vdev_queue.c revision 276081
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd/*
22209962Smm * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23168404Spjd * Use is subject to license terms.
24168404Spjd */
25168404Spjd
26247265Smm/*
27269418Sdelphij * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28247265Smm */
29247265Smm
30168404Spjd#include <sys/zfs_context.h>
31168404Spjd#include <sys/vdev_impl.h>
32260763Savg#include <sys/spa_impl.h>
33168404Spjd#include <sys/zio.h>
34168404Spjd#include <sys/avl.h>
35260763Savg#include <sys/dsl_pool.h>
36168404Spjd
37168404Spjd/*
38260763Savg * ZFS I/O Scheduler
39260763Savg * ---------------
40260763Savg *
41260763Savg * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
42260763Savg * I/O scheduler determines when and in what order those operations are
43270312Ssmh * issued.  The I/O scheduler divides operations into six I/O classes
44260763Savg * prioritized in the following order: sync read, sync write, async read,
45270312Ssmh * async write, scrub/resilver and trim.  Each queue defines the minimum and
46260763Savg * maximum number of concurrent operations that may be issued to the device.
47260763Savg * In addition, the device has an aggregate maximum. Note that the sum of the
48260763Savg * per-queue minimums must not exceed the aggregate maximum, and if the
49260763Savg * aggregate maximum is equal to or greater than the sum of the per-queue
50260763Savg * maximums, the per-queue minimum has no effect.
51260763Savg *
52260763Savg * For many physical devices, throughput increases with the number of
53260763Savg * concurrent operations, but latency typically suffers. Further, physical
54260763Savg * devices typically have a limit at which more concurrent operations have no
55260763Savg * effect on throughput or can actually cause it to decrease.
56260763Savg *
57260763Savg * The scheduler selects the next operation to issue by first looking for an
58260763Savg * I/O class whose minimum has not been satisfied. Once all are satisfied and
59260763Savg * the aggregate maximum has not been hit, the scheduler looks for classes
60260763Savg * whose maximum has not been satisfied. Iteration through the I/O classes is
61260763Savg * done in the order specified above. No further operations are issued if the
62260763Savg * aggregate maximum number of concurrent operations has been hit or if there
63260763Savg * are no operations queued for an I/O class that has not hit its maximum.
64270312Ssmh * Every time an I/O is queued or an operation completes, the I/O scheduler
65260763Savg * looks for new operations to issue.
66260763Savg *
67260763Savg * All I/O classes have a fixed maximum number of outstanding operations
68260763Savg * except for the async write class. Asynchronous writes represent the data
69260763Savg * that is committed to stable storage during the syncing stage for
70260763Savg * transaction groups (see txg.c). Transaction groups enter the syncing state
71260763Savg * periodically so the number of queued async writes will quickly burst up and
72260763Savg * then bleed down to zero. Rather than servicing them as quickly as possible,
73270312Ssmh * the I/O scheduler changes the maximum number of active async write I/Os
74260763Savg * according to the amount of dirty data in the pool (see dsl_pool.c). Since
75260763Savg * both throughput and latency typically increase with the number of
76260763Savg * concurrent operations issued to physical devices, reducing the burstiness
77260763Savg * in the number of concurrent operations also stabilizes the response time of
78260763Savg * operations from other -- and in particular synchronous -- queues. In broad
79260763Savg * strokes, the I/O scheduler will issue more concurrent operations from the
80260763Savg * async write queue as there's more dirty data in the pool.
81260763Savg *
82260763Savg * Async Writes
83260763Savg *
84260763Savg * The number of concurrent operations issued for the async write I/O class
85260763Savg * follows a piece-wise linear function defined by a few adjustable points.
86260763Savg *
87260763Savg *        |                   o---------| <-- zfs_vdev_async_write_max_active
88260763Savg *   ^    |                  /^         |
89260763Savg *   |    |                 / |         |
90260763Savg * active |                /  |         |
91260763Savg *  I/O   |               /   |         |
92260763Savg * count  |              /    |         |
93260763Savg *        |             /     |         |
94260763Savg *        |------------o      |         | <-- zfs_vdev_async_write_min_active
95260763Savg *       0|____________^______|_________|
96260763Savg *        0%           |      |       100% of zfs_dirty_data_max
97260763Savg *                     |      |
98260763Savg *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
99260763Savg *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
100260763Savg *
101260763Savg * Until the amount of dirty data exceeds a minimum percentage of the dirty
102260763Savg * data allowed in the pool, the I/O scheduler will limit the number of
103260763Savg * concurrent operations to the minimum. As that threshold is crossed, the
104260763Savg * number of concurrent operations issued increases linearly to the maximum at
105260763Savg * the specified maximum percentage of the dirty data allowed in the pool.
106260763Savg *
107260763Savg * Ideally, the amount of dirty data on a busy pool will stay in the sloped
108260763Savg * part of the function between zfs_vdev_async_write_active_min_dirty_percent
109260763Savg * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
110260763Savg * maximum percentage, this indicates that the rate of incoming data is
111260763Savg * greater than the rate that the backend storage can handle. In this case, we
112260763Savg * must further throttle incoming writes (see dmu_tx_delay() for details).
113168404Spjd */
114251631Sdelphij
115260763Savg/*
116270312Ssmh * The maximum number of I/Os active to each device.  Ideally, this will be >=
117260763Savg * the sum of each queue's max_active.  It must be at least the sum of each
118260763Savg * queue's min_active.
119260763Savg */
120260763Savguint32_t zfs_vdev_max_active = 1000;
121251631Sdelphij
122168404Spjd/*
123270312Ssmh * Per-queue limits on the number of I/Os active to each device.  If the
124260763Savg * sum of the queue's max_active is < zfs_vdev_max_active, then the
125260763Savg * min_active comes into play.  We will send min_active from each queue,
126260763Savg * and then select from queues in the order defined by zio_priority_t.
127260763Savg *
128260763Savg * In general, smaller max_active's will lead to lower latency of synchronous
129260763Savg * operations.  Larger max_active's may lead to higher overall throughput,
130260763Savg * depending on underlying storage.
131260763Savg *
132260763Savg * The ratio of the queues' max_actives determines the balance of performance
133260763Savg * between reads, writes, and scrubs.  E.g., increasing
134260763Savg * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
135260763Savg * more quickly, but reads and writes to have higher latency and lower
136260763Savg * throughput.
137168404Spjd */
138260763Savguint32_t zfs_vdev_sync_read_min_active = 10;
139260763Savguint32_t zfs_vdev_sync_read_max_active = 10;
140260763Savguint32_t zfs_vdev_sync_write_min_active = 10;
141260763Savguint32_t zfs_vdev_sync_write_max_active = 10;
142260763Savguint32_t zfs_vdev_async_read_min_active = 1;
143260763Savguint32_t zfs_vdev_async_read_max_active = 3;
144260763Savguint32_t zfs_vdev_async_write_min_active = 1;
145260763Savguint32_t zfs_vdev_async_write_max_active = 10;
146260763Savguint32_t zfs_vdev_scrub_min_active = 1;
147260763Savguint32_t zfs_vdev_scrub_max_active = 2;
148270312Ssmhuint32_t zfs_vdev_trim_min_active = 1;
149270312Ssmh/*
150270312Ssmh * TRIM max active is large in comparison to the other values due to the fact
151270312Ssmh * that TRIM IOs are coalesced at the device layer. This value is set such
152270312Ssmh * that a typical SSD can process the queued IOs in a single request.
153270312Ssmh */
154270312Ssmhuint32_t zfs_vdev_trim_max_active = 64;
155168404Spjd
156270312Ssmh
157249206Smm/*
158260763Savg * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
159260763Savg * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
160260763Savg * zfs_vdev_async_write_active_max_dirty_percent, use
161260763Savg * zfs_vdev_async_write_max_active. The value is linearly interpolated
162260763Savg * between min and max.
163249206Smm */
164260763Savgint zfs_vdev_async_write_active_min_dirty_percent = 30;
165260763Savgint zfs_vdev_async_write_active_max_dirty_percent = 60;
166168404Spjd
167168404Spjd/*
168219089Spjd * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
169219089Spjd * For read I/Os, we also aggregate across small adjacency gaps; for writes
170219089Spjd * we include spans of optional I/Os to aid aggregation at the disk even when
171219089Spjd * they aren't able to help us aggregate at this level.
172168404Spjd */
173276081Sdelphijint zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
174209962Smmint zfs_vdev_read_gap_limit = 32 << 10;
175219089Spjdint zfs_vdev_write_gap_limit = 4 << 10;
176168404Spjd
177260763Savg#ifdef __FreeBSD__
178185029SpjdSYSCTL_DECL(_vfs_zfs_vdev);
179272882Ssmh
180272882SsmhTUNABLE_INT("vfs.zfs.vdev.async_write_active_min_dirty_percent",
181272882Ssmh    &zfs_vdev_async_write_active_min_dirty_percent);
182272882Ssmhstatic int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
183272882SsmhSYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
184272882Ssmh    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
185272882Ssmh    sysctl_zfs_async_write_active_min_dirty_percent, "I",
186272882Ssmh    "Percentage of async write dirty data below which "
187272882Ssmh    "async_write_min_active is used.");
188272882Ssmh
189272882SsmhTUNABLE_INT("vfs.zfs.vdev.async_write_active_max_dirty_percent",
190272882Ssmh    &zfs_vdev_async_write_active_max_dirty_percent);
191272882Ssmhstatic int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
192272882SsmhSYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
193272882Ssmh    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
194272882Ssmh    sysctl_zfs_async_write_active_max_dirty_percent, "I",
195272882Ssmh    "Percentage of async write dirty data above which "
196272882Ssmh    "async_write_max_active is used.");
197272882Ssmh
198260763SavgTUNABLE_INT("vfs.zfs.vdev.max_active", &zfs_vdev_max_active);
199272882SsmhSYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
200260763Savg    &zfs_vdev_max_active, 0,
201270312Ssmh    "The maximum number of I/Os of all types active for each device.");
202260763Savg
203260763Savg#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
204260763SavgTUNABLE_INT("vfs.zfs.vdev." #name "_min_active",			\
205260763Savg    &zfs_vdev_ ## name ## _min_active);					\
206272882SsmhSYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active,		\
207272882Ssmh    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _min_active, 0,		\
208260763Savg    "Initial number of I/O requests of type " #name			\
209260763Savg    " active for each device");
210260763Savg
211260763Savg#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
212260763SavgTUNABLE_INT("vfs.zfs.vdev." #name "_max_active",			\
213260763Savg    &zfs_vdev_ ## name ## _max_active);					\
214272882SsmhSYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active,		\
215272882Ssmh    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _max_active, 0,		\
216260763Savg    "Maximum number of I/O requests of type " #name			\
217260763Savg    " active for each device");
218260763Savg
219260763SavgZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
220260763SavgZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
221260763SavgZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
222260763SavgZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
223260763SavgZFS_VDEV_QUEUE_KNOB_MIN(async_read);
224260763SavgZFS_VDEV_QUEUE_KNOB_MAX(async_read);
225260763SavgZFS_VDEV_QUEUE_KNOB_MIN(async_write);
226260763SavgZFS_VDEV_QUEUE_KNOB_MAX(async_write);
227260763SavgZFS_VDEV_QUEUE_KNOB_MIN(scrub);
228260763SavgZFS_VDEV_QUEUE_KNOB_MAX(scrub);
229270312SsmhZFS_VDEV_QUEUE_KNOB_MIN(trim);
230270312SsmhZFS_VDEV_QUEUE_KNOB_MAX(trim);
231260763Savg
232260763Savg#undef ZFS_VDEV_QUEUE_KNOB
233260763Savg
234185029SpjdTUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
235272882SsmhSYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
236185029Spjd    &zfs_vdev_aggregation_limit, 0,
237185029Spjd    "I/O requests are aggregated up to this size");
238219089SpjdTUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
239272882SsmhSYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
240219089Spjd    &zfs_vdev_read_gap_limit, 0,
241219089Spjd    "Acceptable gap between two reads being aggregated");
242219089SpjdTUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
243272882SsmhSYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
244219089Spjd    &zfs_vdev_write_gap_limit, 0,
245219089Spjd    "Acceptable gap between two writes being aggregated");
246272882Ssmh
247272882Ssmhstatic int
248272882Ssmhsysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
249272882Ssmh{
250272882Ssmh	int val, err;
251272882Ssmh
252272882Ssmh	val = zfs_vdev_async_write_active_min_dirty_percent;
253272882Ssmh	err = sysctl_handle_int(oidp, &val, 0, req);
254272882Ssmh	if (err != 0 || req->newptr == NULL)
255272882Ssmh		return (err);
256272882Ssmh
257272882Ssmh	if (val < 0 || val > 100 ||
258272882Ssmh	    val >= zfs_vdev_async_write_active_max_dirty_percent)
259272882Ssmh		return (EINVAL);
260272882Ssmh
261272882Ssmh	zfs_vdev_async_write_active_min_dirty_percent = val;
262272882Ssmh
263272882Ssmh	return (0);
264272882Ssmh}
265272882Ssmh
266272882Ssmhstatic int
267272882Ssmhsysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
268272882Ssmh{
269272882Ssmh	int val, err;
270272882Ssmh
271272882Ssmh	val = zfs_vdev_async_write_active_max_dirty_percent;
272272882Ssmh	err = sysctl_handle_int(oidp, &val, 0, req);
273272882Ssmh	if (err != 0 || req->newptr == NULL)
274272882Ssmh		return (err);
275272882Ssmh
276272882Ssmh	if (val < 0 || val > 100 ||
277272882Ssmh	    val <= zfs_vdev_async_write_active_min_dirty_percent)
278272882Ssmh		return (EINVAL);
279272882Ssmh
280272882Ssmh	zfs_vdev_async_write_active_max_dirty_percent = val;
281272882Ssmh
282272882Ssmh	return (0);
283272882Ssmh}
284260763Savg#endif
285185029Spjd
286168404Spjdint
287260763Savgvdev_queue_offset_compare(const void *x1, const void *x2)
288168404Spjd{
289168404Spjd	const zio_t *z1 = x1;
290168404Spjd	const zio_t *z2 = x2;
291168404Spjd
292168404Spjd	if (z1->io_offset < z2->io_offset)
293168404Spjd		return (-1);
294168404Spjd	if (z1->io_offset > z2->io_offset)
295168404Spjd		return (1);
296168404Spjd
297168404Spjd	if (z1 < z2)
298168404Spjd		return (-1);
299168404Spjd	if (z1 > z2)
300168404Spjd		return (1);
301168404Spjd
302168404Spjd	return (0);
303168404Spjd}
304168404Spjd
305168404Spjdint
306260763Savgvdev_queue_timestamp_compare(const void *x1, const void *x2)
307168404Spjd{
308168404Spjd	const zio_t *z1 = x1;
309168404Spjd	const zio_t *z2 = x2;
310168404Spjd
311260763Savg	if (z1->io_timestamp < z2->io_timestamp)
312168404Spjd		return (-1);
313260763Savg	if (z1->io_timestamp > z2->io_timestamp)
314168404Spjd		return (1);
315168404Spjd
316168404Spjd	if (z1 < z2)
317168404Spjd		return (-1);
318168404Spjd	if (z1 > z2)
319168404Spjd		return (1);
320168404Spjd
321168404Spjd	return (0);
322168404Spjd}
323168404Spjd
324168404Spjdvoid
325168404Spjdvdev_queue_init(vdev_t *vd)
326168404Spjd{
327168404Spjd	vdev_queue_t *vq = &vd->vdev_queue;
328168404Spjd
329168404Spjd	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
330260763Savg	vq->vq_vdev = vd;
331168404Spjd
332260763Savg	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
333260763Savg	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
334168404Spjd
335260763Savg	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
336260763Savg		/*
337260763Savg		 * The synchronous i/o queues are FIFO rather than LBA ordered.
338260763Savg		 * This provides more consistent latency for these i/os, and
339260763Savg		 * they tend to not be tightly clustered anyway so there is
340260763Savg		 * little to no throughput loss.
341260763Savg		 */
342260763Savg		boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
343260763Savg		    p == ZIO_PRIORITY_SYNC_WRITE);
344260763Savg		avl_create(&vq->vq_class[p].vqc_queued_tree,
345260763Savg		    fifo ? vdev_queue_timestamp_compare :
346260763Savg		    vdev_queue_offset_compare,
347260763Savg		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
348260763Savg	}
349271238Ssmh
350271238Ssmh	vq->vq_lastoffset = 0;
351168404Spjd}
352168404Spjd
353168404Spjdvoid
354168404Spjdvdev_queue_fini(vdev_t *vd)
355168404Spjd{
356168404Spjd	vdev_queue_t *vq = &vd->vdev_queue;
357168404Spjd
358260763Savg	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
359260763Savg		avl_destroy(&vq->vq_class[p].vqc_queued_tree);
360260763Savg	avl_destroy(&vq->vq_active_tree);
361168404Spjd
362168404Spjd	mutex_destroy(&vq->vq_lock);
363168404Spjd}
364168404Spjd
365168404Spjdstatic void
366168404Spjdvdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
367168404Spjd{
368260763Savg	spa_t *spa = zio->io_spa;
369270312Ssmh	ASSERT(MUTEX_HELD(&vq->vq_lock));
370260763Savg	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
371260763Savg	avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
372260763Savg
373260763Savg#ifdef illumos
374260763Savg	mutex_enter(&spa->spa_iokstat_lock);
375260763Savg	spa->spa_queue_stats[zio->io_priority].spa_queued++;
376260763Savg	if (spa->spa_iokstat != NULL)
377260763Savg		kstat_waitq_enter(spa->spa_iokstat->ks_data);
378260763Savg	mutex_exit(&spa->spa_iokstat_lock);
379260763Savg#endif
380168404Spjd}
381168404Spjd
382168404Spjdstatic void
383168404Spjdvdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
384168404Spjd{
385260763Savg	spa_t *spa = zio->io_spa;
386270312Ssmh	ASSERT(MUTEX_HELD(&vq->vq_lock));
387260763Savg	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
388260763Savg	avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
389260763Savg
390260763Savg#ifdef illumos
391260763Savg	mutex_enter(&spa->spa_iokstat_lock);
392260763Savg	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
393260763Savg	spa->spa_queue_stats[zio->io_priority].spa_queued--;
394260763Savg	if (spa->spa_iokstat != NULL)
395260763Savg		kstat_waitq_exit(spa->spa_iokstat->ks_data);
396260763Savg	mutex_exit(&spa->spa_iokstat_lock);
397260763Savg#endif
398168404Spjd}
399168404Spjd
400168404Spjdstatic void
401260763Savgvdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
402260763Savg{
403260763Savg	spa_t *spa = zio->io_spa;
404260763Savg	ASSERT(MUTEX_HELD(&vq->vq_lock));
405260763Savg	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
406260763Savg	vq->vq_class[zio->io_priority].vqc_active++;
407260763Savg	avl_add(&vq->vq_active_tree, zio);
408260763Savg
409260763Savg#ifdef illumos
410260763Savg	mutex_enter(&spa->spa_iokstat_lock);
411260763Savg	spa->spa_queue_stats[zio->io_priority].spa_active++;
412260763Savg	if (spa->spa_iokstat != NULL)
413260763Savg		kstat_runq_enter(spa->spa_iokstat->ks_data);
414260763Savg	mutex_exit(&spa->spa_iokstat_lock);
415260763Savg#endif
416260763Savg}
417260763Savg
418260763Savgstatic void
419260763Savgvdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
420260763Savg{
421260763Savg	spa_t *spa = zio->io_spa;
422260763Savg	ASSERT(MUTEX_HELD(&vq->vq_lock));
423260763Savg	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
424260763Savg	vq->vq_class[zio->io_priority].vqc_active--;
425260763Savg	avl_remove(&vq->vq_active_tree, zio);
426260763Savg
427260763Savg#ifdef illumos
428260763Savg	mutex_enter(&spa->spa_iokstat_lock);
429260763Savg	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
430260763Savg	spa->spa_queue_stats[zio->io_priority].spa_active--;
431260763Savg	if (spa->spa_iokstat != NULL) {
432260763Savg		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
433260763Savg
434260763Savg		kstat_runq_exit(spa->spa_iokstat->ks_data);
435260763Savg		if (zio->io_type == ZIO_TYPE_READ) {
436260763Savg			ksio->reads++;
437260763Savg			ksio->nread += zio->io_size;
438260763Savg		} else if (zio->io_type == ZIO_TYPE_WRITE) {
439260763Savg			ksio->writes++;
440260763Savg			ksio->nwritten += zio->io_size;
441260763Savg		}
442260763Savg	}
443260763Savg	mutex_exit(&spa->spa_iokstat_lock);
444260763Savg#endif
445260763Savg}
446260763Savg
447260763Savgstatic void
448168404Spjdvdev_queue_agg_io_done(zio_t *aio)
449168404Spjd{
450260763Savg	if (aio->io_type == ZIO_TYPE_READ) {
451260763Savg		zio_t *pio;
452260763Savg		while ((pio = zio_walk_parents(aio)) != NULL) {
453209962Smm			bcopy((char *)aio->io_data + (pio->io_offset -
454209962Smm			    aio->io_offset), pio->io_data, pio->io_size);
455260763Savg		}
456260763Savg	}
457168404Spjd
458168404Spjd	zio_buf_free(aio->io_data, aio->io_size);
459168404Spjd}
460168404Spjd
461260763Savgstatic int
462260763Savgvdev_queue_class_min_active(zio_priority_t p)
463260763Savg{
464260763Savg	switch (p) {
465260763Savg	case ZIO_PRIORITY_SYNC_READ:
466260763Savg		return (zfs_vdev_sync_read_min_active);
467260763Savg	case ZIO_PRIORITY_SYNC_WRITE:
468260763Savg		return (zfs_vdev_sync_write_min_active);
469260763Savg	case ZIO_PRIORITY_ASYNC_READ:
470260763Savg		return (zfs_vdev_async_read_min_active);
471260763Savg	case ZIO_PRIORITY_ASYNC_WRITE:
472260763Savg		return (zfs_vdev_async_write_min_active);
473260763Savg	case ZIO_PRIORITY_SCRUB:
474260763Savg		return (zfs_vdev_scrub_min_active);
475270312Ssmh	case ZIO_PRIORITY_TRIM:
476270312Ssmh		return (zfs_vdev_trim_min_active);
477260763Savg	default:
478260763Savg		panic("invalid priority %u", p);
479260763Savg		return (0);
480260763Savg	}
481260763Savg}
482260763Savg
483260763Savgstatic int
484269418Sdelphijvdev_queue_max_async_writes(spa_t *spa)
485260763Savg{
486260763Savg	int writes;
487269418Sdelphij	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
488260763Savg	uint64_t min_bytes = zfs_dirty_data_max *
489260763Savg	    zfs_vdev_async_write_active_min_dirty_percent / 100;
490260763Savg	uint64_t max_bytes = zfs_dirty_data_max *
491260763Savg	    zfs_vdev_async_write_active_max_dirty_percent / 100;
492260763Savg
493269418Sdelphij	/*
494269418Sdelphij	 * Sync tasks correspond to interactive user actions. To reduce the
495269418Sdelphij	 * execution time of those actions we push data out as fast as possible.
496269418Sdelphij	 */
497269418Sdelphij	if (spa_has_pending_synctask(spa)) {
498269418Sdelphij		return (zfs_vdev_async_write_max_active);
499269418Sdelphij	}
500269418Sdelphij
501260763Savg	if (dirty < min_bytes)
502260763Savg		return (zfs_vdev_async_write_min_active);
503260763Savg	if (dirty > max_bytes)
504260763Savg		return (zfs_vdev_async_write_max_active);
505260763Savg
506260763Savg	/*
507260763Savg	 * linear interpolation:
508260763Savg	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
509260763Savg	 * move right by min_bytes
510260763Savg	 * move up by min_writes
511260763Savg	 */
512260763Savg	writes = (dirty - min_bytes) *
513260763Savg	    (zfs_vdev_async_write_max_active -
514260763Savg	    zfs_vdev_async_write_min_active) /
515260763Savg	    (max_bytes - min_bytes) +
516260763Savg	    zfs_vdev_async_write_min_active;
517260763Savg	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
518260763Savg	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
519260763Savg	return (writes);
520260763Savg}
521260763Savg
522260763Savgstatic int
523260763Savgvdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
524260763Savg{
525260763Savg	switch (p) {
526260763Savg	case ZIO_PRIORITY_SYNC_READ:
527260763Savg		return (zfs_vdev_sync_read_max_active);
528260763Savg	case ZIO_PRIORITY_SYNC_WRITE:
529260763Savg		return (zfs_vdev_sync_write_max_active);
530260763Savg	case ZIO_PRIORITY_ASYNC_READ:
531260763Savg		return (zfs_vdev_async_read_max_active);
532260763Savg	case ZIO_PRIORITY_ASYNC_WRITE:
533269418Sdelphij		return (vdev_queue_max_async_writes(spa));
534260763Savg	case ZIO_PRIORITY_SCRUB:
535260763Savg		return (zfs_vdev_scrub_max_active);
536270312Ssmh	case ZIO_PRIORITY_TRIM:
537270312Ssmh		return (zfs_vdev_trim_max_active);
538260763Savg	default:
539260763Savg		panic("invalid priority %u", p);
540260763Savg		return (0);
541260763Savg	}
542260763Savg}
543260763Savg
544209962Smm/*
545260763Savg * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
546260763Savg * there is no eligible class.
547260763Savg */
548260763Savgstatic zio_priority_t
549260763Savgvdev_queue_class_to_issue(vdev_queue_t *vq)
550260763Savg{
551260763Savg	spa_t *spa = vq->vq_vdev->vdev_spa;
552260763Savg	zio_priority_t p;
553260763Savg
554270312Ssmh	ASSERT(MUTEX_HELD(&vq->vq_lock));
555270312Ssmh
556260763Savg	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
557260763Savg		return (ZIO_PRIORITY_NUM_QUEUEABLE);
558260763Savg
559260763Savg	/* find a queue that has not reached its minimum # outstanding i/os */
560260763Savg	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
561260763Savg		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
562260763Savg		    vq->vq_class[p].vqc_active <
563260763Savg		    vdev_queue_class_min_active(p))
564260763Savg			return (p);
565260763Savg	}
566260763Savg
567260763Savg	/*
568260763Savg	 * If we haven't found a queue, look for one that hasn't reached its
569260763Savg	 * maximum # outstanding i/os.
570260763Savg	 */
571260763Savg	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
572260763Savg		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
573260763Savg		    vq->vq_class[p].vqc_active <
574260763Savg		    vdev_queue_class_max_active(spa, p))
575260763Savg			return (p);
576260763Savg	}
577260763Savg
578260763Savg	/* No eligible queued i/os */
579260763Savg	return (ZIO_PRIORITY_NUM_QUEUEABLE);
580260763Savg}
581260763Savg
582260763Savg/*
583209962Smm * Compute the range spanned by two i/os, which is the endpoint of the last
584209962Smm * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
585209962Smm * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
586209962Smm * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
587209962Smm */
588209962Smm#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
589209962Smm#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
590168404Spjd
591168404Spjdstatic zio_t *
592260763Savgvdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
593168404Spjd{
594260763Savg	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
595260763Savg	uint64_t maxgap = 0;
596260763Savg	uint64_t size;
597270312Ssmh	boolean_t stretch;
598270312Ssmh	avl_tree_t *t;
599270312Ssmh	enum zio_flag flags;
600168404Spjd
601270312Ssmh	ASSERT(MUTEX_HELD(&vq->vq_lock));
602270312Ssmh
603260763Savg	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
604260763Savg		return (NULL);
605168404Spjd
606260763Savg	/*
607260763Savg	 * The synchronous i/o queues are not sorted by LBA, so we can't
608260763Savg	 * find adjacent i/os.  These i/os tend to not be tightly clustered,
609260763Savg	 * or too large to aggregate, so this has little impact on performance.
610260763Savg	 */
611260763Savg	if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
612260763Savg	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
613168404Spjd		return (NULL);
614168404Spjd
615260763Savg	first = last = zio;
616168404Spjd
617260763Savg	if (zio->io_type == ZIO_TYPE_READ)
618260763Savg		maxgap = zfs_vdev_read_gap_limit;
619168404Spjd
620260763Savg	/*
621260763Savg	 * We can aggregate I/Os that are sufficiently adjacent and of
622260763Savg	 * the same flavor, as expressed by the AGG_INHERIT flags.
623260763Savg	 * The latter requirement is necessary so that certain
624260763Savg	 * attributes of the I/O, such as whether it's a normal I/O
625260763Savg	 * or a scrub/resilver, can be preserved in the aggregate.
626260763Savg	 * We can include optional I/Os, but don't allow them
627260763Savg	 * to begin a range as they add no benefit in that situation.
628260763Savg	 */
629219089Spjd
630260763Savg	/*
631260763Savg	 * We keep track of the last non-optional I/O.
632260763Savg	 */
633260763Savg	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
634219089Spjd
635260763Savg	/*
636260763Savg	 * Walk backwards through sufficiently contiguous I/Os
637260763Savg	 * recording the last non-option I/O.
638260763Savg	 */
639270312Ssmh	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
640270312Ssmh	t = &vq->vq_class[zio->io_priority].vqc_queued_tree;
641260763Savg	while ((dio = AVL_PREV(t, first)) != NULL &&
642260763Savg	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
643260763Savg	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
644260763Savg	    IO_GAP(dio, first) <= maxgap) {
645260763Savg		first = dio;
646260763Savg		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
647260763Savg			mandatory = first;
648260763Savg	}
649168404Spjd
650260763Savg	/*
651260763Savg	 * Skip any initial optional I/Os.
652260763Savg	 */
653260763Savg	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
654260763Savg		first = AVL_NEXT(t, first);
655260763Savg		ASSERT(first != NULL);
656260763Savg	}
657219089Spjd
658260763Savg	/*
659260763Savg	 * Walk forward through sufficiently contiguous I/Os.
660260763Savg	 */
661260763Savg	while ((dio = AVL_NEXT(t, last)) != NULL &&
662260763Savg	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
663260763Savg	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
664260763Savg	    IO_GAP(last, dio) <= maxgap) {
665260763Savg		last = dio;
666260763Savg		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
667260763Savg			mandatory = last;
668260763Savg	}
669219089Spjd
670260763Savg	/*
671260763Savg	 * Now that we've established the range of the I/O aggregation
672260763Savg	 * we must decide what to do with trailing optional I/Os.
673260763Savg	 * For reads, there's nothing to do. While we are unable to
674260763Savg	 * aggregate further, it's possible that a trailing optional
675260763Savg	 * I/O would allow the underlying device to aggregate with
676260763Savg	 * subsequent I/Os. We must therefore determine if the next
677260763Savg	 * non-optional I/O is close enough to make aggregation
678260763Savg	 * worthwhile.
679260763Savg	 */
680270312Ssmh	stretch = B_FALSE;
681260763Savg	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
682260763Savg		zio_t *nio = last;
683260763Savg		while ((dio = AVL_NEXT(t, nio)) != NULL &&
684260763Savg		    IO_GAP(nio, dio) == 0 &&
685260763Savg		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
686260763Savg			nio = dio;
687260763Savg			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
688260763Savg				stretch = B_TRUE;
689260763Savg				break;
690219089Spjd			}
691219089Spjd		}
692260763Savg	}
693219089Spjd
694260763Savg	if (stretch) {
695260763Savg		/* This may be a no-op. */
696260763Savg		dio = AVL_NEXT(t, last);
697260763Savg		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
698260763Savg	} else {
699260763Savg		while (last != mandatory && last != first) {
700260763Savg			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
701260763Savg			last = AVL_PREV(t, last);
702260763Savg			ASSERT(last != NULL);
703219089Spjd		}
704168404Spjd	}
705168404Spjd
706260763Savg	if (first == last)
707260763Savg		return (NULL);
708168404Spjd
709260763Savg	size = IO_SPAN(first, last);
710260763Savg	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
711168404Spjd
712260763Savg	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
713260763Savg	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
714260763Savg	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
715260763Savg	    vdev_queue_agg_io_done, NULL);
716260763Savg	aio->io_timestamp = first->io_timestamp;
717168404Spjd
718260763Savg	nio = first;
719260763Savg	do {
720260763Savg		dio = nio;
721260763Savg		nio = AVL_NEXT(t, dio);
722260763Savg		ASSERT3U(dio->io_type, ==, aio->io_type);
723209962Smm
724260763Savg		if (dio->io_flags & ZIO_FLAG_NODATA) {
725260763Savg			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
726260763Savg			bzero((char *)aio->io_data + (dio->io_offset -
727260763Savg			    aio->io_offset), dio->io_size);
728260763Savg		} else if (dio->io_type == ZIO_TYPE_WRITE) {
729260763Savg			bcopy(dio->io_data, (char *)aio->io_data +
730260763Savg			    (dio->io_offset - aio->io_offset),
731260763Savg			    dio->io_size);
732260763Savg		}
733168404Spjd
734260763Savg		zio_add_child(dio, aio);
735260763Savg		vdev_queue_io_remove(vq, dio);
736260763Savg		zio_vdev_io_bypass(dio);
737260763Savg		zio_execute(dio);
738260763Savg	} while (dio != last);
739168404Spjd
740260763Savg	return (aio);
741260763Savg}
742260763Savg
743260763Savgstatic zio_t *
744260763Savgvdev_queue_io_to_issue(vdev_queue_t *vq)
745260763Savg{
746260763Savg	zio_t *zio, *aio;
747260763Savg	zio_priority_t p;
748260763Savg	avl_index_t idx;
749260763Savg	vdev_queue_class_t *vqc;
750260763Savg	zio_t search;
751260763Savg
752260763Savgagain:
753260763Savg	ASSERT(MUTEX_HELD(&vq->vq_lock));
754260763Savg
755260763Savg	p = vdev_queue_class_to_issue(vq);
756260763Savg
757260763Savg	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
758260763Savg		/* No eligible queued i/os */
759260763Savg		return (NULL);
760168404Spjd	}
761168404Spjd
762260763Savg	/*
763260763Savg	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
764260763Savg	 * the most recently issued i/o in LBA (offset) order.
765260763Savg	 *
766260763Savg	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
767260763Savg	 */
768260763Savg	vqc = &vq->vq_class[p];
769260763Savg	search.io_timestamp = 0;
770260763Savg	search.io_offset = vq->vq_last_offset + 1;
771260763Savg	VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL);
772260763Savg	zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
773260763Savg	if (zio == NULL)
774260763Savg		zio = avl_first(&vqc->vqc_queued_tree);
775260763Savg	ASSERT3U(zio->io_priority, ==, p);
776168404Spjd
777260763Savg	aio = vdev_queue_aggregate(vq, zio);
778260763Savg	if (aio != NULL)
779260763Savg		zio = aio;
780260763Savg	else
781260763Savg		vdev_queue_io_remove(vq, zio);
782260763Savg
783219089Spjd	/*
784219089Spjd	 * If the I/O is or was optional and therefore has no data, we need to
785219089Spjd	 * simply discard it. We need to drop the vdev queue's lock to avoid a
786219089Spjd	 * deadlock that we could encounter since this I/O will complete
787219089Spjd	 * immediately.
788219089Spjd	 */
789260763Savg	if (zio->io_flags & ZIO_FLAG_NODATA) {
790219089Spjd		mutex_exit(&vq->vq_lock);
791260763Savg		zio_vdev_io_bypass(zio);
792260763Savg		zio_execute(zio);
793219089Spjd		mutex_enter(&vq->vq_lock);
794219089Spjd		goto again;
795219089Spjd	}
796219089Spjd
797260763Savg	vdev_queue_pending_add(vq, zio);
798260763Savg	vq->vq_last_offset = zio->io_offset;
799168404Spjd
800260763Savg	return (zio);
801168404Spjd}
802168404Spjd
803168404Spjdzio_t *
804168404Spjdvdev_queue_io(zio_t *zio)
805168404Spjd{
806168404Spjd	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
807168404Spjd	zio_t *nio;
808168404Spjd
809168404Spjd	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
810168404Spjd		return (zio);
811168404Spjd
812260763Savg	/*
813260763Savg	 * Children i/os inherent their parent's priority, which might
814260763Savg	 * not match the child's i/o type.  Fix it up here.
815260763Savg	 */
816260763Savg	if (zio->io_type == ZIO_TYPE_READ) {
817260763Savg		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
818260763Savg		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
819260763Savg		    zio->io_priority != ZIO_PRIORITY_SCRUB)
820260763Savg			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
821270312Ssmh	} else if (zio->io_type == ZIO_TYPE_WRITE) {
822260763Savg		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
823260763Savg		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
824260763Savg			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
825270312Ssmh	} else {
826270312Ssmh		ASSERT(zio->io_type == ZIO_TYPE_FREE);
827270312Ssmh		zio->io_priority = ZIO_PRIORITY_TRIM;
828260763Savg	}
829260763Savg
830168404Spjd	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
831168404Spjd
832168404Spjd	mutex_enter(&vq->vq_lock);
833249206Smm	zio->io_timestamp = gethrtime();
834168404Spjd	vdev_queue_io_add(vq, zio);
835260763Savg	nio = vdev_queue_io_to_issue(vq);
836168404Spjd	mutex_exit(&vq->vq_lock);
837168404Spjd
838185029Spjd	if (nio == NULL)
839185029Spjd		return (NULL);
840168404Spjd
841185029Spjd	if (nio->io_done == vdev_queue_agg_io_done) {
842185029Spjd		zio_nowait(nio);
843185029Spjd		return (NULL);
844185029Spjd	}
845185029Spjd
846185029Spjd	return (nio);
847168404Spjd}
848168404Spjd
849168404Spjdvoid
850168404Spjdvdev_queue_io_done(zio_t *zio)
851168404Spjd{
852168404Spjd	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
853260763Savg	zio_t *nio;
854168404Spjd
855247265Smm	if (zio_injection_enabled)
856247265Smm		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
857247265Smm
858168404Spjd	mutex_enter(&vq->vq_lock);
859168404Spjd
860260763Savg	vdev_queue_pending_remove(vq, zio);
861168404Spjd
862249206Smm	vq->vq_io_complete_ts = gethrtime();
863247265Smm
864260763Savg	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
865168404Spjd		mutex_exit(&vq->vq_lock);
866185029Spjd		if (nio->io_done == vdev_queue_agg_io_done) {
867185029Spjd			zio_nowait(nio);
868185029Spjd		} else {
869168404Spjd			zio_vdev_io_reissue(nio);
870185029Spjd			zio_execute(nio);
871185029Spjd		}
872168404Spjd		mutex_enter(&vq->vq_lock);
873168404Spjd	}
874168404Spjd
875168404Spjd	mutex_exit(&vq->vq_lock);
876168404Spjd}
877271238Ssmh
878271238Ssmh/*
879271238Ssmh * As these three methods are only used for load calculations we're not concerned
880271238Ssmh * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
881271238Ssmh * use here, instead we prefer to keep it lock free for performance.
882271238Ssmh */
883271238Ssmhint
884271238Ssmhvdev_queue_length(vdev_t *vd)
885271238Ssmh{
886271238Ssmh	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
887271238Ssmh}
888271238Ssmh
889271238Ssmhuint64_t
890271238Ssmhvdev_queue_lastoffset(vdev_t *vd)
891271238Ssmh{
892271238Ssmh	return (vd->vdev_queue.vq_lastoffset);
893271238Ssmh}
894271238Ssmh
895271238Ssmhvoid
896271238Ssmhvdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
897271238Ssmh{
898271238Ssmh	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
899271238Ssmh}
900