csa.c revision 119690
10Sstevel@tonic-gate/*
20Sstevel@tonic-gate * Copyright (c) 1999 Seigo Tanimura
30Sstevel@tonic-gate * All rights reserved.
40Sstevel@tonic-gate *
50Sstevel@tonic-gate * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
60Sstevel@tonic-gate * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
70Sstevel@tonic-gate * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
80Sstevel@tonic-gate *
90Sstevel@tonic-gate * Redistribution and use in source and binary forms, with or without
100Sstevel@tonic-gate * modification, are permitted provided that the following conditions
110Sstevel@tonic-gate * are met:
120Sstevel@tonic-gate * 1. Redistributions of source code must retain the above copyright
130Sstevel@tonic-gate *    notice, this list of conditions and the following disclaimer.
140Sstevel@tonic-gate * 2. Redistributions in binary form must reproduce the above copyright
150Sstevel@tonic-gate *    notice, this list of conditions and the following disclaimer in the
160Sstevel@tonic-gate *    documentation and/or other materials provided with the distribution.
170Sstevel@tonic-gate *
180Sstevel@tonic-gate * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
190Sstevel@tonic-gate * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
200Sstevel@tonic-gate * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
210Sstevel@tonic-gate * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
220Sstevel@tonic-gate * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
230Sstevel@tonic-gate * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
240Sstevel@tonic-gate * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
250Sstevel@tonic-gate * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
260Sstevel@tonic-gate * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
270Sstevel@tonic-gate * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
280Sstevel@tonic-gate * SUCH DAMAGE.
290Sstevel@tonic-gate */
300Sstevel@tonic-gate
310Sstevel@tonic-gate#include <sys/param.h>
320Sstevel@tonic-gate#include <sys/systm.h>
330Sstevel@tonic-gate#include <sys/kernel.h>
340Sstevel@tonic-gate#include <sys/bus.h>
350Sstevel@tonic-gate#include <sys/malloc.h>
360Sstevel@tonic-gate#include <sys/module.h>
370Sstevel@tonic-gate#include <machine/resource.h>
380Sstevel@tonic-gate#include <machine/bus.h>
390Sstevel@tonic-gate#include <sys/rman.h>
400Sstevel@tonic-gate#include <sys/soundcard.h>
410Sstevel@tonic-gate#include <dev/sound/pcm/sound.h>
420Sstevel@tonic-gate#include <dev/sound/chip.h>
430Sstevel@tonic-gate#include <dev/sound/pci/csareg.h>
440Sstevel@tonic-gate#include <dev/sound/pci/csavar.h>
450Sstevel@tonic-gate
460Sstevel@tonic-gate#include <dev/pci/pcireg.h>
470Sstevel@tonic-gate#include <dev/pci/pcivar.h>
480Sstevel@tonic-gate
490Sstevel@tonic-gate#include <gnu/dev/sound/pci/csaimg.h>
500Sstevel@tonic-gate
510Sstevel@tonic-gateSND_DECLARE_FILE("$FreeBSD: head/sys/dev/sound/pci/csa.c 119690 2003-09-02 17:30:40Z jhb $");
520Sstevel@tonic-gate
530Sstevel@tonic-gate/* This is the pci device id. */
540Sstevel@tonic-gate#define CS4610_PCI_ID 0x60011013
550Sstevel@tonic-gate#define CS4614_PCI_ID 0x60031013
560Sstevel@tonic-gate#define CS4615_PCI_ID 0x60041013
570Sstevel@tonic-gate
580Sstevel@tonic-gate/* Here is the parameter structure per a device. */
590Sstevel@tonic-gatestruct csa_softc {
600Sstevel@tonic-gate	device_t dev; /* device */
610Sstevel@tonic-gate	csa_res res; /* resources */
620Sstevel@tonic-gate
630Sstevel@tonic-gate	device_t pcm; /* pcm device */
640Sstevel@tonic-gate	driver_intr_t* pcmintr; /* pcm intr */
650Sstevel@tonic-gate	void *pcmintr_arg; /* pcm intr arg */
660Sstevel@tonic-gate	device_t midi; /* midi device */
670Sstevel@tonic-gate	driver_intr_t* midiintr; /* midi intr */
680Sstevel@tonic-gate	void *midiintr_arg; /* midi intr arg */
690Sstevel@tonic-gate	void *ih; /* cookie */
700Sstevel@tonic-gate
710Sstevel@tonic-gate	struct csa_card *card;
720Sstevel@tonic-gate	struct csa_bridgeinfo binfo; /* The state of this bridge. */
730Sstevel@tonic-gate};
740Sstevel@tonic-gate
750Sstevel@tonic-gatetypedef struct csa_softc *sc_p;
760Sstevel@tonic-gate
770Sstevel@tonic-gatestatic int csa_probe(device_t dev);
780Sstevel@tonic-gatestatic int csa_attach(device_t dev);
790Sstevel@tonic-gatestatic struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
800Sstevel@tonic-gate					      u_long start, u_long end, u_long count, u_int flags);
810Sstevel@tonic-gatestatic int csa_release_resource(device_t bus, device_t child, int type, int rid,
820Sstevel@tonic-gate				   struct resource *r);
830Sstevel@tonic-gatestatic int csa_setup_intr(device_t bus, device_t child,
840Sstevel@tonic-gate			  struct resource *irq, int flags,
850Sstevel@tonic-gate			  driver_intr_t *intr, void *arg, void **cookiep);
860Sstevel@tonic-gatestatic int csa_teardown_intr(device_t bus, device_t child,
870Sstevel@tonic-gate			     struct resource *irq, void *cookie);
880Sstevel@tonic-gatestatic driver_intr_t csa_intr;
890Sstevel@tonic-gatestatic int csa_initialize(sc_p scp);
900Sstevel@tonic-gatestatic void csa_resetdsp(csa_res *resp);
910Sstevel@tonic-gatestatic int csa_downloadimage(csa_res *resp);
920Sstevel@tonic-gate
930Sstevel@tonic-gatestatic devclass_t csa_devclass;
940Sstevel@tonic-gate
950Sstevel@tonic-gatestatic void
960Sstevel@tonic-gateamp_none(void)
970Sstevel@tonic-gate{
980Sstevel@tonic-gate}
99
100static void
101amp_voyetra(void)
102{
103}
104
105static int
106clkrun_hack(int run)
107{
108#ifdef __i386__
109	devclass_t		pci_devclass;
110	device_t		*pci_devices, *pci_children, *busp, *childp;
111	int			pci_count = 0, pci_childcount = 0;
112	int			i, j, port;
113	u_int16_t		control;
114	bus_space_tag_t		btag;
115
116	if ((pci_devclass = devclass_find("pci")) == NULL) {
117		return ENXIO;
118	}
119
120	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
121
122	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
123		pci_childcount = 0;
124		device_get_children(*busp, &pci_children, &pci_childcount);
125		for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
126			if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
127				port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
128				/* XXX */
129				btag = I386_BUS_SPACE_IO;
130
131				control = bus_space_read_2(btag, 0x0, port);
132				control &= ~0x2000;
133				control |= run? 0 : 0x2000;
134				bus_space_write_2(btag, 0x0, port, control);
135				free(pci_devices, M_TEMP);
136				free(pci_children, M_TEMP);
137				return 0;
138			}
139		}
140		free(pci_children, M_TEMP);
141	}
142
143	free(pci_devices, M_TEMP);
144	return ENXIO;
145#else
146	return 0;
147#endif
148}
149
150static struct csa_card cards_4610[] = {
151	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
152};
153
154static struct csa_card cards_4614[] = {
155	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
156	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
157	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
158	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
159	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
160	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
161	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
162	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
163	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
164};
165
166static struct csa_card cards_4615[] = {
167	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
168};
169
170static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
171
172struct card_type {
173	u_int32_t devid;
174	char *name;
175	struct csa_card *cards;
176};
177
178static struct card_type cards[] = {
179	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
180	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
181	{CS4615_PCI_ID, "CS4615", cards_4615},
182	{0, NULL, NULL},
183};
184
185static struct card_type *
186csa_findcard(device_t dev)
187{
188	int i;
189
190	i = 0;
191	while (cards[i].devid != 0) {
192		if (pci_get_devid(dev) == cards[i].devid)
193			return &cards[i];
194		i++;
195	}
196	return NULL;
197}
198
199struct csa_card *
200csa_findsubcard(device_t dev)
201{
202	int i;
203	struct card_type *card;
204	struct csa_card *subcard;
205
206	card = csa_findcard(dev);
207	if (card == NULL)
208		return &nocard;
209	subcard = card->cards;
210	i = 0;
211	while (subcard[i].subvendor != 0) {
212		if (pci_get_subvendor(dev) == subcard[i].subvendor
213		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
214			return &subcard[i];
215		}
216		i++;
217	}
218	return &subcard[i];
219}
220
221static int
222csa_probe(device_t dev)
223{
224	struct card_type *card;
225
226	card = csa_findcard(dev);
227	if (card) {
228		device_set_desc(dev, card->name);
229		return 0;
230	}
231	return ENXIO;
232}
233
234static int
235csa_attach(device_t dev)
236{
237	u_int32_t stcmd;
238	sc_p scp;
239	csa_res *resp;
240	struct sndcard_func *func;
241	int error = ENXIO;
242
243	scp = device_get_softc(dev);
244
245	/* Fill in the softc. */
246	bzero(scp, sizeof(*scp));
247	scp->dev = dev;
248
249	/* Wake up the device. */
250	stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
251	if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
252		stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
253		pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
254	}
255
256	/* Allocate the resources. */
257	resp = &scp->res;
258	scp->card = csa_findsubcard(dev);
259	scp->binfo.card = scp->card;
260	printf("csa: card is %s\n", scp->card->name);
261	resp->io_rid = PCIR_BAR(0);
262	resp->io = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->io_rid, 0, ~0, 1, RF_ACTIVE);
263	if (resp->io == NULL)
264		return (ENXIO);
265	resp->mem_rid = PCIR_BAR(1);
266	resp->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->mem_rid, 0, ~0, 1, RF_ACTIVE);
267	if (resp->mem == NULL)
268		goto err_io;
269	resp->irq_rid = 0;
270	resp->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &resp->irq_rid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
271	if (resp->irq == NULL)
272		goto err_mem;
273
274	/* Enable interrupt. */
275	if (snd_setup_intr(dev, resp->irq, INTR_MPSAFE, csa_intr, scp, &scp->ih))
276		goto err_intr;
277#if 0
278	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
279		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
280#endif
281
282	/* Initialize the chip. */
283	if (csa_initialize(scp))
284		goto err_teardown;
285
286	/* Reset the Processor. */
287	csa_resetdsp(resp);
288
289	/* Download the Processor Image to the processor. */
290	if (csa_downloadimage(resp))
291		goto err_teardown;
292
293	/* Attach the children. */
294
295	/* PCM Audio */
296	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
297	if (func == NULL) {
298		error = ENOMEM;
299		goto err_teardown;
300	}
301	func->varinfo = &scp->binfo;
302	func->func = SCF_PCM;
303	scp->pcm = device_add_child(dev, "pcm", -1);
304	device_set_ivars(scp->pcm, func);
305
306	/* Midi Interface */
307	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
308	if (func == NULL) {
309		error = ENOMEM;
310		goto err_teardown;
311	}
312	func->varinfo = &scp->binfo;
313	func->func = SCF_MIDI;
314	scp->midi = device_add_child(dev, "midi", -1);
315	device_set_ivars(scp->midi, func);
316
317	bus_generic_attach(dev);
318
319	return (0);
320
321err_teardown:
322	bus_teardown_intr(dev, resp->irq, scp->ih);
323err_intr:
324	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
325err_mem:
326	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
327err_io:
328	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
329	return (error);
330}
331
332static int
333csa_detach(device_t dev)
334{
335	csa_res *resp;
336	sc_p scp;
337	int err;
338
339	scp = device_get_softc(dev);
340	resp = &scp->res;
341
342	err = 0;
343	if (scp->midi != NULL)
344		err = device_delete_child(dev, scp->midi);
345	if (err)
346		return err;
347	scp->midi = NULL;
348
349	if (scp->pcm != NULL)
350		err = device_delete_child(dev, scp->pcm);
351	if (err)
352		return err;
353	scp->pcm = NULL;
354
355	bus_teardown_intr(dev, resp->irq, scp->ih);
356	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
357	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
358	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
359
360	return bus_generic_detach(dev);
361}
362
363static int
364csa_resume(device_t dev)
365{
366#if 0
367	/*
368	 * XXX: this cannot possibly work
369	 * needs to be properly implemented
370	 */
371	csa_detach(dev);
372	csa_attach(dev);
373#endif
374	return 0;
375}
376
377static struct resource *
378csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
379		      u_long start, u_long end, u_long count, u_int flags)
380{
381	sc_p scp;
382	csa_res *resp;
383	struct resource *res;
384
385	scp = device_get_softc(bus);
386	resp = &scp->res;
387	switch (type) {
388	case SYS_RES_IRQ:
389		if (*rid != 0)
390			return (NULL);
391		res = resp->irq;
392		break;
393	case SYS_RES_MEMORY:
394		switch (*rid) {
395		case PCIR_BAR(0):
396			res = resp->io;
397			break;
398		case PCIR_BAR(1):
399			res = resp->mem;
400			break;
401		default:
402			return (NULL);
403		}
404		break;
405	default:
406		return (NULL);
407	}
408
409	return res;
410}
411
412static int
413csa_release_resource(device_t bus, device_t child, int type, int rid,
414			struct resource *r)
415{
416	return (0);
417}
418
419/*
420 * The following three functions deal with interrupt handling.
421 * An interrupt is primarily handled by the bridge driver.
422 * The bridge driver then determines the child devices to pass
423 * the interrupt. Certain information of the device can be read
424 * only once(eg the value of HISR). The bridge driver is responsible
425 * to pass such the information to the children.
426 */
427
428static int
429csa_setup_intr(device_t bus, device_t child,
430	       struct resource *irq, int flags,
431	       driver_intr_t *intr, void *arg, void **cookiep)
432{
433	sc_p scp;
434	csa_res *resp;
435	struct sndcard_func *func;
436
437	scp = device_get_softc(bus);
438	resp = &scp->res;
439
440	/*
441	 * Look at the function code of the child to determine
442	 * the appropriate hander for it.
443	 */
444	func = device_get_ivars(child);
445	if (func == NULL || irq != resp->irq)
446		return (EINVAL);
447
448	switch (func->func) {
449	case SCF_PCM:
450		scp->pcmintr = intr;
451		scp->pcmintr_arg = arg;
452		break;
453
454	case SCF_MIDI:
455		scp->midiintr = intr;
456		scp->midiintr_arg = arg;
457		break;
458
459	default:
460		return (EINVAL);
461	}
462	*cookiep = scp;
463	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
464		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
465
466	return (0);
467}
468
469static int
470csa_teardown_intr(device_t bus, device_t child,
471		  struct resource *irq, void *cookie)
472{
473	sc_p scp;
474	csa_res *resp;
475	struct sndcard_func *func;
476
477	scp = device_get_softc(bus);
478	resp = &scp->res;
479
480	/*
481	 * Look at the function code of the child to determine
482	 * the appropriate hander for it.
483	 */
484	func = device_get_ivars(child);
485	if (func == NULL || irq != resp->irq || cookie != scp)
486		return (EINVAL);
487
488	switch (func->func) {
489	case SCF_PCM:
490		scp->pcmintr = NULL;
491		scp->pcmintr_arg = NULL;
492		break;
493
494	case SCF_MIDI:
495		scp->midiintr = NULL;
496		scp->midiintr_arg = NULL;
497		break;
498
499	default:
500		return (EINVAL);
501	}
502
503	return (0);
504}
505
506/* The interrupt handler */
507static void
508csa_intr(void *arg)
509{
510	sc_p scp = arg;
511	csa_res *resp;
512	u_int32_t hisr;
513
514	resp = &scp->res;
515
516	/* Is this interrupt for us? */
517	hisr = csa_readio(resp, BA0_HISR);
518	if ((hisr & 0x7fffffff) == 0) {
519		/* Throw an eoi. */
520		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
521		return;
522	}
523
524	/*
525	 * Pass the value of HISR via struct csa_bridgeinfo.
526	 * The children get access through their ivars.
527	 */
528	scp->binfo.hisr = hisr;
529
530	/* Invoke the handlers of the children. */
531	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
532		scp->pcmintr(scp->pcmintr_arg);
533		hisr &= ~(HISR_VC0 | HISR_VC1);
534	}
535	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
536		scp->midiintr(scp->midiintr_arg);
537		hisr &= ~HISR_MIDI;
538	}
539
540	/* Throw an eoi. */
541	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
542}
543
544static int
545csa_initialize(sc_p scp)
546{
547	int i;
548	u_int32_t acsts, acisv;
549	csa_res *resp;
550
551	resp = &scp->res;
552
553	/*
554	 * First, blast the clock control register to zero so that the PLL starts
555	 * out in a known state, and blast the master serial port control register
556	 * to zero so that the serial ports also start out in a known state.
557	 */
558	csa_writeio(resp, BA0_CLKCR1, 0);
559	csa_writeio(resp, BA0_SERMC1, 0);
560
561	/*
562	 * If we are in AC97 mode, then we must set the part to a host controlled
563	 * AC-link.  Otherwise, we won't be able to bring up the link.
564	 */
565#if 1
566	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
567#else
568	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
569#endif /* 1 */
570
571	/*
572	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
573	 * spec) and then drive it high.  This is done for non AC97 modes since
574	 * there might be logic external to the CS461x that uses the ARST# line
575	 * for a reset.
576	 */
577	csa_writeio(resp, BA0_ACCTL, 1);
578	DELAY(50);
579	csa_writeio(resp, BA0_ACCTL, 0);
580	DELAY(50);
581	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
582
583	/*
584	 * The first thing we do here is to enable sync generation.  As soon
585	 * as we start receiving bit clock, we'll start producing the SYNC
586	 * signal.
587	 */
588	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
589
590	/*
591	 * Now wait for a short while to allow the AC97 part to start
592	 * generating bit clock (so we don't try to start the PLL without an
593	 * input clock).
594	 */
595	DELAY(50000);
596
597	/*
598	 * Set the serial port timing configuration, so that
599	 * the clock control circuit gets its clock from the correct place.
600	 */
601	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
602	DELAY(700000);
603
604	/*
605	 * Write the selected clock control setup to the hardware.  Do not turn on
606	 * SWCE yet (if requested), so that the devices clocked by the output of
607	 * PLL are not clocked until the PLL is stable.
608	 */
609	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
610	csa_writeio(resp, BA0_PLLM, 0x3a);
611	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
612
613	/*
614	 * Power up the PLL.
615	 */
616	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
617
618	/*
619	 * Wait until the PLL has stabilized.
620	 */
621	DELAY(5000);
622
623	/*
624	 * Turn on clocking of the core so that we can setup the serial ports.
625	 */
626	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
627
628	/*
629	 * Fill the serial port FIFOs with silence.
630	 */
631	csa_clearserialfifos(resp);
632
633	/*
634	 * Set the serial port FIFO pointer to the first sample in the FIFO.
635	 */
636#if notdef
637	csa_writeio(resp, BA0_SERBSP, 0);
638#endif /* notdef */
639
640	/*
641	 *  Write the serial port configuration to the part.  The master
642	 *  enable bit is not set until all other values have been written.
643	 */
644	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
645	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
646	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
647
648	/*
649	 * Wait for the codec ready signal from the AC97 codec.
650	 */
651	acsts = 0;
652	for (i = 0 ; i < 1000 ; i++) {
653		/*
654		 * First, lets wait a short while to let things settle out a bit,
655		 * and to prevent retrying the read too quickly.
656		 */
657		DELAY(125);
658
659		/*
660		 * Read the AC97 status register to see if we've seen a CODEC READY
661		 * signal from the AC97 codec.
662		 */
663		acsts = csa_readio(resp, BA0_ACSTS);
664		if ((acsts & ACSTS_CRDY) != 0)
665			break;
666	}
667
668	/*
669	 * Make sure we sampled CODEC READY.
670	 */
671	if ((acsts & ACSTS_CRDY) == 0)
672		return (ENXIO);
673
674	/*
675	 * Assert the vaid frame signal so that we can start sending commands
676	 * to the AC97 codec.
677	 */
678	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
679
680	/*
681	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
682	 * the codec is pumping ADC data across the AC-link.
683	 */
684	acisv = 0;
685	for (i = 0 ; i < 1000 ; i++) {
686		/*
687		 * First, lets wait a short while to let things settle out a bit,
688		 * and to prevent retrying the read too quickly.
689		 */
690#if notdef
691		DELAY(10000000L); /* clw */
692#else
693		DELAY(1000);
694#endif /* notdef */
695		/*
696		 * Read the input slot valid register and see if input slots 3 and
697		 * 4 are valid yet.
698		 */
699		acisv = csa_readio(resp, BA0_ACISV);
700		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
701			break;
702	}
703	/*
704	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
705	 * an error.
706	 */
707	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
708		return (ENXIO);
709
710	/*
711	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
712	 * commense the transfer of digital audio data to the AC97 codec.
713	 */
714	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
715
716	/*
717	 * Power down the DAC and ADC.  We will power them up (if) when we need
718	 * them.
719	 */
720#if notdef
721	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
722#endif /* notdef */
723
724	/*
725	 * Turn off the Processor by turning off the software clock enable flag in
726	 * the clock control register.
727	 */
728#if notdef
729	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
730	csa_writeio(resp, BA0_CLKCR1, clkcr1);
731#endif /* notdef */
732
733	/*
734	 * Enable interrupts on the part.
735	 */
736#if 0
737	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
738#endif /* notdef */
739
740	return (0);
741}
742
743void
744csa_clearserialfifos(csa_res *resp)
745{
746	int i, j, pwr;
747	u_int8_t clkcr1, serbst;
748
749	/*
750	 * See if the devices are powered down.  If so, we must power them up first
751	 * or they will not respond.
752	 */
753	pwr = 1;
754	clkcr1 = csa_readio(resp, BA0_CLKCR1);
755	if ((clkcr1 & CLKCR1_SWCE) == 0) {
756		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
757		pwr = 0;
758	}
759
760	/*
761	 * We want to clear out the serial port FIFOs so we don't end up playing
762	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
763	 * with zero (silence).
764	 */
765	csa_writeio(resp, BA0_SERBWP, 0);
766
767	/* Fill all 256 sample FIFO locations. */
768	serbst = 0;
769	for (i = 0 ; i < 256 ; i++) {
770		/* Make sure the previous FIFO write operation has completed. */
771		for (j = 0 ; j < 5 ; j++) {
772			DELAY(100);
773			serbst = csa_readio(resp, BA0_SERBST);
774			if ((serbst & SERBST_WBSY) == 0)
775				break;
776		}
777		if ((serbst & SERBST_WBSY) != 0) {
778			if (!pwr)
779				csa_writeio(resp, BA0_CLKCR1, clkcr1);
780		}
781		/* Write the serial port FIFO index. */
782		csa_writeio(resp, BA0_SERBAD, i);
783		/* Tell the serial port to load the new value into the FIFO location. */
784		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
785	}
786	/*
787	 *  Now, if we powered up the devices, then power them back down again.
788	 *  This is kinda ugly, but should never happen.
789	 */
790	if (!pwr)
791		csa_writeio(resp, BA0_CLKCR1, clkcr1);
792}
793
794static void
795csa_resetdsp(csa_res *resp)
796{
797	int i;
798
799	/*
800	 * Write the reset bit of the SP control register.
801	 */
802	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
803
804	/*
805	 * Write the control register.
806	 */
807	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
808
809	/*
810	 * Clear the trap registers.
811	 */
812	for (i = 0 ; i < 8 ; i++) {
813		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
814		csa_writemem(resp, BA1_TWPR, 0xffff);
815	}
816	csa_writemem(resp, BA1_DREG, 0);
817
818	/*
819	 * Set the frame timer to reflect the number of cycles per frame.
820	 */
821	csa_writemem(resp, BA1_FRMT, 0xadf);
822}
823
824static int
825csa_downloadimage(csa_res *resp)
826{
827	int i;
828	u_int32_t tmp, src, dst, count, data;
829
830	for (i = 0; i < CLEAR__COUNT; i++) {
831		dst = ClrStat[i].BA1__DestByteOffset;
832		count = ClrStat[i].BA1__SourceSize;
833		for (tmp = 0; tmp < count; tmp += 4)
834			csa_writemem(resp, dst + tmp, 0x00000000);
835	}
836
837	for (i = 0; i < FILL__COUNT; i++) {
838		src = 0;
839		dst = FillStat[i].Offset;
840		count = FillStat[i].Size;
841		for (tmp = 0; tmp < count; tmp += 4) {
842			data = FillStat[i].pFill[src];
843			csa_writemem(resp, dst + tmp, data);
844			src++;
845		}
846	}
847
848	return (0);
849}
850
851int
852csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
853{
854	int i;
855	u_int32_t acsda, acctl, acsts;
856
857	/*
858	 * Make sure that there is not data sitting around from a previous
859	 * uncompleted access. ACSDA = Status Data Register = 47Ch
860	 */
861	acsda = csa_readio(resp, BA0_ACSDA);
862
863	/*
864	 * Setup the AC97 control registers on the CS461x to send the
865	 * appropriate command to the AC97 to perform the read.
866	 * ACCAD = Command Address Register = 46Ch
867	 * ACCDA = Command Data Register = 470h
868	 * ACCTL = Control Register = 460h
869	 * set DCV - will clear when process completed
870	 * set CRW - Read command
871	 * set VFRM - valid frame enabled
872	 * set ESYN - ASYNC generation enabled
873	 * set RSTN - ARST# inactive, AC97 codec not reset
874	 */
875
876	/*
877	 * Get the actual AC97 register from the offset
878	 */
879	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
880	csa_writeio(resp, BA0_ACCDA, 0);
881	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
882
883	/*
884	 * Wait for the read to occur.
885	 */
886	acctl = 0;
887	for (i = 0 ; i < 10 ; i++) {
888		/*
889		 * First, we want to wait for a short time.
890		 */
891		DELAY(25);
892
893		/*
894		 * Now, check to see if the read has completed.
895		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
896		 */
897		acctl = csa_readio(resp, BA0_ACCTL);
898		if ((acctl & ACCTL_DCV) == 0)
899			break;
900	}
901
902	/*
903	 * Make sure the read completed.
904	 */
905	if ((acctl & ACCTL_DCV) != 0)
906		return (EAGAIN);
907
908	/*
909	 * Wait for the valid status bit to go active.
910	 */
911	acsts = 0;
912	for (i = 0 ; i < 10 ; i++) {
913		/*
914		 * Read the AC97 status register.
915		 * ACSTS = Status Register = 464h
916		 */
917		acsts = csa_readio(resp, BA0_ACSTS);
918		/*
919		 * See if we have valid status.
920		 * VSTS - Valid Status
921		 */
922		if ((acsts & ACSTS_VSTS) != 0)
923			break;
924		/*
925		 * Wait for a short while.
926		 */
927		 DELAY(25);
928	}
929
930	/*
931	 * Make sure we got valid status.
932	 */
933	if ((acsts & ACSTS_VSTS) == 0)
934		return (EAGAIN);
935
936	/*
937	 * Read the data returned from the AC97 register.
938	 * ACSDA = Status Data Register = 474h
939	 */
940	*data = csa_readio(resp, BA0_ACSDA);
941
942	return (0);
943}
944
945int
946csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
947{
948	int i;
949	u_int32_t acctl;
950
951	/*
952	 * Setup the AC97 control registers on the CS461x to send the
953	 * appropriate command to the AC97 to perform the write.
954	 * ACCAD = Command Address Register = 46Ch
955	 * ACCDA = Command Data Register = 470h
956	 * ACCTL = Control Register = 460h
957	 * set DCV - will clear when process completed
958	 * set VFRM - valid frame enabled
959	 * set ESYN - ASYNC generation enabled
960	 * set RSTN - ARST# inactive, AC97 codec not reset
961	 */
962
963	/*
964	 * Get the actual AC97 register from the offset
965	 */
966	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
967	csa_writeio(resp, BA0_ACCDA, data);
968	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
969
970	/*
971	 * Wait for the write to occur.
972	 */
973	acctl = 0;
974	for (i = 0 ; i < 10 ; i++) {
975		/*
976		 * First, we want to wait for a short time.
977		 */
978		DELAY(25);
979
980		/*
981		 * Now, check to see if the read has completed.
982		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
983		 */
984		acctl = csa_readio(resp, BA0_ACCTL);
985		if ((acctl & ACCTL_DCV) == 0)
986			break;
987	}
988
989	/*
990	 * Make sure the write completed.
991	 */
992	if ((acctl & ACCTL_DCV) != 0)
993		return (EAGAIN);
994
995	return (0);
996}
997
998u_int32_t
999csa_readio(csa_res *resp, u_long offset)
1000{
1001	u_int32_t ul;
1002
1003	if (offset < BA0_AC97_RESET)
1004		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1005	else {
1006		if (csa_readcodec(resp, offset, &ul))
1007			ul = 0;
1008		return (ul);
1009	}
1010}
1011
1012void
1013csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1014{
1015	if (offset < BA0_AC97_RESET)
1016		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1017	else
1018		csa_writecodec(resp, offset, data);
1019}
1020
1021u_int32_t
1022csa_readmem(csa_res *resp, u_long offset)
1023{
1024	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1025}
1026
1027void
1028csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1029{
1030	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1031}
1032
1033static device_method_t csa_methods[] = {
1034	/* Device interface */
1035	DEVMETHOD(device_probe,		csa_probe),
1036	DEVMETHOD(device_attach,	csa_attach),
1037	DEVMETHOD(device_detach,	csa_detach),
1038	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1039	DEVMETHOD(device_suspend,	bus_generic_suspend),
1040	DEVMETHOD(device_resume,	csa_resume),
1041
1042	/* Bus interface */
1043	DEVMETHOD(bus_print_child,	bus_generic_print_child),
1044	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1045	DEVMETHOD(bus_release_resource,	csa_release_resource),
1046	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1047	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1048	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1049	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1050
1051	{ 0, 0 }
1052};
1053
1054static driver_t csa_driver = {
1055	"csa",
1056	csa_methods,
1057	sizeof(struct csa_softc),
1058};
1059
1060/*
1061 * csa can be attached to a pci bus.
1062 */
1063DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
1064MODULE_DEPEND(snd_csa, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER);
1065MODULE_VERSION(snd_csa, 1);
1066