nvme_ctrlr.c revision 282926
1/*-
2 * Copyright (C) 2012-2014 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/dev/nvme/nvme_ctrlr.c 282926 2015-05-14 21:30:36Z jimharris $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/buf.h>
33#include <sys/bus.h>
34#include <sys/conf.h>
35#include <sys/ioccom.h>
36#include <sys/proc.h>
37#include <sys/smp.h>
38#include <sys/uio.h>
39
40#include <dev/pci/pcireg.h>
41#include <dev/pci/pcivar.h>
42
43#include "nvme_private.h"
44
45static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46						struct nvme_async_event_request *aer);
47
48static int
49nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50{
51
52	ctrlr->resource_id = PCIR_BAR(0);
53
54	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
55	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
56
57	if(ctrlr->resource == NULL) {
58		nvme_printf(ctrlr, "unable to allocate pci resource\n");
59		return (ENOMEM);
60	}
61
62	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
63	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
64	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
65
66	/*
67	 * The NVMe spec allows for the MSI-X table to be placed behind
68	 *  BAR 4/5, separate from the control/doorbell registers.  Always
69	 *  try to map this bar, because it must be mapped prior to calling
70	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
71	 *  bus_alloc_resource() will just return NULL which is OK.
72	 */
73	ctrlr->bar4_resource_id = PCIR_BAR(4);
74	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
75	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
76
77	return (0);
78}
79
80static void
81nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
82{
83	struct nvme_qpair	*qpair;
84	uint32_t		num_entries;
85
86	qpair = &ctrlr->adminq;
87
88	num_entries = NVME_ADMIN_ENTRIES;
89	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
90	/*
91	 * If admin_entries was overridden to an invalid value, revert it
92	 *  back to our default value.
93	 */
94	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
95	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
96		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
97		    "specified\n", num_entries);
98		num_entries = NVME_ADMIN_ENTRIES;
99	}
100
101	/*
102	 * The admin queue's max xfer size is treated differently than the
103	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
104	 */
105	nvme_qpair_construct(qpair,
106			     0, /* qpair ID */
107			     0, /* vector */
108			     num_entries,
109			     NVME_ADMIN_TRACKERS,
110			     ctrlr);
111}
112
113static int
114nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
115{
116	struct nvme_qpair	*qpair;
117	union cap_lo_register	cap_lo;
118	int			i, num_entries, num_trackers;
119
120	num_entries = NVME_IO_ENTRIES;
121	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
122
123	/*
124	 * NVMe spec sets a hard limit of 64K max entries, but
125	 *  devices may specify a smaller limit, so we need to check
126	 *  the MQES field in the capabilities register.
127	 */
128	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
129	num_entries = min(num_entries, cap_lo.bits.mqes+1);
130
131	num_trackers = NVME_IO_TRACKERS;
132	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
133
134	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
135	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
136	/*
137	 * No need to have more trackers than entries in the submit queue.
138	 *  Note also that for a queue size of N, we can only have (N-1)
139	 *  commands outstanding, hence the "-1" here.
140	 */
141	num_trackers = min(num_trackers, (num_entries-1));
142
143	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
144	    M_NVME, M_ZERO | M_WAITOK);
145
146	for (i = 0; i < ctrlr->num_io_queues; i++) {
147		qpair = &ctrlr->ioq[i];
148
149		/*
150		 * Admin queue has ID=0. IO queues start at ID=1 -
151		 *  hence the 'i+1' here.
152		 *
153		 * For I/O queues, use the controller-wide max_xfer_size
154		 *  calculated in nvme_attach().
155		 */
156		nvme_qpair_construct(qpair,
157				     i+1, /* qpair ID */
158				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
159				     num_entries,
160				     num_trackers,
161				     ctrlr);
162
163		if (ctrlr->per_cpu_io_queues)
164			bus_bind_intr(ctrlr->dev, qpair->res, i);
165	}
166
167	return (0);
168}
169
170static void
171nvme_ctrlr_fail(struct nvme_controller *ctrlr)
172{
173	int i;
174
175	ctrlr->is_failed = TRUE;
176	nvme_qpair_fail(&ctrlr->adminq);
177	for (i = 0; i < ctrlr->num_io_queues; i++)
178		nvme_qpair_fail(&ctrlr->ioq[i]);
179	nvme_notify_fail_consumers(ctrlr);
180}
181
182void
183nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
184    struct nvme_request *req)
185{
186
187	mtx_lock(&ctrlr->lock);
188	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
189	mtx_unlock(&ctrlr->lock);
190	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
191}
192
193static void
194nvme_ctrlr_fail_req_task(void *arg, int pending)
195{
196	struct nvme_controller	*ctrlr = arg;
197	struct nvme_request	*req;
198
199	mtx_lock(&ctrlr->lock);
200	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
201		req = STAILQ_FIRST(&ctrlr->fail_req);
202		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
203		nvme_qpair_manual_complete_request(req->qpair, req,
204		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
205	}
206	mtx_unlock(&ctrlr->lock);
207}
208
209static int
210nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
211{
212	int ms_waited;
213	union cc_register cc;
214	union csts_register csts;
215
216	cc.raw = nvme_mmio_read_4(ctrlr, cc);
217	csts.raw = nvme_mmio_read_4(ctrlr, csts);
218
219	if (!cc.bits.en) {
220		nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
221		return (ENXIO);
222	}
223
224	ms_waited = 0;
225
226	while (!csts.bits.rdy) {
227		DELAY(1000);
228		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
229			nvme_printf(ctrlr, "controller did not become ready "
230			    "within %d ms\n", ctrlr->ready_timeout_in_ms);
231			return (ENXIO);
232		}
233		csts.raw = nvme_mmio_read_4(ctrlr, csts);
234	}
235
236	return (0);
237}
238
239static void
240nvme_ctrlr_disable(struct nvme_controller *ctrlr)
241{
242	union cc_register cc;
243	union csts_register csts;
244
245	cc.raw = nvme_mmio_read_4(ctrlr, cc);
246	csts.raw = nvme_mmio_read_4(ctrlr, csts);
247
248	if (cc.bits.en == 1 && csts.bits.rdy == 0)
249		nvme_ctrlr_wait_for_ready(ctrlr);
250
251	cc.bits.en = 0;
252	nvme_mmio_write_4(ctrlr, cc, cc.raw);
253	DELAY(5000);
254}
255
256static int
257nvme_ctrlr_enable(struct nvme_controller *ctrlr)
258{
259	union cc_register	cc;
260	union csts_register	csts;
261	union aqa_register	aqa;
262
263	cc.raw = nvme_mmio_read_4(ctrlr, cc);
264	csts.raw = nvme_mmio_read_4(ctrlr, csts);
265
266	if (cc.bits.en == 1) {
267		if (csts.bits.rdy == 1)
268			return (0);
269		else
270			return (nvme_ctrlr_wait_for_ready(ctrlr));
271	}
272
273	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
274	DELAY(5000);
275	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
276	DELAY(5000);
277
278	aqa.raw = 0;
279	/* acqs and asqs are 0-based. */
280	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
281	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
282	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
283	DELAY(5000);
284
285	cc.bits.en = 1;
286	cc.bits.css = 0;
287	cc.bits.ams = 0;
288	cc.bits.shn = 0;
289	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
290	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
291
292	/* This evaluates to 0, which is according to spec. */
293	cc.bits.mps = (PAGE_SIZE >> 13);
294
295	nvme_mmio_write_4(ctrlr, cc, cc.raw);
296	DELAY(5000);
297
298	return (nvme_ctrlr_wait_for_ready(ctrlr));
299}
300
301int
302nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
303{
304	int i;
305
306	nvme_admin_qpair_disable(&ctrlr->adminq);
307	for (i = 0; i < ctrlr->num_io_queues; i++)
308		nvme_io_qpair_disable(&ctrlr->ioq[i]);
309
310	DELAY(100*1000);
311
312	nvme_ctrlr_disable(ctrlr);
313	return (nvme_ctrlr_enable(ctrlr));
314}
315
316void
317nvme_ctrlr_reset(struct nvme_controller *ctrlr)
318{
319	int cmpset;
320
321	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
322
323	if (cmpset == 0 || ctrlr->is_failed)
324		/*
325		 * Controller is already resetting or has failed.  Return
326		 *  immediately since there is no need to kick off another
327		 *  reset in these cases.
328		 */
329		return;
330
331	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
332}
333
334static int
335nvme_ctrlr_identify(struct nvme_controller *ctrlr)
336{
337	struct nvme_completion_poll_status	status;
338
339	status.done = FALSE;
340	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
341	    nvme_completion_poll_cb, &status);
342	while (status.done == FALSE)
343		pause("nvme", 1);
344	if (nvme_completion_is_error(&status.cpl)) {
345		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
346		return (ENXIO);
347	}
348
349	/*
350	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
351	 *  controller supports.
352	 */
353	if (ctrlr->cdata.mdts > 0)
354		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
355		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
356
357	return (0);
358}
359
360static int
361nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
362{
363	struct nvme_completion_poll_status	status;
364	int					cq_allocated, i, sq_allocated;
365
366	status.done = FALSE;
367	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
368	    nvme_completion_poll_cb, &status);
369	while (status.done == FALSE)
370		pause("nvme", 1);
371	if (nvme_completion_is_error(&status.cpl)) {
372		nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
373		return (ENXIO);
374	}
375
376	/*
377	 * Data in cdw0 is 0-based.
378	 * Lower 16-bits indicate number of submission queues allocated.
379	 * Upper 16-bits indicate number of completion queues allocated.
380	 */
381	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
382	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
383
384	/*
385	 * Check that the controller was able to allocate the number of
386	 *  queues we requested.  If not, revert to one IO queue pair.
387	 */
388	if (sq_allocated < ctrlr->num_io_queues ||
389	    cq_allocated < ctrlr->num_io_queues) {
390
391		/*
392		 * Destroy extra IO queue pairs that were created at
393		 *  controller construction time but are no longer
394		 *  needed.  This will only happen when a controller
395		 *  supports fewer queues than MSI-X vectors.  This
396		 *  is not the normal case, but does occur with the
397		 *  Chatham prototype board.
398		 */
399		for (i = 1; i < ctrlr->num_io_queues; i++)
400			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
401
402		ctrlr->num_io_queues = 1;
403		ctrlr->per_cpu_io_queues = 0;
404	}
405
406	return (0);
407}
408
409static int
410nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
411{
412	struct nvme_completion_poll_status	status;
413	struct nvme_qpair			*qpair;
414	int					i;
415
416	for (i = 0; i < ctrlr->num_io_queues; i++) {
417		qpair = &ctrlr->ioq[i];
418
419		status.done = FALSE;
420		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
421		    nvme_completion_poll_cb, &status);
422		while (status.done == FALSE)
423			pause("nvme", 1);
424		if (nvme_completion_is_error(&status.cpl)) {
425			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
426			return (ENXIO);
427		}
428
429		status.done = FALSE;
430		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
431		    nvme_completion_poll_cb, &status);
432		while (status.done == FALSE)
433			pause("nvme", 1);
434		if (nvme_completion_is_error(&status.cpl)) {
435			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
436			return (ENXIO);
437		}
438	}
439
440	return (0);
441}
442
443static int
444nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
445{
446	struct nvme_namespace	*ns;
447	int			i, status;
448
449	for (i = 0; i < ctrlr->cdata.nn; i++) {
450		ns = &ctrlr->ns[i];
451		status = nvme_ns_construct(ns, i+1, ctrlr);
452		if (status != 0)
453			return (status);
454	}
455
456	return (0);
457}
458
459static boolean_t
460is_log_page_id_valid(uint8_t page_id)
461{
462
463	switch (page_id) {
464	case NVME_LOG_ERROR:
465	case NVME_LOG_HEALTH_INFORMATION:
466	case NVME_LOG_FIRMWARE_SLOT:
467		return (TRUE);
468	}
469
470	return (FALSE);
471}
472
473static uint32_t
474nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
475{
476	uint32_t	log_page_size;
477
478	switch (page_id) {
479	case NVME_LOG_ERROR:
480		log_page_size = min(
481		    sizeof(struct nvme_error_information_entry) *
482		    ctrlr->cdata.elpe,
483		    NVME_MAX_AER_LOG_SIZE);
484		break;
485	case NVME_LOG_HEALTH_INFORMATION:
486		log_page_size = sizeof(struct nvme_health_information_page);
487		break;
488	case NVME_LOG_FIRMWARE_SLOT:
489		log_page_size = sizeof(struct nvme_firmware_page);
490		break;
491	default:
492		log_page_size = 0;
493		break;
494	}
495
496	return (log_page_size);
497}
498
499static void
500nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
501    union nvme_critical_warning_state state)
502{
503
504	if (state.bits.available_spare == 1)
505		nvme_printf(ctrlr, "available spare space below threshold\n");
506
507	if (state.bits.temperature == 1)
508		nvme_printf(ctrlr, "temperature above threshold\n");
509
510	if (state.bits.device_reliability == 1)
511		nvme_printf(ctrlr, "device reliability degraded\n");
512
513	if (state.bits.read_only == 1)
514		nvme_printf(ctrlr, "media placed in read only mode\n");
515
516	if (state.bits.volatile_memory_backup == 1)
517		nvme_printf(ctrlr, "volatile memory backup device failed\n");
518
519	if (state.bits.reserved != 0)
520		nvme_printf(ctrlr,
521		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
522}
523
524static void
525nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
526{
527	struct nvme_async_event_request		*aer = arg;
528	struct nvme_health_information_page	*health_info;
529
530	/*
531	 * If the log page fetch for some reason completed with an error,
532	 *  don't pass log page data to the consumers.  In practice, this case
533	 *  should never happen.
534	 */
535	if (nvme_completion_is_error(cpl))
536		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
537		    aer->log_page_id, NULL, 0);
538	else {
539		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
540			health_info = (struct nvme_health_information_page *)
541			    aer->log_page_buffer;
542			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
543			    health_info->critical_warning);
544			/*
545			 * Critical warnings reported through the
546			 *  SMART/health log page are persistent, so
547			 *  clear the associated bits in the async event
548			 *  config so that we do not receive repeated
549			 *  notifications for the same event.
550			 */
551			aer->ctrlr->async_event_config.raw &=
552			    ~health_info->critical_warning.raw;
553			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
554			    aer->ctrlr->async_event_config, NULL, NULL);
555		}
556
557
558		/*
559		 * Pass the cpl data from the original async event completion,
560		 *  not the log page fetch.
561		 */
562		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
563		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
564	}
565
566	/*
567	 * Repost another asynchronous event request to replace the one
568	 *  that just completed.
569	 */
570	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
571}
572
573static void
574nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
575{
576	struct nvme_async_event_request	*aer = arg;
577
578	if (nvme_completion_is_error(cpl)) {
579		/*
580		 *  Do not retry failed async event requests.  This avoids
581		 *  infinite loops where a new async event request is submitted
582		 *  to replace the one just failed, only to fail again and
583		 *  perpetuate the loop.
584		 */
585		return;
586	}
587
588	/* Associated log page is in bits 23:16 of completion entry dw0. */
589	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
590
591	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
592	    aer->log_page_id);
593
594	if (is_log_page_id_valid(aer->log_page_id)) {
595		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
596		    aer->log_page_id);
597		memcpy(&aer->cpl, cpl, sizeof(*cpl));
598		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
599		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
600		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
601		    aer);
602		/* Wait to notify consumers until after log page is fetched. */
603	} else {
604		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
605		    NULL, 0);
606
607		/*
608		 * Repost another asynchronous event request to replace the one
609		 *  that just completed.
610		 */
611		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
612	}
613}
614
615static void
616nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
617    struct nvme_async_event_request *aer)
618{
619	struct nvme_request *req;
620
621	aer->ctrlr = ctrlr;
622	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
623	aer->req = req;
624
625	/*
626	 * Disable timeout here, since asynchronous event requests should by
627	 *  nature never be timed out.
628	 */
629	req->timeout = FALSE;
630	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
631	nvme_ctrlr_submit_admin_request(ctrlr, req);
632}
633
634static void
635nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
636{
637	struct nvme_completion_poll_status	status;
638	struct nvme_async_event_request		*aer;
639	uint32_t				i;
640
641	ctrlr->async_event_config.raw = 0xFF;
642	ctrlr->async_event_config.bits.reserved = 0;
643
644	status.done = FALSE;
645	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
646	    0, NULL, 0, nvme_completion_poll_cb, &status);
647	while (status.done == FALSE)
648		pause("nvme", 1);
649	if (nvme_completion_is_error(&status.cpl) ||
650	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
651	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
652		nvme_printf(ctrlr, "temperature threshold not supported\n");
653		ctrlr->async_event_config.bits.temperature = 0;
654	}
655
656	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
657	    ctrlr->async_event_config, NULL, NULL);
658
659	/* aerl is a zero-based value, so we need to add 1 here. */
660	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
661
662	for (i = 0; i < ctrlr->num_aers; i++) {
663		aer = &ctrlr->aer[i];
664		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
665	}
666}
667
668static void
669nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
670{
671
672	ctrlr->int_coal_time = 0;
673	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
674	    &ctrlr->int_coal_time);
675
676	ctrlr->int_coal_threshold = 0;
677	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
678	    &ctrlr->int_coal_threshold);
679
680	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
681	    ctrlr->int_coal_threshold, NULL, NULL);
682}
683
684static void
685nvme_ctrlr_start(void *ctrlr_arg)
686{
687	struct nvme_controller *ctrlr = ctrlr_arg;
688	int i;
689
690	nvme_qpair_reset(&ctrlr->adminq);
691	for (i = 0; i < ctrlr->num_io_queues; i++)
692		nvme_qpair_reset(&ctrlr->ioq[i]);
693
694	nvme_admin_qpair_enable(&ctrlr->adminq);
695
696	if (nvme_ctrlr_identify(ctrlr) != 0) {
697		nvme_ctrlr_fail(ctrlr);
698		return;
699	}
700
701	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
702		nvme_ctrlr_fail(ctrlr);
703		return;
704	}
705
706	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
707		nvme_ctrlr_fail(ctrlr);
708		return;
709	}
710
711	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
712		nvme_ctrlr_fail(ctrlr);
713		return;
714	}
715
716	nvme_ctrlr_configure_aer(ctrlr);
717	nvme_ctrlr_configure_int_coalescing(ctrlr);
718
719	for (i = 0; i < ctrlr->num_io_queues; i++)
720		nvme_io_qpair_enable(&ctrlr->ioq[i]);
721}
722
723void
724nvme_ctrlr_start_config_hook(void *arg)
725{
726	struct nvme_controller *ctrlr = arg;
727
728	nvme_ctrlr_start(ctrlr);
729	config_intrhook_disestablish(&ctrlr->config_hook);
730
731	ctrlr->is_initialized = 1;
732	nvme_notify_new_controller(ctrlr);
733}
734
735static void
736nvme_ctrlr_reset_task(void *arg, int pending)
737{
738	struct nvme_controller	*ctrlr = arg;
739	int			status;
740
741	nvme_printf(ctrlr, "resetting controller\n");
742	status = nvme_ctrlr_hw_reset(ctrlr);
743	/*
744	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
745	 *  handlers on this CPU that were blocked on a qpair lock. We want
746	 *  all nvme interrupts completed before proceeding with restarting the
747	 *  controller.
748	 *
749	 * XXX - any way to guarantee the interrupt handlers have quiesced?
750	 */
751	pause("nvmereset", hz / 10);
752	if (status == 0)
753		nvme_ctrlr_start(ctrlr);
754	else
755		nvme_ctrlr_fail(ctrlr);
756
757	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
758}
759
760static void
761nvme_ctrlr_intx_handler(void *arg)
762{
763	struct nvme_controller *ctrlr = arg;
764
765	nvme_mmio_write_4(ctrlr, intms, 1);
766
767	nvme_qpair_process_completions(&ctrlr->adminq);
768
769	if (ctrlr->ioq[0].cpl)
770		nvme_qpair_process_completions(&ctrlr->ioq[0]);
771
772	nvme_mmio_write_4(ctrlr, intmc, 1);
773}
774
775static int
776nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
777{
778
779	ctrlr->num_io_queues = 1;
780	ctrlr->per_cpu_io_queues = 0;
781	ctrlr->rid = 0;
782	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
783	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
784
785	if (ctrlr->res == NULL) {
786		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
787		return (ENOMEM);
788	}
789
790	bus_setup_intr(ctrlr->dev, ctrlr->res,
791	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
792	    ctrlr, &ctrlr->tag);
793
794	if (ctrlr->tag == NULL) {
795		nvme_printf(ctrlr, "unable to setup intx handler\n");
796		return (ENOMEM);
797	}
798
799	return (0);
800}
801
802static void
803nvme_pt_done(void *arg, const struct nvme_completion *cpl)
804{
805	struct nvme_pt_command *pt = arg;
806
807	bzero(&pt->cpl, sizeof(pt->cpl));
808	pt->cpl.cdw0 = cpl->cdw0;
809	pt->cpl.status = cpl->status;
810	pt->cpl.status.p = 0;
811
812	mtx_lock(pt->driver_lock);
813	wakeup(pt);
814	mtx_unlock(pt->driver_lock);
815}
816
817int
818nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
819    struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
820    int is_admin_cmd)
821{
822	struct nvme_request	*req;
823	struct mtx		*mtx;
824	struct buf		*buf = NULL;
825	int			ret = 0;
826
827	if (pt->len > 0) {
828		if (pt->len > ctrlr->max_xfer_size) {
829			nvme_printf(ctrlr, "pt->len (%d) "
830			    "exceeds max_xfer_size (%d)\n", pt->len,
831			    ctrlr->max_xfer_size);
832			return EIO;
833		}
834		if (is_user_buffer) {
835			/*
836			 * Ensure the user buffer is wired for the duration of
837			 *  this passthrough command.
838			 */
839			PHOLD(curproc);
840			buf = getpbuf(NULL);
841			buf->b_saveaddr = buf->b_data;
842			buf->b_data = pt->buf;
843			buf->b_bufsize = pt->len;
844			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
845#ifdef NVME_UNMAPPED_BIO_SUPPORT
846			if (vmapbuf(buf, 1) < 0) {
847#else
848			if (vmapbuf(buf) < 0) {
849#endif
850				ret = EFAULT;
851				goto err;
852			}
853			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
854			    nvme_pt_done, pt);
855		} else
856			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
857			    nvme_pt_done, pt);
858	} else
859		req = nvme_allocate_request_null(nvme_pt_done, pt);
860
861	req->cmd.opc	= pt->cmd.opc;
862	req->cmd.cdw10	= pt->cmd.cdw10;
863	req->cmd.cdw11	= pt->cmd.cdw11;
864	req->cmd.cdw12	= pt->cmd.cdw12;
865	req->cmd.cdw13	= pt->cmd.cdw13;
866	req->cmd.cdw14	= pt->cmd.cdw14;
867	req->cmd.cdw15	= pt->cmd.cdw15;
868
869	req->cmd.nsid = nsid;
870
871	if (is_admin_cmd)
872		mtx = &ctrlr->lock;
873	else
874		mtx = &ctrlr->ns[nsid-1].lock;
875
876	mtx_lock(mtx);
877	pt->driver_lock = mtx;
878
879	if (is_admin_cmd)
880		nvme_ctrlr_submit_admin_request(ctrlr, req);
881	else
882		nvme_ctrlr_submit_io_request(ctrlr, req);
883
884	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
885	mtx_unlock(mtx);
886
887	pt->driver_lock = NULL;
888
889err:
890	if (buf != NULL) {
891		relpbuf(buf, NULL);
892		PRELE(curproc);
893	}
894
895	return (ret);
896}
897
898static int
899nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
900    struct thread *td)
901{
902	struct nvme_controller			*ctrlr;
903	struct nvme_pt_command			*pt;
904
905	ctrlr = cdev->si_drv1;
906
907	switch (cmd) {
908	case NVME_RESET_CONTROLLER:
909		nvme_ctrlr_reset(ctrlr);
910		break;
911	case NVME_PASSTHROUGH_CMD:
912		pt = (struct nvme_pt_command *)arg;
913		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
914		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
915	default:
916		return (ENOTTY);
917	}
918
919	return (0);
920}
921
922static struct cdevsw nvme_ctrlr_cdevsw = {
923	.d_version =	D_VERSION,
924	.d_flags =	0,
925	.d_ioctl =	nvme_ctrlr_ioctl
926};
927
928int
929nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
930{
931	union cap_lo_register	cap_lo;
932	union cap_hi_register	cap_hi;
933	int			i, num_vectors, per_cpu_io_queues, rid;
934	int			status, timeout_period;
935
936	ctrlr->dev = dev;
937
938	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
939
940	status = nvme_ctrlr_allocate_bar(ctrlr);
941
942	if (status != 0)
943		return (status);
944
945	/*
946	 * Software emulators may set the doorbell stride to something
947	 *  other than zero, but this driver is not set up to handle that.
948	 */
949	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
950	if (cap_hi.bits.dstrd != 0)
951		return (ENXIO);
952
953	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
954
955	/* Get ready timeout value from controller, in units of 500ms. */
956	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
957	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
958
959	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
960	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
961	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
962	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
963	ctrlr->timeout_period = timeout_period;
964
965	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
966	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
967
968	per_cpu_io_queues = 1;
969	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
970	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
971
972	if (ctrlr->per_cpu_io_queues)
973		ctrlr->num_io_queues = mp_ncpus;
974	else
975		ctrlr->num_io_queues = 1;
976
977	ctrlr->force_intx = 0;
978	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
979
980	ctrlr->enable_aborts = 0;
981	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
982
983	ctrlr->msix_enabled = 1;
984
985	if (ctrlr->force_intx) {
986		ctrlr->msix_enabled = 0;
987		goto intx;
988	}
989
990	/* One vector per IO queue, plus one vector for admin queue. */
991	num_vectors = ctrlr->num_io_queues + 1;
992
993	/*
994	 * If we cannot even allocate 2 vectors (one for admin, one for
995	 *  I/O), then revert to INTx.
996	 */
997	if (pci_msix_count(dev) < 2) {
998		ctrlr->msix_enabled = 0;
999		goto intx;
1000	} else if (pci_msix_count(dev) < num_vectors) {
1001		ctrlr->per_cpu_io_queues = FALSE;
1002		ctrlr->num_io_queues = 1;
1003		num_vectors = 2; /* one for admin, one for I/O */
1004	}
1005
1006	if (pci_alloc_msix(dev, &num_vectors) != 0) {
1007		ctrlr->msix_enabled = 0;
1008		goto intx;
1009	}
1010
1011	/*
1012	 * On earlier FreeBSD releases, there are reports that
1013	 *  pci_alloc_msix() can return successfully with all vectors
1014	 *  requested, but a subsequent bus_alloc_resource_any()
1015	 *  for one of those vectors fails.  This issue occurs more
1016	 *  readily with multiple devices using per-CPU vectors.
1017	 * To workaround this issue, try to allocate the resources now,
1018	 *  and fall back to INTx if we cannot allocate all of them.
1019	 *  This issue cannot be reproduced on more recent versions of
1020	 *  FreeBSD which have increased the maximum number of MSI-X
1021	 *  vectors, but adding the workaround makes it easier for
1022	 *  vendors wishing to import this driver into kernels based on
1023	 *  older versions of FreeBSD.
1024	 */
1025	for (i = 0; i < num_vectors; i++) {
1026		rid = i + 1;
1027		ctrlr->msi_res[i] = bus_alloc_resource_any(ctrlr->dev,
1028		    SYS_RES_IRQ, &rid, RF_ACTIVE);
1029
1030		if (ctrlr->msi_res[i] == NULL) {
1031			ctrlr->msix_enabled = 0;
1032			while (i > 0) {
1033				i--;
1034				bus_release_resource(ctrlr->dev,
1035				    SYS_RES_IRQ,
1036				    rman_get_rid(ctrlr->msi_res[i]),
1037				    ctrlr->msi_res[i]);
1038			}
1039			pci_release_msi(dev);
1040			nvme_printf(ctrlr, "could not obtain all MSI-X "
1041			    "resources, reverting to intx\n");
1042			break;
1043		}
1044	}
1045
1046intx:
1047
1048	if (!ctrlr->msix_enabled)
1049		nvme_ctrlr_configure_intx(ctrlr);
1050
1051	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1052	nvme_ctrlr_construct_admin_qpair(ctrlr);
1053	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1054
1055	if (status != 0)
1056		return (status);
1057
1058	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1059	    UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1060
1061	if (ctrlr->cdev == NULL)
1062		return (ENXIO);
1063
1064	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1065
1066	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1067	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1068	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1069
1070	ctrlr->is_resetting = 0;
1071	ctrlr->is_initialized = 0;
1072	ctrlr->notification_sent = 0;
1073	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1074
1075	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1076	STAILQ_INIT(&ctrlr->fail_req);
1077	ctrlr->is_failed = FALSE;
1078
1079	return (0);
1080}
1081
1082void
1083nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1084{
1085	int				i;
1086
1087	/*
1088	 *  Notify the controller of a shutdown, even though this is due to
1089	 *   a driver unload, not a system shutdown (this path is not invoked
1090	 *   during shutdown).  This ensures the controller receives a
1091	 *   shutdown notification in case the system is shutdown before
1092	 *   reloading the driver.
1093	 */
1094	nvme_ctrlr_shutdown(ctrlr);
1095
1096	nvme_ctrlr_disable(ctrlr);
1097	taskqueue_free(ctrlr->taskqueue);
1098
1099	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1100		nvme_ns_destruct(&ctrlr->ns[i]);
1101
1102	if (ctrlr->cdev)
1103		destroy_dev(ctrlr->cdev);
1104
1105	for (i = 0; i < ctrlr->num_io_queues; i++) {
1106		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1107	}
1108
1109	free(ctrlr->ioq, M_NVME);
1110
1111	nvme_admin_qpair_destroy(&ctrlr->adminq);
1112
1113	if (ctrlr->resource != NULL) {
1114		bus_release_resource(dev, SYS_RES_MEMORY,
1115		    ctrlr->resource_id, ctrlr->resource);
1116	}
1117
1118	if (ctrlr->bar4_resource != NULL) {
1119		bus_release_resource(dev, SYS_RES_MEMORY,
1120		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1121	}
1122
1123	if (ctrlr->tag)
1124		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1125
1126	if (ctrlr->res)
1127		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1128		    rman_get_rid(ctrlr->res), ctrlr->res);
1129
1130	if (ctrlr->msix_enabled)
1131		pci_release_msi(dev);
1132}
1133
1134void
1135nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1136{
1137	union cc_register	cc;
1138	union csts_register	csts;
1139	int			ticks = 0;
1140
1141	cc.raw = nvme_mmio_read_4(ctrlr, cc);
1142	cc.bits.shn = NVME_SHN_NORMAL;
1143	nvme_mmio_write_4(ctrlr, cc, cc.raw);
1144	csts.raw = nvme_mmio_read_4(ctrlr, csts);
1145	while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1146		pause("nvme shn", 1);
1147		csts.raw = nvme_mmio_read_4(ctrlr, csts);
1148	}
1149	if (csts.bits.shst != NVME_SHST_COMPLETE)
1150		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1151		    "of notification\n");
1152}
1153
1154void
1155nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1156    struct nvme_request *req)
1157{
1158
1159	nvme_qpair_submit_request(&ctrlr->adminq, req);
1160}
1161
1162void
1163nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1164    struct nvme_request *req)
1165{
1166	struct nvme_qpair       *qpair;
1167
1168	if (ctrlr->per_cpu_io_queues)
1169		qpair = &ctrlr->ioq[curcpu];
1170	else
1171		qpair = &ctrlr->ioq[0];
1172
1173	nvme_qpair_submit_request(qpair, req);
1174}
1175
1176device_t
1177nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1178{
1179
1180	return (ctrlr->dev);
1181}
1182
1183const struct nvme_controller_data *
1184nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1185{
1186
1187	return (&ctrlr->cdata);
1188}
1189