vdev_queue.c revision 249206
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/vdev_impl.h>
32#include <sys/zio.h>
33#include <sys/avl.h>
34
35/*
36 * These tunables are for performance analysis.
37 */
38/*
39 * zfs_vdev_max_pending is the maximum number of i/os concurrently
40 * pending to each device.  zfs_vdev_min_pending is the initial number
41 * of i/os pending to each device (before it starts ramping up to
42 * max_pending).
43 */
44int zfs_vdev_max_pending = 10;
45int zfs_vdev_min_pending = 4;
46
47/*
48 * The deadlines are grouped into buckets based on zfs_vdev_time_shift:
49 * deadline = pri + gethrtime() >> time_shift)
50 */
51int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */
52
53/* exponential I/O issue ramp-up rate */
54int zfs_vdev_ramp_rate = 2;
55
56/*
57 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
58 * For read I/Os, we also aggregate across small adjacency gaps; for writes
59 * we include spans of optional I/Os to aid aggregation at the disk even when
60 * they aren't able to help us aggregate at this level.
61 */
62int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
63int zfs_vdev_read_gap_limit = 32 << 10;
64int zfs_vdev_write_gap_limit = 4 << 10;
65
66SYSCTL_DECL(_vfs_zfs_vdev);
67TUNABLE_INT("vfs.zfs.vdev.max_pending", &zfs_vdev_max_pending);
68SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_pending, CTLFLAG_RW,
69    &zfs_vdev_max_pending, 0, "Maximum I/O requests pending on each device");
70TUNABLE_INT("vfs.zfs.vdev.min_pending", &zfs_vdev_min_pending);
71SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, min_pending, CTLFLAG_RW,
72    &zfs_vdev_min_pending, 0,
73    "Initial number of I/O requests pending to each device");
74TUNABLE_INT("vfs.zfs.vdev.time_shift", &zfs_vdev_time_shift);
75SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, time_shift, CTLFLAG_RW,
76    &zfs_vdev_time_shift, 0, "Used for calculating I/O request deadline");
77TUNABLE_INT("vfs.zfs.vdev.ramp_rate", &zfs_vdev_ramp_rate);
78SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, ramp_rate, CTLFLAG_RW,
79    &zfs_vdev_ramp_rate, 0, "Exponential I/O issue ramp-up rate");
80TUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
81SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RW,
82    &zfs_vdev_aggregation_limit, 0,
83    "I/O requests are aggregated up to this size");
84TUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
85SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RW,
86    &zfs_vdev_read_gap_limit, 0,
87    "Acceptable gap between two reads being aggregated");
88TUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
89SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RW,
90    &zfs_vdev_write_gap_limit, 0,
91    "Acceptable gap between two writes being aggregated");
92
93/*
94 * Virtual device vector for disk I/O scheduling.
95 */
96int
97vdev_queue_deadline_compare(const void *x1, const void *x2)
98{
99	const zio_t *z1 = x1;
100	const zio_t *z2 = x2;
101
102	if (z1->io_deadline < z2->io_deadline)
103		return (-1);
104	if (z1->io_deadline > z2->io_deadline)
105		return (1);
106
107	if (z1->io_offset < z2->io_offset)
108		return (-1);
109	if (z1->io_offset > z2->io_offset)
110		return (1);
111
112	if (z1 < z2)
113		return (-1);
114	if (z1 > z2)
115		return (1);
116
117	return (0);
118}
119
120int
121vdev_queue_offset_compare(const void *x1, const void *x2)
122{
123	const zio_t *z1 = x1;
124	const zio_t *z2 = x2;
125
126	if (z1->io_offset < z2->io_offset)
127		return (-1);
128	if (z1->io_offset > z2->io_offset)
129		return (1);
130
131	if (z1 < z2)
132		return (-1);
133	if (z1 > z2)
134		return (1);
135
136	return (0);
137}
138
139void
140vdev_queue_init(vdev_t *vd)
141{
142	vdev_queue_t *vq = &vd->vdev_queue;
143
144	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
145
146	avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
147	    sizeof (zio_t), offsetof(struct zio, io_deadline_node));
148
149	avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
150	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
151
152	avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
153	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
154
155	avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
156	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
157}
158
159void
160vdev_queue_fini(vdev_t *vd)
161{
162	vdev_queue_t *vq = &vd->vdev_queue;
163
164	avl_destroy(&vq->vq_deadline_tree);
165	avl_destroy(&vq->vq_read_tree);
166	avl_destroy(&vq->vq_write_tree);
167	avl_destroy(&vq->vq_pending_tree);
168
169	mutex_destroy(&vq->vq_lock);
170}
171
172static void
173vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
174{
175	avl_add(&vq->vq_deadline_tree, zio);
176	avl_add(zio->io_vdev_tree, zio);
177}
178
179static void
180vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
181{
182	avl_remove(&vq->vq_deadline_tree, zio);
183	avl_remove(zio->io_vdev_tree, zio);
184}
185
186static void
187vdev_queue_agg_io_done(zio_t *aio)
188{
189	zio_t *pio;
190
191	while ((pio = zio_walk_parents(aio)) != NULL)
192		if (aio->io_type == ZIO_TYPE_READ)
193			bcopy((char *)aio->io_data + (pio->io_offset -
194			    aio->io_offset), pio->io_data, pio->io_size);
195
196	zio_buf_free(aio->io_data, aio->io_size);
197}
198
199/*
200 * Compute the range spanned by two i/os, which is the endpoint of the last
201 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
202 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
203 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
204 */
205#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
206#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
207
208static zio_t *
209vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
210{
211	zio_t *fio, *lio, *aio, *dio, *nio, *mio;
212	avl_tree_t *t;
213	int flags;
214	uint64_t maxspan = zfs_vdev_aggregation_limit;
215	uint64_t maxgap;
216	int stretch;
217
218again:
219	ASSERT(MUTEX_HELD(&vq->vq_lock));
220
221	if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
222	    avl_numnodes(&vq->vq_deadline_tree) == 0)
223		return (NULL);
224
225	fio = lio = avl_first(&vq->vq_deadline_tree);
226
227	t = fio->io_vdev_tree;
228	flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
229	maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
230
231	if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
232		/*
233		 * We can aggregate I/Os that are sufficiently adjacent and of
234		 * the same flavor, as expressed by the AGG_INHERIT flags.
235		 * The latter requirement is necessary so that certain
236		 * attributes of the I/O, such as whether it's a normal I/O
237		 * or a scrub/resilver, can be preserved in the aggregate.
238		 * We can include optional I/Os, but don't allow them
239		 * to begin a range as they add no benefit in that situation.
240		 */
241
242		/*
243		 * We keep track of the last non-optional I/O.
244		 */
245		mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
246
247		/*
248		 * Walk backwards through sufficiently contiguous I/Os
249		 * recording the last non-option I/O.
250		 */
251		while ((dio = AVL_PREV(t, fio)) != NULL &&
252		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
253		    IO_SPAN(dio, lio) <= maxspan &&
254		    IO_GAP(dio, fio) <= maxgap) {
255			fio = dio;
256			if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
257				mio = fio;
258		}
259
260		/*
261		 * Skip any initial optional I/Os.
262		 */
263		while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
264			fio = AVL_NEXT(t, fio);
265			ASSERT(fio != NULL);
266		}
267
268		/*
269		 * Walk forward through sufficiently contiguous I/Os.
270		 */
271		while ((dio = AVL_NEXT(t, lio)) != NULL &&
272		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
273		    IO_SPAN(fio, dio) <= maxspan &&
274		    IO_GAP(lio, dio) <= maxgap) {
275			lio = dio;
276			if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
277				mio = lio;
278		}
279
280		/*
281		 * Now that we've established the range of the I/O aggregation
282		 * we must decide what to do with trailing optional I/Os.
283		 * For reads, there's nothing to do. While we are unable to
284		 * aggregate further, it's possible that a trailing optional
285		 * I/O would allow the underlying device to aggregate with
286		 * subsequent I/Os. We must therefore determine if the next
287		 * non-optional I/O is close enough to make aggregation
288		 * worthwhile.
289		 */
290		stretch = B_FALSE;
291		if (t != &vq->vq_read_tree && mio != NULL) {
292			nio = lio;
293			while ((dio = AVL_NEXT(t, nio)) != NULL &&
294			    IO_GAP(nio, dio) == 0 &&
295			    IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
296				nio = dio;
297				if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
298					stretch = B_TRUE;
299					break;
300				}
301			}
302		}
303
304		if (stretch) {
305			/* This may be a no-op. */
306			VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
307			dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
308		} else {
309			while (lio != mio && lio != fio) {
310				ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
311				lio = AVL_PREV(t, lio);
312				ASSERT(lio != NULL);
313			}
314		}
315	}
316
317	if (fio != lio) {
318		uint64_t size = IO_SPAN(fio, lio);
319		ASSERT(size <= zfs_vdev_aggregation_limit);
320
321		aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
322		    zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG,
323		    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
324		    vdev_queue_agg_io_done, NULL);
325		aio->io_timestamp = fio->io_timestamp;
326
327		nio = fio;
328		do {
329			dio = nio;
330			nio = AVL_NEXT(t, dio);
331			ASSERT(dio->io_type == aio->io_type);
332			ASSERT(dio->io_vdev_tree == t);
333
334			if (dio->io_flags & ZIO_FLAG_NODATA) {
335				ASSERT(dio->io_type == ZIO_TYPE_WRITE);
336				bzero((char *)aio->io_data + (dio->io_offset -
337				    aio->io_offset), dio->io_size);
338			} else if (dio->io_type == ZIO_TYPE_WRITE) {
339				bcopy(dio->io_data, (char *)aio->io_data +
340				    (dio->io_offset - aio->io_offset),
341				    dio->io_size);
342			}
343
344			zio_add_child(dio, aio);
345			vdev_queue_io_remove(vq, dio);
346			zio_vdev_io_bypass(dio);
347			zio_execute(dio);
348		} while (dio != lio);
349
350		avl_add(&vq->vq_pending_tree, aio);
351
352		return (aio);
353	}
354
355	ASSERT(fio->io_vdev_tree == t);
356	vdev_queue_io_remove(vq, fio);
357
358	/*
359	 * If the I/O is or was optional and therefore has no data, we need to
360	 * simply discard it. We need to drop the vdev queue's lock to avoid a
361	 * deadlock that we could encounter since this I/O will complete
362	 * immediately.
363	 */
364	if (fio->io_flags & ZIO_FLAG_NODATA) {
365		mutex_exit(&vq->vq_lock);
366		zio_vdev_io_bypass(fio);
367		zio_execute(fio);
368		mutex_enter(&vq->vq_lock);
369		goto again;
370	}
371
372	avl_add(&vq->vq_pending_tree, fio);
373
374	return (fio);
375}
376
377zio_t *
378vdev_queue_io(zio_t *zio)
379{
380	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
381	zio_t *nio;
382
383	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
384
385	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
386		return (zio);
387
388	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
389
390	if (zio->io_type == ZIO_TYPE_READ)
391		zio->io_vdev_tree = &vq->vq_read_tree;
392	else
393		zio->io_vdev_tree = &vq->vq_write_tree;
394
395	mutex_enter(&vq->vq_lock);
396
397	zio->io_timestamp = gethrtime();
398	zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) +
399	    zio->io_priority;
400
401	vdev_queue_io_add(vq, zio);
402
403	nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
404
405	mutex_exit(&vq->vq_lock);
406
407	if (nio == NULL)
408		return (NULL);
409
410	if (nio->io_done == vdev_queue_agg_io_done) {
411		zio_nowait(nio);
412		return (NULL);
413	}
414
415	return (nio);
416}
417
418void
419vdev_queue_io_done(zio_t *zio)
420{
421	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
422
423	if (zio_injection_enabled)
424		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
425
426	mutex_enter(&vq->vq_lock);
427
428	avl_remove(&vq->vq_pending_tree, zio);
429
430	vq->vq_io_complete_ts = gethrtime();
431
432	for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
433		zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
434		if (nio == NULL)
435			break;
436		mutex_exit(&vq->vq_lock);
437		if (nio->io_done == vdev_queue_agg_io_done) {
438			zio_nowait(nio);
439		} else {
440			zio_vdev_io_reissue(nio);
441			zio_execute(nio);
442		}
443		mutex_enter(&vq->vq_lock);
444	}
445
446	mutex_exit(&vq->vq_lock);
447}
448