csa.c revision 167667
1/*-
2 * Copyright (c) 1999 Seigo Tanimura
3 * All rights reserved.
4 *
5 * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
6 * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
7 * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/bus.h>
35#include <sys/malloc.h>
36#include <sys/module.h>
37#include <machine/resource.h>
38#include <machine/bus.h>
39#include <sys/rman.h>
40#include <sys/soundcard.h>
41#include <dev/sound/pcm/sound.h>
42#include <dev/sound/chip.h>
43#include <dev/sound/pci/csareg.h>
44#include <dev/sound/pci/csavar.h>
45
46#include <dev/pci/pcireg.h>
47#include <dev/pci/pcivar.h>
48
49#include <gnu/dev/sound/pci/csaimg.h>
50
51SND_DECLARE_FILE("$FreeBSD: head/sys/dev/sound/pci/csa.c 167667 2007-03-17 19:37:09Z ariff $");
52
53/* This is the pci device id. */
54#define CS4610_PCI_ID 0x60011013
55#define CS4614_PCI_ID 0x60031013
56#define CS4615_PCI_ID 0x60041013
57
58/* Here is the parameter structure per a device. */
59struct csa_softc {
60	device_t dev; /* device */
61	csa_res res; /* resources */
62
63	device_t pcm; /* pcm device */
64	driver_intr_t* pcmintr; /* pcm intr */
65	void *pcmintr_arg; /* pcm intr arg */
66	device_t midi; /* midi device */
67	driver_intr_t* midiintr; /* midi intr */
68	void *midiintr_arg; /* midi intr arg */
69	void *ih; /* cookie */
70
71	struct csa_card *card;
72	struct csa_bridgeinfo binfo; /* The state of this bridge. */
73};
74
75typedef struct csa_softc *sc_p;
76
77static int csa_probe(device_t dev);
78static int csa_attach(device_t dev);
79static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
80					      u_long start, u_long end, u_long count, u_int flags);
81static int csa_release_resource(device_t bus, device_t child, int type, int rid,
82				   struct resource *r);
83static int csa_setup_intr(device_t bus, device_t child,
84			  struct resource *irq, int flags,
85#if __FreeBSD_version >= 700031
86			  driver_filter_t *filter,
87#endif
88			  driver_intr_t *intr,  void *arg, void **cookiep);
89static int csa_teardown_intr(device_t bus, device_t child,
90			     struct resource *irq, void *cookie);
91static driver_intr_t csa_intr;
92static int csa_initialize(sc_p scp);
93static int csa_downloadimage(csa_res *resp);
94
95static devclass_t csa_devclass;
96
97static void
98amp_none(void)
99{
100}
101
102static void
103amp_voyetra(void)
104{
105}
106
107static int
108clkrun_hack(int run)
109{
110#ifdef __i386__
111	devclass_t		pci_devclass;
112	device_t		*pci_devices, *pci_children, *busp, *childp;
113	int			pci_count = 0, pci_childcount = 0;
114	int			i, j, port;
115	u_int16_t		control;
116	bus_space_tag_t		btag;
117
118	if ((pci_devclass = devclass_find("pci")) == NULL) {
119		return ENXIO;
120	}
121
122	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
123
124	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
125		pci_childcount = 0;
126		device_get_children(*busp, &pci_children, &pci_childcount);
127		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
128			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
129				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
130				/* XXX */
131				btag = I386_BUS_SPACE_IO;
132
133				control = bus_space_read_2(btag, 0x0, port);
134				control &= ~0x2000;
135				control |= run? 0 : 0x2000;
136				bus_space_write_2(btag, 0x0, port, control);
137				free(pci_devices, M_TEMP);
138				free(pci_children, M_TEMP);
139				return 0;
140			}
141		}
142		free(pci_children, M_TEMP);
143	}
144
145	free(pci_devices, M_TEMP);
146	return ENXIO;
147#else
148	return 0;
149#endif
150}
151
152static struct csa_card cards_4610[] = {
153	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
154};
155
156static struct csa_card cards_4614[] = {
157	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
158	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
159	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
160	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
161	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
162	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
163	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
164	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
165	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
166};
167
168static struct csa_card cards_4615[] = {
169	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
170};
171
172static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
173
174struct card_type {
175	u_int32_t devid;
176	char *name;
177	struct csa_card *cards;
178};
179
180static struct card_type cards[] = {
181	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
182	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
183	{CS4615_PCI_ID, "CS4615", cards_4615},
184	{0, NULL, NULL},
185};
186
187static struct card_type *
188csa_findcard(device_t dev)
189{
190	int i;
191
192	i = 0;
193	while (cards[i].devid != 0) {
194		if (pci_get_devid(dev) == cards[i].devid)
195			return &cards[i];
196		i++;
197	}
198	return NULL;
199}
200
201struct csa_card *
202csa_findsubcard(device_t dev)
203{
204	int i;
205	struct card_type *card;
206	struct csa_card *subcard;
207
208	card = csa_findcard(dev);
209	if (card == NULL)
210		return &nocard;
211	subcard = card->cards;
212	i = 0;
213	while (subcard[i].subvendor != 0) {
214		if (pci_get_subvendor(dev) == subcard[i].subvendor
215		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
216			return &subcard[i];
217		}
218		i++;
219	}
220	return &subcard[i];
221}
222
223static int
224csa_probe(device_t dev)
225{
226	struct card_type *card;
227
228	card = csa_findcard(dev);
229	if (card) {
230		device_set_desc(dev, card->name);
231		return BUS_PROBE_DEFAULT;
232	}
233	return ENXIO;
234}
235
236static int
237csa_attach(device_t dev)
238{
239	u_int32_t stcmd;
240	sc_p scp;
241	csa_res *resp;
242	struct sndcard_func *func;
243	int error = ENXIO;
244
245	scp = device_get_softc(dev);
246
247	/* Fill in the softc. */
248	bzero(scp, sizeof(*scp));
249	scp->dev = dev;
250
251	/* Wake up the device. */
252	stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
253	if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
254		stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
255		pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
256	}
257
258	/* Allocate the resources. */
259	resp = &scp->res;
260	scp->card = csa_findsubcard(dev);
261	scp->binfo.card = scp->card;
262	printf("csa: card is %s\n", scp->card->name);
263	resp->io_rid = PCIR_BAR(0);
264	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
265		&resp->io_rid, RF_ACTIVE);
266	if (resp->io == NULL)
267		return (ENXIO);
268	resp->mem_rid = PCIR_BAR(1);
269	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
270		&resp->mem_rid, RF_ACTIVE);
271	if (resp->mem == NULL)
272		goto err_io;
273	resp->irq_rid = 0;
274	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
275		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
276	if (resp->irq == NULL)
277		goto err_mem;
278
279	/* Enable interrupt. */
280	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
281		goto err_intr;
282#if 0
283	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
284		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
285#endif
286
287	/* Initialize the chip. */
288	if (csa_initialize(scp))
289		goto err_teardown;
290
291	/* Reset the Processor. */
292	csa_resetdsp(resp);
293
294	/* Download the Processor Image to the processor. */
295	if (csa_downloadimage(resp))
296		goto err_teardown;
297
298	/* Attach the children. */
299
300	/* PCM Audio */
301	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
302	if (func == NULL) {
303		error = ENOMEM;
304		goto err_teardown;
305	}
306	func->varinfo = &scp->binfo;
307	func->func = SCF_PCM;
308	scp->pcm = device_add_child(dev, "pcm", -1);
309	device_set_ivars(scp->pcm, func);
310
311	/* Midi Interface */
312	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
313	if (func == NULL) {
314		error = ENOMEM;
315		goto err_teardown;
316	}
317	func->varinfo = &scp->binfo;
318	func->func = SCF_MIDI;
319	scp->midi = device_add_child(dev, "midi", -1);
320	device_set_ivars(scp->midi, func);
321
322	bus_generic_attach(dev);
323
324	return (0);
325
326err_teardown:
327	bus_teardown_intr(dev, resp->irq, scp->ih);
328err_intr:
329	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
330err_mem:
331	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
332err_io:
333	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
334	return (error);
335}
336
337static int
338csa_detach(device_t dev)
339{
340	csa_res *resp;
341	sc_p scp;
342	struct sndcard_func *func;
343	int err;
344
345	scp = device_get_softc(dev);
346	resp = &scp->res;
347
348	if (scp->midi != NULL) {
349		func = device_get_ivars(scp->midi);
350		err = device_delete_child(dev, scp->midi);
351		if (err != 0)
352			return err;
353		if (func != NULL)
354			free(func, M_DEVBUF);
355		scp->midi = NULL;
356	}
357
358	if (scp->pcm != NULL) {
359		func = device_get_ivars(scp->pcm);
360		err = device_delete_child(dev, scp->pcm);
361		if (err != 0)
362			return err;
363		if (func != NULL)
364			free(func, M_DEVBUF);
365		scp->pcm = NULL;
366	}
367
368	bus_teardown_intr(dev, resp->irq, scp->ih);
369	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
370	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
371	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
372
373	return bus_generic_detach(dev);
374}
375
376static int
377csa_resume(device_t dev)
378{
379	csa_res *resp;
380	sc_p scp;
381
382	scp = device_get_softc(dev);
383	resp = &scp->res;
384
385	/* Initialize the chip. */
386	if (csa_initialize(scp))
387		return (ENXIO);
388
389	/* Reset the Processor. */
390	csa_resetdsp(resp);
391
392	/* Download the Processor Image to the processor. */
393	if (csa_downloadimage(resp))
394		return (ENXIO);
395
396	return (bus_generic_resume(dev));
397}
398
399static struct resource *
400csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
401		      u_long start, u_long end, u_long count, u_int flags)
402{
403	sc_p scp;
404	csa_res *resp;
405	struct resource *res;
406
407	scp = device_get_softc(bus);
408	resp = &scp->res;
409	switch (type) {
410	case SYS_RES_IRQ:
411		if (*rid != 0)
412			return (NULL);
413		res = resp->irq;
414		break;
415	case SYS_RES_MEMORY:
416		switch (*rid) {
417		case PCIR_BAR(0):
418			res = resp->io;
419			break;
420		case PCIR_BAR(1):
421			res = resp->mem;
422			break;
423		default:
424			return (NULL);
425		}
426		break;
427	default:
428		return (NULL);
429	}
430
431	return res;
432}
433
434static int
435csa_release_resource(device_t bus, device_t child, int type, int rid,
436			struct resource *r)
437{
438	return (0);
439}
440
441/*
442 * The following three functions deal with interrupt handling.
443 * An interrupt is primarily handled by the bridge driver.
444 * The bridge driver then determines the child devices to pass
445 * the interrupt. Certain information of the device can be read
446 * only once(eg the value of HISR). The bridge driver is responsible
447 * to pass such the information to the children.
448 */
449
450static int
451csa_setup_intr(device_t bus, device_t child,
452	       struct resource *irq, int flags,
453#if __FreeBSD_version >= 700031
454	       driver_filter_t *filter,
455#endif
456	       driver_intr_t *intr, void *arg, void **cookiep)
457{
458	sc_p scp;
459	csa_res *resp;
460	struct sndcard_func *func;
461
462#if __FreeBSD_version >= 700031
463	if (filter != NULL) {
464		printf("ata-csa.c: we cannot use a filter here\n");
465		return (EINVAL);
466	}
467#endif
468	scp = device_get_softc(bus);
469	resp = &scp->res;
470
471	/*
472	 * Look at the function code of the child to determine
473	 * the appropriate hander for it.
474	 */
475	func = device_get_ivars(child);
476	if (func == NULL || irq != resp->irq)
477		return (EINVAL);
478
479	switch (func->func) {
480	case SCF_PCM:
481		scp->pcmintr = intr;
482		scp->pcmintr_arg = arg;
483		break;
484
485	case SCF_MIDI:
486		scp->midiintr = intr;
487		scp->midiintr_arg = arg;
488		break;
489
490	default:
491		return (EINVAL);
492	}
493	*cookiep = scp;
494	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
495		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
496
497	return (0);
498}
499
500static int
501csa_teardown_intr(device_t bus, device_t child,
502		  struct resource *irq, void *cookie)
503{
504	sc_p scp;
505	csa_res *resp;
506	struct sndcard_func *func;
507
508	scp = device_get_softc(bus);
509	resp = &scp->res;
510
511	/*
512	 * Look at the function code of the child to determine
513	 * the appropriate hander for it.
514	 */
515	func = device_get_ivars(child);
516	if (func == NULL || irq != resp->irq || cookie != scp)
517		return (EINVAL);
518
519	switch (func->func) {
520	case SCF_PCM:
521		scp->pcmintr = NULL;
522		scp->pcmintr_arg = NULL;
523		break;
524
525	case SCF_MIDI:
526		scp->midiintr = NULL;
527		scp->midiintr_arg = NULL;
528		break;
529
530	default:
531		return (EINVAL);
532	}
533
534	return (0);
535}
536
537/* The interrupt handler */
538static void
539csa_intr(void *arg)
540{
541	sc_p scp = arg;
542	csa_res *resp;
543	u_int32_t hisr;
544
545	resp = &scp->res;
546
547	/* Is this interrupt for us? */
548	hisr = csa_readio(resp, BA0_HISR);
549	if ((hisr & 0x7fffffff) == 0) {
550		/* Throw an eoi. */
551		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
552		return;
553	}
554
555	/*
556	 * Pass the value of HISR via struct csa_bridgeinfo.
557	 * The children get access through their ivars.
558	 */
559	scp->binfo.hisr = hisr;
560
561	/* Invoke the handlers of the children. */
562	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
563		scp->pcmintr(scp->pcmintr_arg);
564		hisr &= ~(HISR_VC0 | HISR_VC1);
565	}
566	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
567		scp->midiintr(scp->midiintr_arg);
568		hisr &= ~HISR_MIDI;
569	}
570
571	/* Throw an eoi. */
572	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
573}
574
575static int
576csa_initialize(sc_p scp)
577{
578	int i;
579	u_int32_t acsts, acisv;
580	csa_res *resp;
581
582	resp = &scp->res;
583
584	/*
585	 * First, blast the clock control register to zero so that the PLL starts
586	 * out in a known state, and blast the master serial port control register
587	 * to zero so that the serial ports also start out in a known state.
588	 */
589	csa_writeio(resp, BA0_CLKCR1, 0);
590	csa_writeio(resp, BA0_SERMC1, 0);
591
592	/*
593	 * If we are in AC97 mode, then we must set the part to a host controlled
594	 * AC-link.  Otherwise, we won't be able to bring up the link.
595	 */
596#if 1
597	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
598#else
599	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
600#endif /* 1 */
601
602	/*
603	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
604	 * spec) and then drive it high.  This is done for non AC97 modes since
605	 * there might be logic external to the CS461x that uses the ARST# line
606	 * for a reset.
607	 */
608	csa_writeio(resp, BA0_ACCTL, 1);
609	DELAY(50);
610	csa_writeio(resp, BA0_ACCTL, 0);
611	DELAY(50);
612	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
613
614	/*
615	 * The first thing we do here is to enable sync generation.  As soon
616	 * as we start receiving bit clock, we'll start producing the SYNC
617	 * signal.
618	 */
619	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
620
621	/*
622	 * Now wait for a short while to allow the AC97 part to start
623	 * generating bit clock (so we don't try to start the PLL without an
624	 * input clock).
625	 */
626	DELAY(50000);
627
628	/*
629	 * Set the serial port timing configuration, so that
630	 * the clock control circuit gets its clock from the correct place.
631	 */
632	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
633	DELAY(700000);
634
635	/*
636	 * Write the selected clock control setup to the hardware.  Do not turn on
637	 * SWCE yet (if requested), so that the devices clocked by the output of
638	 * PLL are not clocked until the PLL is stable.
639	 */
640	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
641	csa_writeio(resp, BA0_PLLM, 0x3a);
642	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
643
644	/*
645	 * Power up the PLL.
646	 */
647	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
648
649	/*
650	 * Wait until the PLL has stabilized.
651	 */
652	DELAY(5000);
653
654	/*
655	 * Turn on clocking of the core so that we can setup the serial ports.
656	 */
657	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
658
659	/*
660	 * Fill the serial port FIFOs with silence.
661	 */
662	csa_clearserialfifos(resp);
663
664	/*
665	 * Set the serial port FIFO pointer to the first sample in the FIFO.
666	 */
667#ifdef notdef
668	csa_writeio(resp, BA0_SERBSP, 0);
669#endif /* notdef */
670
671	/*
672	 *  Write the serial port configuration to the part.  The master
673	 *  enable bit is not set until all other values have been written.
674	 */
675	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
676	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
677	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
678
679	/*
680	 * Wait for the codec ready signal from the AC97 codec.
681	 */
682	acsts = 0;
683	for (i = 0 ; i < 1000 ; i++) {
684		/*
685		 * First, lets wait a short while to let things settle out a bit,
686		 * and to prevent retrying the read too quickly.
687		 */
688		DELAY(125);
689
690		/*
691		 * Read the AC97 status register to see if we've seen a CODEC READY
692		 * signal from the AC97 codec.
693		 */
694		acsts = csa_readio(resp, BA0_ACSTS);
695		if ((acsts & ACSTS_CRDY) != 0)
696			break;
697	}
698
699	/*
700	 * Make sure we sampled CODEC READY.
701	 */
702	if ((acsts & ACSTS_CRDY) == 0)
703		return (ENXIO);
704
705	/*
706	 * Assert the vaid frame signal so that we can start sending commands
707	 * to the AC97 codec.
708	 */
709	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
710
711	/*
712	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
713	 * the codec is pumping ADC data across the AC-link.
714	 */
715	acisv = 0;
716	for (i = 0 ; i < 1000 ; i++) {
717		/*
718		 * First, lets wait a short while to let things settle out a bit,
719		 * and to prevent retrying the read too quickly.
720		 */
721#ifdef notdef
722		DELAY(10000000L); /* clw */
723#else
724		DELAY(1000);
725#endif /* notdef */
726		/*
727		 * Read the input slot valid register and see if input slots 3 and
728		 * 4 are valid yet.
729		 */
730		acisv = csa_readio(resp, BA0_ACISV);
731		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
732			break;
733	}
734	/*
735	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
736	 * an error.
737	 */
738	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
739		return (ENXIO);
740
741	/*
742	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
743	 * commense the transfer of digital audio data to the AC97 codec.
744	 */
745	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
746
747	/*
748	 * Power down the DAC and ADC.  We will power them up (if) when we need
749	 * them.
750	 */
751#ifdef notdef
752	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
753#endif /* notdef */
754
755	/*
756	 * Turn off the Processor by turning off the software clock enable flag in
757	 * the clock control register.
758	 */
759#ifdef notdef
760	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
761	csa_writeio(resp, BA0_CLKCR1, clkcr1);
762#endif /* notdef */
763
764	/*
765	 * Enable interrupts on the part.
766	 */
767#if 0
768	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
769#endif /* notdef */
770
771	return (0);
772}
773
774void
775csa_clearserialfifos(csa_res *resp)
776{
777	int i, j, pwr;
778	u_int8_t clkcr1, serbst;
779
780	/*
781	 * See if the devices are powered down.  If so, we must power them up first
782	 * or they will not respond.
783	 */
784	pwr = 1;
785	clkcr1 = csa_readio(resp, BA0_CLKCR1);
786	if ((clkcr1 & CLKCR1_SWCE) == 0) {
787		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
788		pwr = 0;
789	}
790
791	/*
792	 * We want to clear out the serial port FIFOs so we don't end up playing
793	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
794	 * with zero (silence).
795	 */
796	csa_writeio(resp, BA0_SERBWP, 0);
797
798	/* Fill all 256 sample FIFO locations. */
799	serbst = 0;
800	for (i = 0 ; i < 256 ; i++) {
801		/* Make sure the previous FIFO write operation has completed. */
802		for (j = 0 ; j < 5 ; j++) {
803			DELAY(100);
804			serbst = csa_readio(resp, BA0_SERBST);
805			if ((serbst & SERBST_WBSY) == 0)
806				break;
807		}
808		if ((serbst & SERBST_WBSY) != 0) {
809			if (!pwr)
810				csa_writeio(resp, BA0_CLKCR1, clkcr1);
811		}
812		/* Write the serial port FIFO index. */
813		csa_writeio(resp, BA0_SERBAD, i);
814		/* Tell the serial port to load the new value into the FIFO location. */
815		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
816	}
817	/*
818	 *  Now, if we powered up the devices, then power them back down again.
819	 *  This is kinda ugly, but should never happen.
820	 */
821	if (!pwr)
822		csa_writeio(resp, BA0_CLKCR1, clkcr1);
823}
824
825void
826csa_resetdsp(csa_res *resp)
827{
828	int i;
829
830	/*
831	 * Write the reset bit of the SP control register.
832	 */
833	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
834
835	/*
836	 * Write the control register.
837	 */
838	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
839
840	/*
841	 * Clear the trap registers.
842	 */
843	for (i = 0 ; i < 8 ; i++) {
844		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
845		csa_writemem(resp, BA1_TWPR, 0xffff);
846	}
847	csa_writemem(resp, BA1_DREG, 0);
848
849	/*
850	 * Set the frame timer to reflect the number of cycles per frame.
851	 */
852	csa_writemem(resp, BA1_FRMT, 0xadf);
853}
854
855static int
856csa_downloadimage(csa_res *resp)
857{
858	int i;
859	u_int32_t tmp, src, dst, count, data;
860
861	for (i = 0; i < CLEAR__COUNT; i++) {
862		dst = ClrStat[i].BA1__DestByteOffset;
863		count = ClrStat[i].BA1__SourceSize;
864		for (tmp = 0; tmp < count; tmp += 4)
865			csa_writemem(resp, dst + tmp, 0x00000000);
866	}
867
868	for (i = 0; i < FILL__COUNT; i++) {
869		src = 0;
870		dst = FillStat[i].Offset;
871		count = FillStat[i].Size;
872		for (tmp = 0; tmp < count; tmp += 4) {
873			data = FillStat[i].pFill[src];
874			csa_writemem(resp, dst + tmp, data);
875			src++;
876		}
877	}
878
879	return (0);
880}
881
882int
883csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
884{
885	int i;
886	u_int32_t acsda, acctl, acsts;
887
888	/*
889	 * Make sure that there is not data sitting around from a previous
890	 * uncompleted access. ACSDA = Status Data Register = 47Ch
891	 */
892	acsda = csa_readio(resp, BA0_ACSDA);
893
894	/*
895	 * Setup the AC97 control registers on the CS461x to send the
896	 * appropriate command to the AC97 to perform the read.
897	 * ACCAD = Command Address Register = 46Ch
898	 * ACCDA = Command Data Register = 470h
899	 * ACCTL = Control Register = 460h
900	 * set DCV - will clear when process completed
901	 * set CRW - Read command
902	 * set VFRM - valid frame enabled
903	 * set ESYN - ASYNC generation enabled
904	 * set RSTN - ARST# inactive, AC97 codec not reset
905	 */
906
907	/*
908	 * Get the actual AC97 register from the offset
909	 */
910	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
911	csa_writeio(resp, BA0_ACCDA, 0);
912	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
913
914	/*
915	 * Wait for the read to occur.
916	 */
917	acctl = 0;
918	for (i = 0 ; i < 10 ; i++) {
919		/*
920		 * First, we want to wait for a short time.
921		 */
922		DELAY(25);
923
924		/*
925		 * Now, check to see if the read has completed.
926		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
927		 */
928		acctl = csa_readio(resp, BA0_ACCTL);
929		if ((acctl & ACCTL_DCV) == 0)
930			break;
931	}
932
933	/*
934	 * Make sure the read completed.
935	 */
936	if ((acctl & ACCTL_DCV) != 0)
937		return (EAGAIN);
938
939	/*
940	 * Wait for the valid status bit to go active.
941	 */
942	acsts = 0;
943	for (i = 0 ; i < 10 ; i++) {
944		/*
945		 * Read the AC97 status register.
946		 * ACSTS = Status Register = 464h
947		 */
948		acsts = csa_readio(resp, BA0_ACSTS);
949		/*
950		 * See if we have valid status.
951		 * VSTS - Valid Status
952		 */
953		if ((acsts & ACSTS_VSTS) != 0)
954			break;
955		/*
956		 * Wait for a short while.
957		 */
958		 DELAY(25);
959	}
960
961	/*
962	 * Make sure we got valid status.
963	 */
964	if ((acsts & ACSTS_VSTS) == 0)
965		return (EAGAIN);
966
967	/*
968	 * Read the data returned from the AC97 register.
969	 * ACSDA = Status Data Register = 474h
970	 */
971	*data = csa_readio(resp, BA0_ACSDA);
972
973	return (0);
974}
975
976int
977csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
978{
979	int i;
980	u_int32_t acctl;
981
982	/*
983	 * Setup the AC97 control registers on the CS461x to send the
984	 * appropriate command to the AC97 to perform the write.
985	 * ACCAD = Command Address Register = 46Ch
986	 * ACCDA = Command Data Register = 470h
987	 * ACCTL = Control Register = 460h
988	 * set DCV - will clear when process completed
989	 * set VFRM - valid frame enabled
990	 * set ESYN - ASYNC generation enabled
991	 * set RSTN - ARST# inactive, AC97 codec not reset
992	 */
993
994	/*
995	 * Get the actual AC97 register from the offset
996	 */
997	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
998	csa_writeio(resp, BA0_ACCDA, data);
999	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
1000
1001	/*
1002	 * Wait for the write to occur.
1003	 */
1004	acctl = 0;
1005	for (i = 0 ; i < 10 ; i++) {
1006		/*
1007		 * First, we want to wait for a short time.
1008		 */
1009		DELAY(25);
1010
1011		/*
1012		 * Now, check to see if the read has completed.
1013		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
1014		 */
1015		acctl = csa_readio(resp, BA0_ACCTL);
1016		if ((acctl & ACCTL_DCV) == 0)
1017			break;
1018	}
1019
1020	/*
1021	 * Make sure the write completed.
1022	 */
1023	if ((acctl & ACCTL_DCV) != 0)
1024		return (EAGAIN);
1025
1026	return (0);
1027}
1028
1029u_int32_t
1030csa_readio(csa_res *resp, u_long offset)
1031{
1032	u_int32_t ul;
1033
1034	if (offset < BA0_AC97_RESET)
1035		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1036	else {
1037		if (csa_readcodec(resp, offset, &ul))
1038			ul = 0;
1039		return (ul);
1040	}
1041}
1042
1043void
1044csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1045{
1046	if (offset < BA0_AC97_RESET)
1047		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1048	else
1049		csa_writecodec(resp, offset, data);
1050}
1051
1052u_int32_t
1053csa_readmem(csa_res *resp, u_long offset)
1054{
1055	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1056}
1057
1058void
1059csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1060{
1061	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1062}
1063
1064static device_method_t csa_methods[] = {
1065	/* Device interface */
1066	DEVMETHOD(device_probe,		csa_probe),
1067	DEVMETHOD(device_attach,	csa_attach),
1068	DEVMETHOD(device_detach,	csa_detach),
1069	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1070	DEVMETHOD(device_suspend,	bus_generic_suspend),
1071	DEVMETHOD(device_resume,	csa_resume),
1072
1073	/* Bus interface */
1074	DEVMETHOD(bus_print_child,	bus_generic_print_child),
1075	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1076	DEVMETHOD(bus_release_resource,	csa_release_resource),
1077	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1078	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1079	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1080	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1081
1082	{ 0, 0 }
1083};
1084
1085static driver_t csa_driver = {
1086	"csa",
1087	csa_methods,
1088	sizeof(struct csa_softc),
1089};
1090
1091/*
1092 * csa can be attached to a pci bus.
1093 */
1094DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1095MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1096MODULE_VERSION(snd_csa, 1);
1097