if_ale.c revision 195153
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ale/if_ale.c 195153 2009-06-29 05:12:21Z yongari $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/module.h>
41#include <sys/rman.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_llc.h>
54#include <net/if_media.h>
55#include <net/if_types.h>
56#include <net/if_vlan_var.h>
57
58#include <netinet/in.h>
59#include <netinet/in_systm.h>
60#include <netinet/ip.h>
61#include <netinet/tcp.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65
66#include <dev/pci/pcireg.h>
67#include <dev/pci/pcivar.h>
68
69#include <machine/atomic.h>
70#include <machine/bus.h>
71#include <machine/in_cksum.h>
72
73#include <dev/ale/if_alereg.h>
74#include <dev/ale/if_alevar.h>
75
76/* "device miibus" required.  See GENERIC if you get errors here. */
77#include "miibus_if.h"
78
79/* For more information about Tx checksum offload issues see ale_encap(). */
80#define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81#ifndef	IFCAP_VLAN_HWTSO
82#define	IFCAP_VLAN_HWTSO	0
83#endif
84
85MODULE_DEPEND(ale, pci, 1, 1, 1);
86MODULE_DEPEND(ale, ether, 1, 1, 1);
87MODULE_DEPEND(ale, miibus, 1, 1, 1);
88
89/* Tunables. */
90static int msi_disable = 0;
91static int msix_disable = 0;
92TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
93TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
94
95/*
96 * Devices supported by this driver.
97 */
98static struct ale_dev {
99	uint16_t	ale_vendorid;
100	uint16_t	ale_deviceid;
101	const char	*ale_name;
102} ale_devs[] = {
103    { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
104    "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
105};
106
107static int	ale_attach(device_t);
108static int	ale_check_boundary(struct ale_softc *);
109static int	ale_detach(device_t);
110static int	ale_dma_alloc(struct ale_softc *);
111static void	ale_dma_free(struct ale_softc *);
112static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113static int	ale_encap(struct ale_softc *, struct mbuf **);
114static void	ale_get_macaddr(struct ale_softc *);
115static void	ale_init(void *);
116static void	ale_init_locked(struct ale_softc *);
117static void	ale_init_rx_pages(struct ale_softc *);
118static void	ale_init_tx_ring(struct ale_softc *);
119static void	ale_int_task(void *, int);
120static int	ale_intr(void *);
121static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
122static void	ale_link_task(void *, int);
123static void	ale_mac_config(struct ale_softc *);
124static int	ale_miibus_readreg(device_t, int, int);
125static void	ale_miibus_statchg(device_t);
126static int	ale_miibus_writereg(device_t, int, int, int);
127static int	ale_mediachange(struct ifnet *);
128static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
129static void	ale_phy_reset(struct ale_softc *);
130static int	ale_probe(device_t);
131static void	ale_reset(struct ale_softc *);
132static int	ale_resume(device_t);
133static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
134    uint32_t, uint32_t *);
135static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
136static int	ale_rxeof(struct ale_softc *sc, int);
137static void	ale_rxfilter(struct ale_softc *);
138static void	ale_rxvlan(struct ale_softc *);
139static void	ale_setlinkspeed(struct ale_softc *);
140static void	ale_setwol(struct ale_softc *);
141static int	ale_shutdown(device_t);
142static void	ale_start(struct ifnet *);
143static void	ale_stats_clear(struct ale_softc *);
144static void	ale_stats_update(struct ale_softc *);
145static void	ale_stop(struct ale_softc *);
146static void	ale_stop_mac(struct ale_softc *);
147static int	ale_suspend(device_t);
148static void	ale_sysctl_node(struct ale_softc *);
149static void	ale_tick(void *);
150static void	ale_tx_task(void *, int);
151static void	ale_txeof(struct ale_softc *);
152static void	ale_watchdog(struct ale_softc *);
153static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
155static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
156
157static device_method_t ale_methods[] = {
158	/* Device interface. */
159	DEVMETHOD(device_probe,		ale_probe),
160	DEVMETHOD(device_attach,	ale_attach),
161	DEVMETHOD(device_detach,	ale_detach),
162	DEVMETHOD(device_shutdown,	ale_shutdown),
163	DEVMETHOD(device_suspend,	ale_suspend),
164	DEVMETHOD(device_resume,	ale_resume),
165
166	/* MII interface. */
167	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
168	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
169	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
170
171	{ NULL, NULL }
172};
173
174static driver_t ale_driver = {
175	"ale",
176	ale_methods,
177	sizeof(struct ale_softc)
178};
179
180static devclass_t ale_devclass;
181
182DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
183DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
184
185static struct resource_spec ale_res_spec_mem[] = {
186	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187	{ -1,			0,		0 }
188};
189
190static struct resource_spec ale_irq_spec_legacy[] = {
191	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec ale_irq_spec_msi[] = {
196	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static struct resource_spec ale_irq_spec_msix[] = {
201	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202	{ -1,			0,		0 }
203};
204
205static int
206ale_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct ale_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213
214	if (phy != sc->ale_phyaddr)
215		return (0);
216
217	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
218	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
219	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
220		DELAY(5);
221		v = CSR_READ_4(sc, ALE_MDIO);
222		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
223			break;
224	}
225
226	if (i == 0) {
227		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
228		return (0);
229	}
230
231	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
232}
233
234static int
235ale_miibus_writereg(device_t dev, int phy, int reg, int val)
236{
237	struct ale_softc *sc;
238	uint32_t v;
239	int i;
240
241	sc = device_get_softc(dev);
242
243	if (phy != sc->ale_phyaddr)
244		return (0);
245
246	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
247	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
248	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
250		DELAY(5);
251		v = CSR_READ_4(sc, ALE_MDIO);
252		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253			break;
254	}
255
256	if (i == 0)
257		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
258
259	return (0);
260}
261
262static void
263ale_miibus_statchg(device_t dev)
264{
265	struct ale_softc *sc;
266
267	sc = device_get_softc(dev);
268
269	taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
270}
271
272static void
273ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
274{
275	struct ale_softc *sc;
276	struct mii_data *mii;
277
278	sc = ifp->if_softc;
279	ALE_LOCK(sc);
280	mii = device_get_softc(sc->ale_miibus);
281
282	mii_pollstat(mii);
283	ALE_UNLOCK(sc);
284	ifmr->ifm_status = mii->mii_media_status;
285	ifmr->ifm_active = mii->mii_media_active;
286}
287
288static int
289ale_mediachange(struct ifnet *ifp)
290{
291	struct ale_softc *sc;
292	struct mii_data *mii;
293	struct mii_softc *miisc;
294	int error;
295
296	sc = ifp->if_softc;
297	ALE_LOCK(sc);
298	mii = device_get_softc(sc->ale_miibus);
299	if (mii->mii_instance != 0) {
300		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
301			mii_phy_reset(miisc);
302	}
303	error = mii_mediachg(mii);
304	ALE_UNLOCK(sc);
305
306	return (error);
307}
308
309static int
310ale_probe(device_t dev)
311{
312	struct ale_dev *sp;
313	int i;
314	uint16_t vendor, devid;
315
316	vendor = pci_get_vendor(dev);
317	devid = pci_get_device(dev);
318	sp = ale_devs;
319	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
320		if (vendor == sp->ale_vendorid &&
321		    devid == sp->ale_deviceid) {
322			device_set_desc(dev, sp->ale_name);
323			return (BUS_PROBE_DEFAULT);
324		}
325		sp++;
326	}
327
328	return (ENXIO);
329}
330
331static void
332ale_get_macaddr(struct ale_softc *sc)
333{
334	uint32_t ea[2], reg;
335	int i, vpdc;
336
337	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
338	if ((reg & SPI_VPD_ENB) != 0) {
339		reg &= ~SPI_VPD_ENB;
340		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
341	}
342
343	if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
344		/*
345		 * PCI VPD capability found, let TWSI reload EEPROM.
346		 * This will set ethernet address of controller.
347		 */
348		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
349		    TWSI_CTRL_SW_LD_START);
350		for (i = 100; i > 0; i--) {
351			DELAY(1000);
352			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
353			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
354				break;
355		}
356		if (i == 0)
357			device_printf(sc->ale_dev,
358			    "reloading EEPROM timeout!\n");
359	} else {
360		if (bootverbose)
361			device_printf(sc->ale_dev,
362			    "PCI VPD capability not found!\n");
363	}
364
365	ea[0] = CSR_READ_4(sc, ALE_PAR0);
366	ea[1] = CSR_READ_4(sc, ALE_PAR1);
367	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
368	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
369	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
370	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
371	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
372	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
373}
374
375static void
376ale_phy_reset(struct ale_softc *sc)
377{
378
379	/* Reset magic from Linux. */
380	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
381	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
382	    GPHY_CTRL_PHY_PLL_ON);
383	DELAY(1000);
384	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
385	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
386	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
387	DELAY(1000);
388
389#define	ATPHY_DBG_ADDR		0x1D
390#define	ATPHY_DBG_DATA		0x1E
391
392	/* Enable hibernation mode. */
393	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
394	    ATPHY_DBG_ADDR, 0x0B);
395	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
396	    ATPHY_DBG_DATA, 0xBC00);
397	/* Set Class A/B for all modes. */
398	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
399	    ATPHY_DBG_ADDR, 0x00);
400	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
401	    ATPHY_DBG_DATA, 0x02EF);
402	/* Enable 10BT power saving. */
403	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
404	    ATPHY_DBG_ADDR, 0x12);
405	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
406	    ATPHY_DBG_DATA, 0x4C04);
407	/* Adjust 1000T power. */
408	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
409	    ATPHY_DBG_ADDR, 0x04);
410	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
411	    ATPHY_DBG_ADDR, 0x8BBB);
412	/* 10BT center tap voltage. */
413	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
414	    ATPHY_DBG_ADDR, 0x05);
415	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
416	    ATPHY_DBG_ADDR, 0x2C46);
417
418#undef	ATPHY_DBG_ADDR
419#undef	ATPHY_DBG_DATA
420	DELAY(1000);
421}
422
423static int
424ale_attach(device_t dev)
425{
426	struct ale_softc *sc;
427	struct ifnet *ifp;
428	uint16_t burst;
429	int error, i, msic, msixc, pmc;
430	uint32_t rxf_len, txf_len;
431
432	error = 0;
433	sc = device_get_softc(dev);
434	sc->ale_dev = dev;
435
436	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
437	    MTX_DEF);
438	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
439	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
440	TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
441
442	/* Map the device. */
443	pci_enable_busmaster(dev);
444	sc->ale_res_spec = ale_res_spec_mem;
445	sc->ale_irq_spec = ale_irq_spec_legacy;
446	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
447	if (error != 0) {
448		device_printf(dev, "cannot allocate memory resources.\n");
449		goto fail;
450	}
451
452	/* Set PHY address. */
453	sc->ale_phyaddr = ALE_PHY_ADDR;
454
455	/* Reset PHY. */
456	ale_phy_reset(sc);
457
458	/* Reset the ethernet controller. */
459	ale_reset(sc);
460
461	/* Get PCI and chip id/revision. */
462	sc->ale_rev = pci_get_revid(dev);
463	if (sc->ale_rev >= 0xF0) {
464		/* L2E Rev. B. AR8114 */
465		sc->ale_flags |= ALE_FLAG_FASTETHER;
466	} else {
467		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
468			/* L1E AR8121 */
469			sc->ale_flags |= ALE_FLAG_JUMBO;
470		} else {
471			/* L2E Rev. A. AR8113 */
472			sc->ale_flags |= ALE_FLAG_FASTETHER;
473		}
474	}
475	/*
476	 * All known controllers seems to require 4 bytes alignment
477	 * of Tx buffers to make Tx checksum offload with custom
478	 * checksum generation method work.
479	 */
480	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
481	/*
482	 * All known controllers seems to have issues on Rx checksum
483	 * offload for fragmented IP datagrams.
484	 */
485	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
486	/*
487	 * Don't use Tx CMB. It is known to cause RRS update failure
488	 * under certain circumstances. Typical phenomenon of the
489	 * issue would be unexpected sequence number encountered in
490	 * Rx handler.
491	 */
492	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494	    MASTER_CHIP_REV_SHIFT;
495	if (bootverbose) {
496		device_printf(dev, "PCI device revision : 0x%04x\n",
497		    sc->ale_rev);
498		device_printf(dev, "Chip id/revision : 0x%04x\n",
499		    sc->ale_chip_rev);
500	}
501	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
502	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
503	/*
504	 * Uninitialized hardware returns an invalid chip id/revision
505	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
506	 */
507	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
508	    rxf_len == 0xFFFFFFF) {
509		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
510		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
511		    txf_len, rxf_len);
512		error = ENXIO;
513		goto fail;
514	}
515	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
516
517	/* Allocate IRQ resources. */
518	msixc = pci_msix_count(dev);
519	msic = pci_msi_count(dev);
520	if (bootverbose) {
521		device_printf(dev, "MSIX count : %d\n", msixc);
522		device_printf(dev, "MSI count : %d\n", msic);
523	}
524
525	/* Prefer MSIX over MSI. */
526	if (msix_disable == 0 || msi_disable == 0) {
527		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
528		    pci_alloc_msix(dev, &msixc) == 0) {
529			if (msic == ALE_MSIX_MESSAGES) {
530				device_printf(dev, "Using %d MSIX messages.\n",
531				    msixc);
532				sc->ale_flags |= ALE_FLAG_MSIX;
533				sc->ale_irq_spec = ale_irq_spec_msix;
534			} else
535				pci_release_msi(dev);
536		}
537		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
538		    msic == ALE_MSI_MESSAGES &&
539		    pci_alloc_msi(dev, &msic) == 0) {
540			if (msic == ALE_MSI_MESSAGES) {
541				device_printf(dev, "Using %d MSI messages.\n",
542				    msic);
543				sc->ale_flags |= ALE_FLAG_MSI;
544				sc->ale_irq_spec = ale_irq_spec_msi;
545			} else
546				pci_release_msi(dev);
547		}
548	}
549
550	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
551	if (error != 0) {
552		device_printf(dev, "cannot allocate IRQ resources.\n");
553		goto fail;
554	}
555
556	/* Get DMA parameters from PCIe device control register. */
557	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
558		sc->ale_flags |= ALE_FLAG_PCIE;
559		burst = pci_read_config(dev, i + 0x08, 2);
560		/* Max read request size. */
561		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
562		    DMA_CFG_RD_BURST_SHIFT;
563		/* Max payload size. */
564		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
565		    DMA_CFG_WR_BURST_SHIFT;
566		if (bootverbose) {
567			device_printf(dev, "Read request size : %d bytes.\n",
568			    128 << ((burst >> 12) & 0x07));
569			device_printf(dev, "TLP payload size : %d bytes.\n",
570			    128 << ((burst >> 5) & 0x07));
571		}
572	} else {
573		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
574		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
575	}
576
577	/* Create device sysctl node. */
578	ale_sysctl_node(sc);
579
580	if ((error = ale_dma_alloc(sc) != 0))
581		goto fail;
582
583	/* Load station address. */
584	ale_get_macaddr(sc);
585
586	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
587	if (ifp == NULL) {
588		device_printf(dev, "cannot allocate ifnet structure.\n");
589		error = ENXIO;
590		goto fail;
591	}
592
593	ifp->if_softc = sc;
594	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
596	ifp->if_ioctl = ale_ioctl;
597	ifp->if_start = ale_start;
598	ifp->if_init = ale_init;
599	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
600	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
601	IFQ_SET_READY(&ifp->if_snd);
602	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
603	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
604	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
605		sc->ale_flags |= ALE_FLAG_PMCAP;
606		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
607	}
608	ifp->if_capenable = ifp->if_capabilities;
609
610	/* Set up MII bus. */
611	if ((error = mii_phy_probe(dev, &sc->ale_miibus, ale_mediachange,
612	    ale_mediastatus)) != 0) {
613		device_printf(dev, "no PHY found!\n");
614		goto fail;
615	}
616
617	ether_ifattach(ifp, sc->ale_eaddr);
618
619	/* VLAN capability setup. */
620	ifp->if_capabilities |= IFCAP_VLAN_MTU;
621	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
622	ifp->if_capenable = ifp->if_capabilities;
623	/*
624	 * Even though controllers supported by ale(3) have Rx checksum
625	 * offload bug the workaround for fragmented frames seemed to
626	 * work so far. However it seems Rx checksum offload does not
627	 * work under certain conditions. So disable Rx checksum offload
628	 * until I find more clue about it but allow users to override it.
629	 */
630	ifp->if_capenable &= ~IFCAP_RXCSUM;
631
632	/* Tell the upper layer(s) we support long frames. */
633	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
634
635	/* Create local taskq. */
636	TASK_INIT(&sc->ale_tx_task, 1, ale_tx_task, ifp);
637	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
638	    taskqueue_thread_enqueue, &sc->ale_tq);
639	if (sc->ale_tq == NULL) {
640		device_printf(dev, "could not create taskqueue.\n");
641		ether_ifdetach(ifp);
642		error = ENXIO;
643		goto fail;
644	}
645	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
646	    device_get_nameunit(sc->ale_dev));
647
648	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
649		msic = ALE_MSIX_MESSAGES;
650	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
651		msic = ALE_MSI_MESSAGES;
652	else
653		msic = 1;
654	for (i = 0; i < msic; i++) {
655		error = bus_setup_intr(dev, sc->ale_irq[i],
656		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
657		    &sc->ale_intrhand[i]);
658		if (error != 0)
659			break;
660	}
661	if (error != 0) {
662		device_printf(dev, "could not set up interrupt handler.\n");
663		taskqueue_free(sc->ale_tq);
664		sc->ale_tq = NULL;
665		ether_ifdetach(ifp);
666		goto fail;
667	}
668
669fail:
670	if (error != 0)
671		ale_detach(dev);
672
673	return (error);
674}
675
676static int
677ale_detach(device_t dev)
678{
679	struct ale_softc *sc;
680	struct ifnet *ifp;
681	int i, msic;
682
683	sc = device_get_softc(dev);
684
685	ifp = sc->ale_ifp;
686	if (device_is_attached(dev)) {
687		ALE_LOCK(sc);
688		sc->ale_flags |= ALE_FLAG_DETACH;
689		ale_stop(sc);
690		ALE_UNLOCK(sc);
691		callout_drain(&sc->ale_tick_ch);
692		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
693		taskqueue_drain(sc->ale_tq, &sc->ale_tx_task);
694		taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
695		ether_ifdetach(ifp);
696	}
697
698	if (sc->ale_tq != NULL) {
699		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
700		taskqueue_free(sc->ale_tq);
701		sc->ale_tq = NULL;
702	}
703
704	if (sc->ale_miibus != NULL) {
705		device_delete_child(dev, sc->ale_miibus);
706		sc->ale_miibus = NULL;
707	}
708	bus_generic_detach(dev);
709	ale_dma_free(sc);
710
711	if (ifp != NULL) {
712		if_free(ifp);
713		sc->ale_ifp = NULL;
714	}
715
716	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
717		msic = ALE_MSIX_MESSAGES;
718	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
719		msic = ALE_MSI_MESSAGES;
720	else
721		msic = 1;
722	for (i = 0; i < msic; i++) {
723		if (sc->ale_intrhand[i] != NULL) {
724			bus_teardown_intr(dev, sc->ale_irq[i],
725			    sc->ale_intrhand[i]);
726			sc->ale_intrhand[i] = NULL;
727		}
728	}
729
730	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
731	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
732		pci_release_msi(dev);
733	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
734	mtx_destroy(&sc->ale_mtx);
735
736	return (0);
737}
738
739#define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
740	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
741
742#if __FreeBSD_version > 800000
743#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
744	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
745#else
746#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
747	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
748#endif
749
750static void
751ale_sysctl_node(struct ale_softc *sc)
752{
753	struct sysctl_ctx_list *ctx;
754	struct sysctl_oid_list *child, *parent;
755	struct sysctl_oid *tree;
756	struct ale_hw_stats *stats;
757	int error;
758
759	stats = &sc->ale_stats;
760	ctx = device_get_sysctl_ctx(sc->ale_dev);
761	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
762
763	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
764	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
765	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
766	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
767	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
768	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
769	/* Pull in device tunables. */
770	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
771	error = resource_int_value(device_get_name(sc->ale_dev),
772	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
773	if (error == 0) {
774		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
775		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
776			device_printf(sc->ale_dev, "int_rx_mod value out of "
777			    "range; using default: %d\n",
778			    ALE_IM_RX_TIMER_DEFAULT);
779			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
780		}
781	}
782	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
783	error = resource_int_value(device_get_name(sc->ale_dev),
784	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
785	if (error == 0) {
786		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
787		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
788			device_printf(sc->ale_dev, "int_tx_mod value out of "
789			    "range; using default: %d\n",
790			    ALE_IM_TX_TIMER_DEFAULT);
791			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
792		}
793	}
794	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
795	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
796	    sysctl_hw_ale_proc_limit, "I",
797	    "max number of Rx events to process");
798	/* Pull in device tunables. */
799	sc->ale_process_limit = ALE_PROC_DEFAULT;
800	error = resource_int_value(device_get_name(sc->ale_dev),
801	    device_get_unit(sc->ale_dev), "process_limit",
802	    &sc->ale_process_limit);
803	if (error == 0) {
804		if (sc->ale_process_limit < ALE_PROC_MIN ||
805		    sc->ale_process_limit > ALE_PROC_MAX) {
806			device_printf(sc->ale_dev,
807			    "process_limit value out of range; "
808			    "using default: %d\n", ALE_PROC_DEFAULT);
809			sc->ale_process_limit = ALE_PROC_DEFAULT;
810		}
811	}
812
813	/* Misc statistics. */
814	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
815	    &stats->reset_brk_seq,
816	    "Controller resets due to broken Rx sequnce number");
817
818	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
819	    NULL, "ATE statistics");
820	parent = SYSCTL_CHILDREN(tree);
821
822	/* Rx statistics. */
823	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
824	    NULL, "Rx MAC statistics");
825	child = SYSCTL_CHILDREN(tree);
826	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
827	    &stats->rx_frames, "Good frames");
828	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
829	    &stats->rx_bcast_frames, "Good broadcast frames");
830	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
831	    &stats->rx_mcast_frames, "Good multicast frames");
832	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
833	    &stats->rx_pause_frames, "Pause control frames");
834	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
835	    &stats->rx_control_frames, "Control frames");
836	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
837	    &stats->rx_crcerrs, "CRC errors");
838	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
839	    &stats->rx_lenerrs, "Frames with length mismatched");
840	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
841	    &stats->rx_bytes, "Good octets");
842	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
843	    &stats->rx_bcast_bytes, "Good broadcast octets");
844	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
845	    &stats->rx_mcast_bytes, "Good multicast octets");
846	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
847	    &stats->rx_runts, "Too short frames");
848	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
849	    &stats->rx_fragments, "Fragmented frames");
850	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
851	    &stats->rx_pkts_64, "64 bytes frames");
852	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
853	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
854	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
855	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
856	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
857	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
858	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
859	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
860	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
861	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
862	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
863	    &stats->rx_pkts_1519_max, "1519 to max frames");
864	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
865	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
866	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
867	    &stats->rx_fifo_oflows, "FIFO overflows");
868	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
869	    &stats->rx_rrs_errs, "Return status write-back errors");
870	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
871	    &stats->rx_alignerrs, "Alignment errors");
872	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
873	    &stats->rx_pkts_filtered,
874	    "Frames dropped due to address filtering");
875
876	/* Tx statistics. */
877	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
878	    NULL, "Tx MAC statistics");
879	child = SYSCTL_CHILDREN(tree);
880	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
881	    &stats->tx_frames, "Good frames");
882	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
883	    &stats->tx_bcast_frames, "Good broadcast frames");
884	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
885	    &stats->tx_mcast_frames, "Good multicast frames");
886	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
887	    &stats->tx_pause_frames, "Pause control frames");
888	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
889	    &stats->tx_control_frames, "Control frames");
890	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
891	    &stats->tx_excess_defer, "Frames with excessive derferrals");
892	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
893	    &stats->tx_excess_defer, "Frames with derferrals");
894	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
895	    &stats->tx_bytes, "Good octets");
896	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
897	    &stats->tx_bcast_bytes, "Good broadcast octets");
898	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
899	    &stats->tx_mcast_bytes, "Good multicast octets");
900	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
901	    &stats->tx_pkts_64, "64 bytes frames");
902	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
903	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
904	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
905	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
906	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
907	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
908	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
909	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
910	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
911	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
912	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
913	    &stats->tx_pkts_1519_max, "1519 to max frames");
914	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
915	    &stats->tx_single_colls, "Single collisions");
916	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
917	    &stats->tx_multi_colls, "Multiple collisions");
918	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
919	    &stats->tx_late_colls, "Late collisions");
920	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
921	    &stats->tx_excess_colls, "Excessive collisions");
922	ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
923	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
924	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
925	    &stats->tx_underrun, "FIFO underruns");
926	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
927	    &stats->tx_desc_underrun, "Descriptor write-back errors");
928	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
929	    &stats->tx_lenerrs, "Frames with length mismatched");
930	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
931	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
932}
933
934#undef ALE_SYSCTL_STAT_ADD32
935#undef ALE_SYSCTL_STAT_ADD64
936
937struct ale_dmamap_arg {
938	bus_addr_t	ale_busaddr;
939};
940
941static void
942ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
943{
944	struct ale_dmamap_arg *ctx;
945
946	if (error != 0)
947		return;
948
949	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
950
951	ctx = (struct ale_dmamap_arg *)arg;
952	ctx->ale_busaddr = segs[0].ds_addr;
953}
954
955/*
956 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
957 * which specifies high address region of DMA blocks. Therefore these
958 * blocks should have the same high address of given 4GB address
959 * space(i.e. crossing 4GB boundary is not allowed).
960 */
961static int
962ale_check_boundary(struct ale_softc *sc)
963{
964	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
965	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
966
967	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
968	    sc->ale_pagesize;
969	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
970	    sc->ale_pagesize;
971	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
972	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
973	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
974	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
975
976	if ((ALE_ADDR_HI(tx_ring_end) !=
977	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
978	    (ALE_ADDR_HI(rx_page_end[0]) !=
979	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
980	    (ALE_ADDR_HI(rx_page_end[1]) !=
981	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
982	    (ALE_ADDR_HI(tx_cmb_end) !=
983	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
984	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
985	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
986	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
987	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
988		return (EFBIG);
989
990	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
991	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
992	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
993	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
994	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
995		return (EFBIG);
996
997	return (0);
998}
999
1000static int
1001ale_dma_alloc(struct ale_softc *sc)
1002{
1003	struct ale_txdesc *txd;
1004	bus_addr_t lowaddr;
1005	struct ale_dmamap_arg ctx;
1006	int error, guard_size, i;
1007
1008	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1009		guard_size = ALE_JUMBO_FRAMELEN;
1010	else
1011		guard_size = ALE_MAX_FRAMELEN;
1012	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1013	    ALE_RX_PAGE_ALIGN);
1014	lowaddr = BUS_SPACE_MAXADDR;
1015again:
1016	/* Create parent DMA tag. */
1017	error = bus_dma_tag_create(
1018	    bus_get_dma_tag(sc->ale_dev), /* parent */
1019	    1, 0,			/* alignment, boundary */
1020	    lowaddr,			/* lowaddr */
1021	    BUS_SPACE_MAXADDR,		/* highaddr */
1022	    NULL, NULL,			/* filter, filterarg */
1023	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1024	    0,				/* nsegments */
1025	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1026	    0,				/* flags */
1027	    NULL, NULL,			/* lockfunc, lockarg */
1028	    &sc->ale_cdata.ale_parent_tag);
1029	if (error != 0) {
1030		device_printf(sc->ale_dev,
1031		    "could not create parent DMA tag.\n");
1032		goto fail;
1033	}
1034
1035	/* Create DMA tag for Tx descriptor ring. */
1036	error = bus_dma_tag_create(
1037	    sc->ale_cdata.ale_parent_tag, /* parent */
1038	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1039	    BUS_SPACE_MAXADDR,		/* lowaddr */
1040	    BUS_SPACE_MAXADDR,		/* highaddr */
1041	    NULL, NULL,			/* filter, filterarg */
1042	    ALE_TX_RING_SZ,		/* maxsize */
1043	    1,				/* nsegments */
1044	    ALE_TX_RING_SZ,		/* maxsegsize */
1045	    0,				/* flags */
1046	    NULL, NULL,			/* lockfunc, lockarg */
1047	    &sc->ale_cdata.ale_tx_ring_tag);
1048	if (error != 0) {
1049		device_printf(sc->ale_dev,
1050		    "could not create Tx ring DMA tag.\n");
1051		goto fail;
1052	}
1053
1054	/* Create DMA tag for Rx pages. */
1055	for (i = 0; i < ALE_RX_PAGES; i++) {
1056		error = bus_dma_tag_create(
1057		    sc->ale_cdata.ale_parent_tag, /* parent */
1058		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1059		    BUS_SPACE_MAXADDR,		/* lowaddr */
1060		    BUS_SPACE_MAXADDR,		/* highaddr */
1061		    NULL, NULL,			/* filter, filterarg */
1062		    sc->ale_pagesize,		/* maxsize */
1063		    1,				/* nsegments */
1064		    sc->ale_pagesize,		/* maxsegsize */
1065		    0,				/* flags */
1066		    NULL, NULL,			/* lockfunc, lockarg */
1067		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1068		if (error != 0) {
1069			device_printf(sc->ale_dev,
1070			    "could not create Rx page %d DMA tag.\n", i);
1071			goto fail;
1072		}
1073	}
1074
1075	/* Create DMA tag for Tx coalescing message block. */
1076	error = bus_dma_tag_create(
1077	    sc->ale_cdata.ale_parent_tag, /* parent */
1078	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1079	    BUS_SPACE_MAXADDR,		/* lowaddr */
1080	    BUS_SPACE_MAXADDR,		/* highaddr */
1081	    NULL, NULL,			/* filter, filterarg */
1082	    ALE_TX_CMB_SZ,		/* maxsize */
1083	    1,				/* nsegments */
1084	    ALE_TX_CMB_SZ,		/* maxsegsize */
1085	    0,				/* flags */
1086	    NULL, NULL,			/* lockfunc, lockarg */
1087	    &sc->ale_cdata.ale_tx_cmb_tag);
1088	if (error != 0) {
1089		device_printf(sc->ale_dev,
1090		    "could not create Tx CMB DMA tag.\n");
1091		goto fail;
1092	}
1093
1094	/* Create DMA tag for Rx coalescing message block. */
1095	for (i = 0; i < ALE_RX_PAGES; i++) {
1096		error = bus_dma_tag_create(
1097		    sc->ale_cdata.ale_parent_tag, /* parent */
1098		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1099		    BUS_SPACE_MAXADDR,		/* lowaddr */
1100		    BUS_SPACE_MAXADDR,		/* highaddr */
1101		    NULL, NULL,			/* filter, filterarg */
1102		    ALE_RX_CMB_SZ,		/* maxsize */
1103		    1,				/* nsegments */
1104		    ALE_RX_CMB_SZ,		/* maxsegsize */
1105		    0,				/* flags */
1106		    NULL, NULL,			/* lockfunc, lockarg */
1107		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1108		if (error != 0) {
1109			device_printf(sc->ale_dev,
1110			    "could not create Rx page %d CMB DMA tag.\n", i);
1111			goto fail;
1112		}
1113	}
1114
1115	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1116	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1117	    (void **)&sc->ale_cdata.ale_tx_ring,
1118	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1119	    &sc->ale_cdata.ale_tx_ring_map);
1120	if (error != 0) {
1121		device_printf(sc->ale_dev,
1122		    "could not allocate DMA'able memory for Tx ring.\n");
1123		goto fail;
1124	}
1125	ctx.ale_busaddr = 0;
1126	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1127	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1128	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1129	if (error != 0 || ctx.ale_busaddr == 0) {
1130		device_printf(sc->ale_dev,
1131		    "could not load DMA'able memory for Tx ring.\n");
1132		goto fail;
1133	}
1134	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1135
1136	/* Rx pages. */
1137	for (i = 0; i < ALE_RX_PAGES; i++) {
1138		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1139		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1140		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1141		    &sc->ale_cdata.ale_rx_page[i].page_map);
1142		if (error != 0) {
1143			device_printf(sc->ale_dev,
1144			    "could not allocate DMA'able memory for "
1145			    "Rx page %d.\n", i);
1146			goto fail;
1147		}
1148		ctx.ale_busaddr = 0;
1149		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1150		    sc->ale_cdata.ale_rx_page[i].page_map,
1151		    sc->ale_cdata.ale_rx_page[i].page_addr,
1152		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1153		if (error != 0 || ctx.ale_busaddr == 0) {
1154			device_printf(sc->ale_dev,
1155			    "could not load DMA'able memory for "
1156			    "Rx page %d.\n", i);
1157			goto fail;
1158		}
1159		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1160	}
1161
1162	/* Tx CMB. */
1163	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1164	    (void **)&sc->ale_cdata.ale_tx_cmb,
1165	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1166	    &sc->ale_cdata.ale_tx_cmb_map);
1167	if (error != 0) {
1168		device_printf(sc->ale_dev,
1169		    "could not allocate DMA'able memory for Tx CMB.\n");
1170		goto fail;
1171	}
1172	ctx.ale_busaddr = 0;
1173	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1174	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1175	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1176	if (error != 0 || ctx.ale_busaddr == 0) {
1177		device_printf(sc->ale_dev,
1178		    "could not load DMA'able memory for Tx CMB.\n");
1179		goto fail;
1180	}
1181	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1182
1183	/* Rx CMB. */
1184	for (i = 0; i < ALE_RX_PAGES; i++) {
1185		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1186		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1187		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1188		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1189		if (error != 0) {
1190			device_printf(sc->ale_dev, "could not allocate "
1191			    "DMA'able memory for Rx page %d CMB.\n", i);
1192			goto fail;
1193		}
1194		ctx.ale_busaddr = 0;
1195		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1196		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1197		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1198		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1199		if (error != 0 || ctx.ale_busaddr == 0) {
1200			device_printf(sc->ale_dev, "could not load DMA'able "
1201			    "memory for Rx page %d CMB.\n", i);
1202			goto fail;
1203		}
1204		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1205	}
1206
1207	/*
1208	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1209	 * high address region of 64bit DMA address space.
1210	 */
1211	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1212	    (error = ale_check_boundary(sc)) != 0) {
1213		device_printf(sc->ale_dev, "4GB boundary crossed, "
1214		    "switching to 32bit DMA addressing mode.\n");
1215		ale_dma_free(sc);
1216		/*
1217		 * Limit max allowable DMA address space to 32bit
1218		 * and try again.
1219		 */
1220		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1221		goto again;
1222	}
1223
1224	/*
1225	 * Create Tx buffer parent tag.
1226	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1227	 * needs separate parent DMA tag as parent DMA address space
1228	 * could be restricted to be within 32bit address space by
1229	 * 4GB boundary crossing.
1230	 */
1231	error = bus_dma_tag_create(
1232	    bus_get_dma_tag(sc->ale_dev), /* parent */
1233	    1, 0,			/* alignment, boundary */
1234	    BUS_SPACE_MAXADDR,		/* lowaddr */
1235	    BUS_SPACE_MAXADDR,		/* highaddr */
1236	    NULL, NULL,			/* filter, filterarg */
1237	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1238	    0,				/* nsegments */
1239	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1240	    0,				/* flags */
1241	    NULL, NULL,			/* lockfunc, lockarg */
1242	    &sc->ale_cdata.ale_buffer_tag);
1243	if (error != 0) {
1244		device_printf(sc->ale_dev,
1245		    "could not create parent buffer DMA tag.\n");
1246		goto fail;
1247	}
1248
1249	/* Create DMA tag for Tx buffers. */
1250	error = bus_dma_tag_create(
1251	    sc->ale_cdata.ale_buffer_tag, /* parent */
1252	    1, 0,			/* alignment, boundary */
1253	    BUS_SPACE_MAXADDR,		/* lowaddr */
1254	    BUS_SPACE_MAXADDR,		/* highaddr */
1255	    NULL, NULL,			/* filter, filterarg */
1256	    ALE_TSO_MAXSIZE,		/* maxsize */
1257	    ALE_MAXTXSEGS,		/* nsegments */
1258	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1259	    0,				/* flags */
1260	    NULL, NULL,			/* lockfunc, lockarg */
1261	    &sc->ale_cdata.ale_tx_tag);
1262	if (error != 0) {
1263		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1264		goto fail;
1265	}
1266
1267	/* Create DMA maps for Tx buffers. */
1268	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1269		txd = &sc->ale_cdata.ale_txdesc[i];
1270		txd->tx_m = NULL;
1271		txd->tx_dmamap = NULL;
1272		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1273		    &txd->tx_dmamap);
1274		if (error != 0) {
1275			device_printf(sc->ale_dev,
1276			    "could not create Tx dmamap.\n");
1277			goto fail;
1278		}
1279	}
1280
1281fail:
1282	return (error);
1283}
1284
1285static void
1286ale_dma_free(struct ale_softc *sc)
1287{
1288	struct ale_txdesc *txd;
1289	int i;
1290
1291	/* Tx buffers. */
1292	if (sc->ale_cdata.ale_tx_tag != NULL) {
1293		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1294			txd = &sc->ale_cdata.ale_txdesc[i];
1295			if (txd->tx_dmamap != NULL) {
1296				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1297				    txd->tx_dmamap);
1298				txd->tx_dmamap = NULL;
1299			}
1300		}
1301		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1302		sc->ale_cdata.ale_tx_tag = NULL;
1303	}
1304	/* Tx descriptor ring. */
1305	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1306		if (sc->ale_cdata.ale_tx_ring_map != NULL)
1307			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1308			    sc->ale_cdata.ale_tx_ring_map);
1309		if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1310		    sc->ale_cdata.ale_tx_ring != NULL)
1311			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1312			    sc->ale_cdata.ale_tx_ring,
1313			    sc->ale_cdata.ale_tx_ring_map);
1314		sc->ale_cdata.ale_tx_ring = NULL;
1315		sc->ale_cdata.ale_tx_ring_map = NULL;
1316		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1317		sc->ale_cdata.ale_tx_ring_tag = NULL;
1318	}
1319	/* Rx page block. */
1320	for (i = 0; i < ALE_RX_PAGES; i++) {
1321		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1322			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1323				bus_dmamap_unload(
1324				    sc->ale_cdata.ale_rx_page[i].page_tag,
1325				    sc->ale_cdata.ale_rx_page[i].page_map);
1326			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1327			    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1328				bus_dmamem_free(
1329				    sc->ale_cdata.ale_rx_page[i].page_tag,
1330				    sc->ale_cdata.ale_rx_page[i].page_addr,
1331				    sc->ale_cdata.ale_rx_page[i].page_map);
1332			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1333			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1334			bus_dma_tag_destroy(
1335			    sc->ale_cdata.ale_rx_page[i].page_tag);
1336			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1337		}
1338	}
1339	/* Rx CMB. */
1340	for (i = 0; i < ALE_RX_PAGES; i++) {
1341		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1342			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1343				bus_dmamap_unload(
1344				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1345				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1346			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1347			    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1348				bus_dmamem_free(
1349				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1350				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1351				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1352			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1353			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1354			bus_dma_tag_destroy(
1355			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1356			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1357		}
1358	}
1359	/* Tx CMB. */
1360	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1361		if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1362			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1363			    sc->ale_cdata.ale_tx_cmb_map);
1364		if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1365		    sc->ale_cdata.ale_tx_cmb != NULL)
1366			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1367			    sc->ale_cdata.ale_tx_cmb,
1368			    sc->ale_cdata.ale_tx_cmb_map);
1369		sc->ale_cdata.ale_tx_cmb = NULL;
1370		sc->ale_cdata.ale_tx_cmb_map = NULL;
1371		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1372		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1373	}
1374	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1375		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1376		sc->ale_cdata.ale_buffer_tag = NULL;
1377	}
1378	if (sc->ale_cdata.ale_parent_tag != NULL) {
1379		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1380		sc->ale_cdata.ale_parent_tag = NULL;
1381	}
1382}
1383
1384static int
1385ale_shutdown(device_t dev)
1386{
1387
1388	return (ale_suspend(dev));
1389}
1390
1391/*
1392 * Note, this driver resets the link speed to 10/100Mbps by
1393 * restarting auto-negotiation in suspend/shutdown phase but we
1394 * don't know whether that auto-negotiation would succeed or not
1395 * as driver has no control after powering off/suspend operation.
1396 * If the renegotiation fail WOL may not work. Running at 1Gbps
1397 * will draw more power than 375mA at 3.3V which is specified in
1398 * PCI specification and that would result in complete
1399 * shutdowning power to ethernet controller.
1400 *
1401 * TODO
1402 * Save current negotiated media speed/duplex/flow-control to
1403 * softc and restore the same link again after resuming. PHY
1404 * handling such as power down/resetting to 100Mbps may be better
1405 * handled in suspend method in phy driver.
1406 */
1407static void
1408ale_setlinkspeed(struct ale_softc *sc)
1409{
1410	struct mii_data *mii;
1411	int aneg, i;
1412
1413	mii = device_get_softc(sc->ale_miibus);
1414	mii_pollstat(mii);
1415	aneg = 0;
1416	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1417	    (IFM_ACTIVE | IFM_AVALID)) {
1418		switch IFM_SUBTYPE(mii->mii_media_active) {
1419		case IFM_10_T:
1420		case IFM_100_TX:
1421			return;
1422		case IFM_1000_T:
1423			aneg++;
1424			break;
1425		default:
1426			break;
1427		}
1428	}
1429	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1430	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1431	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1432	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1433	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1434	DELAY(1000);
1435	if (aneg != 0) {
1436		/*
1437		 * Poll link state until ale(4) get a 10/100Mbps link.
1438		 */
1439		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1440			mii_pollstat(mii);
1441			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1442			    == (IFM_ACTIVE | IFM_AVALID)) {
1443				switch (IFM_SUBTYPE(
1444				    mii->mii_media_active)) {
1445				case IFM_10_T:
1446				case IFM_100_TX:
1447					ale_mac_config(sc);
1448					return;
1449				default:
1450					break;
1451				}
1452			}
1453			ALE_UNLOCK(sc);
1454			pause("alelnk", hz);
1455			ALE_LOCK(sc);
1456		}
1457		if (i == MII_ANEGTICKS_GIGE)
1458			device_printf(sc->ale_dev,
1459			    "establishing a link failed, WOL may not work!");
1460	}
1461	/*
1462	 * No link, force MAC to have 100Mbps, full-duplex link.
1463	 * This is the last resort and may/may not work.
1464	 */
1465	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1466	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1467	ale_mac_config(sc);
1468}
1469
1470static void
1471ale_setwol(struct ale_softc *sc)
1472{
1473	struct ifnet *ifp;
1474	uint32_t reg, pmcs;
1475	uint16_t pmstat;
1476	int pmc;
1477
1478	ALE_LOCK_ASSERT(sc);
1479
1480	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1481		/* Disable WOL. */
1482		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1483		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1484		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1485		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1486		/* Force PHY power down. */
1487		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1488		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1489		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1490		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1491		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1492		return;
1493	}
1494
1495	ifp = sc->ale_ifp;
1496	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1497		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1498			ale_setlinkspeed(sc);
1499	}
1500
1501	pmcs = 0;
1502	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1503		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1504	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1505	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1506	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1507	    MAC_CFG_BCAST);
1508	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1509		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1510	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1511		reg |= MAC_CFG_RX_ENB;
1512	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1513
1514	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1515		/* WOL disabled, PHY power down. */
1516		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1517		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1518		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1519		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1520		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1521		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1522		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1523		    GPHY_CTRL_PWDOWN_HW);
1524	}
1525	/* Request PME. */
1526	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1527	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1528	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1529		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1530	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1531}
1532
1533static int
1534ale_suspend(device_t dev)
1535{
1536	struct ale_softc *sc;
1537
1538	sc = device_get_softc(dev);
1539
1540	ALE_LOCK(sc);
1541	ale_stop(sc);
1542	ale_setwol(sc);
1543	ALE_UNLOCK(sc);
1544
1545	return (0);
1546}
1547
1548static int
1549ale_resume(device_t dev)
1550{
1551	struct ale_softc *sc;
1552	struct ifnet *ifp;
1553	int pmc;
1554	uint16_t pmstat;
1555
1556	sc = device_get_softc(dev);
1557
1558	ALE_LOCK(sc);
1559	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1560		/* Disable PME and clear PME status. */
1561		pmstat = pci_read_config(sc->ale_dev,
1562		    pmc + PCIR_POWER_STATUS, 2);
1563		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1564			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1565			pci_write_config(sc->ale_dev,
1566			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1567		}
1568	}
1569	/* Reset PHY. */
1570	ale_phy_reset(sc);
1571	ifp = sc->ale_ifp;
1572	if ((ifp->if_flags & IFF_UP) != 0) {
1573		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1574		ale_init_locked(sc);
1575	}
1576	ALE_UNLOCK(sc);
1577
1578	return (0);
1579}
1580
1581static int
1582ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1583{
1584	struct ale_txdesc *txd, *txd_last;
1585	struct tx_desc *desc;
1586	struct mbuf *m;
1587	struct ip *ip;
1588	struct tcphdr *tcp;
1589	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1590	bus_dmamap_t map;
1591	uint32_t cflags, ip_off, poff, vtag;
1592	int error, i, nsegs, prod, si;
1593
1594	ALE_LOCK_ASSERT(sc);
1595
1596	M_ASSERTPKTHDR((*m_head));
1597
1598	m = *m_head;
1599	ip = NULL;
1600	tcp = NULL;
1601	cflags = vtag = 0;
1602	ip_off = poff = 0;
1603	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1604		/*
1605		 * AR81xx requires offset of TCP/UDP payload in its Tx
1606		 * descriptor to perform hardware Tx checksum offload.
1607		 * Additionally, TSO requires IP/TCP header size and
1608		 * modification of IP/TCP header in order to make TSO
1609		 * engine work. This kind of operation takes many CPU
1610		 * cycles on FreeBSD so fast host CPU is required to
1611		 * get smooth TSO performance.
1612		 */
1613		struct ether_header *eh;
1614
1615		if (M_WRITABLE(m) == 0) {
1616			/* Get a writable copy. */
1617			m = m_dup(*m_head, M_DONTWAIT);
1618			/* Release original mbufs. */
1619			m_freem(*m_head);
1620			if (m == NULL) {
1621				*m_head = NULL;
1622				return (ENOBUFS);
1623			}
1624			*m_head = m;
1625		}
1626
1627		/*
1628		 * Buggy-controller requires 4 byte aligned Tx buffer
1629		 * to make custom checksum offload work.
1630		 */
1631		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1632		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1633		    (mtod(m, intptr_t) & 3) != 0) {
1634			m = m_defrag(*m_head, M_DONTWAIT);
1635			if (m == NULL) {
1636				*m_head = NULL;
1637				return (ENOBUFS);
1638			}
1639			*m_head = m;
1640		}
1641
1642		ip_off = sizeof(struct ether_header);
1643		m = m_pullup(m, ip_off);
1644		if (m == NULL) {
1645			*m_head = NULL;
1646			return (ENOBUFS);
1647		}
1648		eh = mtod(m, struct ether_header *);
1649		/*
1650		 * Check if hardware VLAN insertion is off.
1651		 * Additional check for LLC/SNAP frame?
1652		 */
1653		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1654			ip_off = sizeof(struct ether_vlan_header);
1655			m = m_pullup(m, ip_off);
1656			if (m == NULL) {
1657				*m_head = NULL;
1658				return (ENOBUFS);
1659			}
1660		}
1661		m = m_pullup(m, ip_off + sizeof(struct ip));
1662		if (m == NULL) {
1663			*m_head = NULL;
1664			return (ENOBUFS);
1665		}
1666		ip = (struct ip *)(mtod(m, char *) + ip_off);
1667		poff = ip_off + (ip->ip_hl << 2);
1668		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1669			/*
1670			 * XXX
1671			 * AR81xx requires the first descriptor should
1672			 * not include any TCP playload for TSO case.
1673			 * (i.e. ethernet header + IP + TCP header only)
1674			 * m_pullup(9) above will ensure this too.
1675			 * However it's not correct if the first mbuf
1676			 * of the chain does not use cluster.
1677			 */
1678			m = m_pullup(m, poff + sizeof(struct tcphdr));
1679			if (m == NULL) {
1680				*m_head = NULL;
1681				return (ENOBUFS);
1682			}
1683			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1684			/*
1685			 * AR81xx requires IP/TCP header size and offset as
1686			 * well as TCP pseudo checksum which complicates
1687			 * TSO configuration. I guess this comes from the
1688			 * adherence to Microsoft NDIS Large Send
1689			 * specification which requires insertion of
1690			 * pseudo checksum by upper stack. The pseudo
1691			 * checksum that NDIS refers to doesn't include
1692			 * TCP payload length so ale(4) should recompute
1693			 * the pseudo checksum here. Hopefully this wouldn't
1694			 * be much burden on modern CPUs.
1695			 * Reset IP checksum and recompute TCP pseudo
1696			 * checksum as NDIS specification said.
1697			 */
1698			ip->ip_sum = 0;
1699			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1700			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1701		}
1702		*m_head = m;
1703	}
1704
1705	si = prod = sc->ale_cdata.ale_tx_prod;
1706	txd = &sc->ale_cdata.ale_txdesc[prod];
1707	txd_last = txd;
1708	map = txd->tx_dmamap;
1709
1710	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1711	    *m_head, txsegs, &nsegs, 0);
1712	if (error == EFBIG) {
1713		m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
1714		if (m == NULL) {
1715			m_freem(*m_head);
1716			*m_head = NULL;
1717			return (ENOMEM);
1718		}
1719		*m_head = m;
1720		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1721		    *m_head, txsegs, &nsegs, 0);
1722		if (error != 0) {
1723			m_freem(*m_head);
1724			*m_head = NULL;
1725			return (error);
1726		}
1727	} else if (error != 0)
1728		return (error);
1729	if (nsegs == 0) {
1730		m_freem(*m_head);
1731		*m_head = NULL;
1732		return (EIO);
1733	}
1734
1735	/* Check descriptor overrun. */
1736	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
1737		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1738		return (ENOBUFS);
1739	}
1740	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1741
1742	m = *m_head;
1743	/* Configure Tx checksum offload. */
1744	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1745		/*
1746		 * AR81xx supports Tx custom checksum offload feature
1747		 * that offloads single 16bit checksum computation.
1748		 * So you can choose one among IP, TCP and UDP.
1749		 * Normally driver sets checksum start/insertion
1750		 * position from the information of TCP/UDP frame as
1751		 * TCP/UDP checksum takes more time than that of IP.
1752		 * However it seems that custom checksum offload
1753		 * requires 4 bytes aligned Tx buffers due to hardware
1754		 * bug.
1755		 * AR81xx also supports explicit Tx checksum computation
1756		 * if it is told that the size of IP header and TCP
1757		 * header(for UDP, the header size does not matter
1758		 * because it's fixed length). However with this scheme
1759		 * TSO does not work so you have to choose one either
1760		 * TSO or explicit Tx checksum offload. I chosen TSO
1761		 * plus custom checksum offload with work-around which
1762		 * will cover most common usage for this consumer
1763		 * ethernet controller. The work-around takes a lot of
1764		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1765		 * boundary, though.
1766		 */
1767		cflags |= ALE_TD_CXSUM;
1768		/* Set checksum start offset. */
1769		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1770		/* Set checksum insertion position of TCP/UDP. */
1771		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1772		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1773	}
1774
1775	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1776		/* Request TSO and set MSS. */
1777		cflags |= ALE_TD_TSO;
1778		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1779		/* Set IP/TCP header size. */
1780		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1781		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1782	}
1783
1784	/* Configure VLAN hardware tag insertion. */
1785	if ((m->m_flags & M_VLANTAG) != 0) {
1786		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1787		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1788		cflags |= ALE_TD_INSERT_VLAN_TAG;
1789	}
1790
1791	desc = NULL;
1792	for (i = 0; i < nsegs; i++) {
1793		desc = &sc->ale_cdata.ale_tx_ring[prod];
1794		desc->addr = htole64(txsegs[i].ds_addr);
1795		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1796		desc->flags = htole32(cflags);
1797		sc->ale_cdata.ale_tx_cnt++;
1798		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1799	}
1800	/* Update producer index. */
1801	sc->ale_cdata.ale_tx_prod = prod;
1802	/* Set TSO header on the first descriptor. */
1803	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1804		desc = &sc->ale_cdata.ale_tx_ring[si];
1805		desc->flags |= htole32(ALE_TD_TSO_HDR);
1806	}
1807
1808	/* Finally set EOP on the last descriptor. */
1809	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1810	desc = &sc->ale_cdata.ale_tx_ring[prod];
1811	desc->flags |= htole32(ALE_TD_EOP);
1812
1813	/* Swap dmamap of the first and the last. */
1814	txd = &sc->ale_cdata.ale_txdesc[prod];
1815	map = txd_last->tx_dmamap;
1816	txd_last->tx_dmamap = txd->tx_dmamap;
1817	txd->tx_dmamap = map;
1818	txd->tx_m = m;
1819
1820	/* Sync descriptors. */
1821	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1822	    sc->ale_cdata.ale_tx_ring_map,
1823	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1824
1825	return (0);
1826}
1827
1828static void
1829ale_tx_task(void *arg, int pending)
1830{
1831	struct ifnet *ifp;
1832
1833	ifp = (struct ifnet *)arg;
1834	ale_start(ifp);
1835}
1836
1837static void
1838ale_start(struct ifnet *ifp)
1839{
1840        struct ale_softc *sc;
1841        struct mbuf *m_head;
1842	int enq;
1843
1844	sc = ifp->if_softc;
1845
1846	ALE_LOCK(sc);
1847
1848	/* Reclaim transmitted frames. */
1849	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1850		ale_txeof(sc);
1851
1852	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1853	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) {
1854		ALE_UNLOCK(sc);
1855		return;
1856	}
1857
1858	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1859		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1860		if (m_head == NULL)
1861			break;
1862		/*
1863		 * Pack the data into the transmit ring. If we
1864		 * don't have room, set the OACTIVE flag and wait
1865		 * for the NIC to drain the ring.
1866		 */
1867		if (ale_encap(sc, &m_head)) {
1868			if (m_head == NULL)
1869				break;
1870			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1871			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1872			break;
1873		}
1874
1875		enq++;
1876		/*
1877		 * If there's a BPF listener, bounce a copy of this frame
1878		 * to him.
1879		 */
1880		ETHER_BPF_MTAP(ifp, m_head);
1881	}
1882
1883	if (enq > 0) {
1884		/* Kick. */
1885		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1886		    sc->ale_cdata.ale_tx_prod);
1887		/* Set a timeout in case the chip goes out to lunch. */
1888		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1889	}
1890
1891	ALE_UNLOCK(sc);
1892}
1893
1894static void
1895ale_watchdog(struct ale_softc *sc)
1896{
1897	struct ifnet *ifp;
1898
1899	ALE_LOCK_ASSERT(sc);
1900
1901	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1902		return;
1903
1904	ifp = sc->ale_ifp;
1905	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1906		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1907		ifp->if_oerrors++;
1908		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1909		ale_init_locked(sc);
1910		return;
1911	}
1912	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1913	ifp->if_oerrors++;
1914	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1915	ale_init_locked(sc);
1916	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1917		taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
1918}
1919
1920static int
1921ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1922{
1923	struct ale_softc *sc;
1924	struct ifreq *ifr;
1925	struct mii_data *mii;
1926	int error, mask;
1927
1928	sc = ifp->if_softc;
1929	ifr = (struct ifreq *)data;
1930	error = 0;
1931	switch (cmd) {
1932	case SIOCSIFMTU:
1933		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1934		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1935		    ifr->ifr_mtu > ETHERMTU))
1936			error = EINVAL;
1937		else if (ifp->if_mtu != ifr->ifr_mtu) {
1938			ALE_LOCK(sc);
1939			ifp->if_mtu = ifr->ifr_mtu;
1940			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1941				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1942				ale_init_locked(sc);
1943			}
1944			ALE_UNLOCK(sc);
1945		}
1946		break;
1947	case SIOCSIFFLAGS:
1948		ALE_LOCK(sc);
1949		if ((ifp->if_flags & IFF_UP) != 0) {
1950			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1951				if (((ifp->if_flags ^ sc->ale_if_flags)
1952				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1953					ale_rxfilter(sc);
1954			} else {
1955				if ((sc->ale_flags & ALE_FLAG_DETACH) == 0)
1956					ale_init_locked(sc);
1957			}
1958		} else {
1959			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1960				ale_stop(sc);
1961		}
1962		sc->ale_if_flags = ifp->if_flags;
1963		ALE_UNLOCK(sc);
1964		break;
1965	case SIOCADDMULTI:
1966	case SIOCDELMULTI:
1967		ALE_LOCK(sc);
1968		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1969			ale_rxfilter(sc);
1970		ALE_UNLOCK(sc);
1971		break;
1972	case SIOCSIFMEDIA:
1973	case SIOCGIFMEDIA:
1974		mii = device_get_softc(sc->ale_miibus);
1975		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1976		break;
1977	case SIOCSIFCAP:
1978		ALE_LOCK(sc);
1979		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1980		if ((mask & IFCAP_TXCSUM) != 0 &&
1981		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1982			ifp->if_capenable ^= IFCAP_TXCSUM;
1983			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1984				ifp->if_hwassist |= ALE_CSUM_FEATURES;
1985			else
1986				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
1987		}
1988		if ((mask & IFCAP_RXCSUM) != 0 &&
1989		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1990			ifp->if_capenable ^= IFCAP_RXCSUM;
1991		if ((mask & IFCAP_TSO4) != 0 &&
1992		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1993			ifp->if_capenable ^= IFCAP_TSO4;
1994			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1995				ifp->if_hwassist |= CSUM_TSO;
1996			else
1997				ifp->if_hwassist &= ~CSUM_TSO;
1998		}
1999
2000		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2001		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2002			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2003		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2004		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2005			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2006
2007		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2008		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2009			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2010			ale_rxvlan(sc);
2011		}
2012		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2013		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2014			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2015		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2016		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2017			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2018		/*
2019		 * VLAN hardware tagging is required to do checksum
2020		 * offload or TSO on VLAN interface. Checksum offload
2021		 * on VLAN interface also requires hardware checksum
2022		 * offload of parent interface.
2023		 */
2024		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2025			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2026		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2027			ifp->if_capenable &=
2028			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2029		ALE_UNLOCK(sc);
2030		VLAN_CAPABILITIES(ifp);
2031		break;
2032	default:
2033		error = ether_ioctl(ifp, cmd, data);
2034		break;
2035	}
2036
2037	return (error);
2038}
2039
2040static void
2041ale_mac_config(struct ale_softc *sc)
2042{
2043	struct mii_data *mii;
2044	uint32_t reg;
2045
2046	ALE_LOCK_ASSERT(sc);
2047
2048	mii = device_get_softc(sc->ale_miibus);
2049	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2050	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2051	    MAC_CFG_SPEED_MASK);
2052	/* Reprogram MAC with resolved speed/duplex. */
2053	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2054	case IFM_10_T:
2055	case IFM_100_TX:
2056		reg |= MAC_CFG_SPEED_10_100;
2057		break;
2058	case IFM_1000_T:
2059		reg |= MAC_CFG_SPEED_1000;
2060		break;
2061	}
2062	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2063		reg |= MAC_CFG_FULL_DUPLEX;
2064#ifdef notyet
2065		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2066			reg |= MAC_CFG_TX_FC;
2067		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2068			reg |= MAC_CFG_RX_FC;
2069#endif
2070	}
2071	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2072}
2073
2074static void
2075ale_link_task(void *arg, int pending)
2076{
2077	struct ale_softc *sc;
2078	struct mii_data *mii;
2079	struct ifnet *ifp;
2080	uint32_t reg;
2081
2082	sc = (struct ale_softc *)arg;
2083
2084	ALE_LOCK(sc);
2085	mii = device_get_softc(sc->ale_miibus);
2086	ifp = sc->ale_ifp;
2087	if (mii == NULL || ifp == NULL ||
2088	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2089		ALE_UNLOCK(sc);
2090		return;
2091	}
2092
2093	sc->ale_flags &= ~ALE_FLAG_LINK;
2094	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2095	    (IFM_ACTIVE | IFM_AVALID)) {
2096		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2097		case IFM_10_T:
2098		case IFM_100_TX:
2099			sc->ale_flags |= ALE_FLAG_LINK;
2100			break;
2101		case IFM_1000_T:
2102			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
2103				sc->ale_flags |= ALE_FLAG_LINK;
2104			break;
2105		default:
2106			break;
2107		}
2108	}
2109
2110	/* Stop Rx/Tx MACs. */
2111	ale_stop_mac(sc);
2112
2113	/* Program MACs with resolved speed/duplex/flow-control. */
2114	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
2115		ale_mac_config(sc);
2116		/* Reenable Tx/Rx MACs. */
2117		reg = CSR_READ_4(sc, ALE_MAC_CFG);
2118		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2119		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2120	}
2121
2122	ALE_UNLOCK(sc);
2123}
2124
2125static void
2126ale_stats_clear(struct ale_softc *sc)
2127{
2128	struct smb sb;
2129	uint32_t *reg;
2130	int i;
2131
2132	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2133		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2134		i += sizeof(uint32_t);
2135	}
2136	/* Read Tx statistics. */
2137	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2138		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2139		i += sizeof(uint32_t);
2140	}
2141}
2142
2143static void
2144ale_stats_update(struct ale_softc *sc)
2145{
2146	struct ale_hw_stats *stat;
2147	struct smb sb, *smb;
2148	struct ifnet *ifp;
2149	uint32_t *reg;
2150	int i;
2151
2152	ALE_LOCK_ASSERT(sc);
2153
2154	ifp = sc->ale_ifp;
2155	stat = &sc->ale_stats;
2156	smb = &sb;
2157
2158	/* Read Rx statistics. */
2159	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2160		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2161		i += sizeof(uint32_t);
2162	}
2163	/* Read Tx statistics. */
2164	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2165		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2166		i += sizeof(uint32_t);
2167	}
2168
2169	/* Rx stats. */
2170	stat->rx_frames += smb->rx_frames;
2171	stat->rx_bcast_frames += smb->rx_bcast_frames;
2172	stat->rx_mcast_frames += smb->rx_mcast_frames;
2173	stat->rx_pause_frames += smb->rx_pause_frames;
2174	stat->rx_control_frames += smb->rx_control_frames;
2175	stat->rx_crcerrs += smb->rx_crcerrs;
2176	stat->rx_lenerrs += smb->rx_lenerrs;
2177	stat->rx_bytes += smb->rx_bytes;
2178	stat->rx_runts += smb->rx_runts;
2179	stat->rx_fragments += smb->rx_fragments;
2180	stat->rx_pkts_64 += smb->rx_pkts_64;
2181	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2182	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2183	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2184	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2185	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2186	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2187	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2188	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2189	stat->rx_rrs_errs += smb->rx_rrs_errs;
2190	stat->rx_alignerrs += smb->rx_alignerrs;
2191	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2192	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2193	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2194
2195	/* Tx stats. */
2196	stat->tx_frames += smb->tx_frames;
2197	stat->tx_bcast_frames += smb->tx_bcast_frames;
2198	stat->tx_mcast_frames += smb->tx_mcast_frames;
2199	stat->tx_pause_frames += smb->tx_pause_frames;
2200	stat->tx_excess_defer += smb->tx_excess_defer;
2201	stat->tx_control_frames += smb->tx_control_frames;
2202	stat->tx_deferred += smb->tx_deferred;
2203	stat->tx_bytes += smb->tx_bytes;
2204	stat->tx_pkts_64 += smb->tx_pkts_64;
2205	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2206	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2207	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2208	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2209	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2210	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2211	stat->tx_single_colls += smb->tx_single_colls;
2212	stat->tx_multi_colls += smb->tx_multi_colls;
2213	stat->tx_late_colls += smb->tx_late_colls;
2214	stat->tx_excess_colls += smb->tx_excess_colls;
2215	stat->tx_abort += smb->tx_abort;
2216	stat->tx_underrun += smb->tx_underrun;
2217	stat->tx_desc_underrun += smb->tx_desc_underrun;
2218	stat->tx_lenerrs += smb->tx_lenerrs;
2219	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2220	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2221	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2222
2223	/* Update counters in ifnet. */
2224	ifp->if_opackets += smb->tx_frames;
2225
2226	ifp->if_collisions += smb->tx_single_colls +
2227	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2228	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2229
2230	/*
2231	 * XXX
2232	 * tx_pkts_truncated counter looks suspicious. It constantly
2233	 * increments with no sign of Tx errors. This may indicate
2234	 * the counter name is not correct one so I've removed the
2235	 * counter in output errors.
2236	 */
2237	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2238	    smb->tx_underrun;
2239
2240	ifp->if_ipackets += smb->rx_frames;
2241
2242	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2243	    smb->rx_runts + smb->rx_pkts_truncated +
2244	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2245	    smb->rx_alignerrs;
2246}
2247
2248static int
2249ale_intr(void *arg)
2250{
2251	struct ale_softc *sc;
2252	uint32_t status;
2253
2254	sc = (struct ale_softc *)arg;
2255
2256	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2257	if ((status & ALE_INTRS) == 0)
2258		return (FILTER_STRAY);
2259	/* Disable interrupts. */
2260	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2261	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2262
2263	return (FILTER_HANDLED);
2264}
2265
2266static void
2267ale_int_task(void *arg, int pending)
2268{
2269	struct ale_softc *sc;
2270	struct ifnet *ifp;
2271	uint32_t status;
2272	int more;
2273
2274	sc = (struct ale_softc *)arg;
2275
2276	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2277	more = atomic_readandclear_int(&sc->ale_morework);
2278	if (more != 0)
2279		status |= INTR_RX_PKT;
2280	if ((status & ALE_INTRS) == 0)
2281		goto done;
2282
2283	/* Acknowledge interrupts but still disable interrupts. */
2284	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2285
2286	ifp = sc->ale_ifp;
2287	more = 0;
2288	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2289		more = ale_rxeof(sc, sc->ale_process_limit);
2290		if (more == EAGAIN)
2291			atomic_set_int(&sc->ale_morework, 1);
2292		else if (more == EIO) {
2293			ALE_LOCK(sc);
2294			sc->ale_stats.reset_brk_seq++;
2295			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2296			ale_init_locked(sc);
2297			ALE_UNLOCK(sc);
2298			return;
2299		}
2300
2301		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2302			if ((status & INTR_DMA_RD_TO_RST) != 0)
2303				device_printf(sc->ale_dev,
2304				    "DMA read error! -- resetting\n");
2305			if ((status & INTR_DMA_WR_TO_RST) != 0)
2306				device_printf(sc->ale_dev,
2307				    "DMA write error! -- resetting\n");
2308			ALE_LOCK(sc);
2309			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2310			ale_init_locked(sc);
2311			ALE_UNLOCK(sc);
2312			return;
2313		}
2314		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2315			taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
2316	}
2317
2318	if (more == EAGAIN ||
2319	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2320		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2321		return;
2322	}
2323
2324done:
2325	/* Re-enable interrupts. */
2326	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2327}
2328
2329static void
2330ale_txeof(struct ale_softc *sc)
2331{
2332	struct ifnet *ifp;
2333	struct ale_txdesc *txd;
2334	uint32_t cons, prod;
2335	int prog;
2336
2337	ALE_LOCK_ASSERT(sc);
2338
2339	ifp = sc->ale_ifp;
2340
2341	if (sc->ale_cdata.ale_tx_cnt == 0)
2342		return;
2343
2344	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2345	    sc->ale_cdata.ale_tx_ring_map,
2346	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2347	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2348		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2349		    sc->ale_cdata.ale_tx_cmb_map,
2350		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2351		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2352	} else
2353		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2354	cons = sc->ale_cdata.ale_tx_cons;
2355	/*
2356	 * Go through our Tx list and free mbufs for those
2357	 * frames which have been transmitted.
2358	 */
2359	for (prog = 0; cons != prod; prog++,
2360	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2361		if (sc->ale_cdata.ale_tx_cnt <= 0)
2362			break;
2363		prog++;
2364		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2365		sc->ale_cdata.ale_tx_cnt--;
2366		txd = &sc->ale_cdata.ale_txdesc[cons];
2367		if (txd->tx_m != NULL) {
2368			/* Reclaim transmitted mbufs. */
2369			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2370			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2371			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2372			    txd->tx_dmamap);
2373			m_freem(txd->tx_m);
2374			txd->tx_m = NULL;
2375		}
2376	}
2377
2378	if (prog > 0) {
2379		sc->ale_cdata.ale_tx_cons = cons;
2380		/*
2381		 * Unarm watchdog timer only when there is no pending
2382		 * Tx descriptors in queue.
2383		 */
2384		if (sc->ale_cdata.ale_tx_cnt == 0)
2385			sc->ale_watchdog_timer = 0;
2386	}
2387}
2388
2389static void
2390ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2391    uint32_t length, uint32_t *prod)
2392{
2393	struct ale_rx_page *rx_page;
2394
2395	rx_page = *page;
2396	/* Update consumer position. */
2397	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2398	    ALE_RX_PAGE_ALIGN);
2399	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2400		/*
2401		 * End of Rx page reached, let hardware reuse
2402		 * this page.
2403		 */
2404		rx_page->cons = 0;
2405		*rx_page->cmb_addr = 0;
2406		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2407		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2408		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2409		    RXF_VALID);
2410		/* Switch to alternate Rx page. */
2411		sc->ale_cdata.ale_rx_curp ^= 1;
2412		rx_page = *page =
2413		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2414		/* Page flipped, sync CMB and Rx page. */
2415		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2416		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2417		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2418		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2419		/* Sync completed, cache updated producer index. */
2420		*prod = *rx_page->cmb_addr;
2421	}
2422}
2423
2424
2425/*
2426 * It seems that AR81xx controller can compute partial checksum.
2427 * The partial checksum value can be used to accelerate checksum
2428 * computation for fragmented TCP/UDP packets. Upper network stack
2429 * already takes advantage of the partial checksum value in IP
2430 * reassembly stage. But I'm not sure the correctness of the
2431 * partial hardware checksum assistance due to lack of data sheet.
2432 * In addition, the Rx feature of controller that requires copying
2433 * for every frames effectively nullifies one of most nice offload
2434 * capability of controller.
2435 */
2436static void
2437ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2438{
2439	struct ifnet *ifp;
2440	struct ip *ip;
2441	char *p;
2442
2443	ifp = sc->ale_ifp;
2444	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2445	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2446		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2447
2448	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2449		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2450		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2451		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2452			m->m_pkthdr.csum_flags |=
2453			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2454			m->m_pkthdr.csum_data = 0xffff;
2455		}
2456	} else {
2457		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2458		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2459			p = mtod(m, char *);
2460			p += ETHER_HDR_LEN;
2461			if ((status & ALE_RD_802_3) != 0)
2462				p += LLC_SNAPFRAMELEN;
2463			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2464			    (status & ALE_RD_VLAN) != 0)
2465				p += ETHER_VLAN_ENCAP_LEN;
2466			ip = (struct ip *)p;
2467			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2468				return;
2469			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2470			    CSUM_PSEUDO_HDR;
2471			m->m_pkthdr.csum_data = 0xffff;
2472		}
2473	}
2474	/*
2475	 * Don't mark bad checksum for TCP/UDP frames
2476	 * as fragmented frames may always have set
2477	 * bad checksummed bit of frame status.
2478	 */
2479}
2480
2481/* Process received frames. */
2482static int
2483ale_rxeof(struct ale_softc *sc, int count)
2484{
2485	struct ale_rx_page *rx_page;
2486	struct rx_rs *rs;
2487	struct ifnet *ifp;
2488	struct mbuf *m;
2489	uint32_t length, prod, seqno, status, vtags;
2490	int prog;
2491
2492	ifp = sc->ale_ifp;
2493	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2494	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2495	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2496	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2497	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2498	/*
2499	 * Don't directly access producer index as hardware may
2500	 * update it while Rx handler is in progress. It would
2501	 * be even better if there is a way to let hardware
2502	 * know how far driver processed its received frames.
2503	 * Alternatively, hardware could provide a way to disable
2504	 * CMB updates until driver acknowledges the end of CMB
2505	 * access.
2506	 */
2507	prod = *rx_page->cmb_addr;
2508	for (prog = 0; prog < count; prog++) {
2509		if (rx_page->cons >= prod)
2510			break;
2511		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2512		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2513		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2514			/*
2515			 * Normally I believe this should not happen unless
2516			 * severe driver bug or corrupted memory. However
2517			 * it seems to happen under certain conditions which
2518			 * is triggered by abrupt Rx events such as initiation
2519			 * of bulk transfer of remote host. It's not easy to
2520			 * reproduce this and I doubt it could be related
2521			 * with FIFO overflow of hardware or activity of Tx
2522			 * CMB updates. I also remember similar behaviour
2523			 * seen on RealTek 8139 which uses resembling Rx
2524			 * scheme.
2525			 */
2526			if (bootverbose)
2527				device_printf(sc->ale_dev,
2528				    "garbled seq: %u, expected: %u -- "
2529				    "resetting!\n", seqno,
2530				    sc->ale_cdata.ale_rx_seqno);
2531			return (EIO);
2532		}
2533		/* Frame received. */
2534		sc->ale_cdata.ale_rx_seqno++;
2535		length = ALE_RX_BYTES(le32toh(rs->length));
2536		status = le32toh(rs->flags);
2537		if ((status & ALE_RD_ERROR) != 0) {
2538			/*
2539			 * We want to pass the following frames to upper
2540			 * layer regardless of error status of Rx return
2541			 * status.
2542			 *
2543			 *  o IP/TCP/UDP checksum is bad.
2544			 *  o frame length and protocol specific length
2545			 *     does not match.
2546			 */
2547			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2548			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2549			    ALE_RD_TRUNC)) != 0) {
2550				ale_rx_update_page(sc, &rx_page, length, &prod);
2551				continue;
2552			}
2553		}
2554		/*
2555		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2556		 * from hardware limitation). For jumbo frames we could
2557		 * get a slightly better performance if driver use
2558		 * m_getjcl(9) with proper buffer size argument. However
2559		 * that would make code more complicated and I don't
2560		 * think users would expect good Rx performance numbers
2561		 * on these low-end consumer ethernet controller.
2562		 */
2563		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2564		    ETHER_ALIGN, ifp, NULL);
2565		if (m == NULL) {
2566			ifp->if_iqdrops++;
2567			ale_rx_update_page(sc, &rx_page, length, &prod);
2568			continue;
2569		}
2570		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2571		    (status & ALE_RD_IPV4) != 0)
2572			ale_rxcsum(sc, m, status);
2573		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2574		    (status & ALE_RD_VLAN) != 0) {
2575			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2576			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2577			m->m_flags |= M_VLANTAG;
2578		}
2579
2580		/* Pass it to upper layer. */
2581		(*ifp->if_input)(ifp, m);
2582
2583		ale_rx_update_page(sc, &rx_page, length, &prod);
2584	}
2585
2586	return (count > 0 ? 0 : EAGAIN);
2587}
2588
2589static void
2590ale_tick(void *arg)
2591{
2592	struct ale_softc *sc;
2593	struct mii_data *mii;
2594
2595	sc = (struct ale_softc *)arg;
2596
2597	ALE_LOCK_ASSERT(sc);
2598
2599	mii = device_get_softc(sc->ale_miibus);
2600	mii_tick(mii);
2601	ale_stats_update(sc);
2602	/*
2603	 * Reclaim Tx buffers that have been transferred. It's not
2604	 * needed here but it would release allocated mbuf chains
2605	 * faster and limit the maximum delay to a hz.
2606	 */
2607	ale_txeof(sc);
2608	ale_watchdog(sc);
2609	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2610}
2611
2612static void
2613ale_reset(struct ale_softc *sc)
2614{
2615	uint32_t reg;
2616	int i;
2617
2618	/* Initialize PCIe module. From Linux. */
2619	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2620
2621	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2622	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2623		DELAY(10);
2624		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2625			break;
2626	}
2627	if (i == 0)
2628		device_printf(sc->ale_dev, "master reset timeout!\n");
2629
2630	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2631		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2632			break;
2633		DELAY(10);
2634	}
2635
2636	if (i == 0)
2637		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2638}
2639
2640static void
2641ale_init(void *xsc)
2642{
2643	struct ale_softc *sc;
2644
2645	sc = (struct ale_softc *)xsc;
2646	ALE_LOCK(sc);
2647	ale_init_locked(sc);
2648	ALE_UNLOCK(sc);
2649}
2650
2651static void
2652ale_init_locked(struct ale_softc *sc)
2653{
2654	struct ifnet *ifp;
2655	struct mii_data *mii;
2656	uint8_t eaddr[ETHER_ADDR_LEN];
2657	bus_addr_t paddr;
2658	uint32_t reg, rxf_hi, rxf_lo;
2659
2660	ALE_LOCK_ASSERT(sc);
2661
2662	ifp = sc->ale_ifp;
2663	mii = device_get_softc(sc->ale_miibus);
2664
2665	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2666		return;
2667	/*
2668	 * Cancel any pending I/O.
2669	 */
2670	ale_stop(sc);
2671	/*
2672	 * Reset the chip to a known state.
2673	 */
2674	ale_reset(sc);
2675	/* Initialize Tx descriptors, DMA memory blocks. */
2676	ale_init_rx_pages(sc);
2677	ale_init_tx_ring(sc);
2678
2679	/* Reprogram the station address. */
2680	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2681	CSR_WRITE_4(sc, ALE_PAR0,
2682	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2683	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2684	/*
2685	 * Clear WOL status and disable all WOL feature as WOL
2686	 * would interfere Rx operation under normal environments.
2687	 */
2688	CSR_READ_4(sc, ALE_WOL_CFG);
2689	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2690	/*
2691	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2692	 * the same high address part of DMAable region.
2693	 */
2694	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2695	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2696	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2697	CSR_WRITE_4(sc, ALE_TPD_CNT,
2698	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2699	/* Set Rx page base address, note we use single queue. */
2700	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2701	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2702	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2703	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2704	/* Set Tx/Rx CMB addresses. */
2705	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2706	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2707	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2708	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2709	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2710	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2711	/* Mark RXF0 is valid. */
2712	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2713	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2714	/*
2715	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2716	 * multi-queue yet.
2717	 */
2718
2719	/* Set Rx page size, excluding guard frame size. */
2720	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2721	/* Tell hardware that we're ready to load DMA blocks. */
2722	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2723
2724	/* Set Rx/Tx interrupt trigger threshold. */
2725	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2726	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2727	/*
2728	 * XXX
2729	 * Set interrupt trigger timer, its purpose and relation
2730	 * with interrupt moderation mechanism is not clear yet.
2731	 */
2732	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2733	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2734	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2735
2736	/* Configure interrupt moderation timer. */
2737	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2738	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2739	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2740	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2741	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2742	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2743	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2744		reg |= MASTER_IM_RX_TIMER_ENB;
2745	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2746		reg |= MASTER_IM_TX_TIMER_ENB;
2747	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2748	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2749
2750	/* Set Maximum frame size of controller. */
2751	if (ifp->if_mtu < ETHERMTU)
2752		sc->ale_max_frame_size = ETHERMTU;
2753	else
2754		sc->ale_max_frame_size = ifp->if_mtu;
2755	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2756	    ETHER_CRC_LEN;
2757	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2758	/* Configure IPG/IFG parameters. */
2759	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2760	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2761	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2762	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2763	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2764	/* Set parameters for half-duplex media. */
2765	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2766	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2767	    HDPX_CFG_LCOL_MASK) |
2768	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2769	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2770	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2771	    HDPX_CFG_ABEBT_MASK) |
2772	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2773	    HDPX_CFG_JAMIPG_MASK));
2774
2775	/* Configure Tx jumbo frame parameters. */
2776	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2777		if (ifp->if_mtu < ETHERMTU)
2778			reg = sc->ale_max_frame_size;
2779		else if (ifp->if_mtu < 6 * 1024)
2780			reg = (sc->ale_max_frame_size * 2) / 3;
2781		else
2782			reg = sc->ale_max_frame_size / 2;
2783		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2784		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2785		    TX_JUMBO_THRESH_UNIT_SHIFT);
2786	}
2787	/* Configure TxQ. */
2788	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2789	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2790	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2791	    TXQ_CFG_TPD_BURST_MASK;
2792	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2793
2794	/* Configure Rx jumbo frame & flow control parameters. */
2795	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2796		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2797		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2798		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2799		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2800		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2801		    RX_JUMBO_LKAH_MASK));
2802		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2803		rxf_hi = (reg * 7) / 10;
2804		rxf_lo = (reg * 3)/ 10;
2805		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2806		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2807		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2808		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2809		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2810	}
2811
2812	/* Disable RSS. */
2813	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2814	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2815
2816	/* Configure RxQ. */
2817	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2818	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2819
2820	/* Configure DMA parameters. */
2821	reg = 0;
2822	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2823		reg |= DMA_CFG_TXCMB_ENB;
2824	CSR_WRITE_4(sc, ALE_DMA_CFG,
2825	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2826	    sc->ale_dma_rd_burst | reg |
2827	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2828	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2829	    DMA_CFG_RD_DELAY_CNT_MASK) |
2830	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2831	    DMA_CFG_WR_DELAY_CNT_MASK));
2832
2833	/*
2834	 * Hardware can be configured to issue SMB interrupt based
2835	 * on programmed interval. Since there is a callout that is
2836	 * invoked for every hz in driver we use that instead of
2837	 * relying on periodic SMB interrupt.
2838	 */
2839	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2840	/* Clear MAC statistics. */
2841	ale_stats_clear(sc);
2842
2843	/*
2844	 * Configure Tx/Rx MACs.
2845	 *  - Auto-padding for short frames.
2846	 *  - Enable CRC generation.
2847	 *  Actual reconfiguration of MAC for resolved speed/duplex
2848	 *  is followed after detection of link establishment.
2849	 *  AR81xx always does checksum computation regardless of
2850	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2851	 *  cause Rx handling issue for fragmented IP datagrams due
2852	 *  to silicon bug.
2853	 */
2854	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2855	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2856	    MAC_CFG_PREAMBLE_MASK);
2857	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2858		reg |= MAC_CFG_SPEED_10_100;
2859	else
2860		reg |= MAC_CFG_SPEED_1000;
2861	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2862
2863	/* Set up the receive filter. */
2864	ale_rxfilter(sc);
2865	ale_rxvlan(sc);
2866
2867	/* Acknowledge all pending interrupts and clear it. */
2868	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2869	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2870	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2871
2872	sc->ale_flags &= ~ALE_FLAG_LINK;
2873	/* Switch to the current media. */
2874	mii_mediachg(mii);
2875
2876	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2877
2878	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2879	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2880}
2881
2882static void
2883ale_stop(struct ale_softc *sc)
2884{
2885	struct ifnet *ifp;
2886	struct ale_txdesc *txd;
2887	uint32_t reg;
2888	int i;
2889
2890	ALE_LOCK_ASSERT(sc);
2891	/*
2892	 * Mark the interface down and cancel the watchdog timer.
2893	 */
2894	ifp = sc->ale_ifp;
2895	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2896	sc->ale_flags &= ~ALE_FLAG_LINK;
2897	callout_stop(&sc->ale_tick_ch);
2898	sc->ale_watchdog_timer = 0;
2899	ale_stats_update(sc);
2900	/* Disable interrupts. */
2901	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2902	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2903	/* Disable queue processing and DMA. */
2904	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2905	reg &= ~TXQ_CFG_ENB;
2906	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2907	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2908	reg &= ~RXQ_CFG_ENB;
2909	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2910	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2911	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2912	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2913	DELAY(1000);
2914	/* Stop Rx/Tx MACs. */
2915	ale_stop_mac(sc);
2916	/* Disable interrupts which might be touched in taskq handler. */
2917	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2918
2919	/*
2920	 * Free TX mbufs still in the queues.
2921	 */
2922	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2923		txd = &sc->ale_cdata.ale_txdesc[i];
2924		if (txd->tx_m != NULL) {
2925			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2926			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2927			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2928			    txd->tx_dmamap);
2929			m_freem(txd->tx_m);
2930			txd->tx_m = NULL;
2931		}
2932        }
2933}
2934
2935static void
2936ale_stop_mac(struct ale_softc *sc)
2937{
2938	uint32_t reg;
2939	int i;
2940
2941	ALE_LOCK_ASSERT(sc);
2942
2943	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2944	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2945		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2946		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2947	}
2948
2949	for (i = ALE_TIMEOUT; i > 0; i--) {
2950		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2951		if (reg == 0)
2952			break;
2953		DELAY(10);
2954	}
2955	if (i == 0)
2956		device_printf(sc->ale_dev,
2957		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2958}
2959
2960static void
2961ale_init_tx_ring(struct ale_softc *sc)
2962{
2963	struct ale_txdesc *txd;
2964	int i;
2965
2966	ALE_LOCK_ASSERT(sc);
2967
2968	sc->ale_cdata.ale_tx_prod = 0;
2969	sc->ale_cdata.ale_tx_cons = 0;
2970	sc->ale_cdata.ale_tx_cnt = 0;
2971
2972	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2973	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2974	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2975		txd = &sc->ale_cdata.ale_txdesc[i];
2976		txd->tx_m = NULL;
2977	}
2978	*sc->ale_cdata.ale_tx_cmb = 0;
2979	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2980	    sc->ale_cdata.ale_tx_cmb_map,
2981	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2982	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2983	    sc->ale_cdata.ale_tx_ring_map,
2984	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2985}
2986
2987static void
2988ale_init_rx_pages(struct ale_softc *sc)
2989{
2990	struct ale_rx_page *rx_page;
2991	int i;
2992
2993	ALE_LOCK_ASSERT(sc);
2994
2995	atomic_set_int(&sc->ale_morework, 0);
2996	sc->ale_cdata.ale_rx_seqno = 0;
2997	sc->ale_cdata.ale_rx_curp = 0;
2998
2999	for (i = 0; i < ALE_RX_PAGES; i++) {
3000		rx_page = &sc->ale_cdata.ale_rx_page[i];
3001		bzero(rx_page->page_addr, sc->ale_pagesize);
3002		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
3003		rx_page->cons = 0;
3004		*rx_page->cmb_addr = 0;
3005		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
3006		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3007		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
3008		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3009	}
3010}
3011
3012static void
3013ale_rxvlan(struct ale_softc *sc)
3014{
3015	struct ifnet *ifp;
3016	uint32_t reg;
3017
3018	ALE_LOCK_ASSERT(sc);
3019
3020	ifp = sc->ale_ifp;
3021	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3022	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3023	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3024		reg |= MAC_CFG_VLAN_TAG_STRIP;
3025	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3026}
3027
3028static void
3029ale_rxfilter(struct ale_softc *sc)
3030{
3031	struct ifnet *ifp;
3032	struct ifmultiaddr *ifma;
3033	uint32_t crc;
3034	uint32_t mchash[2];
3035	uint32_t rxcfg;
3036
3037	ALE_LOCK_ASSERT(sc);
3038
3039	ifp = sc->ale_ifp;
3040
3041	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3042	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3043	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3044		rxcfg |= MAC_CFG_BCAST;
3045	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3046		if ((ifp->if_flags & IFF_PROMISC) != 0)
3047			rxcfg |= MAC_CFG_PROMISC;
3048		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3049			rxcfg |= MAC_CFG_ALLMULTI;
3050		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3051		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3052		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3053		return;
3054	}
3055
3056	/* Program new filter. */
3057	bzero(mchash, sizeof(mchash));
3058
3059	if_maddr_rlock(ifp);
3060	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3061		if (ifma->ifma_addr->sa_family != AF_LINK)
3062			continue;
3063		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
3064		    ifma->ifma_addr), ETHER_ADDR_LEN);
3065		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3066	}
3067	if_maddr_runlock(ifp);
3068
3069	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3070	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3071	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3072}
3073
3074static int
3075sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3076{
3077	int error, value;
3078
3079	if (arg1 == NULL)
3080		return (EINVAL);
3081	value = *(int *)arg1;
3082	error = sysctl_handle_int(oidp, &value, 0, req);
3083	if (error || req->newptr == NULL)
3084		return (error);
3085	if (value < low || value > high)
3086		return (EINVAL);
3087        *(int *)arg1 = value;
3088
3089        return (0);
3090}
3091
3092static int
3093sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3094{
3095	return (sysctl_int_range(oidp, arg1, arg2, req,
3096	    ALE_PROC_MIN, ALE_PROC_MAX));
3097}
3098
3099static int
3100sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3101{
3102
3103	return (sysctl_int_range(oidp, arg1, arg2, req,
3104	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3105}
3106