t4_sge.c revision 253829
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 253829 2013-07-31 05:12:51Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/mbuf.h>
36#include <sys/socket.h>
37#include <sys/kernel.h>
38#include <sys/kdb.h>
39#include <sys/malloc.h>
40#include <sys/queue.h>
41#include <sys/taskqueue.h>
42#include <sys/sysctl.h>
43#include <sys/smp.h>
44#include <net/bpf.h>
45#include <net/ethernet.h>
46#include <net/if.h>
47#include <net/if_vlan_var.h>
48#include <netinet/in.h>
49#include <netinet/ip.h>
50#include <netinet/ip6.h>
51#include <netinet/tcp.h>
52
53#include "common/common.h"
54#include "common/t4_regs.h"
55#include "common/t4_regs_values.h"
56#include "common/t4_msg.h"
57
58struct fl_buf_info {
59	int size;
60	int type;
61	uma_zone_t zone;
62};
63
64/* Filled up by t4_sge_modload */
65static struct fl_buf_info fl_buf_info[FL_BUF_SIZES];
66
67#define FL_BUF_SIZE(x)	(fl_buf_info[x].size)
68#define FL_BUF_TYPE(x)	(fl_buf_info[x].type)
69#define FL_BUF_ZONE(x)	(fl_buf_info[x].zone)
70
71#ifdef T4_PKT_TIMESTAMP
72#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
73#else
74#define RX_COPY_THRESHOLD MINCLSIZE
75#endif
76
77/*
78 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
79 * 0-7 are valid values.
80 */
81static int fl_pktshift = 2;
82TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
83
84/*
85 * Pad ethernet payload up to this boundary.
86 * -1: driver should figure out a good value.
87 *  Any power of 2, from 32 to 4096 (both inclusive) is a valid value.
88 */
89static int fl_pad = -1;
90TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
91
92/*
93 * Status page length.
94 * -1: driver should figure out a good value.
95 *  64 or 128 are the only other valid values.
96 */
97static int spg_len = -1;
98TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
99
100/*
101 * Congestion drops.
102 * -1: no congestion feedback (not recommended).
103 *  0: backpressure the channel instead of dropping packets right away.
104 *  1: no backpressure, drop packets for the congested queue immediately.
105 */
106static int cong_drop = 0;
107TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
108
109/* Used to track coalesced tx work request */
110struct txpkts {
111	uint64_t *flitp;	/* ptr to flit where next pkt should start */
112	uint8_t npkt;		/* # of packets in this work request */
113	uint8_t nflits;		/* # of flits used by this work request */
114	uint16_t plen;		/* total payload (sum of all packets) */
115};
116
117/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
118struct sgl {
119	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
120	int nflits;		/* # of flits needed for the SGL */
121	bus_dma_segment_t seg[TX_SGL_SEGS];
122};
123
124static int service_iq(struct sge_iq *, int);
125static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
126    int *);
127static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
128static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
129    int);
130static inline void init_fl(struct sge_fl *, int, int, char *);
131static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
132    char *);
133static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
134    bus_addr_t *, void **);
135static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
136    void *);
137static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
138    int, int);
139static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
140static int alloc_fwq(struct adapter *);
141static int free_fwq(struct adapter *);
142static int alloc_mgmtq(struct adapter *);
143static int free_mgmtq(struct adapter *);
144static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
145    struct sysctl_oid *);
146static int free_rxq(struct port_info *, struct sge_rxq *);
147#ifdef TCP_OFFLOAD
148static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
149    struct sysctl_oid *);
150static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
151#endif
152static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
153static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
154#ifdef TCP_OFFLOAD
155static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
156#endif
157static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
158static int free_eq(struct adapter *, struct sge_eq *);
159static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
160    struct sysctl_oid *);
161static int free_wrq(struct adapter *, struct sge_wrq *);
162static int alloc_txq(struct port_info *, struct sge_txq *, int,
163    struct sysctl_oid *);
164static int free_txq(struct port_info *, struct sge_txq *);
165static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
166static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
167static inline void iq_next(struct sge_iq *);
168static inline void ring_fl_db(struct adapter *, struct sge_fl *);
169static int refill_fl(struct adapter *, struct sge_fl *, int);
170static void refill_sfl(void *);
171static int alloc_fl_sdesc(struct sge_fl *);
172static void free_fl_sdesc(struct sge_fl *);
173static void set_fl_tag_idx(struct sge_fl *, int);
174static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
175
176static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
177static int free_pkt_sgl(struct sge_txq *, struct sgl *);
178static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
179    struct sgl *);
180static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
181    struct mbuf *, struct sgl *);
182static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
183static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
184    struct txpkts *, struct mbuf *, struct sgl *);
185static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
186static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
187static inline void ring_eq_db(struct adapter *, struct sge_eq *);
188static inline int reclaimable(struct sge_eq *);
189static int reclaim_tx_descs(struct sge_txq *, int, int);
190static void write_eqflush_wr(struct sge_eq *);
191static __be64 get_flit(bus_dma_segment_t *, int, int);
192static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
193    struct mbuf *);
194static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
195    struct mbuf *);
196
197static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
198
199#if defined(__i386__) || defined(__amd64__)
200extern u_int cpu_clflush_line_size;
201#endif
202
203/*
204 * Called on MOD_LOAD.  Fills up fl_buf_info[] and validates/calculates the SGE
205 * tunables.
206 */
207void
208t4_sge_modload(void)
209{
210	int i;
211	int bufsize[FL_BUF_SIZES] = {
212		MCLBYTES,
213#if MJUMPAGESIZE != MCLBYTES
214		MJUMPAGESIZE,
215#endif
216		MJUM9BYTES,
217		MJUM16BYTES
218	};
219
220	for (i = 0; i < FL_BUF_SIZES; i++) {
221		FL_BUF_SIZE(i) = bufsize[i];
222		FL_BUF_TYPE(i) = m_gettype(bufsize[i]);
223		FL_BUF_ZONE(i) = m_getzone(bufsize[i]);
224	}
225
226	if (fl_pktshift < 0 || fl_pktshift > 7) {
227		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
228		    " using 2 instead.\n", fl_pktshift);
229		fl_pktshift = 2;
230	}
231
232	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
233		int pad;
234
235#if defined(__i386__) || defined(__amd64__)
236		pad = max(cpu_clflush_line_size, 32);
237#else
238		pad = max(CACHE_LINE_SIZE, 32);
239#endif
240		pad = min(pad, 4096);
241
242		if (fl_pad != -1) {
243			printf("Invalid hw.cxgbe.fl_pad value (%d),"
244			    " using %d instead.\n", fl_pad, pad);
245		}
246		fl_pad = pad;
247	}
248
249	if (spg_len != 64 && spg_len != 128) {
250		int len;
251
252#if defined(__i386__) || defined(__amd64__)
253		len = cpu_clflush_line_size > 64 ? 128 : 64;
254#else
255		len = 64;
256#endif
257		if (spg_len != -1) {
258			printf("Invalid hw.cxgbe.spg_len value (%d),"
259			    " using %d instead.\n", spg_len, len);
260		}
261		spg_len = len;
262	}
263
264	if (cong_drop < -1 || cong_drop > 1) {
265		printf("Invalid hw.cxgbe.cong_drop value (%d),"
266		    " using 0 instead.\n", cong_drop);
267		cong_drop = 0;
268	}
269}
270
271void
272t4_init_sge_cpl_handlers(struct adapter *sc)
273{
274
275	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
276	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
277	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
278	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
279	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
280}
281
282/*
283 * adap->params.vpd.cclk must be set up before this is called.
284 */
285void
286t4_tweak_chip_settings(struct adapter *sc)
287{
288	int i;
289	uint32_t v, m;
290	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
291	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
292	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
293	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
294
295	KASSERT(sc->flags & MASTER_PF,
296	    ("%s: trying to change chip settings when not master.", __func__));
297
298	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE |
299	    V_INGPADBOUNDARY(M_INGPADBOUNDARY) | F_EGRSTATUSPAGESIZE;
300	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
301	    V_INGPADBOUNDARY(ilog2(fl_pad) - 5) |
302	    V_EGRSTATUSPAGESIZE(spg_len == 128);
303	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
304
305	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
306	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
307	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
308	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
309	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
310	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
311	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
312	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
313	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
314
315	for (i = 0; i < FL_BUF_SIZES; i++) {
316		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
317		    FL_BUF_SIZE(i));
318	}
319
320	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
321	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
322	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
323
324	KASSERT(intr_timer[0] <= timer_max,
325	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
326	    timer_max));
327	for (i = 1; i < nitems(intr_timer); i++) {
328		KASSERT(intr_timer[i] >= intr_timer[i - 1],
329		    ("%s: timers not listed in increasing order (%d)",
330		    __func__, i));
331
332		while (intr_timer[i] > timer_max) {
333			if (i == nitems(intr_timer) - 1) {
334				intr_timer[i] = timer_max;
335				break;
336			}
337			intr_timer[i] += intr_timer[i - 1];
338			intr_timer[i] /= 2;
339		}
340	}
341
342	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
343	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
344	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
345	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
346	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
347	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
348	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
349	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
350	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
351
352	if (cong_drop == 0) {
353		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
354		    F_TUNNELCNGDROP3;
355		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
356	}
357
358	/* 4K, 16K, 64K, 256K DDP "page sizes" */
359	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
360	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
361
362	m = v = F_TDDPTAGTCB;
363	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
364
365	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
366	    F_RESETDDPOFFSET;
367	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
368	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
369}
370
371/*
372 * XXX: driver really should be able to deal with unexpected settings.
373 */
374int
375t4_read_chip_settings(struct adapter *sc)
376{
377	struct sge *s = &sc->sge;
378	int i, rc = 0;
379	uint32_t m, v, r;
380	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
381
382	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE |
383	    V_INGPADBOUNDARY(M_INGPADBOUNDARY) | F_EGRSTATUSPAGESIZE;
384	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
385	    V_INGPADBOUNDARY(ilog2(fl_pad) - 5) |
386	    V_EGRSTATUSPAGESIZE(spg_len == 128);
387	r = t4_read_reg(sc, A_SGE_CONTROL);
388	if ((r & m) != v) {
389		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
390		rc = EINVAL;
391	}
392
393	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
394	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
395	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
396	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
397	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
398	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
399	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
400	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
401	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
402	if (r != v) {
403		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
404		rc = EINVAL;
405	}
406
407	for (i = 0; i < FL_BUF_SIZES; i++) {
408		v = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
409		if (v != FL_BUF_SIZE(i)) {
410			device_printf(sc->dev,
411			    "invalid SGE_FL_BUFFER_SIZE[%d](0x%x)\n", i, v);
412			rc = EINVAL;
413		}
414	}
415
416	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
417	s->counter_val[0] = G_THRESHOLD_0(r);
418	s->counter_val[1] = G_THRESHOLD_1(r);
419	s->counter_val[2] = G_THRESHOLD_2(r);
420	s->counter_val[3] = G_THRESHOLD_3(r);
421
422	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
423	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
424	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
425	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
426	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
427	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
428	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
429	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
430	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
431
432	if (cong_drop == 0) {
433		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
434		    F_TUNNELCNGDROP3;
435		r = t4_read_reg(sc, A_TP_PARA_REG3);
436		if (r & m) {
437			device_printf(sc->dev,
438			    "invalid TP_PARA_REG3(0x%x)\n", r);
439			rc = EINVAL;
440		}
441	}
442
443	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
444	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
445	if (r != v) {
446		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
447		rc = EINVAL;
448	}
449
450	m = v = F_TDDPTAGTCB;
451	r = t4_read_reg(sc, A_ULP_RX_CTL);
452	if ((r & m) != v) {
453		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
454		rc = EINVAL;
455	}
456
457	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
458	    F_RESETDDPOFFSET;
459	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
460	r = t4_read_reg(sc, A_TP_PARA_REG5);
461	if ((r & m) != v) {
462		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
463		rc = EINVAL;
464	}
465
466	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
467	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
468
469	if (is_t5(sc)) {
470		r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
471		r >>= S_QUEUESPERPAGEPF0 +
472		    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
473		s->s_qpp = r & M_QUEUESPERPAGEPF0;
474	}
475
476	t4_init_tp_params(sc);
477
478	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
479	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
480
481	return (rc);
482}
483
484int
485t4_create_dma_tag(struct adapter *sc)
486{
487	int rc;
488
489	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
490	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
491	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
492	    NULL, &sc->dmat);
493	if (rc != 0) {
494		device_printf(sc->dev,
495		    "failed to create main DMA tag: %d\n", rc);
496	}
497
498	return (rc);
499}
500
501void
502t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
503    struct sysctl_oid_list *children)
504{
505
506	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
507	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
508
509	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
510	    NULL, fl_pad, "payload pad boundary (bytes)");
511
512	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
513	    NULL, spg_len, "status page size (bytes)");
514
515	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
516	    NULL, cong_drop, "congestion drop setting");
517}
518
519int
520t4_destroy_dma_tag(struct adapter *sc)
521{
522	if (sc->dmat)
523		bus_dma_tag_destroy(sc->dmat);
524
525	return (0);
526}
527
528/*
529 * Allocate and initialize the firmware event queue and the management queue.
530 *
531 * Returns errno on failure.  Resources allocated up to that point may still be
532 * allocated.  Caller is responsible for cleanup in case this function fails.
533 */
534int
535t4_setup_adapter_queues(struct adapter *sc)
536{
537	int rc;
538
539	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
540
541	sysctl_ctx_init(&sc->ctx);
542	sc->flags |= ADAP_SYSCTL_CTX;
543
544	/*
545	 * Firmware event queue
546	 */
547	rc = alloc_fwq(sc);
548	if (rc != 0)
549		return (rc);
550
551	/*
552	 * Management queue.  This is just a control queue that uses the fwq as
553	 * its associated iq.
554	 */
555	rc = alloc_mgmtq(sc);
556
557	return (rc);
558}
559
560/*
561 * Idempotent
562 */
563int
564t4_teardown_adapter_queues(struct adapter *sc)
565{
566
567	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
568
569	/* Do this before freeing the queue */
570	if (sc->flags & ADAP_SYSCTL_CTX) {
571		sysctl_ctx_free(&sc->ctx);
572		sc->flags &= ~ADAP_SYSCTL_CTX;
573	}
574
575	free_mgmtq(sc);
576	free_fwq(sc);
577
578	return (0);
579}
580
581static inline int
582first_vector(struct port_info *pi)
583{
584	struct adapter *sc = pi->adapter;
585	int rc = T4_EXTRA_INTR, i;
586
587	if (sc->intr_count == 1)
588		return (0);
589
590	for_each_port(sc, i) {
591		struct port_info *p = sc->port[i];
592
593		if (i == pi->port_id)
594			break;
595
596#ifdef TCP_OFFLOAD
597		if (sc->flags & INTR_DIRECT)
598			rc += p->nrxq + p->nofldrxq;
599		else
600			rc += max(p->nrxq, p->nofldrxq);
601#else
602		/*
603		 * Not compiled with offload support and intr_count > 1.  Only
604		 * NIC queues exist and they'd better be taking direct
605		 * interrupts.
606		 */
607		KASSERT(sc->flags & INTR_DIRECT,
608		    ("%s: intr_count %d, !INTR_DIRECT", __func__,
609		    sc->intr_count));
610
611		rc += p->nrxq;
612#endif
613	}
614
615	return (rc);
616}
617
618/*
619 * Given an arbitrary "index," come up with an iq that can be used by other
620 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
621 * The iq returned is guaranteed to be something that takes direct interrupts.
622 */
623static struct sge_iq *
624port_intr_iq(struct port_info *pi, int idx)
625{
626	struct adapter *sc = pi->adapter;
627	struct sge *s = &sc->sge;
628	struct sge_iq *iq = NULL;
629
630	if (sc->intr_count == 1)
631		return (&sc->sge.fwq);
632
633#ifdef TCP_OFFLOAD
634	if (sc->flags & INTR_DIRECT) {
635		idx %= pi->nrxq + pi->nofldrxq;
636
637		if (idx >= pi->nrxq) {
638			idx -= pi->nrxq;
639			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
640		} else
641			iq = &s->rxq[pi->first_rxq + idx].iq;
642
643	} else {
644		idx %= max(pi->nrxq, pi->nofldrxq);
645
646		if (pi->nrxq >= pi->nofldrxq)
647			iq = &s->rxq[pi->first_rxq + idx].iq;
648		else
649			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
650	}
651#else
652	/*
653	 * Not compiled with offload support and intr_count > 1.  Only NIC
654	 * queues exist and they'd better be taking direct interrupts.
655	 */
656	KASSERT(sc->flags & INTR_DIRECT,
657	    ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count));
658
659	idx %= pi->nrxq;
660	iq = &s->rxq[pi->first_rxq + idx].iq;
661#endif
662
663	KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__));
664	return (iq);
665}
666
667static inline int
668mtu_to_bufsize(int mtu)
669{
670	int bufsize;
671
672	/* large enough for a frame even when VLAN extraction is disabled */
673	bufsize = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu;
674	bufsize = roundup2(bufsize + fl_pktshift, fl_pad);
675
676	return (bufsize);
677}
678
679#ifdef TCP_OFFLOAD
680static inline int
681mtu_to_bufsize_toe(struct adapter *sc, int mtu)
682{
683
684	if (sc->tt.rx_coalesce)
685		return (G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)));
686
687	return (mtu);
688}
689#endif
690
691int
692t4_setup_port_queues(struct port_info *pi)
693{
694	int rc = 0, i, j, intr_idx, iqid;
695	struct sge_rxq *rxq;
696	struct sge_txq *txq;
697	struct sge_wrq *ctrlq;
698#ifdef TCP_OFFLOAD
699	struct sge_ofld_rxq *ofld_rxq;
700	struct sge_wrq *ofld_txq;
701	struct sysctl_oid *oid2 = NULL;
702#endif
703	char name[16];
704	struct adapter *sc = pi->adapter;
705	struct ifnet *ifp = pi->ifp;
706	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
707	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
708	int bufsize;
709
710	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD,
711	    NULL, "rx queues");
712
713#ifdef TCP_OFFLOAD
714	if (is_offload(sc)) {
715		oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
716		    CTLFLAG_RD, NULL,
717		    "rx queues for offloaded TCP connections");
718	}
719#endif
720
721	/* Interrupt vector to start from (when using multiple vectors) */
722	intr_idx = first_vector(pi);
723
724	/*
725	 * First pass over all rx queues (NIC and TOE):
726	 * a) initialize iq and fl
727	 * b) allocate queue iff it will take direct interrupts.
728	 */
729	bufsize = mtu_to_bufsize(ifp->if_mtu);
730	for_each_rxq(pi, i, rxq) {
731
732		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
733		    RX_IQ_ESIZE);
734
735		snprintf(name, sizeof(name), "%s rxq%d-fl",
736		    device_get_nameunit(pi->dev), i);
737		init_fl(&rxq->fl, pi->qsize_rxq / 8, bufsize, name);
738
739		if (sc->flags & INTR_DIRECT
740#ifdef TCP_OFFLOAD
741		    || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
742#endif
743		   ) {
744			rxq->iq.flags |= IQ_INTR;
745			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
746			if (rc != 0)
747				goto done;
748			intr_idx++;
749		}
750	}
751
752#ifdef TCP_OFFLOAD
753	bufsize = mtu_to_bufsize_toe(sc, ifp->if_mtu);
754	for_each_ofld_rxq(pi, i, ofld_rxq) {
755
756		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
757		    pi->qsize_rxq, RX_IQ_ESIZE);
758
759		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
760		    device_get_nameunit(pi->dev), i);
761		init_fl(&ofld_rxq->fl, pi->qsize_rxq / 8, bufsize, name);
762
763		if (sc->flags & INTR_DIRECT ||
764		    (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
765			ofld_rxq->iq.flags |= IQ_INTR;
766			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
767			if (rc != 0)
768				goto done;
769			intr_idx++;
770		}
771	}
772#endif
773
774	/*
775	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
776	 * their interrupts are allocated now.
777	 */
778	j = 0;
779	for_each_rxq(pi, i, rxq) {
780		if (rxq->iq.flags & IQ_INTR)
781			continue;
782
783		intr_idx = port_intr_iq(pi, j)->abs_id;
784
785		rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
786		if (rc != 0)
787			goto done;
788		j++;
789	}
790
791#ifdef TCP_OFFLOAD
792	for_each_ofld_rxq(pi, i, ofld_rxq) {
793		if (ofld_rxq->iq.flags & IQ_INTR)
794			continue;
795
796		intr_idx = port_intr_iq(pi, j)->abs_id;
797
798		rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
799		if (rc != 0)
800			goto done;
801		j++;
802	}
803#endif
804
805	/*
806	 * Now the tx queues.  Only one pass needed.
807	 */
808	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
809	    NULL, "tx queues");
810	j = 0;
811	for_each_txq(pi, i, txq) {
812		uint16_t iqid;
813
814		iqid = port_intr_iq(pi, j)->cntxt_id;
815
816		snprintf(name, sizeof(name), "%s txq%d",
817		    device_get_nameunit(pi->dev), i);
818		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
819		    name);
820
821		rc = alloc_txq(pi, txq, i, oid);
822		if (rc != 0)
823			goto done;
824		j++;
825	}
826
827#ifdef TCP_OFFLOAD
828	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
829	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
830	for_each_ofld_txq(pi, i, ofld_txq) {
831		uint16_t iqid;
832
833		iqid = port_intr_iq(pi, j)->cntxt_id;
834
835		snprintf(name, sizeof(name), "%s ofld_txq%d",
836		    device_get_nameunit(pi->dev), i);
837		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
838		    iqid, name);
839
840		snprintf(name, sizeof(name), "%d", i);
841		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
842		    name, CTLFLAG_RD, NULL, "offload tx queue");
843
844		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
845		if (rc != 0)
846			goto done;
847		j++;
848	}
849#endif
850
851	/*
852	 * Finally, the control queue.
853	 */
854	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
855	    NULL, "ctrl queue");
856	ctrlq = &sc->sge.ctrlq[pi->port_id];
857	iqid = port_intr_iq(pi, 0)->cntxt_id;
858	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
859	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
860	rc = alloc_wrq(sc, pi, ctrlq, oid);
861
862done:
863	if (rc)
864		t4_teardown_port_queues(pi);
865
866	return (rc);
867}
868
869/*
870 * Idempotent
871 */
872int
873t4_teardown_port_queues(struct port_info *pi)
874{
875	int i;
876	struct adapter *sc = pi->adapter;
877	struct sge_rxq *rxq;
878	struct sge_txq *txq;
879#ifdef TCP_OFFLOAD
880	struct sge_ofld_rxq *ofld_rxq;
881	struct sge_wrq *ofld_txq;
882#endif
883
884	/* Do this before freeing the queues */
885	if (pi->flags & PORT_SYSCTL_CTX) {
886		sysctl_ctx_free(&pi->ctx);
887		pi->flags &= ~PORT_SYSCTL_CTX;
888	}
889
890	/*
891	 * Take down all the tx queues first, as they reference the rx queues
892	 * (for egress updates, etc.).
893	 */
894
895	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
896
897	for_each_txq(pi, i, txq) {
898		free_txq(pi, txq);
899	}
900
901#ifdef TCP_OFFLOAD
902	for_each_ofld_txq(pi, i, ofld_txq) {
903		free_wrq(sc, ofld_txq);
904	}
905#endif
906
907	/*
908	 * Then take down the rx queues that forward their interrupts, as they
909	 * reference other rx queues.
910	 */
911
912	for_each_rxq(pi, i, rxq) {
913		if ((rxq->iq.flags & IQ_INTR) == 0)
914			free_rxq(pi, rxq);
915	}
916
917#ifdef TCP_OFFLOAD
918	for_each_ofld_rxq(pi, i, ofld_rxq) {
919		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
920			free_ofld_rxq(pi, ofld_rxq);
921	}
922#endif
923
924	/*
925	 * Then take down the rx queues that take direct interrupts.
926	 */
927
928	for_each_rxq(pi, i, rxq) {
929		if (rxq->iq.flags & IQ_INTR)
930			free_rxq(pi, rxq);
931	}
932
933#ifdef TCP_OFFLOAD
934	for_each_ofld_rxq(pi, i, ofld_rxq) {
935		if (ofld_rxq->iq.flags & IQ_INTR)
936			free_ofld_rxq(pi, ofld_rxq);
937	}
938#endif
939
940	return (0);
941}
942
943/*
944 * Deals with errors and the firmware event queue.  All data rx queues forward
945 * their interrupt to the firmware event queue.
946 */
947void
948t4_intr_all(void *arg)
949{
950	struct adapter *sc = arg;
951	struct sge_iq *fwq = &sc->sge.fwq;
952
953	t4_intr_err(arg);
954	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
955		service_iq(fwq, 0);
956		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
957	}
958}
959
960/* Deals with error interrupts */
961void
962t4_intr_err(void *arg)
963{
964	struct adapter *sc = arg;
965
966	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
967	t4_slow_intr_handler(sc);
968}
969
970void
971t4_intr_evt(void *arg)
972{
973	struct sge_iq *iq = arg;
974
975	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
976		service_iq(iq, 0);
977		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
978	}
979}
980
981void
982t4_intr(void *arg)
983{
984	struct sge_iq *iq = arg;
985
986	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
987		service_iq(iq, 0);
988		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
989	}
990}
991
992/*
993 * Deals with anything and everything on the given ingress queue.
994 */
995static int
996service_iq(struct sge_iq *iq, int budget)
997{
998	struct sge_iq *q;
999	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1000	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
1001	struct adapter *sc = iq->adapter;
1002	struct rsp_ctrl *ctrl;
1003	const struct rss_header *rss;
1004	int ndescs = 0, limit, fl_bufs_used = 0;
1005	int rsp_type;
1006	uint32_t lq;
1007	struct mbuf *m0;
1008	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1009
1010	limit = budget ? budget : iq->qsize / 8;
1011
1012	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1013
1014	/*
1015	 * We always come back and check the descriptor ring for new indirect
1016	 * interrupts and other responses after running a single handler.
1017	 */
1018	for (;;) {
1019		while (is_new_response(iq, &ctrl)) {
1020
1021			rmb();
1022
1023			m0 = NULL;
1024			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
1025			lq = be32toh(ctrl->pldbuflen_qid);
1026			rss = (const void *)iq->cdesc;
1027
1028			switch (rsp_type) {
1029			case X_RSPD_TYPE_FLBUF:
1030
1031				KASSERT(iq->flags & IQ_HAS_FL,
1032				    ("%s: data for an iq (%p) with no freelist",
1033				    __func__, iq));
1034
1035				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
1036#ifdef T4_PKT_TIMESTAMP
1037				/*
1038				 * 60 bit timestamp for the payload is
1039				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1040				 * in the leading free-space in the mbuf.  The
1041				 * kernel can clobber it during a pullup,
1042				 * m_copymdata, etc.  You need to make sure that
1043				 * the mbuf reaches you unmolested if you care
1044				 * about the timestamp.
1045				 */
1046				*(uint64_t *)m0->m_pktdat =
1047				    be64toh(ctrl->u.last_flit) &
1048				    0xfffffffffffffff;
1049#endif
1050
1051				/* fall through */
1052
1053			case X_RSPD_TYPE_CPL:
1054				KASSERT(rss->opcode < NUM_CPL_CMDS,
1055				    ("%s: bad opcode %02x.", __func__,
1056				    rss->opcode));
1057				sc->cpl_handler[rss->opcode](iq, rss, m0);
1058				break;
1059
1060			case X_RSPD_TYPE_INTR:
1061
1062				/*
1063				 * Interrupts should be forwarded only to queues
1064				 * that are not forwarding their interrupts.
1065				 * This means service_iq can recurse but only 1
1066				 * level deep.
1067				 */
1068				KASSERT(budget == 0,
1069				    ("%s: budget %u, rsp_type %u", __func__,
1070				    budget, rsp_type));
1071
1072				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1073				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1074				    IQS_BUSY)) {
1075					if (service_iq(q, q->qsize / 8) == 0) {
1076						atomic_cmpset_int(&q->state,
1077						    IQS_BUSY, IQS_IDLE);
1078					} else {
1079						STAILQ_INSERT_TAIL(&iql, q,
1080						    link);
1081					}
1082				}
1083				break;
1084
1085			default:
1086				sc->an_handler(iq, ctrl);
1087				break;
1088			}
1089
1090			iq_next(iq);
1091			if (++ndescs == limit) {
1092				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1093				    V_CIDXINC(ndescs) |
1094				    V_INGRESSQID(iq->cntxt_id) |
1095				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1096				ndescs = 0;
1097
1098				if (fl_bufs_used > 0) {
1099					FL_LOCK(fl);
1100					fl->needed += fl_bufs_used;
1101					refill_fl(sc, fl, fl->cap / 8);
1102					FL_UNLOCK(fl);
1103					fl_bufs_used = 0;
1104				}
1105
1106				if (budget)
1107					return (EINPROGRESS);
1108			}
1109		}
1110
1111		if (STAILQ_EMPTY(&iql))
1112			break;
1113
1114		/*
1115		 * Process the head only, and send it to the back of the list if
1116		 * it's still not done.
1117		 */
1118		q = STAILQ_FIRST(&iql);
1119		STAILQ_REMOVE_HEAD(&iql, link);
1120		if (service_iq(q, q->qsize / 8) == 0)
1121			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1122		else
1123			STAILQ_INSERT_TAIL(&iql, q, link);
1124	}
1125
1126#if defined(INET) || defined(INET6)
1127	if (iq->flags & IQ_LRO_ENABLED) {
1128		struct lro_ctrl *lro = &rxq->lro;
1129		struct lro_entry *l;
1130
1131		while (!SLIST_EMPTY(&lro->lro_active)) {
1132			l = SLIST_FIRST(&lro->lro_active);
1133			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1134			tcp_lro_flush(lro, l);
1135		}
1136	}
1137#endif
1138
1139	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1140	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1141
1142	if (iq->flags & IQ_HAS_FL) {
1143		int starved;
1144
1145		FL_LOCK(fl);
1146		fl->needed += fl_bufs_used;
1147		starved = refill_fl(sc, fl, fl->cap / 4);
1148		FL_UNLOCK(fl);
1149		if (__predict_false(starved != 0))
1150			add_fl_to_sfl(sc, fl);
1151	}
1152
1153	return (0);
1154}
1155
1156static struct mbuf *
1157get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1158    int *fl_bufs_used)
1159{
1160	struct mbuf *m0, *m;
1161	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1162	unsigned int nbuf, len;
1163
1164	/*
1165	 * No assertion for the fl lock because we don't need it.  This routine
1166	 * is called only from the rx interrupt handler and it only updates
1167	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1168	 * updated in the rx interrupt handler or the starvation helper routine.
1169	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1170	 * lock but this routine does not).
1171	 */
1172
1173	if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0))
1174		panic("%s: cannot handle packed frames", __func__);
1175	len = G_RSPD_LEN(len_newbuf);
1176
1177	m0 = sd->m;
1178	sd->m = NULL;	/* consumed */
1179
1180	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
1181	m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR);
1182#ifdef T4_PKT_TIMESTAMP
1183	/* Leave room for a timestamp */
1184	m0->m_data += 8;
1185#endif
1186
1187	if (len < RX_COPY_THRESHOLD) {
1188		/* copy data to mbuf, buffer will be recycled */
1189		bcopy(sd->cl, mtod(m0, caddr_t), len);
1190		m0->m_len = len;
1191	} else {
1192		bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1193		m_cljset(m0, sd->cl, FL_BUF_TYPE(sd->tag_idx));
1194		sd->cl = NULL;	/* consumed */
1195		m0->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
1196	}
1197	m0->m_pkthdr.len = len;
1198
1199	sd++;
1200	if (__predict_false(++fl->cidx == fl->cap)) {
1201		sd = fl->sdesc;
1202		fl->cidx = 0;
1203	}
1204
1205	m = m0;
1206	len -= m->m_len;
1207	nbuf = 1;	/* # of fl buffers used */
1208
1209	while (len > 0) {
1210		m->m_next = sd->m;
1211		sd->m = NULL;	/* consumed */
1212		m = m->m_next;
1213
1214		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1215		    BUS_DMASYNC_POSTREAD);
1216
1217		m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1218		if (len <= MLEN) {
1219			bcopy(sd->cl, mtod(m, caddr_t), len);
1220			m->m_len = len;
1221		} else {
1222			bus_dmamap_unload(fl->tag[sd->tag_idx],
1223			    sd->map);
1224			m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx));
1225			sd->cl = NULL;	/* consumed */
1226			m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
1227		}
1228
1229		sd++;
1230		if (__predict_false(++fl->cidx == fl->cap)) {
1231			sd = fl->sdesc;
1232			fl->cidx = 0;
1233		}
1234
1235		len -= m->m_len;
1236		nbuf++;
1237	}
1238
1239	(*fl_bufs_used) += nbuf;
1240
1241	return (m0);
1242}
1243
1244static int
1245t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1246{
1247	struct sge_rxq *rxq = iq_to_rxq(iq);
1248	struct ifnet *ifp = rxq->ifp;
1249	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1250#if defined(INET) || defined(INET6)
1251	struct lro_ctrl *lro = &rxq->lro;
1252#endif
1253
1254	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1255	    rss->opcode));
1256
1257	m0->m_pkthdr.len -= fl_pktshift;
1258	m0->m_len -= fl_pktshift;
1259	m0->m_data += fl_pktshift;
1260
1261	m0->m_pkthdr.rcvif = ifp;
1262	m0->m_flags |= M_FLOWID;
1263	m0->m_pkthdr.flowid = rss->hash_val;
1264
1265	if (cpl->csum_calc && !cpl->err_vec) {
1266		if (ifp->if_capenable & IFCAP_RXCSUM &&
1267		    cpl->l2info & htobe32(F_RXF_IP)) {
1268			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1269			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1270			rxq->rxcsum++;
1271		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1272		    cpl->l2info & htobe32(F_RXF_IP6)) {
1273			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1274			    CSUM_PSEUDO_HDR);
1275			rxq->rxcsum++;
1276		}
1277
1278		if (__predict_false(cpl->ip_frag))
1279			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1280		else
1281			m0->m_pkthdr.csum_data = 0xffff;
1282	}
1283
1284	if (cpl->vlan_ex) {
1285		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1286		m0->m_flags |= M_VLANTAG;
1287		rxq->vlan_extraction++;
1288	}
1289
1290#if defined(INET) || defined(INET6)
1291	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1292	    iq->flags & IQ_LRO_ENABLED &&
1293	    tcp_lro_rx(lro, m0, 0) == 0) {
1294		/* queued for LRO */
1295	} else
1296#endif
1297	ifp->if_input(ifp, m0);
1298
1299	return (0);
1300}
1301
1302/*
1303 * Doesn't fail.  Holds on to work requests it can't send right away.
1304 */
1305void
1306t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1307{
1308	struct sge_eq *eq = &wrq->eq;
1309	int can_reclaim;
1310	caddr_t dst;
1311
1312	TXQ_LOCK_ASSERT_OWNED(wrq);
1313#ifdef TCP_OFFLOAD
1314	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1315	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1316	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1317#else
1318	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1319	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1320#endif
1321
1322	if (__predict_true(wr != NULL))
1323		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1324
1325	can_reclaim = reclaimable(eq);
1326	if (__predict_false(eq->flags & EQ_STALLED)) {
1327		if (can_reclaim < tx_resume_threshold(eq))
1328			return;
1329		eq->flags &= ~EQ_STALLED;
1330		eq->unstalled++;
1331	}
1332	eq->cidx += can_reclaim;
1333	eq->avail += can_reclaim;
1334	if (__predict_false(eq->cidx >= eq->cap))
1335		eq->cidx -= eq->cap;
1336
1337	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1338		int ndesc;
1339
1340		if (__predict_false(wr->wr_len < 0 ||
1341		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1342
1343#ifdef INVARIANTS
1344			panic("%s: work request with length %d", __func__,
1345			    wr->wr_len);
1346#endif
1347#ifdef KDB
1348			kdb_backtrace();
1349#endif
1350			log(LOG_ERR, "%s: %s work request with length %d",
1351			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1352			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1353			free_wrqe(wr);
1354			continue;
1355		}
1356
1357		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1358		if (eq->avail < ndesc) {
1359			wrq->no_desc++;
1360			break;
1361		}
1362
1363		dst = (void *)&eq->desc[eq->pidx];
1364		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1365
1366		eq->pidx += ndesc;
1367		eq->avail -= ndesc;
1368		if (__predict_false(eq->pidx >= eq->cap))
1369			eq->pidx -= eq->cap;
1370
1371		eq->pending += ndesc;
1372		if (eq->pending >= 8)
1373			ring_eq_db(sc, eq);
1374
1375		wrq->tx_wrs++;
1376		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1377		free_wrqe(wr);
1378
1379		if (eq->avail < 8) {
1380			can_reclaim = reclaimable(eq);
1381			eq->cidx += can_reclaim;
1382			eq->avail += can_reclaim;
1383			if (__predict_false(eq->cidx >= eq->cap))
1384				eq->cidx -= eq->cap;
1385		}
1386	}
1387
1388	if (eq->pending)
1389		ring_eq_db(sc, eq);
1390
1391	if (wr != NULL) {
1392		eq->flags |= EQ_STALLED;
1393		if (callout_pending(&eq->tx_callout) == 0)
1394			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1395	}
1396}
1397
1398/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1399#define TXPKTS_PKT_HDR ((\
1400    sizeof(struct ulp_txpkt) + \
1401    sizeof(struct ulptx_idata) + \
1402    sizeof(struct cpl_tx_pkt_core) \
1403    ) / 8)
1404
1405/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1406#define TXPKTS_WR_HDR (\
1407    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1408    TXPKTS_PKT_HDR)
1409
1410/* Header of a tx WR, before SGL of first packet (in flits) */
1411#define TXPKT_WR_HDR ((\
1412    sizeof(struct fw_eth_tx_pkt_wr) + \
1413    sizeof(struct cpl_tx_pkt_core) \
1414    ) / 8 )
1415
1416/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1417#define TXPKT_LSO_WR_HDR ((\
1418    sizeof(struct fw_eth_tx_pkt_wr) + \
1419    sizeof(struct cpl_tx_pkt_lso_core) + \
1420    sizeof(struct cpl_tx_pkt_core) \
1421    ) / 8 )
1422
1423int
1424t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1425{
1426	struct port_info *pi = (void *)ifp->if_softc;
1427	struct adapter *sc = pi->adapter;
1428	struct sge_eq *eq = &txq->eq;
1429	struct buf_ring *br = txq->br;
1430	struct mbuf *next;
1431	int rc, coalescing, can_reclaim;
1432	struct txpkts txpkts;
1433	struct sgl sgl;
1434
1435	TXQ_LOCK_ASSERT_OWNED(txq);
1436	KASSERT(m, ("%s: called with nothing to do.", __func__));
1437	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1438	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1439
1440	prefetch(&eq->desc[eq->pidx]);
1441	prefetch(&txq->sdesc[eq->pidx]);
1442
1443	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1444	coalescing = 0;
1445
1446	can_reclaim = reclaimable(eq);
1447	if (__predict_false(eq->flags & EQ_STALLED)) {
1448		if (can_reclaim < tx_resume_threshold(eq)) {
1449			txq->m = m;
1450			return (0);
1451		}
1452		eq->flags &= ~EQ_STALLED;
1453		eq->unstalled++;
1454	}
1455
1456	if (__predict_false(eq->flags & EQ_DOOMED)) {
1457		m_freem(m);
1458		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1459			m_freem(m);
1460		return (ENETDOWN);
1461	}
1462
1463	if (eq->avail < 8 && can_reclaim)
1464		reclaim_tx_descs(txq, can_reclaim, 32);
1465
1466	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1467
1468		if (eq->avail < 8)
1469			break;
1470
1471		next = m->m_nextpkt;
1472		m->m_nextpkt = NULL;
1473
1474		if (next || buf_ring_peek(br))
1475			coalescing = 1;
1476
1477		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1478		if (rc != 0) {
1479			if (rc == ENOMEM) {
1480
1481				/* Short of resources, suspend tx */
1482
1483				m->m_nextpkt = next;
1484				break;
1485			}
1486
1487			/*
1488			 * Unrecoverable error for this packet, throw it away
1489			 * and move on to the next.  get_pkt_sgl may already
1490			 * have freed m (it will be NULL in that case and the
1491			 * m_freem here is still safe).
1492			 */
1493
1494			m_freem(m);
1495			continue;
1496		}
1497
1498		if (coalescing &&
1499		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1500
1501			/* Successfully absorbed into txpkts */
1502
1503			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1504			goto doorbell;
1505		}
1506
1507		/*
1508		 * We weren't coalescing to begin with, or current frame could
1509		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1510		 * given to it can't be coalesced).  Either way there should be
1511		 * nothing in txpkts.
1512		 */
1513		KASSERT(txpkts.npkt == 0,
1514		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1515
1516		/* We're sending out individual packets now */
1517		coalescing = 0;
1518
1519		if (eq->avail < 8)
1520			reclaim_tx_descs(txq, 0, 8);
1521		rc = write_txpkt_wr(pi, txq, m, &sgl);
1522		if (rc != 0) {
1523
1524			/* Short of hardware descriptors, suspend tx */
1525
1526			/*
1527			 * This is an unlikely but expensive failure.  We've
1528			 * done all the hard work (DMA mappings etc.) and now we
1529			 * can't send out the packet.  What's worse, we have to
1530			 * spend even more time freeing up everything in sgl.
1531			 */
1532			txq->no_desc++;
1533			free_pkt_sgl(txq, &sgl);
1534
1535			m->m_nextpkt = next;
1536			break;
1537		}
1538
1539		ETHER_BPF_MTAP(ifp, m);
1540		if (sgl.nsegs == 0)
1541			m_freem(m);
1542doorbell:
1543		if (eq->pending >= 8)
1544			ring_eq_db(sc, eq);
1545
1546		can_reclaim = reclaimable(eq);
1547		if (can_reclaim >= 32)
1548			reclaim_tx_descs(txq, can_reclaim, 64);
1549	}
1550
1551	if (txpkts.npkt > 0)
1552		write_txpkts_wr(txq, &txpkts);
1553
1554	/*
1555	 * m not NULL means there was an error but we haven't thrown it away.
1556	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1557	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1558	 * will get things going again.
1559	 */
1560	if (m && !(eq->flags & EQ_CRFLUSHED)) {
1561		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
1562
1563		/*
1564		 * If EQ_CRFLUSHED is not set then we know we have at least one
1565		 * available descriptor because any WR that reduces eq->avail to
1566		 * 0 also sets EQ_CRFLUSHED.
1567		 */
1568		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
1569
1570		txsd->desc_used = 1;
1571		txsd->credits = 0;
1572		write_eqflush_wr(eq);
1573	}
1574	txq->m = m;
1575
1576	if (eq->pending)
1577		ring_eq_db(sc, eq);
1578
1579	reclaim_tx_descs(txq, 0, 128);
1580
1581	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
1582		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1583
1584	return (0);
1585}
1586
1587void
1588t4_update_fl_bufsize(struct ifnet *ifp)
1589{
1590	struct port_info *pi = ifp->if_softc;
1591	struct sge_rxq *rxq;
1592#ifdef TCP_OFFLOAD
1593	struct sge_ofld_rxq *ofld_rxq;
1594#endif
1595	struct sge_fl *fl;
1596	int i, bufsize;
1597
1598	bufsize = mtu_to_bufsize(ifp->if_mtu);
1599	for_each_rxq(pi, i, rxq) {
1600		fl = &rxq->fl;
1601
1602		FL_LOCK(fl);
1603		set_fl_tag_idx(fl, bufsize);
1604		FL_UNLOCK(fl);
1605	}
1606#ifdef TCP_OFFLOAD
1607	bufsize = mtu_to_bufsize_toe(pi->adapter, ifp->if_mtu);
1608	for_each_ofld_rxq(pi, i, ofld_rxq) {
1609		fl = &ofld_rxq->fl;
1610
1611		FL_LOCK(fl);
1612		set_fl_tag_idx(fl, bufsize);
1613		FL_UNLOCK(fl);
1614	}
1615#endif
1616}
1617
1618int
1619can_resume_tx(struct sge_eq *eq)
1620{
1621	return (reclaimable(eq) >= tx_resume_threshold(eq));
1622}
1623
1624static inline void
1625init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
1626    int qsize, int esize)
1627{
1628	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
1629	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
1630	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
1631	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
1632
1633	iq->flags = 0;
1634	iq->adapter = sc;
1635	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1636	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1637	if (pktc_idx >= 0) {
1638		iq->intr_params |= F_QINTR_CNT_EN;
1639		iq->intr_pktc_idx = pktc_idx;
1640	}
1641	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
1642	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
1643}
1644
1645static inline void
1646init_fl(struct sge_fl *fl, int qsize, int bufsize, char *name)
1647{
1648	fl->qsize = qsize;
1649	strlcpy(fl->lockname, name, sizeof(fl->lockname));
1650	set_fl_tag_idx(fl, bufsize);
1651}
1652
1653static inline void
1654init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
1655    uint16_t iqid, char *name)
1656{
1657	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
1658	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
1659
1660	eq->flags = eqtype & EQ_TYPEMASK;
1661	eq->tx_chan = tx_chan;
1662	eq->iqid = iqid;
1663	eq->qsize = qsize;
1664	strlcpy(eq->lockname, name, sizeof(eq->lockname));
1665
1666	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
1667	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
1668}
1669
1670static int
1671alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
1672    bus_dmamap_t *map, bus_addr_t *pa, void **va)
1673{
1674	int rc;
1675
1676	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
1677	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
1678	if (rc != 0) {
1679		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
1680		goto done;
1681	}
1682
1683	rc = bus_dmamem_alloc(*tag, va,
1684	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
1685	if (rc != 0) {
1686		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
1687		goto done;
1688	}
1689
1690	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
1691	if (rc != 0) {
1692		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
1693		goto done;
1694	}
1695done:
1696	if (rc)
1697		free_ring(sc, *tag, *map, *pa, *va);
1698
1699	return (rc);
1700}
1701
1702static int
1703free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
1704    bus_addr_t pa, void *va)
1705{
1706	if (pa)
1707		bus_dmamap_unload(tag, map);
1708	if (va)
1709		bus_dmamem_free(tag, va, map);
1710	if (tag)
1711		bus_dma_tag_destroy(tag);
1712
1713	return (0);
1714}
1715
1716/*
1717 * Allocates the ring for an ingress queue and an optional freelist.  If the
1718 * freelist is specified it will be allocated and then associated with the
1719 * ingress queue.
1720 *
1721 * Returns errno on failure.  Resources allocated up to that point may still be
1722 * allocated.  Caller is responsible for cleanup in case this function fails.
1723 *
1724 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1725 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1726 * the abs_id of the ingress queue to which its interrupts should be forwarded.
1727 */
1728static int
1729alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1730    int intr_idx, int cong)
1731{
1732	int rc, i, cntxt_id;
1733	size_t len;
1734	struct fw_iq_cmd c;
1735	struct adapter *sc = iq->adapter;
1736	__be32 v = 0;
1737
1738	len = iq->qsize * iq->esize;
1739	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
1740	    (void **)&iq->desc);
1741	if (rc != 0)
1742		return (rc);
1743
1744	bzero(&c, sizeof(c));
1745	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1746	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1747	    V_FW_IQ_CMD_VFN(0));
1748
1749	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1750	    FW_LEN16(c));
1751
1752	/* Special handling for firmware event queue */
1753	if (iq == &sc->sge.fwq)
1754		v |= F_FW_IQ_CMD_IQASYNCH;
1755
1756	if (iq->flags & IQ_INTR) {
1757		KASSERT(intr_idx < sc->intr_count,
1758		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
1759	} else
1760		v |= F_FW_IQ_CMD_IQANDST;
1761	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1762
1763	c.type_to_iqandstindex = htobe32(v |
1764	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1765	    V_FW_IQ_CMD_VIID(pi->viid) |
1766	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1767	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1768	    F_FW_IQ_CMD_IQGTSMODE |
1769	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1770	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1771	c.iqsize = htobe16(iq->qsize);
1772	c.iqaddr = htobe64(iq->ba);
1773	if (cong >= 0)
1774		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
1775
1776	if (fl) {
1777		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
1778
1779		for (i = 0; i < FL_BUF_SIZES; i++) {
1780
1781			/*
1782			 * A freelist buffer must be 16 byte aligned as the SGE
1783			 * uses the low 4 bits of the bus addr to figure out the
1784			 * buffer size.
1785			 */
1786			rc = bus_dma_tag_create(sc->dmat, 16, 0,
1787			    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1788			    FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW,
1789			    NULL, NULL, &fl->tag[i]);
1790			if (rc != 0) {
1791				device_printf(sc->dev,
1792				    "failed to create fl DMA tag[%d]: %d\n",
1793				    i, rc);
1794				return (rc);
1795			}
1796		}
1797		len = fl->qsize * RX_FL_ESIZE;
1798		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
1799		    &fl->ba, (void **)&fl->desc);
1800		if (rc)
1801			return (rc);
1802
1803		/* Allocate space for one software descriptor per buffer. */
1804		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
1805		FL_LOCK(fl);
1806		rc = alloc_fl_sdesc(fl);
1807		FL_UNLOCK(fl);
1808		if (rc != 0) {
1809			device_printf(sc->dev,
1810			    "failed to setup fl software descriptors: %d\n",
1811			    rc);
1812			return (rc);
1813		}
1814		fl->needed = fl->cap;
1815		fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8);
1816
1817		c.iqns_to_fl0congen |=
1818		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1819			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1820			F_FW_IQ_CMD_FL0PADEN);
1821		if (cong >= 0) {
1822			c.iqns_to_fl0congen |=
1823				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1824				    F_FW_IQ_CMD_FL0CONGCIF |
1825				    F_FW_IQ_CMD_FL0CONGEN);
1826		}
1827		c.fl0dcaen_to_fl0cidxfthresh =
1828		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
1829			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
1830		c.fl0size = htobe16(fl->qsize);
1831		c.fl0addr = htobe64(fl->ba);
1832	}
1833
1834	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1835	if (rc != 0) {
1836		device_printf(sc->dev,
1837		    "failed to create ingress queue: %d\n", rc);
1838		return (rc);
1839	}
1840
1841	iq->cdesc = iq->desc;
1842	iq->cidx = 0;
1843	iq->gen = 1;
1844	iq->intr_next = iq->intr_params;
1845	iq->cntxt_id = be16toh(c.iqid);
1846	iq->abs_id = be16toh(c.physiqid);
1847	iq->flags |= IQ_ALLOCATED;
1848
1849	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1850	if (cntxt_id >= sc->sge.niq) {
1851		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1852		    cntxt_id, sc->sge.niq - 1);
1853	}
1854	sc->sge.iqmap[cntxt_id] = iq;
1855
1856	if (fl) {
1857		fl->cntxt_id = be16toh(c.fl0id);
1858		fl->pidx = fl->cidx = 0;
1859
1860		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1861		if (cntxt_id >= sc->sge.neq) {
1862			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1863			    __func__, cntxt_id, sc->sge.neq - 1);
1864		}
1865		sc->sge.eqmap[cntxt_id] = (void *)fl;
1866
1867		FL_LOCK(fl);
1868		/* Enough to make sure the SGE doesn't think it's starved */
1869		refill_fl(sc, fl, fl->lowat);
1870		FL_UNLOCK(fl);
1871
1872		iq->flags |= IQ_HAS_FL;
1873	}
1874
1875	/* Enable IQ interrupts */
1876	atomic_store_rel_int(&iq->state, IQS_IDLE);
1877	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1878	    V_INGRESSQID(iq->cntxt_id));
1879
1880	return (0);
1881}
1882
1883static int
1884free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1885{
1886	int i, rc;
1887	struct adapter *sc = iq->adapter;
1888	device_t dev;
1889
1890	if (sc == NULL)
1891		return (0);	/* nothing to do */
1892
1893	dev = pi ? pi->dev : sc->dev;
1894
1895	if (iq->flags & IQ_ALLOCATED) {
1896		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1897		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1898		    fl ? fl->cntxt_id : 0xffff, 0xffff);
1899		if (rc != 0) {
1900			device_printf(dev,
1901			    "failed to free queue %p: %d\n", iq, rc);
1902			return (rc);
1903		}
1904		iq->flags &= ~IQ_ALLOCATED;
1905	}
1906
1907	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
1908
1909	bzero(iq, sizeof(*iq));
1910
1911	if (fl) {
1912		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
1913		    fl->desc);
1914
1915		if (fl->sdesc) {
1916			FL_LOCK(fl);
1917			free_fl_sdesc(fl);
1918			FL_UNLOCK(fl);
1919		}
1920
1921		if (mtx_initialized(&fl->fl_lock))
1922			mtx_destroy(&fl->fl_lock);
1923
1924		for (i = 0; i < FL_BUF_SIZES; i++) {
1925			if (fl->tag[i])
1926				bus_dma_tag_destroy(fl->tag[i]);
1927		}
1928
1929		bzero(fl, sizeof(*fl));
1930	}
1931
1932	return (0);
1933}
1934
1935static int
1936alloc_fwq(struct adapter *sc)
1937{
1938	int rc, intr_idx;
1939	struct sge_iq *fwq = &sc->sge.fwq;
1940	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1941	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1942
1943	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1944	fwq->flags |= IQ_INTR;	/* always */
1945	intr_idx = sc->intr_count > 1 ? 1 : 0;
1946	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1947	if (rc != 0) {
1948		device_printf(sc->dev,
1949		    "failed to create firmware event queue: %d\n", rc);
1950		return (rc);
1951	}
1952
1953	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
1954	    NULL, "firmware event queue");
1955	children = SYSCTL_CHILDREN(oid);
1956
1957	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
1958	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
1959	    "absolute id of the queue");
1960	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
1961	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
1962	    "SGE context id of the queue");
1963	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
1964	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
1965	    "consumer index");
1966
1967	return (0);
1968}
1969
1970static int
1971free_fwq(struct adapter *sc)
1972{
1973	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
1974}
1975
1976static int
1977alloc_mgmtq(struct adapter *sc)
1978{
1979	int rc;
1980	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
1981	char name[16];
1982	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1983	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1984
1985	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
1986	    NULL, "management queue");
1987
1988	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
1989	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
1990	    sc->sge.fwq.cntxt_id, name);
1991	rc = alloc_wrq(sc, NULL, mgmtq, oid);
1992	if (rc != 0) {
1993		device_printf(sc->dev,
1994		    "failed to create management queue: %d\n", rc);
1995		return (rc);
1996	}
1997
1998	return (0);
1999}
2000
2001static int
2002free_mgmtq(struct adapter *sc)
2003{
2004
2005	return free_wrq(sc, &sc->sge.mgmtq);
2006}
2007
2008static inline int
2009tnl_cong(struct port_info *pi)
2010{
2011
2012	if (cong_drop == -1)
2013		return (-1);
2014	else if (cong_drop == 1)
2015		return (0);
2016	else
2017		return (1 << pi->tx_chan);
2018}
2019
2020static int
2021alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2022    struct sysctl_oid *oid)
2023{
2024	int rc;
2025	struct sysctl_oid_list *children;
2026	char name[16];
2027
2028	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2029	if (rc != 0)
2030		return (rc);
2031
2032	FL_LOCK(&rxq->fl);
2033	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
2034	FL_UNLOCK(&rxq->fl);
2035
2036#if defined(INET) || defined(INET6)
2037	rc = tcp_lro_init(&rxq->lro);
2038	if (rc != 0)
2039		return (rc);
2040	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2041
2042	if (pi->ifp->if_capenable & IFCAP_LRO)
2043		rxq->iq.flags |= IQ_LRO_ENABLED;
2044#endif
2045	rxq->ifp = pi->ifp;
2046
2047	children = SYSCTL_CHILDREN(oid);
2048
2049	snprintf(name, sizeof(name), "%d", idx);
2050	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2051	    NULL, "rx queue");
2052	children = SYSCTL_CHILDREN(oid);
2053
2054	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2055	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2056	    "absolute id of the queue");
2057	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2058	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2059	    "SGE context id of the queue");
2060	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2061	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2062	    "consumer index");
2063#if defined(INET) || defined(INET6)
2064	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2065	    &rxq->lro.lro_queued, 0, NULL);
2066	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2067	    &rxq->lro.lro_flushed, 0, NULL);
2068#endif
2069	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2070	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2071	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2072	    CTLFLAG_RD, &rxq->vlan_extraction,
2073	    "# of times hardware extracted 802.1Q tag");
2074
2075	children = SYSCTL_CHILDREN(oid);
2076	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
2077	    NULL, "freelist");
2078	children = SYSCTL_CHILDREN(oid);
2079
2080	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2081	    CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I",
2082	    "SGE context id of the queue");
2083	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2084	    &rxq->fl.cidx, 0, "consumer index");
2085	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2086	    &rxq->fl.pidx, 0, "producer index");
2087
2088	return (rc);
2089}
2090
2091static int
2092free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2093{
2094	int rc;
2095
2096#if defined(INET) || defined(INET6)
2097	if (rxq->lro.ifp) {
2098		tcp_lro_free(&rxq->lro);
2099		rxq->lro.ifp = NULL;
2100	}
2101#endif
2102
2103	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2104	if (rc == 0)
2105		bzero(rxq, sizeof(*rxq));
2106
2107	return (rc);
2108}
2109
2110#ifdef TCP_OFFLOAD
2111static int
2112alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2113    int intr_idx, int idx, struct sysctl_oid *oid)
2114{
2115	int rc;
2116	struct sysctl_oid_list *children;
2117	char name[16];
2118
2119	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2120	    1 << pi->tx_chan);
2121	if (rc != 0)
2122		return (rc);
2123
2124	children = SYSCTL_CHILDREN(oid);
2125
2126	snprintf(name, sizeof(name), "%d", idx);
2127	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2128	    NULL, "rx queue");
2129	children = SYSCTL_CHILDREN(oid);
2130
2131	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2132	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2133	    "I", "absolute id of the queue");
2134	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2135	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2136	    "I", "SGE context id of the queue");
2137	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2138	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2139	    "consumer index");
2140
2141	children = SYSCTL_CHILDREN(oid);
2142	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
2143	    NULL, "freelist");
2144	children = SYSCTL_CHILDREN(oid);
2145
2146	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2147	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16,
2148	    "I", "SGE context id of the queue");
2149	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2150	    &ofld_rxq->fl.cidx, 0, "consumer index");
2151	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2152	    &ofld_rxq->fl.pidx, 0, "producer index");
2153
2154	return (rc);
2155}
2156
2157static int
2158free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2159{
2160	int rc;
2161
2162	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2163	if (rc == 0)
2164		bzero(ofld_rxq, sizeof(*ofld_rxq));
2165
2166	return (rc);
2167}
2168#endif
2169
2170static int
2171ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2172{
2173	int rc, cntxt_id;
2174	struct fw_eq_ctrl_cmd c;
2175
2176	bzero(&c, sizeof(c));
2177
2178	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2179	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2180	    V_FW_EQ_CTRL_CMD_VFN(0));
2181	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2182	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2183	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2184	c.physeqid_pkd = htobe32(0);
2185	c.fetchszm_to_iqid =
2186	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2187		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2188		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2189	c.dcaen_to_eqsize =
2190	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2191		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2192		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2193		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2194	c.eqaddr = htobe64(eq->ba);
2195
2196	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2197	if (rc != 0) {
2198		device_printf(sc->dev,
2199		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2200		return (rc);
2201	}
2202	eq->flags |= EQ_ALLOCATED;
2203
2204	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2205	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2206	if (cntxt_id >= sc->sge.neq)
2207	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2208		cntxt_id, sc->sge.neq - 1);
2209	sc->sge.eqmap[cntxt_id] = eq;
2210
2211	return (rc);
2212}
2213
2214static int
2215eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2216{
2217	int rc, cntxt_id;
2218	struct fw_eq_eth_cmd c;
2219
2220	bzero(&c, sizeof(c));
2221
2222	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2223	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2224	    V_FW_EQ_ETH_CMD_VFN(0));
2225	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2226	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2227	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2228	c.fetchszm_to_iqid =
2229	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2230		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2231		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2232	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2233		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2234		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2235		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2236	c.eqaddr = htobe64(eq->ba);
2237
2238	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2239	if (rc != 0) {
2240		device_printf(pi->dev,
2241		    "failed to create Ethernet egress queue: %d\n", rc);
2242		return (rc);
2243	}
2244	eq->flags |= EQ_ALLOCATED;
2245
2246	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2247	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2248	if (cntxt_id >= sc->sge.neq)
2249	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2250		cntxt_id, sc->sge.neq - 1);
2251	sc->sge.eqmap[cntxt_id] = eq;
2252
2253	return (rc);
2254}
2255
2256#ifdef TCP_OFFLOAD
2257static int
2258ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2259{
2260	int rc, cntxt_id;
2261	struct fw_eq_ofld_cmd c;
2262
2263	bzero(&c, sizeof(c));
2264
2265	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2266	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2267	    V_FW_EQ_OFLD_CMD_VFN(0));
2268	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2269	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2270	c.fetchszm_to_iqid =
2271		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2272		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2273		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2274	c.dcaen_to_eqsize =
2275	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2276		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2277		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2278		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2279	c.eqaddr = htobe64(eq->ba);
2280
2281	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2282	if (rc != 0) {
2283		device_printf(pi->dev,
2284		    "failed to create egress queue for TCP offload: %d\n", rc);
2285		return (rc);
2286	}
2287	eq->flags |= EQ_ALLOCATED;
2288
2289	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2290	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2291	if (cntxt_id >= sc->sge.neq)
2292	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2293		cntxt_id, sc->sge.neq - 1);
2294	sc->sge.eqmap[cntxt_id] = eq;
2295
2296	return (rc);
2297}
2298#endif
2299
2300static int
2301alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2302{
2303	int rc;
2304	size_t len;
2305
2306	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2307
2308	len = eq->qsize * EQ_ESIZE;
2309	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2310	    &eq->ba, (void **)&eq->desc);
2311	if (rc)
2312		return (rc);
2313
2314	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2315	eq->spg = (void *)&eq->desc[eq->cap];
2316	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2317	eq->pidx = eq->cidx = 0;
2318	eq->doorbells = sc->doorbells;
2319
2320	switch (eq->flags & EQ_TYPEMASK) {
2321	case EQ_CTRL:
2322		rc = ctrl_eq_alloc(sc, eq);
2323		break;
2324
2325	case EQ_ETH:
2326		rc = eth_eq_alloc(sc, pi, eq);
2327		break;
2328
2329#ifdef TCP_OFFLOAD
2330	case EQ_OFLD:
2331		rc = ofld_eq_alloc(sc, pi, eq);
2332		break;
2333#endif
2334
2335	default:
2336		panic("%s: invalid eq type %d.", __func__,
2337		    eq->flags & EQ_TYPEMASK);
2338	}
2339	if (rc != 0) {
2340		device_printf(sc->dev,
2341		    "failed to allocate egress queue(%d): %d",
2342		    eq->flags & EQ_TYPEMASK, rc);
2343	}
2344
2345	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2346
2347	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2348	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2349	    isset(&eq->doorbells, DOORBELL_WCWR)) {
2350		uint32_t s_qpp = sc->sge.s_qpp;
2351		uint32_t mask = (1 << s_qpp) - 1;
2352		volatile uint8_t *udb;
2353
2354		udb = sc->udbs_base + UDBS_DB_OFFSET;
2355		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2356		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2357		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2358	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
2359		else {
2360			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2361			eq->udb_qid = 0;
2362		}
2363		eq->udb = (volatile void *)udb;
2364	}
2365
2366	return (rc);
2367}
2368
2369static int
2370free_eq(struct adapter *sc, struct sge_eq *eq)
2371{
2372	int rc;
2373
2374	if (eq->flags & EQ_ALLOCATED) {
2375		switch (eq->flags & EQ_TYPEMASK) {
2376		case EQ_CTRL:
2377			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2378			    eq->cntxt_id);
2379			break;
2380
2381		case EQ_ETH:
2382			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2383			    eq->cntxt_id);
2384			break;
2385
2386#ifdef TCP_OFFLOAD
2387		case EQ_OFLD:
2388			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2389			    eq->cntxt_id);
2390			break;
2391#endif
2392
2393		default:
2394			panic("%s: invalid eq type %d.", __func__,
2395			    eq->flags & EQ_TYPEMASK);
2396		}
2397		if (rc != 0) {
2398			device_printf(sc->dev,
2399			    "failed to free egress queue (%d): %d\n",
2400			    eq->flags & EQ_TYPEMASK, rc);
2401			return (rc);
2402		}
2403		eq->flags &= ~EQ_ALLOCATED;
2404	}
2405
2406	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
2407
2408	if (mtx_initialized(&eq->eq_lock))
2409		mtx_destroy(&eq->eq_lock);
2410
2411	bzero(eq, sizeof(*eq));
2412	return (0);
2413}
2414
2415static int
2416alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
2417    struct sysctl_oid *oid)
2418{
2419	int rc;
2420	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
2421	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2422
2423	rc = alloc_eq(sc, pi, &wrq->eq);
2424	if (rc)
2425		return (rc);
2426
2427	wrq->adapter = sc;
2428	STAILQ_INIT(&wrq->wr_list);
2429
2430	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2431	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
2432	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2433	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
2434	    "consumer index");
2435	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
2436	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
2437	    "producer index");
2438	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
2439	    &wrq->tx_wrs, "# of work requests");
2440	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2441	    &wrq->no_desc, 0,
2442	    "# of times queue ran out of hardware descriptors");
2443	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2444	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
2445
2446
2447	return (rc);
2448}
2449
2450static int
2451free_wrq(struct adapter *sc, struct sge_wrq *wrq)
2452{
2453	int rc;
2454
2455	rc = free_eq(sc, &wrq->eq);
2456	if (rc)
2457		return (rc);
2458
2459	bzero(wrq, sizeof(*wrq));
2460	return (0);
2461}
2462
2463static int
2464alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
2465    struct sysctl_oid *oid)
2466{
2467	int rc;
2468	struct adapter *sc = pi->adapter;
2469	struct sge_eq *eq = &txq->eq;
2470	char name[16];
2471	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2472
2473	rc = alloc_eq(sc, pi, eq);
2474	if (rc)
2475		return (rc);
2476
2477	txq->ifp = pi->ifp;
2478
2479	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
2480	    M_ZERO | M_WAITOK);
2481	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
2482
2483	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
2484	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
2485	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
2486	if (rc != 0) {
2487		device_printf(sc->dev,
2488		    "failed to create tx DMA tag: %d\n", rc);
2489		return (rc);
2490	}
2491
2492	/*
2493	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
2494	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
2495	 * sized for the worst case.
2496	 */
2497	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
2498	    M_WAITOK);
2499	if (rc != 0) {
2500		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
2501		return (rc);
2502	}
2503
2504	snprintf(name, sizeof(name), "%d", idx);
2505	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2506	    NULL, "tx queue");
2507	children = SYSCTL_CHILDREN(oid);
2508
2509	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2510	    &eq->cntxt_id, 0, "SGE context id of the queue");
2511	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2512	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
2513	    "consumer index");
2514	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2515	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
2516	    "producer index");
2517
2518	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
2519	    &txq->txcsum, "# of times hardware assisted with checksum");
2520	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
2521	    CTLFLAG_RD, &txq->vlan_insertion,
2522	    "# of times hardware inserted 802.1Q tag");
2523	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
2524	    &txq->tso_wrs, "# of TSO work requests");
2525	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
2526	    &txq->imm_wrs, "# of work requests with immediate data");
2527	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
2528	    &txq->sgl_wrs, "# of work requests with direct SGL");
2529	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
2530	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
2531	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
2532	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
2533	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
2534	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
2535
2536	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
2537	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
2538	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
2539	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
2540	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2541	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
2542	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
2543	    &eq->egr_update, 0, "egress update notifications from the SGE");
2544	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2545	    &eq->unstalled, 0, "# of times txq recovered after stall");
2546
2547	return (rc);
2548}
2549
2550static int
2551free_txq(struct port_info *pi, struct sge_txq *txq)
2552{
2553	int rc;
2554	struct adapter *sc = pi->adapter;
2555	struct sge_eq *eq = &txq->eq;
2556
2557	rc = free_eq(sc, eq);
2558	if (rc)
2559		return (rc);
2560
2561	free(txq->sdesc, M_CXGBE);
2562
2563	if (txq->txmaps.maps)
2564		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
2565
2566	buf_ring_free(txq->br, M_CXGBE);
2567
2568	if (txq->tx_tag)
2569		bus_dma_tag_destroy(txq->tx_tag);
2570
2571	bzero(txq, sizeof(*txq));
2572	return (0);
2573}
2574
2575static void
2576oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2577{
2578	bus_addr_t *ba = arg;
2579
2580	KASSERT(nseg == 1,
2581	    ("%s meant for single segment mappings only.", __func__));
2582
2583	*ba = error ? 0 : segs->ds_addr;
2584}
2585
2586static inline bool
2587is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
2588{
2589	*ctrl = (void *)((uintptr_t)iq->cdesc +
2590	    (iq->esize - sizeof(struct rsp_ctrl)));
2591
2592	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
2593}
2594
2595static inline void
2596iq_next(struct sge_iq *iq)
2597{
2598	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
2599	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
2600		iq->cidx = 0;
2601		iq->gen ^= 1;
2602		iq->cdesc = iq->desc;
2603	}
2604}
2605
2606#define FL_HW_IDX(x) ((x) >> 3)
2607static inline void
2608ring_fl_db(struct adapter *sc, struct sge_fl *fl)
2609{
2610	int ndesc = fl->pending / 8;
2611	uint32_t v;
2612
2613	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
2614		ndesc--;	/* hold back one credit */
2615
2616	if (ndesc <= 0)
2617		return;		/* nothing to do */
2618
2619	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
2620	if (is_t5(sc))
2621		v |= F_DBTYPE;
2622
2623	wmb();
2624
2625	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
2626	fl->pending -= ndesc * 8;
2627}
2628
2629/*
2630 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
2631 *
2632 * Returns non-zero to indicate that it should be added to the list of starving
2633 * freelists.
2634 */
2635static int
2636refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
2637{
2638	__be64 *d = &fl->desc[fl->pidx];
2639	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
2640	bus_dma_tag_t tag;
2641	bus_addr_t pa;
2642	caddr_t cl;
2643	int rc;
2644
2645	FL_LOCK_ASSERT_OWNED(fl);
2646
2647	if (nbufs > fl->needed)
2648		nbufs = fl->needed;
2649
2650	while (nbufs--) {
2651
2652		if (sd->cl != NULL) {
2653
2654			/*
2655			 * This happens when a frame small enough to fit
2656			 * entirely in an mbuf was received in cl last time.
2657			 * We'd held on to cl and can reuse it now.  Note that
2658			 * we reuse a cluster of the old size if fl->tag_idx is
2659			 * no longer the same as sd->tag_idx.
2660			 */
2661
2662			KASSERT(*d == sd->ba_tag,
2663			    ("%s: recyling problem at pidx %d",
2664			    __func__, fl->pidx));
2665
2666			d++;
2667			goto recycled;
2668		}
2669
2670
2671		if (fl->tag_idx != sd->tag_idx) {
2672			bus_dmamap_t map;
2673			bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
2674			bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
2675
2676			/*
2677			 * An MTU change can get us here.  Discard the old map
2678			 * which was created with the old tag, but only if
2679			 * we're able to get a new one.
2680			 */
2681			rc = bus_dmamap_create(newtag, 0, &map);
2682			if (rc == 0) {
2683				bus_dmamap_destroy(oldtag, sd->map);
2684				sd->map = map;
2685				sd->tag_idx = fl->tag_idx;
2686			}
2687		}
2688
2689		tag = fl->tag[sd->tag_idx];
2690
2691		cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx));
2692		if (cl == NULL)
2693			break;
2694
2695		rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx),
2696		    oneseg_dma_callback, &pa, 0);
2697		if (rc != 0 || pa == 0) {
2698			fl->dmamap_failed++;
2699			uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl);
2700			break;
2701		}
2702
2703		sd->cl = cl;
2704		*d++ = htobe64(pa | sd->tag_idx);
2705
2706#ifdef INVARIANTS
2707		sd->ba_tag = htobe64(pa | sd->tag_idx);
2708#endif
2709
2710recycled:
2711		/* sd->m is never recycled, should always be NULL */
2712		KASSERT(sd->m == NULL, ("%s: stray mbuf", __func__));
2713
2714		sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
2715		if (sd->m == NULL)
2716			break;
2717
2718		fl->pending++;
2719		fl->needed--;
2720		sd++;
2721		if (++fl->pidx == fl->cap) {
2722			fl->pidx = 0;
2723			sd = fl->sdesc;
2724			d = fl->desc;
2725		}
2726	}
2727
2728	if (fl->pending >= 8)
2729		ring_fl_db(sc, fl);
2730
2731	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
2732}
2733
2734/*
2735 * Attempt to refill all starving freelists.
2736 */
2737static void
2738refill_sfl(void *arg)
2739{
2740	struct adapter *sc = arg;
2741	struct sge_fl *fl, *fl_temp;
2742
2743	mtx_lock(&sc->sfl_lock);
2744	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
2745		FL_LOCK(fl);
2746		refill_fl(sc, fl, 64);
2747		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
2748			TAILQ_REMOVE(&sc->sfl, fl, link);
2749			fl->flags &= ~FL_STARVING;
2750		}
2751		FL_UNLOCK(fl);
2752	}
2753
2754	if (!TAILQ_EMPTY(&sc->sfl))
2755		callout_schedule(&sc->sfl_callout, hz / 5);
2756	mtx_unlock(&sc->sfl_lock);
2757}
2758
2759static int
2760alloc_fl_sdesc(struct sge_fl *fl)
2761{
2762	struct fl_sdesc *sd;
2763	bus_dma_tag_t tag;
2764	int i, rc;
2765
2766	FL_LOCK_ASSERT_OWNED(fl);
2767
2768	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
2769	    M_ZERO | M_WAITOK);
2770
2771	tag = fl->tag[fl->tag_idx];
2772	sd = fl->sdesc;
2773	for (i = 0; i < fl->cap; i++, sd++) {
2774
2775		sd->tag_idx = fl->tag_idx;
2776		rc = bus_dmamap_create(tag, 0, &sd->map);
2777		if (rc != 0)
2778			goto failed;
2779	}
2780
2781	return (0);
2782failed:
2783	while (--i >= 0) {
2784		sd--;
2785		bus_dmamap_destroy(tag, sd->map);
2786		if (sd->m) {
2787			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2788			m_free(sd->m);
2789			sd->m = NULL;
2790		}
2791	}
2792	KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
2793
2794	free(fl->sdesc, M_CXGBE);
2795	fl->sdesc = NULL;
2796
2797	return (rc);
2798}
2799
2800static void
2801free_fl_sdesc(struct sge_fl *fl)
2802{
2803	struct fl_sdesc *sd;
2804	int i;
2805
2806	FL_LOCK_ASSERT_OWNED(fl);
2807
2808	sd = fl->sdesc;
2809	for (i = 0; i < fl->cap; i++, sd++) {
2810
2811		if (sd->m) {
2812			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2813			m_free(sd->m);
2814			sd->m = NULL;
2815		}
2816
2817		if (sd->cl) {
2818			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
2819			uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl);
2820			sd->cl = NULL;
2821		}
2822
2823		bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
2824	}
2825
2826	free(fl->sdesc, M_CXGBE);
2827	fl->sdesc = NULL;
2828}
2829
2830int
2831t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
2832    int flags)
2833{
2834	struct tx_map *txm;
2835	int i, rc;
2836
2837	txmaps->map_total = txmaps->map_avail = count;
2838	txmaps->map_cidx = txmaps->map_pidx = 0;
2839
2840	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
2841	    M_ZERO | flags);
2842
2843	txm = txmaps->maps;
2844	for (i = 0; i < count; i++, txm++) {
2845		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
2846		if (rc != 0)
2847			goto failed;
2848	}
2849
2850	return (0);
2851failed:
2852	while (--i >= 0) {
2853		txm--;
2854		bus_dmamap_destroy(tx_tag, txm->map);
2855	}
2856	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
2857
2858	free(txmaps->maps, M_CXGBE);
2859	txmaps->maps = NULL;
2860
2861	return (rc);
2862}
2863
2864void
2865t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
2866{
2867	struct tx_map *txm;
2868	int i;
2869
2870	txm = txmaps->maps;
2871	for (i = 0; i < txmaps->map_total; i++, txm++) {
2872
2873		if (txm->m) {
2874			bus_dmamap_unload(tx_tag, txm->map);
2875			m_freem(txm->m);
2876			txm->m = NULL;
2877		}
2878
2879		bus_dmamap_destroy(tx_tag, txm->map);
2880	}
2881
2882	free(txmaps->maps, M_CXGBE);
2883	txmaps->maps = NULL;
2884}
2885
2886/*
2887 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
2888 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2889 * of immediate data.
2890 */
2891#define IMM_LEN ( \
2892      2 * EQ_ESIZE \
2893    - sizeof(struct fw_eth_tx_pkt_wr) \
2894    - sizeof(struct cpl_tx_pkt_core))
2895
2896/*
2897 * Returns non-zero on failure, no need to cleanup anything in that case.
2898 *
2899 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
2900 * if the resulting chain still won't fit in a tx descriptor.
2901 *
2902 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
2903 * does not have the TCP header in it.
2904 */
2905static int
2906get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
2907    int sgl_only)
2908{
2909	struct mbuf *m = *fp;
2910	struct tx_maps *txmaps;
2911	struct tx_map *txm;
2912	int rc, defragged = 0, n;
2913
2914	TXQ_LOCK_ASSERT_OWNED(txq);
2915
2916	if (m->m_pkthdr.tso_segsz)
2917		sgl_only = 1;	/* Do not allow immediate data with LSO */
2918
2919start:	sgl->nsegs = 0;
2920
2921	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
2922		return (0);	/* nsegs = 0 tells caller to use imm. tx */
2923
2924	txmaps = &txq->txmaps;
2925	if (txmaps->map_avail == 0) {
2926		txq->no_dmamap++;
2927		return (ENOMEM);
2928	}
2929	txm = &txmaps->maps[txmaps->map_pidx];
2930
2931	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
2932		*fp = m_pullup(m, 50);
2933		m = *fp;
2934		if (m == NULL)
2935			return (ENOBUFS);
2936	}
2937
2938	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
2939	    &sgl->nsegs, BUS_DMA_NOWAIT);
2940	if (rc == EFBIG && defragged == 0) {
2941		m = m_defrag(m, M_NOWAIT);
2942		if (m == NULL)
2943			return (EFBIG);
2944
2945		defragged = 1;
2946		*fp = m;
2947		goto start;
2948	}
2949	if (rc != 0)
2950		return (rc);
2951
2952	txm->m = m;
2953	txmaps->map_avail--;
2954	if (++txmaps->map_pidx == txmaps->map_total)
2955		txmaps->map_pidx = 0;
2956
2957	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
2958	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
2959
2960	/*
2961	 * Store the # of flits required to hold this frame's SGL in nflits.  An
2962	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2963	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2964	 * then len1 must be set to 0.
2965	 */
2966	n = sgl->nsegs - 1;
2967	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
2968
2969	return (0);
2970}
2971
2972
2973/*
2974 * Releases all the txq resources used up in the specified sgl.
2975 */
2976static int
2977free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
2978{
2979	struct tx_maps *txmaps;
2980	struct tx_map *txm;
2981
2982	TXQ_LOCK_ASSERT_OWNED(txq);
2983
2984	if (sgl->nsegs == 0)
2985		return (0);	/* didn't use any map */
2986
2987	txmaps = &txq->txmaps;
2988
2989	/* 1 pkt uses exactly 1 map, back it out */
2990
2991	txmaps->map_avail++;
2992	if (txmaps->map_pidx > 0)
2993		txmaps->map_pidx--;
2994	else
2995		txmaps->map_pidx = txmaps->map_total - 1;
2996
2997	txm = &txmaps->maps[txmaps->map_pidx];
2998	bus_dmamap_unload(txq->tx_tag, txm->map);
2999	txm->m = NULL;
3000
3001	return (0);
3002}
3003
3004static int
3005write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3006    struct sgl *sgl)
3007{
3008	struct sge_eq *eq = &txq->eq;
3009	struct fw_eth_tx_pkt_wr *wr;
3010	struct cpl_tx_pkt_core *cpl;
3011	uint32_t ctrl;	/* used in many unrelated places */
3012	uint64_t ctrl1;
3013	int nflits, ndesc, pktlen;
3014	struct tx_sdesc *txsd;
3015	caddr_t dst;
3016
3017	TXQ_LOCK_ASSERT_OWNED(txq);
3018
3019	pktlen = m->m_pkthdr.len;
3020
3021	/*
3022	 * Do we have enough flits to send this frame out?
3023	 */
3024	ctrl = sizeof(struct cpl_tx_pkt_core);
3025	if (m->m_pkthdr.tso_segsz) {
3026		nflits = TXPKT_LSO_WR_HDR;
3027		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3028	} else
3029		nflits = TXPKT_WR_HDR;
3030	if (sgl->nsegs > 0)
3031		nflits += sgl->nflits;
3032	else {
3033		nflits += howmany(pktlen, 8);
3034		ctrl += pktlen;
3035	}
3036	ndesc = howmany(nflits, 8);
3037	if (ndesc > eq->avail)
3038		return (ENOMEM);
3039
3040	/* Firmware work request header */
3041	wr = (void *)&eq->desc[eq->pidx];
3042	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3043	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3044	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3045	if (eq->avail == ndesc) {
3046		if (!(eq->flags & EQ_CRFLUSHED)) {
3047			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3048			eq->flags |= EQ_CRFLUSHED;
3049		}
3050		eq->flags |= EQ_STALLED;
3051	}
3052
3053	wr->equiq_to_len16 = htobe32(ctrl);
3054	wr->r3 = 0;
3055
3056	if (m->m_pkthdr.tso_segsz) {
3057		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3058		struct ether_header *eh;
3059		void *l3hdr;
3060#if defined(INET) || defined(INET6)
3061		struct tcphdr *tcp;
3062#endif
3063		uint16_t eh_type;
3064
3065		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3066		    F_LSO_LAST_SLICE;
3067
3068		eh = mtod(m, struct ether_header *);
3069		eh_type = ntohs(eh->ether_type);
3070		if (eh_type == ETHERTYPE_VLAN) {
3071			struct ether_vlan_header *evh = (void *)eh;
3072
3073			ctrl |= V_LSO_ETHHDR_LEN(1);
3074			l3hdr = evh + 1;
3075			eh_type = ntohs(evh->evl_proto);
3076		} else
3077			l3hdr = eh + 1;
3078
3079		switch (eh_type) {
3080#ifdef INET6
3081		case ETHERTYPE_IPV6:
3082		{
3083			struct ip6_hdr *ip6 = l3hdr;
3084
3085			/*
3086			 * XXX-BZ For now we do not pretend to support
3087			 * IPv6 extension headers.
3088			 */
3089			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3090			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3091			tcp = (struct tcphdr *)(ip6 + 1);
3092			ctrl |= F_LSO_IPV6;
3093			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3094			    V_LSO_TCPHDR_LEN(tcp->th_off);
3095			break;
3096		}
3097#endif
3098#ifdef INET
3099		case ETHERTYPE_IP:
3100		{
3101			struct ip *ip = l3hdr;
3102
3103			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3104			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3105			    V_LSO_TCPHDR_LEN(tcp->th_off);
3106			break;
3107		}
3108#endif
3109		default:
3110			panic("%s: CSUM_TSO but no supported IP version "
3111			    "(0x%04x)", __func__, eh_type);
3112		}
3113
3114		lso->lso_ctrl = htobe32(ctrl);
3115		lso->ipid_ofst = htobe16(0);
3116		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3117		lso->seqno_offset = htobe32(0);
3118		lso->len = htobe32(pktlen);
3119
3120		cpl = (void *)(lso + 1);
3121
3122		txq->tso_wrs++;
3123	} else
3124		cpl = (void *)(wr + 1);
3125
3126	/* Checksum offload */
3127	ctrl1 = 0;
3128	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3129		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3130	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3131	    CSUM_TCP_IPV6 | CSUM_TSO)))
3132		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3133	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3134	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3135		txq->txcsum++;	/* some hardware assistance provided */
3136
3137	/* VLAN tag insertion */
3138	if (m->m_flags & M_VLANTAG) {
3139		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3140		txq->vlan_insertion++;
3141	}
3142
3143	/* CPL header */
3144	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3145	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3146	cpl->pack = 0;
3147	cpl->len = htobe16(pktlen);
3148	cpl->ctrl1 = htobe64(ctrl1);
3149
3150	/* Software descriptor */
3151	txsd = &txq->sdesc[eq->pidx];
3152	txsd->desc_used = ndesc;
3153
3154	eq->pending += ndesc;
3155	eq->avail -= ndesc;
3156	eq->pidx += ndesc;
3157	if (eq->pidx >= eq->cap)
3158		eq->pidx -= eq->cap;
3159
3160	/* SGL */
3161	dst = (void *)(cpl + 1);
3162	if (sgl->nsegs > 0) {
3163		txsd->credits = 1;
3164		txq->sgl_wrs++;
3165		write_sgl_to_txd(eq, sgl, &dst);
3166	} else {
3167		txsd->credits = 0;
3168		txq->imm_wrs++;
3169		for (; m; m = m->m_next) {
3170			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3171#ifdef INVARIANTS
3172			pktlen -= m->m_len;
3173#endif
3174		}
3175#ifdef INVARIANTS
3176		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3177#endif
3178
3179	}
3180
3181	txq->txpkt_wrs++;
3182	return (0);
3183}
3184
3185/*
3186 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3187 * request.  It has either been folded into txpkts or txpkts was flushed and m
3188 * has started a new coalesced work request (as the first frame in a fresh
3189 * txpkts).
3190 *
3191 * Returns non-zero to indicate a failure - caller is responsible for
3192 * transmitting m, if there was anything in txpkts it has been flushed.
3193 */
3194static int
3195add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3196    struct mbuf *m, struct sgl *sgl)
3197{
3198	struct sge_eq *eq = &txq->eq;
3199	int can_coalesce;
3200	struct tx_sdesc *txsd;
3201	int flits;
3202
3203	TXQ_LOCK_ASSERT_OWNED(txq);
3204
3205	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3206
3207	if (txpkts->npkt > 0) {
3208		flits = TXPKTS_PKT_HDR + sgl->nflits;
3209		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3210		    txpkts->nflits + flits <= TX_WR_FLITS &&
3211		    txpkts->nflits + flits <= eq->avail * 8 &&
3212		    txpkts->plen + m->m_pkthdr.len < 65536;
3213
3214		if (can_coalesce) {
3215			txpkts->npkt++;
3216			txpkts->nflits += flits;
3217			txpkts->plen += m->m_pkthdr.len;
3218
3219			txsd = &txq->sdesc[eq->pidx];
3220			txsd->credits++;
3221
3222			return (0);
3223		}
3224
3225		/*
3226		 * Couldn't coalesce m into txpkts.  The first order of business
3227		 * is to send txpkts on its way.  Then we'll revisit m.
3228		 */
3229		write_txpkts_wr(txq, txpkts);
3230	}
3231
3232	/*
3233	 * Check if we can start a new coalesced tx work request with m as
3234	 * the first packet in it.
3235	 */
3236
3237	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3238
3239	flits = TXPKTS_WR_HDR + sgl->nflits;
3240	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3241	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3242
3243	if (can_coalesce == 0)
3244		return (EINVAL);
3245
3246	/*
3247	 * Start a fresh coalesced tx WR with m as the first frame in it.
3248	 */
3249	txpkts->npkt = 1;
3250	txpkts->nflits = flits;
3251	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3252	txpkts->plen = m->m_pkthdr.len;
3253
3254	txsd = &txq->sdesc[eq->pidx];
3255	txsd->credits = 1;
3256
3257	return (0);
3258}
3259
3260/*
3261 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3262 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3263 * coalescing only if sufficient hardware descriptors are available.
3264 */
3265static void
3266write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3267{
3268	struct sge_eq *eq = &txq->eq;
3269	struct fw_eth_tx_pkts_wr *wr;
3270	struct tx_sdesc *txsd;
3271	uint32_t ctrl;
3272	int ndesc;
3273
3274	TXQ_LOCK_ASSERT_OWNED(txq);
3275
3276	ndesc = howmany(txpkts->nflits, 8);
3277
3278	wr = (void *)&eq->desc[eq->pidx];
3279	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3280	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3281	if (eq->avail == ndesc) {
3282		if (!(eq->flags & EQ_CRFLUSHED)) {
3283			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3284			eq->flags |= EQ_CRFLUSHED;
3285		}
3286		eq->flags |= EQ_STALLED;
3287	}
3288	wr->equiq_to_len16 = htobe32(ctrl);
3289	wr->plen = htobe16(txpkts->plen);
3290	wr->npkt = txpkts->npkt;
3291	wr->r3 = wr->type = 0;
3292
3293	/* Everything else already written */
3294
3295	txsd = &txq->sdesc[eq->pidx];
3296	txsd->desc_used = ndesc;
3297
3298	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3299
3300	eq->pending += ndesc;
3301	eq->avail -= ndesc;
3302	eq->pidx += ndesc;
3303	if (eq->pidx >= eq->cap)
3304		eq->pidx -= eq->cap;
3305
3306	txq->txpkts_pkts += txpkts->npkt;
3307	txq->txpkts_wrs++;
3308	txpkts->npkt = 0;	/* emptied */
3309}
3310
3311static inline void
3312write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3313    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3314{
3315	struct ulp_txpkt *ulpmc;
3316	struct ulptx_idata *ulpsc;
3317	struct cpl_tx_pkt_core *cpl;
3318	struct sge_eq *eq = &txq->eq;
3319	uintptr_t flitp, start, end;
3320	uint64_t ctrl;
3321	caddr_t dst;
3322
3323	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3324
3325	start = (uintptr_t)eq->desc;
3326	end = (uintptr_t)eq->spg;
3327
3328	/* Checksum offload */
3329	ctrl = 0;
3330	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3331		ctrl |= F_TXPKT_IPCSUM_DIS;
3332	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3333	    CSUM_TCP_IPV6 | CSUM_TSO)))
3334		ctrl |= F_TXPKT_L4CSUM_DIS;
3335	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3336	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3337		txq->txcsum++;	/* some hardware assistance provided */
3338
3339	/* VLAN tag insertion */
3340	if (m->m_flags & M_VLANTAG) {
3341		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3342		txq->vlan_insertion++;
3343	}
3344
3345	/*
3346	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3347	 * is required by the firmware/hardware).  It follows that flitp cannot
3348	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3349	 * bytes each), and that it can not wrap around in the middle of the
3350	 * cpl_tx_pkt_core either.
3351	 */
3352	flitp = (uintptr_t)txpkts->flitp;
3353	KASSERT((flitp & 0xf) == 0,
3354	    ("%s: last SGL did not end at 16 byte boundary: %p",
3355	    __func__, txpkts->flitp));
3356
3357	/* ULP master command */
3358	ulpmc = (void *)flitp;
3359	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3360	    V_ULP_TXPKT_FID(eq->iqid));
3361	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3362	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3363
3364	/* ULP subcommand */
3365	ulpsc = (void *)(ulpmc + 1);
3366	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3367	    F_ULP_TX_SC_MORE);
3368	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3369
3370	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3371	if (flitp == end)
3372		flitp = start;
3373
3374	/* CPL_TX_PKT */
3375	cpl = (void *)flitp;
3376	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3377	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3378	cpl->pack = 0;
3379	cpl->len = htobe16(m->m_pkthdr.len);
3380	cpl->ctrl1 = htobe64(ctrl);
3381
3382	flitp += sizeof(*cpl);
3383	if (flitp == end)
3384		flitp = start;
3385
3386	/* SGL for this frame */
3387	dst = (caddr_t)flitp;
3388	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3389	txpkts->flitp = (void *)dst;
3390
3391	KASSERT(((uintptr_t)dst & 0xf) == 0,
3392	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3393}
3394
3395/*
3396 * If the SGL ends on an address that is not 16 byte aligned, this function will
3397 * add a 0 filled flit at the end.  It returns 1 in that case.
3398 */
3399static int
3400write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3401{
3402	__be64 *flitp, *end;
3403	struct ulptx_sgl *usgl;
3404	bus_dma_segment_t *seg;
3405	int i, padded;
3406
3407	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3408	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3409	    __func__, sgl->nsegs, sgl->nflits));
3410
3411	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3412	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3413
3414	flitp = (__be64 *)(*to);
3415	end = flitp + sgl->nflits;
3416	seg = &sgl->seg[0];
3417	usgl = (void *)flitp;
3418
3419	/*
3420	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3421	 * ring, so we're at least 16 bytes away from the status page.  There is
3422	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3423	 */
3424
3425	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3426	    V_ULPTX_NSGE(sgl->nsegs));
3427	usgl->len0 = htobe32(seg->ds_len);
3428	usgl->addr0 = htobe64(seg->ds_addr);
3429	seg++;
3430
3431	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3432
3433		/* Won't wrap around at all */
3434
3435		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3436			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3437			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3438		}
3439		if (i & 1)
3440			usgl->sge[i / 2].len[1] = htobe32(0);
3441	} else {
3442
3443		/* Will wrap somewhere in the rest of the SGL */
3444
3445		/* 2 flits already written, write the rest flit by flit */
3446		flitp = (void *)(usgl + 1);
3447		for (i = 0; i < sgl->nflits - 2; i++) {
3448			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
3449				flitp = (void *)eq->desc;
3450			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
3451		}
3452		end = flitp;
3453	}
3454
3455	if ((uintptr_t)end & 0xf) {
3456		*(uint64_t *)end = 0;
3457		end++;
3458		padded = 1;
3459	} else
3460		padded = 0;
3461
3462	if ((uintptr_t)end == (uintptr_t)eq->spg)
3463		*to = (void *)eq->desc;
3464	else
3465		*to = (void *)end;
3466
3467	return (padded);
3468}
3469
3470static inline void
3471copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3472{
3473	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
3474		bcopy(from, *to, len);
3475		(*to) += len;
3476	} else {
3477		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3478
3479		bcopy(from, *to, portion);
3480		from += portion;
3481		portion = len - portion;	/* remaining */
3482		bcopy(from, (void *)eq->desc, portion);
3483		(*to) = (caddr_t)eq->desc + portion;
3484	}
3485}
3486
3487static inline void
3488ring_eq_db(struct adapter *sc, struct sge_eq *eq)
3489{
3490	u_int db, pending;
3491
3492	db = eq->doorbells;
3493	pending = eq->pending;
3494	if (pending > 1)
3495		clrbit(&db, DOORBELL_WCWR);
3496	eq->pending = 0;
3497	wmb();
3498
3499	switch (ffs(db) - 1) {
3500	case DOORBELL_UDB:
3501		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3502		return;
3503
3504	case DOORBELL_WCWR: {
3505		volatile uint64_t *dst, *src;
3506		int i;
3507
3508		/*
3509		 * Queues whose 128B doorbell segment fits in the page do not
3510		 * use relative qid (udb_qid is always 0).  Only queues with
3511		 * doorbell segments can do WCWR.
3512		 */
3513		KASSERT(eq->udb_qid == 0 && pending == 1,
3514		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
3515		    __func__, eq->doorbells, pending, eq->pidx, eq));
3516
3517		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
3518		    UDBS_DB_OFFSET);
3519		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
3520		src = (void *)&eq->desc[i];
3521		while (src != (void *)&eq->desc[i + 1])
3522			*dst++ = *src++;
3523		wmb();
3524		return;
3525	}
3526
3527	case DOORBELL_UDBWC:
3528		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3529		wmb();
3530		return;
3531
3532	case DOORBELL_KDB:
3533		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3534		    V_QID(eq->cntxt_id) | V_PIDX(pending));
3535		return;
3536	}
3537}
3538
3539static inline int
3540reclaimable(struct sge_eq *eq)
3541{
3542	unsigned int cidx;
3543
3544	cidx = eq->spg->cidx;	/* stable snapshot */
3545	cidx = be16toh(cidx);
3546
3547	if (cidx >= eq->cidx)
3548		return (cidx - eq->cidx);
3549	else
3550		return (cidx + eq->cap - eq->cidx);
3551}
3552
3553/*
3554 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
3555 * many as possible but stop when there are around "n" mbufs to free.
3556 *
3557 * The actual number reclaimed is provided as the return value.
3558 */
3559static int
3560reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
3561{
3562	struct tx_sdesc *txsd;
3563	struct tx_maps *txmaps;
3564	struct tx_map *txm;
3565	unsigned int reclaimed, maps;
3566	struct sge_eq *eq = &txq->eq;
3567
3568	TXQ_LOCK_ASSERT_OWNED(txq);
3569
3570	if (can_reclaim == 0)
3571		can_reclaim = reclaimable(eq);
3572
3573	maps = reclaimed = 0;
3574	while (can_reclaim && maps < n) {
3575		int ndesc;
3576
3577		txsd = &txq->sdesc[eq->cidx];
3578		ndesc = txsd->desc_used;
3579
3580		/* Firmware doesn't return "partial" credits. */
3581		KASSERT(can_reclaim >= ndesc,
3582		    ("%s: unexpected number of credits: %d, %d",
3583		    __func__, can_reclaim, ndesc));
3584
3585		maps += txsd->credits;
3586
3587		reclaimed += ndesc;
3588		can_reclaim -= ndesc;
3589
3590		eq->cidx += ndesc;
3591		if (__predict_false(eq->cidx >= eq->cap))
3592			eq->cidx -= eq->cap;
3593	}
3594
3595	txmaps = &txq->txmaps;
3596	txm = &txmaps->maps[txmaps->map_cidx];
3597	if (maps)
3598		prefetch(txm->m);
3599
3600	eq->avail += reclaimed;
3601	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
3602	    ("%s: too many descriptors available", __func__));
3603
3604	txmaps->map_avail += maps;
3605	KASSERT(txmaps->map_avail <= txmaps->map_total,
3606	    ("%s: too many maps available", __func__));
3607
3608	while (maps--) {
3609		struct tx_map *next;
3610
3611		next = txm + 1;
3612		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
3613			next = txmaps->maps;
3614		prefetch(next->m);
3615
3616		bus_dmamap_unload(txq->tx_tag, txm->map);
3617		m_freem(txm->m);
3618		txm->m = NULL;
3619
3620		txm = next;
3621		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
3622			txmaps->map_cidx = 0;
3623	}
3624
3625	return (reclaimed);
3626}
3627
3628static void
3629write_eqflush_wr(struct sge_eq *eq)
3630{
3631	struct fw_eq_flush_wr *wr;
3632
3633	EQ_LOCK_ASSERT_OWNED(eq);
3634	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
3635	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
3636
3637	wr = (void *)&eq->desc[eq->pidx];
3638	bzero(wr, sizeof(*wr));
3639	wr->opcode = FW_EQ_FLUSH_WR;
3640	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
3641	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3642
3643	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
3644	eq->pending++;
3645	eq->avail--;
3646	if (++eq->pidx == eq->cap)
3647		eq->pidx = 0;
3648}
3649
3650static __be64
3651get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
3652{
3653	int i = (idx / 3) * 2;
3654
3655	switch (idx % 3) {
3656	case 0: {
3657		__be64 rc;
3658
3659		rc = htobe32(sgl[i].ds_len);
3660		if (i + 1 < nsegs)
3661			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
3662
3663		return (rc);
3664	}
3665	case 1:
3666		return htobe64(sgl[i].ds_addr);
3667	case 2:
3668		return htobe64(sgl[i + 1].ds_addr);
3669	}
3670
3671	return (0);
3672}
3673
3674static void
3675set_fl_tag_idx(struct sge_fl *fl, int bufsize)
3676{
3677	int i;
3678
3679	for (i = 0; i < FL_BUF_SIZES - 1; i++) {
3680		if (FL_BUF_SIZE(i) >= bufsize)
3681			break;
3682	}
3683
3684	fl->tag_idx = i;
3685}
3686
3687static void
3688add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
3689{
3690	mtx_lock(&sc->sfl_lock);
3691	FL_LOCK(fl);
3692	if ((fl->flags & FL_DOOMED) == 0) {
3693		fl->flags |= FL_STARVING;
3694		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
3695		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
3696	}
3697	FL_UNLOCK(fl);
3698	mtx_unlock(&sc->sfl_lock);
3699}
3700
3701static int
3702handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3703    struct mbuf *m)
3704{
3705	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3706	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3707	struct adapter *sc = iq->adapter;
3708	struct sge *s = &sc->sge;
3709	struct sge_eq *eq;
3710
3711	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3712	    rss->opcode));
3713
3714	eq = s->eqmap[qid - s->eq_start];
3715	EQ_LOCK(eq);
3716	KASSERT(eq->flags & EQ_CRFLUSHED,
3717	    ("%s: unsolicited egress update", __func__));
3718	eq->flags &= ~EQ_CRFLUSHED;
3719	eq->egr_update++;
3720
3721	if (__predict_false(eq->flags & EQ_DOOMED))
3722		wakeup_one(eq);
3723	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
3724		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
3725	EQ_UNLOCK(eq);
3726
3727	return (0);
3728}
3729
3730/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
3731CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
3732    offsetof(struct cpl_fw6_msg, data));
3733
3734static int
3735handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
3736{
3737	struct adapter *sc = iq->adapter;
3738	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3739
3740	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3741	    rss->opcode));
3742
3743	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
3744		const struct rss_header *rss2;
3745
3746		rss2 = (const struct rss_header *)&cpl->data[0];
3747		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
3748	}
3749
3750	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
3751}
3752
3753static int
3754sysctl_uint16(SYSCTL_HANDLER_ARGS)
3755{
3756	uint16_t *id = arg1;
3757	int i = *id;
3758
3759	return sysctl_handle_int(oidp, &i, 0, req);
3760}
3761