1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: releng/10.2/sys/dev/ffec/if_ffec.c 276285 2014-12-27 04:35:18Z ian $");
30
31/*
32 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
33 * others.  Also works for the ENET Gigibit controller found on imx6 and imx28,
34 * but the driver doesn't currently use any of the ENET advanced features other
35 * than enabling gigabit.
36 *
37 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
38 * (netgraph/ng_fec.c), so we use 'ffec'.
39 *
40 * Requires an FDT entry with at least these properties:
41 *   fec: ethernet@02188000 {
42 *      compatible = "fsl,imxNN-fec";
43 *      reg = <0x02188000 0x4000>;
44 *      interrupts = <150 151>;
45 *      phy-mode = "rgmii";
46 *      phy-disable-preamble; // optional
47 *   };
48 * The second interrupt number is for IEEE-1588, and is not currently used; it
49 * need not be present.  phy-mode must be one of: "mii", "rmii", "rgmii".
50 * There is also an optional property, phy-disable-preamble, which if present
51 * will disable the preamble bits, cutting the size of each mdio transaction
52 * (and thus the busy-wait time) in half.
53 */
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/bus.h>
58#include <sys/endian.h>
59#include <sys/kernel.h>
60#include <sys/lock.h>
61#include <sys/malloc.h>
62#include <sys/mbuf.h>
63#include <sys/module.h>
64#include <sys/mutex.h>
65#include <sys/rman.h>
66#include <sys/socket.h>
67#include <sys/sockio.h>
68#include <sys/sysctl.h>
69
70#include <machine/bus.h>
71
72#include <net/bpf.h>
73#include <net/if.h>
74#include <net/ethernet.h>
75#include <net/if_dl.h>
76#include <net/if_media.h>
77#include <net/if_types.h>
78#include <net/if_var.h>
79#include <net/if_vlan_var.h>
80
81#include <dev/ffec/if_ffecreg.h>
82#include <dev/ofw/ofw_bus.h>
83#include <dev/ofw/ofw_bus_subr.h>
84#include <dev/mii/mii.h>
85#include <dev/mii/miivar.h>
86#include "miibus_if.h"
87
88/*
89 * There are small differences in the hardware on various SoCs.  Not every SoC
90 * we support has its own FECTYPE; most work as GENERIC and only the ones that
91 * need different handling get their own entry.  In addition to the types in
92 * this list, there are some flags below that can be ORed into the upper bits.
93 */
94enum {
95	FECTYPE_NONE,
96	FECTYPE_GENERIC,
97	FECTYPE_IMX53,
98	FECTYPE_IMX6,
99};
100
101/*
102 * Flags that describe general differences between the FEC hardware in various
103 * SoCs.  These are ORed into the FECTYPE enum values.
104 */
105#define	FECTYPE_MASK		0x0000ffff
106#define	FECFLAG_GBE		(0x0001 << 16)
107
108/*
109 * Table of supported FDT compat strings and their associated FECTYPE values.
110 */
111static struct ofw_compat_data compat_data[] = {
112	{"fsl,imx51-fec",	FECTYPE_GENERIC},
113	{"fsl,imx53-fec",	FECTYPE_IMX53},
114	{"fsl,imx6q-fec",	FECTYPE_IMX6 | FECFLAG_GBE},
115	{"fsl,mvf600-fec",	FECTYPE_GENERIC},
116	{"fsl,vf-fec",		FECTYPE_GENERIC},
117	{NULL,		 	FECTYPE_NONE},
118};
119
120/*
121 * Driver data and defines.
122 */
123#define	RX_DESC_COUNT	64
124#define	RX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
125#define	TX_DESC_COUNT	64
126#define	TX_DESC_SIZE	(sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
127
128#define	WATCHDOG_TIMEOUT_SECS	5
129#define	STATS_HARVEST_INTERVAL	3
130
131struct ffec_bufmap {
132	struct mbuf	*mbuf;
133	bus_dmamap_t	map;
134};
135
136enum {
137	PHY_CONN_UNKNOWN,
138	PHY_CONN_MII,
139	PHY_CONN_RMII,
140	PHY_CONN_RGMII
141};
142
143struct ffec_softc {
144	device_t		dev;
145	device_t		miibus;
146	struct mii_data *	mii_softc;
147	struct ifnet		*ifp;
148	int			if_flags;
149	struct mtx		mtx;
150	struct resource		*irq_res;
151	struct resource		*mem_res;
152	void *			intr_cookie;
153	struct callout		ffec_callout;
154	uint8_t			phy_conn_type;
155	uint8_t			fectype;
156	boolean_t		link_is_up;
157	boolean_t		is_attached;
158	boolean_t		is_detaching;
159	int			tx_watchdog_count;
160	int			stats_harvest_count;
161
162	bus_dma_tag_t		rxdesc_tag;
163	bus_dmamap_t		rxdesc_map;
164	struct ffec_hwdesc	*rxdesc_ring;
165	bus_addr_t		rxdesc_ring_paddr;
166	bus_dma_tag_t		rxbuf_tag;
167	struct ffec_bufmap	rxbuf_map[RX_DESC_COUNT];
168	uint32_t		rx_idx;
169
170	bus_dma_tag_t		txdesc_tag;
171	bus_dmamap_t		txdesc_map;
172	struct ffec_hwdesc	*txdesc_ring;
173	bus_addr_t		txdesc_ring_paddr;
174	bus_dma_tag_t		txbuf_tag;
175	struct ffec_bufmap	txbuf_map[RX_DESC_COUNT];
176	uint32_t		tx_idx_head;
177	uint32_t		tx_idx_tail;
178	int			txcount;
179};
180
181#define	FFEC_LOCK(sc)			mtx_lock(&(sc)->mtx)
182#define	FFEC_UNLOCK(sc)			mtx_unlock(&(sc)->mtx)
183#define	FFEC_LOCK_INIT(sc)		mtx_init(&(sc)->mtx, \
184	    device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
185#define	FFEC_LOCK_DESTROY(sc)		mtx_destroy(&(sc)->mtx);
186#define	FFEC_ASSERT_LOCKED(sc)		mtx_assert(&(sc)->mtx, MA_OWNED);
187#define	FFEC_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED);
188
189static void ffec_init_locked(struct ffec_softc *sc);
190static void ffec_stop_locked(struct ffec_softc *sc);
191static void ffec_txstart_locked(struct ffec_softc *sc);
192static void ffec_txfinish_locked(struct ffec_softc *sc);
193
194static inline uint16_t
195RD2(struct ffec_softc *sc, bus_size_t off)
196{
197
198	return (bus_read_2(sc->mem_res, off));
199}
200
201static inline void
202WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
203{
204
205	bus_write_2(sc->mem_res, off, val);
206}
207
208static inline uint32_t
209RD4(struct ffec_softc *sc, bus_size_t off)
210{
211
212	return (bus_read_4(sc->mem_res, off));
213}
214
215static inline void
216WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
217{
218
219	bus_write_4(sc->mem_res, off, val);
220}
221
222static inline uint32_t
223next_rxidx(struct ffec_softc *sc, uint32_t curidx)
224{
225
226	return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
227}
228
229static inline uint32_t
230next_txidx(struct ffec_softc *sc, uint32_t curidx)
231{
232
233	return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
234}
235
236static void
237ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
238{
239
240	if (error != 0)
241		return;
242	*(bus_addr_t *)arg = segs[0].ds_addr;
243}
244
245static void
246ffec_miigasket_setup(struct ffec_softc *sc)
247{
248	uint32_t ifmode;
249
250	/*
251	 * We only need the gasket for MII and RMII connections on certain SoCs.
252	 */
253
254	switch (sc->fectype & FECTYPE_MASK)
255	{
256	case FECTYPE_IMX53:
257		break;
258	default:
259		return;
260	}
261
262	switch (sc->phy_conn_type)
263	{
264	case PHY_CONN_MII:
265		ifmode = 0;
266		break;
267	case PHY_CONN_RMII:
268		ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
269		break;
270	default:
271		return;
272	}
273
274	/*
275	 * Disable the gasket, configure for either MII or RMII, then enable.
276	 */
277
278	WR2(sc, FEC_MIIGSK_ENR, 0);
279	while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
280		continue;
281
282	WR2(sc, FEC_MIIGSK_CFGR, ifmode);
283
284	WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
285	while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
286		continue;
287}
288
289static boolean_t
290ffec_miibus_iowait(struct ffec_softc *sc)
291{
292	uint32_t timeout;
293
294	for (timeout = 10000; timeout != 0; --timeout)
295		if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
296			return (true);
297
298	return (false);
299}
300
301static int
302ffec_miibus_readreg(device_t dev, int phy, int reg)
303{
304	struct ffec_softc *sc;
305	int val;
306
307	sc = device_get_softc(dev);
308
309	WR4(sc, FEC_IER_REG, FEC_IER_MII);
310
311	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
312	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
313	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
314	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
315
316	if (!ffec_miibus_iowait(sc)) {
317		device_printf(dev, "timeout waiting for mii read\n");
318		return (-1); /* All-ones is a symptom of bad mdio. */
319	}
320
321	val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
322
323	return (val);
324}
325
326static int
327ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
328{
329	struct ffec_softc *sc;
330
331	sc = device_get_softc(dev);
332
333	WR4(sc, FEC_IER_REG, FEC_IER_MII);
334
335	WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
336	    FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
337	    ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
338	    ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
339	    (val & FEC_MMFR_DATA_MASK));
340
341	if (!ffec_miibus_iowait(sc)) {
342		device_printf(dev, "timeout waiting for mii write\n");
343		return (-1);
344	}
345
346	return (0);
347}
348
349static void
350ffec_miibus_statchg(device_t dev)
351{
352	struct ffec_softc *sc;
353	struct mii_data *mii;
354	uint32_t ecr, rcr, tcr;
355
356	/*
357	 * Called by the MII bus driver when the PHY establishes link to set the
358	 * MAC interface registers.
359	 */
360
361	sc = device_get_softc(dev);
362
363	FFEC_ASSERT_LOCKED(sc);
364
365	mii = sc->mii_softc;
366
367	if (mii->mii_media_status & IFM_ACTIVE)
368		sc->link_is_up = true;
369	else
370		sc->link_is_up = false;
371
372	ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
373	rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
374	    FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
375	tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
376
377	rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
378	switch (sc->phy_conn_type) {
379	case PHY_CONN_MII:
380		break;
381	case PHY_CONN_RMII:
382		rcr |= FEC_RCR_RMII_MODE;
383		break;
384	case PHY_CONN_RGMII:
385		rcr |= FEC_RCR_RGMII_EN;
386		break;
387	}
388
389	switch (IFM_SUBTYPE(mii->mii_media_active)) {
390	case IFM_1000_T:
391	case IFM_1000_SX:
392		ecr |= FEC_ECR_SPEED;
393		break;
394	case IFM_100_TX:
395		/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
396		break;
397	case IFM_10_T:
398		rcr |= FEC_RCR_RMII_10T;
399		break;
400	case IFM_NONE:
401		sc->link_is_up = false;
402		return;
403	default:
404		sc->link_is_up = false;
405		device_printf(dev, "Unsupported media %u\n",
406		    IFM_SUBTYPE(mii->mii_media_active));
407		return;
408	}
409
410	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
411		tcr |= FEC_TCR_FDEN;
412	else
413		rcr |= FEC_RCR_DRT;
414
415	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
416		rcr |= FEC_RCR_FCE;
417
418	WR4(sc, FEC_RCR_REG, rcr);
419	WR4(sc, FEC_TCR_REG, tcr);
420	WR4(sc, FEC_ECR_REG, ecr);
421}
422
423static void
424ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
425{
426	struct ffec_softc *sc;
427	struct mii_data *mii;
428
429
430	sc = ifp->if_softc;
431	mii = sc->mii_softc;
432	FFEC_LOCK(sc);
433	mii_pollstat(mii);
434	ifmr->ifm_active = mii->mii_media_active;
435	ifmr->ifm_status = mii->mii_media_status;
436	FFEC_UNLOCK(sc);
437}
438
439static int
440ffec_media_change_locked(struct ffec_softc *sc)
441{
442
443	return (mii_mediachg(sc->mii_softc));
444}
445
446static int
447ffec_media_change(struct ifnet * ifp)
448{
449	struct ffec_softc *sc;
450	int error;
451
452	sc = ifp->if_softc;
453
454	FFEC_LOCK(sc);
455	error = ffec_media_change_locked(sc);
456	FFEC_UNLOCK(sc);
457	return (error);
458}
459
460static void ffec_clear_stats(struct ffec_softc *sc)
461{
462
463	WR4(sc, FEC_RMON_R_PACKETS, 0);
464	WR4(sc, FEC_RMON_R_MC_PKT, 0);
465	WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
466	WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
467	WR4(sc, FEC_RMON_R_OVERSIZE, 0);
468	WR4(sc, FEC_RMON_R_FRAG, 0);
469	WR4(sc, FEC_RMON_R_JAB, 0);
470	WR4(sc, FEC_RMON_T_PACKETS, 0);
471	WR4(sc, FEC_RMON_T_MC_PKT, 0);
472	WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
473	WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
474	WR4(sc, FEC_RMON_T_OVERSIZE , 0);
475	WR4(sc, FEC_RMON_T_FRAG, 0);
476	WR4(sc, FEC_RMON_T_JAB, 0);
477	WR4(sc, FEC_RMON_T_COL, 0);
478}
479
480static void
481ffec_harvest_stats(struct ffec_softc *sc)
482{
483	struct ifnet *ifp;
484
485	/* We don't need to harvest too often. */
486	if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
487		return;
488
489	/*
490	 * Try to avoid harvesting unless the IDLE flag is on, but if it has
491	 * been too long just go ahead and do it anyway, the worst that'll
492	 * happen is we'll lose a packet count or two as we clear at the end.
493	 */
494	if (sc->stats_harvest_count < (2 * STATS_HARVEST_INTERVAL) &&
495	    ((RD4(sc, FEC_MIBC_REG) & FEC_MIBC_IDLE) == 0))
496		return;
497
498	sc->stats_harvest_count = 0;
499	ifp = sc->ifp;
500
501	ifp->if_ipackets   += RD4(sc, FEC_RMON_R_PACKETS);
502	ifp->if_imcasts    += RD4(sc, FEC_RMON_R_MC_PKT);
503	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_CRC_ALIGN);
504	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_UNDERSIZE);
505	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_OVERSIZE);
506	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_FRAG);
507	ifp->if_ierrors    += RD4(sc, FEC_RMON_R_JAB);
508
509	ifp->if_opackets   += RD4(sc, FEC_RMON_T_PACKETS);
510	ifp->if_omcasts    += RD4(sc, FEC_RMON_T_MC_PKT);
511	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_CRC_ALIGN);
512	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_UNDERSIZE);
513	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_OVERSIZE );
514	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_FRAG);
515	ifp->if_oerrors    += RD4(sc, FEC_RMON_T_JAB);
516
517	ifp->if_collisions += RD4(sc, FEC_RMON_T_COL);
518
519	ffec_clear_stats(sc);
520}
521
522static void
523ffec_tick(void *arg)
524{
525	struct ffec_softc *sc;
526	struct ifnet *ifp;
527	int link_was_up;
528
529	sc = arg;
530
531	FFEC_ASSERT_LOCKED(sc);
532
533	ifp = sc->ifp;
534
535	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
536	    return;
537
538	/*
539	 * Typical tx watchdog.  If this fires it indicates that we enqueued
540	 * packets for output and never got a txdone interrupt for them.  Maybe
541	 * it's a missed interrupt somehow, just pretend we got one.
542	 */
543	if (sc->tx_watchdog_count > 0) {
544		if (--sc->tx_watchdog_count == 0) {
545			ffec_txfinish_locked(sc);
546		}
547	}
548
549	/* Gather stats from hardware counters. */
550	ffec_harvest_stats(sc);
551
552	/* Check the media status. */
553	link_was_up = sc->link_is_up;
554	mii_tick(sc->mii_softc);
555	if (sc->link_is_up && !link_was_up)
556		ffec_txstart_locked(sc);
557
558	/* Schedule another check one second from now. */
559	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
560}
561
562inline static uint32_t
563ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
564    uint32_t len)
565{
566	uint32_t nidx;
567	uint32_t flags;
568
569	nidx = next_txidx(sc, idx);
570
571	/* Addr/len 0 means we're clearing the descriptor after xmit done. */
572	if (paddr == 0 || len == 0) {
573		flags = 0;
574		--sc->txcount;
575	} else {
576		flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
577		++sc->txcount;
578	}
579	if (nidx == 0)
580		flags |= FEC_TXDESC_WRAP;
581
582	/*
583	 * The hardware requires 32-bit physical addresses.  We set up the dma
584	 * tag to indicate that, so the cast to uint32_t should never lose
585	 * significant bits.
586	 */
587	sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
588	sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
589
590	return (nidx);
591}
592
593static int
594ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
595{
596	struct mbuf * m;
597	int error, nsegs;
598	struct bus_dma_segment seg;
599
600	if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
601		return (ENOMEM);
602	*mp = m;
603
604	error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
605	    m, &seg, &nsegs, 0);
606	if (error != 0) {
607		return (ENOMEM);
608	}
609	bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
610	    BUS_DMASYNC_PREWRITE);
611
612	sc->txbuf_map[idx].mbuf = m;
613	ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
614
615	return (0);
616
617}
618
619static void
620ffec_txstart_locked(struct ffec_softc *sc)
621{
622	struct ifnet *ifp;
623	struct mbuf *m;
624	int enqueued;
625
626	FFEC_ASSERT_LOCKED(sc);
627
628	if (!sc->link_is_up)
629		return;
630
631	ifp = sc->ifp;
632
633	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
634		return;
635
636	enqueued = 0;
637
638	for (;;) {
639		if (sc->txcount == (TX_DESC_COUNT-1)) {
640			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
641			break;
642		}
643		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
644		if (m == NULL)
645			break;
646		if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
647			IFQ_DRV_PREPEND(&ifp->if_snd, m);
648			break;
649		}
650		BPF_MTAP(ifp, m);
651		sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
652		++enqueued;
653	}
654
655	if (enqueued != 0) {
656		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE);
657		WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
658		bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE);
659		sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
660	}
661}
662
663static void
664ffec_txstart(struct ifnet *ifp)
665{
666	struct ffec_softc *sc = ifp->if_softc;
667
668	FFEC_LOCK(sc);
669	ffec_txstart_locked(sc);
670	FFEC_UNLOCK(sc);
671}
672
673static void
674ffec_txfinish_locked(struct ffec_softc *sc)
675{
676	struct ifnet *ifp;
677	struct ffec_hwdesc *desc;
678	struct ffec_bufmap *bmap;
679	boolean_t retired_buffer;
680
681	FFEC_ASSERT_LOCKED(sc);
682
683	/* XXX Can't set PRE|POST right now, but we need both. */
684	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD);
685	bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD);
686	ifp = sc->ifp;
687	retired_buffer = false;
688	while (sc->tx_idx_tail != sc->tx_idx_head) {
689		desc = &sc->txdesc_ring[sc->tx_idx_tail];
690		if (desc->flags_len & FEC_TXDESC_READY)
691			break;
692		retired_buffer = true;
693		bmap = &sc->txbuf_map[sc->tx_idx_tail];
694		bus_dmamap_sync(sc->txbuf_tag, bmap->map,
695		    BUS_DMASYNC_POSTWRITE);
696		bus_dmamap_unload(sc->txbuf_tag, bmap->map);
697		m_freem(bmap->mbuf);
698		bmap->mbuf = NULL;
699		ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
700		sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
701	}
702
703	/*
704	 * If we retired any buffers, there will be open tx slots available in
705	 * the descriptor ring, go try to start some new output.
706	 */
707	if (retired_buffer) {
708		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
709		ffec_txstart_locked(sc);
710	}
711
712	/* If there are no buffers outstanding, muzzle the watchdog. */
713	if (sc->tx_idx_tail == sc->tx_idx_head) {
714		sc->tx_watchdog_count = 0;
715	}
716}
717
718inline static uint32_t
719ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
720{
721	uint32_t nidx;
722
723	/*
724	 * The hardware requires 32-bit physical addresses.  We set up the dma
725	 * tag to indicate that, so the cast to uint32_t should never lose
726	 * significant bits.
727	 */
728	nidx = next_rxidx(sc, idx);
729	sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
730	sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
731		((nidx == 0) ? FEC_RXDESC_WRAP : 0);
732
733	return (nidx);
734}
735
736static int
737ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
738{
739	int error, nsegs;
740	struct bus_dma_segment seg;
741
742	/*
743	 * We need to leave at least ETHER_ALIGN bytes free at the beginning of
744	 * the buffer to allow the data to be re-aligned after receiving it (by
745	 * copying it backwards ETHER_ALIGN bytes in the same buffer).  We also
746	 * have to ensure that the beginning of the buffer is aligned to the
747	 * hardware's requirements.
748	 */
749	m_adj(m, roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN));
750
751	error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
752	    m, &seg, &nsegs, 0);
753	if (error != 0) {
754		return (error);
755	}
756
757	bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
758	    BUS_DMASYNC_PREREAD);
759
760	sc->rxbuf_map[idx].mbuf = m;
761	ffec_setup_rxdesc(sc, idx, seg.ds_addr);
762
763	return (0);
764}
765
766static struct mbuf *
767ffec_alloc_mbufcl(struct ffec_softc *sc)
768{
769	struct mbuf *m;
770
771	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
772	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
773
774	return (m);
775}
776
777static void
778ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
779{
780	struct mbuf *m, *newmbuf;
781	struct ffec_bufmap *bmap;
782	uint8_t *dst, *src;
783	int error;
784
785	/*
786	 *  First try to get a new mbuf to plug into this slot in the rx ring.
787	 *  If that fails, drop the current packet and recycle the current
788	 *  mbuf, which is still mapped and loaded.
789	 */
790	if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
791		++sc->ifp->if_iqdrops;
792		ffec_setup_rxdesc(sc, sc->rx_idx,
793		    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
794		return;
795	}
796
797	/*
798	 *  Unfortunately, the protocol headers need to be aligned on a 32-bit
799	 *  boundary for the upper layers.  The hardware requires receive
800	 *  buffers to be 16-byte aligned.  The ethernet header is 14 bytes,
801	 *  leaving the protocol header unaligned.  We used m_adj() after
802	 *  allocating the buffer to leave empty space at the start of the
803	 *  buffer, now we'll use the alignment agnostic bcopy() routine to
804	 *  shuffle all the data backwards 2 bytes and adjust m_data.
805	 *
806	 *  XXX imx6 hardware is able to do this 2-byte alignment by setting the
807	 *  SHIFT16 bit in the RACC register.  Older hardware doesn't have that
808	 *  feature, but for them could we speed this up by copying just the
809	 *  protocol headers into their own small mbuf then chaining the cluster
810	 *  to it?  That way we'd only need to copy like 64 bytes or whatever
811	 *  the biggest header is, instead of the whole 1530ish-byte frame.
812	 */
813
814	FFEC_UNLOCK(sc);
815
816	bmap = &sc->rxbuf_map[sc->rx_idx];
817	len -= ETHER_CRC_LEN;
818	bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
819	bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
820	m = bmap->mbuf;
821	bmap->mbuf = NULL;
822	m->m_len = len;
823	m->m_pkthdr.len = len;
824	m->m_pkthdr.rcvif = sc->ifp;
825
826	src = mtod(m, uint8_t*);
827	dst = src - ETHER_ALIGN;
828	bcopy(src, dst, len);
829	m->m_data = dst;
830	sc->ifp->if_input(sc->ifp, m);
831
832	FFEC_LOCK(sc);
833
834	if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
835		device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
836		/* XXX Now what?  We've got a hole in the rx ring. */
837	}
838
839}
840
841static void
842ffec_rxfinish_locked(struct ffec_softc *sc)
843{
844	struct ffec_hwdesc *desc;
845	int len;
846	boolean_t produced_empty_buffer;
847
848	FFEC_ASSERT_LOCKED(sc);
849
850	/* XXX Can't set PRE|POST right now, but we need both. */
851	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD);
852	bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD);
853	produced_empty_buffer = false;
854	for (;;) {
855		desc = &sc->rxdesc_ring[sc->rx_idx];
856		if (desc->flags_len & FEC_RXDESC_EMPTY)
857			break;
858		produced_empty_buffer = true;
859		len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
860		if (len < 64) {
861			/*
862			 * Just recycle the descriptor and continue.           .
863			 */
864			ffec_setup_rxdesc(sc, sc->rx_idx,
865			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
866		} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
867			/*
868			 * The entire frame is not in this buffer.  Impossible.
869			 * Recycle the descriptor and continue.
870			 *
871			 * XXX what's the right way to handle this? Probably we
872			 * should stop/init the hardware because this should
873			 * just really never happen when we have buffers bigger
874			 * than the maximum frame size.
875			 */
876			device_printf(sc->dev,
877			    "fec_rxfinish: received frame without LAST bit set");
878			ffec_setup_rxdesc(sc, sc->rx_idx,
879			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
880		} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
881			/*
882			 *  Something went wrong with receiving the frame, we
883			 *  don't care what (the hardware has counted the error
884			 *  in the stats registers already), we just reuse the
885			 *  same mbuf, which is still dma-mapped, by resetting
886			 *  the rx descriptor.
887			 */
888			ffec_setup_rxdesc(sc, sc->rx_idx,
889			    sc->rxdesc_ring[sc->rx_idx].buf_paddr);
890		} else {
891			/*
892			 *  Normal case: a good frame all in one buffer.
893			 */
894			ffec_rxfinish_onebuf(sc, len);
895		}
896		sc->rx_idx = next_rxidx(sc, sc->rx_idx);
897	}
898
899	if (produced_empty_buffer) {
900		bus_dmamap_sync(sc->rxdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE);
901		WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
902		bus_dmamap_sync(sc->rxdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE);
903	}
904}
905
906static void
907ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
908{
909	uint32_t palr, paur, rnd;
910
911	/*
912	 * Try to recover a MAC address from the running hardware. If there's
913	 * something non-zero there, assume the bootloader did the right thing
914	 * and just use it.
915	 *
916	 * Otherwise, set the address to a convenient locally assigned address,
917	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
918	 * assigned bit set, and the broadcast/multicast bit clear.
919	 */
920	palr = RD4(sc, FEC_PALR_REG);
921	paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
922	if ((palr | paur) != 0) {
923		hwaddr[0] = palr >> 24;
924		hwaddr[1] = palr >> 16;
925		hwaddr[2] = palr >>  8;
926		hwaddr[3] = palr >>  0;
927		hwaddr[4] = paur >> 24;
928		hwaddr[5] = paur >> 16;
929	} else {
930		rnd = arc4random() & 0x00ffffff;
931		hwaddr[0] = 'b';
932		hwaddr[1] = 's';
933		hwaddr[2] = 'd';
934		hwaddr[3] = rnd >> 16;
935		hwaddr[4] = rnd >>  8;
936		hwaddr[5] = rnd >>  0;
937	}
938
939	if (bootverbose) {
940		device_printf(sc->dev,
941		    "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
942		    hwaddr[0], hwaddr[1], hwaddr[2],
943		    hwaddr[3], hwaddr[4], hwaddr[5]);
944	}
945}
946
947static void
948ffec_setup_rxfilter(struct ffec_softc *sc)
949{
950	struct ifnet *ifp;
951	struct ifmultiaddr *ifma;
952	uint8_t *eaddr;
953	uint32_t crc;
954	uint64_t ghash, ihash;
955
956	FFEC_ASSERT_LOCKED(sc);
957
958	ifp = sc->ifp;
959
960	/*
961	 * Set the multicast (group) filter hash.
962	 */
963	if ((ifp->if_flags & IFF_ALLMULTI))
964		ghash = 0xffffffffffffffffLLU;
965	else {
966		ghash = 0;
967		if_maddr_rlock(ifp);
968		TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
969			if (ifma->ifma_addr->sa_family != AF_LINK)
970				continue;
971			/* 6 bits from MSB in LE CRC32 are used for hash. */
972			crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
973			    ifma->ifma_addr), ETHER_ADDR_LEN);
974			ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
975		}
976		if_maddr_runlock(ifp);
977	}
978	WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
979	WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
980
981	/*
982	 * Set the individual address filter hash.
983	 *
984	 * XXX Is 0 the right value when promiscuous is off?  This hw feature
985	 * seems to support the concept of MAC address aliases, does such a
986	 * thing even exist?
987	 */
988	if ((ifp->if_flags & IFF_PROMISC))
989		ihash = 0xffffffffffffffffLLU;
990	else {
991		ihash = 0;
992	}
993	WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
994	WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
995
996	/*
997	 * Set the primary address.
998	 */
999	eaddr = IF_LLADDR(ifp);
1000	WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
1001	    (eaddr[2] <<  8) | eaddr[3]);
1002	WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
1003}
1004
1005static void
1006ffec_stop_locked(struct ffec_softc *sc)
1007{
1008	struct ifnet *ifp;
1009	struct ffec_hwdesc *desc;
1010	struct ffec_bufmap *bmap;
1011	int idx;
1012
1013	FFEC_ASSERT_LOCKED(sc);
1014
1015	ifp = sc->ifp;
1016	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1017	sc->tx_watchdog_count = 0;
1018	sc->stats_harvest_count = 0;
1019
1020	/*
1021	 * Stop the hardware, mask all interrupts, and clear all current
1022	 * interrupt status bits.
1023	 */
1024	WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1025	WR4(sc, FEC_IEM_REG, 0x00000000);
1026	WR4(sc, FEC_IER_REG, 0xffffffff);
1027
1028	/*
1029	 * Stop the media-check callout.  Do not use callout_drain() because
1030	 * we're holding a mutex the callout acquires, and if it's currently
1031	 * waiting to acquire it, we'd deadlock.  If it is waiting now, the
1032	 * ffec_tick() routine will return without doing anything when it sees
1033	 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1034	 */
1035	callout_stop(&sc->ffec_callout);
1036
1037	/*
1038	 * Discard all untransmitted buffers.  Each buffer is simply freed;
1039	 * it's as if the bits were transmitted and then lost on the wire.
1040	 *
1041	 * XXX Is this right?  Or should we use IFQ_DRV_PREPEND() to put them
1042	 * back on the queue for when we get restarted later?
1043	 */
1044	idx = sc->tx_idx_tail;
1045	while (idx != sc->tx_idx_head) {
1046		desc = &sc->txdesc_ring[idx];
1047		bmap = &sc->txbuf_map[idx];
1048		if (desc->buf_paddr != 0) {
1049			bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1050			m_freem(bmap->mbuf);
1051			bmap->mbuf = NULL;
1052			ffec_setup_txdesc(sc, idx, 0, 0);
1053		}
1054		idx = next_txidx(sc, idx);
1055	}
1056
1057	/*
1058	 * Discard all unprocessed receive buffers.  This amounts to just
1059	 * pretending that nothing ever got received into them.  We reuse the
1060	 * mbuf already mapped for each desc, simply turning the EMPTY flags
1061	 * back on so they'll get reused when we start up again.
1062	 */
1063	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1064		desc = &sc->rxdesc_ring[idx];
1065		ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1066	}
1067}
1068
1069static void
1070ffec_init_locked(struct ffec_softc *sc)
1071{
1072	struct ifnet *ifp = sc->ifp;
1073	uint32_t maxbuf, maxfl, regval;
1074
1075	FFEC_ASSERT_LOCKED(sc);
1076
1077	/*
1078	 * The hardware has a limit of 0x7ff as the max frame length (see
1079	 * comments for MRBR below), and we use mbuf clusters as receive
1080	 * buffers, and we currently are designed to receive an entire frame
1081	 * into a single buffer.
1082	 *
1083	 * We start with a MCLBYTES-sized cluster, but we have to offset into
1084	 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1085	 * and then that value has to be rounded up to the hardware's DMA
1086	 * alignment requirements, so all in all our buffer is that much smaller
1087	 * than MCLBYTES.
1088	 *
1089	 * The resulting value is used as the frame truncation length and the
1090	 * max buffer receive buffer size for now.  It'll become more complex
1091	 * when we support jumbo frames and receiving fragments of them into
1092	 * separate buffers.
1093	 */
1094	maxbuf = MCLBYTES - roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN);
1095	maxfl = min(maxbuf, 0x7ff);
1096
1097	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1098		return;
1099
1100	/* Mask all interrupts and clear all current interrupt status bits. */
1101	WR4(sc, FEC_IEM_REG, 0x00000000);
1102	WR4(sc, FEC_IER_REG, 0xffffffff);
1103
1104	/*
1105	 * Go set up palr/puar, galr/gaur, ialr/iaur.
1106	 */
1107	ffec_setup_rxfilter(sc);
1108
1109	/*
1110	 * TFWR - Transmit FIFO watermark register.
1111	 *
1112	 * Set the transmit fifo watermark register to "store and forward" mode
1113	 * and also set a threshold of 128 bytes in the fifo before transmission
1114	 * of a frame begins (to avoid dma underruns).  Recent FEC hardware
1115	 * supports STRFWD and when that bit is set, the watermark level in the
1116	 * low bits is ignored.  Older hardware doesn't have STRFWD, but writing
1117	 * to that bit is innocuous, and the TWFR bits get used instead.
1118	 */
1119	WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1120
1121	/* RCR - Receive control register.
1122	 *
1123	 * Set max frame length + clean out anything left from u-boot.
1124	 */
1125	WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1126
1127	/*
1128	 * TCR - Transmit control register.
1129	 *
1130	 * Clean out anything left from u-boot.  Any necessary values are set in
1131	 * ffec_miibus_statchg() based on the media type.
1132	 */
1133	WR4(sc, FEC_TCR_REG, 0);
1134
1135	/*
1136	 * OPD - Opcode/pause duration.
1137	 *
1138	 * XXX These magic numbers come from u-boot.
1139	 */
1140	WR4(sc, FEC_OPD_REG, 0x00010020);
1141
1142	/*
1143	 * FRSR - Fifo receive start register.
1144	 *
1145	 * This register does not exist on imx6, it is present on earlier
1146	 * hardware. The u-boot code sets this to a non-default value that's 32
1147	 * bytes larger than the default, with no clue as to why.  The default
1148	 * value should work fine, so there's no code to init it here.
1149	 */
1150
1151	/*
1152	 *  MRBR - Max RX buffer size.
1153	 *
1154	 *  Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1155	 *  but the datasheet says no such thing for imx6.  On the imx6, setting
1156	 *  this to 2K without setting EN1588 resulted in a crazy runaway
1157	 *  receive loop in the hardware, where every rx descriptor in the ring
1158	 *  had its EMPTY flag cleared, no completion or error flags set, and a
1159	 *  length of zero.  I think maybe you can only exceed it when EN1588 is
1160	 *  set, like maybe that's what enables jumbo frames, because in general
1161	 *  the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1162	 *  compatible" flag.
1163	 */
1164	WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1165
1166	/*
1167	 * FTRL - Frame truncation length.
1168	 *
1169	 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1170	 */
1171	WR4(sc, FEC_FTRL_REG, maxfl);
1172
1173	/*
1174	 * RDSR / TDSR descriptor ring pointers.
1175	 *
1176	 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1177	 * internal current descriptor index values for both rings, so we zero
1178	 * our index values as well.
1179	 */
1180	sc->rx_idx = 0;
1181	sc->tx_idx_head = sc->tx_idx_tail = 0;
1182	sc->txcount = 0;
1183	WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1184	WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1185
1186	/*
1187	 * EIM - interrupt mask register.
1188	 *
1189	 * We always enable the same set of interrupts while running; unlike
1190	 * some drivers there's no need to change the mask on the fly depending
1191	 * on what operations are in progress.
1192	 */
1193	WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1194
1195	/*
1196	 * MIBC - MIB control (hardware stats).
1197	 */
1198	regval = RD4(sc, FEC_MIBC_REG);
1199	WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1200	ffec_clear_stats(sc);
1201	WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1202
1203	/*
1204	 * ECR - Ethernet control register.
1205	 *
1206	 * This must happen after all the other config registers are set.  If
1207	 * we're running on little-endian hardware, also set the flag for byte-
1208	 * swapping descriptor ring entries.  This flag doesn't exist on older
1209	 * hardware, but it can be safely set -- the bit position it occupies
1210	 * was unused.
1211	 */
1212	regval = RD4(sc, FEC_ECR_REG);
1213#if _BYTE_ORDER == _LITTLE_ENDIAN
1214	regval |= FEC_ECR_DBSWP;
1215#endif
1216	regval |= FEC_ECR_ETHEREN;
1217	WR4(sc, FEC_ECR_REG, regval);
1218
1219	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1220
1221       /*
1222	* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1223	* set up the remaining config registers based on the current media.
1224	*/
1225	mii_mediachg(sc->mii_softc);
1226	callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1227
1228	/*
1229	 * Tell the hardware that receive buffers are available.  They were made
1230	 * available in ffec_attach() or ffec_stop().
1231	 */
1232	WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1233}
1234
1235static void
1236ffec_init(void *if_softc)
1237{
1238	struct ffec_softc *sc = if_softc;
1239
1240	FFEC_LOCK(sc);
1241	ffec_init_locked(sc);
1242	FFEC_UNLOCK(sc);
1243}
1244
1245static void
1246ffec_intr(void *arg)
1247{
1248	struct ffec_softc *sc;
1249	uint32_t ier;
1250
1251	sc = arg;
1252
1253	FFEC_LOCK(sc);
1254
1255	ier = RD4(sc, FEC_IER_REG);
1256
1257	if (ier & FEC_IER_TXF) {
1258		WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1259		ffec_txfinish_locked(sc);
1260	}
1261
1262	if (ier & FEC_IER_RXF) {
1263		WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1264		ffec_rxfinish_locked(sc);
1265	}
1266
1267	/*
1268	 * We actually don't care about most errors, because the hardware copes
1269	 * with them just fine, discarding the incoming bad frame, or forcing a
1270	 * bad CRC onto an outgoing bad frame, and counting the errors in the
1271	 * stats registers.  The one that really matters is EBERR (DMA bus
1272	 * error) because the hardware automatically clears ECR[ETHEREN] and we
1273	 * have to restart it here.  It should never happen.
1274	 */
1275	if (ier & FEC_IER_EBERR) {
1276		WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1277		device_printf(sc->dev,
1278		    "Ethernet DMA error, restarting controller.\n");
1279		ffec_stop_locked(sc);
1280		ffec_init_locked(sc);
1281	}
1282
1283	FFEC_UNLOCK(sc);
1284
1285}
1286
1287static int
1288ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1289{
1290	struct ffec_softc *sc;
1291	struct mii_data *mii;
1292	struct ifreq *ifr;
1293	int mask, error;
1294
1295	sc = ifp->if_softc;
1296	ifr = (struct ifreq *)data;
1297
1298	error = 0;
1299	switch (cmd) {
1300	case SIOCSIFFLAGS:
1301		FFEC_LOCK(sc);
1302		if (ifp->if_flags & IFF_UP) {
1303			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1304				if ((ifp->if_flags ^ sc->if_flags) &
1305				    (IFF_PROMISC | IFF_ALLMULTI))
1306					ffec_setup_rxfilter(sc);
1307			} else {
1308				if (!sc->is_detaching)
1309					ffec_init_locked(sc);
1310			}
1311		} else {
1312			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1313				ffec_stop_locked(sc);
1314		}
1315		sc->if_flags = ifp->if_flags;
1316		FFEC_UNLOCK(sc);
1317		break;
1318
1319	case SIOCADDMULTI:
1320	case SIOCDELMULTI:
1321		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1322			FFEC_LOCK(sc);
1323			ffec_setup_rxfilter(sc);
1324			FFEC_UNLOCK(sc);
1325		}
1326		break;
1327
1328	case SIOCSIFMEDIA:
1329	case SIOCGIFMEDIA:
1330		mii = sc->mii_softc;
1331		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1332		break;
1333
1334	case SIOCSIFCAP:
1335		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1336		if (mask & IFCAP_VLAN_MTU) {
1337			/* No work to do except acknowledge the change took. */
1338			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1339		}
1340		break;
1341
1342	default:
1343		error = ether_ioctl(ifp, cmd, data);
1344		break;
1345	}
1346
1347	return (error);
1348}
1349
1350static int
1351ffec_detach(device_t dev)
1352{
1353	struct ffec_softc *sc;
1354	bus_dmamap_t map;
1355	int idx;
1356
1357	/*
1358	 * NB: This function can be called internally to unwind a failure to
1359	 * attach. Make sure a resource got allocated/created before destroying.
1360	 */
1361
1362	sc = device_get_softc(dev);
1363
1364	if (sc->is_attached) {
1365		FFEC_LOCK(sc);
1366		sc->is_detaching = true;
1367		ffec_stop_locked(sc);
1368		FFEC_UNLOCK(sc);
1369		callout_drain(&sc->ffec_callout);
1370		ether_ifdetach(sc->ifp);
1371	}
1372
1373	/* XXX no miibus detach? */
1374
1375	/* Clean up RX DMA resources and free mbufs. */
1376	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1377		if ((map = sc->rxbuf_map[idx].map) != NULL) {
1378			bus_dmamap_unload(sc->rxbuf_tag, map);
1379			bus_dmamap_destroy(sc->rxbuf_tag, map);
1380			m_freem(sc->rxbuf_map[idx].mbuf);
1381		}
1382	}
1383	if (sc->rxbuf_tag != NULL)
1384		bus_dma_tag_destroy(sc->rxbuf_tag);
1385	if (sc->rxdesc_map != NULL) {
1386		bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1387		bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1388	}
1389	if (sc->rxdesc_tag != NULL)
1390	bus_dma_tag_destroy(sc->rxdesc_tag);
1391
1392	/* Clean up TX DMA resources. */
1393	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1394		if ((map = sc->txbuf_map[idx].map) != NULL) {
1395			/* TX maps are already unloaded. */
1396			bus_dmamap_destroy(sc->txbuf_tag, map);
1397		}
1398	}
1399	if (sc->txbuf_tag != NULL)
1400		bus_dma_tag_destroy(sc->txbuf_tag);
1401	if (sc->txdesc_map != NULL) {
1402		bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1403		bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1404	}
1405	if (sc->txdesc_tag != NULL)
1406	bus_dma_tag_destroy(sc->txdesc_tag);
1407
1408	/* Release bus resources. */
1409	if (sc->intr_cookie)
1410		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
1411
1412	if (sc->irq_res != NULL)
1413		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
1414
1415	if (sc->mem_res != NULL)
1416		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1417
1418	FFEC_LOCK_DESTROY(sc);
1419	return (0);
1420}
1421
1422static int
1423ffec_attach(device_t dev)
1424{
1425	struct ffec_softc *sc;
1426	struct ifnet *ifp = NULL;
1427	struct mbuf *m;
1428	phandle_t ofw_node;
1429	int error, rid;
1430	uint8_t eaddr[ETHER_ADDR_LEN];
1431	char phy_conn_name[32];
1432	uint32_t idx, mscr;
1433
1434	sc = device_get_softc(dev);
1435	sc->dev = dev;
1436
1437	FFEC_LOCK_INIT(sc);
1438
1439	/*
1440	 * There are differences in the implementation and features of the FEC
1441	 * hardware on different SoCs, so figure out what type we are.
1442	 */
1443	sc->fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1444
1445	/*
1446	 * We have to be told what kind of electrical connection exists between
1447	 * the MAC and PHY or we can't operate correctly.
1448	 */
1449	if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1450		device_printf(dev, "Impossible: Can't find ofw bus node\n");
1451		error = ENXIO;
1452		goto out;
1453	}
1454	if (OF_searchprop(ofw_node, "phy-mode",
1455	    phy_conn_name, sizeof(phy_conn_name)) != -1) {
1456		if (strcasecmp(phy_conn_name, "mii") == 0)
1457			sc->phy_conn_type = PHY_CONN_MII;
1458		else if (strcasecmp(phy_conn_name, "rmii") == 0)
1459			sc->phy_conn_type = PHY_CONN_RMII;
1460		else if (strcasecmp(phy_conn_name, "rgmii") == 0)
1461			sc->phy_conn_type = PHY_CONN_RGMII;
1462	}
1463	if (sc->phy_conn_type == PHY_CONN_UNKNOWN) {
1464		device_printf(sc->dev, "No valid 'phy-mode' "
1465		    "property found in FDT data for device.\n");
1466		error = ENOATTR;
1467		goto out;
1468	}
1469
1470	callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1471
1472	/* Allocate bus resources for accessing the hardware. */
1473	rid = 0;
1474	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1475	    RF_ACTIVE);
1476	if (sc->mem_res == NULL) {
1477		device_printf(dev, "could not allocate memory resources.\n");
1478		error = ENOMEM;
1479		goto out;
1480	}
1481	rid = 0;
1482	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1483	    RF_ACTIVE);
1484	if (sc->irq_res == NULL) {
1485		device_printf(dev, "could not allocate interrupt resources.\n");
1486		error = ENOMEM;
1487		goto out;
1488	}
1489
1490	/*
1491	 * Set up TX descriptor ring, descriptors, and dma maps.
1492	 */
1493	error = bus_dma_tag_create(
1494	    bus_get_dma_tag(dev),	/* Parent tag. */
1495	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1496	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1497	    BUS_SPACE_MAXADDR,		/* highaddr */
1498	    NULL, NULL,			/* filter, filterarg */
1499	    TX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1500	    TX_DESC_SIZE,		/* maxsegsize */
1501	    0,				/* flags */
1502	    NULL, NULL,			/* lockfunc, lockarg */
1503	    &sc->txdesc_tag);
1504	if (error != 0) {
1505		device_printf(sc->dev,
1506		    "could not create TX ring DMA tag.\n");
1507		goto out;
1508	}
1509
1510	error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1511	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1512	if (error != 0) {
1513		device_printf(sc->dev,
1514		    "could not allocate TX descriptor ring.\n");
1515		goto out;
1516	}
1517
1518	error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1519	    TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1520	if (error != 0) {
1521		device_printf(sc->dev,
1522		    "could not load TX descriptor ring map.\n");
1523		goto out;
1524	}
1525
1526	error = bus_dma_tag_create(
1527	    bus_get_dma_tag(dev),	/* Parent tag. */
1528	    FEC_TXBUF_ALIGN, 0,		/* alignment, boundary */
1529	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1530	    BUS_SPACE_MAXADDR,		/* highaddr */
1531	    NULL, NULL,			/* filter, filterarg */
1532	    MCLBYTES, 1, 		/* maxsize, nsegments */
1533	    MCLBYTES,			/* maxsegsize */
1534	    0,				/* flags */
1535	    NULL, NULL,			/* lockfunc, lockarg */
1536	    &sc->txbuf_tag);
1537	if (error != 0) {
1538		device_printf(sc->dev,
1539		    "could not create TX ring DMA tag.\n");
1540		goto out;
1541	}
1542
1543	for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1544		error = bus_dmamap_create(sc->txbuf_tag, 0,
1545		    &sc->txbuf_map[idx].map);
1546		if (error != 0) {
1547			device_printf(sc->dev,
1548			    "could not create TX buffer DMA map.\n");
1549			goto out;
1550		}
1551		ffec_setup_txdesc(sc, idx, 0, 0);
1552	}
1553
1554	/*
1555	 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1556	 */
1557	error = bus_dma_tag_create(
1558	    bus_get_dma_tag(dev),	/* Parent tag. */
1559	    FEC_DESC_RING_ALIGN, 0,	/* alignment, boundary */
1560	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1561	    BUS_SPACE_MAXADDR,		/* highaddr */
1562	    NULL, NULL,			/* filter, filterarg */
1563	    RX_DESC_SIZE, 1, 		/* maxsize, nsegments */
1564	    RX_DESC_SIZE,		/* maxsegsize */
1565	    0,				/* flags */
1566	    NULL, NULL,			/* lockfunc, lockarg */
1567	    &sc->rxdesc_tag);
1568	if (error != 0) {
1569		device_printf(sc->dev,
1570		    "could not create RX ring DMA tag.\n");
1571		goto out;
1572	}
1573
1574	error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1575	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1576	if (error != 0) {
1577		device_printf(sc->dev,
1578		    "could not allocate RX descriptor ring.\n");
1579		goto out;
1580	}
1581
1582	error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1583	    RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1584	if (error != 0) {
1585		device_printf(sc->dev,
1586		    "could not load RX descriptor ring map.\n");
1587		goto out;
1588	}
1589
1590	error = bus_dma_tag_create(
1591	    bus_get_dma_tag(dev),	/* Parent tag. */
1592	    1, 0,			/* alignment, boundary */
1593	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1594	    BUS_SPACE_MAXADDR,		/* highaddr */
1595	    NULL, NULL,			/* filter, filterarg */
1596	    MCLBYTES, 1, 		/* maxsize, nsegments */
1597	    MCLBYTES,			/* maxsegsize */
1598	    0,				/* flags */
1599	    NULL, NULL,			/* lockfunc, lockarg */
1600	    &sc->rxbuf_tag);
1601	if (error != 0) {
1602		device_printf(sc->dev,
1603		    "could not create RX buf DMA tag.\n");
1604		goto out;
1605	}
1606
1607	for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1608		error = bus_dmamap_create(sc->rxbuf_tag, 0,
1609		    &sc->rxbuf_map[idx].map);
1610		if (error != 0) {
1611			device_printf(sc->dev,
1612			    "could not create RX buffer DMA map.\n");
1613			goto out;
1614		}
1615		if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1616			device_printf(dev, "Could not alloc mbuf\n");
1617			error = ENOMEM;
1618			goto out;
1619		}
1620		if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1621			device_printf(sc->dev,
1622			    "could not create new RX buffer.\n");
1623			goto out;
1624		}
1625	}
1626
1627	/* Try to get the MAC address from the hardware before resetting it. */
1628	ffec_get_hwaddr(sc, eaddr);
1629
1630	/* Reset the hardware.  Disables all interrupts. */
1631	WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1632
1633	/* Setup interrupt handler. */
1634	error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
1635	    NULL, ffec_intr, sc, &sc->intr_cookie);
1636	if (error != 0) {
1637		device_printf(dev, "could not setup interrupt handler.\n");
1638		goto out;
1639	}
1640
1641	/*
1642	 * Set up the PHY control register.
1643	 *
1644	 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1645	 * Speed formula for FEC is  md_clock = mac_clock / (N * 2)
1646	 *
1647	 * XXX - Revisit this...
1648	 *
1649	 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1650	 * code uses 10.  Both values seem to work, but I suspect many modern
1651	 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1652	 *
1653	 * Different imx manuals use confusingly different terminology (things
1654	 * like "system clock" and "internal module clock") with examples that
1655	 * use frequencies that have nothing to do with ethernet, giving the
1656	 * vague impression that maybe the clock in question is the periphclock
1657	 * or something.  In fact, on an imx53 development board (FEC),
1658	 * measuring the mdio clock at the pin on the PHY and playing with
1659	 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1660	 * aka periphclock) and 13 was the right divisor.
1661	 *
1662	 * All in all, it seems likely that 13 is a safe divisor for now,
1663	 * because if we really do need to base it on the peripheral clock
1664	 * speed, then we need a platform-independant get-clock-freq API.
1665	 */
1666	mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1667	if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1668		mscr |= FEC_MSCR_DIS_PRE;
1669		if (bootverbose)
1670			device_printf(dev, "PHY preamble disabled\n");
1671	}
1672	WR4(sc, FEC_MSCR_REG, mscr);
1673
1674	/* Set up the ethernet interface. */
1675	sc->ifp = ifp = if_alloc(IFT_ETHER);
1676
1677	ifp->if_softc = sc;
1678	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1679	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1680	ifp->if_capabilities = IFCAP_VLAN_MTU;
1681	ifp->if_capenable = ifp->if_capabilities;
1682	ifp->if_start = ffec_txstart;
1683	ifp->if_ioctl = ffec_ioctl;
1684	ifp->if_init = ffec_init;
1685	IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1686	ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1687	IFQ_SET_READY(&ifp->if_snd);
1688	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1689
1690#if 0 /* XXX The hardware keeps stats we could use for these. */
1691	ifp->if_linkmib = &sc->mibdata;
1692	ifp->if_linkmiblen = sizeof(sc->mibdata);
1693#endif
1694
1695	/* Set up the miigasket hardware (if any). */
1696	ffec_miigasket_setup(sc);
1697
1698	/* Attach the mii driver. */
1699	error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1700	    ffec_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1701	if (error != 0) {
1702		device_printf(dev, "PHY attach failed\n");
1703		goto out;
1704	}
1705	sc->mii_softc = device_get_softc(sc->miibus);
1706
1707	/* All ready to run, attach the ethernet interface. */
1708	ether_ifattach(ifp, eaddr);
1709	sc->is_attached = true;
1710
1711	error = 0;
1712out:
1713
1714	if (error != 0)
1715		ffec_detach(dev);
1716
1717	return (error);
1718}
1719
1720static int
1721ffec_probe(device_t dev)
1722{
1723	uintptr_t fectype;
1724
1725	if (!ofw_bus_status_okay(dev))
1726		return (ENXIO);
1727
1728	fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1729	if (fectype == FECTYPE_NONE)
1730		return (ENXIO);
1731
1732	device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1733	    "Freescale Gigabit Ethernet Controller" :
1734	    "Freescale Fast Ethernet Controller");
1735
1736	return (BUS_PROBE_DEFAULT);
1737}
1738
1739
1740static device_method_t ffec_methods[] = {
1741	/* Device interface. */
1742	DEVMETHOD(device_probe,		ffec_probe),
1743	DEVMETHOD(device_attach,	ffec_attach),
1744	DEVMETHOD(device_detach,	ffec_detach),
1745
1746/*
1747	DEVMETHOD(device_shutdown,	ffec_shutdown),
1748	DEVMETHOD(device_suspend,	ffec_suspend),
1749	DEVMETHOD(device_resume,	ffec_resume),
1750*/
1751
1752	/* MII interface. */
1753	DEVMETHOD(miibus_readreg,	ffec_miibus_readreg),
1754	DEVMETHOD(miibus_writereg,	ffec_miibus_writereg),
1755	DEVMETHOD(miibus_statchg,	ffec_miibus_statchg),
1756
1757	DEVMETHOD_END
1758};
1759
1760static driver_t ffec_driver = {
1761	"ffec",
1762	ffec_methods,
1763	sizeof(struct ffec_softc)
1764};
1765
1766static devclass_t ffec_devclass;
1767
1768DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1769DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1770
1771MODULE_DEPEND(ffec, ether, 1, 1, 1);
1772MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1773