csa.c revision 78032
1/*
2 * Copyright (c) 1999 Seigo Tanimura
3 * All rights reserved.
4 *
5 * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
6 * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
7 * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/dev/sound/pci/csa.c 78032 2001-06-11 00:29:25Z cg $
31 */
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/kernel.h>
36#include <sys/bus.h>
37#include <sys/malloc.h>
38#include <sys/module.h>
39#include <machine/resource.h>
40#include <machine/bus.h>
41#include <sys/rman.h>
42#include <sys/soundcard.h>
43#include <dev/sound/pcm/sound.h>
44#include <dev/sound/chip.h>
45#include <dev/sound/pci/csareg.h>
46#include <dev/sound/pci/csavar.h>
47
48#include <pci/pcireg.h>
49#include <pci/pcivar.h>
50
51#include <gnu/dev/sound/pci/csaimg.h>
52
53/* This is the pci device id. */
54#define CS4610_PCI_ID 0x60011013
55#define CS4614_PCI_ID 0x60031013
56#define CS4615_PCI_ID 0x60041013
57#define CS4281_PCI_ID 0x60051013
58
59/* Here is the parameter structure per a device. */
60struct csa_softc {
61	device_t dev; /* device */
62	csa_res res; /* resources */
63
64	device_t pcm; /* pcm device */
65	driver_intr_t* pcmintr; /* pcm intr */
66	void *pcmintr_arg; /* pcm intr arg */
67	device_t midi; /* midi device */
68	driver_intr_t* midiintr; /* midi intr */
69	void *midiintr_arg; /* midi intr arg */
70	void *ih; /* cookie */
71
72	struct csa_card *card;
73	struct csa_bridgeinfo binfo; /* The state of this bridge. */
74};
75
76typedef struct csa_softc *sc_p;
77
78static int csa_probe(device_t dev);
79static int csa_attach(device_t dev);
80static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
81					      u_long start, u_long end, u_long count, u_int flags);
82static int csa_release_resource(device_t bus, device_t child, int type, int rid,
83				   struct resource *r);
84static int csa_setup_intr(device_t bus, device_t child,
85			  struct resource *irq, int flags,
86			  driver_intr_t *intr, void *arg, void **cookiep);
87static int csa_teardown_intr(device_t bus, device_t child,
88			     struct resource *irq, void *cookie);
89static driver_intr_t csa_intr;
90static int csa_initialize(sc_p scp);
91static void csa_resetdsp(csa_res *resp);
92static int csa_downloadimage(csa_res *resp);
93
94static devclass_t csa_devclass;
95
96static void
97amp_none(void)
98{
99}
100
101static void
102amp_voyetra(void)
103{
104}
105
106static int
107clkrun_hack(int run)
108{
109#ifdef __i386__
110	devclass_t		pci_devclass;
111	device_t		*pci_devices, *pci_children, *busp, *childp;
112	int			pci_count = 0, pci_childcount = 0;
113	int			i, j, port;
114	u_int16_t		control;
115	bus_space_tag_t		btag;
116
117	if ((pci_devclass = devclass_find("pci")) == NULL) {
118		return ENXIO;
119	}
120
121	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
122
123	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
124		pci_childcount = 0;
125		device_get_children(*busp, &pci_children, &pci_childcount);
126		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
127			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
128				free(pci_devices, M_TEMP);
129				free(pci_children, M_TEMP);
130
131				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
132				/* XXX */
133				btag = I386_BUS_SPACE_IO;
134
135				control = bus_space_read_2(btag, 0x0, port);
136				control &= ~0x2000;
137				control |= run? 0 : 0x2000;
138				bus_space_write_2(btag, 0x0, port, control);
139				return 0;
140			}
141		}
142	}
143
144	free(pci_devices, M_TEMP);
145	free(pci_children, M_TEMP);
146	return ENXIO;
147#else
148	return 0;
149#endif
150}
151
152static struct csa_card cards_4610[] = {
153	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL },
154};
155
156static struct csa_card cards_4614[] = {
157	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL},
158	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL},
159	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL},
160	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL},
161	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL},
162	/* Not sure if the 570 needs the clkrun hack */
163	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, clkrun_hack},
164	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack},
165	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL},
166	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL },
167};
168
169static struct csa_card cards_4615[] = {
170	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL },
171};
172
173static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL };
174
175struct card_type {
176	u_int32_t devid;
177	char *name;
178	struct csa_card *cards;
179};
180
181static struct card_type cards[] = {
182	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
183	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
184	{CS4615_PCI_ID, "CS4615", cards_4615},
185	{0, NULL, NULL},
186};
187
188static struct card_type *
189csa_findcard(device_t dev)
190{
191	int i;
192
193	i = 0;
194	while (cards[i].devid != 0) {
195		if (pci_get_devid(dev) == cards[i].devid)
196			return &cards[i];
197		i++;
198	}
199	return NULL;
200}
201
202struct csa_card *
203csa_findsubcard(device_t dev)
204{
205	int i;
206	struct card_type *card;
207	struct csa_card *subcard;
208
209	card = csa_findcard(dev);
210	if (card == NULL)
211		return &nocard;
212	subcard = card->cards;
213	i = 0;
214	while (subcard[i].subvendor != 0) {
215		if (pci_get_subvendor(dev) == subcard[i].subvendor
216		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
217			return &subcard[i];
218		}
219		i++;
220	}
221	return &subcard[i];
222}
223
224static int
225csa_probe(device_t dev)
226{
227	struct card_type *card;
228
229	card = csa_findcard(dev);
230	if (card) {
231		device_set_desc(dev, card->name);
232		return 0;
233	}
234	return ENXIO;
235}
236
237static int
238csa_attach(device_t dev)
239{
240	u_int32_t stcmd;
241	sc_p scp;
242	csa_res *resp;
243	struct sndcard_func *func;
244
245	scp = device_get_softc(dev);
246
247	/* Fill in the softc. */
248	bzero(scp, sizeof(*scp));
249	scp->dev = dev;
250
251	/* Wake up the device. */
252	stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
253	if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
254		stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
255		pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
256	}
257
258	/* Allocate the resources. */
259	resp = &scp->res;
260	scp->card = csa_findsubcard(dev);
261	scp->binfo.card = scp->card;
262	printf("csa: card is %s\n", scp->card->name);
263	resp->io_rid = PCIR_MAPS;
264	resp->io = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->io_rid, 0, ~0, 1, RF_ACTIVE);
265	if (resp->io == NULL)
266		return (ENXIO);
267	resp->mem_rid = PCIR_MAPS + 4;
268	resp->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->mem_rid, 0, ~0, 1, RF_ACTIVE);
269	if (resp->mem == NULL) {
270		bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
271		return (ENXIO);
272	}
273	resp->irq_rid = 0;
274	resp->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &resp->irq_rid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
275	if (resp->irq == NULL) {
276		bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
277		bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
278		return (ENXIO);
279	}
280
281	/* Enable interrupt. */
282	if (snd_setup_intr(dev, resp->irq, INTR_MPSAFE, csa_intr, scp, &scp->ih)) {
283		bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
284		bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
285		bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
286		return (ENXIO);
287	}
288#if 0
289	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
290		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
291#endif
292
293	/* Initialize the chip. */
294	if (csa_initialize(scp)) {
295		bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
296		bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
297		bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
298		return (ENXIO);
299	}
300
301	/* Reset the Processor. */
302	csa_resetdsp(resp);
303
304	/* Download the Processor Image to the processor. */
305	if (csa_downloadimage(resp)) {
306		bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
307		bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
308		bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
309		return (ENXIO);
310	}
311
312	/* Attach the children. */
313
314	/* PCM Audio */
315	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT);
316	if (func == NULL)
317		return (ENOMEM);
318	bzero(func, sizeof(*func));
319	func->varinfo = &scp->binfo;
320	func->func = SCF_PCM;
321	scp->pcm = device_add_child(dev, "pcm", -1);
322	device_set_ivars(scp->pcm, func);
323
324	/* Midi Interface */
325	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT);
326	if (func == NULL)
327		return (ENOMEM);
328	bzero(func, sizeof(*func));
329	func->varinfo = &scp->binfo;
330	func->func = SCF_MIDI;
331	scp->midi = device_add_child(dev, "midi", -1);
332	device_set_ivars(scp->midi, func);
333
334	bus_generic_attach(dev);
335
336	return (0);
337}
338
339static int
340csa_detach(device_t dev)
341{
342	sc_p scp;
343
344	scp = device_get_softc(dev);
345	device_delete_child(dev, scp->midi);
346	device_delete_child(dev, scp->pcm);
347	return bus_generic_detach(dev);
348}
349
350static struct resource *
351csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
352		      u_long start, u_long end, u_long count, u_int flags)
353{
354	sc_p scp;
355	csa_res *resp;
356	struct resource *res;
357
358	scp = device_get_softc(bus);
359	resp = &scp->res;
360	switch (type) {
361	case SYS_RES_IRQ:
362		if (*rid != 0)
363			return (NULL);
364		res = resp->irq;
365		break;
366	case SYS_RES_MEMORY:
367		switch (*rid) {
368		case PCIR_MAPS:
369			res = resp->io;
370			break;
371		case PCIR_MAPS + 4:
372			res = resp->mem;
373			break;
374		default:
375			return (NULL);
376		}
377		break;
378	default:
379		return (NULL);
380	}
381
382	return res;
383}
384
385static int
386csa_release_resource(device_t bus, device_t child, int type, int rid,
387			struct resource *r)
388{
389	return (0);
390}
391
392/*
393 * The following three functions deal with interrupt handling.
394 * An interrupt is primarily handled by the bridge driver.
395 * The bridge driver then determines the child devices to pass
396 * the interrupt. Certain information of the device can be read
397 * only once(eg the value of HISR). The bridge driver is responsible
398 * to pass such the information to the children.
399 */
400
401static int
402csa_setup_intr(device_t bus, device_t child,
403	       struct resource *irq, int flags,
404	       driver_intr_t *intr, void *arg, void **cookiep)
405{
406	sc_p scp;
407	csa_res *resp;
408	struct sndcard_func *func;
409
410	scp = device_get_softc(bus);
411	resp = &scp->res;
412
413	/*
414	 * Look at the function code of the child to determine
415	 * the appropriate hander for it.
416	 */
417	func = device_get_ivars(child);
418	if (func == NULL || irq != resp->irq)
419		return (EINVAL);
420
421	switch (func->func) {
422	case SCF_PCM:
423		scp->pcmintr = intr;
424		scp->pcmintr_arg = arg;
425		break;
426
427	case SCF_MIDI:
428		scp->midiintr = intr;
429		scp->midiintr_arg = arg;
430		break;
431
432	default:
433		return (EINVAL);
434	}
435	*cookiep = scp;
436	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
437		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
438
439	return (0);
440}
441
442static int
443csa_teardown_intr(device_t bus, device_t child,
444		  struct resource *irq, void *cookie)
445{
446	sc_p scp;
447	csa_res *resp;
448	struct sndcard_func *func;
449
450	scp = device_get_softc(bus);
451	resp = &scp->res;
452
453	/*
454	 * Look at the function code of the child to determine
455	 * the appropriate hander for it.
456	 */
457	func = device_get_ivars(child);
458	if (func == NULL || irq != resp->irq || cookie != scp)
459		return (EINVAL);
460
461	switch (func->func) {
462	case SCF_PCM:
463		scp->pcmintr = NULL;
464		scp->pcmintr_arg = NULL;
465		break;
466
467	case SCF_MIDI:
468		scp->midiintr = NULL;
469		scp->midiintr_arg = NULL;
470		break;
471
472	default:
473		return (EINVAL);
474	}
475
476	return (0);
477}
478
479/* The interrupt handler */
480static void
481csa_intr(void *arg)
482{
483	sc_p scp = arg;
484	csa_res *resp;
485	u_int32_t hisr;
486
487	resp = &scp->res;
488
489	/* Is this interrupt for us? */
490	hisr = csa_readio(resp, BA0_HISR);
491	if ((hisr & 0x7fffffff) == 0) {
492		/* Throw an eoi. */
493		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
494		return;
495	}
496
497	/*
498	 * Pass the value of HISR via struct csa_bridgeinfo.
499	 * The children get access through their ivars.
500	 */
501	scp->binfo.hisr = hisr;
502
503	/* Invoke the handlers of the children. */
504	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
505		scp->pcmintr(scp->pcmintr_arg);
506		hisr &= ~(HISR_VC0 | HISR_VC1);
507	}
508	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
509		scp->midiintr(scp->midiintr_arg);
510		hisr &= ~HISR_MIDI;
511	}
512
513	/* Throw an eoi. */
514	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
515}
516
517static int
518csa_initialize(sc_p scp)
519{
520	int i;
521	u_int32_t acsts, acisv;
522	csa_res *resp;
523
524	resp = &scp->res;
525
526	/*
527	 * First, blast the clock control register to zero so that the PLL starts
528	 * out in a known state, and blast the master serial port control register
529	 * to zero so that the serial ports also start out in a known state.
530	 */
531	csa_writeio(resp, BA0_CLKCR1, 0);
532	csa_writeio(resp, BA0_SERMC1, 0);
533
534	/*
535	 * If we are in AC97 mode, then we must set the part to a host controlled
536	 * AC-link.  Otherwise, we won't be able to bring up the link.
537	 */
538#if 1
539	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
540#else
541	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
542#endif /* 1 */
543
544	/*
545	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
546	 * spec) and then drive it high.  This is done for non AC97 modes since
547	 * there might be logic external to the CS461x that uses the ARST# line
548	 * for a reset.
549	 */
550	csa_writeio(resp, BA0_ACCTL, 1);
551	DELAY(50);
552	csa_writeio(resp, BA0_ACCTL, 0);
553	DELAY(50);
554	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
555
556	/*
557	 * The first thing we do here is to enable sync generation.  As soon
558	 * as we start receiving bit clock, we'll start producing the SYNC
559	 * signal.
560	 */
561	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
562
563	/*
564	 * Now wait for a short while to allow the AC97 part to start
565	 * generating bit clock (so we don't try to start the PLL without an
566	 * input clock).
567	 */
568	DELAY(50000);
569
570	/*
571	 * Set the serial port timing configuration, so that
572	 * the clock control circuit gets its clock from the correct place.
573	 */
574	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
575	DELAY(700000);
576
577	/*
578	 * Write the selected clock control setup to the hardware.  Do not turn on
579	 * SWCE yet (if requested), so that the devices clocked by the output of
580	 * PLL are not clocked until the PLL is stable.
581	 */
582	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
583	csa_writeio(resp, BA0_PLLM, 0x3a);
584	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
585
586	/*
587	 * Power up the PLL.
588	 */
589	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
590
591	/*
592	 * Wait until the PLL has stabilized.
593	 */
594	DELAY(5000);
595
596	/*
597	 * Turn on clocking of the core so that we can setup the serial ports.
598	 */
599	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
600
601	/*
602	 * Fill the serial port FIFOs with silence.
603	 */
604	csa_clearserialfifos(resp);
605
606	/*
607	 * Set the serial port FIFO pointer to the first sample in the FIFO.
608	 */
609#if notdef
610	csa_writeio(resp, BA0_SERBSP, 0);
611#endif /* notdef */
612
613	/*
614	 *  Write the serial port configuration to the part.  The master
615	 *  enable bit is not set until all other values have been written.
616	 */
617	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
618	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
619	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
620
621	/*
622	 * Wait for the codec ready signal from the AC97 codec.
623	 */
624	acsts = 0;
625	for (i = 0 ; i < 1000 ; i++) {
626		/*
627		 * First, lets wait a short while to let things settle out a bit,
628		 * and to prevent retrying the read too quickly.
629		 */
630		DELAY(125);
631
632		/*
633		 * Read the AC97 status register to see if we've seen a CODEC READY
634		 * signal from the AC97 codec.
635		 */
636		acsts = csa_readio(resp, BA0_ACSTS);
637		if ((acsts & ACSTS_CRDY) != 0)
638			break;
639	}
640
641	/*
642	 * Make sure we sampled CODEC READY.
643	 */
644	if ((acsts & ACSTS_CRDY) == 0)
645		return (ENXIO);
646
647	/*
648	 * Assert the vaid frame signal so that we can start sending commands
649	 * to the AC97 codec.
650	 */
651	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
652
653	/*
654	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
655	 * the codec is pumping ADC data across the AC-link.
656	 */
657	acisv = 0;
658	for (i = 0 ; i < 1000 ; i++) {
659		/*
660		 * First, lets wait a short while to let things settle out a bit,
661		 * and to prevent retrying the read too quickly.
662		 */
663#if notdef
664		DELAY(10000000L); /* clw */
665#else
666		DELAY(1000);
667#endif /* notdef */
668		/*
669		 * Read the input slot valid register and see if input slots 3 and
670		 * 4 are valid yet.
671		 */
672		acisv = csa_readio(resp, BA0_ACISV);
673		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
674			break;
675	}
676	/*
677	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
678	 * an error.
679	 */
680	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
681		return (ENXIO);
682
683	/*
684	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
685	 * commense the transfer of digital audio data to the AC97 codec.
686	 */
687	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
688
689	/*
690	 * Power down the DAC and ADC.  We will power them up (if) when we need
691	 * them.
692	 */
693#if notdef
694	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
695#endif /* notdef */
696
697	/*
698	 * Turn off the Processor by turning off the software clock enable flag in
699	 * the clock control register.
700	 */
701#if notdef
702	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
703	csa_writeio(resp, BA0_CLKCR1, clkcr1);
704#endif /* notdef */
705
706	/*
707	 * Enable interrupts on the part.
708	 */
709#if 0
710	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
711#endif /* notdef */
712
713	return (0);
714}
715
716void
717csa_clearserialfifos(csa_res *resp)
718{
719	int i, j, pwr;
720	u_int8_t clkcr1, serbst;
721
722	/*
723	 * See if the devices are powered down.  If so, we must power them up first
724	 * or they will not respond.
725	 */
726	pwr = 1;
727	clkcr1 = csa_readio(resp, BA0_CLKCR1);
728	if ((clkcr1 & CLKCR1_SWCE) == 0) {
729		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
730		pwr = 0;
731	}
732
733	/*
734	 * We want to clear out the serial port FIFOs so we don't end up playing
735	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
736	 * with zero (silence).
737	 */
738	csa_writeio(resp, BA0_SERBWP, 0);
739
740	/* Fill all 256 sample FIFO locations. */
741	serbst = 0;
742	for (i = 0 ; i < 256 ; i++) {
743		/* Make sure the previous FIFO write operation has completed. */
744		for (j = 0 ; j < 5 ; j++) {
745			DELAY(100);
746			serbst = csa_readio(resp, BA0_SERBST);
747			if ((serbst & SERBST_WBSY) == 0)
748				break;
749		}
750		if ((serbst & SERBST_WBSY) != 0) {
751			if (!pwr)
752				csa_writeio(resp, BA0_CLKCR1, clkcr1);
753		}
754		/* Write the serial port FIFO index. */
755		csa_writeio(resp, BA0_SERBAD, i);
756		/* Tell the serial port to load the new value into the FIFO location. */
757		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
758	}
759	/*
760	 *  Now, if we powered up the devices, then power them back down again.
761	 *  This is kinda ugly, but should never happen.
762	 */
763	if (!pwr)
764		csa_writeio(resp, BA0_CLKCR1, clkcr1);
765}
766
767static void
768csa_resetdsp(csa_res *resp)
769{
770	int i;
771
772	/*
773	 * Write the reset bit of the SP control register.
774	 */
775	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
776
777	/*
778	 * Write the control register.
779	 */
780	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
781
782	/*
783	 * Clear the trap registers.
784	 */
785	for (i = 0 ; i < 8 ; i++) {
786		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
787		csa_writemem(resp, BA1_TWPR, 0xffff);
788	}
789	csa_writemem(resp, BA1_DREG, 0);
790
791	/*
792	 * Set the frame timer to reflect the number of cycles per frame.
793	 */
794	csa_writemem(resp, BA1_FRMT, 0xadf);
795}
796
797static int
798csa_downloadimage(csa_res *resp)
799{
800	int i;
801	u_int32_t tmp, src, dst, count, data;
802
803	for (i = 0; i < CLEAR__COUNT; i++) {
804		dst = ClrStat[i].BA1__DestByteOffset;
805		count = ClrStat[i].BA1__SourceSize;
806		for (tmp = 0; tmp < count; tmp += 4)
807			csa_writemem(resp, dst + tmp, 0x00000000);
808	}
809
810	for (i = 0; i < FILL__COUNT; i++) {
811		src = 0;
812		dst = FillStat[i].Offset;
813		count = FillStat[i].Size;
814		for (tmp = 0; tmp < count; tmp += 4) {
815			data = FillStat[i].pFill[src];
816			csa_writemem(resp, dst + tmp, data);
817			src++;
818		}
819	}
820
821	return (0);
822}
823
824int
825csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
826{
827	int i;
828	u_int32_t acsda, acctl, acsts;
829
830	/*
831	 * Make sure that there is not data sitting around from a previous
832	 * uncompleted access. ACSDA = Status Data Register = 47Ch
833	 */
834	acsda = csa_readio(resp, BA0_ACSDA);
835
836	/*
837	 * Setup the AC97 control registers on the CS461x to send the
838	 * appropriate command to the AC97 to perform the read.
839	 * ACCAD = Command Address Register = 46Ch
840	 * ACCDA = Command Data Register = 470h
841	 * ACCTL = Control Register = 460h
842	 * set DCV - will clear when process completed
843	 * set CRW - Read command
844	 * set VFRM - valid frame enabled
845	 * set ESYN - ASYNC generation enabled
846	 * set RSTN - ARST# inactive, AC97 codec not reset
847	 */
848
849	/*
850	 * Get the actual AC97 register from the offset
851	 */
852	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
853	csa_writeio(resp, BA0_ACCDA, 0);
854	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
855
856	/*
857	 * Wait for the read to occur.
858	 */
859	acctl = 0;
860	for (i = 0 ; i < 10 ; i++) {
861		/*
862		 * First, we want to wait for a short time.
863		 */
864		DELAY(25);
865
866		/*
867		 * Now, check to see if the read has completed.
868		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
869		 */
870		acctl = csa_readio(resp, BA0_ACCTL);
871		if ((acctl & ACCTL_DCV) == 0)
872			break;
873	}
874
875	/*
876	 * Make sure the read completed.
877	 */
878	if ((acctl & ACCTL_DCV) != 0)
879		return (EAGAIN);
880
881	/*
882	 * Wait for the valid status bit to go active.
883	 */
884	acsts = 0;
885	for (i = 0 ; i < 10 ; i++) {
886		/*
887		 * Read the AC97 status register.
888		 * ACSTS = Status Register = 464h
889		 */
890		acsts = csa_readio(resp, BA0_ACSTS);
891		/*
892		 * See if we have valid status.
893		 * VSTS - Valid Status
894		 */
895		if ((acsts & ACSTS_VSTS) != 0)
896			break;
897		/*
898		 * Wait for a short while.
899		 */
900		 DELAY(25);
901	}
902
903	/*
904	 * Make sure we got valid status.
905	 */
906	if ((acsts & ACSTS_VSTS) == 0)
907		return (EAGAIN);
908
909	/*
910	 * Read the data returned from the AC97 register.
911	 * ACSDA = Status Data Register = 474h
912	 */
913	*data = csa_readio(resp, BA0_ACSDA);
914
915	return (0);
916}
917
918int
919csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
920{
921	int i;
922	u_int32_t acctl;
923
924	/*
925	 * Setup the AC97 control registers on the CS461x to send the
926	 * appropriate command to the AC97 to perform the write.
927	 * ACCAD = Command Address Register = 46Ch
928	 * ACCDA = Command Data Register = 470h
929	 * ACCTL = Control Register = 460h
930	 * set DCV - will clear when process completed
931	 * set VFRM - valid frame enabled
932	 * set ESYN - ASYNC generation enabled
933	 * set RSTN - ARST# inactive, AC97 codec not reset
934	 */
935
936	/*
937	 * Get the actual AC97 register from the offset
938	 */
939	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
940	csa_writeio(resp, BA0_ACCDA, data);
941	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
942
943	/*
944	 * Wait for the write to occur.
945	 */
946	acctl = 0;
947	for (i = 0 ; i < 10 ; i++) {
948		/*
949		 * First, we want to wait for a short time.
950		 */
951		DELAY(25);
952
953		/*
954		 * Now, check to see if the read has completed.
955		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
956		 */
957		acctl = csa_readio(resp, BA0_ACCTL);
958		if ((acctl & ACCTL_DCV) == 0)
959			break;
960	}
961
962	/*
963	 * Make sure the write completed.
964	 */
965	if ((acctl & ACCTL_DCV) != 0)
966		return (EAGAIN);
967
968	return (0);
969}
970
971u_int32_t
972csa_readio(csa_res *resp, u_long offset)
973{
974	u_int32_t ul;
975
976	if (offset < BA0_AC97_RESET)
977		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
978	else {
979		if (csa_readcodec(resp, offset, &ul))
980			ul = 0;
981		return (ul);
982	}
983}
984
985void
986csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
987{
988	if (offset < BA0_AC97_RESET)
989		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
990	else
991		csa_writecodec(resp, offset, data);
992}
993
994u_int32_t
995csa_readmem(csa_res *resp, u_long offset)
996{
997	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
998}
999
1000void
1001csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1002{
1003	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1004}
1005
1006static device_method_t csa_methods[] = {
1007	/* Device interface */
1008	DEVMETHOD(device_probe,		csa_probe),
1009	DEVMETHOD(device_attach,	csa_attach),
1010	DEVMETHOD(device_detach,	csa_detach),
1011	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1012	DEVMETHOD(device_suspend,	bus_generic_suspend),
1013	DEVMETHOD(device_resume,	bus_generic_resume),
1014
1015	/* Bus interface */
1016	DEVMETHOD(bus_print_child,	bus_generic_print_child),
1017	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1018	DEVMETHOD(bus_release_resource,	csa_release_resource),
1019	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1020	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1021	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1022	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1023
1024	{ 0, 0 }
1025};
1026
1027static driver_t csa_driver = {
1028	"csa",
1029	csa_methods,
1030	sizeof(struct csa_softc),
1031};
1032
1033/*
1034 * csa can be attached to a pci bus.
1035 */
1036DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1037MODULE_DEPEND(snd_csa, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER);
1038MODULE_VERSION(snd_csa, 1);
1039