csa.c revision 132236
1/*
2 * Copyright (c) 1999 Seigo Tanimura
3 * All rights reserved.
4 *
5 * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
6 * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
7 * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/bus.h>
35#include <sys/malloc.h>
36#include <sys/module.h>
37#include <machine/resource.h>
38#include <machine/bus.h>
39#include <sys/rman.h>
40#include <sys/soundcard.h>
41#include <dev/sound/pcm/sound.h>
42#include <dev/sound/chip.h>
43#include <dev/sound/pci/csareg.h>
44#include <dev/sound/pci/csavar.h>
45
46#include <dev/pci/pcireg.h>
47#include <dev/pci/pcivar.h>
48
49#include <gnu/dev/sound/pci/csaimg.h>
50
51SND_DECLARE_FILE("$FreeBSD: head/sys/dev/sound/pci/csa.c 132236 2004-07-16 04:00:08Z tanimura $");
52
53/* This is the pci device id. */
54#define CS4610_PCI_ID 0x60011013
55#define CS4614_PCI_ID 0x60031013
56#define CS4615_PCI_ID 0x60041013
57
58/* Here is the parameter structure per a device. */
59struct csa_softc {
60	device_t dev; /* device */
61	csa_res res; /* resources */
62
63	device_t pcm; /* pcm device */
64	driver_intr_t* pcmintr; /* pcm intr */
65	void *pcmintr_arg; /* pcm intr arg */
66	device_t midi; /* midi device */
67	driver_intr_t* midiintr; /* midi intr */
68	void *midiintr_arg; /* midi intr arg */
69	void *ih; /* cookie */
70
71	struct csa_card *card;
72	struct csa_bridgeinfo binfo; /* The state of this bridge. */
73};
74
75typedef struct csa_softc *sc_p;
76
77static int csa_probe(device_t dev);
78static int csa_attach(device_t dev);
79static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
80					      u_long start, u_long end, u_long count, u_int flags);
81static int csa_release_resource(device_t bus, device_t child, int type, int rid,
82				   struct resource *r);
83static int csa_setup_intr(device_t bus, device_t child,
84			  struct resource *irq, int flags,
85			  driver_intr_t *intr, void *arg, void **cookiep);
86static int csa_teardown_intr(device_t bus, device_t child,
87			     struct resource *irq, void *cookie);
88static driver_intr_t csa_intr;
89static int csa_initialize(sc_p scp);
90static void csa_resetdsp(csa_res *resp);
91static int csa_downloadimage(csa_res *resp);
92
93static devclass_t csa_devclass;
94
95static void
96amp_none(void)
97{
98}
99
100static void
101amp_voyetra(void)
102{
103}
104
105static int
106clkrun_hack(int run)
107{
108#ifdef __i386__
109	devclass_t		pci_devclass;
110	device_t		*pci_devices, *pci_children, *busp, *childp;
111	int			pci_count = 0, pci_childcount = 0;
112	int			i, j, port;
113	u_int16_t		control;
114	bus_space_tag_t		btag;
115
116	if ((pci_devclass = devclass_find("pci")) == NULL) {
117		return ENXIO;
118	}
119
120	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
121
122	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
123		pci_childcount = 0;
124		device_get_children(*busp, &pci_children, &pci_childcount);
125		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
126			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
127				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
128				/* XXX */
129				btag = I386_BUS_SPACE_IO;
130
131				control = bus_space_read_2(btag, 0x0, port);
132				control &= ~0x2000;
133				control |= run? 0 : 0x2000;
134				bus_space_write_2(btag, 0x0, port, control);
135				free(pci_devices, M_TEMP);
136				free(pci_children, M_TEMP);
137				return 0;
138			}
139		}
140		free(pci_children, M_TEMP);
141	}
142
143	free(pci_devices, M_TEMP);
144	return ENXIO;
145#else
146	return 0;
147#endif
148}
149
150static struct csa_card cards_4610[] = {
151	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
152};
153
154static struct csa_card cards_4614[] = {
155	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
156	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
157	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
158	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
159	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
160	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
161	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
162	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
163	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
164};
165
166static struct csa_card cards_4615[] = {
167	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
168};
169
170static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
171
172struct card_type {
173	u_int32_t devid;
174	char *name;
175	struct csa_card *cards;
176};
177
178static struct card_type cards[] = {
179	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
180	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
181	{CS4615_PCI_ID, "CS4615", cards_4615},
182	{0, NULL, NULL},
183};
184
185static struct card_type *
186csa_findcard(device_t dev)
187{
188	int i;
189
190	i = 0;
191	while (cards[i].devid != 0) {
192		if (pci_get_devid(dev) == cards[i].devid)
193			return &cards[i];
194		i++;
195	}
196	return NULL;
197}
198
199struct csa_card *
200csa_findsubcard(device_t dev)
201{
202	int i;
203	struct card_type *card;
204	struct csa_card *subcard;
205
206	card = csa_findcard(dev);
207	if (card == NULL)
208		return &nocard;
209	subcard = card->cards;
210	i = 0;
211	while (subcard[i].subvendor != 0) {
212		if (pci_get_subvendor(dev) == subcard[i].subvendor
213		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
214			return &subcard[i];
215		}
216		i++;
217	}
218	return &subcard[i];
219}
220
221static int
222csa_probe(device_t dev)
223{
224	struct card_type *card;
225
226	card = csa_findcard(dev);
227	if (card) {
228		device_set_desc(dev, card->name);
229		return 0;
230	}
231	return ENXIO;
232}
233
234static int
235csa_attach(device_t dev)
236{
237	u_int32_t stcmd;
238	sc_p scp;
239	csa_res *resp;
240	struct sndcard_func *func;
241	int error = ENXIO;
242
243	scp = device_get_softc(dev);
244
245	/* Fill in the softc. */
246	bzero(scp, sizeof(*scp));
247	scp->dev = dev;
248
249	/* Wake up the device. */
250	stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
251	if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
252		stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
253		pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
254	}
255
256	/* Allocate the resources. */
257	resp = &scp->res;
258	scp->card = csa_findsubcard(dev);
259	scp->binfo.card = scp->card;
260	printf("csa: card is %s\n", scp->card->name);
261	resp->io_rid = PCIR_BAR(0);
262	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
263		&resp->io_rid, RF_ACTIVE);
264	if (resp->io == NULL)
265		return (ENXIO);
266	resp->mem_rid = PCIR_BAR(1);
267	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
268		&resp->mem_rid, RF_ACTIVE);
269	if (resp->mem == NULL)
270		goto err_io;
271	resp->irq_rid = 0;
272	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
273		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
274	if (resp->irq == NULL)
275		goto err_mem;
276
277	/* Enable interrupt. */
278	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
279		goto err_intr;
280#if 0
281	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
282		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
283#endif
284
285	/* Initialize the chip. */
286	if (csa_initialize(scp))
287		goto err_teardown;
288
289	/* Reset the Processor. */
290	csa_resetdsp(resp);
291
292	/* Download the Processor Image to the processor. */
293	if (csa_downloadimage(resp))
294		goto err_teardown;
295
296	/* Attach the children. */
297
298	/* PCM Audio */
299	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
300	if (func == NULL) {
301		error = ENOMEM;
302		goto err_teardown;
303	}
304	func->varinfo = &scp->binfo;
305	func->func = SCF_PCM;
306	scp->pcm = device_add_child(dev, "pcm", -1);
307	device_set_ivars(scp->pcm, func);
308
309	/* Midi Interface */
310	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
311	if (func == NULL) {
312		error = ENOMEM;
313		goto err_teardown;
314	}
315	func->varinfo = &scp->binfo;
316	func->func = SCF_MIDI;
317	scp->midi = device_add_child(dev, "midi", -1);
318	device_set_ivars(scp->midi, func);
319
320	bus_generic_attach(dev);
321
322	return (0);
323
324err_teardown:
325	bus_teardown_intr(dev, resp->irq, scp->ih);
326err_intr:
327	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
328err_mem:
329	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
330err_io:
331	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
332	return (error);
333}
334
335static int
336csa_detach(device_t dev)
337{
338	csa_res *resp;
339	sc_p scp;
340	int err;
341
342	scp = device_get_softc(dev);
343	resp = &scp->res;
344
345	err = 0;
346	if (scp->midi != NULL)
347		err = device_delete_child(dev, scp->midi);
348	if (err)
349		return err;
350	scp->midi = NULL;
351
352	if (scp->pcm != NULL)
353		err = device_delete_child(dev, scp->pcm);
354	if (err)
355		return err;
356	scp->pcm = NULL;
357
358	bus_teardown_intr(dev, resp->irq, scp->ih);
359	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
360	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
361	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
362
363	return bus_generic_detach(dev);
364}
365
366static int
367csa_resume(device_t dev)
368{
369#if 0
370	/*
371	 * XXX: this cannot possibly work
372	 * needs to be properly implemented
373	 */
374	csa_detach(dev);
375	csa_attach(dev);
376#endif
377	return 0;
378}
379
380static struct resource *
381csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
382		      u_long start, u_long end, u_long count, u_int flags)
383{
384	sc_p scp;
385	csa_res *resp;
386	struct resource *res;
387
388	scp = device_get_softc(bus);
389	resp = &scp->res;
390	switch (type) {
391	case SYS_RES_IRQ:
392		if (*rid != 0)
393			return (NULL);
394		res = resp->irq;
395		break;
396	case SYS_RES_MEMORY:
397		switch (*rid) {
398		case PCIR_BAR(0):
399			res = resp->io;
400			break;
401		case PCIR_BAR(1):
402			res = resp->mem;
403			break;
404		default:
405			return (NULL);
406		}
407		break;
408	default:
409		return (NULL);
410	}
411
412	return res;
413}
414
415static int
416csa_release_resource(device_t bus, device_t child, int type, int rid,
417			struct resource *r)
418{
419	return (0);
420}
421
422/*
423 * The following three functions deal with interrupt handling.
424 * An interrupt is primarily handled by the bridge driver.
425 * The bridge driver then determines the child devices to pass
426 * the interrupt. Certain information of the device can be read
427 * only once(eg the value of HISR). The bridge driver is responsible
428 * to pass such the information to the children.
429 */
430
431static int
432csa_setup_intr(device_t bus, device_t child,
433	       struct resource *irq, int flags,
434	       driver_intr_t *intr, void *arg, void **cookiep)
435{
436	sc_p scp;
437	csa_res *resp;
438	struct sndcard_func *func;
439
440	scp = device_get_softc(bus);
441	resp = &scp->res;
442
443	/*
444	 * Look at the function code of the child to determine
445	 * the appropriate hander for it.
446	 */
447	func = device_get_ivars(child);
448	if (func == NULL || irq != resp->irq)
449		return (EINVAL);
450
451	switch (func->func) {
452	case SCF_PCM:
453		scp->pcmintr = intr;
454		scp->pcmintr_arg = arg;
455		break;
456
457	case SCF_MIDI:
458		scp->midiintr = intr;
459		scp->midiintr_arg = arg;
460		break;
461
462	default:
463		return (EINVAL);
464	}
465	*cookiep = scp;
466	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
467		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
468
469	return (0);
470}
471
472static int
473csa_teardown_intr(device_t bus, device_t child,
474		  struct resource *irq, void *cookie)
475{
476	sc_p scp;
477	csa_res *resp;
478	struct sndcard_func *func;
479
480	scp = device_get_softc(bus);
481	resp = &scp->res;
482
483	/*
484	 * Look at the function code of the child to determine
485	 * the appropriate hander for it.
486	 */
487	func = device_get_ivars(child);
488	if (func == NULL || irq != resp->irq || cookie != scp)
489		return (EINVAL);
490
491	switch (func->func) {
492	case SCF_PCM:
493		scp->pcmintr = NULL;
494		scp->pcmintr_arg = NULL;
495		break;
496
497	case SCF_MIDI:
498		scp->midiintr = NULL;
499		scp->midiintr_arg = NULL;
500		break;
501
502	default:
503		return (EINVAL);
504	}
505
506	return (0);
507}
508
509/* The interrupt handler */
510static void
511csa_intr(void *arg)
512{
513	sc_p scp = arg;
514	csa_res *resp;
515	u_int32_t hisr;
516
517	resp = &scp->res;
518
519	/* Is this interrupt for us? */
520	hisr = csa_readio(resp, BA0_HISR);
521	if ((hisr & 0x7fffffff) == 0) {
522		/* Throw an eoi. */
523		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
524		return;
525	}
526
527	/*
528	 * Pass the value of HISR via struct csa_bridgeinfo.
529	 * The children get access through their ivars.
530	 */
531	scp->binfo.hisr = hisr;
532
533	/* Invoke the handlers of the children. */
534	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
535		scp->pcmintr(scp->pcmintr_arg);
536		hisr &= ~(HISR_VC0 | HISR_VC1);
537	}
538	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
539		scp->midiintr(scp->midiintr_arg);
540		hisr &= ~HISR_MIDI;
541	}
542
543	/* Throw an eoi. */
544	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
545}
546
547static int
548csa_initialize(sc_p scp)
549{
550	int i;
551	u_int32_t acsts, acisv;
552	csa_res *resp;
553
554	resp = &scp->res;
555
556	/*
557	 * First, blast the clock control register to zero so that the PLL starts
558	 * out in a known state, and blast the master serial port control register
559	 * to zero so that the serial ports also start out in a known state.
560	 */
561	csa_writeio(resp, BA0_CLKCR1, 0);
562	csa_writeio(resp, BA0_SERMC1, 0);
563
564	/*
565	 * If we are in AC97 mode, then we must set the part to a host controlled
566	 * AC-link.  Otherwise, we won't be able to bring up the link.
567	 */
568#if 1
569	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
570#else
571	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
572#endif /* 1 */
573
574	/*
575	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
576	 * spec) and then drive it high.  This is done for non AC97 modes since
577	 * there might be logic external to the CS461x that uses the ARST# line
578	 * for a reset.
579	 */
580	csa_writeio(resp, BA0_ACCTL, 1);
581	DELAY(50);
582	csa_writeio(resp, BA0_ACCTL, 0);
583	DELAY(50);
584	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
585
586	/*
587	 * The first thing we do here is to enable sync generation.  As soon
588	 * as we start receiving bit clock, we'll start producing the SYNC
589	 * signal.
590	 */
591	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
592
593	/*
594	 * Now wait for a short while to allow the AC97 part to start
595	 * generating bit clock (so we don't try to start the PLL without an
596	 * input clock).
597	 */
598	DELAY(50000);
599
600	/*
601	 * Set the serial port timing configuration, so that
602	 * the clock control circuit gets its clock from the correct place.
603	 */
604	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
605	DELAY(700000);
606
607	/*
608	 * Write the selected clock control setup to the hardware.  Do not turn on
609	 * SWCE yet (if requested), so that the devices clocked by the output of
610	 * PLL are not clocked until the PLL is stable.
611	 */
612	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
613	csa_writeio(resp, BA0_PLLM, 0x3a);
614	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
615
616	/*
617	 * Power up the PLL.
618	 */
619	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
620
621	/*
622	 * Wait until the PLL has stabilized.
623	 */
624	DELAY(5000);
625
626	/*
627	 * Turn on clocking of the core so that we can setup the serial ports.
628	 */
629	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
630
631	/*
632	 * Fill the serial port FIFOs with silence.
633	 */
634	csa_clearserialfifos(resp);
635
636	/*
637	 * Set the serial port FIFO pointer to the first sample in the FIFO.
638	 */
639#if notdef
640	csa_writeio(resp, BA0_SERBSP, 0);
641#endif /* notdef */
642
643	/*
644	 *  Write the serial port configuration to the part.  The master
645	 *  enable bit is not set until all other values have been written.
646	 */
647	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
648	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
649	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
650
651	/*
652	 * Wait for the codec ready signal from the AC97 codec.
653	 */
654	acsts = 0;
655	for (i = 0 ; i < 1000 ; i++) {
656		/*
657		 * First, lets wait a short while to let things settle out a bit,
658		 * and to prevent retrying the read too quickly.
659		 */
660		DELAY(125);
661
662		/*
663		 * Read the AC97 status register to see if we've seen a CODEC READY
664		 * signal from the AC97 codec.
665		 */
666		acsts = csa_readio(resp, BA0_ACSTS);
667		if ((acsts & ACSTS_CRDY) != 0)
668			break;
669	}
670
671	/*
672	 * Make sure we sampled CODEC READY.
673	 */
674	if ((acsts & ACSTS_CRDY) == 0)
675		return (ENXIO);
676
677	/*
678	 * Assert the vaid frame signal so that we can start sending commands
679	 * to the AC97 codec.
680	 */
681	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
682
683	/*
684	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
685	 * the codec is pumping ADC data across the AC-link.
686	 */
687	acisv = 0;
688	for (i = 0 ; i < 1000 ; i++) {
689		/*
690		 * First, lets wait a short while to let things settle out a bit,
691		 * and to prevent retrying the read too quickly.
692		 */
693#if notdef
694		DELAY(10000000L); /* clw */
695#else
696		DELAY(1000);
697#endif /* notdef */
698		/*
699		 * Read the input slot valid register and see if input slots 3 and
700		 * 4 are valid yet.
701		 */
702		acisv = csa_readio(resp, BA0_ACISV);
703		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
704			break;
705	}
706	/*
707	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
708	 * an error.
709	 */
710	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
711		return (ENXIO);
712
713	/*
714	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
715	 * commense the transfer of digital audio data to the AC97 codec.
716	 */
717	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
718
719	/*
720	 * Power down the DAC and ADC.  We will power them up (if) when we need
721	 * them.
722	 */
723#if notdef
724	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
725#endif /* notdef */
726
727	/*
728	 * Turn off the Processor by turning off the software clock enable flag in
729	 * the clock control register.
730	 */
731#if notdef
732	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
733	csa_writeio(resp, BA0_CLKCR1, clkcr1);
734#endif /* notdef */
735
736	/*
737	 * Enable interrupts on the part.
738	 */
739#if 0
740	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
741#endif /* notdef */
742
743	return (0);
744}
745
746void
747csa_clearserialfifos(csa_res *resp)
748{
749	int i, j, pwr;
750	u_int8_t clkcr1, serbst;
751
752	/*
753	 * See if the devices are powered down.  If so, we must power them up first
754	 * or they will not respond.
755	 */
756	pwr = 1;
757	clkcr1 = csa_readio(resp, BA0_CLKCR1);
758	if ((clkcr1 & CLKCR1_SWCE) == 0) {
759		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
760		pwr = 0;
761	}
762
763	/*
764	 * We want to clear out the serial port FIFOs so we don't end up playing
765	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
766	 * with zero (silence).
767	 */
768	csa_writeio(resp, BA0_SERBWP, 0);
769
770	/* Fill all 256 sample FIFO locations. */
771	serbst = 0;
772	for (i = 0 ; i < 256 ; i++) {
773		/* Make sure the previous FIFO write operation has completed. */
774		for (j = 0 ; j < 5 ; j++) {
775			DELAY(100);
776			serbst = csa_readio(resp, BA0_SERBST);
777			if ((serbst & SERBST_WBSY) == 0)
778				break;
779		}
780		if ((serbst & SERBST_WBSY) != 0) {
781			if (!pwr)
782				csa_writeio(resp, BA0_CLKCR1, clkcr1);
783		}
784		/* Write the serial port FIFO index. */
785		csa_writeio(resp, BA0_SERBAD, i);
786		/* Tell the serial port to load the new value into the FIFO location. */
787		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
788	}
789	/*
790	 *  Now, if we powered up the devices, then power them back down again.
791	 *  This is kinda ugly, but should never happen.
792	 */
793	if (!pwr)
794		csa_writeio(resp, BA0_CLKCR1, clkcr1);
795}
796
797static void
798csa_resetdsp(csa_res *resp)
799{
800	int i;
801
802	/*
803	 * Write the reset bit of the SP control register.
804	 */
805	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
806
807	/*
808	 * Write the control register.
809	 */
810	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
811
812	/*
813	 * Clear the trap registers.
814	 */
815	for (i = 0 ; i < 8 ; i++) {
816		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
817		csa_writemem(resp, BA1_TWPR, 0xffff);
818	}
819	csa_writemem(resp, BA1_DREG, 0);
820
821	/*
822	 * Set the frame timer to reflect the number of cycles per frame.
823	 */
824	csa_writemem(resp, BA1_FRMT, 0xadf);
825}
826
827static int
828csa_downloadimage(csa_res *resp)
829{
830	int i;
831	u_int32_t tmp, src, dst, count, data;
832
833	for (i = 0; i < CLEAR__COUNT; i++) {
834		dst = ClrStat[i].BA1__DestByteOffset;
835		count = ClrStat[i].BA1__SourceSize;
836		for (tmp = 0; tmp < count; tmp += 4)
837			csa_writemem(resp, dst + tmp, 0x00000000);
838	}
839
840	for (i = 0; i < FILL__COUNT; i++) {
841		src = 0;
842		dst = FillStat[i].Offset;
843		count = FillStat[i].Size;
844		for (tmp = 0; tmp < count; tmp += 4) {
845			data = FillStat[i].pFill[src];
846			csa_writemem(resp, dst + tmp, data);
847			src++;
848		}
849	}
850
851	return (0);
852}
853
854int
855csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
856{
857	int i;
858	u_int32_t acsda, acctl, acsts;
859
860	/*
861	 * Make sure that there is not data sitting around from a previous
862	 * uncompleted access. ACSDA = Status Data Register = 47Ch
863	 */
864	acsda = csa_readio(resp, BA0_ACSDA);
865
866	/*
867	 * Setup the AC97 control registers on the CS461x to send the
868	 * appropriate command to the AC97 to perform the read.
869	 * ACCAD = Command Address Register = 46Ch
870	 * ACCDA = Command Data Register = 470h
871	 * ACCTL = Control Register = 460h
872	 * set DCV - will clear when process completed
873	 * set CRW - Read command
874	 * set VFRM - valid frame enabled
875	 * set ESYN - ASYNC generation enabled
876	 * set RSTN - ARST# inactive, AC97 codec not reset
877	 */
878
879	/*
880	 * Get the actual AC97 register from the offset
881	 */
882	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
883	csa_writeio(resp, BA0_ACCDA, 0);
884	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
885
886	/*
887	 * Wait for the read to occur.
888	 */
889	acctl = 0;
890	for (i = 0 ; i < 10 ; i++) {
891		/*
892		 * First, we want to wait for a short time.
893		 */
894		DELAY(25);
895
896		/*
897		 * Now, check to see if the read has completed.
898		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
899		 */
900		acctl = csa_readio(resp, BA0_ACCTL);
901		if ((acctl & ACCTL_DCV) == 0)
902			break;
903	}
904
905	/*
906	 * Make sure the read completed.
907	 */
908	if ((acctl & ACCTL_DCV) != 0)
909		return (EAGAIN);
910
911	/*
912	 * Wait for the valid status bit to go active.
913	 */
914	acsts = 0;
915	for (i = 0 ; i < 10 ; i++) {
916		/*
917		 * Read the AC97 status register.
918		 * ACSTS = Status Register = 464h
919		 */
920		acsts = csa_readio(resp, BA0_ACSTS);
921		/*
922		 * See if we have valid status.
923		 * VSTS - Valid Status
924		 */
925		if ((acsts & ACSTS_VSTS) != 0)
926			break;
927		/*
928		 * Wait for a short while.
929		 */
930		 DELAY(25);
931	}
932
933	/*
934	 * Make sure we got valid status.
935	 */
936	if ((acsts & ACSTS_VSTS) == 0)
937		return (EAGAIN);
938
939	/*
940	 * Read the data returned from the AC97 register.
941	 * ACSDA = Status Data Register = 474h
942	 */
943	*data = csa_readio(resp, BA0_ACSDA);
944
945	return (0);
946}
947
948int
949csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
950{
951	int i;
952	u_int32_t acctl;
953
954	/*
955	 * Setup the AC97 control registers on the CS461x to send the
956	 * appropriate command to the AC97 to perform the write.
957	 * ACCAD = Command Address Register = 46Ch
958	 * ACCDA = Command Data Register = 470h
959	 * ACCTL = Control Register = 460h
960	 * set DCV - will clear when process completed
961	 * set VFRM - valid frame enabled
962	 * set ESYN - ASYNC generation enabled
963	 * set RSTN - ARST# inactive, AC97 codec not reset
964	 */
965
966	/*
967	 * Get the actual AC97 register from the offset
968	 */
969	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
970	csa_writeio(resp, BA0_ACCDA, data);
971	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
972
973	/*
974	 * Wait for the write to occur.
975	 */
976	acctl = 0;
977	for (i = 0 ; i < 10 ; i++) {
978		/*
979		 * First, we want to wait for a short time.
980		 */
981		DELAY(25);
982
983		/*
984		 * Now, check to see if the read has completed.
985		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
986		 */
987		acctl = csa_readio(resp, BA0_ACCTL);
988		if ((acctl & ACCTL_DCV) == 0)
989			break;
990	}
991
992	/*
993	 * Make sure the write completed.
994	 */
995	if ((acctl & ACCTL_DCV) != 0)
996		return (EAGAIN);
997
998	return (0);
999}
1000
1001u_int32_t
1002csa_readio(csa_res *resp, u_long offset)
1003{
1004	u_int32_t ul;
1005
1006	if (offset < BA0_AC97_RESET)
1007		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1008	else {
1009		if (csa_readcodec(resp, offset, &ul))
1010			ul = 0;
1011		return (ul);
1012	}
1013}
1014
1015void
1016csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1017{
1018	if (offset < BA0_AC97_RESET)
1019		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1020	else
1021		csa_writecodec(resp, offset, data);
1022}
1023
1024u_int32_t
1025csa_readmem(csa_res *resp, u_long offset)
1026{
1027	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1028}
1029
1030void
1031csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1032{
1033	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1034}
1035
1036static device_method_t csa_methods[] = {
1037	/* Device interface */
1038	DEVMETHOD(device_probe,		csa_probe),
1039	DEVMETHOD(device_attach,	csa_attach),
1040	DEVMETHOD(device_detach,	csa_detach),
1041	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1042	DEVMETHOD(device_suspend,	bus_generic_suspend),
1043	DEVMETHOD(device_resume,	csa_resume),
1044
1045	/* Bus interface */
1046	DEVMETHOD(bus_print_child,	bus_generic_print_child),
1047	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1048	DEVMETHOD(bus_release_resource,	csa_release_resource),
1049	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1050	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1051	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1052	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1053
1054	{ 0, 0 }
1055};
1056
1057static driver_t csa_driver = {
1058	"csa",
1059	csa_methods,
1060	sizeof(struct csa_softc),
1061};
1062
1063/*
1064 * csa can be attached to a pci bus.
1065 */
1066DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1067MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1068MODULE_VERSION(snd_csa, 1);
1069