vdev_label.c revision 213198
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Virtual Device Labels
28 * ---------------------
29 *
30 * The vdev label serves several distinct purposes:
31 *
32 *	1. Uniquely identify this device as part of a ZFS pool and confirm its
33 *	   identity within the pool.
34 *
35 * 	2. Verify that all the devices given in a configuration are present
36 *         within the pool.
37 *
38 * 	3. Determine the uberblock for the pool.
39 *
40 * 	4. In case of an import operation, determine the configuration of the
41 *         toplevel vdev of which it is a part.
42 *
43 * 	5. If an import operation cannot find all the devices in the pool,
44 *         provide enough information to the administrator to determine which
45 *         devices are missing.
46 *
47 * It is important to note that while the kernel is responsible for writing the
48 * label, it only consumes the information in the first three cases.  The
49 * latter information is only consumed in userland when determining the
50 * configuration to import a pool.
51 *
52 *
53 * Label Organization
54 * ------------------
55 *
56 * Before describing the contents of the label, it's important to understand how
57 * the labels are written and updated with respect to the uberblock.
58 *
59 * When the pool configuration is altered, either because it was newly created
60 * or a device was added, we want to update all the labels such that we can deal
61 * with fatal failure at any point.  To this end, each disk has two labels which
62 * are updated before and after the uberblock is synced.  Assuming we have
63 * labels and an uberblock with the following transaction groups:
64 *
65 *              L1          UB          L2
66 *           +------+    +------+    +------+
67 *           |      |    |      |    |      |
68 *           | t10  |    | t10  |    | t10  |
69 *           |      |    |      |    |      |
70 *           +------+    +------+    +------+
71 *
72 * In this stable state, the labels and the uberblock were all updated within
73 * the same transaction group (10).  Each label is mirrored and checksummed, so
74 * that we can detect when we fail partway through writing the label.
75 *
76 * In order to identify which labels are valid, the labels are written in the
77 * following manner:
78 *
79 * 	1. For each vdev, update 'L1' to the new label
80 * 	2. Update the uberblock
81 * 	3. For each vdev, update 'L2' to the new label
82 *
83 * Given arbitrary failure, we can determine the correct label to use based on
84 * the transaction group.  If we fail after updating L1 but before updating the
85 * UB, we will notice that L1's transaction group is greater than the uberblock,
86 * so L2 must be valid.  If we fail after writing the uberblock but before
87 * writing L2, we will notice that L2's transaction group is less than L1, and
88 * therefore L1 is valid.
89 *
90 * Another added complexity is that not every label is updated when the config
91 * is synced.  If we add a single device, we do not want to have to re-write
92 * every label for every device in the pool.  This means that both L1 and L2 may
93 * be older than the pool uberblock, because the necessary information is stored
94 * on another vdev.
95 *
96 *
97 * On-disk Format
98 * --------------
99 *
100 * The vdev label consists of two distinct parts, and is wrapped within the
101 * vdev_label_t structure.  The label includes 8k of padding to permit legacy
102 * VTOC disk labels, but is otherwise ignored.
103 *
104 * The first half of the label is a packed nvlist which contains pool wide
105 * properties, per-vdev properties, and configuration information.  It is
106 * described in more detail below.
107 *
108 * The latter half of the label consists of a redundant array of uberblocks.
109 * These uberblocks are updated whenever a transaction group is committed,
110 * or when the configuration is updated.  When a pool is loaded, we scan each
111 * vdev for the 'best' uberblock.
112 *
113 *
114 * Configuration Information
115 * -------------------------
116 *
117 * The nvlist describing the pool and vdev contains the following elements:
118 *
119 * 	version		ZFS on-disk version
120 * 	name		Pool name
121 * 	state		Pool state
122 * 	txg		Transaction group in which this label was written
123 * 	pool_guid	Unique identifier for this pool
124 * 	vdev_tree	An nvlist describing vdev tree.
125 *
126 * Each leaf device label also contains the following:
127 *
128 * 	top_guid	Unique ID for top-level vdev in which this is contained
129 * 	guid		Unique ID for the leaf vdev
130 *
131 * The 'vs' configuration follows the format described in 'spa_config.c'.
132 */
133
134#include <sys/zfs_context.h>
135#include <sys/spa.h>
136#include <sys/spa_impl.h>
137#include <sys/dmu.h>
138#include <sys/zap.h>
139#include <sys/vdev.h>
140#include <sys/vdev_impl.h>
141#include <sys/uberblock_impl.h>
142#include <sys/metaslab.h>
143#include <sys/zio.h>
144#include <sys/fs/zfs.h>
145
146/*
147 * Basic routines to read and write from a vdev label.
148 * Used throughout the rest of this file.
149 */
150uint64_t
151vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152{
153	ASSERT(offset < sizeof (vdev_label_t));
154	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155
156	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158}
159
160/*
161 * Returns back the vdev label associated with the passed in offset.
162 */
163int
164vdev_label_number(uint64_t psize, uint64_t offset)
165{
166	int l;
167
168	if (offset >= psize - VDEV_LABEL_END_SIZE) {
169		offset -= psize - VDEV_LABEL_END_SIZE;
170		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171	}
172	l = offset / sizeof (vdev_label_t);
173	return (l < VDEV_LABELS ? l : -1);
174}
175
176static void
177vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178	uint64_t size, zio_done_func_t *done, void *private, int flags)
179{
180	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181	    SCL_STATE_ALL);
182	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
183
184	zio_nowait(zio_read_phys(zio, vd,
185	    vdev_label_offset(vd->vdev_psize, l, offset),
186	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
187	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
188}
189
190static void
191vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192	uint64_t size, zio_done_func_t *done, void *private, int flags)
193{
194	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196	    (SCL_CONFIG | SCL_STATE) &&
197	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
199
200	zio_nowait(zio_write_phys(zio, vd,
201	    vdev_label_offset(vd->vdev_psize, l, offset),
202	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
203	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204}
205
206/*
207 * Generate the nvlist representing this vdev's config.
208 */
209nvlist_t *
210vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211    boolean_t isspare, boolean_t isl2cache)
212{
213	nvlist_t *nv = NULL;
214
215	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216
217	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218	    vd->vdev_ops->vdev_op_type) == 0);
219	if (!isspare && !isl2cache)
220		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221		    == 0);
222	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223
224	if (vd->vdev_path != NULL)
225		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226		    vd->vdev_path) == 0);
227
228	if (vd->vdev_devid != NULL)
229		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230		    vd->vdev_devid) == 0);
231
232	if (vd->vdev_physpath != NULL)
233		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234		    vd->vdev_physpath) == 0);
235
236	if (vd->vdev_fru != NULL)
237		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
238		    vd->vdev_fru) == 0);
239
240	if (vd->vdev_nparity != 0) {
241		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242		    VDEV_TYPE_RAIDZ) == 0);
243
244		/*
245		 * Make sure someone hasn't managed to sneak a fancy new vdev
246		 * into a crufty old storage pool.
247		 */
248		ASSERT(vd->vdev_nparity == 1 ||
249		    (vd->vdev_nparity == 2 &&
250		    spa_version(spa) >= SPA_VERSION_RAID6));
251
252		/*
253		 * Note that we'll add the nparity tag even on storage pools
254		 * that only support a single parity device -- older software
255		 * will just ignore it.
256		 */
257		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
258		    vd->vdev_nparity) == 0);
259	}
260
261	if (vd->vdev_wholedisk != -1ULL)
262		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
263		    vd->vdev_wholedisk) == 0);
264
265	if (vd->vdev_not_present)
266		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
267
268	if (vd->vdev_isspare)
269		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
270
271	if (!isspare && !isl2cache && vd == vd->vdev_top) {
272		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
273		    vd->vdev_ms_array) == 0);
274		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
275		    vd->vdev_ms_shift) == 0);
276		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
277		    vd->vdev_ashift) == 0);
278		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
279		    vd->vdev_asize) == 0);
280		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
281		    vd->vdev_islog) == 0);
282	}
283
284	if (vd->vdev_dtl_smo.smo_object != 0)
285		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
286		    vd->vdev_dtl_smo.smo_object) == 0);
287
288	if (getstats) {
289		vdev_stat_t vs;
290		vdev_get_stats(vd, &vs);
291		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
292		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
293	}
294
295	if (!vd->vdev_ops->vdev_op_leaf) {
296		nvlist_t **child;
297		int c;
298
299		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
300		    KM_SLEEP);
301
302		for (c = 0; c < vd->vdev_children; c++)
303			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
304			    getstats, isspare, isl2cache);
305
306		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
307		    child, vd->vdev_children) == 0);
308
309		for (c = 0; c < vd->vdev_children; c++)
310			nvlist_free(child[c]);
311
312		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
313
314	} else {
315		if (vd->vdev_offline && !vd->vdev_tmpoffline)
316			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
317			    B_TRUE) == 0);
318		if (vd->vdev_faulted)
319			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
320			    B_TRUE) == 0);
321		if (vd->vdev_degraded)
322			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
323			    B_TRUE) == 0);
324		if (vd->vdev_removed)
325			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
326			    B_TRUE) == 0);
327		if (vd->vdev_unspare)
328			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
329			    B_TRUE) == 0);
330	}
331
332	return (nv);
333}
334
335nvlist_t *
336vdev_label_read_config(vdev_t *vd)
337{
338	spa_t *spa = vd->vdev_spa;
339	nvlist_t *config = NULL;
340	vdev_phys_t *vp;
341	zio_t *zio;
342	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
343	    ZIO_FLAG_SPECULATIVE;
344
345	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
346
347	if (!vdev_readable(vd))
348		return (NULL);
349
350	vp = zio_buf_alloc(sizeof (vdev_phys_t));
351
352retry:
353	for (int l = 0; l < VDEV_LABELS; l++) {
354
355		zio = zio_root(spa, NULL, NULL, flags);
356
357		vdev_label_read(zio, vd, l, vp,
358		    offsetof(vdev_label_t, vl_vdev_phys),
359		    sizeof (vdev_phys_t), NULL, NULL, flags);
360
361		if (zio_wait(zio) == 0 &&
362		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
363		    &config, 0) == 0)
364			break;
365
366		if (config != NULL) {
367			nvlist_free(config);
368			config = NULL;
369		}
370	}
371
372	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
373		flags |= ZIO_FLAG_TRYHARD;
374		goto retry;
375	}
376
377	zio_buf_free(vp, sizeof (vdev_phys_t));
378
379	return (config);
380}
381
382/*
383 * Determine if a device is in use.  The 'spare_guid' parameter will be filled
384 * in with the device guid if this spare is active elsewhere on the system.
385 */
386static boolean_t
387vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
388    uint64_t *spare_guid, uint64_t *l2cache_guid)
389{
390	spa_t *spa = vd->vdev_spa;
391	uint64_t state, pool_guid, device_guid, txg, spare_pool;
392	uint64_t vdtxg = 0;
393	nvlist_t *label;
394
395	if (spare_guid)
396		*spare_guid = 0ULL;
397	if (l2cache_guid)
398		*l2cache_guid = 0ULL;
399
400	/*
401	 * Read the label, if any, and perform some basic sanity checks.
402	 */
403	if ((label = vdev_label_read_config(vd)) == NULL)
404		return (B_FALSE);
405
406	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
407	    &vdtxg);
408
409	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
410	    &state) != 0 ||
411	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
412	    &device_guid) != 0) {
413		nvlist_free(label);
414		return (B_FALSE);
415	}
416
417	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
418	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
419	    &pool_guid) != 0 ||
420	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
421	    &txg) != 0)) {
422		nvlist_free(label);
423		return (B_FALSE);
424	}
425
426	nvlist_free(label);
427
428	/*
429	 * Check to see if this device indeed belongs to the pool it claims to
430	 * be a part of.  The only way this is allowed is if the device is a hot
431	 * spare (which we check for later on).
432	 */
433	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
434	    !spa_guid_exists(pool_guid, device_guid) &&
435	    !spa_spare_exists(device_guid, NULL, NULL) &&
436	    !spa_l2cache_exists(device_guid, NULL))
437		return (B_FALSE);
438
439	/*
440	 * If the transaction group is zero, then this an initialized (but
441	 * unused) label.  This is only an error if the create transaction
442	 * on-disk is the same as the one we're using now, in which case the
443	 * user has attempted to add the same vdev multiple times in the same
444	 * transaction.
445	 */
446	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
447	    txg == 0 && vdtxg == crtxg)
448		return (B_TRUE);
449
450	/*
451	 * Check to see if this is a spare device.  We do an explicit check for
452	 * spa_has_spare() here because it may be on our pending list of spares
453	 * to add.  We also check if it is an l2cache device.
454	 */
455	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
456	    spa_has_spare(spa, device_guid)) {
457		if (spare_guid)
458			*spare_guid = device_guid;
459
460		switch (reason) {
461		case VDEV_LABEL_CREATE:
462		case VDEV_LABEL_L2CACHE:
463			return (B_TRUE);
464
465		case VDEV_LABEL_REPLACE:
466			return (!spa_has_spare(spa, device_guid) ||
467			    spare_pool != 0ULL);
468
469		case VDEV_LABEL_SPARE:
470			return (spa_has_spare(spa, device_guid));
471		}
472	}
473
474	/*
475	 * Check to see if this is an l2cache device.
476	 */
477	if (spa_l2cache_exists(device_guid, NULL))
478		return (B_TRUE);
479
480	/*
481	 * If the device is marked ACTIVE, then this device is in use by another
482	 * pool on the system.
483	 */
484	return (state == POOL_STATE_ACTIVE);
485}
486
487/*
488 * Initialize a vdev label.  We check to make sure each leaf device is not in
489 * use, and writable.  We put down an initial label which we will later
490 * overwrite with a complete label.  Note that it's important to do this
491 * sequentially, not in parallel, so that we catch cases of multiple use of the
492 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
493 * itself.
494 */
495int
496vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
497{
498	spa_t *spa = vd->vdev_spa;
499	nvlist_t *label;
500	vdev_phys_t *vp;
501	char *pad2;
502	uberblock_t *ub;
503	zio_t *zio;
504	char *buf;
505	size_t buflen;
506	int error;
507	uint64_t spare_guid, l2cache_guid;
508	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
509
510	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
511
512	for (int c = 0; c < vd->vdev_children; c++)
513		if ((error = vdev_label_init(vd->vdev_child[c],
514		    crtxg, reason)) != 0)
515			return (error);
516
517	if (!vd->vdev_ops->vdev_op_leaf)
518		return (0);
519
520	/*
521	 * Dead vdevs cannot be initialized.
522	 */
523	if (vdev_is_dead(vd))
524		return (EIO);
525
526	/*
527	 * Determine if the vdev is in use.
528	 */
529	if (reason != VDEV_LABEL_REMOVE &&
530	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
531		return (EBUSY);
532
533	/*
534	 * If this is a request to add or replace a spare or l2cache device
535	 * that is in use elsewhere on the system, then we must update the
536	 * guid (which was initialized to a random value) to reflect the
537	 * actual GUID (which is shared between multiple pools).
538	 */
539	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
540	    spare_guid != 0ULL) {
541		uint64_t guid_delta = spare_guid - vd->vdev_guid;
542
543		vd->vdev_guid += guid_delta;
544
545		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
546			pvd->vdev_guid_sum += guid_delta;
547
548		/*
549		 * If this is a replacement, then we want to fallthrough to the
550		 * rest of the code.  If we're adding a spare, then it's already
551		 * labeled appropriately and we can just return.
552		 */
553		if (reason == VDEV_LABEL_SPARE)
554			return (0);
555		ASSERT(reason == VDEV_LABEL_REPLACE);
556	}
557
558	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
559	    l2cache_guid != 0ULL) {
560		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
561
562		vd->vdev_guid += guid_delta;
563
564		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
565			pvd->vdev_guid_sum += guid_delta;
566
567		/*
568		 * If this is a replacement, then we want to fallthrough to the
569		 * rest of the code.  If we're adding an l2cache, then it's
570		 * already labeled appropriately and we can just return.
571		 */
572		if (reason == VDEV_LABEL_L2CACHE)
573			return (0);
574		ASSERT(reason == VDEV_LABEL_REPLACE);
575	}
576
577	/*
578	 * Initialize its label.
579	 */
580	vp = zio_buf_alloc(sizeof (vdev_phys_t));
581	bzero(vp, sizeof (vdev_phys_t));
582
583	/*
584	 * Generate a label describing the pool and our top-level vdev.
585	 * We mark it as being from txg 0 to indicate that it's not
586	 * really part of an active pool just yet.  The labels will
587	 * be written again with a meaningful txg by spa_sync().
588	 */
589	if (reason == VDEV_LABEL_SPARE ||
590	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
591		/*
592		 * For inactive hot spares, we generate a special label that
593		 * identifies as a mutually shared hot spare.  We write the
594		 * label if we are adding a hot spare, or if we are removing an
595		 * active hot spare (in which case we want to revert the
596		 * labels).
597		 */
598		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
599
600		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
601		    spa_version(spa)) == 0);
602		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
603		    POOL_STATE_SPARE) == 0);
604		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
605		    vd->vdev_guid) == 0);
606	} else if (reason == VDEV_LABEL_L2CACHE ||
607	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
608		/*
609		 * For level 2 ARC devices, add a special label.
610		 */
611		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
612
613		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
614		    spa_version(spa)) == 0);
615		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
616		    POOL_STATE_L2CACHE) == 0);
617		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
618		    vd->vdev_guid) == 0);
619	} else {
620		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
621
622		/*
623		 * Add our creation time.  This allows us to detect multiple
624		 * vdev uses as described above, and automatically expires if we
625		 * fail.
626		 */
627		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
628		    crtxg) == 0);
629	}
630
631	buf = vp->vp_nvlist;
632	buflen = sizeof (vp->vp_nvlist);
633
634	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
635	if (error != 0) {
636		nvlist_free(label);
637		zio_buf_free(vp, sizeof (vdev_phys_t));
638		/* EFAULT means nvlist_pack ran out of room */
639		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
640	}
641
642	/*
643	 * Initialize uberblock template.
644	 */
645	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
646	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
647	*ub = spa->spa_uberblock;
648	ub->ub_txg = 0;
649
650	/* Initialize the 2nd padding area. */
651	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
652	bzero(pad2, VDEV_PAD_SIZE);
653
654	/*
655	 * Write everything in parallel.
656	 */
657retry:
658	zio = zio_root(spa, NULL, NULL, flags);
659
660	for (int l = 0; l < VDEV_LABELS; l++) {
661
662		vdev_label_write(zio, vd, l, vp,
663		    offsetof(vdev_label_t, vl_vdev_phys),
664		    sizeof (vdev_phys_t), NULL, NULL, flags);
665
666		/*
667		 * Skip the 1st padding area.
668		 * Zero out the 2nd padding area where it might have
669		 * left over data from previous filesystem format.
670		 */
671		vdev_label_write(zio, vd, l, pad2,
672		    offsetof(vdev_label_t, vl_pad2),
673		    VDEV_PAD_SIZE, NULL, NULL, flags);
674
675		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
676			vdev_label_write(zio, vd, l, ub,
677			    VDEV_UBERBLOCK_OFFSET(vd, n),
678			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags);
679		}
680	}
681
682	error = zio_wait(zio);
683
684	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
685		flags |= ZIO_FLAG_TRYHARD;
686		goto retry;
687	}
688
689	nvlist_free(label);
690	zio_buf_free(pad2, VDEV_PAD_SIZE);
691	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
692	zio_buf_free(vp, sizeof (vdev_phys_t));
693
694	/*
695	 * If this vdev hasn't been previously identified as a spare, then we
696	 * mark it as such only if a) we are labeling it as a spare, or b) it
697	 * exists as a spare elsewhere in the system.  Do the same for
698	 * level 2 ARC devices.
699	 */
700	if (error == 0 && !vd->vdev_isspare &&
701	    (reason == VDEV_LABEL_SPARE ||
702	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
703		spa_spare_add(vd);
704
705	if (error == 0 && !vd->vdev_isl2cache &&
706	    (reason == VDEV_LABEL_L2CACHE ||
707	    spa_l2cache_exists(vd->vdev_guid, NULL)))
708		spa_l2cache_add(vd);
709
710	return (error);
711}
712
713/*
714 * ==========================================================================
715 * uberblock load/sync
716 * ==========================================================================
717 */
718
719/*
720 * For use by zdb and debugging purposes only
721 */
722uint64_t ub_max_txg = UINT64_MAX;
723
724/*
725 * Consider the following situation: txg is safely synced to disk.  We've
726 * written the first uberblock for txg + 1, and then we lose power.  When we
727 * come back up, we fail to see the uberblock for txg + 1 because, say,
728 * it was on a mirrored device and the replica to which we wrote txg + 1
729 * is now offline.  If we then make some changes and sync txg + 1, and then
730 * the missing replica comes back, then for a new seconds we'll have two
731 * conflicting uberblocks on disk with the same txg.  The solution is simple:
732 * among uberblocks with equal txg, choose the one with the latest timestamp.
733 */
734static int
735vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
736{
737	if (ub1->ub_txg < ub2->ub_txg)
738		return (-1);
739	if (ub1->ub_txg > ub2->ub_txg)
740		return (1);
741
742	if (ub1->ub_timestamp < ub2->ub_timestamp)
743		return (-1);
744	if (ub1->ub_timestamp > ub2->ub_timestamp)
745		return (1);
746
747	return (0);
748}
749
750static void
751vdev_uberblock_load_done(zio_t *zio)
752{
753	zio_t *rio = zio->io_private;
754	uberblock_t *ub = zio->io_data;
755	uberblock_t *ubbest = rio->io_private;
756
757	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
758
759	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
760		mutex_enter(&rio->io_lock);
761		if (ub->ub_txg <= ub_max_txg &&
762		    vdev_uberblock_compare(ub, ubbest) > 0)
763			*ubbest = *ub;
764		mutex_exit(&rio->io_lock);
765	}
766
767	zio_buf_free(zio->io_data, zio->io_size);
768}
769
770void
771vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
772{
773	spa_t *spa = vd->vdev_spa;
774	vdev_t *rvd = spa->spa_root_vdev;
775	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
776	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
777
778	if (vd == rvd) {
779		ASSERT(zio == NULL);
780		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
781		zio = zio_root(spa, NULL, ubbest, flags);
782		bzero(ubbest, sizeof (uberblock_t));
783	}
784
785	ASSERT(zio != NULL);
786
787	for (int c = 0; c < vd->vdev_children; c++)
788		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
789
790	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
791		for (int l = 0; l < VDEV_LABELS; l++) {
792			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
793				vdev_label_read(zio, vd, l,
794				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
795				    VDEV_UBERBLOCK_OFFSET(vd, n),
796				    VDEV_UBERBLOCK_SIZE(vd),
797				    vdev_uberblock_load_done, zio, flags);
798			}
799		}
800	}
801
802	if (vd == rvd) {
803		(void) zio_wait(zio);
804		spa_config_exit(spa, SCL_ALL, FTAG);
805	}
806}
807
808/*
809 * On success, increment root zio's count of good writes.
810 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
811 */
812static void
813vdev_uberblock_sync_done(zio_t *zio)
814{
815	uint64_t *good_writes = zio->io_private;
816
817	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
818		atomic_add_64(good_writes, 1);
819}
820
821/*
822 * Write the uberblock to all labels of all leaves of the specified vdev.
823 */
824static void
825vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
826{
827	uberblock_t *ubbuf;
828	int n;
829
830	for (int c = 0; c < vd->vdev_children; c++)
831		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
832
833	if (!vd->vdev_ops->vdev_op_leaf)
834		return;
835
836	if (!vdev_writeable(vd))
837		return;
838
839	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
840
841	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
842	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
843	*ubbuf = *ub;
844
845	for (int l = 0; l < VDEV_LABELS; l++)
846		vdev_label_write(zio, vd, l, ubbuf,
847		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
848		    vdev_uberblock_sync_done, zio->io_private,
849		    flags | ZIO_FLAG_DONT_PROPAGATE);
850
851	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
852}
853
854int
855vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
856{
857	spa_t *spa = svd[0]->vdev_spa;
858	zio_t *zio;
859	uint64_t good_writes = 0;
860
861	zio = zio_root(spa, NULL, &good_writes, flags);
862
863	for (int v = 0; v < svdcount; v++)
864		vdev_uberblock_sync(zio, ub, svd[v], flags);
865
866	(void) zio_wait(zio);
867
868	/*
869	 * Flush the uberblocks to disk.  This ensures that the odd labels
870	 * are no longer needed (because the new uberblocks and the even
871	 * labels are safely on disk), so it is safe to overwrite them.
872	 */
873	zio = zio_root(spa, NULL, NULL, flags);
874
875	for (int v = 0; v < svdcount; v++)
876		zio_flush(zio, svd[v]);
877
878	(void) zio_wait(zio);
879
880	return (good_writes >= 1 ? 0 : EIO);
881}
882
883/*
884 * On success, increment the count of good writes for our top-level vdev.
885 */
886static void
887vdev_label_sync_done(zio_t *zio)
888{
889	uint64_t *good_writes = zio->io_private;
890
891	if (zio->io_error == 0)
892		atomic_add_64(good_writes, 1);
893}
894
895/*
896 * If there weren't enough good writes, indicate failure to the parent.
897 */
898static void
899vdev_label_sync_top_done(zio_t *zio)
900{
901	uint64_t *good_writes = zio->io_private;
902
903	if (*good_writes == 0)
904		zio->io_error = EIO;
905
906	kmem_free(good_writes, sizeof (uint64_t));
907}
908
909/*
910 * We ignore errors for log and cache devices, simply free the private data.
911 */
912static void
913vdev_label_sync_ignore_done(zio_t *zio)
914{
915	kmem_free(zio->io_private, sizeof (uint64_t));
916}
917
918/*
919 * Write all even or odd labels to all leaves of the specified vdev.
920 */
921static void
922vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
923{
924	nvlist_t *label;
925	vdev_phys_t *vp;
926	char *buf;
927	size_t buflen;
928
929	for (int c = 0; c < vd->vdev_children; c++)
930		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
931
932	if (!vd->vdev_ops->vdev_op_leaf)
933		return;
934
935	if (!vdev_writeable(vd))
936		return;
937
938	/*
939	 * Generate a label describing the top-level config to which we belong.
940	 */
941	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
942
943	vp = zio_buf_alloc(sizeof (vdev_phys_t));
944	bzero(vp, sizeof (vdev_phys_t));
945
946	buf = vp->vp_nvlist;
947	buflen = sizeof (vp->vp_nvlist);
948
949	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
950		for (; l < VDEV_LABELS; l += 2) {
951			vdev_label_write(zio, vd, l, vp,
952			    offsetof(vdev_label_t, vl_vdev_phys),
953			    sizeof (vdev_phys_t),
954			    vdev_label_sync_done, zio->io_private,
955			    flags | ZIO_FLAG_DONT_PROPAGATE);
956		}
957	}
958
959	zio_buf_free(vp, sizeof (vdev_phys_t));
960	nvlist_free(label);
961}
962
963int
964vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
965{
966	list_t *dl = &spa->spa_config_dirty_list;
967	vdev_t *vd;
968	zio_t *zio;
969	int error;
970
971	/*
972	 * Write the new labels to disk.
973	 */
974	zio = zio_root(spa, NULL, NULL, flags);
975
976	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
977		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
978		    KM_SLEEP);
979		zio_t *vio = zio_null(zio, spa, NULL,
980		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
981		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
982		    good_writes, flags);
983		vdev_label_sync(vio, vd, l, txg, flags);
984		zio_nowait(vio);
985	}
986
987	error = zio_wait(zio);
988
989	/*
990	 * Flush the new labels to disk.
991	 */
992	zio = zio_root(spa, NULL, NULL, flags);
993
994	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
995		zio_flush(zio, vd);
996
997	(void) zio_wait(zio);
998
999	return (error);
1000}
1001
1002/*
1003 * Sync the uberblock and any changes to the vdev configuration.
1004 *
1005 * The order of operations is carefully crafted to ensure that
1006 * if the system panics or loses power at any time, the state on disk
1007 * is still transactionally consistent.  The in-line comments below
1008 * describe the failure semantics at each stage.
1009 *
1010 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1011 * at any time, you can just call it again, and it will resume its work.
1012 */
1013int
1014vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1015{
1016	spa_t *spa = svd[0]->vdev_spa;
1017	uberblock_t *ub = &spa->spa_uberblock;
1018	vdev_t *vd;
1019	zio_t *zio;
1020	int error;
1021	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1022
1023	/*
1024	 * Normally, we don't want to try too hard to write every label and
1025	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1026	 * sync process to block while we retry.  But if we can't write a
1027	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1028	 * bailing out and declaring the pool faulted.
1029	 */
1030	if (tryhard)
1031		flags |= ZIO_FLAG_TRYHARD;
1032
1033	ASSERT(ub->ub_txg <= txg);
1034
1035	/*
1036	 * If this isn't a resync due to I/O errors,
1037	 * and nothing changed in this transaction group,
1038	 * and the vdev configuration hasn't changed,
1039	 * then there's nothing to do.
1040	 */
1041	if (ub->ub_txg < txg &&
1042	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1043	    list_is_empty(&spa->spa_config_dirty_list))
1044		return (0);
1045
1046	if (txg > spa_freeze_txg(spa))
1047		return (0);
1048
1049	ASSERT(txg <= spa->spa_final_txg);
1050
1051	/*
1052	 * Flush the write cache of every disk that's been written to
1053	 * in this transaction group.  This ensures that all blocks
1054	 * written in this txg will be committed to stable storage
1055	 * before any uberblock that references them.
1056	 */
1057	zio = zio_root(spa, NULL, NULL, flags);
1058
1059	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1060	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1061		zio_flush(zio, vd);
1062
1063	(void) zio_wait(zio);
1064
1065	/*
1066	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1067	 * system dies in the middle of this process, that's OK: all of the
1068	 * even labels that made it to disk will be newer than any uberblock,
1069	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1070	 * which have not yet been touched, will still be valid.  We flush
1071	 * the new labels to disk to ensure that all even-label updates
1072	 * are committed to stable storage before the uberblock update.
1073	 */
1074	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1075		return (error);
1076
1077	/*
1078	 * Sync the uberblocks to all vdevs in svd[].
1079	 * If the system dies in the middle of this step, there are two cases
1080	 * to consider, and the on-disk state is consistent either way:
1081	 *
1082	 * (1)	If none of the new uberblocks made it to disk, then the
1083	 *	previous uberblock will be the newest, and the odd labels
1084	 *	(which had not yet been touched) will be valid with respect
1085	 *	to that uberblock.
1086	 *
1087	 * (2)	If one or more new uberblocks made it to disk, then they
1088	 *	will be the newest, and the even labels (which had all
1089	 *	been successfully committed) will be valid with respect
1090	 *	to the new uberblocks.
1091	 */
1092	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1093		return (error);
1094
1095	/*
1096	 * Sync out odd labels for every dirty vdev.  If the system dies
1097	 * in the middle of this process, the even labels and the new
1098	 * uberblocks will suffice to open the pool.  The next time
1099	 * the pool is opened, the first thing we'll do -- before any
1100	 * user data is modified -- is mark every vdev dirty so that
1101	 * all labels will be brought up to date.  We flush the new labels
1102	 * to disk to ensure that all odd-label updates are committed to
1103	 * stable storage before the next transaction group begins.
1104	 */
1105	return (vdev_label_sync_list(spa, 1, txg, flags));
1106}
1107