vdev_label.c revision 239620
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */
26
27/*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34 *	   identity within the pool.
35 *
36 * 	2. Verify that all the devices given in a configuration are present
37 *         within the pool.
38 *
39 * 	3. Determine the uberblock for the pool.
40 *
41 * 	4. In case of an import operation, determine the configuration of the
42 *         toplevel vdev of which it is a part.
43 *
44 * 	5. If an import operation cannot find all the devices in the pool,
45 *         provide enough information to the administrator to determine which
46 *         devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases.  The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point.  To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced.  Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 *              L1          UB          L2
67 *           +------+    +------+    +------+
68 *           |      |    |      |    |      |
69 *           | t10  |    | t10  |    | t10  |
70 *           |      |    |      |    |      |
71 *           +------+    +------+    +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10).  Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 * 	1. For each vdev, update 'L1' to the new label
81 * 	2. Update the uberblock
82 * 	3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group.  If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid.  If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced.  If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool.  This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information.  It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated.  When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 * 	version		ZFS on-disk version
121 * 	name		Pool name
122 * 	state		Pool state
123 * 	txg		Transaction group in which this label was written
124 * 	pool_guid	Unique identifier for this pool
125 * 	vdev_tree	An nvlist describing vdev tree.
126 *	features_for_read
127 *			An nvlist of the features necessary for reading the MOS.
128 *
129 * Each leaf device label also contains the following:
130 *
131 * 	top_guid	Unique ID for top-level vdev in which this is contained
132 * 	guid		Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137#include <sys/zfs_context.h>
138#include <sys/spa.h>
139#include <sys/spa_impl.h>
140#include <sys/dmu.h>
141#include <sys/zap.h>
142#include <sys/vdev.h>
143#include <sys/vdev_impl.h>
144#include <sys/uberblock_impl.h>
145#include <sys/metaslab.h>
146#include <sys/zio.h>
147#include <sys/dsl_scan.h>
148#include <sys/fs/zfs.h>
149
150/*
151 * Basic routines to read and write from a vdev label.
152 * Used throughout the rest of this file.
153 */
154uint64_t
155vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156{
157	ASSERT(offset < sizeof (vdev_label_t));
158	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159
160	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162}
163
164/*
165 * Returns back the vdev label associated with the passed in offset.
166 */
167int
168vdev_label_number(uint64_t psize, uint64_t offset)
169{
170	int l;
171
172	if (offset >= psize - VDEV_LABEL_END_SIZE) {
173		offset -= psize - VDEV_LABEL_END_SIZE;
174		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175	}
176	l = offset / sizeof (vdev_label_t);
177	return (l < VDEV_LABELS ? l : -1);
178}
179
180static void
181vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182	uint64_t size, zio_done_func_t *done, void *private, int flags)
183{
184	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185	    SCL_STATE_ALL);
186	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187
188	zio_nowait(zio_read_phys(zio, vd,
189	    vdev_label_offset(vd->vdev_psize, l, offset),
190	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
191	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192}
193
194static void
195vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196	uint64_t size, zio_done_func_t *done, void *private, int flags)
197{
198	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200	    (SCL_CONFIG | SCL_STATE) &&
201	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203
204	zio_nowait(zio_write_phys(zio, vd,
205	    vdev_label_offset(vd->vdev_psize, l, offset),
206	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
207	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208}
209
210/*
211 * Generate the nvlist representing this vdev's config.
212 */
213nvlist_t *
214vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
215    vdev_config_flag_t flags)
216{
217	nvlist_t *nv = NULL;
218
219	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
220
221	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
222	    vd->vdev_ops->vdev_op_type) == 0);
223	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
224		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
225		    == 0);
226	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
227
228	if (vd->vdev_path != NULL)
229		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
230		    vd->vdev_path) == 0);
231
232	if (vd->vdev_devid != NULL)
233		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
234		    vd->vdev_devid) == 0);
235
236	if (vd->vdev_physpath != NULL)
237		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
238		    vd->vdev_physpath) == 0);
239
240	if (vd->vdev_fru != NULL)
241		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
242		    vd->vdev_fru) == 0);
243
244	if (vd->vdev_nparity != 0) {
245		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
246		    VDEV_TYPE_RAIDZ) == 0);
247
248		/*
249		 * Make sure someone hasn't managed to sneak a fancy new vdev
250		 * into a crufty old storage pool.
251		 */
252		ASSERT(vd->vdev_nparity == 1 ||
253		    (vd->vdev_nparity <= 2 &&
254		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
255		    (vd->vdev_nparity <= 3 &&
256		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
257
258		/*
259		 * Note that we'll add the nparity tag even on storage pools
260		 * that only support a single parity device -- older software
261		 * will just ignore it.
262		 */
263		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
264		    vd->vdev_nparity) == 0);
265	}
266
267	if (vd->vdev_wholedisk != -1ULL)
268		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
269		    vd->vdev_wholedisk) == 0);
270
271	if (vd->vdev_not_present)
272		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
273
274	if (vd->vdev_isspare)
275		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
276
277	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
278	    vd == vd->vdev_top) {
279		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
280		    vd->vdev_ms_array) == 0);
281		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
282		    vd->vdev_ms_shift) == 0);
283		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
284		    vd->vdev_ashift) == 0);
285		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
286		    vd->vdev_asize) == 0);
287		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
288		    vd->vdev_islog) == 0);
289		if (vd->vdev_removing)
290			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
291			    vd->vdev_removing) == 0);
292	}
293
294	if (vd->vdev_dtl_smo.smo_object != 0)
295		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
296		    vd->vdev_dtl_smo.smo_object) == 0);
297
298	if (vd->vdev_crtxg)
299		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
300		    vd->vdev_crtxg) == 0);
301
302	if (getstats) {
303		vdev_stat_t vs;
304		pool_scan_stat_t ps;
305
306		vdev_get_stats(vd, &vs);
307		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
308		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
309
310		/* provide either current or previous scan information */
311		if (spa_scan_get_stats(spa, &ps) == 0) {
312			VERIFY(nvlist_add_uint64_array(nv,
313			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
314			    sizeof (pool_scan_stat_t) / sizeof (uint64_t))
315			    == 0);
316		}
317	}
318
319	if (!vd->vdev_ops->vdev_op_leaf) {
320		nvlist_t **child;
321		int c, idx;
322
323		ASSERT(!vd->vdev_ishole);
324
325		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
326		    KM_SLEEP);
327
328		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
329			vdev_t *cvd = vd->vdev_child[c];
330
331			/*
332			 * If we're generating an nvlist of removing
333			 * vdevs then skip over any device which is
334			 * not being removed.
335			 */
336			if ((flags & VDEV_CONFIG_REMOVING) &&
337			    !cvd->vdev_removing)
338				continue;
339
340			child[idx++] = vdev_config_generate(spa, cvd,
341			    getstats, flags);
342		}
343
344		if (idx) {
345			VERIFY(nvlist_add_nvlist_array(nv,
346			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
347		}
348
349		for (c = 0; c < idx; c++)
350			nvlist_free(child[c]);
351
352		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
353
354	} else {
355		const char *aux = NULL;
356
357		if (vd->vdev_offline && !vd->vdev_tmpoffline)
358			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
359			    B_TRUE) == 0);
360		if (vd->vdev_resilvering)
361			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING,
362			    B_TRUE) == 0);
363		if (vd->vdev_faulted)
364			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
365			    B_TRUE) == 0);
366		if (vd->vdev_degraded)
367			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
368			    B_TRUE) == 0);
369		if (vd->vdev_removed)
370			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
371			    B_TRUE) == 0);
372		if (vd->vdev_unspare)
373			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
374			    B_TRUE) == 0);
375		if (vd->vdev_ishole)
376			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
377			    B_TRUE) == 0);
378
379		switch (vd->vdev_stat.vs_aux) {
380		case VDEV_AUX_ERR_EXCEEDED:
381			aux = "err_exceeded";
382			break;
383
384		case VDEV_AUX_EXTERNAL:
385			aux = "external";
386			break;
387		}
388
389		if (aux != NULL)
390			VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
391			    aux) == 0);
392
393		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
394			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
395			    vd->vdev_orig_guid) == 0);
396		}
397	}
398
399	return (nv);
400}
401
402/*
403 * Generate a view of the top-level vdevs.  If we currently have holes
404 * in the namespace, then generate an array which contains a list of holey
405 * vdevs.  Additionally, add the number of top-level children that currently
406 * exist.
407 */
408void
409vdev_top_config_generate(spa_t *spa, nvlist_t *config)
410{
411	vdev_t *rvd = spa->spa_root_vdev;
412	uint64_t *array;
413	uint_t c, idx;
414
415	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
416
417	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
418		vdev_t *tvd = rvd->vdev_child[c];
419
420		if (tvd->vdev_ishole)
421			array[idx++] = c;
422	}
423
424	if (idx) {
425		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
426		    array, idx) == 0);
427	}
428
429	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
430	    rvd->vdev_children) == 0);
431
432	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
433}
434
435/*
436 * Returns the configuration from the label of the given vdev. For vdevs
437 * which don't have a txg value stored on their label (i.e. spares/cache)
438 * or have not been completely initialized (txg = 0) just return
439 * the configuration from the first valid label we find. Otherwise,
440 * find the most up-to-date label that does not exceed the specified
441 * 'txg' value.
442 */
443nvlist_t *
444vdev_label_read_config(vdev_t *vd, uint64_t txg)
445{
446	spa_t *spa = vd->vdev_spa;
447	nvlist_t *config = NULL;
448	vdev_phys_t *vp;
449	zio_t *zio;
450	uint64_t best_txg = 0;
451	int error = 0;
452	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
453	    ZIO_FLAG_SPECULATIVE;
454
455	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
456
457	if (!vdev_readable(vd))
458		return (NULL);
459
460	vp = zio_buf_alloc(sizeof (vdev_phys_t));
461
462retry:
463	for (int l = 0; l < VDEV_LABELS; l++) {
464		nvlist_t *label = NULL;
465
466		zio = zio_root(spa, NULL, NULL, flags);
467
468		vdev_label_read(zio, vd, l, vp,
469		    offsetof(vdev_label_t, vl_vdev_phys),
470		    sizeof (vdev_phys_t), NULL, NULL, flags);
471
472		if (zio_wait(zio) == 0 &&
473		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
474		    &label, 0) == 0) {
475			uint64_t label_txg = 0;
476
477			/*
478			 * Auxiliary vdevs won't have txg values in their
479			 * labels and newly added vdevs may not have been
480			 * completely initialized so just return the
481			 * configuration from the first valid label we
482			 * encounter.
483			 */
484			error = nvlist_lookup_uint64(label,
485			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
486			if ((error || label_txg == 0) && !config) {
487				config = label;
488				break;
489			} else if (label_txg <= txg && label_txg > best_txg) {
490				best_txg = label_txg;
491				nvlist_free(config);
492				config = fnvlist_dup(label);
493			}
494		}
495
496		if (label != NULL) {
497			nvlist_free(label);
498			label = NULL;
499		}
500	}
501
502	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
503		flags |= ZIO_FLAG_TRYHARD;
504		goto retry;
505	}
506
507	zio_buf_free(vp, sizeof (vdev_phys_t));
508
509	return (config);
510}
511
512/*
513 * Determine if a device is in use.  The 'spare_guid' parameter will be filled
514 * in with the device guid if this spare is active elsewhere on the system.
515 */
516static boolean_t
517vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
518    uint64_t *spare_guid, uint64_t *l2cache_guid)
519{
520	spa_t *spa = vd->vdev_spa;
521	uint64_t state, pool_guid, device_guid, txg, spare_pool;
522	uint64_t vdtxg = 0;
523	nvlist_t *label;
524
525	if (spare_guid)
526		*spare_guid = 0ULL;
527	if (l2cache_guid)
528		*l2cache_guid = 0ULL;
529
530	/*
531	 * Read the label, if any, and perform some basic sanity checks.
532	 */
533	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
534		return (B_FALSE);
535
536	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
537	    &vdtxg);
538
539	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
540	    &state) != 0 ||
541	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
542	    &device_guid) != 0) {
543		nvlist_free(label);
544		return (B_FALSE);
545	}
546
547	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
548	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
549	    &pool_guid) != 0 ||
550	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
551	    &txg) != 0)) {
552		nvlist_free(label);
553		return (B_FALSE);
554	}
555
556	nvlist_free(label);
557
558	/*
559	 * Check to see if this device indeed belongs to the pool it claims to
560	 * be a part of.  The only way this is allowed is if the device is a hot
561	 * spare (which we check for later on).
562	 */
563	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
564	    !spa_guid_exists(pool_guid, device_guid) &&
565	    !spa_spare_exists(device_guid, NULL, NULL) &&
566	    !spa_l2cache_exists(device_guid, NULL))
567		return (B_FALSE);
568
569	/*
570	 * If the transaction group is zero, then this an initialized (but
571	 * unused) label.  This is only an error if the create transaction
572	 * on-disk is the same as the one we're using now, in which case the
573	 * user has attempted to add the same vdev multiple times in the same
574	 * transaction.
575	 */
576	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
577	    txg == 0 && vdtxg == crtxg)
578		return (B_TRUE);
579
580	/*
581	 * Check to see if this is a spare device.  We do an explicit check for
582	 * spa_has_spare() here because it may be on our pending list of spares
583	 * to add.  We also check if it is an l2cache device.
584	 */
585	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
586	    spa_has_spare(spa, device_guid)) {
587		if (spare_guid)
588			*spare_guid = device_guid;
589
590		switch (reason) {
591		case VDEV_LABEL_CREATE:
592		case VDEV_LABEL_L2CACHE:
593			return (B_TRUE);
594
595		case VDEV_LABEL_REPLACE:
596			return (!spa_has_spare(spa, device_guid) ||
597			    spare_pool != 0ULL);
598
599		case VDEV_LABEL_SPARE:
600			return (spa_has_spare(spa, device_guid));
601		}
602	}
603
604	/*
605	 * Check to see if this is an l2cache device.
606	 */
607	if (spa_l2cache_exists(device_guid, NULL))
608		return (B_TRUE);
609
610	/*
611	 * We can't rely on a pool's state if it's been imported
612	 * read-only.  Instead we look to see if the pools is marked
613	 * read-only in the namespace and set the state to active.
614	 */
615	if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
616	    spa_mode(spa) == FREAD)
617		state = POOL_STATE_ACTIVE;
618
619	/*
620	 * If the device is marked ACTIVE, then this device is in use by another
621	 * pool on the system.
622	 */
623	return (state == POOL_STATE_ACTIVE);
624}
625
626/*
627 * Initialize a vdev label.  We check to make sure each leaf device is not in
628 * use, and writable.  We put down an initial label which we will later
629 * overwrite with a complete label.  Note that it's important to do this
630 * sequentially, not in parallel, so that we catch cases of multiple use of the
631 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
632 * itself.
633 */
634int
635vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
636{
637	spa_t *spa = vd->vdev_spa;
638	nvlist_t *label;
639	vdev_phys_t *vp;
640	char *pad2;
641	uberblock_t *ub;
642	zio_t *zio;
643	char *buf;
644	size_t buflen;
645	int error;
646	uint64_t spare_guid, l2cache_guid;
647	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
648
649	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
650
651	for (int c = 0; c < vd->vdev_children; c++)
652		if ((error = vdev_label_init(vd->vdev_child[c],
653		    crtxg, reason)) != 0)
654			return (error);
655
656	/* Track the creation time for this vdev */
657	vd->vdev_crtxg = crtxg;
658
659	if (!vd->vdev_ops->vdev_op_leaf)
660		return (0);
661
662	/*
663	 * Dead vdevs cannot be initialized.
664	 */
665	if (vdev_is_dead(vd))
666		return (EIO);
667
668	/*
669	 * Determine if the vdev is in use.
670	 */
671	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
672	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
673		return (EBUSY);
674
675	/*
676	 * If this is a request to add or replace a spare or l2cache device
677	 * that is in use elsewhere on the system, then we must update the
678	 * guid (which was initialized to a random value) to reflect the
679	 * actual GUID (which is shared between multiple pools).
680	 */
681	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
682	    spare_guid != 0ULL) {
683		uint64_t guid_delta = spare_guid - vd->vdev_guid;
684
685		vd->vdev_guid += guid_delta;
686
687		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
688			pvd->vdev_guid_sum += guid_delta;
689
690		/*
691		 * If this is a replacement, then we want to fallthrough to the
692		 * rest of the code.  If we're adding a spare, then it's already
693		 * labeled appropriately and we can just return.
694		 */
695		if (reason == VDEV_LABEL_SPARE)
696			return (0);
697		ASSERT(reason == VDEV_LABEL_REPLACE ||
698		    reason == VDEV_LABEL_SPLIT);
699	}
700
701	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
702	    l2cache_guid != 0ULL) {
703		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
704
705		vd->vdev_guid += guid_delta;
706
707		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
708			pvd->vdev_guid_sum += guid_delta;
709
710		/*
711		 * If this is a replacement, then we want to fallthrough to the
712		 * rest of the code.  If we're adding an l2cache, then it's
713		 * already labeled appropriately and we can just return.
714		 */
715		if (reason == VDEV_LABEL_L2CACHE)
716			return (0);
717		ASSERT(reason == VDEV_LABEL_REPLACE);
718	}
719
720	/*
721	 * Initialize its label.
722	 */
723	vp = zio_buf_alloc(sizeof (vdev_phys_t));
724	bzero(vp, sizeof (vdev_phys_t));
725
726	/*
727	 * Generate a label describing the pool and our top-level vdev.
728	 * We mark it as being from txg 0 to indicate that it's not
729	 * really part of an active pool just yet.  The labels will
730	 * be written again with a meaningful txg by spa_sync().
731	 */
732	if (reason == VDEV_LABEL_SPARE ||
733	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
734		/*
735		 * For inactive hot spares, we generate a special label that
736		 * identifies as a mutually shared hot spare.  We write the
737		 * label if we are adding a hot spare, or if we are removing an
738		 * active hot spare (in which case we want to revert the
739		 * labels).
740		 */
741		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
742
743		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
744		    spa_version(spa)) == 0);
745		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
746		    POOL_STATE_SPARE) == 0);
747		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
748		    vd->vdev_guid) == 0);
749	} else if (reason == VDEV_LABEL_L2CACHE ||
750	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
751		/*
752		 * For level 2 ARC devices, add a special label.
753		 */
754		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
755
756		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
757		    spa_version(spa)) == 0);
758		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
759		    POOL_STATE_L2CACHE) == 0);
760		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
761		    vd->vdev_guid) == 0);
762	} else {
763		uint64_t txg = 0ULL;
764
765		if (reason == VDEV_LABEL_SPLIT)
766			txg = spa->spa_uberblock.ub_txg;
767		label = spa_config_generate(spa, vd, txg, B_FALSE);
768
769		/*
770		 * Add our creation time.  This allows us to detect multiple
771		 * vdev uses as described above, and automatically expires if we
772		 * fail.
773		 */
774		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
775		    crtxg) == 0);
776	}
777
778	buf = vp->vp_nvlist;
779	buflen = sizeof (vp->vp_nvlist);
780
781	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
782	if (error != 0) {
783		nvlist_free(label);
784		zio_buf_free(vp, sizeof (vdev_phys_t));
785		/* EFAULT means nvlist_pack ran out of room */
786		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
787	}
788
789	/*
790	 * Initialize uberblock template.
791	 */
792	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
793	bzero(ub, VDEV_UBERBLOCK_RING);
794	*ub = spa->spa_uberblock;
795	ub->ub_txg = 0;
796
797	/* Initialize the 2nd padding area. */
798	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
799	bzero(pad2, VDEV_PAD_SIZE);
800
801	/*
802	 * Write everything in parallel.
803	 */
804retry:
805	zio = zio_root(spa, NULL, NULL, flags);
806
807	for (int l = 0; l < VDEV_LABELS; l++) {
808
809		vdev_label_write(zio, vd, l, vp,
810		    offsetof(vdev_label_t, vl_vdev_phys),
811		    sizeof (vdev_phys_t), NULL, NULL, flags);
812
813		/*
814		 * Skip the 1st padding area.
815		 * Zero out the 2nd padding area where it might have
816		 * left over data from previous filesystem format.
817		 */
818		vdev_label_write(zio, vd, l, pad2,
819		    offsetof(vdev_label_t, vl_pad2),
820		    VDEV_PAD_SIZE, NULL, NULL, flags);
821
822		vdev_label_write(zio, vd, l, ub,
823		    offsetof(vdev_label_t, vl_uberblock),
824		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
825	}
826
827	error = zio_wait(zio);
828
829	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
830		flags |= ZIO_FLAG_TRYHARD;
831		goto retry;
832	}
833
834	nvlist_free(label);
835	zio_buf_free(pad2, VDEV_PAD_SIZE);
836	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
837	zio_buf_free(vp, sizeof (vdev_phys_t));
838
839	/*
840	 * If this vdev hasn't been previously identified as a spare, then we
841	 * mark it as such only if a) we are labeling it as a spare, or b) it
842	 * exists as a spare elsewhere in the system.  Do the same for
843	 * level 2 ARC devices.
844	 */
845	if (error == 0 && !vd->vdev_isspare &&
846	    (reason == VDEV_LABEL_SPARE ||
847	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
848		spa_spare_add(vd);
849
850	if (error == 0 && !vd->vdev_isl2cache &&
851	    (reason == VDEV_LABEL_L2CACHE ||
852	    spa_l2cache_exists(vd->vdev_guid, NULL)))
853		spa_l2cache_add(vd);
854
855	return (error);
856}
857
858/*
859 * ==========================================================================
860 * uberblock load/sync
861 * ==========================================================================
862 */
863
864/*
865 * Consider the following situation: txg is safely synced to disk.  We've
866 * written the first uberblock for txg + 1, and then we lose power.  When we
867 * come back up, we fail to see the uberblock for txg + 1 because, say,
868 * it was on a mirrored device and the replica to which we wrote txg + 1
869 * is now offline.  If we then make some changes and sync txg + 1, and then
870 * the missing replica comes back, then for a few seconds we'll have two
871 * conflicting uberblocks on disk with the same txg.  The solution is simple:
872 * among uberblocks with equal txg, choose the one with the latest timestamp.
873 */
874static int
875vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
876{
877	if (ub1->ub_txg < ub2->ub_txg)
878		return (-1);
879	if (ub1->ub_txg > ub2->ub_txg)
880		return (1);
881
882	if (ub1->ub_timestamp < ub2->ub_timestamp)
883		return (-1);
884	if (ub1->ub_timestamp > ub2->ub_timestamp)
885		return (1);
886
887	return (0);
888}
889
890struct ubl_cbdata {
891	uberblock_t	*ubl_ubbest;	/* Best uberblock */
892	vdev_t		*ubl_vd;	/* vdev associated with the above */
893};
894
895static void
896vdev_uberblock_load_done(zio_t *zio)
897{
898	vdev_t *vd = zio->io_vd;
899	spa_t *spa = zio->io_spa;
900	zio_t *rio = zio->io_private;
901	uberblock_t *ub = zio->io_data;
902	struct ubl_cbdata *cbp = rio->io_private;
903
904	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
905
906	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
907		mutex_enter(&rio->io_lock);
908		if (ub->ub_txg <= spa->spa_load_max_txg &&
909		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
910			/*
911			 * Keep track of the vdev in which this uberblock
912			 * was found. We will use this information later
913			 * to obtain the config nvlist associated with
914			 * this uberblock.
915			 */
916			*cbp->ubl_ubbest = *ub;
917			cbp->ubl_vd = vd;
918		}
919		mutex_exit(&rio->io_lock);
920	}
921
922	zio_buf_free(zio->io_data, zio->io_size);
923}
924
925static void
926vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
927    struct ubl_cbdata *cbp)
928{
929	for (int c = 0; c < vd->vdev_children; c++)
930		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
931
932	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
933		for (int l = 0; l < VDEV_LABELS; l++) {
934			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
935				vdev_label_read(zio, vd, l,
936				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
937				    VDEV_UBERBLOCK_OFFSET(vd, n),
938				    VDEV_UBERBLOCK_SIZE(vd),
939				    vdev_uberblock_load_done, zio, flags);
940			}
941		}
942	}
943}
944
945/*
946 * Reads the 'best' uberblock from disk along with its associated
947 * configuration. First, we read the uberblock array of each label of each
948 * vdev, keeping track of the uberblock with the highest txg in each array.
949 * Then, we read the configuration from the same vdev as the best uberblock.
950 */
951void
952vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
953{
954	zio_t *zio;
955	spa_t *spa = rvd->vdev_spa;
956	struct ubl_cbdata cb;
957	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
958	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
959
960	ASSERT(ub);
961	ASSERT(config);
962
963	bzero(ub, sizeof (uberblock_t));
964	*config = NULL;
965
966	cb.ubl_ubbest = ub;
967	cb.ubl_vd = NULL;
968
969	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
970	zio = zio_root(spa, NULL, &cb, flags);
971	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
972	(void) zio_wait(zio);
973
974	/*
975	 * It's possible that the best uberblock was discovered on a label
976	 * that has a configuration which was written in a future txg.
977	 * Search all labels on this vdev to find the configuration that
978	 * matches the txg for our uberblock.
979	 */
980	if (cb.ubl_vd != NULL)
981		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
982	spa_config_exit(spa, SCL_ALL, FTAG);
983}
984
985/*
986 * On success, increment root zio's count of good writes.
987 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
988 */
989static void
990vdev_uberblock_sync_done(zio_t *zio)
991{
992	uint64_t *good_writes = zio->io_private;
993
994	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
995		atomic_add_64(good_writes, 1);
996}
997
998/*
999 * Write the uberblock to all labels of all leaves of the specified vdev.
1000 */
1001static void
1002vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1003{
1004	uberblock_t *ubbuf;
1005	int n;
1006
1007	for (int c = 0; c < vd->vdev_children; c++)
1008		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1009
1010	if (!vd->vdev_ops->vdev_op_leaf)
1011		return;
1012
1013	if (!vdev_writeable(vd))
1014		return;
1015
1016	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1017
1018	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1019	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1020	*ubbuf = *ub;
1021
1022	for (int l = 0; l < VDEV_LABELS; l++)
1023		vdev_label_write(zio, vd, l, ubbuf,
1024		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1025		    vdev_uberblock_sync_done, zio->io_private,
1026		    flags | ZIO_FLAG_DONT_PROPAGATE);
1027
1028	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1029}
1030
1031int
1032vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1033{
1034	spa_t *spa = svd[0]->vdev_spa;
1035	zio_t *zio;
1036	uint64_t good_writes = 0;
1037
1038	zio = zio_root(spa, NULL, &good_writes, flags);
1039
1040	for (int v = 0; v < svdcount; v++)
1041		vdev_uberblock_sync(zio, ub, svd[v], flags);
1042
1043	(void) zio_wait(zio);
1044
1045	/*
1046	 * Flush the uberblocks to disk.  This ensures that the odd labels
1047	 * are no longer needed (because the new uberblocks and the even
1048	 * labels are safely on disk), so it is safe to overwrite them.
1049	 */
1050	zio = zio_root(spa, NULL, NULL, flags);
1051
1052	for (int v = 0; v < svdcount; v++)
1053		zio_flush(zio, svd[v]);
1054
1055	(void) zio_wait(zio);
1056
1057	return (good_writes >= 1 ? 0 : EIO);
1058}
1059
1060/*
1061 * On success, increment the count of good writes for our top-level vdev.
1062 */
1063static void
1064vdev_label_sync_done(zio_t *zio)
1065{
1066	uint64_t *good_writes = zio->io_private;
1067
1068	if (zio->io_error == 0)
1069		atomic_add_64(good_writes, 1);
1070}
1071
1072/*
1073 * If there weren't enough good writes, indicate failure to the parent.
1074 */
1075static void
1076vdev_label_sync_top_done(zio_t *zio)
1077{
1078	uint64_t *good_writes = zio->io_private;
1079
1080	if (*good_writes == 0)
1081		zio->io_error = EIO;
1082
1083	kmem_free(good_writes, sizeof (uint64_t));
1084}
1085
1086/*
1087 * We ignore errors for log and cache devices, simply free the private data.
1088 */
1089static void
1090vdev_label_sync_ignore_done(zio_t *zio)
1091{
1092	kmem_free(zio->io_private, sizeof (uint64_t));
1093}
1094
1095/*
1096 * Write all even or odd labels to all leaves of the specified vdev.
1097 */
1098static void
1099vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1100{
1101	nvlist_t *label;
1102	vdev_phys_t *vp;
1103	char *buf;
1104	size_t buflen;
1105
1106	for (int c = 0; c < vd->vdev_children; c++)
1107		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1108
1109	if (!vd->vdev_ops->vdev_op_leaf)
1110		return;
1111
1112	if (!vdev_writeable(vd))
1113		return;
1114
1115	/*
1116	 * Generate a label describing the top-level config to which we belong.
1117	 */
1118	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1119
1120	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1121	bzero(vp, sizeof (vdev_phys_t));
1122
1123	buf = vp->vp_nvlist;
1124	buflen = sizeof (vp->vp_nvlist);
1125
1126	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1127		for (; l < VDEV_LABELS; l += 2) {
1128			vdev_label_write(zio, vd, l, vp,
1129			    offsetof(vdev_label_t, vl_vdev_phys),
1130			    sizeof (vdev_phys_t),
1131			    vdev_label_sync_done, zio->io_private,
1132			    flags | ZIO_FLAG_DONT_PROPAGATE);
1133		}
1134	}
1135
1136	zio_buf_free(vp, sizeof (vdev_phys_t));
1137	nvlist_free(label);
1138}
1139
1140int
1141vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1142{
1143	list_t *dl = &spa->spa_config_dirty_list;
1144	vdev_t *vd;
1145	zio_t *zio;
1146	int error;
1147
1148	/*
1149	 * Write the new labels to disk.
1150	 */
1151	zio = zio_root(spa, NULL, NULL, flags);
1152
1153	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1154		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1155		    KM_SLEEP);
1156
1157		ASSERT(!vd->vdev_ishole);
1158
1159		zio_t *vio = zio_null(zio, spa, NULL,
1160		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1161		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1162		    good_writes, flags);
1163		vdev_label_sync(vio, vd, l, txg, flags);
1164		zio_nowait(vio);
1165	}
1166
1167	error = zio_wait(zio);
1168
1169	/*
1170	 * Flush the new labels to disk.
1171	 */
1172	zio = zio_root(spa, NULL, NULL, flags);
1173
1174	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1175		zio_flush(zio, vd);
1176
1177	(void) zio_wait(zio);
1178
1179	return (error);
1180}
1181
1182/*
1183 * Sync the uberblock and any changes to the vdev configuration.
1184 *
1185 * The order of operations is carefully crafted to ensure that
1186 * if the system panics or loses power at any time, the state on disk
1187 * is still transactionally consistent.  The in-line comments below
1188 * describe the failure semantics at each stage.
1189 *
1190 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1191 * at any time, you can just call it again, and it will resume its work.
1192 */
1193int
1194vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1195{
1196	spa_t *spa = svd[0]->vdev_spa;
1197	uberblock_t *ub = &spa->spa_uberblock;
1198	vdev_t *vd;
1199	zio_t *zio;
1200	int error;
1201	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1202
1203	/*
1204	 * Normally, we don't want to try too hard to write every label and
1205	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1206	 * sync process to block while we retry.  But if we can't write a
1207	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1208	 * bailing out and declaring the pool faulted.
1209	 */
1210	if (tryhard)
1211		flags |= ZIO_FLAG_TRYHARD;
1212
1213	ASSERT(ub->ub_txg <= txg);
1214
1215	/*
1216	 * If this isn't a resync due to I/O errors,
1217	 * and nothing changed in this transaction group,
1218	 * and the vdev configuration hasn't changed,
1219	 * then there's nothing to do.
1220	 */
1221	if (ub->ub_txg < txg &&
1222	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1223	    list_is_empty(&spa->spa_config_dirty_list))
1224		return (0);
1225
1226	if (txg > spa_freeze_txg(spa))
1227		return (0);
1228
1229	ASSERT(txg <= spa->spa_final_txg);
1230
1231	/*
1232	 * Flush the write cache of every disk that's been written to
1233	 * in this transaction group.  This ensures that all blocks
1234	 * written in this txg will be committed to stable storage
1235	 * before any uberblock that references them.
1236	 */
1237	zio = zio_root(spa, NULL, NULL, flags);
1238
1239	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1240	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1241		zio_flush(zio, vd);
1242
1243	(void) zio_wait(zio);
1244
1245	/*
1246	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1247	 * system dies in the middle of this process, that's OK: all of the
1248	 * even labels that made it to disk will be newer than any uberblock,
1249	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1250	 * which have not yet been touched, will still be valid.  We flush
1251	 * the new labels to disk to ensure that all even-label updates
1252	 * are committed to stable storage before the uberblock update.
1253	 */
1254	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1255		return (error);
1256
1257	/*
1258	 * Sync the uberblocks to all vdevs in svd[].
1259	 * If the system dies in the middle of this step, there are two cases
1260	 * to consider, and the on-disk state is consistent either way:
1261	 *
1262	 * (1)	If none of the new uberblocks made it to disk, then the
1263	 *	previous uberblock will be the newest, and the odd labels
1264	 *	(which had not yet been touched) will be valid with respect
1265	 *	to that uberblock.
1266	 *
1267	 * (2)	If one or more new uberblocks made it to disk, then they
1268	 *	will be the newest, and the even labels (which had all
1269	 *	been successfully committed) will be valid with respect
1270	 *	to the new uberblocks.
1271	 */
1272	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1273		return (error);
1274
1275	/*
1276	 * Sync out odd labels for every dirty vdev.  If the system dies
1277	 * in the middle of this process, the even labels and the new
1278	 * uberblocks will suffice to open the pool.  The next time
1279	 * the pool is opened, the first thing we'll do -- before any
1280	 * user data is modified -- is mark every vdev dirty so that
1281	 * all labels will be brought up to date.  We flush the new labels
1282	 * to disk to ensure that all odd-label updates are committed to
1283	 * stable storage before the next transaction group begins.
1284	 */
1285	return (vdev_label_sync_list(spa, 1, txg, flags));
1286}
1287