nvme_ctrlr.c revision 248763
1/*-
2 * Copyright (C) 2012 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/dev/nvme/nvme_ctrlr.c 248763 2013-03-26 21:19:26Z jimharris $");
29
30#include <sys/param.h>
31#include <sys/bus.h>
32#include <sys/conf.h>
33#include <sys/ioccom.h>
34#include <sys/smp.h>
35
36#include <dev/pci/pcireg.h>
37#include <dev/pci/pcivar.h>
38
39#include "nvme_private.h"
40
41static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
42						struct nvme_async_event_request *aer);
43
44static void
45nvme_ctrlr_cb(void *arg, const struct nvme_completion *status)
46{
47	struct nvme_completion	*cpl = arg;
48	struct mtx		*mtx;
49
50	/*
51	 * Copy status into the argument passed by the caller, so that
52	 *  the caller can check the status to determine if the
53	 *  the request passed or failed.
54	 */
55	memcpy(cpl, status, sizeof(*cpl));
56	mtx = mtx_pool_find(mtxpool_sleep, cpl);
57	mtx_lock(mtx);
58	wakeup(cpl);
59	mtx_unlock(mtx);
60}
61
62static int
63nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
64{
65
66	/* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
67	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
68		ctrlr->resource_id = PCIR_BAR(2);
69	else
70		ctrlr->resource_id = PCIR_BAR(0);
71
72	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
73	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
74
75	if(ctrlr->resource == NULL) {
76		device_printf(ctrlr->dev, "unable to allocate pci resource\n");
77		return (ENOMEM);
78	}
79
80	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
81	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
82	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
83
84	/*
85	 * The NVMe spec allows for the MSI-X table to be placed behind
86	 *  BAR 4/5, separate from the control/doorbell registers.  Always
87	 *  try to map this bar, because it must be mapped prior to calling
88	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
89	 *  bus_alloc_resource() will just return NULL which is OK.
90	 */
91	ctrlr->bar4_resource_id = PCIR_BAR(4);
92	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
93	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
94
95	return (0);
96}
97
98#ifdef CHATHAM2
99static int
100nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
101{
102
103	ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
104	ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
105	    SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
106	    RF_ACTIVE);
107
108	if(ctrlr->chatham_resource == NULL) {
109		device_printf(ctrlr->dev, "unable to alloc pci resource\n");
110		return (ENOMEM);
111	}
112
113	ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
114	ctrlr->chatham_bus_handle =
115	    rman_get_bushandle(ctrlr->chatham_resource);
116
117	return (0);
118}
119
120static void
121nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
122{
123	uint64_t reg1, reg2, reg3;
124	uint64_t temp1, temp2;
125	uint32_t temp3;
126	uint32_t use_flash_timings = 0;
127
128	DELAY(10000);
129
130	temp3 = chatham_read_4(ctrlr, 0x8080);
131
132	device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
133
134	ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
135	ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
136
137	device_printf(ctrlr->dev, "Chatham size: %jd\n",
138	    (intmax_t)ctrlr->chatham_size);
139
140	reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
141
142	TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
143	if (use_flash_timings) {
144		device_printf(ctrlr->dev, "Chatham: using flash timings\n");
145		temp1 = 0x00001b58000007d0LL;
146		temp2 = 0x000000cb00000131LL;
147	} else {
148		device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
149		temp1 = temp2 = 0x0LL;
150	}
151
152	chatham_write_8(ctrlr, 0x8000, reg1);
153	chatham_write_8(ctrlr, 0x8008, reg2);
154	chatham_write_8(ctrlr, 0x8010, reg3);
155
156	chatham_write_8(ctrlr, 0x8020, temp1);
157	temp3 = chatham_read_4(ctrlr, 0x8020);
158
159	chatham_write_8(ctrlr, 0x8028, temp2);
160	temp3 = chatham_read_4(ctrlr, 0x8028);
161
162	chatham_write_8(ctrlr, 0x8030, temp1);
163	chatham_write_8(ctrlr, 0x8038, temp2);
164	chatham_write_8(ctrlr, 0x8040, temp1);
165	chatham_write_8(ctrlr, 0x8048, temp2);
166	chatham_write_8(ctrlr, 0x8050, temp1);
167	chatham_write_8(ctrlr, 0x8058, temp2);
168
169	DELAY(10000);
170}
171
172static void
173nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
174{
175	struct nvme_controller_data *cdata;
176
177	cdata = &ctrlr->cdata;
178
179	cdata->vid = 0x8086;
180	cdata->ssvid = 0x2011;
181
182	/*
183	 * Chatham2 puts garbage data in these fields when we
184	 *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
185	 *  the fields before calling bcopy().
186	 */
187	memset(cdata->sn, 0, sizeof(cdata->sn));
188	memcpy(cdata->sn, "2012", strlen("2012"));
189	memset(cdata->mn, 0, sizeof(cdata->mn));
190	memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
191	memset(cdata->fr, 0, sizeof(cdata->fr));
192	memcpy(cdata->fr, "0", strlen("0"));
193	cdata->rab = 8;
194	cdata->aerl = 3;
195	cdata->lpa.ns_smart = 1;
196	cdata->sqes.min = 6;
197	cdata->sqes.max = 6;
198	cdata->sqes.min = 4;
199	cdata->sqes.max = 4;
200	cdata->nn = 1;
201
202	/* Chatham2 doesn't support DSM command */
203	cdata->oncs.dsm = 0;
204
205	cdata->vwc.present = 1;
206}
207#endif /* CHATHAM2 */
208
209static void
210nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
211{
212	struct nvme_qpair	*qpair;
213	uint32_t		num_entries;
214
215	qpair = &ctrlr->adminq;
216
217	num_entries = NVME_ADMIN_ENTRIES;
218	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
219	/*
220	 * If admin_entries was overridden to an invalid value, revert it
221	 *  back to our default value.
222	 */
223	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
224	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
225		printf("nvme: invalid hw.nvme.admin_entries=%d specified\n",
226		    num_entries);
227		num_entries = NVME_ADMIN_ENTRIES;
228	}
229
230	/*
231	 * The admin queue's max xfer size is treated differently than the
232	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
233	 */
234	nvme_qpair_construct(qpair,
235			     0, /* qpair ID */
236			     0, /* vector */
237			     num_entries,
238			     NVME_ADMIN_TRACKERS,
239			     16*1024, /* max xfer size */
240			     ctrlr);
241}
242
243static int
244nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
245{
246	struct nvme_qpair	*qpair;
247	union cap_lo_register	cap_lo;
248	int			i, num_entries, num_trackers;
249
250	num_entries = NVME_IO_ENTRIES;
251	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
252
253	/*
254	 * NVMe spec sets a hard limit of 64K max entries, but
255	 *  devices may specify a smaller limit, so we need to check
256	 *  the MQES field in the capabilities register.
257	 */
258	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
259	num_entries = min(num_entries, cap_lo.bits.mqes+1);
260
261	num_trackers = NVME_IO_TRACKERS;
262	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
263
264	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
265	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
266	/*
267	 * No need to have more trackers than entries in the submit queue.
268	 *  Note also that for a queue size of N, we can only have (N-1)
269	 *  commands outstanding, hence the "-1" here.
270	 */
271	num_trackers = min(num_trackers, (num_entries-1));
272
273	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
274	TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size);
275	/*
276	 * Check that tunable doesn't specify a size greater than what our
277	 *  driver supports, and is an even PAGE_SIZE multiple.
278	 */
279	if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE ||
280	    ctrlr->max_xfer_size % PAGE_SIZE)
281		ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
282
283	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
284	    M_NVME, M_ZERO | M_NOWAIT);
285
286	if (ctrlr->ioq == NULL)
287		return (ENOMEM);
288
289	for (i = 0; i < ctrlr->num_io_queues; i++) {
290		qpair = &ctrlr->ioq[i];
291
292		/*
293		 * Admin queue has ID=0. IO queues start at ID=1 -
294		 *  hence the 'i+1' here.
295		 *
296		 * For I/O queues, use the controller-wide max_xfer_size
297		 *  calculated in nvme_attach().
298		 */
299		nvme_qpair_construct(qpair,
300				     i+1, /* qpair ID */
301				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
302				     num_entries,
303				     num_trackers,
304				     ctrlr->max_xfer_size,
305				     ctrlr);
306
307		if (ctrlr->per_cpu_io_queues)
308			bus_bind_intr(ctrlr->dev, qpair->res, i);
309	}
310
311	return (0);
312}
313
314static int
315nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
316{
317	int ms_waited;
318	union cc_register cc;
319	union csts_register csts;
320
321	cc.raw = nvme_mmio_read_4(ctrlr, cc);
322	csts.raw = nvme_mmio_read_4(ctrlr, csts);
323
324	if (!cc.bits.en) {
325		device_printf(ctrlr->dev, "%s called with cc.en = 0\n",
326		    __func__);
327		return (ENXIO);
328	}
329
330	ms_waited = 0;
331
332	while (!csts.bits.rdy) {
333		DELAY(1000);
334		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
335			device_printf(ctrlr->dev, "controller did not become "
336			    "ready within %d ms\n", ctrlr->ready_timeout_in_ms);
337			return (ENXIO);
338		}
339		csts.raw = nvme_mmio_read_4(ctrlr, csts);
340	}
341
342	return (0);
343}
344
345static void
346nvme_ctrlr_disable(struct nvme_controller *ctrlr)
347{
348	union cc_register cc;
349	union csts_register csts;
350
351	cc.raw = nvme_mmio_read_4(ctrlr, cc);
352	csts.raw = nvme_mmio_read_4(ctrlr, csts);
353
354	if (cc.bits.en == 1 && csts.bits.rdy == 0)
355		nvme_ctrlr_wait_for_ready(ctrlr);
356
357	cc.bits.en = 0;
358	nvme_mmio_write_4(ctrlr, cc, cc.raw);
359	DELAY(5000);
360}
361
362static int
363nvme_ctrlr_enable(struct nvme_controller *ctrlr)
364{
365	union cc_register	cc;
366	union csts_register	csts;
367	union aqa_register	aqa;
368
369	cc.raw = nvme_mmio_read_4(ctrlr, cc);
370	csts.raw = nvme_mmio_read_4(ctrlr, csts);
371
372	if (cc.bits.en == 1) {
373		if (csts.bits.rdy == 1)
374			return (0);
375		else
376			return (nvme_ctrlr_wait_for_ready(ctrlr));
377	}
378
379	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
380	DELAY(5000);
381	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
382	DELAY(5000);
383
384	aqa.raw = 0;
385	/* acqs and asqs are 0-based. */
386	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
387	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
388	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
389	DELAY(5000);
390
391	cc.bits.en = 1;
392	cc.bits.css = 0;
393	cc.bits.ams = 0;
394	cc.bits.shn = 0;
395	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
396	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
397
398	/* This evaluates to 0, which is according to spec. */
399	cc.bits.mps = (PAGE_SIZE >> 13);
400
401	nvme_mmio_write_4(ctrlr, cc, cc.raw);
402	DELAY(5000);
403
404	return (nvme_ctrlr_wait_for_ready(ctrlr));
405}
406
407int
408nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
409{
410	int i;
411
412	nvme_admin_qpair_disable(&ctrlr->adminq);
413	for (i = 0; i < ctrlr->num_io_queues; i++)
414		nvme_io_qpair_disable(&ctrlr->ioq[i]);
415
416	DELAY(100*1000);
417
418	nvme_ctrlr_disable(ctrlr);
419	return (nvme_ctrlr_enable(ctrlr));
420}
421
422void
423nvme_ctrlr_reset(struct nvme_controller *ctrlr)
424{
425	int cmpset;
426
427	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
428
429	if (cmpset == 0)
430		/* Controller is already resetting. */
431		return;
432
433	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
434}
435
436static int
437nvme_ctrlr_identify(struct nvme_controller *ctrlr)
438{
439	struct mtx		*mtx;
440	struct nvme_completion	cpl;
441	int			status;
442
443	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
444
445	mtx_lock(mtx);
446	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
447	    nvme_ctrlr_cb, &cpl);
448	status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
449	mtx_unlock(mtx);
450	if ((status != 0) || nvme_completion_is_error(&cpl)) {
451		printf("nvme_identify_controller failed!\n");
452		return (ENXIO);
453	}
454
455#ifdef CHATHAM2
456	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
457		nvme_chatham_populate_cdata(ctrlr);
458#endif
459
460	/*
461	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
462	 *  controller supports.
463	 */
464	if (ctrlr->cdata.mdts > 0)
465		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
466		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
467
468	return (0);
469}
470
471static int
472nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
473{
474	struct mtx		*mtx;
475	struct nvme_completion	cpl;
476	int			cq_allocated, sq_allocated, status;
477
478	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
479
480	mtx_lock(mtx);
481	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
482	    nvme_ctrlr_cb, &cpl);
483	status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
484	mtx_unlock(mtx);
485	if ((status != 0) || nvme_completion_is_error(&cpl)) {
486		printf("nvme_set_num_queues failed!\n");
487		return (ENXIO);
488	}
489
490	/*
491	 * Data in cdw0 is 0-based.
492	 * Lower 16-bits indicate number of submission queues allocated.
493	 * Upper 16-bits indicate number of completion queues allocated.
494	 */
495	sq_allocated = (cpl.cdw0 & 0xFFFF) + 1;
496	cq_allocated = (cpl.cdw0 >> 16) + 1;
497
498	/*
499	 * Check that the controller was able to allocate the number of
500	 *  queues we requested.  If not, revert to one IO queue.
501	 */
502	if (sq_allocated < ctrlr->num_io_queues ||
503	    cq_allocated < ctrlr->num_io_queues) {
504		ctrlr->num_io_queues = 1;
505		ctrlr->per_cpu_io_queues = 0;
506
507		/* TODO: destroy extra queues that were created
508		 *  previously but now found to be not needed.
509		 */
510	}
511
512	return (0);
513}
514
515static int
516nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
517{
518	struct mtx		*mtx;
519	struct nvme_qpair	*qpair;
520	struct nvme_completion	cpl;
521	int			i, status;
522
523	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
524
525	for (i = 0; i < ctrlr->num_io_queues; i++) {
526		qpair = &ctrlr->ioq[i];
527
528		mtx_lock(mtx);
529		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
530		    nvme_ctrlr_cb, &cpl);
531		status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
532		mtx_unlock(mtx);
533		if ((status != 0) || nvme_completion_is_error(&cpl)) {
534			printf("nvme_create_io_cq failed!\n");
535			return (ENXIO);
536		}
537
538		mtx_lock(mtx);
539		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
540		    nvme_ctrlr_cb, &cpl);
541		status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
542		mtx_unlock(mtx);
543		if ((status != 0) || nvme_completion_is_error(&cpl)) {
544			printf("nvme_create_io_sq failed!\n");
545			return (ENXIO);
546		}
547	}
548
549	return (0);
550}
551
552static int
553nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
554{
555	struct nvme_namespace	*ns;
556	int			i, status;
557
558	for (i = 0; i < ctrlr->cdata.nn; i++) {
559		ns = &ctrlr->ns[i];
560		status = nvme_ns_construct(ns, i+1, ctrlr);
561		if (status != 0)
562			return (status);
563	}
564
565	return (0);
566}
567
568static boolean_t
569is_log_page_id_valid(uint8_t page_id)
570{
571
572	switch (page_id) {
573	case NVME_LOG_ERROR:
574	case NVME_LOG_HEALTH_INFORMATION:
575	case NVME_LOG_FIRMWARE_SLOT:
576		return (TRUE);
577	}
578
579	return (FALSE);
580}
581
582static uint32_t
583nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
584{
585	uint32_t	log_page_size;
586
587	switch (page_id) {
588	case NVME_LOG_ERROR:
589		log_page_size = min(
590		    sizeof(struct nvme_error_information_entry) *
591		    ctrlr->cdata.elpe,
592		    NVME_MAX_AER_LOG_SIZE);
593		break;
594	case NVME_LOG_HEALTH_INFORMATION:
595		log_page_size = sizeof(struct nvme_health_information_page);
596		break;
597	case NVME_LOG_FIRMWARE_SLOT:
598		log_page_size = sizeof(struct nvme_firmware_page);
599		break;
600	default:
601		log_page_size = 0;
602		break;
603	}
604
605	return (log_page_size);
606}
607
608static void
609nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
610{
611	struct nvme_async_event_request	*aer = arg;
612
613	/*
614	 * If the log page fetch for some reason completed with an error,
615	 *  don't pass log page data to the consumers.  In practice, this case
616	 *  should never happen.
617	 */
618	if (nvme_completion_is_error(cpl))
619		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
620		    aer->log_page_id, NULL, 0);
621	else
622		/*
623		 * Pass the cpl data from the original async event completion,
624		 *  not the log page fetch.
625		 */
626		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
627		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
628
629	/*
630	 * Repost another asynchronous event request to replace the one
631	 *  that just completed.
632	 */
633	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
634}
635
636static void
637nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
638{
639	struct nvme_async_event_request	*aer = arg;
640
641	if (cpl->status.sc == NVME_SC_ABORTED_SQ_DELETION) {
642		/*
643		 *  This is simulated when controller is being shut down, to
644		 *  effectively abort outstanding asynchronous event requests
645		 *  and make sure all memory is freed.  Do not repost the
646		 *  request in this case.
647		 */
648		return;
649	}
650
651	printf("Asynchronous event occurred.\n");
652
653	/* Associated log page is in bits 23:16 of completion entry dw0. */
654	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
655
656	if (is_log_page_id_valid(aer->log_page_id)) {
657		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
658		    aer->log_page_id);
659		memcpy(&aer->cpl, cpl, sizeof(*cpl));
660		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
661		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
662		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
663		    aer);
664		/* Wait to notify consumers until after log page is fetched. */
665	} else {
666		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
667		    NULL, 0);
668
669		/*
670		 * Repost another asynchronous event request to replace the one
671		 *  that just completed.
672		 */
673		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
674	}
675}
676
677static void
678nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
679    struct nvme_async_event_request *aer)
680{
681	struct nvme_request *req;
682
683	aer->ctrlr = ctrlr;
684	req = nvme_allocate_request(NULL, 0, nvme_ctrlr_async_event_cb, aer);
685	aer->req = req;
686
687	/*
688	 * Disable timeout here, since asynchronous event requests should by
689	 *  nature never be timed out.
690	 */
691	req->timeout = FALSE;
692	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
693	nvme_ctrlr_submit_admin_request(ctrlr, req);
694}
695
696static void
697nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
698{
699	union nvme_critical_warning_state	state;
700	struct nvme_async_event_request		*aer;
701	uint32_t				i;
702
703	state.raw = 0xFF;
704	state.bits.reserved = 0;
705	nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL);
706
707	/* aerl is a zero-based value, so we need to add 1 here. */
708	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
709
710	/* Chatham doesn't support AERs. */
711	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
712		ctrlr->num_aers = 0;
713
714	for (i = 0; i < ctrlr->num_aers; i++) {
715		aer = &ctrlr->aer[i];
716		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
717	}
718}
719
720static void
721nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
722{
723
724	ctrlr->int_coal_time = 0;
725	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
726	    &ctrlr->int_coal_time);
727
728	ctrlr->int_coal_threshold = 0;
729	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
730	    &ctrlr->int_coal_threshold);
731
732	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
733	    ctrlr->int_coal_threshold, NULL, NULL);
734}
735
736static void
737nvme_ctrlr_start(void *ctrlr_arg)
738{
739	struct nvme_controller *ctrlr = ctrlr_arg;
740	int i;
741
742	nvme_qpair_reset(&ctrlr->adminq);
743	for (i = 0; i < ctrlr->num_io_queues; i++)
744		nvme_qpair_reset(&ctrlr->ioq[i]);
745
746	nvme_admin_qpair_enable(&ctrlr->adminq);
747
748	if (nvme_ctrlr_identify(ctrlr) != 0)
749		return;
750
751	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0)
752		return;
753
754	if (nvme_ctrlr_create_qpairs(ctrlr) != 0)
755		return;
756
757	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0)
758		return;
759
760	nvme_ctrlr_configure_aer(ctrlr);
761	nvme_ctrlr_configure_int_coalescing(ctrlr);
762
763	for (i = 0; i < ctrlr->num_io_queues; i++)
764		nvme_io_qpair_enable(&ctrlr->ioq[i]);
765}
766
767void
768nvme_ctrlr_start_config_hook(void *arg)
769{
770	struct nvme_controller *ctrlr = arg;
771
772	nvme_ctrlr_start(ctrlr);
773	config_intrhook_disestablish(&ctrlr->config_hook);
774}
775
776static void
777nvme_ctrlr_reset_task(void *arg, int pending)
778{
779	struct nvme_controller	*ctrlr = arg;
780	int			status;
781
782	device_printf(ctrlr->dev, "resetting controller");
783	status = nvme_ctrlr_hw_reset(ctrlr);
784	/*
785	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
786	 *  handlers on this CPU that were blocked on a qpair lock. We want
787	 *  all nvme interrupts completed before proceeding with restarting the
788	 *  controller.
789	 *
790	 * XXX - any way to guarantee the interrupt handlers have quiesced?
791	 */
792	pause("nvmereset", hz / 10);
793	if (status == 0)
794		nvme_ctrlr_start(ctrlr);
795
796	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
797}
798
799static void
800nvme_ctrlr_intx_handler(void *arg)
801{
802	struct nvme_controller *ctrlr = arg;
803
804	nvme_mmio_write_4(ctrlr, intms, 1);
805
806	nvme_qpair_process_completions(&ctrlr->adminq);
807
808	if (ctrlr->ioq[0].cpl)
809		nvme_qpair_process_completions(&ctrlr->ioq[0]);
810
811	nvme_mmio_write_4(ctrlr, intmc, 1);
812}
813
814static int
815nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
816{
817
818	ctrlr->num_io_queues = 1;
819	ctrlr->per_cpu_io_queues = 0;
820	ctrlr->rid = 0;
821	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
822	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
823
824	if (ctrlr->res == NULL) {
825		device_printf(ctrlr->dev, "unable to allocate shared IRQ\n");
826		return (ENOMEM);
827	}
828
829	bus_setup_intr(ctrlr->dev, ctrlr->res,
830	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
831	    ctrlr, &ctrlr->tag);
832
833	if (ctrlr->tag == NULL) {
834		device_printf(ctrlr->dev,
835		    "unable to setup legacy interrupt handler\n");
836		return (ENOMEM);
837	}
838
839	return (0);
840}
841
842static int
843nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
844    struct thread *td)
845{
846	struct nvme_controller	*ctrlr;
847	struct nvme_completion	cpl;
848	struct mtx		*mtx;
849
850	ctrlr = cdev->si_drv1;
851
852	switch (cmd) {
853	case NVME_IDENTIFY_CONTROLLER:
854#ifdef CHATHAM2
855		/*
856		 * Don't refresh data on Chatham, since Chatham returns
857		 *  garbage on IDENTIFY anyways.
858		 */
859		if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) {
860			memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
861			break;
862		}
863#endif
864		/* Refresh data before returning to user. */
865		mtx = mtx_pool_find(mtxpool_sleep, &cpl);
866		mtx_lock(mtx);
867		nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
868		    nvme_ctrlr_cb, &cpl);
869		msleep(&cpl, mtx, PRIBIO, "nvme_ioctl", 0);
870		mtx_unlock(mtx);
871		if (nvme_completion_is_error(&cpl))
872			return (ENXIO);
873		memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
874		break;
875	case NVME_RESET_CONTROLLER:
876		nvme_ctrlr_reset(ctrlr);
877		break;
878	default:
879		return (ENOTTY);
880	}
881
882	return (0);
883}
884
885static struct cdevsw nvme_ctrlr_cdevsw = {
886	.d_version =	D_VERSION,
887	.d_flags =	0,
888	.d_ioctl =	nvme_ctrlr_ioctl
889};
890
891int
892nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
893{
894	union cap_lo_register	cap_lo;
895	union cap_hi_register	cap_hi;
896	int			num_vectors, per_cpu_io_queues, status = 0;
897	int			timeout_period;
898
899	ctrlr->dev = dev;
900
901	status = nvme_ctrlr_allocate_bar(ctrlr);
902
903	if (status != 0)
904		return (status);
905
906#ifdef CHATHAM2
907	if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
908		status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
909		if (status != 0)
910			return (status);
911		nvme_ctrlr_setup_chatham(ctrlr);
912	}
913#endif
914
915	/*
916	 * Software emulators may set the doorbell stride to something
917	 *  other than zero, but this driver is not set up to handle that.
918	 */
919	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
920	if (cap_hi.bits.dstrd != 0)
921		return (ENXIO);
922
923	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
924
925	/* Get ready timeout value from controller, in units of 500ms. */
926	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
927	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
928
929	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
930	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
931	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
932	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
933	ctrlr->timeout_period = timeout_period;
934
935	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
936	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
937
938	per_cpu_io_queues = 1;
939	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
940	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
941
942	if (ctrlr->per_cpu_io_queues)
943		ctrlr->num_io_queues = mp_ncpus;
944	else
945		ctrlr->num_io_queues = 1;
946
947	ctrlr->force_intx = 0;
948	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
949
950	ctrlr->enable_aborts = 0;
951	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
952
953	ctrlr->msix_enabled = 1;
954
955	if (ctrlr->force_intx) {
956		ctrlr->msix_enabled = 0;
957		goto intx;
958	}
959
960	/* One vector per IO queue, plus one vector for admin queue. */
961	num_vectors = ctrlr->num_io_queues + 1;
962
963	if (pci_msix_count(dev) < num_vectors) {
964		ctrlr->msix_enabled = 0;
965		goto intx;
966	}
967
968	if (pci_alloc_msix(dev, &num_vectors) != 0)
969		ctrlr->msix_enabled = 0;
970
971intx:
972
973	if (!ctrlr->msix_enabled)
974		nvme_ctrlr_configure_intx(ctrlr);
975
976	nvme_ctrlr_construct_admin_qpair(ctrlr);
977
978	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
979
980	if (status != 0)
981		return (status);
982
983	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
984	    "nvme%d", device_get_unit(dev));
985
986	if (ctrlr->cdev == NULL)
987		return (ENXIO);
988
989	ctrlr->cdev->si_drv1 = (void *)ctrlr;
990
991	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
992	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
993	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
994	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
995
996	ctrlr->is_resetting = 0;
997
998	return (0);
999}
1000
1001void
1002nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1003{
1004	int				i;
1005
1006	taskqueue_free(ctrlr->taskqueue);
1007
1008	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1009		nvme_ns_destruct(&ctrlr->ns[i]);
1010
1011	if (ctrlr->cdev)
1012		destroy_dev(ctrlr->cdev);
1013
1014	for (i = 0; i < ctrlr->num_io_queues; i++) {
1015		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1016	}
1017
1018	free(ctrlr->ioq, M_NVME);
1019
1020	nvme_admin_qpair_destroy(&ctrlr->adminq);
1021
1022	if (ctrlr->resource != NULL) {
1023		bus_release_resource(dev, SYS_RES_MEMORY,
1024		    ctrlr->resource_id, ctrlr->resource);
1025	}
1026
1027	if (ctrlr->bar4_resource != NULL) {
1028		bus_release_resource(dev, SYS_RES_MEMORY,
1029		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1030	}
1031
1032#ifdef CHATHAM2
1033	if (ctrlr->chatham_resource != NULL) {
1034		bus_release_resource(dev, SYS_RES_MEMORY,
1035		    ctrlr->chatham_resource_id, ctrlr->chatham_resource);
1036	}
1037#endif
1038
1039	if (ctrlr->tag)
1040		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1041
1042	if (ctrlr->res)
1043		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1044		    rman_get_rid(ctrlr->res), ctrlr->res);
1045
1046	if (ctrlr->msix_enabled)
1047		pci_release_msi(dev);
1048}
1049
1050void
1051nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1052    struct nvme_request *req)
1053{
1054
1055	nvme_qpair_submit_request(&ctrlr->adminq, req);
1056}
1057
1058void
1059nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1060    struct nvme_request *req)
1061{
1062	struct nvme_qpair       *qpair;
1063
1064	if (ctrlr->per_cpu_io_queues)
1065		qpair = &ctrlr->ioq[curcpu];
1066	else
1067		qpair = &ctrlr->ioq[0];
1068
1069	nvme_qpair_submit_request(qpair, req);
1070}
1071
1072device_t
1073nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1074{
1075
1076	return (ctrlr->dev);
1077}
1078
1079const struct nvme_controller_data *
1080nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1081{
1082
1083	return (&ctrlr->cdata);
1084}
1085