vdev_queue.c revision 260763
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd/*
22209962Smm * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23168404Spjd * Use is subject to license terms.
24168404Spjd */
25168404Spjd
26247265Smm/*
27260763Savg * Copyright (c) 2013 by Delphix. All rights reserved.
28247265Smm */
29247265Smm
30168404Spjd#include <sys/zfs_context.h>
31168404Spjd#include <sys/vdev_impl.h>
32260763Savg#include <sys/spa_impl.h>
33168404Spjd#include <sys/zio.h>
34168404Spjd#include <sys/avl.h>
35260763Savg#include <sys/dsl_pool.h>
36168404Spjd
37168404Spjd/*
38260763Savg * ZFS I/O Scheduler
39260763Savg * ---------------
40260763Savg *
41260763Savg * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
42260763Savg * I/O scheduler determines when and in what order those operations are
43260763Savg * issued.  The I/O scheduler divides operations into five I/O classes
44260763Savg * prioritized in the following order: sync read, sync write, async read,
45260763Savg * async write, and scrub/resilver.  Each queue defines the minimum and
46260763Savg * maximum number of concurrent operations that may be issued to the device.
47260763Savg * In addition, the device has an aggregate maximum. Note that the sum of the
48260763Savg * per-queue minimums must not exceed the aggregate maximum, and if the
49260763Savg * aggregate maximum is equal to or greater than the sum of the per-queue
50260763Savg * maximums, the per-queue minimum has no effect.
51260763Savg *
52260763Savg * For many physical devices, throughput increases with the number of
53260763Savg * concurrent operations, but latency typically suffers. Further, physical
54260763Savg * devices typically have a limit at which more concurrent operations have no
55260763Savg * effect on throughput or can actually cause it to decrease.
56260763Savg *
57260763Savg * The scheduler selects the next operation to issue by first looking for an
58260763Savg * I/O class whose minimum has not been satisfied. Once all are satisfied and
59260763Savg * the aggregate maximum has not been hit, the scheduler looks for classes
60260763Savg * whose maximum has not been satisfied. Iteration through the I/O classes is
61260763Savg * done in the order specified above. No further operations are issued if the
62260763Savg * aggregate maximum number of concurrent operations has been hit or if there
63260763Savg * are no operations queued for an I/O class that has not hit its maximum.
64260763Savg * Every time an i/o is queued or an operation completes, the I/O scheduler
65260763Savg * looks for new operations to issue.
66260763Savg *
67260763Savg * All I/O classes have a fixed maximum number of outstanding operations
68260763Savg * except for the async write class. Asynchronous writes represent the data
69260763Savg * that is committed to stable storage during the syncing stage for
70260763Savg * transaction groups (see txg.c). Transaction groups enter the syncing state
71260763Savg * periodically so the number of queued async writes will quickly burst up and
72260763Savg * then bleed down to zero. Rather than servicing them as quickly as possible,
73260763Savg * the I/O scheduler changes the maximum number of active async write i/os
74260763Savg * according to the amount of dirty data in the pool (see dsl_pool.c). Since
75260763Savg * both throughput and latency typically increase with the number of
76260763Savg * concurrent operations issued to physical devices, reducing the burstiness
77260763Savg * in the number of concurrent operations also stabilizes the response time of
78260763Savg * operations from other -- and in particular synchronous -- queues. In broad
79260763Savg * strokes, the I/O scheduler will issue more concurrent operations from the
80260763Savg * async write queue as there's more dirty data in the pool.
81260763Savg *
82260763Savg * Async Writes
83260763Savg *
84260763Savg * The number of concurrent operations issued for the async write I/O class
85260763Savg * follows a piece-wise linear function defined by a few adjustable points.
86260763Savg *
87260763Savg *        |                   o---------| <-- zfs_vdev_async_write_max_active
88260763Savg *   ^    |                  /^         |
89260763Savg *   |    |                 / |         |
90260763Savg * active |                /  |         |
91260763Savg *  I/O   |               /   |         |
92260763Savg * count  |              /    |         |
93260763Savg *        |             /     |         |
94260763Savg *        |------------o      |         | <-- zfs_vdev_async_write_min_active
95260763Savg *       0|____________^______|_________|
96260763Savg *        0%           |      |       100% of zfs_dirty_data_max
97260763Savg *                     |      |
98260763Savg *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
99260763Savg *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
100260763Savg *
101260763Savg * Until the amount of dirty data exceeds a minimum percentage of the dirty
102260763Savg * data allowed in the pool, the I/O scheduler will limit the number of
103260763Savg * concurrent operations to the minimum. As that threshold is crossed, the
104260763Savg * number of concurrent operations issued increases linearly to the maximum at
105260763Savg * the specified maximum percentage of the dirty data allowed in the pool.
106260763Savg *
107260763Savg * Ideally, the amount of dirty data on a busy pool will stay in the sloped
108260763Savg * part of the function between zfs_vdev_async_write_active_min_dirty_percent
109260763Savg * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
110260763Savg * maximum percentage, this indicates that the rate of incoming data is
111260763Savg * greater than the rate that the backend storage can handle. In this case, we
112260763Savg * must further throttle incoming writes (see dmu_tx_delay() for details).
113168404Spjd */
114251631Sdelphij
115260763Savg/*
116260763Savg * The maximum number of i/os active to each device.  Ideally, this will be >=
117260763Savg * the sum of each queue's max_active.  It must be at least the sum of each
118260763Savg * queue's min_active.
119260763Savg */
120260763Savguint32_t zfs_vdev_max_active = 1000;
121251631Sdelphij
122168404Spjd/*
123260763Savg * Per-queue limits on the number of i/os active to each device.  If the
124260763Savg * sum of the queue's max_active is < zfs_vdev_max_active, then the
125260763Savg * min_active comes into play.  We will send min_active from each queue,
126260763Savg * and then select from queues in the order defined by zio_priority_t.
127260763Savg *
128260763Savg * In general, smaller max_active's will lead to lower latency of synchronous
129260763Savg * operations.  Larger max_active's may lead to higher overall throughput,
130260763Savg * depending on underlying storage.
131260763Savg *
132260763Savg * The ratio of the queues' max_actives determines the balance of performance
133260763Savg * between reads, writes, and scrubs.  E.g., increasing
134260763Savg * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
135260763Savg * more quickly, but reads and writes to have higher latency and lower
136260763Savg * throughput.
137168404Spjd */
138260763Savguint32_t zfs_vdev_sync_read_min_active = 10;
139260763Savguint32_t zfs_vdev_sync_read_max_active = 10;
140260763Savguint32_t zfs_vdev_sync_write_min_active = 10;
141260763Savguint32_t zfs_vdev_sync_write_max_active = 10;
142260763Savguint32_t zfs_vdev_async_read_min_active = 1;
143260763Savguint32_t zfs_vdev_async_read_max_active = 3;
144260763Savguint32_t zfs_vdev_async_write_min_active = 1;
145260763Savguint32_t zfs_vdev_async_write_max_active = 10;
146260763Savguint32_t zfs_vdev_scrub_min_active = 1;
147260763Savguint32_t zfs_vdev_scrub_max_active = 2;
148168404Spjd
149249206Smm/*
150260763Savg * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
151260763Savg * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
152260763Savg * zfs_vdev_async_write_active_max_dirty_percent, use
153260763Savg * zfs_vdev_async_write_max_active. The value is linearly interpolated
154260763Savg * between min and max.
155249206Smm */
156260763Savgint zfs_vdev_async_write_active_min_dirty_percent = 30;
157260763Savgint zfs_vdev_async_write_active_max_dirty_percent = 60;
158168404Spjd
159168404Spjd/*
160219089Spjd * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
161219089Spjd * For read I/Os, we also aggregate across small adjacency gaps; for writes
162219089Spjd * we include spans of optional I/Os to aid aggregation at the disk even when
163219089Spjd * they aren't able to help us aggregate at this level.
164168404Spjd */
165168404Spjdint zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
166209962Smmint zfs_vdev_read_gap_limit = 32 << 10;
167219089Spjdint zfs_vdev_write_gap_limit = 4 << 10;
168168404Spjd
169260763Savg#ifdef __FreeBSD__
170185029SpjdSYSCTL_DECL(_vfs_zfs_vdev);
171260763SavgTUNABLE_INT("vfs.zfs.vdev.max_active", &zfs_vdev_max_active);
172260763SavgSYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RW,
173260763Savg    &zfs_vdev_max_active, 0,
174260763Savg    "The maximum number of i/os of all types active for each device.");
175260763Savg
176260763Savg#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
177260763SavgTUNABLE_INT("vfs.zfs.vdev." #name "_min_active",			\
178260763Savg    &zfs_vdev_ ## name ## _min_active);					\
179260763SavgSYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active, CTLFLAG_RW,	\
180260763Savg    &zfs_vdev_ ## name ## _min_active, 0,				\
181260763Savg    "Initial number of I/O requests of type " #name			\
182260763Savg    " active for each device");
183260763Savg
184260763Savg#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
185260763SavgTUNABLE_INT("vfs.zfs.vdev." #name "_max_active",			\
186260763Savg    &zfs_vdev_ ## name ## _max_active);					\
187260763SavgSYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active, CTLFLAG_RW,	\
188260763Savg    &zfs_vdev_ ## name ## _max_active, 0,				\
189260763Savg    "Maximum number of I/O requests of type " #name			\
190260763Savg    " active for each device");
191260763Savg
192260763SavgZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
193260763SavgZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
194260763SavgZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
195260763SavgZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
196260763SavgZFS_VDEV_QUEUE_KNOB_MIN(async_read);
197260763SavgZFS_VDEV_QUEUE_KNOB_MAX(async_read);
198260763SavgZFS_VDEV_QUEUE_KNOB_MIN(async_write);
199260763SavgZFS_VDEV_QUEUE_KNOB_MAX(async_write);
200260763SavgZFS_VDEV_QUEUE_KNOB_MIN(scrub);
201260763SavgZFS_VDEV_QUEUE_KNOB_MAX(scrub);
202260763Savg
203260763Savg#undef ZFS_VDEV_QUEUE_KNOB
204260763Savg
205185029SpjdTUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
206219089SpjdSYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RW,
207185029Spjd    &zfs_vdev_aggregation_limit, 0,
208185029Spjd    "I/O requests are aggregated up to this size");
209219089SpjdTUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
210219089SpjdSYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RW,
211219089Spjd    &zfs_vdev_read_gap_limit, 0,
212219089Spjd    "Acceptable gap between two reads being aggregated");
213219089SpjdTUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
214219089SpjdSYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RW,
215219089Spjd    &zfs_vdev_write_gap_limit, 0,
216219089Spjd    "Acceptable gap between two writes being aggregated");
217260763Savg#endif
218185029Spjd
219168404Spjdint
220260763Savgvdev_queue_offset_compare(const void *x1, const void *x2)
221168404Spjd{
222168404Spjd	const zio_t *z1 = x1;
223168404Spjd	const zio_t *z2 = x2;
224168404Spjd
225168404Spjd	if (z1->io_offset < z2->io_offset)
226168404Spjd		return (-1);
227168404Spjd	if (z1->io_offset > z2->io_offset)
228168404Spjd		return (1);
229168404Spjd
230168404Spjd	if (z1 < z2)
231168404Spjd		return (-1);
232168404Spjd	if (z1 > z2)
233168404Spjd		return (1);
234168404Spjd
235168404Spjd	return (0);
236168404Spjd}
237168404Spjd
238168404Spjdint
239260763Savgvdev_queue_timestamp_compare(const void *x1, const void *x2)
240168404Spjd{
241168404Spjd	const zio_t *z1 = x1;
242168404Spjd	const zio_t *z2 = x2;
243168404Spjd
244260763Savg	if (z1->io_timestamp < z2->io_timestamp)
245168404Spjd		return (-1);
246260763Savg	if (z1->io_timestamp > z2->io_timestamp)
247168404Spjd		return (1);
248168404Spjd
249168404Spjd	if (z1 < z2)
250168404Spjd		return (-1);
251168404Spjd	if (z1 > z2)
252168404Spjd		return (1);
253168404Spjd
254168404Spjd	return (0);
255168404Spjd}
256168404Spjd
257168404Spjdvoid
258168404Spjdvdev_queue_init(vdev_t *vd)
259168404Spjd{
260168404Spjd	vdev_queue_t *vq = &vd->vdev_queue;
261168404Spjd
262168404Spjd	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
263260763Savg	vq->vq_vdev = vd;
264168404Spjd
265260763Savg	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
266260763Savg	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
267168404Spjd
268260763Savg	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
269260763Savg		/*
270260763Savg		 * The synchronous i/o queues are FIFO rather than LBA ordered.
271260763Savg		 * This provides more consistent latency for these i/os, and
272260763Savg		 * they tend to not be tightly clustered anyway so there is
273260763Savg		 * little to no throughput loss.
274260763Savg		 */
275260763Savg		boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
276260763Savg		    p == ZIO_PRIORITY_SYNC_WRITE);
277260763Savg		avl_create(&vq->vq_class[p].vqc_queued_tree,
278260763Savg		    fifo ? vdev_queue_timestamp_compare :
279260763Savg		    vdev_queue_offset_compare,
280260763Savg		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
281260763Savg	}
282168404Spjd}
283168404Spjd
284168404Spjdvoid
285168404Spjdvdev_queue_fini(vdev_t *vd)
286168404Spjd{
287168404Spjd	vdev_queue_t *vq = &vd->vdev_queue;
288168404Spjd
289260763Savg	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
290260763Savg		avl_destroy(&vq->vq_class[p].vqc_queued_tree);
291260763Savg	avl_destroy(&vq->vq_active_tree);
292168404Spjd
293168404Spjd	mutex_destroy(&vq->vq_lock);
294168404Spjd}
295168404Spjd
296168404Spjdstatic void
297168404Spjdvdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
298168404Spjd{
299260763Savg	spa_t *spa = zio->io_spa;
300260763Savg	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
301260763Savg	avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
302260763Savg
303260763Savg#ifdef illumos
304260763Savg	mutex_enter(&spa->spa_iokstat_lock);
305260763Savg	spa->spa_queue_stats[zio->io_priority].spa_queued++;
306260763Savg	if (spa->spa_iokstat != NULL)
307260763Savg		kstat_waitq_enter(spa->spa_iokstat->ks_data);
308260763Savg	mutex_exit(&spa->spa_iokstat_lock);
309260763Savg#endif
310168404Spjd}
311168404Spjd
312168404Spjdstatic void
313168404Spjdvdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
314168404Spjd{
315260763Savg	spa_t *spa = zio->io_spa;
316260763Savg	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
317260763Savg	avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
318260763Savg
319260763Savg#ifdef illumos
320260763Savg	mutex_enter(&spa->spa_iokstat_lock);
321260763Savg	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
322260763Savg	spa->spa_queue_stats[zio->io_priority].spa_queued--;
323260763Savg	if (spa->spa_iokstat != NULL)
324260763Savg		kstat_waitq_exit(spa->spa_iokstat->ks_data);
325260763Savg	mutex_exit(&spa->spa_iokstat_lock);
326260763Savg#endif
327168404Spjd}
328168404Spjd
329168404Spjdstatic void
330260763Savgvdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
331260763Savg{
332260763Savg	spa_t *spa = zio->io_spa;
333260763Savg	ASSERT(MUTEX_HELD(&vq->vq_lock));
334260763Savg	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
335260763Savg	vq->vq_class[zio->io_priority].vqc_active++;
336260763Savg	avl_add(&vq->vq_active_tree, zio);
337260763Savg
338260763Savg#ifdef illumos
339260763Savg	mutex_enter(&spa->spa_iokstat_lock);
340260763Savg	spa->spa_queue_stats[zio->io_priority].spa_active++;
341260763Savg	if (spa->spa_iokstat != NULL)
342260763Savg		kstat_runq_enter(spa->spa_iokstat->ks_data);
343260763Savg	mutex_exit(&spa->spa_iokstat_lock);
344260763Savg#endif
345260763Savg}
346260763Savg
347260763Savgstatic void
348260763Savgvdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
349260763Savg{
350260763Savg	spa_t *spa = zio->io_spa;
351260763Savg	ASSERT(MUTEX_HELD(&vq->vq_lock));
352260763Savg	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
353260763Savg	vq->vq_class[zio->io_priority].vqc_active--;
354260763Savg	avl_remove(&vq->vq_active_tree, zio);
355260763Savg
356260763Savg#ifdef illumos
357260763Savg	mutex_enter(&spa->spa_iokstat_lock);
358260763Savg	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
359260763Savg	spa->spa_queue_stats[zio->io_priority].spa_active--;
360260763Savg	if (spa->spa_iokstat != NULL) {
361260763Savg		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
362260763Savg
363260763Savg		kstat_runq_exit(spa->spa_iokstat->ks_data);
364260763Savg		if (zio->io_type == ZIO_TYPE_READ) {
365260763Savg			ksio->reads++;
366260763Savg			ksio->nread += zio->io_size;
367260763Savg		} else if (zio->io_type == ZIO_TYPE_WRITE) {
368260763Savg			ksio->writes++;
369260763Savg			ksio->nwritten += zio->io_size;
370260763Savg		}
371260763Savg	}
372260763Savg	mutex_exit(&spa->spa_iokstat_lock);
373260763Savg#endif
374260763Savg}
375260763Savg
376260763Savgstatic void
377168404Spjdvdev_queue_agg_io_done(zio_t *aio)
378168404Spjd{
379260763Savg	if (aio->io_type == ZIO_TYPE_READ) {
380260763Savg		zio_t *pio;
381260763Savg		while ((pio = zio_walk_parents(aio)) != NULL) {
382209962Smm			bcopy((char *)aio->io_data + (pio->io_offset -
383209962Smm			    aio->io_offset), pio->io_data, pio->io_size);
384260763Savg		}
385260763Savg	}
386168404Spjd
387168404Spjd	zio_buf_free(aio->io_data, aio->io_size);
388168404Spjd}
389168404Spjd
390260763Savgstatic int
391260763Savgvdev_queue_class_min_active(zio_priority_t p)
392260763Savg{
393260763Savg	switch (p) {
394260763Savg	case ZIO_PRIORITY_SYNC_READ:
395260763Savg		return (zfs_vdev_sync_read_min_active);
396260763Savg	case ZIO_PRIORITY_SYNC_WRITE:
397260763Savg		return (zfs_vdev_sync_write_min_active);
398260763Savg	case ZIO_PRIORITY_ASYNC_READ:
399260763Savg		return (zfs_vdev_async_read_min_active);
400260763Savg	case ZIO_PRIORITY_ASYNC_WRITE:
401260763Savg		return (zfs_vdev_async_write_min_active);
402260763Savg	case ZIO_PRIORITY_SCRUB:
403260763Savg		return (zfs_vdev_scrub_min_active);
404260763Savg	default:
405260763Savg		panic("invalid priority %u", p);
406260763Savg		return (0);
407260763Savg	}
408260763Savg}
409260763Savg
410260763Savgstatic int
411260763Savgvdev_queue_max_async_writes(uint64_t dirty)
412260763Savg{
413260763Savg	int writes;
414260763Savg	uint64_t min_bytes = zfs_dirty_data_max *
415260763Savg	    zfs_vdev_async_write_active_min_dirty_percent / 100;
416260763Savg	uint64_t max_bytes = zfs_dirty_data_max *
417260763Savg	    zfs_vdev_async_write_active_max_dirty_percent / 100;
418260763Savg
419260763Savg	if (dirty < min_bytes)
420260763Savg		return (zfs_vdev_async_write_min_active);
421260763Savg	if (dirty > max_bytes)
422260763Savg		return (zfs_vdev_async_write_max_active);
423260763Savg
424260763Savg	/*
425260763Savg	 * linear interpolation:
426260763Savg	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
427260763Savg	 * move right by min_bytes
428260763Savg	 * move up by min_writes
429260763Savg	 */
430260763Savg	writes = (dirty - min_bytes) *
431260763Savg	    (zfs_vdev_async_write_max_active -
432260763Savg	    zfs_vdev_async_write_min_active) /
433260763Savg	    (max_bytes - min_bytes) +
434260763Savg	    zfs_vdev_async_write_min_active;
435260763Savg	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
436260763Savg	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
437260763Savg	return (writes);
438260763Savg}
439260763Savg
440260763Savgstatic int
441260763Savgvdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
442260763Savg{
443260763Savg	switch (p) {
444260763Savg	case ZIO_PRIORITY_SYNC_READ:
445260763Savg		return (zfs_vdev_sync_read_max_active);
446260763Savg	case ZIO_PRIORITY_SYNC_WRITE:
447260763Savg		return (zfs_vdev_sync_write_max_active);
448260763Savg	case ZIO_PRIORITY_ASYNC_READ:
449260763Savg		return (zfs_vdev_async_read_max_active);
450260763Savg	case ZIO_PRIORITY_ASYNC_WRITE:
451260763Savg		return (vdev_queue_max_async_writes(
452260763Savg		    spa->spa_dsl_pool->dp_dirty_total));
453260763Savg	case ZIO_PRIORITY_SCRUB:
454260763Savg		return (zfs_vdev_scrub_max_active);
455260763Savg	default:
456260763Savg		panic("invalid priority %u", p);
457260763Savg		return (0);
458260763Savg	}
459260763Savg}
460260763Savg
461209962Smm/*
462260763Savg * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
463260763Savg * there is no eligible class.
464260763Savg */
465260763Savgstatic zio_priority_t
466260763Savgvdev_queue_class_to_issue(vdev_queue_t *vq)
467260763Savg{
468260763Savg	spa_t *spa = vq->vq_vdev->vdev_spa;
469260763Savg	zio_priority_t p;
470260763Savg
471260763Savg	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
472260763Savg		return (ZIO_PRIORITY_NUM_QUEUEABLE);
473260763Savg
474260763Savg	/* find a queue that has not reached its minimum # outstanding i/os */
475260763Savg	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
476260763Savg		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
477260763Savg		    vq->vq_class[p].vqc_active <
478260763Savg		    vdev_queue_class_min_active(p))
479260763Savg			return (p);
480260763Savg	}
481260763Savg
482260763Savg	/*
483260763Savg	 * If we haven't found a queue, look for one that hasn't reached its
484260763Savg	 * maximum # outstanding i/os.
485260763Savg	 */
486260763Savg	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
487260763Savg		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
488260763Savg		    vq->vq_class[p].vqc_active <
489260763Savg		    vdev_queue_class_max_active(spa, p))
490260763Savg			return (p);
491260763Savg	}
492260763Savg
493260763Savg	/* No eligible queued i/os */
494260763Savg	return (ZIO_PRIORITY_NUM_QUEUEABLE);
495260763Savg}
496260763Savg
497260763Savg/*
498209962Smm * Compute the range spanned by two i/os, which is the endpoint of the last
499209962Smm * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
500209962Smm * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
501209962Smm * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
502209962Smm */
503209962Smm#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
504209962Smm#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
505168404Spjd
506168404Spjdstatic zio_t *
507260763Savgvdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
508168404Spjd{
509260763Savg	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
510260763Savg	uint64_t maxgap = 0;
511260763Savg	uint64_t size;
512260763Savg	boolean_t stretch = B_FALSE;
513260763Savg	vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority];
514260763Savg	avl_tree_t *t = &vqc->vqc_queued_tree;
515260763Savg	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
516168404Spjd
517260763Savg	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
518260763Savg		return (NULL);
519168404Spjd
520260763Savg	/*
521260763Savg	 * The synchronous i/o queues are not sorted by LBA, so we can't
522260763Savg	 * find adjacent i/os.  These i/os tend to not be tightly clustered,
523260763Savg	 * or too large to aggregate, so this has little impact on performance.
524260763Savg	 */
525260763Savg	if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
526260763Savg	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
527168404Spjd		return (NULL);
528168404Spjd
529260763Savg	first = last = zio;
530168404Spjd
531260763Savg	if (zio->io_type == ZIO_TYPE_READ)
532260763Savg		maxgap = zfs_vdev_read_gap_limit;
533168404Spjd
534260763Savg	/*
535260763Savg	 * We can aggregate I/Os that are sufficiently adjacent and of
536260763Savg	 * the same flavor, as expressed by the AGG_INHERIT flags.
537260763Savg	 * The latter requirement is necessary so that certain
538260763Savg	 * attributes of the I/O, such as whether it's a normal I/O
539260763Savg	 * or a scrub/resilver, can be preserved in the aggregate.
540260763Savg	 * We can include optional I/Os, but don't allow them
541260763Savg	 * to begin a range as they add no benefit in that situation.
542260763Savg	 */
543219089Spjd
544260763Savg	/*
545260763Savg	 * We keep track of the last non-optional I/O.
546260763Savg	 */
547260763Savg	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
548219089Spjd
549260763Savg	/*
550260763Savg	 * Walk backwards through sufficiently contiguous I/Os
551260763Savg	 * recording the last non-option I/O.
552260763Savg	 */
553260763Savg	while ((dio = AVL_PREV(t, first)) != NULL &&
554260763Savg	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
555260763Savg	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
556260763Savg	    IO_GAP(dio, first) <= maxgap) {
557260763Savg		first = dio;
558260763Savg		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
559260763Savg			mandatory = first;
560260763Savg	}
561168404Spjd
562260763Savg	/*
563260763Savg	 * Skip any initial optional I/Os.
564260763Savg	 */
565260763Savg	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
566260763Savg		first = AVL_NEXT(t, first);
567260763Savg		ASSERT(first != NULL);
568260763Savg	}
569219089Spjd
570260763Savg	/*
571260763Savg	 * Walk forward through sufficiently contiguous I/Os.
572260763Savg	 */
573260763Savg	while ((dio = AVL_NEXT(t, last)) != NULL &&
574260763Savg	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
575260763Savg	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
576260763Savg	    IO_GAP(last, dio) <= maxgap) {
577260763Savg		last = dio;
578260763Savg		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
579260763Savg			mandatory = last;
580260763Savg	}
581219089Spjd
582260763Savg	/*
583260763Savg	 * Now that we've established the range of the I/O aggregation
584260763Savg	 * we must decide what to do with trailing optional I/Os.
585260763Savg	 * For reads, there's nothing to do. While we are unable to
586260763Savg	 * aggregate further, it's possible that a trailing optional
587260763Savg	 * I/O would allow the underlying device to aggregate with
588260763Savg	 * subsequent I/Os. We must therefore determine if the next
589260763Savg	 * non-optional I/O is close enough to make aggregation
590260763Savg	 * worthwhile.
591260763Savg	 */
592260763Savg	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
593260763Savg		zio_t *nio = last;
594260763Savg		while ((dio = AVL_NEXT(t, nio)) != NULL &&
595260763Savg		    IO_GAP(nio, dio) == 0 &&
596260763Savg		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
597260763Savg			nio = dio;
598260763Savg			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
599260763Savg				stretch = B_TRUE;
600260763Savg				break;
601219089Spjd			}
602219089Spjd		}
603260763Savg	}
604219089Spjd
605260763Savg	if (stretch) {
606260763Savg		/* This may be a no-op. */
607260763Savg		dio = AVL_NEXT(t, last);
608260763Savg		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
609260763Savg	} else {
610260763Savg		while (last != mandatory && last != first) {
611260763Savg			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
612260763Savg			last = AVL_PREV(t, last);
613260763Savg			ASSERT(last != NULL);
614219089Spjd		}
615168404Spjd	}
616168404Spjd
617260763Savg	if (first == last)
618260763Savg		return (NULL);
619168404Spjd
620260763Savg	size = IO_SPAN(first, last);
621260763Savg	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
622168404Spjd
623260763Savg	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
624260763Savg	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
625260763Savg	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
626260763Savg	    vdev_queue_agg_io_done, NULL);
627260763Savg	aio->io_timestamp = first->io_timestamp;
628168404Spjd
629260763Savg	nio = first;
630260763Savg	do {
631260763Savg		dio = nio;
632260763Savg		nio = AVL_NEXT(t, dio);
633260763Savg		ASSERT3U(dio->io_type, ==, aio->io_type);
634209962Smm
635260763Savg		if (dio->io_flags & ZIO_FLAG_NODATA) {
636260763Savg			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
637260763Savg			bzero((char *)aio->io_data + (dio->io_offset -
638260763Savg			    aio->io_offset), dio->io_size);
639260763Savg		} else if (dio->io_type == ZIO_TYPE_WRITE) {
640260763Savg			bcopy(dio->io_data, (char *)aio->io_data +
641260763Savg			    (dio->io_offset - aio->io_offset),
642260763Savg			    dio->io_size);
643260763Savg		}
644168404Spjd
645260763Savg		zio_add_child(dio, aio);
646260763Savg		vdev_queue_io_remove(vq, dio);
647260763Savg		zio_vdev_io_bypass(dio);
648260763Savg		zio_execute(dio);
649260763Savg	} while (dio != last);
650168404Spjd
651260763Savg	return (aio);
652260763Savg}
653260763Savg
654260763Savgstatic zio_t *
655260763Savgvdev_queue_io_to_issue(vdev_queue_t *vq)
656260763Savg{
657260763Savg	zio_t *zio, *aio;
658260763Savg	zio_priority_t p;
659260763Savg	avl_index_t idx;
660260763Savg	vdev_queue_class_t *vqc;
661260763Savg	zio_t search;
662260763Savg
663260763Savgagain:
664260763Savg	ASSERT(MUTEX_HELD(&vq->vq_lock));
665260763Savg
666260763Savg	p = vdev_queue_class_to_issue(vq);
667260763Savg
668260763Savg	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
669260763Savg		/* No eligible queued i/os */
670260763Savg		return (NULL);
671168404Spjd	}
672168404Spjd
673260763Savg	/*
674260763Savg	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
675260763Savg	 * the most recently issued i/o in LBA (offset) order.
676260763Savg	 *
677260763Savg	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
678260763Savg	 */
679260763Savg	vqc = &vq->vq_class[p];
680260763Savg	search.io_timestamp = 0;
681260763Savg	search.io_offset = vq->vq_last_offset + 1;
682260763Savg	VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL);
683260763Savg	zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
684260763Savg	if (zio == NULL)
685260763Savg		zio = avl_first(&vqc->vqc_queued_tree);
686260763Savg	ASSERT3U(zio->io_priority, ==, p);
687168404Spjd
688260763Savg	aio = vdev_queue_aggregate(vq, zio);
689260763Savg	if (aio != NULL)
690260763Savg		zio = aio;
691260763Savg	else
692260763Savg		vdev_queue_io_remove(vq, zio);
693260763Savg
694219089Spjd	/*
695219089Spjd	 * If the I/O is or was optional and therefore has no data, we need to
696219089Spjd	 * simply discard it. We need to drop the vdev queue's lock to avoid a
697219089Spjd	 * deadlock that we could encounter since this I/O will complete
698219089Spjd	 * immediately.
699219089Spjd	 */
700260763Savg	if (zio->io_flags & ZIO_FLAG_NODATA) {
701219089Spjd		mutex_exit(&vq->vq_lock);
702260763Savg		zio_vdev_io_bypass(zio);
703260763Savg		zio_execute(zio);
704219089Spjd		mutex_enter(&vq->vq_lock);
705219089Spjd		goto again;
706219089Spjd	}
707219089Spjd
708260763Savg	vdev_queue_pending_add(vq, zio);
709260763Savg	vq->vq_last_offset = zio->io_offset;
710168404Spjd
711260763Savg	return (zio);
712168404Spjd}
713168404Spjd
714168404Spjdzio_t *
715168404Spjdvdev_queue_io(zio_t *zio)
716168404Spjd{
717168404Spjd	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
718168404Spjd	zio_t *nio;
719168404Spjd
720168404Spjd	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
721168404Spjd		return (zio);
722168404Spjd
723260763Savg	/*
724260763Savg	 * Children i/os inherent their parent's priority, which might
725260763Savg	 * not match the child's i/o type.  Fix it up here.
726260763Savg	 */
727260763Savg	if (zio->io_type == ZIO_TYPE_READ) {
728260763Savg		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
729260763Savg		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
730260763Savg		    zio->io_priority != ZIO_PRIORITY_SCRUB)
731260763Savg			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
732260763Savg	} else {
733260763Savg		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
734260763Savg		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
735260763Savg		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
736260763Savg			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
737260763Savg	}
738260763Savg
739168404Spjd	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
740168404Spjd
741168404Spjd	mutex_enter(&vq->vq_lock);
742249206Smm	zio->io_timestamp = gethrtime();
743168404Spjd	vdev_queue_io_add(vq, zio);
744260763Savg	nio = vdev_queue_io_to_issue(vq);
745168404Spjd	mutex_exit(&vq->vq_lock);
746168404Spjd
747185029Spjd	if (nio == NULL)
748185029Spjd		return (NULL);
749168404Spjd
750185029Spjd	if (nio->io_done == vdev_queue_agg_io_done) {
751185029Spjd		zio_nowait(nio);
752185029Spjd		return (NULL);
753185029Spjd	}
754185029Spjd
755185029Spjd	return (nio);
756168404Spjd}
757168404Spjd
758168404Spjdvoid
759168404Spjdvdev_queue_io_done(zio_t *zio)
760168404Spjd{
761168404Spjd	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
762260763Savg	zio_t *nio;
763168404Spjd
764247265Smm	if (zio_injection_enabled)
765247265Smm		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
766247265Smm
767168404Spjd	mutex_enter(&vq->vq_lock);
768168404Spjd
769260763Savg	vdev_queue_pending_remove(vq, zio);
770168404Spjd
771249206Smm	vq->vq_io_complete_ts = gethrtime();
772247265Smm
773260763Savg	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
774168404Spjd		mutex_exit(&vq->vq_lock);
775185029Spjd		if (nio->io_done == vdev_queue_agg_io_done) {
776185029Spjd			zio_nowait(nio);
777185029Spjd		} else {
778168404Spjd			zio_vdev_io_reissue(nio);
779185029Spjd			zio_execute(nio);
780185029Spjd		}
781168404Spjd		mutex_enter(&vq->vq_lock);
782168404Spjd	}
783168404Spjd
784168404Spjd	mutex_exit(&vq->vq_lock);
785168404Spjd}
786