ti_unit == unit)
296			return(sc);
297	return(NULL);
298}
299
300/*
301 * Send an instruction or address to the EEPROM, check for ACK.
302 */
303static u_int32_t ti_eeprom_putbyte(sc, byte)
304	struct ti_softc		*sc;
305	int			byte;
306{
307	register int		i, ack = 0;
308
309	/*
310	 * Make sure we're in TX mode.
311	 */
312	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
313
314	/*
315	 * Feed in each bit and stobe the clock.
316	 */
317	for (i = 0x80; i; i >>= 1) {
318		if (byte & i) {
319			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
320		} else {
321			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
322		}
323		DELAY(1);
324		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
325		DELAY(1);
326		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
327	}
328
329	/*
330	 * Turn off TX mode.
331	 */
332	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
333
334	/*
335	 * Check for ack.
336	 */
337	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
338	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
339	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
340
341	return(ack);
342}
343
344/*
345 * Read a byte of data stored in the EEPROM at address 'addr.'
346 * We have to send two address bytes since the EEPROM can hold
347 * more than 256 bytes of data.
348 */
349static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
350	struct ti_softc		*sc;
351	int			addr;
352	u_int8_t		*dest;
353{
354	register int		i;
355	u_int8_t		byte = 0;
356
357	EEPROM_START;
358
359	/*
360	 * Send write control code to EEPROM.
361	 */
362	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
363		printf("ti%d: failed to send write command, status: %x\n",
364		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
365		return(1);
366	}
367
368	/*
369	 * Send first byte of address of byte we want to read.
370	 */
371	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
372		printf("ti%d: failed to send address, status: %x\n",
373		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
374		return(1);
375	}
376	/*
377	 * Send second byte address of byte we want to read.
378	 */
379	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
380		printf("ti%d: failed to send address, status: %x\n",
381		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
382		return(1);
383	}
384
385	EEPROM_STOP;
386	EEPROM_START;
387	/*
388	 * Send read control code to EEPROM.
389	 */
390	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
391		printf("ti%d: failed to send read command, status: %x\n",
392		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
393		return(1);
394	}
395
396	/*
397	 * Start reading bits from EEPROM.
398	 */
399	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
400	for (i = 0x80; i; i >>= 1) {
401		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
402		DELAY(1);
403		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
404			byte |= i;
405		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
406		DELAY(1);
407	}
408
409	EEPROM_STOP;
410
411	/*
412	 * No ACK generated for read, so just return byte.
413	 */
414
415	*dest = byte;
416
417	return(0);
418}
419
420/*
421 * Read a sequence of bytes from the EEPROM.
422 */
423static int
424ti_read_eeprom(sc, dest, off, cnt)
425	struct ti_softc		*sc;
426	caddr_t			dest;
427	int			off;
428	int			cnt;
429{
430	int			err = 0, i;
431	u_int8_t		byte = 0;
432
433	for (i = 0; i < cnt; i++) {
434		err = ti_eeprom_getbyte(sc, off + i, &byte);
435		if (err)
436			break;
437		*(dest + i) = byte;
438	}
439
440	return(err ? 1 : 0);
441}
442
443/*
444 * NIC memory access function. Can be used to either clear a section
445 * of NIC local memory or (if buf is non-NULL) copy data into it.
446 */
447static void
448ti_mem(sc, addr, len, buf)
449	struct ti_softc		*sc;
450	u_int32_t		addr, len;
451	caddr_t			buf;
452{
453	int			segptr, segsize, cnt;
454	caddr_t			ti_winbase, ptr;
455
456	segptr = addr;
457	cnt = len;
458	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
459	ptr = buf;
460
461	while(cnt) {
462		if (cnt < TI_WINLEN)
463			segsize = cnt;
464		else
465			segsize = TI_WINLEN - (segptr % TI_WINLEN);
466		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
467		if (buf == NULL)
468			bzero((char *)ti_winbase + (segptr &
469			    (TI_WINLEN - 1)), segsize);
470		else {
471			bcopy((char *)ptr, (char *)ti_winbase +
472			    (segptr & (TI_WINLEN - 1)), segsize);
473			ptr += segsize;
474		}
475		segptr += segsize;
476		cnt -= segsize;
477	}
478
479	return;
480}
481
482static int
483ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
484	struct ti_softc		*sc;
485	u_int32_t		tigon_addr, len;
486	caddr_t			buf;
487	int			useraddr, readdata;
488{
489	int		segptr, segsize, cnt;
490	caddr_t		ptr;
491	u_int32_t	origwin;
492	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
493	int		resid, segresid;
494	int		first_pass;
495
496	/*
497	 * At the moment, we don't handle non-aligned cases, we just bail.
498	 * If this proves to be a problem, it will be fixed.
499	 */
500	if ((readdata == 0)
501	 && (tigon_addr & 0x3)) {
502		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
503		       "word-aligned\n", sc->ti_unit, tigon_addr);
504		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
505		       "supported\n", sc->ti_unit);
506		return(EINVAL);
507	}
508
509	segptr = tigon_addr & ~0x3;
510	segresid = tigon_addr - segptr;
511
512	/*
513	 * This is the non-aligned amount left over that we'll need to
514	 * copy.
515	 */
516	resid = len & 0x3;
517
518	/* Add in the left over amount at the front of the buffer */
519	resid += segresid;
520
521	cnt = len & ~0x3;
522	/*
523	 * If resid + segresid is >= 4, add multiples of 4 to the count and
524	 * decrease the residual by that much.
525	 */
526	cnt += resid & ~0x3;
527	resid -= resid & ~0x3;
528
529	ptr = buf;
530
531	first_pass = 1;
532
533	/*
534	 * Make sure we aren't interrupted while we're changing the window
535	 * pointer.
536	 */
537	TI_LOCK(sc);
538
539	/*
540	 * Save the old window base value.
541	 */
542	origwin = CSR_READ_4(sc, TI_WINBASE);
543
544	while(cnt) {
545		bus_size_t ti_offset;
546
547		if (cnt < TI_WINLEN)
548			segsize = cnt;
549		else
550			segsize = TI_WINLEN - (segptr % TI_WINLEN);
551		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
552
553		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
554
555		if (readdata) {
556
557			bus_space_read_region_4(sc->ti_btag,
558						sc->ti_bhandle, ti_offset,
559						(u_int32_t *)tmparray,
560						segsize >> 2);
561			if (useraddr) {
562				/*
563				 * Yeah, this is a little on the kludgy
564				 * side, but at least this code is only
565				 * used for debugging.
566				 */
567				ti_bcopy_swap(tmparray, tmparray2, segsize,
568					      TI_SWAP_NTOH);
569
570				if (first_pass) {
571					copyout(&tmparray2[segresid], ptr,
572						segsize - segresid);
573					first_pass = 0;
574				} else
575					copyout(tmparray2, ptr, segsize);
576			} else {
577				if (first_pass) {
578
579					ti_bcopy_swap(tmparray, tmparray2,
580						      segsize, TI_SWAP_NTOH);
581					bcopy(&tmparray2[segresid], ptr,
582					      segsize - segresid);
583					first_pass = 0;
584				} else
585					ti_bcopy_swap(tmparray, ptr, segsize,
586						      TI_SWAP_NTOH);
587			}
588
589		} else {
590			if (useraddr) {
591				copyin(ptr, tmparray2, segsize);
592				ti_bcopy_swap(tmparray2, tmparray, segsize,
593					      TI_SWAP_HTON);
594			} else
595				ti_bcopy_swap(ptr, tmparray, segsize,
596					      TI_SWAP_HTON);
597
598			bus_space_write_region_4(sc->ti_btag,
599						 sc->ti_bhandle, ti_offset,
600						 (u_int32_t *)tmparray,
601						 segsize >> 2);
602		}
603		segptr += segsize;
604		ptr += segsize;
605		cnt -= segsize;
606	}
607
608	/*
609	 * Handle leftover, non-word-aligned bytes.
610	 */
611	if (resid != 0) {
612		u_int32_t	tmpval, tmpval2;
613		bus_size_t	ti_offset;
614
615		/*
616		 * Set the segment pointer.
617		 */
618		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
619
620		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
621
622		/*
623		 * First, grab whatever is in our source/destination.
624		 * We'll obviously need this for reads, but also for
625		 * writes, since we'll be doing read/modify/write.
626		 */
627		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
628					ti_offset, &tmpval, 1);
629
630		/*
631		 * Next, translate this from little-endian to big-endian
632		 * (at least on i386 boxes).
633		 */
634		tmpval2 = ntohl(tmpval);
635
636		if (readdata) {
637			/*
638			 * If we're reading, just copy the leftover number
639			 * of bytes from the host byte order buffer to
640			 * the user's buffer.
641			 */
642			if (useraddr)
643				copyout(&tmpval2, ptr, resid);
644			else
645				bcopy(&tmpval2, ptr, resid);
646		} else {
647			/*
648			 * If we're writing, first copy the bytes to be
649			 * written into the network byte order buffer,
650			 * leaving the rest of the buffer with whatever was
651			 * originally in there.  Then, swap the bytes
652			 * around into host order and write them out.
653			 *
654			 * XXX KDM the read side of this has been verified
655			 * to work, but the write side of it has not been
656			 * verified.  So user beware.
657			 */
658			if (useraddr)
659				copyin(ptr, &tmpval2, resid);
660			else
661				bcopy(ptr, &tmpval2, resid);
662
663			tmpval = htonl(tmpval2);
664
665			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
666						 ti_offset, &tmpval, 1);
667		}
668	}
669
670	CSR_WRITE_4(sc, TI_WINBASE, origwin);
671
672	TI_UNLOCK(sc);
673
674	return(0);
675}
676
677static int
678ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
679	struct ti_softc		*sc;
680	u_int32_t		tigon_addr, len;
681	caddr_t			buf;
682	int			useraddr, readdata;
683	int			cpu;
684{
685	u_int32_t	segptr;
686	int		cnt;
687	u_int32_t	tmpval, tmpval2;
688	caddr_t		ptr;
689
690	/*
691	 * At the moment, we don't handle non-aligned cases, we just bail.
692	 * If this proves to be a problem, it will be fixed.
693	 */
694	if (tigon_addr & 0x3) {
695		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
696		       "word-aligned\n", sc->ti_unit, tigon_addr);
697		return(EINVAL);
698	}
699
700	if (len & 0x3) {
701		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
702		       "word-aligned\n", sc->ti_unit, len);
703		return(EINVAL);
704	}
705
706	segptr = tigon_addr;
707	cnt = len;
708	ptr = buf;
709
710	TI_LOCK(sc);
711
712	while (cnt) {
713		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
714
715		if (readdata) {
716			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
717
718			tmpval = ntohl(tmpval2);
719
720			/*
721			 * Note:  I've used this debugging interface
722			 * extensively with Alteon's 12.3.15 firmware,
723			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
724			 *
725			 * When you compile the firmware without
726			 * optimization, which is necessary sometimes in
727			 * order to properly step through it, you sometimes
728			 * read out a bogus value of 0xc0017c instead of
729			 * whatever was supposed to be in that scratchpad
730			 * location.  That value is on the stack somewhere,
731			 * but I've never been able to figure out what was
732			 * causing the problem.
733			 *
734			 * The address seems to pop up in random places,
735			 * often not in the same place on two subsequent
736			 * reads.
737			 *
738			 * In any case, the underlying data doesn't seem
739			 * to be affected, just the value read out.
740			 *
741			 * KDM, 3/7/2000
742			 */
743
744			if (tmpval2 == 0xc0017c)
745				printf("ti%d: found 0xc0017c at %#x "
746				       "(tmpval2)\n", sc->ti_unit, segptr);
747
748			if (tmpval == 0xc0017c)
749				printf("ti%d: found 0xc0017c at %#x "
750				       "(tmpval)\n", sc->ti_unit, segptr);
751
752			if (useraddr)
753				copyout(&tmpval, ptr, 4);
754			else
755				bcopy(&tmpval, ptr, 4);
756		} else {
757			if (useraddr)
758				copyin(ptr, &tmpval2, 4);
759			else
760				bcopy(ptr, &tmpval2, 4);
761
762			tmpval = htonl(tmpval2);
763
764			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
765		}
766
767		cnt -= 4;
768		segptr += 4;
769		ptr += 4;
770	}
771
772	TI_UNLOCK(sc);
773
774	return(0);
775}
776
777static int
778ti_bcopy_swap(src, dst, len, swap_type)
779	const void	*src;
780	void		*dst;
781	size_t		len;
782	ti_swap_type	swap_type;
783{
784	const u_int8_t *tmpsrc;
785	u_int8_t *tmpdst;
786	size_t tmplen;
787
788	if (len & 0x3) {
789		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
790		       len);
791		return(-1);
792	}
793
794	tmpsrc = src;
795	tmpdst = dst;
796	tmplen = len;
797
798	while (tmplen) {
799		if (swap_type == TI_SWAP_NTOH)
800			*(u_int32_t *)tmpdst =
801				ntohl(*(const u_int32_t *)tmpsrc);
802		else
803			*(u_int32_t *)tmpdst =
804				htonl(*(const u_int32_t *)tmpsrc);
805
806		tmpsrc += 4;
807		tmpdst += 4;
808		tmplen -= 4;
809	}
810
811	return(0);
812}
813
814/*
815 * Load firmware image into the NIC. Check that the firmware revision
816 * is acceptable and see if we want the firmware for the Tigon 1 or
817 * Tigon 2.
818 */
819static void
820ti_loadfw(sc)
821	struct ti_softc		*sc;
822{
823	switch(sc->ti_hwrev) {
824	case TI_HWREV_TIGON:
825		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
826		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
827		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
828			printf("ti%d: firmware revision mismatch; want "
829			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
830			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
831			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
832			    tigonFwReleaseMinor, tigonFwReleaseFix);
833			return;
834		}
835		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
836		    (caddr_t)tigonFwText);
837		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
838		    (caddr_t)tigonFwData);
839		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
840		    (caddr_t)tigonFwRodata);
841		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
842		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
843		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
844		break;
845	case TI_HWREV_TIGON_II:
846		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
847		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
848		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
849			printf("ti%d: firmware revision mismatch; want "
850			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
851			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
852			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
853			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
854			return;
855		}
856		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
857		    (caddr_t)tigon2FwText);
858		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
859		    (caddr_t)tigon2FwData);
860		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
861		    (caddr_t)tigon2FwRodata);
862		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
863		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
864		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
865		break;
866	default:
867		printf("ti%d: can't load firmware: unknown hardware rev\n",
868		    sc->ti_unit);
869		break;
870	}
871
872	return;
873}
874
875/*
876 * Send the NIC a command via the command ring.
877 */
878static void
879ti_cmd(sc, cmd)
880	struct ti_softc		*sc;
881	struct ti_cmd_desc	*cmd;
882{
883	u_int32_t		index;
884
885	if (sc->ti_rdata->ti_cmd_ring == NULL)
886		return;
887
888	index = sc->ti_cmd_saved_prodidx;
889	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
890	TI_INC(index, TI_CMD_RING_CNT);
891	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
892	sc->ti_cmd_saved_prodidx = index;
893
894	return;
895}
896
897/*
898 * Send the NIC an extended command. The 'len' parameter specifies the
899 * number of command slots to include after the initial command.
900 */
901static void
902ti_cmd_ext(sc, cmd, arg, len)
903	struct ti_softc		*sc;
904	struct ti_cmd_desc	*cmd;
905	caddr_t			arg;
906	int			len;
907{
908	u_int32_t		index;
909	register int		i;
910
911	if (sc->ti_rdata->ti_cmd_ring == NULL)
912		return;
913
914	index = sc->ti_cmd_saved_prodidx;
915	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
916	TI_INC(index, TI_CMD_RING_CNT);
917	for (i = 0; i < len; i++) {
918		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
919		    *(u_int32_t *)(&arg[i * 4]));
920		TI_INC(index, TI_CMD_RING_CNT);
921	}
922	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
923	sc->ti_cmd_saved_prodidx = index;
924
925	return;
926}
927
928/*
929 * Handle events that have triggered interrupts.
930 */
931static void
932ti_handle_events(sc)
933	struct ti_softc		*sc;
934{
935	struct ti_event_desc	*e;
936
937	if (sc->ti_rdata->ti_event_ring == NULL)
938		return;
939
940	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
941		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
942		switch(e->ti_event) {
943		case TI_EV_LINKSTAT_CHANGED:
944			sc->ti_linkstat = e->ti_code;
945			if (e->ti_code == TI_EV_CODE_LINK_UP)
946				printf("ti%d: 10/100 link up\n", sc->ti_unit);
947			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
948				printf("ti%d: gigabit link up\n", sc->ti_unit);
949			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
950				printf("ti%d: link down\n", sc->ti_unit);
951			break;
952		case TI_EV_ERROR:
953			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
954				printf("ti%d: invalid command\n", sc->ti_unit);
955			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
956				printf("ti%d: unknown command\n", sc->ti_unit);
957			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
958				printf("ti%d: bad config data\n", sc->ti_unit);
959			break;
960		case TI_EV_FIRMWARE_UP:
961			ti_init2(sc);
962			break;
963		case TI_EV_STATS_UPDATED:
964			ti_stats_update(sc);
965			break;
966		case TI_EV_RESET_JUMBO_RING:
967		case TI_EV_MCAST_UPDATED:
968			/* Who cares. */
969			break;
970		default:
971			printf("ti%d: unknown event: %d\n",
972			    sc->ti_unit, e->ti_event);
973			break;
974		}
975		/* Advance the consumer index. */
976		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
977		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
978	}
979
980	return;
981}
982
983#ifdef TI_PRIVATE_JUMBOS
984
985/*
986 * Memory management for the jumbo receive ring is a pain in the
987 * butt. We need to allocate at least 9018 bytes of space per frame,
988 * _and_ it has to be contiguous (unless you use the extended
989 * jumbo descriptor format). Using malloc() all the time won't
990 * work: malloc() allocates memory in powers of two, which means we
991 * would end up wasting a considerable amount of space by allocating
992 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
993 * to do our own memory management.
994 *
995 * The driver needs to allocate a contiguous chunk of memory at boot
996 * time. We then chop this up ourselves into 9K pieces and use them
997 * as external mbuf storage.
998 *
999 * One issue here is how much memory to allocate. The jumbo ring has
1000 * 256 slots in it, but at 9K per slot than can consume over 2MB of
1001 * RAM. This is a bit much, especially considering we also need
1002 * RAM for the standard ring and mini ring (on the Tigon 2). To
1003 * save space, we only actually allocate enough memory for 64 slots
1004 * by default, which works out to between 500 and 600K. This can
1005 * be tuned by changing a #define in if_tireg.h.
1006 */
1007
1008static int
1009ti_alloc_jumbo_mem(sc)
1010	struct ti_softc		*sc;
1011{
1012	caddr_t			ptr;
1013	register int		i;
1014	struct ti_jpool_entry   *entry;
1015
1016	/* Grab a big chunk o' storage. */
1017	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
1018		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1019
1020	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
1021		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
1022		return(ENOBUFS);
1023	}
1024
1025	SLIST_INIT(&sc->ti_jfree_listhead);
1026	SLIST_INIT(&sc->ti_jinuse_listhead);
1027
1028	/*
1029	 * Now divide it up into 9K pieces and save the addresses
1030	 * in an array.
1031	 */
1032	ptr = sc->ti_cdata.ti_jumbo_buf;
1033	for (i = 0; i < TI_JSLOTS; i++) {
1034		sc->ti_cdata.ti_jslots[i] = ptr;
1035		ptr += TI_JLEN;
1036		entry = malloc(sizeof(struct ti_jpool_entry),
1037			       M_DEVBUF, M_NOWAIT);
1038		if (entry == NULL) {
1039			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1040			           M_DEVBUF);
1041			sc->ti_cdata.ti_jumbo_buf = NULL;
1042			printf("ti%d: no memory for jumbo "
1043			    "buffer queue!\n", sc->ti_unit);
1044			return(ENOBUFS);
1045		}
1046		entry->slot = i;
1047		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1048	}
1049
1050	return(0);
1051}
1052
1053/*
1054 * Allocate a jumbo buffer.
1055 */
1056static void *ti_jalloc(sc)
1057	struct ti_softc		*sc;
1058{
1059	struct ti_jpool_entry   *entry;
1060
1061	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1062
1063	if (entry == NULL) {
1064		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1065		return(NULL);
1066	}
1067
1068	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1069	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1070	return(sc->ti_cdata.ti_jslots[entry->slot]);
1071}
1072
1073/*
1074 * Release a jumbo buffer.
1075 */
1076static void
1077ti_jfree(buf, args)
1078	void			*buf;
1079	void			*args;
1080{
1081	struct ti_softc		*sc;
1082	int		        i;
1083	struct ti_jpool_entry   *entry;
1084
1085	/* Extract the softc struct pointer. */
1086	sc = (struct ti_softc *)args;
1087
1088	if (sc == NULL)
1089		panic("ti_jfree: didn't get softc pointer!");
1090
1091	/* calculate the slot this buffer belongs to */
1092	i = ((vm_offset_t)buf
1093	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1094
1095	if ((i < 0) || (i >= TI_JSLOTS))
1096		panic("ti_jfree: asked to free buffer that we don't manage!");
1097
1098	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1099	if (entry == NULL)
1100		panic("ti_jfree: buffer not in use!");
1101	entry->slot = i;
1102	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1103	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1104
1105	return;
1106}
1107
1108#endif /* TI_PRIVATE_JUMBOS */
1109
1110/*
1111 * Intialize a standard receive ring descriptor.
1112 */
1113static int
1114ti_newbuf_std(sc, i, m)
1115	struct ti_softc		*sc;
1116	int			i;
1117	struct mbuf		*m;
1118{
1119	struct mbuf		*m_new = NULL;
1120	struct ti_rx_desc	*r;
1121
1122	if (m == NULL) {
1123		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1124		if (m_new == NULL)
1125			return(ENOBUFS);
1126
1127		MCLGET(m_new, M_DONTWAIT);
1128		if (!(m_new->m_flags & M_EXT)) {
1129			m_freem(m_new);
1130			return(ENOBUFS);
1131		}
1132		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1133	} else {
1134		m_new = m;
1135		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1136		m_new->m_data = m_new->m_ext.ext_buf;
1137	}
1138
1139	m_adj(m_new, ETHER_ALIGN);
1140	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1141	r = &sc->ti_rdata->ti_rx_std_ring[i];
1142	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1143	r->ti_type = TI_BDTYPE_RECV_BD;
1144	r->ti_flags = 0;
1145	if (sc->arpcom.ac_if.if_hwassist)
1146		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1147	r->ti_len = m_new->m_len;
1148	r->ti_idx = i;
1149
1150	return(0);
1151}
1152
1153/*
1154 * Intialize a mini receive ring descriptor. This only applies to
1155 * the Tigon 2.
1156 */
1157static int
1158ti_newbuf_mini(sc, i, m)
1159	struct ti_softc		*sc;
1160	int			i;
1161	struct mbuf		*m;
1162{
1163	struct mbuf		*m_new = NULL;
1164	struct ti_rx_desc	*r;
1165
1166	if (m == NULL) {
1167		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1168		if (m_new == NULL) {
1169			return(ENOBUFS);
1170		}
1171		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1172	} else {
1173		m_new = m;
1174		m_new->m_data = m_new->m_pktdat;
1175		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1176	}
1177
1178	m_adj(m_new, ETHER_ALIGN);
1179	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1180	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1181	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1182	r->ti_type = TI_BDTYPE_RECV_BD;
1183	r->ti_flags = TI_BDFLAG_MINI_RING;
1184	if (sc->arpcom.ac_if.if_hwassist)
1185		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1186	r->ti_len = m_new->m_len;
1187	r->ti_idx = i;
1188
1189	return(0);
1190}
1191
1192#ifdef TI_PRIVATE_JUMBOS
1193
1194/*
1195 * Initialize a jumbo receive ring descriptor. This allocates
1196 * a jumbo buffer from the pool managed internally by the driver.
1197 */
1198static int
1199ti_newbuf_jumbo(sc, i, m)
1200	struct ti_softc		*sc;
1201	int			i;
1202	struct mbuf		*m;
1203{
1204	struct mbuf		*m_new = NULL;
1205	struct ti_rx_desc	*r;
1206
1207	if (m == NULL) {
1208		caddr_t			*buf = NULL;
1209
1210		/* Allocate the mbuf. */
1211		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1212		if (m_new == NULL) {
1213			return(ENOBUFS);
1214		}
1215
1216		/* Allocate the jumbo buffer */
1217		buf = ti_jalloc(sc);
1218		if (buf == NULL) {
1219			m_freem(m_new);
1220			printf("ti%d: jumbo allocation failed "
1221			    "-- packet dropped!\n", sc->ti_unit);
1222			return(ENOBUFS);
1223		}
1224
1225		/* Attach the buffer to the mbuf. */
1226		m_new->m_data = (void *) buf;
1227		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1228		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1229		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1230	} else {
1231		m_new = m;
1232		m_new->m_data = m_new->m_ext.ext_buf;
1233		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1234	}
1235
1236	m_adj(m_new, ETHER_ALIGN);
1237	/* Set up the descriptor. */
1238	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1239	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1240	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1241	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1242	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1243	if (sc->arpcom.ac_if.if_hwassist)
1244		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1245	r->ti_len = m_new->m_len;
1246	r->ti_idx = i;
1247
1248	return(0);
1249}
1250
1251#else
1252#include <vm/vm_page.h>
1253
1254#if (PAGE_SIZE == 4096)
1255#define NPAYLOAD 2
1256#else
1257#define NPAYLOAD 1
1258#endif
1259
1260#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1261#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1262#define NFS_HDR_LEN (UDP_HDR_LEN)
1263static int HDR_LEN =  TCP_HDR_LEN;
1264
1265
1266 /*
1267  * Initialize a jumbo receive ring descriptor. This allocates
1268  * a jumbo buffer from the pool managed internally by the driver.
1269  */
1270static int
1271ti_newbuf_jumbo(sc, idx, m_old)
1272        struct ti_softc         *sc;
1273        int                     idx;
1274        struct mbuf             *m_old;
1275{
1276	struct mbuf		*cur, *m_new = NULL;
1277	struct mbuf		*m[3] = {NULL, NULL, NULL};
1278	struct ti_rx_desc_ext	*r;
1279	vm_page_t		frame;
1280				/* 1 extra buf to make nobufs easy*/
1281	caddr_t			buf[3] = {NULL, NULL, NULL};
1282	int			i;
1283
1284	if (m_old != NULL) {
1285		m_new = m_old;
1286		cur = m_old->m_next;
1287		for (i = 0; i <= NPAYLOAD; i++){
1288			m[i] = cur;
1289			cur = cur->m_next;
1290		}
1291	} else {
1292		/* Allocate the mbufs. */
1293		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1294		if (m_new == NULL) {
1295			printf("ti%d: mbuf allocation failed "
1296   			       "-- packet dropped!\n", sc->ti_unit);
1297			goto nobufs;
1298		}
1299		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1300		if (m[NPAYLOAD] == NULL) {
1301			printf("ti%d: cluster mbuf allocation failed "
1302			       "-- packet dropped!\n", sc->ti_unit);
1303			goto nobufs;
1304		}
1305		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1306		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1307			printf("ti%d: mbuf allocation failed "
1308			       "-- packet dropped!\n", sc->ti_unit);
1309			goto nobufs;
1310		}
1311		m[NPAYLOAD]->m_len = MCLBYTES;
1312
1313		for (i = 0; i < NPAYLOAD; i++){
1314			MGET(m[i], M_DONTWAIT, MT_DATA);
1315			if (m[i] == NULL) {
1316				printf("ti%d: mbuf allocation failed "
1317				       "-- packet dropped!\n", sc->ti_unit);
1318				goto nobufs;
1319			}
1320			if (!(frame = jumbo_pg_alloc())){
1321  				printf("ti%d: buffer allocation failed "
1322   				       "-- packet dropped!\n", sc->ti_unit);
1323				printf("      index %d page %d\n", idx, i);
1324   				goto nobufs;
1325			}
1326			buf[i] = jumbo_phys_to_kva(VM_PAGE_TO_PHYS(frame));
1327		}
1328		for (i = 0; i < NPAYLOAD; i++){
1329  		/* Attach the buffer to the mbuf. */
1330   			m[i]->m_data = (void *)buf[i];
1331			m[i]->m_len = PAGE_SIZE;
1332			MEXTADD(m[i], (void *)buf[i], PAGE_SIZE,
1333				jumbo_freem, NULL, 0, EXT_DISPOSABLE);
1334			m[i]->m_next = m[i+1];
1335		}
1336		/* link the buffers to the header */
1337		m_new->m_next = m[0];
1338		m_new->m_data += ETHER_ALIGN;
1339		if (sc->ti_hdrsplit)
1340			m_new->m_len = MHLEN - ETHER_ALIGN;
1341		else
1342   			m_new->m_len = HDR_LEN;
1343		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1344	}
1345
1346	/* Set up the descriptor. */
1347	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1348	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1349	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1350	r->ti_len0 = m_new->m_len;
1351
1352	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1353	r->ti_len1 = PAGE_SIZE;
1354
1355	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1356	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1357
1358	if (PAGE_SIZE == 4096) {
1359		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1360		r->ti_len3 = MCLBYTES;
1361	} else {
1362		r->ti_len3 = 0;
1363	}
1364        r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1365
1366        r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1367
1368	if (sc->arpcom.ac_if.if_hwassist)
1369		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1370
1371        r->ti_idx = idx;
1372
1373        return(0);
1374
1375 nobufs:
1376
1377	/*
1378	 * Warning! :
1379	 * This can only be called before the mbufs are strung together.
1380	 * If the mbufs are strung together, m_freem() will free the chain,
1381	 * so that the later mbufs will be freed multiple times.
1382	 */
1383        if (m_new)
1384                m_freem(m_new);
1385
1386        for(i = 0; i < 3; i++){
1387                if (m[i])
1388                        m_freem(m[i]);
1389                if (buf[i])
1390                        jumbo_pg_free((vm_offset_t)buf[i]);
1391        }
1392        return ENOBUFS;
1393}
1394#endif
1395
1396
1397
1398/*
1399 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1400 * that's 1MB or memory, which is a lot. For now, we fill only the first
1401 * 256 ring entries and hope that our CPU is fast enough to keep up with
1402 * the NIC.
1403 */
1404static int
1405ti_init_rx_ring_std(sc)
1406	struct ti_softc		*sc;
1407{
1408	register int		i;
1409	struct ti_cmd_desc	cmd;
1410
1411	for (i = 0; i < TI_SSLOTS; i++) {
1412		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1413			return(ENOBUFS);
1414	};
1415
1416	TI_UPDATE_STDPROD(sc, i - 1);
1417	sc->ti_std = i - 1;
1418
1419	return(0);
1420}
1421
1422static void
1423ti_free_rx_ring_std(sc)
1424	struct ti_softc		*sc;
1425{
1426	register int		i;
1427
1428	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1429		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1430			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1431			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1432		}
1433		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1434		    sizeof(struct ti_rx_desc));
1435	}
1436
1437	return;
1438}
1439
1440static int
1441ti_init_rx_ring_jumbo(sc)
1442	struct ti_softc		*sc;
1443{
1444	register int		i;
1445	struct ti_cmd_desc	cmd;
1446
1447	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1448		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1449			return(ENOBUFS);
1450	};
1451
1452	TI_UPDATE_JUMBOPROD(sc, i - 1);
1453	sc->ti_jumbo = i - 1;
1454
1455	return(0);
1456}
1457
1458static void
1459ti_free_rx_ring_jumbo(sc)
1460	struct ti_softc		*sc;
1461{
1462	register int		i;
1463
1464	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1465		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1466			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1467			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1468		}
1469		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1470		    sizeof(struct ti_rx_desc));
1471	}
1472
1473	return;
1474}
1475
1476static int
1477ti_init_rx_ring_mini(sc)
1478	struct ti_softc		*sc;
1479{
1480	register int		i;
1481
1482	for (i = 0; i < TI_MSLOTS; i++) {
1483		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1484			return(ENOBUFS);
1485	};
1486
1487	TI_UPDATE_MINIPROD(sc, i - 1);
1488	sc->ti_mini = i - 1;
1489
1490	return(0);
1491}
1492
1493static void
1494ti_free_rx_ring_mini(sc)
1495	struct ti_softc		*sc;
1496{
1497	register int		i;
1498
1499	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1500		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1501			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1502			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1503		}
1504		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1505		    sizeof(struct ti_rx_desc));
1506	}
1507
1508	return;
1509}
1510
1511static void
1512ti_free_tx_ring(sc)
1513	struct ti_softc		*sc;
1514{
1515	register int		i;
1516
1517	if (sc->ti_rdata->ti_tx_ring == NULL)
1518		return;
1519
1520	for (i = 0; i < TI_TX_RING_CNT; i++) {
1521		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1522			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1523			sc->ti_cdata.ti_tx_chain[i] = NULL;
1524		}
1525		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1526		    sizeof(struct ti_tx_desc));
1527	}
1528
1529	return;
1530}
1531
1532static int
1533ti_init_tx_ring(sc)
1534	struct ti_softc		*sc;
1535{
1536	sc->ti_txcnt = 0;
1537	sc->ti_tx_saved_considx = 0;
1538	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1539	return(0);
1540}
1541
1542/*
1543 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1544 * but we have to support the old way too so that Tigon 1 cards will
1545 * work.
1546 */
1547static void
1548ti_add_mcast(sc, addr)
1549	struct ti_softc		*sc;
1550	struct ether_addr	*addr;
1551{
1552	struct ti_cmd_desc	cmd;
1553	u_int16_t		*m;
1554	u_int32_t		ext[2] = {0, 0};
1555
1556	m = (u_int16_t *)&addr->octet[0];
1557
1558	switch(sc->ti_hwrev) {
1559	case TI_HWREV_TIGON:
1560		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1561		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1562		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1563		break;
1564	case TI_HWREV_TIGON_II:
1565		ext[0] = htons(m[0]);
1566		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1567		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1568		break;
1569	default:
1570		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1571		break;
1572	}
1573
1574	return;
1575}
1576
1577static void
1578ti_del_mcast(sc, addr)
1579	struct ti_softc		*sc;
1580	struct ether_addr	*addr;
1581{
1582	struct ti_cmd_desc	cmd;
1583	u_int16_t		*m;
1584	u_int32_t		ext[2] = {0, 0};
1585
1586	m = (u_int16_t *)&addr->octet[0];
1587
1588	switch(sc->ti_hwrev) {
1589	case TI_HWREV_TIGON:
1590		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1591		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1592		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1593		break;
1594	case TI_HWREV_TIGON_II:
1595		ext[0] = htons(m[0]);
1596		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1597		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1598		break;
1599	default:
1600		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1601		break;
1602	}
1603
1604	return;
1605}
1606
1607/*
1608 * Configure the Tigon's multicast address filter.
1609 *
1610 * The actual multicast table management is a bit of a pain, thanks to
1611 * slight brain damage on the part of both Alteon and us. With our
1612 * multicast code, we are only alerted when the multicast address table
1613 * changes and at that point we only have the current list of addresses:
1614 * we only know the current state, not the previous state, so we don't
1615 * actually know what addresses were removed or added. The firmware has
1616 * state, but we can't get our grubby mits on it, and there is no 'delete
1617 * all multicast addresses' command. Hence, we have to maintain our own
1618 * state so we know what addresses have been programmed into the NIC at
1619 * any given time.
1620 */
1621static void
1622ti_setmulti(sc)
1623	struct ti_softc		*sc;
1624{
1625	struct ifnet		*ifp;
1626	struct ifmultiaddr	*ifma;
1627	struct ti_cmd_desc	cmd;
1628	struct ti_mc_entry	*mc;
1629	u_int32_t		intrs;
1630
1631	ifp = &sc->arpcom.ac_if;
1632
1633	if (ifp->if_flags & IFF_ALLMULTI) {
1634		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1635		return;
1636	} else {
1637		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1638	}
1639
1640	/* Disable interrupts. */
1641	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1642	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1643
1644	/* First, zot all the existing filters. */
1645	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1646		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1647		ti_del_mcast(sc, &mc->mc_addr);
1648		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1649		free(mc, M_DEVBUF);
1650	}
1651
1652	/* Now program new ones. */
1653	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1654		if (ifma->ifma_addr->sa_family != AF_LINK)
1655			continue;
1656		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1657		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1658		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1659		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1660		ti_add_mcast(sc, &mc->mc_addr);
1661	}
1662
1663	/* Re-enable interrupts. */
1664	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1665
1666	return;
1667}
1668
1669/*
1670 * Check to see if the BIOS has configured us for a 64 bit slot when
1671 * we aren't actually in one. If we detect this condition, we can work
1672 * around it on the Tigon 2 by setting a bit in the PCI state register,
1673 * but for the Tigon 1 we must give up and abort the interface attach.
1674 */
1675static int ti_64bitslot_war(sc)
1676	struct ti_softc		*sc;
1677{
1678	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1679		CSR_WRITE_4(sc, 0x600, 0);
1680		CSR_WRITE_4(sc, 0x604, 0);
1681		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1682		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1683			if (sc->ti_hwrev == TI_HWREV_TIGON)
1684				return(EINVAL);
1685			else {
1686				TI_SETBIT(sc, TI_PCI_STATE,
1687				    TI_PCISTATE_32BIT_BUS);
1688				return(0);
1689			}
1690		}
1691	}
1692
1693	return(0);
1694}
1695
1696/*
1697 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1698 * self-test results.
1699 */
1700static int
1701ti_chipinit(sc)
1702	struct ti_softc		*sc;
1703{
1704	u_int32_t		cacheline;
1705	u_int32_t		pci_writemax = 0;
1706	u_int32_t		hdrsplit;
1707
1708	/* Initialize link to down state. */
1709	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1710
1711	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1712		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1713	else
1714		sc->arpcom.ac_if.if_hwassist = 0;
1715
1716	/* Set endianness before we access any non-PCI registers. */
1717#if BYTE_ORDER == BIG_ENDIAN
1718	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1719	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1720#else
1721	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1722	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1723#endif
1724
1725	/* Check the ROM failed bit to see if self-tests passed. */
1726	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1727		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1728		return(ENODEV);
1729	}
1730
1731	/* Halt the CPU. */
1732	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1733
1734	/* Figure out the hardware revision. */
1735	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1736	case TI_REV_TIGON_I:
1737		sc->ti_hwrev = TI_HWREV_TIGON;
1738		break;
1739	case TI_REV_TIGON_II:
1740		sc->ti_hwrev = TI_HWREV_TIGON_II;
1741		break;
1742	default:
1743		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1744		return(ENODEV);
1745	}
1746
1747	/* Do special setup for Tigon 2. */
1748	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1749		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1750		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1751		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1752	}
1753
1754	/*
1755	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1756	 * can't do header splitting.
1757	 */
1758#ifdef TI_JUMBO_HDRSPLIT
1759	if (sc->ti_hwrev != TI_HWREV_TIGON)
1760		sc->ti_hdrsplit = 1;
1761	else
1762		printf("ti%d: can't do header splitting on a Tigon I board\n",
1763		       sc->ti_unit);
1764#endif /* TI_JUMBO_HDRSPLIT */
1765
1766	/* Set up the PCI state register. */
1767	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1768	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1769		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1770	}
1771
1772	/* Clear the read/write max DMA parameters. */
1773	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1774	    TI_PCISTATE_READ_MAXDMA));
1775
1776	/* Get cache line size. */
1777	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1778
1779	/*
1780	 * If the system has set enabled the PCI memory write
1781	 * and invalidate command in the command register, set
1782	 * the write max parameter accordingly. This is necessary
1783	 * to use MWI with the Tigon 2.
1784	 */
1785	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1786		switch(cacheline) {
1787		case 1:
1788		case 4:
1789		case 8:
1790		case 16:
1791		case 32:
1792		case 64:
1793			break;
1794		default:
1795		/* Disable PCI memory write and invalidate. */
1796			if (bootverbose)
1797				printf("ti%d: cache line size %d not "
1798				    "supported; disabling PCI MWI\n",
1799				    sc->ti_unit, cacheline);
1800			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1801			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1802			break;
1803		}
1804	}
1805
1806#ifdef __brokenalpha__
1807	/*
1808	 * From the Alteon sample driver:
1809	 * Must insure that we do not cross an 8K (bytes) boundary
1810	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1811	 * restriction on some ALPHA platforms with early revision
1812	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1813	 */
1814	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1815#else
1816	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1817#endif
1818
1819	/* This sets the min dma param all the way up (0xff). */
1820	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1821
1822	if (sc->ti_hdrsplit)
1823		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1824	else
1825		hdrsplit = 0;
1826
1827	/* Configure DMA variables. */
1828#if BYTE_ORDER == BIG_ENDIAN
1829	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1830	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1831	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1832	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1833#else /* BYTE_ORDER */
1834	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1835	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1836	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1837#endif /* BYTE_ORDER */
1838
1839	/*
1840	 * Only allow 1 DMA channel to be active at a time.
1841	 * I don't think this is a good idea, but without it
1842	 * the firmware racks up lots of nicDmaReadRingFull
1843	 * errors.  This is not compatible with hardware checksums.
1844	 */
1845	if (sc->arpcom.ac_if.if_hwassist == 0)
1846		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1847
1848	/* Recommended settings from Tigon manual. */
1849	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1850	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1851
1852	if (ti_64bitslot_war(sc)) {
1853		printf("ti%d: bios thinks we're in a 64 bit slot, "
1854		    "but we aren't", sc->ti_unit);
1855		return(EINVAL);
1856	}
1857
1858	return(0);
1859}
1860
1861/*
1862 * Initialize the general information block and firmware, and
1863 * start the CPU(s) running.
1864 */
1865static int
1866ti_gibinit(sc)
1867	struct ti_softc		*sc;
1868{
1869	struct ti_rcb		*rcb;
1870	int			i;
1871	struct ifnet		*ifp;
1872
1873	ifp = &sc->arpcom.ac_if;
1874
1875	/* Disable interrupts for now. */
1876	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1877
1878	/* Tell the chip where to find the general information block. */
1879	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1880	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1881
1882	/* Load the firmware into SRAM. */
1883	ti_loadfw(sc);
1884
1885	/* Set up the contents of the general info and ring control blocks. */
1886
1887	/* Set up the event ring and producer pointer. */
1888	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1889
1890	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1891	rcb->ti_flags = 0;
1892	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1893	    vtophys(&sc->ti_ev_prodidx);
1894	sc->ti_ev_prodidx.ti_idx = 0;
1895	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1896	sc->ti_ev_saved_considx = 0;
1897
1898	/* Set up the command ring and producer mailbox. */
1899	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1900
1901	sc->ti_rdata->ti_cmd_ring =
1902	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1903	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1904	rcb->ti_flags = 0;
1905	rcb->ti_max_len = 0;
1906	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1907		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1908	}
1909	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1910	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1911	sc->ti_cmd_saved_prodidx = 0;
1912
1913	/*
1914	 * Assign the address of the stats refresh buffer.
1915	 * We re-use the current stats buffer for this to
1916	 * conserve memory.
1917	 */
1918	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1919	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1920
1921	/* Set up the standard receive ring. */
1922	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1923	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1924	rcb->ti_max_len = TI_FRAMELEN;
1925	rcb->ti_flags = 0;
1926	if (sc->arpcom.ac_if.if_hwassist)
1927		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1928		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1929	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1930
1931	/* Set up the jumbo receive ring. */
1932	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1933	TI_HOSTADDR(rcb->ti_hostaddr) =
1934	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1935
1936#ifdef TI_PRIVATE_JUMBOS
1937	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1938	rcb->ti_flags = 0;
1939#else
1940	rcb->ti_max_len = PAGE_SIZE;
1941	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1942#endif
1943	if (sc->arpcom.ac_if.if_hwassist)
1944		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1945		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1946	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1947
1948	/*
1949	 * Set up the mini ring. Only activated on the
1950	 * Tigon 2 but the slot in the config block is
1951	 * still there on the Tigon 1.
1952	 */
1953	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1954	TI_HOSTADDR(rcb->ti_hostaddr) =
1955	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1956	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1957	if (sc->ti_hwrev == TI_HWREV_TIGON)
1958		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1959	else
1960		rcb->ti_flags = 0;
1961	if (sc->arpcom.ac_if.if_hwassist)
1962		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1963		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1964	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1965
1966	/*
1967	 * Set up the receive return ring.
1968	 */
1969	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1970	TI_HOSTADDR(rcb->ti_hostaddr) =
1971	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1972	rcb->ti_flags = 0;
1973	rcb->ti_max_len = TI_RETURN_RING_CNT;
1974	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1975	    vtophys(&sc->ti_return_prodidx);
1976
1977	/*
1978	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1979	 * of putting the transmit ring in the host's address space and
1980	 * letting the chip DMA it instead of leaving the ring in the NIC's
1981	 * memory and accessing it through the shared memory region. We
1982	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1983	 * so we have to revert to the shared memory scheme if we detect
1984	 * a Tigon 1 chip.
1985	 */
1986	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1987	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1988		sc->ti_rdata->ti_tx_ring_nic =
1989		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1990	}
1991	bzero((char *)sc->ti_rdata->ti_tx_ring,
1992	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1993	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1994	if (sc->ti_hwrev == TI_HWREV_TIGON)
1995		rcb->ti_flags = 0;
1996	else
1997		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1998	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1999	if (sc->arpcom.ac_if.if_hwassist)
2000		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2001		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2002	rcb->ti_max_len = TI_TX_RING_CNT;
2003	if (sc->ti_hwrev == TI_HWREV_TIGON)
2004		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2005	else
2006		TI_HOSTADDR(rcb->ti_hostaddr) =
2007		    vtophys(&sc->ti_rdata->ti_tx_ring);
2008	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2009	    vtophys(&sc->ti_tx_considx);
2010
2011	/* Set up tuneables */
2012#if 0
2013	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2014		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2015		    (sc->ti_rx_coal_ticks / 10));
2016	else
2017#endif
2018		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2019	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2020	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2021	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2022	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2023	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2024
2025	/* Turn interrupts on. */
2026	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2027	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2028
2029	/* Start CPU. */
2030	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2031
2032	return(0);
2033}
2034
2035/*
2036 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2037 * against our list and return its name if we find a match.
2038 */
2039static int
2040ti_probe(dev)
2041	device_t		dev;
2042{
2043	struct ti_type		*t;
2044
2045	t = ti_devs;
2046
2047	while(t->ti_name != NULL) {
2048		if ((pci_get_vendor(dev) == t->ti_vid) &&
2049		    (pci_get_device(dev) == t->ti_did)) {
2050			device_set_desc(dev, t->ti_name);
2051			return(0);
2052		}
2053		t++;
2054	}
2055
2056	return(ENXIO);
2057}
2058
2059#ifdef KLD_MODULE
2060static int
2061log2rndup(int len)
2062{
2063	int log2size = 0, t = len;
2064	while (t > 1) {
2065		log2size++;
2066		t >>= 1;
2067	}
2068	if (len != (1 << log2size))
2069		log2size++;
2070	return log2size;
2071}
2072
2073static int
2074ti_mbuf_sanity(device_t dev)
2075{
2076	if ((mbstat.m_msize != MSIZE) || mbstat.m_mclbytes != MCLBYTES){
2077		device_printf(dev, "\n");
2078		device_printf(dev, "This module was compiled with "
2079				   "-DMCLSHIFT=%d -DMSIZE=%d\n", MCLSHIFT,
2080				   MSIZE);
2081		device_printf(dev, "The kernel was compiled with MCLSHIFT=%d,"
2082			      " MSIZE=%d\n", log2rndup(mbstat.m_mclbytes),
2083			      (int)mbstat.m_msize);
2084		return(EINVAL);
2085	}
2086	return(0);
2087}
2088#endif
2089
2090
2091static int
2092ti_attach(dev)
2093	device_t		dev;
2094{
2095	struct ifnet		*ifp;
2096	struct ti_softc		*sc;
2097	int			unit, error = 0, rid;
2098
2099	sc = NULL;
2100
2101#ifdef KLD_MODULE
2102	if (ti_mbuf_sanity(dev)){
2103		device_printf(dev, "Module mbuf constants do not match "
2104			      "kernel constants!\n");
2105		device_printf(dev, "Rebuild the module or the kernel so "
2106			      "they match\n");
2107		device_printf(dev, "\n");
2108		error = EINVAL;
2109		goto fail;
2110	}
2111#endif
2112
2113	sc = device_get_softc(dev);
2114	unit = device_get_unit(dev);
2115
2116	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2117	    MTX_DEF | MTX_RECURSE);
2118	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2119	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
2120	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2121
2122	/*
2123	 * Map control/status registers.
2124	 */
2125	pci_enable_busmaster(dev);
2126
2127	rid = TI_PCI_LOMEM;
2128	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
2129	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
2130
2131	if (sc->ti_res == NULL) {
2132		printf ("ti%d: couldn't map memory\n", unit);
2133		error = ENXIO;
2134		goto fail;
2135	}
2136
2137	sc->ti_btag = rman_get_bustag(sc->ti_res);
2138	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2139	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2140
2141	/* Allocate interrupt */
2142	rid = 0;
2143
2144	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
2145	    RF_SHAREABLE | RF_ACTIVE);
2146
2147	if (sc->ti_irq == NULL) {
2148		printf("ti%d: couldn't map interrupt\n", unit);
2149		error = ENXIO;
2150		goto fail;
2151	}
2152
2153	sc->ti_unit = unit;
2154
2155	if (ti_chipinit(sc)) {
2156		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2157		error = ENXIO;
2158		goto fail;
2159	}
2160
2161	/* Zero out the NIC's on-board SRAM. */
2162	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2163
2164	/* Init again -- zeroing memory may have clobbered some registers. */
2165	if (ti_chipinit(sc)) {
2166		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2167		error = ENXIO;
2168		goto fail;
2169	}
2170
2171	/*
2172	 * Get station address from the EEPROM. Note: the manual states
2173	 * that the MAC address is at offset 0x8c, however the data is
2174	 * stored as two longwords (since that's how it's loaded into
2175	 * the NIC). This means the MAC address is actually preceded
2176	 * by two zero bytes. We need to skip over those.
2177	 */
2178	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2179				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2180		printf("ti%d: failed to read station address\n", unit);
2181		error = ENXIO;
2182		goto fail;
2183	}
2184
2185	/*
2186	 * A Tigon chip was detected. Inform the world.
2187	 */
2188	printf("ti%d: Ethernet address: %6D\n", unit,
2189				sc->arpcom.ac_enaddr, ":");
2190
2191	/* Allocate the general information block and ring buffers. */
2192	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
2193	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2194
2195	if (sc->ti_rdata == NULL) {
2196		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
2197		error = ENXIO;
2198		goto fail;
2199	}
2200
2201	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2202
2203	/* Try to allocate memory for jumbo buffers. */
2204#ifdef TI_PRIVATE_JUMBOS
2205	if (ti_alloc_jumbo_mem(sc)) {
2206		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2207		error = ENXIO;
2208		goto fail;
2209	}
2210#else
2211	if (!jumbo_vm_init()) {
2212		printf("ti%d: VM initialization failed!\n", sc->ti_unit);
2213		error = ENOMEM;
2214		goto fail;
2215	}
2216#endif
2217
2218	/*
2219	 * We really need a better way to tell a 1000baseTX card
2220	 * from a 1000baseSX one, since in theory there could be
2221	 * OEMed 1000baseTX cards from lame vendors who aren't
2222	 * clever enough to change the PCI ID. For the moment
2223	 * though, the AceNIC is the only copper card available.
2224	 */
2225	if (pci_get_vendor(dev) == ALT_VENDORID &&
2226	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2227		sc->ti_copper = 1;
2228	/* Ok, it's not the only copper card available. */
2229	if (pci_get_vendor(dev) == NG_VENDORID &&
2230	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2231		sc->ti_copper = 1;
2232
2233	/* Set default tuneable values. */
2234	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2235#if 0
2236	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2237#endif
2238	sc->ti_rx_coal_ticks = 170;
2239	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2240	sc->ti_rx_max_coal_bds = 64;
2241#if 0
2242	sc->ti_tx_max_coal_bds = 128;
2243#endif
2244	sc->ti_tx_max_coal_bds = 32;
2245	sc->ti_tx_buf_ratio = 21;
2246
2247	/* Set up ifnet structure */
2248	ifp = &sc->arpcom.ac_if;
2249	ifp->if_softc = sc;
2250	ifp->if_unit = sc->ti_unit;
2251	ifp->if_name = "ti";
2252	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2253	tis[unit] = sc;
2254	ifp->if_ioctl = ti_ioctl;
2255	ifp->if_output = ether_output;
2256	ifp->if_start = ti_start;
2257	ifp->if_watchdog = ti_watchdog;
2258	ifp->if_init = ti_init;
2259	ifp->if_mtu = ETHERMTU;
2260	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2261
2262	/* Set up ifmedia support. */
2263	if (sc->ti_copper) {
2264		/*
2265		 * Copper cards allow manual 10/100 mode selection,
2266		 * but not manual 1000baseTX mode selection. Why?
2267		 * Becuase currently there's no way to specify the
2268		 * master/slave setting through the firmware interface,
2269		 * so Alteon decided to just bag it and handle it
2270		 * via autonegotiation.
2271		 */
2272		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2273		ifmedia_add(&sc->ifmedia,
2274		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2275		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2276		ifmedia_add(&sc->ifmedia,
2277		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2278		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2279		ifmedia_add(&sc->ifmedia,
2280		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2281	} else {
2282		/* Fiber cards don't support 10/100 modes. */
2283		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2284		ifmedia_add(&sc->ifmedia,
2285		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2286	}
2287	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2288	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2289
2290	/*
2291	 * We're assuming here that card initialization is a sequential
2292	 * thing.  If it isn't, multiple cards probing at the same time
2293	 * could stomp on the list of softcs here.
2294	 */
2295	/*
2296	 * If this is the first card to be initialized, initialize the
2297	 * softc queue.
2298	 */
2299	if (unit == 0)
2300		STAILQ_INIT(&ti_sc_list);
2301
2302	STAILQ_INSERT_TAIL(&ti_sc_list, sc, ti_links);
2303
2304	/* Register the device */
2305	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2306			   0600, "ti%d", sc->ti_unit);
2307
2308	/*
2309	 * Call MI attach routine.
2310	 */
2311	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
2312
2313	/* Hook interrupt last to avoid having to lock softc */
2314	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2315	   ti_intr, sc, &sc->ti_intrhand);
2316
2317	if (error) {
2318		printf("ti%d: couldn't set up irq\n", unit);
2319		ether_ifdetach(ifp);
2320		goto fail;
2321	}
2322
2323fail:
2324	if (sc && error)
2325		ti_detach(dev);
2326
2327	return(error);
2328}
2329
2330/*
2331 * Verify that our character special device is not currently
2332 * open.  Also track down any cached vnodes & kill them before
2333 * the module is unloaded
2334 */
2335static int
2336ti_unref_special(device_t dev)
2337{
2338	struct vnode *ti_vn;
2339	int count;
2340	struct ti_softc *sc = sc = device_get_softc(dev);
2341
2342	if (!vfinddev(sc->dev, VCHR, &ti_vn)) {
2343		return 0;
2344	}
2345
2346	if ((count = vcount(ti_vn))) {
2347		device_printf(dev, "%d refs to special device, "
2348			      "denying unload\n", count);
2349		return count;
2350	}
2351	/* now we know that there's a vnode in the cache. We hunt it
2352	   down and kill it now, before unloading */
2353	vgone(ti_vn);
2354	return(0);
2355}
2356
2357/*
2358 * Shutdown hardware and free up resources. This can be called any
2359 * time after the mutex has been initialized. It is called in both
2360 * the error case in attach and the normal detach case so it needs
2361 * to be careful about only freeing resources that have actually been
2362 * allocated.
2363 */
2364static int
2365ti_detach(dev)
2366	device_t		dev;
2367{
2368	struct ti_softc		*sc;
2369	struct ifnet		*ifp;
2370
2371	if (ti_unref_special(dev))
2372		return EBUSY;
2373
2374	sc = device_get_softc(dev);
2375	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2376	TI_LOCK(sc);
2377	ifp = &sc->arpcom.ac_if;
2378
2379	/* These should only be active if attach succeeded */
2380	if (device_is_alive(dev)) {
2381		ti_stop(sc);
2382		ether_ifdetach(ifp);
2383		bus_generic_detach(dev);
2384	}
2385	ifmedia_removeall(&sc->ifmedia);
2386
2387	if (sc->ti_intrhand)
2388		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2389	if (sc->ti_irq)
2390		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2391	if (sc->ti_res) {
2392		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2393		    sc->ti_res);
2394	}
2395
2396#ifdef TI_PRIVATE_JUMBOS
2397	if (sc->ti_cdata.ti_jumbo_buf)
2398		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2399#endif
2400	if (sc->ti_rdata)
2401		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2402
2403	TI_UNLOCK(sc);
2404	mtx_destroy(&sc->ti_mtx);
2405
2406	return(0);
2407}
2408
2409#ifdef TI_JUMBO_HDRSPLIT
2410/*
2411 * If hdr_len is 0, that means that header splitting wasn't done on
2412 * this packet for some reason.  The two most likely reasons are that
2413 * the protocol isn't a supported protocol for splitting, or this
2414 * packet had a fragment offset that wasn't 0.
2415 *
2416 * The header length, if it is non-zero, will always be the length of
2417 * the headers on the packet, but that length could be longer than the
2418 * first mbuf.  So we take the minimum of the two as the actual
2419 * length.
2420 */
2421static __inline void
2422ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2423{
2424	int i = 0;
2425	int lengths[4] = {0, 0, 0, 0};
2426	struct mbuf *m, *mp;
2427
2428	if (hdr_len != 0)
2429		top->m_len = min(hdr_len, top->m_len);
2430	pkt_len -= top->m_len;
2431	lengths[i++] = top->m_len;
2432
2433	mp = top;
2434	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2435		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2436		pkt_len -= m->m_len;
2437		lengths[i++] = m->m_len;
2438		mp = m;
2439	}
2440
2441#if 0
2442	if (hdr_len != 0)
2443		printf("got split packet: ");
2444	else
2445		printf("got non-split packet: ");
2446
2447	printf("%d,%d,%d,%d = %d\n", lengths[0],
2448	    lengths[1], lengths[2], lengths[3],
2449	    lengths[0] + lengths[1] + lengths[2] +
2450	    lengths[3]);
2451#endif
2452
2453	if (pkt_len)
2454		panic("header splitting didn't");
2455
2456	if (m) {
2457		m_freem(m);
2458		mp->m_next = NULL;
2459
2460	}
2461	if (mp->m_next != NULL)
2462		panic("ti_hdr_split: last mbuf in chain should be null");
2463}
2464#endif /* TI_JUMBO_HDRSPLIT */
2465
2466/*
2467 * Frame reception handling. This is called if there's a frame
2468 * on the receive return list.
2469 *
2470 * Note: we have to be able to handle three possibilities here:
2471 * 1) the frame is from the mini receive ring (can only happen)
2472 *    on Tigon 2 boards)
2473 * 2) the frame is from the jumbo recieve ring
2474 * 3) the frame is from the standard receive ring
2475 */
2476
2477static void
2478ti_rxeof(sc)
2479	struct ti_softc		*sc;
2480{
2481	struct ifnet		*ifp;
2482	struct ti_cmd_desc	cmd;
2483
2484	ifp = &sc->arpcom.ac_if;
2485
2486	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2487		struct ti_rx_desc	*cur_rx;
2488		u_int32_t		rxidx;
2489		struct ether_header	*eh;
2490		struct mbuf		*m = NULL;
2491		u_int16_t		vlan_tag = 0;
2492		int			have_tag = 0;
2493
2494		cur_rx =
2495		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2496		rxidx = cur_rx->ti_idx;
2497		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2498
2499		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2500			have_tag = 1;
2501			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2502		}
2503
2504		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2505
2506			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2507			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2508			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2509			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2510				ifp->if_ierrors++;
2511				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2512				continue;
2513			}
2514			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2515				ifp->if_ierrors++;
2516				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2517				continue;
2518			}
2519#ifdef TI_PRIVATE_JUMBOS
2520                        m->m_len = cur_rx->ti_len;
2521#else /* TI_PRIVATE_JUMBOS */
2522#ifdef TI_JUMBO_HDRSPLIT
2523			if (sc->ti_hdrsplit)
2524				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2525					     cur_rx->ti_len, rxidx);
2526			else
2527#endif /* TI_JUMBO_HDRSPLIT */
2528                        	m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2529#endif /* TI_PRIVATE_JUMBOS */
2530		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2531			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2532			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2533			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2534			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2535				ifp->if_ierrors++;
2536				ti_newbuf_mini(sc, sc->ti_mini, m);
2537				continue;
2538			}
2539			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2540				ifp->if_ierrors++;
2541				ti_newbuf_mini(sc, sc->ti_mini, m);
2542				continue;
2543			}
2544			m->m_len = cur_rx->ti_len;
2545		} else {
2546			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2547			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2548			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2549			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2550				ifp->if_ierrors++;
2551				ti_newbuf_std(sc, sc->ti_std, m);
2552				continue;
2553			}
2554			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2555				ifp->if_ierrors++;
2556				ti_newbuf_std(sc, sc->ti_std, m);
2557				continue;
2558			}
2559			m->m_len = cur_rx->ti_len;
2560		}
2561
2562		m->m_pkthdr.len = cur_rx->ti_len;
2563		ifp->if_ipackets++;
2564		eh = mtod(m, struct ether_header *);
2565		m->m_pkthdr.rcvif = ifp;
2566
2567		if (ifp->if_hwassist) {
2568			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2569			    CSUM_DATA_VALID;
2570			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2571				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2572			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2573		}
2574
2575		/*
2576		 * If we received a packet with a vlan tag,
2577		 * tag it before passing the packet upward.
2578		 */
2579		if (have_tag)
2580			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2581		(*ifp->if_input)(ifp, m);
2582	}
2583
2584	/* Only necessary on the Tigon 1. */
2585	if (sc->ti_hwrev == TI_HWREV_TIGON)
2586		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2587		    sc->ti_rx_saved_considx);
2588
2589	TI_UPDATE_STDPROD(sc, sc->ti_std);
2590	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2591	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2592
2593	return;
2594}
2595
2596static void
2597ti_txeof(sc)
2598	struct ti_softc		*sc;
2599{
2600	struct ti_tx_desc	*cur_tx = NULL;
2601	struct ifnet		*ifp;
2602
2603	ifp = &sc->arpcom.ac_if;
2604
2605	/*
2606	 * Go through our tx ring and free mbufs for those
2607	 * frames that have been sent.
2608	 */
2609	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2610		u_int32_t		idx = 0;
2611
2612		idx = sc->ti_tx_saved_considx;
2613		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2614			if (idx > 383)
2615				CSR_WRITE_4(sc, TI_WINBASE,
2616				    TI_TX_RING_BASE + 6144);
2617			else if (idx > 255)
2618				CSR_WRITE_4(sc, TI_WINBASE,
2619				    TI_TX_RING_BASE + 4096);
2620			else if (idx > 127)
2621				CSR_WRITE_4(sc, TI_WINBASE,
2622				    TI_TX_RING_BASE + 2048);
2623			else
2624				CSR_WRITE_4(sc, TI_WINBASE,
2625				    TI_TX_RING_BASE);
2626			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2627		} else
2628			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2629		if (cur_tx->ti_flags & TI_BDFLAG_END)
2630			ifp->if_opackets++;
2631		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2632			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2633			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2634		}
2635		sc->ti_txcnt--;
2636		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2637		ifp->if_timer = 0;
2638	}
2639
2640	if (cur_tx != NULL)
2641		ifp->if_flags &= ~IFF_OACTIVE;
2642
2643	return;
2644}
2645
2646static void
2647ti_intr(xsc)
2648	void			*xsc;
2649{
2650	struct ti_softc		*sc;
2651	struct ifnet		*ifp;
2652
2653	sc = xsc;
2654	TI_LOCK(sc);
2655	ifp = &sc->arpcom.ac_if;
2656
2657/*#ifdef notdef*/
2658	/* Avoid this for now -- checking this register is expensive. */
2659	/* Make sure this is really our interrupt. */
2660	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2661		TI_UNLOCK(sc);
2662		return;
2663	}
2664/*#endif*/
2665
2666	/* Ack interrupt and stop others from occuring. */
2667	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2668
2669	if (ifp->if_flags & IFF_RUNNING) {
2670		/* Check RX return ring producer/consumer */
2671		ti_rxeof(sc);
2672
2673		/* Check TX ring producer/consumer */
2674		ti_txeof(sc);
2675	}
2676
2677	ti_handle_events(sc);
2678
2679	/* Re-enable interrupts. */
2680	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2681
2682	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2683		ti_start(ifp);
2684
2685	TI_UNLOCK(sc);
2686
2687	return;
2688}
2689
2690static void
2691ti_stats_update(sc)
2692	struct ti_softc		*sc;
2693{
2694	struct ifnet		*ifp;
2695
2696	ifp = &sc->arpcom.ac_if;
2697
2698	ifp->if_collisions +=
2699	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2700	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2701	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2702	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2703	   ifp->if_collisions;
2704
2705	return;
2706}
2707
2708/*
2709 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2710 * pointers to descriptors.
2711 */
2712static int
2713ti_encap(sc, m_head, txidx)
2714	struct ti_softc		*sc;
2715	struct mbuf		*m_head;
2716	u_int32_t		*txidx;
2717{
2718	struct ti_tx_desc	*f = NULL;
2719	struct mbuf		*m;
2720	u_int32_t		frag, cur, cnt = 0;
2721	u_int16_t		csum_flags = 0;
2722	struct m_tag		*mtag;
2723
2724	m = m_head;
2725	cur = frag = *txidx;
2726
2727	if (m_head->m_pkthdr.csum_flags) {
2728		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2729			csum_flags |= TI_BDFLAG_IP_CKSUM;
2730		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2731			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2732		if (m_head->m_flags & M_LASTFRAG)
2733			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2734		else if (m_head->m_flags & M_FRAG)
2735			csum_flags |= TI_BDFLAG_IP_FRAG;
2736	}
2737
2738	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
2739
2740	/*
2741 	 * Start packing the mbufs in this chain into
2742	 * the fragment pointers. Stop when we run out
2743 	 * of fragments or hit the end of the mbuf chain.
2744	 */
2745	for (m = m_head; m != NULL; m = m->m_next) {
2746		if (m->m_len != 0) {
2747			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2748				if (frag > 383)
2749					CSR_WRITE_4(sc, TI_WINBASE,
2750					    TI_TX_RING_BASE + 6144);
2751				else if (frag > 255)
2752					CSR_WRITE_4(sc, TI_WINBASE,
2753					    TI_TX_RING_BASE + 4096);
2754				else if (frag > 127)
2755					CSR_WRITE_4(sc, TI_WINBASE,
2756					    TI_TX_RING_BASE + 2048);
2757				else
2758					CSR_WRITE_4(sc, TI_WINBASE,
2759					    TI_TX_RING_BASE);
2760				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2761			} else
2762				f = &sc->ti_rdata->ti_tx_ring[frag];
2763			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2764				break;
2765			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2766			f->ti_len = m->m_len;
2767			f->ti_flags = csum_flags;
2768
2769			if (mtag != NULL) {
2770				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2771				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2772			} else {
2773				f->ti_vlan_tag = 0;
2774			}
2775
2776			/*
2777			 * Sanity check: avoid coming within 16 descriptors
2778			 * of the end of the ring.
2779			 */
2780			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2781				return(ENOBUFS);
2782			cur = frag;
2783			TI_INC(frag, TI_TX_RING_CNT);
2784			cnt++;
2785		}
2786	}
2787
2788	if (m != NULL)
2789		return(ENOBUFS);
2790
2791	if (frag == sc->ti_tx_saved_considx)
2792		return(ENOBUFS);
2793
2794	if (sc->ti_hwrev == TI_HWREV_TIGON)
2795		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2796	            TI_BDFLAG_END;
2797	else
2798		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2799	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2800	sc->ti_txcnt += cnt;
2801
2802	*txidx = frag;
2803
2804	return(0);
2805}
2806
2807/*
2808 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2809 * to the mbuf data regions directly in the transmit descriptors.
2810 */
2811static void
2812ti_start(ifp)
2813	struct ifnet		*ifp;
2814{
2815	struct ti_softc		*sc;
2816	struct mbuf		*m_head = NULL;
2817	u_int32_t		prodidx = 0;
2818
2819	sc = ifp->if_softc;
2820	TI_LOCK(sc);
2821
2822	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2823
2824	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2825		IF_DEQUEUE(&ifp->if_snd, m_head);
2826		if (m_head == NULL)
2827			break;
2828
2829		/*
2830		 * XXX
2831		 * safety overkill.  If this is a fragmented packet chain
2832		 * with delayed TCP/UDP checksums, then only encapsulate
2833		 * it if we have enough descriptors to handle the entire
2834		 * chain at once.
2835		 * (paranoia -- may not actually be needed)
2836		 */
2837		if (m_head->m_flags & M_FIRSTFRAG &&
2838		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2839			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2840			    m_head->m_pkthdr.csum_data + 16) {
2841				IF_PREPEND(&ifp->if_snd, m_head);
2842				ifp->if_flags |= IFF_OACTIVE;
2843				break;
2844			}
2845		}
2846
2847		/*
2848		 * Pack the data into the transmit ring. If we
2849		 * don't have room, set the OACTIVE flag and wait
2850		 * for the NIC to drain the ring.
2851		 */
2852		if (ti_encap(sc, m_head, &prodidx)) {
2853			IF_PREPEND(&ifp->if_snd, m_head);
2854			ifp->if_flags |= IFF_OACTIVE;
2855			break;
2856		}
2857
2858		/*
2859		 * If there's a BPF listener, bounce a copy of this frame
2860		 * to him.
2861		 */
2862		BPF_MTAP(ifp, m_head);
2863	}
2864
2865	/* Transmit */
2866	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2867
2868	/*
2869	 * Set a timeout in case the chip goes out to lunch.
2870	 */
2871	ifp->if_timer = 5;
2872	TI_UNLOCK(sc);
2873
2874	return;
2875}
2876
2877static void
2878ti_init(xsc)
2879	void			*xsc;
2880{
2881	struct ti_softc		*sc = xsc;
2882
2883	/* Cancel pending I/O and flush buffers. */
2884	ti_stop(sc);
2885
2886	TI_LOCK(sc);
2887	/* Init the gen info block, ring control blocks and firmware. */
2888	if (ti_gibinit(sc)) {
2889		printf("ti%d: initialization failure\n", sc->ti_unit);
2890		TI_UNLOCK(sc);
2891		return;
2892	}
2893
2894	TI_UNLOCK(sc);
2895
2896	return;
2897}
2898
2899static void ti_init2(sc)
2900	struct ti_softc		*sc;
2901{
2902	struct ti_cmd_desc	cmd;
2903	struct ifnet		*ifp;
2904	u_int16_t		*m;
2905	struct ifmedia		*ifm;
2906	int			tmp;
2907
2908	ifp = &sc->arpcom.ac_if;
2909
2910	/* Specify MTU and interface index. */
2911	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2912	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2913	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2914	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2915
2916	/* Load our MAC address. */
2917	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2918	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2919	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2920	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2921
2922	/* Enable or disable promiscuous mode as needed. */
2923	if (ifp->if_flags & IFF_PROMISC) {
2924		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2925	} else {
2926		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2927	}
2928
2929	/* Program multicast filter. */
2930	ti_setmulti(sc);
2931
2932	/*
2933	 * If this is a Tigon 1, we should tell the
2934	 * firmware to use software packet filtering.
2935	 */
2936	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2937		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2938	}
2939
2940	/* Init RX ring. */
2941	ti_init_rx_ring_std(sc);
2942
2943	/* Init jumbo RX ring. */
2944	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2945		ti_init_rx_ring_jumbo(sc);
2946
2947	/*
2948	 * If this is a Tigon 2, we can also configure the
2949	 * mini ring.
2950	 */
2951	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2952		ti_init_rx_ring_mini(sc);
2953
2954	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2955	sc->ti_rx_saved_considx = 0;
2956
2957	/* Init TX ring. */
2958	ti_init_tx_ring(sc);
2959
2960	/* Tell firmware we're alive. */
2961	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2962
2963	/* Enable host interrupts. */
2964	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2965
2966	ifp->if_flags |= IFF_RUNNING;
2967	ifp->if_flags &= ~IFF_OACTIVE;
2968
2969	/*
2970	 * Make sure to set media properly. We have to do this
2971	 * here since we have to issue commands in order to set
2972	 * the link negotiation and we can't issue commands until
2973	 * the firmware is running.
2974	 */
2975	ifm = &sc->ifmedia;
2976	tmp = ifm->ifm_media;
2977	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2978	ti_ifmedia_upd(ifp);
2979	ifm->ifm_media = tmp;
2980
2981	return;
2982}
2983
2984/*
2985 * Set media options.
2986 */
2987static int
2988ti_ifmedia_upd(ifp)
2989	struct ifnet		*ifp;
2990{
2991	struct ti_softc		*sc;
2992	struct ifmedia		*ifm;
2993	struct ti_cmd_desc	cmd;
2994	u_int32_t		flowctl;
2995
2996	sc = ifp->if_softc;
2997	ifm = &sc->ifmedia;
2998
2999	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3000		return(EINVAL);
3001
3002	flowctl = 0;
3003
3004	switch(IFM_SUBTYPE(ifm->ifm_media)) {
3005	case IFM_AUTO:
3006		/*
3007		 * Transmit flow control doesn't work on the Tigon 1.
3008		 */
3009		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3010
3011		/*
3012		 * Transmit flow control can also cause problems on the
3013		 * Tigon 2, apparantly with both the copper and fiber
3014		 * boards.  The symptom is that the interface will just
3015		 * hang.  This was reproduced with Alteon 180 switches.
3016		 */
3017#if 0
3018		if (sc->ti_hwrev != TI_HWREV_TIGON)
3019			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3020#endif
3021
3022		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3023		    TI_GLNK_FULL_DUPLEX| flowctl |
3024		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3025
3026		flowctl = TI_LNK_RX_FLOWCTL_Y;
3027#if 0
3028		if (sc->ti_hwrev != TI_HWREV_TIGON)
3029			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3030#endif
3031
3032		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3033		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3034		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3035		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3036		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3037		break;
3038	case IFM_1000_SX:
3039	case IFM_1000_T:
3040		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3041#if 0
3042		if (sc->ti_hwrev != TI_HWREV_TIGON)
3043			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3044#endif
3045
3046		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3047		    flowctl |TI_GLNK_ENB);
3048		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3049		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3050			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3051		}
3052		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3053		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3054		break;
3055	case IFM_100_FX:
3056	case IFM_10_FL:
3057	case IFM_100_TX:
3058	case IFM_10_T:
3059		flowctl = TI_LNK_RX_FLOWCTL_Y;
3060#if 0
3061		if (sc->ti_hwrev != TI_HWREV_TIGON)
3062			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3063#endif
3064
3065		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3066		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3067		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3068		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3069			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3070		} else {
3071			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3072		}
3073		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3074			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3075		} else {
3076			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3077		}
3078		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3079		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3080		break;
3081	}
3082
3083	return(0);
3084}
3085
3086/*
3087 * Report current media status.
3088 */
3089static void
3090ti_ifmedia_sts(ifp, ifmr)
3091	struct ifnet		*ifp;
3092	struct ifmediareq	*ifmr;
3093{
3094	struct ti_softc		*sc;
3095	u_int32_t		media = 0;
3096
3097	sc = ifp->if_softc;
3098
3099	ifmr->ifm_status = IFM_AVALID;
3100	ifmr->ifm_active = IFM_ETHER;
3101
3102	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3103		return;
3104
3105	ifmr->ifm_status |= IFM_ACTIVE;
3106
3107	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3108		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3109		if (sc->ti_copper)
3110			ifmr->ifm_active |= IFM_1000_T;
3111		else
3112			ifmr->ifm_active |= IFM_1000_SX;
3113		if (media & TI_GLNK_FULL_DUPLEX)
3114			ifmr->ifm_active |= IFM_FDX;
3115		else
3116			ifmr->ifm_active |= IFM_HDX;
3117	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3118		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3119		if (sc->ti_copper) {
3120			if (media & TI_LNK_100MB)
3121				ifmr->ifm_active |= IFM_100_TX;
3122			if (media & TI_LNK_10MB)
3123				ifmr->ifm_active |= IFM_10_T;
3124		} else {
3125			if (media & TI_LNK_100MB)
3126				ifmr->ifm_active |= IFM_100_FX;
3127			if (media & TI_LNK_10MB)
3128				ifmr->ifm_active |= IFM_10_FL;
3129		}
3130		if (media & TI_LNK_FULL_DUPLEX)
3131			ifmr->ifm_active |= IFM_FDX;
3132		if (media & TI_LNK_HALF_DUPLEX)
3133			ifmr->ifm_active |= IFM_HDX;
3134	}
3135
3136	return;
3137}
3138
3139static int
3140ti_ioctl(ifp, command, data)
3141	struct ifnet		*ifp;
3142	u_long			command;
3143	caddr_t			data;
3144{
3145	struct ti_softc		*sc = ifp->if_softc;
3146	struct ifreq		*ifr = (struct ifreq *) data;
3147	int			mask, error = 0;
3148	struct ti_cmd_desc	cmd;
3149
3150	TI_LOCK(sc);
3151
3152	switch(command) {
3153	case SIOCSIFMTU:
3154		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3155			error = EINVAL;
3156		else {
3157			ifp->if_mtu = ifr->ifr_mtu;
3158			ti_init(sc);
3159		}
3160		break;
3161	case SIOCSIFFLAGS:
3162		if (ifp->if_flags & IFF_UP) {
3163			/*
3164			 * If only the state of the PROMISC flag changed,
3165			 * then just use the 'set promisc mode' command
3166			 * instead of reinitializing the entire NIC. Doing
3167			 * a full re-init means reloading the firmware and
3168			 * waiting for it to start up, which may take a
3169			 * second or two.
3170			 */
3171			if (ifp->if_flags & IFF_RUNNING &&
3172			    ifp->if_flags & IFF_PROMISC &&
3173			    !(sc->ti_if_flags & IFF_PROMISC)) {
3174				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3175				    TI_CMD_CODE_PROMISC_ENB, 0);
3176			} else if (ifp->if_flags & IFF_RUNNING &&
3177			    !(ifp->if_flags & IFF_PROMISC) &&
3178			    sc->ti_if_flags & IFF_PROMISC) {
3179				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3180				    TI_CMD_CODE_PROMISC_DIS, 0);
3181			} else
3182				ti_init(sc);
3183		} else {
3184			if (ifp->if_flags & IFF_RUNNING) {
3185				ti_stop(sc);
3186			}
3187		}
3188		sc->ti_if_flags = ifp->if_flags;
3189		error = 0;
3190		break;
3191	case SIOCADDMULTI:
3192	case SIOCDELMULTI:
3193		if (ifp->if_flags & IFF_RUNNING) {
3194			ti_setmulti(sc);
3195			error = 0;
3196		}
3197		break;
3198	case SIOCSIFMEDIA:
3199	case SIOCGIFMEDIA:
3200		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3201		break;
3202	case SIOCSIFCAP:
3203		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3204		if (mask & IFCAP_HWCSUM) {
3205			if (IFCAP_HWCSUM & ifp->if_capenable)
3206				ifp->if_capenable &= ~IFCAP_HWCSUM;
3207                        else
3208                                ifp->if_capenable |= IFCAP_HWCSUM;
3209			if (ifp->if_flags & IFF_RUNNING)
3210				ti_init(sc);
3211                }
3212		error = 0;
3213		break;
3214	default:
3215		error = ether_ioctl(ifp, command, data);
3216		break;
3217	}
3218
3219	TI_UNLOCK(sc);
3220
3221	return(error);
3222}
3223
3224static int
3225ti_open(dev_t dev, int flags, int fmt, struct thread *td)
3226{
3227	int unit;
3228	struct ti_softc *sc;
3229
3230	unit = minor(dev) & 0xff;
3231
3232	sc = ti_lookup_softc(unit);
3233
3234	if (sc == NULL)
3235		return(ENODEV);
3236
3237	TI_LOCK(sc);
3238	sc->ti_flags |= TI_FLAG_DEBUGING;
3239	TI_UNLOCK(sc);
3240
3241	return(0);
3242}
3243
3244static int
3245ti_close(dev_t dev, int flag, int fmt, struct thread *td)
3246{
3247	int unit;
3248	struct ti_softc *sc;
3249
3250	unit = minor(dev) & 0xff;
3251
3252	sc = ti_lookup_softc(unit);
3253
3254	if (sc == NULL)
3255		return(ENODEV);
3256
3257	TI_LOCK(sc);
3258	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3259	TI_UNLOCK(sc);
3260
3261	return(0);
3262}
3263
3264/*
3265 * This ioctl routine goes along with the Tigon character device.
3266 */
3267static int
3268ti_ioctl2(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3269{
3270	int unit, error;
3271	struct ti_softc *sc;
3272
3273	unit = minor(dev) & 0xff;
3274
3275	sc = ti_lookup_softc(unit);
3276
3277	if (sc == NULL)
3278		return(ENODEV);
3279
3280	error = 0;
3281
3282	switch(cmd) {
3283	case TIIOCGETSTATS:
3284	{
3285		struct ti_stats *outstats;
3286
3287		outstats = (struct ti_stats *)addr;
3288
3289		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3290		      sizeof(struct ti_stats));
3291		break;
3292	}
3293	case TIIOCGETPARAMS:
3294	{
3295		struct ti_params	*params;
3296
3297		params = (struct ti_params *)addr;
3298
3299		params->ti_stat_ticks = sc->ti_stat_ticks;
3300		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3301		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3302		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3303		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3304		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3305		params->param_mask = TI_PARAM_ALL;
3306
3307		error = 0;
3308
3309		break;
3310	}
3311	case TIIOCSETPARAMS:
3312	{
3313		struct ti_params *params;
3314
3315		params = (struct ti_params *)addr;
3316
3317		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3318			sc->ti_stat_ticks = params->ti_stat_ticks;
3319			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3320		}
3321
3322		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3323			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3324			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3325				    sc->ti_rx_coal_ticks);
3326		}
3327
3328		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3329			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3330			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3331				    sc->ti_tx_coal_ticks);
3332		}
3333
3334		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3335			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3336			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3337				    sc->ti_rx_max_coal_bds);
3338		}
3339
3340		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3341			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3342			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3343				    sc->ti_tx_max_coal_bds);
3344		}
3345
3346		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3347			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3348			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3349				    sc->ti_tx_buf_ratio);
3350		}
3351
3352		error = 0;
3353
3354		break;
3355	}
3356	case TIIOCSETTRACE: {
3357		ti_trace_type	trace_type;
3358
3359		trace_type = *(ti_trace_type *)addr;
3360
3361		/*
3362		 * Set tracing to whatever the user asked for.  Setting
3363		 * this register to 0 should have the effect of disabling
3364		 * tracing.
3365		 */
3366		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3367
3368		error = 0;
3369
3370		break;
3371	}
3372	case TIIOCGETTRACE: {
3373		struct ti_trace_buf	*trace_buf;
3374		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3375
3376		trace_buf = (struct ti_trace_buf *)addr;
3377
3378		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3379		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3380		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3381
3382#if 0
3383		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3384		       "trace_len = %d\n", sc->ti_unit, trace_start,
3385		       cur_trace_ptr, trace_len);
3386		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3387		       trace_buf->buf_len);
3388#endif
3389
3390		error = ti_copy_mem(sc, trace_start, min(trace_len,
3391				    trace_buf->buf_len),
3392				    (caddr_t)trace_buf->buf, 1, 1);
3393
3394		if (error == 0) {
3395			trace_buf->fill_len = min(trace_len,
3396						  trace_buf->buf_len);
3397			if (cur_trace_ptr < trace_start)
3398				trace_buf->cur_trace_ptr =
3399					trace_start - cur_trace_ptr;
3400			else
3401				trace_buf->cur_trace_ptr =
3402					cur_trace_ptr - trace_start;
3403		} else
3404			trace_buf->fill_len = 0;
3405
3406
3407		break;
3408	}
3409
3410	/*
3411	 * For debugging, five ioctls are needed:
3412	 * ALT_ATTACH
3413	 * ALT_READ_TG_REG
3414	 * ALT_WRITE_TG_REG
3415	 * ALT_READ_TG_MEM
3416	 * ALT_WRITE_TG_MEM
3417	 */
3418	case ALT_ATTACH:
3419		/*
3420		 * From what I can tell, Alteon's Solaris Tigon driver
3421		 * only has one character device, so you have to attach
3422		 * to the Tigon board you're interested in.  This seems
3423		 * like a not-so-good way to do things, since unless you
3424		 * subsequently specify the unit number of the device
3425		 * you're interested in in every ioctl, you'll only be
3426		 * able to debug one board at a time.
3427		 */
3428		error = 0;
3429		break;
3430	case ALT_READ_TG_MEM:
3431	case ALT_WRITE_TG_MEM:
3432	{
3433		struct tg_mem *mem_param;
3434		u_int32_t sram_end, scratch_end;
3435
3436		mem_param = (struct tg_mem *)addr;
3437
3438		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3439			sram_end = TI_END_SRAM_I;
3440			scratch_end = TI_END_SCRATCH_I;
3441		} else {
3442			sram_end = TI_END_SRAM_II;
3443			scratch_end = TI_END_SCRATCH_II;
3444		}
3445
3446		/*
3447		 * For now, we'll only handle accessing regular SRAM,
3448		 * nothing else.
3449		 */
3450		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3451		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3452			/*
3453			 * In this instance, we always copy to/from user
3454			 * space, so the user space argument is set to 1.
3455			 */
3456			error = ti_copy_mem(sc, mem_param->tgAddr,
3457					    mem_param->len,
3458					    mem_param->userAddr, 1,
3459					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3460		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3461			&& (mem_param->tgAddr <= scratch_end)) {
3462			error = ti_copy_scratch(sc, mem_param->tgAddr,
3463						mem_param->len,
3464						mem_param->userAddr, 1,
3465						(cmd == ALT_READ_TG_MEM) ?
3466						1 : 0, TI_PROCESSOR_A);
3467		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3468			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3469			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3470				printf("ti%d:  invalid memory range for "
3471				       "Tigon I\n", sc->ti_unit);
3472				error = EINVAL;
3473				break;
3474			}
3475			error = ti_copy_scratch(sc, mem_param->tgAddr -
3476						TI_SCRATCH_DEBUG_OFF,
3477						mem_param->len,
3478						mem_param->userAddr, 1,
3479						(cmd == ALT_READ_TG_MEM) ?
3480						1 : 0, TI_PROCESSOR_B);
3481		} else {
3482			printf("ti%d: memory address %#x len %d is out of "
3483			       "supported range\n", sc->ti_unit,
3484			        mem_param->tgAddr, mem_param->len);
3485			error = EINVAL;
3486		}
3487
3488		break;
3489	}
3490	case ALT_READ_TG_REG:
3491	case ALT_WRITE_TG_REG:
3492	{
3493		struct tg_reg	*regs;
3494		u_int32_t	tmpval;
3495
3496		regs = (struct tg_reg *)addr;
3497
3498		/*
3499		 * Make sure the address in question isn't out of range.
3500		 */
3501		if (regs->addr > TI_REG_MAX) {
3502			error = EINVAL;
3503			break;
3504		}
3505		if (cmd == ALT_READ_TG_REG) {
3506			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3507						regs->addr, &tmpval, 1);
3508			regs->data = ntohl(tmpval);
3509#if 0
3510			if ((regs->addr == TI_CPU_STATE)
3511			 || (regs->addr == TI_CPU_CTL_B)) {
3512				printf("ti%d: register %#x = %#x\n",
3513				       sc->ti_unit, regs->addr, tmpval);
3514			}
3515#endif
3516		} else {
3517			tmpval = htonl(regs->data);
3518			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3519						 regs->addr, &tmpval, 1);
3520		}
3521
3522		break;
3523	}
3524	default:
3525		error = ENOTTY;
3526		break;
3527	}
3528	return(error);
3529}
3530
3531static void
3532ti_watchdog(ifp)
3533	struct ifnet		*ifp;
3534{
3535	struct ti_softc		*sc;
3536
3537	sc = ifp->if_softc;
3538	TI_LOCK(sc);
3539
3540	/*
3541	 * When we're debugging, the chip is often stopped for long periods
3542	 * of time, and that would normally cause the watchdog timer to fire.
3543	 * Since that impedes debugging, we don't want to do that.
3544	 */
3545	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3546		TI_UNLOCK(sc);
3547		return;
3548	}
3549
3550	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3551	ti_stop(sc);
3552	ti_init(sc);
3553
3554	ifp->if_oerrors++;
3555	TI_UNLOCK(sc);
3556
3557	return;
3558}
3559
3560/*
3561 * Stop the adapter and free any mbufs allocated to the
3562 * RX and TX lists.
3563 */
3564static void
3565ti_stop(sc)
3566	struct ti_softc		*sc;
3567{
3568	struct ifnet		*ifp;
3569	struct ti_cmd_desc	cmd;
3570
3571	TI_LOCK(sc);
3572
3573	ifp = &sc->arpcom.ac_if;
3574
3575	/* Disable host interrupts. */
3576	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3577	/*
3578	 * Tell firmware we're shutting down.
3579	 */
3580	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3581
3582	/* Halt and reinitialize. */
3583	ti_chipinit(sc);
3584	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3585	ti_chipinit(sc);
3586
3587	/* Free the RX lists. */
3588	ti_free_rx_ring_std(sc);
3589
3590	/* Free jumbo RX list. */
3591	ti_free_rx_ring_jumbo(sc);
3592
3593	/* Free mini RX list. */
3594	ti_free_rx_ring_mini(sc);
3595
3596	/* Free TX buffers. */
3597	ti_free_tx_ring(sc);
3598
3599	sc->ti_ev_prodidx.ti_idx = 0;
3600	sc->ti_return_prodidx.ti_idx = 0;
3601	sc->ti_tx_considx.ti_idx = 0;
3602	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3603
3604	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3605	TI_UNLOCK(sc);
3606
3607	return;
3608}
3609
3610/*
3611 * Stop all chip I/O so that the kernel's probe routines don't
3612 * get confused by errant DMAs when rebooting.
3613 */
3614static void
3615ti_shutdown(dev)
3616	device_t		dev;
3617{
3618	struct ti_softc		*sc;
3619
3620	sc = device_get_softc(dev);
3621	TI_LOCK(sc);
3622	ti_chipinit(sc);
3623	TI_UNLOCK(sc);
3624
3625	return;
3626}
3627