nvme_ctrlr.c revision 248759
1/*-
2 * Copyright (C) 2012 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/dev/nvme/nvme_ctrlr.c 248759 2013-03-26 21:05:15Z jimharris $");
29
30#include <sys/param.h>
31#include <sys/bus.h>
32#include <sys/conf.h>
33#include <sys/ioccom.h>
34#include <sys/smp.h>
35
36#include <dev/pci/pcireg.h>
37#include <dev/pci/pcivar.h>
38
39#include "nvme_private.h"
40
41static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
42						struct nvme_async_event_request *aer);
43
44static void
45nvme_ctrlr_cb(void *arg, const struct nvme_completion *status)
46{
47	struct nvme_completion	*cpl = arg;
48	struct mtx		*mtx;
49
50	/*
51	 * Copy status into the argument passed by the caller, so that
52	 *  the caller can check the status to determine if the
53	 *  the request passed or failed.
54	 */
55	memcpy(cpl, status, sizeof(*cpl));
56	mtx = mtx_pool_find(mtxpool_sleep, cpl);
57	mtx_lock(mtx);
58	wakeup(cpl);
59	mtx_unlock(mtx);
60}
61
62static int
63nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
64{
65
66	/* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
67	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
68		ctrlr->resource_id = PCIR_BAR(2);
69	else
70		ctrlr->resource_id = PCIR_BAR(0);
71
72	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
73	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
74
75	if(ctrlr->resource == NULL) {
76		device_printf(ctrlr->dev, "unable to allocate pci resource\n");
77		return (ENOMEM);
78	}
79
80	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
81	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
82	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
83
84	/*
85	 * The NVMe spec allows for the MSI-X table to be placed behind
86	 *  BAR 4/5, separate from the control/doorbell registers.  Always
87	 *  try to map this bar, because it must be mapped prior to calling
88	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
89	 *  bus_alloc_resource() will just return NULL which is OK.
90	 */
91	ctrlr->bar4_resource_id = PCIR_BAR(4);
92	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
93	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
94
95	return (0);
96}
97
98#ifdef CHATHAM2
99static int
100nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
101{
102
103	ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
104	ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
105	    SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
106	    RF_ACTIVE);
107
108	if(ctrlr->chatham_resource == NULL) {
109		device_printf(ctrlr->dev, "unable to alloc pci resource\n");
110		return (ENOMEM);
111	}
112
113	ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
114	ctrlr->chatham_bus_handle =
115	    rman_get_bushandle(ctrlr->chatham_resource);
116
117	return (0);
118}
119
120static void
121nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
122{
123	uint64_t reg1, reg2, reg3;
124	uint64_t temp1, temp2;
125	uint32_t temp3;
126	uint32_t use_flash_timings = 0;
127
128	DELAY(10000);
129
130	temp3 = chatham_read_4(ctrlr, 0x8080);
131
132	device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
133
134	ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
135	ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
136
137	device_printf(ctrlr->dev, "Chatham size: %jd\n",
138	    (intmax_t)ctrlr->chatham_size);
139
140	reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
141
142	TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
143	if (use_flash_timings) {
144		device_printf(ctrlr->dev, "Chatham: using flash timings\n");
145		temp1 = 0x00001b58000007d0LL;
146		temp2 = 0x000000cb00000131LL;
147	} else {
148		device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
149		temp1 = temp2 = 0x0LL;
150	}
151
152	chatham_write_8(ctrlr, 0x8000, reg1);
153	chatham_write_8(ctrlr, 0x8008, reg2);
154	chatham_write_8(ctrlr, 0x8010, reg3);
155
156	chatham_write_8(ctrlr, 0x8020, temp1);
157	temp3 = chatham_read_4(ctrlr, 0x8020);
158
159	chatham_write_8(ctrlr, 0x8028, temp2);
160	temp3 = chatham_read_4(ctrlr, 0x8028);
161
162	chatham_write_8(ctrlr, 0x8030, temp1);
163	chatham_write_8(ctrlr, 0x8038, temp2);
164	chatham_write_8(ctrlr, 0x8040, temp1);
165	chatham_write_8(ctrlr, 0x8048, temp2);
166	chatham_write_8(ctrlr, 0x8050, temp1);
167	chatham_write_8(ctrlr, 0x8058, temp2);
168
169	DELAY(10000);
170}
171
172static void
173nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
174{
175	struct nvme_controller_data *cdata;
176
177	cdata = &ctrlr->cdata;
178
179	cdata->vid = 0x8086;
180	cdata->ssvid = 0x2011;
181
182	/*
183	 * Chatham2 puts garbage data in these fields when we
184	 *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
185	 *  the fields before calling bcopy().
186	 */
187	memset(cdata->sn, 0, sizeof(cdata->sn));
188	memcpy(cdata->sn, "2012", strlen("2012"));
189	memset(cdata->mn, 0, sizeof(cdata->mn));
190	memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
191	memset(cdata->fr, 0, sizeof(cdata->fr));
192	memcpy(cdata->fr, "0", strlen("0"));
193	cdata->rab = 8;
194	cdata->aerl = 3;
195	cdata->lpa.ns_smart = 1;
196	cdata->sqes.min = 6;
197	cdata->sqes.max = 6;
198	cdata->sqes.min = 4;
199	cdata->sqes.max = 4;
200	cdata->nn = 1;
201
202	/* Chatham2 doesn't support DSM command */
203	cdata->oncs.dsm = 0;
204
205	cdata->vwc.present = 1;
206}
207#endif /* CHATHAM2 */
208
209static void
210nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
211{
212	struct nvme_qpair	*qpair;
213	uint32_t		num_entries;
214
215	qpair = &ctrlr->adminq;
216
217	num_entries = NVME_ADMIN_ENTRIES;
218	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
219	/*
220	 * If admin_entries was overridden to an invalid value, revert it
221	 *  back to our default value.
222	 */
223	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
224	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
225		printf("nvme: invalid hw.nvme.admin_entries=%d specified\n",
226		    num_entries);
227		num_entries = NVME_ADMIN_ENTRIES;
228	}
229
230	/*
231	 * The admin queue's max xfer size is treated differently than the
232	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
233	 */
234	nvme_qpair_construct(qpair,
235			     0, /* qpair ID */
236			     0, /* vector */
237			     num_entries,
238			     NVME_ADMIN_TRACKERS,
239			     16*1024, /* max xfer size */
240			     ctrlr);
241}
242
243static int
244nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
245{
246	struct nvme_qpair	*qpair;
247	union cap_lo_register	cap_lo;
248	int			i, num_entries, num_trackers;
249
250	num_entries = NVME_IO_ENTRIES;
251	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
252
253	/*
254	 * NVMe spec sets a hard limit of 64K max entries, but
255	 *  devices may specify a smaller limit, so we need to check
256	 *  the MQES field in the capabilities register.
257	 */
258	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
259	num_entries = min(num_entries, cap_lo.bits.mqes+1);
260
261	num_trackers = NVME_IO_TRACKERS;
262	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
263
264	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
265	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
266	/*
267	 * No need to have more trackers than entries in the submit queue.
268	 *  Note also that for a queue size of N, we can only have (N-1)
269	 *  commands outstanding, hence the "-1" here.
270	 */
271	num_trackers = min(num_trackers, (num_entries-1));
272
273	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
274	TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size);
275	/*
276	 * Check that tunable doesn't specify a size greater than what our
277	 *  driver supports, and is an even PAGE_SIZE multiple.
278	 */
279	if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE ||
280	    ctrlr->max_xfer_size % PAGE_SIZE)
281		ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
282
283	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
284	    M_NVME, M_ZERO | M_NOWAIT);
285
286	if (ctrlr->ioq == NULL)
287		return (ENOMEM);
288
289	for (i = 0; i < ctrlr->num_io_queues; i++) {
290		qpair = &ctrlr->ioq[i];
291
292		/*
293		 * Admin queue has ID=0. IO queues start at ID=1 -
294		 *  hence the 'i+1' here.
295		 *
296		 * For I/O queues, use the controller-wide max_xfer_size
297		 *  calculated in nvme_attach().
298		 */
299		nvme_qpair_construct(qpair,
300				     i+1, /* qpair ID */
301				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
302				     num_entries,
303				     num_trackers,
304				     ctrlr->max_xfer_size,
305				     ctrlr);
306
307		if (ctrlr->per_cpu_io_queues)
308			bus_bind_intr(ctrlr->dev, qpair->res, i);
309	}
310
311	return (0);
312}
313
314static int
315nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
316{
317	int ms_waited;
318	union cc_register cc;
319	union csts_register csts;
320
321	cc.raw = nvme_mmio_read_4(ctrlr, cc);
322	csts.raw = nvme_mmio_read_4(ctrlr, csts);
323
324	if (!cc.bits.en) {
325		device_printf(ctrlr->dev, "%s called with cc.en = 0\n",
326		    __func__);
327		return (ENXIO);
328	}
329
330	ms_waited = 0;
331
332	while (!csts.bits.rdy) {
333		DELAY(1000);
334		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
335			device_printf(ctrlr->dev, "controller did not become "
336			    "ready within %d ms\n", ctrlr->ready_timeout_in_ms);
337			return (ENXIO);
338		}
339		csts.raw = nvme_mmio_read_4(ctrlr, csts);
340	}
341
342	return (0);
343}
344
345static void
346nvme_ctrlr_disable(struct nvme_controller *ctrlr)
347{
348	union cc_register cc;
349	union csts_register csts;
350
351	cc.raw = nvme_mmio_read_4(ctrlr, cc);
352	csts.raw = nvme_mmio_read_4(ctrlr, csts);
353
354	if (cc.bits.en == 1 && csts.bits.rdy == 0)
355		nvme_ctrlr_wait_for_ready(ctrlr);
356
357	cc.bits.en = 0;
358	nvme_mmio_write_4(ctrlr, cc, cc.raw);
359	DELAY(5000);
360}
361
362static int
363nvme_ctrlr_enable(struct nvme_controller *ctrlr)
364{
365	union cc_register	cc;
366	union csts_register	csts;
367	union aqa_register	aqa;
368
369	cc.raw = nvme_mmio_read_4(ctrlr, cc);
370	csts.raw = nvme_mmio_read_4(ctrlr, csts);
371
372	if (cc.bits.en == 1) {
373		if (csts.bits.rdy == 1)
374			return (0);
375		else
376			return (nvme_ctrlr_wait_for_ready(ctrlr));
377	}
378
379	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
380	DELAY(5000);
381	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
382	DELAY(5000);
383
384	aqa.raw = 0;
385	/* acqs and asqs are 0-based. */
386	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
387	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
388	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
389	DELAY(5000);
390
391	cc.bits.en = 1;
392	cc.bits.css = 0;
393	cc.bits.ams = 0;
394	cc.bits.shn = 0;
395	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
396	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
397
398	/* This evaluates to 0, which is according to spec. */
399	cc.bits.mps = (PAGE_SIZE >> 13);
400
401	nvme_mmio_write_4(ctrlr, cc, cc.raw);
402	DELAY(5000);
403
404	return (nvme_ctrlr_wait_for_ready(ctrlr));
405}
406
407int
408nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
409{
410	int i;
411
412	nvme_admin_qpair_disable(&ctrlr->adminq);
413	for (i = 0; i < ctrlr->num_io_queues; i++)
414		nvme_io_qpair_disable(&ctrlr->ioq[i]);
415
416	DELAY(100*1000);
417
418	nvme_ctrlr_disable(ctrlr);
419	return (nvme_ctrlr_enable(ctrlr));
420}
421
422void
423nvme_ctrlr_reset(struct nvme_controller *ctrlr)
424{
425	int cmpset;
426
427	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
428
429	if (cmpset == 0)
430		/* Controller is already resetting. */
431		return;
432
433	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
434}
435
436static int
437nvme_ctrlr_identify(struct nvme_controller *ctrlr)
438{
439	struct mtx		*mtx;
440	struct nvme_completion	cpl;
441	int			status;
442
443	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
444
445	mtx_lock(mtx);
446	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
447	    nvme_ctrlr_cb, &cpl);
448	status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
449	mtx_unlock(mtx);
450	if ((status != 0) || nvme_completion_is_error(&cpl)) {
451		printf("nvme_identify_controller failed!\n");
452		return (ENXIO);
453	}
454
455#ifdef CHATHAM2
456	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
457		nvme_chatham_populate_cdata(ctrlr);
458#endif
459
460	return (0);
461}
462
463static int
464nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
465{
466	struct mtx		*mtx;
467	struct nvme_completion	cpl;
468	int			cq_allocated, sq_allocated, status;
469
470	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
471
472	mtx_lock(mtx);
473	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
474	    nvme_ctrlr_cb, &cpl);
475	status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
476	mtx_unlock(mtx);
477	if ((status != 0) || nvme_completion_is_error(&cpl)) {
478		printf("nvme_set_num_queues failed!\n");
479		return (ENXIO);
480	}
481
482	/*
483	 * Data in cdw0 is 0-based.
484	 * Lower 16-bits indicate number of submission queues allocated.
485	 * Upper 16-bits indicate number of completion queues allocated.
486	 */
487	sq_allocated = (cpl.cdw0 & 0xFFFF) + 1;
488	cq_allocated = (cpl.cdw0 >> 16) + 1;
489
490	/*
491	 * Check that the controller was able to allocate the number of
492	 *  queues we requested.  If not, revert to one IO queue.
493	 */
494	if (sq_allocated < ctrlr->num_io_queues ||
495	    cq_allocated < ctrlr->num_io_queues) {
496		ctrlr->num_io_queues = 1;
497		ctrlr->per_cpu_io_queues = 0;
498
499		/* TODO: destroy extra queues that were created
500		 *  previously but now found to be not needed.
501		 */
502	}
503
504	return (0);
505}
506
507static int
508nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
509{
510	struct mtx		*mtx;
511	struct nvme_qpair	*qpair;
512	struct nvme_completion	cpl;
513	int			i, status;
514
515	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
516
517	for (i = 0; i < ctrlr->num_io_queues; i++) {
518		qpair = &ctrlr->ioq[i];
519
520		mtx_lock(mtx);
521		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
522		    nvme_ctrlr_cb, &cpl);
523		status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
524		mtx_unlock(mtx);
525		if ((status != 0) || nvme_completion_is_error(&cpl)) {
526			printf("nvme_create_io_cq failed!\n");
527			return (ENXIO);
528		}
529
530		mtx_lock(mtx);
531		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
532		    nvme_ctrlr_cb, &cpl);
533		status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
534		mtx_unlock(mtx);
535		if ((status != 0) || nvme_completion_is_error(&cpl)) {
536			printf("nvme_create_io_sq failed!\n");
537			return (ENXIO);
538		}
539	}
540
541	return (0);
542}
543
544static int
545nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
546{
547	struct nvme_namespace	*ns;
548	int			i, status;
549
550	for (i = 0; i < ctrlr->cdata.nn; i++) {
551		ns = &ctrlr->ns[i];
552		status = nvme_ns_construct(ns, i+1, ctrlr);
553		if (status != 0)
554			return (status);
555	}
556
557	return (0);
558}
559
560static boolean_t
561is_log_page_id_valid(uint8_t page_id)
562{
563
564	switch (page_id) {
565	case NVME_LOG_ERROR:
566	case NVME_LOG_HEALTH_INFORMATION:
567	case NVME_LOG_FIRMWARE_SLOT:
568		return (TRUE);
569	}
570
571	return (FALSE);
572}
573
574static uint32_t
575nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
576{
577	uint32_t	log_page_size;
578
579	switch (page_id) {
580	case NVME_LOG_ERROR:
581		log_page_size = min(
582		    sizeof(struct nvme_error_information_entry) *
583		    ctrlr->cdata.elpe,
584		    NVME_MAX_AER_LOG_SIZE);
585		break;
586	case NVME_LOG_HEALTH_INFORMATION:
587		log_page_size = sizeof(struct nvme_health_information_page);
588		break;
589	case NVME_LOG_FIRMWARE_SLOT:
590		log_page_size = sizeof(struct nvme_firmware_page);
591		break;
592	default:
593		log_page_size = 0;
594		break;
595	}
596
597	return (log_page_size);
598}
599
600static void
601nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
602{
603	struct nvme_async_event_request	*aer = arg;
604
605	nvme_notify_async_consumers(aer->ctrlr, &aer->cpl);
606
607	/*
608	 * Repost another asynchronous event request to replace the one
609	 *  that just completed.
610	 */
611	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
612}
613
614static void
615nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
616{
617	struct nvme_async_event_request	*aer = arg;
618	uint8_t				log_page_id;
619
620	if (cpl->status.sc == NVME_SC_ABORTED_SQ_DELETION) {
621		/*
622		 *  This is simulated when controller is being shut down, to
623		 *  effectively abort outstanding asynchronous event requests
624		 *  and make sure all memory is freed.  Do not repost the
625		 *  request in this case.
626		 */
627		return;
628	}
629
630	printf("Asynchronous event occurred.\n");
631
632	/* Associated log page is in bits 23:16 of completion entry dw0. */
633	log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
634
635	if (is_log_page_id_valid(log_page_id)) {
636		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
637		    log_page_id);
638		memcpy(&aer->cpl, cpl, sizeof(*cpl));
639		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, log_page_id,
640		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
641		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
642		    aer);
643		/* Wait to notify consumers until after log page is fetched. */
644	} else {
645		nvme_notify_async_consumers(aer->ctrlr, cpl);
646
647		/*
648		 * Repost another asynchronous event request to replace the one
649		 *  that just completed.
650		 */
651		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
652	}
653}
654
655static void
656nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
657    struct nvme_async_event_request *aer)
658{
659	struct nvme_request *req;
660
661	aer->ctrlr = ctrlr;
662	req = nvme_allocate_request(NULL, 0, nvme_ctrlr_async_event_cb, aer);
663	aer->req = req;
664
665	/*
666	 * Disable timeout here, since asynchronous event requests should by
667	 *  nature never be timed out.
668	 */
669	req->timeout = FALSE;
670	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
671	nvme_ctrlr_submit_admin_request(ctrlr, req);
672}
673
674static void
675nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
676{
677	union nvme_critical_warning_state	state;
678	struct nvme_async_event_request		*aer;
679	uint32_t				i;
680
681	state.raw = 0xFF;
682	state.bits.reserved = 0;
683	nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL);
684
685	/* aerl is a zero-based value, so we need to add 1 here. */
686	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
687
688	/* Chatham doesn't support AERs. */
689	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
690		ctrlr->num_aers = 0;
691
692	for (i = 0; i < ctrlr->num_aers; i++) {
693		aer = &ctrlr->aer[i];
694		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
695	}
696}
697
698static void
699nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
700{
701
702	ctrlr->int_coal_time = 0;
703	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
704	    &ctrlr->int_coal_time);
705
706	ctrlr->int_coal_threshold = 0;
707	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
708	    &ctrlr->int_coal_threshold);
709
710	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
711	    ctrlr->int_coal_threshold, NULL, NULL);
712}
713
714void
715nvme_ctrlr_start(void *ctrlr_arg)
716{
717	struct nvme_controller *ctrlr = ctrlr_arg;
718	int i;
719
720	nvme_admin_qpair_enable(&ctrlr->adminq);
721
722	if (nvme_ctrlr_identify(ctrlr) != 0)
723		goto err;
724
725	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0)
726		goto err;
727
728	if (nvme_ctrlr_create_qpairs(ctrlr) != 0)
729		goto err;
730
731	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0)
732		goto err;
733
734	nvme_ctrlr_configure_aer(ctrlr);
735	nvme_ctrlr_configure_int_coalescing(ctrlr);
736
737	for (i = 0; i < ctrlr->num_io_queues; i++)
738		nvme_io_qpair_enable(&ctrlr->ioq[i]);
739
740	ctrlr->is_started = TRUE;
741
742err:
743
744	if (ctrlr->num_start_attempts == 0) {
745		/*
746		 * Initialize sysctls, even if controller failed to start, to
747		 *  assist with debugging admin queue pair.  Only run this
748		 *  code on the initial start attempt though, and not
749		 *  subsequent start attempts due to controller-level resets.
750		 *
751		 */
752		nvme_sysctl_initialize_ctrlr(ctrlr);
753		config_intrhook_disestablish(&ctrlr->config_hook);
754	}
755
756	ctrlr->num_start_attempts++;
757}
758
759static void
760nvme_ctrlr_reset_task(void *arg, int pending)
761{
762	struct nvme_controller	*ctrlr = arg;
763	int			status;
764
765	device_printf(ctrlr->dev, "resetting controller");
766	status = nvme_ctrlr_hw_reset(ctrlr);
767	/*
768	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
769	 *  handlers on this CPU that were blocked on a qpair lock. We want
770	 *  all nvme interrupts completed before proceeding with restarting the
771	 *  controller.
772	 *
773	 * XXX - any way to guarantee the interrupt handlers have quiesced?
774	 */
775	pause("nvmereset", hz / 10);
776	if (status == 0)
777		nvme_ctrlr_start(ctrlr);
778
779	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
780}
781
782static void
783nvme_ctrlr_intx_handler(void *arg)
784{
785	struct nvme_controller *ctrlr = arg;
786
787	nvme_mmio_write_4(ctrlr, intms, 1);
788
789	nvme_qpair_process_completions(&ctrlr->adminq);
790
791	if (ctrlr->ioq[0].cpl)
792		nvme_qpair_process_completions(&ctrlr->ioq[0]);
793
794	nvme_mmio_write_4(ctrlr, intmc, 1);
795}
796
797static int
798nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
799{
800
801	ctrlr->num_io_queues = 1;
802	ctrlr->per_cpu_io_queues = 0;
803	ctrlr->rid = 0;
804	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
805	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
806
807	if (ctrlr->res == NULL) {
808		device_printf(ctrlr->dev, "unable to allocate shared IRQ\n");
809		return (ENOMEM);
810	}
811
812	bus_setup_intr(ctrlr->dev, ctrlr->res,
813	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
814	    ctrlr, &ctrlr->tag);
815
816	if (ctrlr->tag == NULL) {
817		device_printf(ctrlr->dev,
818		    "unable to setup legacy interrupt handler\n");
819		return (ENOMEM);
820	}
821
822	return (0);
823}
824
825static int
826nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
827    struct thread *td)
828{
829	struct nvme_controller	*ctrlr;
830	struct nvme_completion	cpl;
831	struct mtx		*mtx;
832
833	ctrlr = cdev->si_drv1;
834
835	switch (cmd) {
836	case NVME_IDENTIFY_CONTROLLER:
837#ifdef CHATHAM2
838		/*
839		 * Don't refresh data on Chatham, since Chatham returns
840		 *  garbage on IDENTIFY anyways.
841		 */
842		if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) {
843			memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
844			break;
845		}
846#endif
847		/* Refresh data before returning to user. */
848		mtx = mtx_pool_find(mtxpool_sleep, &cpl);
849		mtx_lock(mtx);
850		nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
851		    nvme_ctrlr_cb, &cpl);
852		msleep(&cpl, mtx, PRIBIO, "nvme_ioctl", 0);
853		mtx_unlock(mtx);
854		if (nvme_completion_is_error(&cpl))
855			return (ENXIO);
856		memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
857		break;
858	case NVME_RESET_CONTROLLER:
859		nvme_ctrlr_reset(ctrlr);
860		break;
861	default:
862		return (ENOTTY);
863	}
864
865	return (0);
866}
867
868static struct cdevsw nvme_ctrlr_cdevsw = {
869	.d_version =	D_VERSION,
870	.d_flags =	0,
871	.d_ioctl =	nvme_ctrlr_ioctl
872};
873
874int
875nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
876{
877	union cap_lo_register	cap_lo;
878	union cap_hi_register	cap_hi;
879	int			num_vectors, per_cpu_io_queues, status = 0;
880	int			timeout_period;
881
882	ctrlr->dev = dev;
883	ctrlr->is_started = FALSE;
884	ctrlr->num_start_attempts = 0;
885
886	status = nvme_ctrlr_allocate_bar(ctrlr);
887
888	if (status != 0)
889		return (status);
890
891#ifdef CHATHAM2
892	if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
893		status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
894		if (status != 0)
895			return (status);
896		nvme_ctrlr_setup_chatham(ctrlr);
897	}
898#endif
899
900	/*
901	 * Software emulators may set the doorbell stride to something
902	 *  other than zero, but this driver is not set up to handle that.
903	 */
904	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
905	if (cap_hi.bits.dstrd != 0)
906		return (ENXIO);
907
908	/* Get ready timeout value from controller, in units of 500ms. */
909	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
910	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
911
912	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
913	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
914	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
915	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
916	ctrlr->timeout_period = timeout_period;
917
918	per_cpu_io_queues = 1;
919	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
920	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
921
922	if (ctrlr->per_cpu_io_queues)
923		ctrlr->num_io_queues = mp_ncpus;
924	else
925		ctrlr->num_io_queues = 1;
926
927	ctrlr->force_intx = 0;
928	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
929
930	ctrlr->enable_aborts = 0;
931	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
932
933	ctrlr->msix_enabled = 1;
934
935	if (ctrlr->force_intx) {
936		ctrlr->msix_enabled = 0;
937		goto intx;
938	}
939
940	/* One vector per IO queue, plus one vector for admin queue. */
941	num_vectors = ctrlr->num_io_queues + 1;
942
943	if (pci_msix_count(dev) < num_vectors) {
944		ctrlr->msix_enabled = 0;
945		goto intx;
946	}
947
948	if (pci_alloc_msix(dev, &num_vectors) != 0)
949		ctrlr->msix_enabled = 0;
950
951intx:
952
953	if (!ctrlr->msix_enabled)
954		nvme_ctrlr_configure_intx(ctrlr);
955
956	nvme_ctrlr_construct_admin_qpair(ctrlr);
957
958	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
959
960	if (status != 0)
961		return (status);
962
963	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
964	    "nvme%d", device_get_unit(dev));
965
966	if (ctrlr->cdev == NULL)
967		return (ENXIO);
968
969	ctrlr->cdev->si_drv1 = (void *)ctrlr;
970
971	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
972	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
973	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
974	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
975
976	ctrlr->is_resetting = 0;
977
978	return (0);
979}
980
981void
982nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
983{
984	int				i;
985
986	taskqueue_free(ctrlr->taskqueue);
987
988	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
989		nvme_ns_destruct(&ctrlr->ns[i]);
990
991	if (ctrlr->cdev)
992		destroy_dev(ctrlr->cdev);
993
994	for (i = 0; i < ctrlr->num_io_queues; i++) {
995		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
996	}
997
998	free(ctrlr->ioq, M_NVME);
999
1000	nvme_admin_qpair_destroy(&ctrlr->adminq);
1001
1002	if (ctrlr->resource != NULL) {
1003		bus_release_resource(dev, SYS_RES_MEMORY,
1004		    ctrlr->resource_id, ctrlr->resource);
1005	}
1006
1007	if (ctrlr->bar4_resource != NULL) {
1008		bus_release_resource(dev, SYS_RES_MEMORY,
1009		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1010	}
1011
1012#ifdef CHATHAM2
1013	if (ctrlr->chatham_resource != NULL) {
1014		bus_release_resource(dev, SYS_RES_MEMORY,
1015		    ctrlr->chatham_resource_id, ctrlr->chatham_resource);
1016	}
1017#endif
1018
1019	if (ctrlr->tag)
1020		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1021
1022	if (ctrlr->res)
1023		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1024		    rman_get_rid(ctrlr->res), ctrlr->res);
1025
1026	if (ctrlr->msix_enabled)
1027		pci_release_msi(dev);
1028}
1029
1030void
1031nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1032    struct nvme_request *req)
1033{
1034
1035	nvme_qpair_submit_request(&ctrlr->adminq, req);
1036}
1037
1038void
1039nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1040    struct nvme_request *req)
1041{
1042	struct nvme_qpair       *qpair;
1043
1044	if (ctrlr->per_cpu_io_queues)
1045		qpair = &ctrlr->ioq[curcpu];
1046	else
1047		qpair = &ctrlr->ioq[0];
1048
1049	nvme_qpair_submit_request(qpair, req);
1050}
1051
1052device_t
1053nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1054{
1055
1056	return (ctrlr->dev);
1057}
1058
1059const struct nvme_controller_data *
1060nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1061{
1062
1063	return (&ctrlr->cdata);
1064}
1065