spa.c revision 247265
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 */
27
28/*
29 * This file contains all the routines used when modifying on-disk SPA state.
30 * This includes opening, importing, destroying, exporting a pool, and syncing a
31 * pool.
32 */
33
34#include <sys/zfs_context.h>
35#include <sys/fm/fs/zfs.h>
36#include <sys/spa_impl.h>
37#include <sys/zio.h>
38#include <sys/zio_checksum.h>
39#include <sys/dmu.h>
40#include <sys/dmu_tx.h>
41#include <sys/zap.h>
42#include <sys/zil.h>
43#include <sys/ddt.h>
44#include <sys/vdev_impl.h>
45#include <sys/metaslab.h>
46#include <sys/metaslab_impl.h>
47#include <sys/uberblock_impl.h>
48#include <sys/txg.h>
49#include <sys/avl.h>
50#include <sys/dmu_traverse.h>
51#include <sys/dmu_objset.h>
52#include <sys/unique.h>
53#include <sys/dsl_pool.h>
54#include <sys/dsl_dataset.h>
55#include <sys/dsl_dir.h>
56#include <sys/dsl_prop.h>
57#include <sys/dsl_synctask.h>
58#include <sys/fs/zfs.h>
59#include <sys/arc.h>
60#include <sys/callb.h>
61#include <sys/spa_boot.h>
62#include <sys/zfs_ioctl.h>
63#include <sys/dsl_scan.h>
64#include <sys/zfeature.h>
65#include <sys/zvol.h>
66#include <sys/trim_map.h>
67
68#ifdef	_KERNEL
69#include <sys/callb.h>
70#include <sys/cpupart.h>
71#include <sys/zone.h>
72#endif	/* _KERNEL */
73
74#include "zfs_prop.h"
75#include "zfs_comutil.h"
76
77/* Check hostid on import? */
78static int check_hostid = 1;
79
80SYSCTL_DECL(_vfs_zfs);
81TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
82SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
83    "Check hostid on import?");
84
85typedef enum zti_modes {
86	zti_mode_fixed,			/* value is # of threads (min 1) */
87	zti_mode_online_percent,	/* value is % of online CPUs */
88	zti_mode_batch,			/* cpu-intensive; value is ignored */
89	zti_mode_null,			/* don't create a taskq */
90	zti_nmodes
91} zti_modes_t;
92
93#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
94#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
95#define	ZTI_BATCH	{ zti_mode_batch, 0 }
96#define	ZTI_NULL	{ zti_mode_null, 0 }
97
98#define	ZTI_ONE		ZTI_FIX(1)
99
100typedef struct zio_taskq_info {
101	enum zti_modes zti_mode;
102	uint_t zti_value;
103} zio_taskq_info_t;
104
105static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
106	"issue", "issue_high", "intr", "intr_high"
107};
108
109/*
110 * Define the taskq threads for the following I/O types:
111 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
112 */
113const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
114	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
115	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
116	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
117	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
118	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
119	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
120	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
121};
122
123static dsl_syncfunc_t spa_sync_version;
124static dsl_syncfunc_t spa_sync_props;
125static dsl_checkfunc_t spa_change_guid_check;
126static dsl_syncfunc_t spa_change_guid_sync;
127static boolean_t spa_has_active_shared_spare(spa_t *spa);
128static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
129    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
130    char **ereport);
131static void spa_vdev_resilver_done(spa_t *spa);
132
133uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
134#ifdef PSRSET_BIND
135id_t		zio_taskq_psrset_bind = PS_NONE;
136#endif
137#ifdef SYSDC
138boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
139#endif
140uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
141
142boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
143extern int	zfs_sync_pass_deferred_free;
144
145#ifndef illumos
146extern void spa_deadman(void *arg);
147#endif
148
149/*
150 * This (illegal) pool name is used when temporarily importing a spa_t in order
151 * to get the vdev stats associated with the imported devices.
152 */
153#define	TRYIMPORT_NAME	"$import"
154
155/*
156 * ==========================================================================
157 * SPA properties routines
158 * ==========================================================================
159 */
160
161/*
162 * Add a (source=src, propname=propval) list to an nvlist.
163 */
164static void
165spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
166    uint64_t intval, zprop_source_t src)
167{
168	const char *propname = zpool_prop_to_name(prop);
169	nvlist_t *propval;
170
171	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
172	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
173
174	if (strval != NULL)
175		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
176	else
177		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
178
179	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
180	nvlist_free(propval);
181}
182
183/*
184 * Get property values from the spa configuration.
185 */
186static void
187spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
188{
189	vdev_t *rvd = spa->spa_root_vdev;
190	dsl_pool_t *pool = spa->spa_dsl_pool;
191	uint64_t size;
192	uint64_t alloc;
193	uint64_t space;
194	uint64_t cap, version;
195	zprop_source_t src = ZPROP_SRC_NONE;
196	spa_config_dirent_t *dp;
197
198	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
199
200	if (rvd != NULL) {
201		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
202		size = metaslab_class_get_space(spa_normal_class(spa));
203		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
204		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
205		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
206		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
207		    size - alloc, src);
208
209		space = 0;
210		for (int c = 0; c < rvd->vdev_children; c++) {
211			vdev_t *tvd = rvd->vdev_child[c];
212			space += tvd->vdev_max_asize - tvd->vdev_asize;
213		}
214		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
215		    src);
216
217		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
218		    (spa_mode(spa) == FREAD), src);
219
220		cap = (size == 0) ? 0 : (alloc * 100 / size);
221		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
222
223		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
224		    ddt_get_pool_dedup_ratio(spa), src);
225
226		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
227		    rvd->vdev_state, src);
228
229		version = spa_version(spa);
230		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
231			src = ZPROP_SRC_DEFAULT;
232		else
233			src = ZPROP_SRC_LOCAL;
234		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
235	}
236
237	if (pool != NULL) {
238		dsl_dir_t *freedir = pool->dp_free_dir;
239
240		/*
241		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
242		 * when opening pools before this version freedir will be NULL.
243		 */
244		if (freedir != NULL) {
245			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
246			    freedir->dd_phys->dd_used_bytes, src);
247		} else {
248			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
249			    NULL, 0, src);
250		}
251	}
252
253	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
254
255	if (spa->spa_comment != NULL) {
256		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
257		    0, ZPROP_SRC_LOCAL);
258	}
259
260	if (spa->spa_root != NULL)
261		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
262		    0, ZPROP_SRC_LOCAL);
263
264	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
265		if (dp->scd_path == NULL) {
266			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
267			    "none", 0, ZPROP_SRC_LOCAL);
268		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
269			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
270			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
271		}
272	}
273}
274
275/*
276 * Get zpool property values.
277 */
278int
279spa_prop_get(spa_t *spa, nvlist_t **nvp)
280{
281	objset_t *mos = spa->spa_meta_objset;
282	zap_cursor_t zc;
283	zap_attribute_t za;
284	int err;
285
286	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
287
288	mutex_enter(&spa->spa_props_lock);
289
290	/*
291	 * Get properties from the spa config.
292	 */
293	spa_prop_get_config(spa, nvp);
294
295	/* If no pool property object, no more prop to get. */
296	if (mos == NULL || spa->spa_pool_props_object == 0) {
297		mutex_exit(&spa->spa_props_lock);
298		return (0);
299	}
300
301	/*
302	 * Get properties from the MOS pool property object.
303	 */
304	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
305	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
306	    zap_cursor_advance(&zc)) {
307		uint64_t intval = 0;
308		char *strval = NULL;
309		zprop_source_t src = ZPROP_SRC_DEFAULT;
310		zpool_prop_t prop;
311
312		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
313			continue;
314
315		switch (za.za_integer_length) {
316		case 8:
317			/* integer property */
318			if (za.za_first_integer !=
319			    zpool_prop_default_numeric(prop))
320				src = ZPROP_SRC_LOCAL;
321
322			if (prop == ZPOOL_PROP_BOOTFS) {
323				dsl_pool_t *dp;
324				dsl_dataset_t *ds = NULL;
325
326				dp = spa_get_dsl(spa);
327				rw_enter(&dp->dp_config_rwlock, RW_READER);
328				if (err = dsl_dataset_hold_obj(dp,
329				    za.za_first_integer, FTAG, &ds)) {
330					rw_exit(&dp->dp_config_rwlock);
331					break;
332				}
333
334				strval = kmem_alloc(
335				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
336				    KM_SLEEP);
337				dsl_dataset_name(ds, strval);
338				dsl_dataset_rele(ds, FTAG);
339				rw_exit(&dp->dp_config_rwlock);
340			} else {
341				strval = NULL;
342				intval = za.za_first_integer;
343			}
344
345			spa_prop_add_list(*nvp, prop, strval, intval, src);
346
347			if (strval != NULL)
348				kmem_free(strval,
349				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
350
351			break;
352
353		case 1:
354			/* string property */
355			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
356			err = zap_lookup(mos, spa->spa_pool_props_object,
357			    za.za_name, 1, za.za_num_integers, strval);
358			if (err) {
359				kmem_free(strval, za.za_num_integers);
360				break;
361			}
362			spa_prop_add_list(*nvp, prop, strval, 0, src);
363			kmem_free(strval, za.za_num_integers);
364			break;
365
366		default:
367			break;
368		}
369	}
370	zap_cursor_fini(&zc);
371	mutex_exit(&spa->spa_props_lock);
372out:
373	if (err && err != ENOENT) {
374		nvlist_free(*nvp);
375		*nvp = NULL;
376		return (err);
377	}
378
379	return (0);
380}
381
382/*
383 * Validate the given pool properties nvlist and modify the list
384 * for the property values to be set.
385 */
386static int
387spa_prop_validate(spa_t *spa, nvlist_t *props)
388{
389	nvpair_t *elem;
390	int error = 0, reset_bootfs = 0;
391	uint64_t objnum = 0;
392	boolean_t has_feature = B_FALSE;
393
394	elem = NULL;
395	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
396		uint64_t intval;
397		char *strval, *slash, *check, *fname;
398		const char *propname = nvpair_name(elem);
399		zpool_prop_t prop = zpool_name_to_prop(propname);
400
401		switch (prop) {
402		case ZPROP_INVAL:
403			if (!zpool_prop_feature(propname)) {
404				error = EINVAL;
405				break;
406			}
407
408			/*
409			 * Sanitize the input.
410			 */
411			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
412				error = EINVAL;
413				break;
414			}
415
416			if (nvpair_value_uint64(elem, &intval) != 0) {
417				error = EINVAL;
418				break;
419			}
420
421			if (intval != 0) {
422				error = EINVAL;
423				break;
424			}
425
426			fname = strchr(propname, '@') + 1;
427			if (zfeature_lookup_name(fname, NULL) != 0) {
428				error = EINVAL;
429				break;
430			}
431
432			has_feature = B_TRUE;
433			break;
434
435		case ZPOOL_PROP_VERSION:
436			error = nvpair_value_uint64(elem, &intval);
437			if (!error &&
438			    (intval < spa_version(spa) ||
439			    intval > SPA_VERSION_BEFORE_FEATURES ||
440			    has_feature))
441				error = EINVAL;
442			break;
443
444		case ZPOOL_PROP_DELEGATION:
445		case ZPOOL_PROP_AUTOREPLACE:
446		case ZPOOL_PROP_LISTSNAPS:
447		case ZPOOL_PROP_AUTOEXPAND:
448			error = nvpair_value_uint64(elem, &intval);
449			if (!error && intval > 1)
450				error = EINVAL;
451			break;
452
453		case ZPOOL_PROP_BOOTFS:
454			/*
455			 * If the pool version is less than SPA_VERSION_BOOTFS,
456			 * or the pool is still being created (version == 0),
457			 * the bootfs property cannot be set.
458			 */
459			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
460				error = ENOTSUP;
461				break;
462			}
463
464			/*
465			 * Make sure the vdev config is bootable
466			 */
467			if (!vdev_is_bootable(spa->spa_root_vdev)) {
468				error = ENOTSUP;
469				break;
470			}
471
472			reset_bootfs = 1;
473
474			error = nvpair_value_string(elem, &strval);
475
476			if (!error) {
477				objset_t *os;
478				uint64_t compress;
479
480				if (strval == NULL || strval[0] == '\0') {
481					objnum = zpool_prop_default_numeric(
482					    ZPOOL_PROP_BOOTFS);
483					break;
484				}
485
486				if (error = dmu_objset_hold(strval, FTAG, &os))
487					break;
488
489				/* Must be ZPL and not gzip compressed. */
490
491				if (dmu_objset_type(os) != DMU_OST_ZFS) {
492					error = ENOTSUP;
493				} else if ((error = dsl_prop_get_integer(strval,
494				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
495				    &compress, NULL)) == 0 &&
496				    !BOOTFS_COMPRESS_VALID(compress)) {
497					error = ENOTSUP;
498				} else {
499					objnum = dmu_objset_id(os);
500				}
501				dmu_objset_rele(os, FTAG);
502			}
503			break;
504
505		case ZPOOL_PROP_FAILUREMODE:
506			error = nvpair_value_uint64(elem, &intval);
507			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
508			    intval > ZIO_FAILURE_MODE_PANIC))
509				error = EINVAL;
510
511			/*
512			 * This is a special case which only occurs when
513			 * the pool has completely failed. This allows
514			 * the user to change the in-core failmode property
515			 * without syncing it out to disk (I/Os might
516			 * currently be blocked). We do this by returning
517			 * EIO to the caller (spa_prop_set) to trick it
518			 * into thinking we encountered a property validation
519			 * error.
520			 */
521			if (!error && spa_suspended(spa)) {
522				spa->spa_failmode = intval;
523				error = EIO;
524			}
525			break;
526
527		case ZPOOL_PROP_CACHEFILE:
528			if ((error = nvpair_value_string(elem, &strval)) != 0)
529				break;
530
531			if (strval[0] == '\0')
532				break;
533
534			if (strcmp(strval, "none") == 0)
535				break;
536
537			if (strval[0] != '/') {
538				error = EINVAL;
539				break;
540			}
541
542			slash = strrchr(strval, '/');
543			ASSERT(slash != NULL);
544
545			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
546			    strcmp(slash, "/..") == 0)
547				error = EINVAL;
548			break;
549
550		case ZPOOL_PROP_COMMENT:
551			if ((error = nvpair_value_string(elem, &strval)) != 0)
552				break;
553			for (check = strval; *check != '\0'; check++) {
554				/*
555				 * The kernel doesn't have an easy isprint()
556				 * check.  For this kernel check, we merely
557				 * check ASCII apart from DEL.  Fix this if
558				 * there is an easy-to-use kernel isprint().
559				 */
560				if (*check >= 0x7f) {
561					error = EINVAL;
562					break;
563				}
564				check++;
565			}
566			if (strlen(strval) > ZPROP_MAX_COMMENT)
567				error = E2BIG;
568			break;
569
570		case ZPOOL_PROP_DEDUPDITTO:
571			if (spa_version(spa) < SPA_VERSION_DEDUP)
572				error = ENOTSUP;
573			else
574				error = nvpair_value_uint64(elem, &intval);
575			if (error == 0 &&
576			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
577				error = EINVAL;
578			break;
579		}
580
581		if (error)
582			break;
583	}
584
585	if (!error && reset_bootfs) {
586		error = nvlist_remove(props,
587		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
588
589		if (!error) {
590			error = nvlist_add_uint64(props,
591			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
592		}
593	}
594
595	return (error);
596}
597
598void
599spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
600{
601	char *cachefile;
602	spa_config_dirent_t *dp;
603
604	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
605	    &cachefile) != 0)
606		return;
607
608	dp = kmem_alloc(sizeof (spa_config_dirent_t),
609	    KM_SLEEP);
610
611	if (cachefile[0] == '\0')
612		dp->scd_path = spa_strdup(spa_config_path);
613	else if (strcmp(cachefile, "none") == 0)
614		dp->scd_path = NULL;
615	else
616		dp->scd_path = spa_strdup(cachefile);
617
618	list_insert_head(&spa->spa_config_list, dp);
619	if (need_sync)
620		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
621}
622
623int
624spa_prop_set(spa_t *spa, nvlist_t *nvp)
625{
626	int error;
627	nvpair_t *elem = NULL;
628	boolean_t need_sync = B_FALSE;
629
630	if ((error = spa_prop_validate(spa, nvp)) != 0)
631		return (error);
632
633	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
634		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
635
636		if (prop == ZPOOL_PROP_CACHEFILE ||
637		    prop == ZPOOL_PROP_ALTROOT ||
638		    prop == ZPOOL_PROP_READONLY)
639			continue;
640
641		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
642			uint64_t ver;
643
644			if (prop == ZPOOL_PROP_VERSION) {
645				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
646			} else {
647				ASSERT(zpool_prop_feature(nvpair_name(elem)));
648				ver = SPA_VERSION_FEATURES;
649				need_sync = B_TRUE;
650			}
651
652			/* Save time if the version is already set. */
653			if (ver == spa_version(spa))
654				continue;
655
656			/*
657			 * In addition to the pool directory object, we might
658			 * create the pool properties object, the features for
659			 * read object, the features for write object, or the
660			 * feature descriptions object.
661			 */
662			error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
663			    spa_sync_version, spa, &ver, 6);
664			if (error)
665				return (error);
666			continue;
667		}
668
669		need_sync = B_TRUE;
670		break;
671	}
672
673	if (need_sync) {
674		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
675		    spa, nvp, 6));
676	}
677
678	return (0);
679}
680
681/*
682 * If the bootfs property value is dsobj, clear it.
683 */
684void
685spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
686{
687	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
688		VERIFY(zap_remove(spa->spa_meta_objset,
689		    spa->spa_pool_props_object,
690		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
691		spa->spa_bootfs = 0;
692	}
693}
694
695/*ARGSUSED*/
696static int
697spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx)
698{
699	spa_t *spa = arg1;
700	uint64_t *newguid = arg2;
701	vdev_t *rvd = spa->spa_root_vdev;
702	uint64_t vdev_state;
703
704	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
705	vdev_state = rvd->vdev_state;
706	spa_config_exit(spa, SCL_STATE, FTAG);
707
708	if (vdev_state != VDEV_STATE_HEALTHY)
709		return (ENXIO);
710
711	ASSERT3U(spa_guid(spa), !=, *newguid);
712
713	return (0);
714}
715
716static void
717spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx)
718{
719	spa_t *spa = arg1;
720	uint64_t *newguid = arg2;
721	uint64_t oldguid;
722	vdev_t *rvd = spa->spa_root_vdev;
723
724	oldguid = spa_guid(spa);
725
726	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
727	rvd->vdev_guid = *newguid;
728	rvd->vdev_guid_sum += (*newguid - oldguid);
729	vdev_config_dirty(rvd);
730	spa_config_exit(spa, SCL_STATE, FTAG);
731
732#ifdef __FreeBSD__
733	/*
734	 * TODO: until recent illumos logging changes are merged
735	 *       log reguid as pool property change
736	 */
737	spa_history_log_internal(LOG_POOL_PROPSET, spa, tx,
738	    "guid change old=%llu new=%llu", oldguid, *newguid);
739#else
740	spa_history_log_internal(spa, "guid change", tx, "old=%lld new=%lld",
741	    oldguid, *newguid);
742#endif
743}
744
745/*
746 * Change the GUID for the pool.  This is done so that we can later
747 * re-import a pool built from a clone of our own vdevs.  We will modify
748 * the root vdev's guid, our own pool guid, and then mark all of our
749 * vdevs dirty.  Note that we must make sure that all our vdevs are
750 * online when we do this, or else any vdevs that weren't present
751 * would be orphaned from our pool.  We are also going to issue a
752 * sysevent to update any watchers.
753 */
754int
755spa_change_guid(spa_t *spa)
756{
757	int error;
758	uint64_t guid;
759
760	mutex_enter(&spa_namespace_lock);
761	guid = spa_generate_guid(NULL);
762
763	error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check,
764	    spa_change_guid_sync, spa, &guid, 5);
765
766	if (error == 0) {
767		spa_config_sync(spa, B_FALSE, B_TRUE);
768		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
769	}
770
771	mutex_exit(&spa_namespace_lock);
772
773	return (error);
774}
775
776/*
777 * ==========================================================================
778 * SPA state manipulation (open/create/destroy/import/export)
779 * ==========================================================================
780 */
781
782static int
783spa_error_entry_compare(const void *a, const void *b)
784{
785	spa_error_entry_t *sa = (spa_error_entry_t *)a;
786	spa_error_entry_t *sb = (spa_error_entry_t *)b;
787	int ret;
788
789	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790	    sizeof (zbookmark_t));
791
792	if (ret < 0)
793		return (-1);
794	else if (ret > 0)
795		return (1);
796	else
797		return (0);
798}
799
800/*
801 * Utility function which retrieves copies of the current logs and
802 * re-initializes them in the process.
803 */
804void
805spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806{
807	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808
809	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811
812	avl_create(&spa->spa_errlist_scrub,
813	    spa_error_entry_compare, sizeof (spa_error_entry_t),
814	    offsetof(spa_error_entry_t, se_avl));
815	avl_create(&spa->spa_errlist_last,
816	    spa_error_entry_compare, sizeof (spa_error_entry_t),
817	    offsetof(spa_error_entry_t, se_avl));
818}
819
820static taskq_t *
821spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
822    uint_t value)
823{
824	uint_t flags = TASKQ_PREPOPULATE;
825	boolean_t batch = B_FALSE;
826
827	switch (mode) {
828	case zti_mode_null:
829		return (NULL);		/* no taskq needed */
830
831	case zti_mode_fixed:
832		ASSERT3U(value, >=, 1);
833		value = MAX(value, 1);
834		break;
835
836	case zti_mode_batch:
837		batch = B_TRUE;
838		flags |= TASKQ_THREADS_CPU_PCT;
839		value = zio_taskq_batch_pct;
840		break;
841
842	case zti_mode_online_percent:
843		flags |= TASKQ_THREADS_CPU_PCT;
844		break;
845
846	default:
847		panic("unrecognized mode for %s taskq (%u:%u) in "
848		    "spa_activate()",
849		    name, mode, value);
850		break;
851	}
852
853#ifdef SYSDC
854	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
855		if (batch)
856			flags |= TASKQ_DC_BATCH;
857
858		return (taskq_create_sysdc(name, value, 50, INT_MAX,
859		    spa->spa_proc, zio_taskq_basedc, flags));
860	}
861#endif
862	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
863	    spa->spa_proc, flags));
864}
865
866static void
867spa_create_zio_taskqs(spa_t *spa)
868{
869	for (int t = 0; t < ZIO_TYPES; t++) {
870		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
871			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
872			enum zti_modes mode = ztip->zti_mode;
873			uint_t value = ztip->zti_value;
874			char name[32];
875
876			(void) snprintf(name, sizeof (name),
877			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
878
879			spa->spa_zio_taskq[t][q] =
880			    spa_taskq_create(spa, name, mode, value);
881		}
882	}
883}
884
885#ifdef _KERNEL
886#ifdef SPA_PROCESS
887static void
888spa_thread(void *arg)
889{
890	callb_cpr_t cprinfo;
891
892	spa_t *spa = arg;
893	user_t *pu = PTOU(curproc);
894
895	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
896	    spa->spa_name);
897
898	ASSERT(curproc != &p0);
899	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
900	    "zpool-%s", spa->spa_name);
901	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
902
903#ifdef PSRSET_BIND
904	/* bind this thread to the requested psrset */
905	if (zio_taskq_psrset_bind != PS_NONE) {
906		pool_lock();
907		mutex_enter(&cpu_lock);
908		mutex_enter(&pidlock);
909		mutex_enter(&curproc->p_lock);
910
911		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
912		    0, NULL, NULL) == 0)  {
913			curthread->t_bind_pset = zio_taskq_psrset_bind;
914		} else {
915			cmn_err(CE_WARN,
916			    "Couldn't bind process for zfs pool \"%s\" to "
917			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
918		}
919
920		mutex_exit(&curproc->p_lock);
921		mutex_exit(&pidlock);
922		mutex_exit(&cpu_lock);
923		pool_unlock();
924	}
925#endif
926
927#ifdef SYSDC
928	if (zio_taskq_sysdc) {
929		sysdc_thread_enter(curthread, 100, 0);
930	}
931#endif
932
933	spa->spa_proc = curproc;
934	spa->spa_did = curthread->t_did;
935
936	spa_create_zio_taskqs(spa);
937
938	mutex_enter(&spa->spa_proc_lock);
939	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
940
941	spa->spa_proc_state = SPA_PROC_ACTIVE;
942	cv_broadcast(&spa->spa_proc_cv);
943
944	CALLB_CPR_SAFE_BEGIN(&cprinfo);
945	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
946		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
947	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
948
949	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
950	spa->spa_proc_state = SPA_PROC_GONE;
951	spa->spa_proc = &p0;
952	cv_broadcast(&spa->spa_proc_cv);
953	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
954
955	mutex_enter(&curproc->p_lock);
956	lwp_exit();
957}
958#endif	/* SPA_PROCESS */
959#endif
960
961/*
962 * Activate an uninitialized pool.
963 */
964static void
965spa_activate(spa_t *spa, int mode)
966{
967	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
968
969	spa->spa_state = POOL_STATE_ACTIVE;
970	spa->spa_mode = mode;
971
972	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
973	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
974
975	/* Try to create a covering process */
976	mutex_enter(&spa->spa_proc_lock);
977	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
978	ASSERT(spa->spa_proc == &p0);
979	spa->spa_did = 0;
980
981#ifdef SPA_PROCESS
982	/* Only create a process if we're going to be around a while. */
983	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
984		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
985		    NULL, 0) == 0) {
986			spa->spa_proc_state = SPA_PROC_CREATED;
987			while (spa->spa_proc_state == SPA_PROC_CREATED) {
988				cv_wait(&spa->spa_proc_cv,
989				    &spa->spa_proc_lock);
990			}
991			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
992			ASSERT(spa->spa_proc != &p0);
993			ASSERT(spa->spa_did != 0);
994		} else {
995#ifdef _KERNEL
996			cmn_err(CE_WARN,
997			    "Couldn't create process for zfs pool \"%s\"\n",
998			    spa->spa_name);
999#endif
1000		}
1001	}
1002#endif	/* SPA_PROCESS */
1003	mutex_exit(&spa->spa_proc_lock);
1004
1005	/* If we didn't create a process, we need to create our taskqs. */
1006	ASSERT(spa->spa_proc == &p0);
1007	if (spa->spa_proc == &p0) {
1008		spa_create_zio_taskqs(spa);
1009	}
1010
1011	/*
1012	 * Start TRIM thread.
1013	 */
1014	trim_thread_create(spa);
1015
1016	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1017	    offsetof(vdev_t, vdev_config_dirty_node));
1018	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1019	    offsetof(vdev_t, vdev_state_dirty_node));
1020
1021	txg_list_create(&spa->spa_vdev_txg_list,
1022	    offsetof(struct vdev, vdev_txg_node));
1023
1024	avl_create(&spa->spa_errlist_scrub,
1025	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1026	    offsetof(spa_error_entry_t, se_avl));
1027	avl_create(&spa->spa_errlist_last,
1028	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1029	    offsetof(spa_error_entry_t, se_avl));
1030}
1031
1032/*
1033 * Opposite of spa_activate().
1034 */
1035static void
1036spa_deactivate(spa_t *spa)
1037{
1038	ASSERT(spa->spa_sync_on == B_FALSE);
1039	ASSERT(spa->spa_dsl_pool == NULL);
1040	ASSERT(spa->spa_root_vdev == NULL);
1041	ASSERT(spa->spa_async_zio_root == NULL);
1042	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1043
1044	/*
1045	 * Stop TRIM thread in case spa_unload() wasn't called directly
1046	 * before spa_deactivate().
1047	 */
1048	trim_thread_destroy(spa);
1049
1050	txg_list_destroy(&spa->spa_vdev_txg_list);
1051
1052	list_destroy(&spa->spa_config_dirty_list);
1053	list_destroy(&spa->spa_state_dirty_list);
1054
1055	for (int t = 0; t < ZIO_TYPES; t++) {
1056		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1057			if (spa->spa_zio_taskq[t][q] != NULL)
1058				taskq_destroy(spa->spa_zio_taskq[t][q]);
1059			spa->spa_zio_taskq[t][q] = NULL;
1060		}
1061	}
1062
1063	metaslab_class_destroy(spa->spa_normal_class);
1064	spa->spa_normal_class = NULL;
1065
1066	metaslab_class_destroy(spa->spa_log_class);
1067	spa->spa_log_class = NULL;
1068
1069	/*
1070	 * If this was part of an import or the open otherwise failed, we may
1071	 * still have errors left in the queues.  Empty them just in case.
1072	 */
1073	spa_errlog_drain(spa);
1074
1075	avl_destroy(&spa->spa_errlist_scrub);
1076	avl_destroy(&spa->spa_errlist_last);
1077
1078	spa->spa_state = POOL_STATE_UNINITIALIZED;
1079
1080	mutex_enter(&spa->spa_proc_lock);
1081	if (spa->spa_proc_state != SPA_PROC_NONE) {
1082		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1083		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1084		cv_broadcast(&spa->spa_proc_cv);
1085		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1086			ASSERT(spa->spa_proc != &p0);
1087			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1088		}
1089		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1090		spa->spa_proc_state = SPA_PROC_NONE;
1091	}
1092	ASSERT(spa->spa_proc == &p0);
1093	mutex_exit(&spa->spa_proc_lock);
1094
1095#ifdef SPA_PROCESS
1096	/*
1097	 * We want to make sure spa_thread() has actually exited the ZFS
1098	 * module, so that the module can't be unloaded out from underneath
1099	 * it.
1100	 */
1101	if (spa->spa_did != 0) {
1102		thread_join(spa->spa_did);
1103		spa->spa_did = 0;
1104	}
1105#endif	/* SPA_PROCESS */
1106}
1107
1108/*
1109 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1110 * will create all the necessary vdevs in the appropriate layout, with each vdev
1111 * in the CLOSED state.  This will prep the pool before open/creation/import.
1112 * All vdev validation is done by the vdev_alloc() routine.
1113 */
1114static int
1115spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1116    uint_t id, int atype)
1117{
1118	nvlist_t **child;
1119	uint_t children;
1120	int error;
1121
1122	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1123		return (error);
1124
1125	if ((*vdp)->vdev_ops->vdev_op_leaf)
1126		return (0);
1127
1128	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1129	    &child, &children);
1130
1131	if (error == ENOENT)
1132		return (0);
1133
1134	if (error) {
1135		vdev_free(*vdp);
1136		*vdp = NULL;
1137		return (EINVAL);
1138	}
1139
1140	for (int c = 0; c < children; c++) {
1141		vdev_t *vd;
1142		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1143		    atype)) != 0) {
1144			vdev_free(*vdp);
1145			*vdp = NULL;
1146			return (error);
1147		}
1148	}
1149
1150	ASSERT(*vdp != NULL);
1151
1152	return (0);
1153}
1154
1155/*
1156 * Opposite of spa_load().
1157 */
1158static void
1159spa_unload(spa_t *spa)
1160{
1161	int i;
1162
1163	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1164
1165	/*
1166	 * Stop TRIM thread.
1167	 */
1168	trim_thread_destroy(spa);
1169
1170	/*
1171	 * Stop async tasks.
1172	 */
1173	spa_async_suspend(spa);
1174
1175	/*
1176	 * Stop syncing.
1177	 */
1178	if (spa->spa_sync_on) {
1179		txg_sync_stop(spa->spa_dsl_pool);
1180		spa->spa_sync_on = B_FALSE;
1181	}
1182
1183	/*
1184	 * Wait for any outstanding async I/O to complete.
1185	 */
1186	if (spa->spa_async_zio_root != NULL) {
1187		(void) zio_wait(spa->spa_async_zio_root);
1188		spa->spa_async_zio_root = NULL;
1189	}
1190
1191	bpobj_close(&spa->spa_deferred_bpobj);
1192
1193	/*
1194	 * Close the dsl pool.
1195	 */
1196	if (spa->spa_dsl_pool) {
1197		dsl_pool_close(spa->spa_dsl_pool);
1198		spa->spa_dsl_pool = NULL;
1199		spa->spa_meta_objset = NULL;
1200	}
1201
1202	ddt_unload(spa);
1203
1204	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1205
1206	/*
1207	 * Drop and purge level 2 cache
1208	 */
1209	spa_l2cache_drop(spa);
1210
1211	/*
1212	 * Close all vdevs.
1213	 */
1214	if (spa->spa_root_vdev)
1215		vdev_free(spa->spa_root_vdev);
1216	ASSERT(spa->spa_root_vdev == NULL);
1217
1218	for (i = 0; i < spa->spa_spares.sav_count; i++)
1219		vdev_free(spa->spa_spares.sav_vdevs[i]);
1220	if (spa->spa_spares.sav_vdevs) {
1221		kmem_free(spa->spa_spares.sav_vdevs,
1222		    spa->spa_spares.sav_count * sizeof (void *));
1223		spa->spa_spares.sav_vdevs = NULL;
1224	}
1225	if (spa->spa_spares.sav_config) {
1226		nvlist_free(spa->spa_spares.sav_config);
1227		spa->spa_spares.sav_config = NULL;
1228	}
1229	spa->spa_spares.sav_count = 0;
1230
1231	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1232		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1233		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1234	}
1235	if (spa->spa_l2cache.sav_vdevs) {
1236		kmem_free(spa->spa_l2cache.sav_vdevs,
1237		    spa->spa_l2cache.sav_count * sizeof (void *));
1238		spa->spa_l2cache.sav_vdevs = NULL;
1239	}
1240	if (spa->spa_l2cache.sav_config) {
1241		nvlist_free(spa->spa_l2cache.sav_config);
1242		spa->spa_l2cache.sav_config = NULL;
1243	}
1244	spa->spa_l2cache.sav_count = 0;
1245
1246	spa->spa_async_suspended = 0;
1247
1248	if (spa->spa_comment != NULL) {
1249		spa_strfree(spa->spa_comment);
1250		spa->spa_comment = NULL;
1251	}
1252
1253	spa_config_exit(spa, SCL_ALL, FTAG);
1254}
1255
1256/*
1257 * Load (or re-load) the current list of vdevs describing the active spares for
1258 * this pool.  When this is called, we have some form of basic information in
1259 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1260 * then re-generate a more complete list including status information.
1261 */
1262static void
1263spa_load_spares(spa_t *spa)
1264{
1265	nvlist_t **spares;
1266	uint_t nspares;
1267	int i;
1268	vdev_t *vd, *tvd;
1269
1270	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1271
1272	/*
1273	 * First, close and free any existing spare vdevs.
1274	 */
1275	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1276		vd = spa->spa_spares.sav_vdevs[i];
1277
1278		/* Undo the call to spa_activate() below */
1279		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1280		    B_FALSE)) != NULL && tvd->vdev_isspare)
1281			spa_spare_remove(tvd);
1282		vdev_close(vd);
1283		vdev_free(vd);
1284	}
1285
1286	if (spa->spa_spares.sav_vdevs)
1287		kmem_free(spa->spa_spares.sav_vdevs,
1288		    spa->spa_spares.sav_count * sizeof (void *));
1289
1290	if (spa->spa_spares.sav_config == NULL)
1291		nspares = 0;
1292	else
1293		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1294		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1295
1296	spa->spa_spares.sav_count = (int)nspares;
1297	spa->spa_spares.sav_vdevs = NULL;
1298
1299	if (nspares == 0)
1300		return;
1301
1302	/*
1303	 * Construct the array of vdevs, opening them to get status in the
1304	 * process.   For each spare, there is potentially two different vdev_t
1305	 * structures associated with it: one in the list of spares (used only
1306	 * for basic validation purposes) and one in the active vdev
1307	 * configuration (if it's spared in).  During this phase we open and
1308	 * validate each vdev on the spare list.  If the vdev also exists in the
1309	 * active configuration, then we also mark this vdev as an active spare.
1310	 */
1311	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1312	    KM_SLEEP);
1313	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1314		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1315		    VDEV_ALLOC_SPARE) == 0);
1316		ASSERT(vd != NULL);
1317
1318		spa->spa_spares.sav_vdevs[i] = vd;
1319
1320		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1321		    B_FALSE)) != NULL) {
1322			if (!tvd->vdev_isspare)
1323				spa_spare_add(tvd);
1324
1325			/*
1326			 * We only mark the spare active if we were successfully
1327			 * able to load the vdev.  Otherwise, importing a pool
1328			 * with a bad active spare would result in strange
1329			 * behavior, because multiple pool would think the spare
1330			 * is actively in use.
1331			 *
1332			 * There is a vulnerability here to an equally bizarre
1333			 * circumstance, where a dead active spare is later
1334			 * brought back to life (onlined or otherwise).  Given
1335			 * the rarity of this scenario, and the extra complexity
1336			 * it adds, we ignore the possibility.
1337			 */
1338			if (!vdev_is_dead(tvd))
1339				spa_spare_activate(tvd);
1340		}
1341
1342		vd->vdev_top = vd;
1343		vd->vdev_aux = &spa->spa_spares;
1344
1345		if (vdev_open(vd) != 0)
1346			continue;
1347
1348		if (vdev_validate_aux(vd) == 0)
1349			spa_spare_add(vd);
1350	}
1351
1352	/*
1353	 * Recompute the stashed list of spares, with status information
1354	 * this time.
1355	 */
1356	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1357	    DATA_TYPE_NVLIST_ARRAY) == 0);
1358
1359	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1360	    KM_SLEEP);
1361	for (i = 0; i < spa->spa_spares.sav_count; i++)
1362		spares[i] = vdev_config_generate(spa,
1363		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1364	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1365	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1366	for (i = 0; i < spa->spa_spares.sav_count; i++)
1367		nvlist_free(spares[i]);
1368	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1369}
1370
1371/*
1372 * Load (or re-load) the current list of vdevs describing the active l2cache for
1373 * this pool.  When this is called, we have some form of basic information in
1374 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1375 * then re-generate a more complete list including status information.
1376 * Devices which are already active have their details maintained, and are
1377 * not re-opened.
1378 */
1379static void
1380spa_load_l2cache(spa_t *spa)
1381{
1382	nvlist_t **l2cache;
1383	uint_t nl2cache;
1384	int i, j, oldnvdevs;
1385	uint64_t guid;
1386	vdev_t *vd, **oldvdevs, **newvdevs;
1387	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1388
1389	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1390
1391	if (sav->sav_config != NULL) {
1392		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1393		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1394		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1395	} else {
1396		nl2cache = 0;
1397		newvdevs = NULL;
1398	}
1399
1400	oldvdevs = sav->sav_vdevs;
1401	oldnvdevs = sav->sav_count;
1402	sav->sav_vdevs = NULL;
1403	sav->sav_count = 0;
1404
1405	/*
1406	 * Process new nvlist of vdevs.
1407	 */
1408	for (i = 0; i < nl2cache; i++) {
1409		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1410		    &guid) == 0);
1411
1412		newvdevs[i] = NULL;
1413		for (j = 0; j < oldnvdevs; j++) {
1414			vd = oldvdevs[j];
1415			if (vd != NULL && guid == vd->vdev_guid) {
1416				/*
1417				 * Retain previous vdev for add/remove ops.
1418				 */
1419				newvdevs[i] = vd;
1420				oldvdevs[j] = NULL;
1421				break;
1422			}
1423		}
1424
1425		if (newvdevs[i] == NULL) {
1426			/*
1427			 * Create new vdev
1428			 */
1429			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1430			    VDEV_ALLOC_L2CACHE) == 0);
1431			ASSERT(vd != NULL);
1432			newvdevs[i] = vd;
1433
1434			/*
1435			 * Commit this vdev as an l2cache device,
1436			 * even if it fails to open.
1437			 */
1438			spa_l2cache_add(vd);
1439
1440			vd->vdev_top = vd;
1441			vd->vdev_aux = sav;
1442
1443			spa_l2cache_activate(vd);
1444
1445			if (vdev_open(vd) != 0)
1446				continue;
1447
1448			(void) vdev_validate_aux(vd);
1449
1450			if (!vdev_is_dead(vd))
1451				l2arc_add_vdev(spa, vd);
1452		}
1453	}
1454
1455	/*
1456	 * Purge vdevs that were dropped
1457	 */
1458	for (i = 0; i < oldnvdevs; i++) {
1459		uint64_t pool;
1460
1461		vd = oldvdevs[i];
1462		if (vd != NULL) {
1463			ASSERT(vd->vdev_isl2cache);
1464
1465			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1466			    pool != 0ULL && l2arc_vdev_present(vd))
1467				l2arc_remove_vdev(vd);
1468			vdev_clear_stats(vd);
1469			vdev_free(vd);
1470		}
1471	}
1472
1473	if (oldvdevs)
1474		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1475
1476	if (sav->sav_config == NULL)
1477		goto out;
1478
1479	sav->sav_vdevs = newvdevs;
1480	sav->sav_count = (int)nl2cache;
1481
1482	/*
1483	 * Recompute the stashed list of l2cache devices, with status
1484	 * information this time.
1485	 */
1486	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1487	    DATA_TYPE_NVLIST_ARRAY) == 0);
1488
1489	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1490	for (i = 0; i < sav->sav_count; i++)
1491		l2cache[i] = vdev_config_generate(spa,
1492		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1493	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1494	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1495out:
1496	for (i = 0; i < sav->sav_count; i++)
1497		nvlist_free(l2cache[i]);
1498	if (sav->sav_count)
1499		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1500}
1501
1502static int
1503load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1504{
1505	dmu_buf_t *db;
1506	char *packed = NULL;
1507	size_t nvsize = 0;
1508	int error;
1509	*value = NULL;
1510
1511	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1512	nvsize = *(uint64_t *)db->db_data;
1513	dmu_buf_rele(db, FTAG);
1514
1515	packed = kmem_alloc(nvsize, KM_SLEEP);
1516	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1517	    DMU_READ_PREFETCH);
1518	if (error == 0)
1519		error = nvlist_unpack(packed, nvsize, value, 0);
1520	kmem_free(packed, nvsize);
1521
1522	return (error);
1523}
1524
1525/*
1526 * Checks to see if the given vdev could not be opened, in which case we post a
1527 * sysevent to notify the autoreplace code that the device has been removed.
1528 */
1529static void
1530spa_check_removed(vdev_t *vd)
1531{
1532	for (int c = 0; c < vd->vdev_children; c++)
1533		spa_check_removed(vd->vdev_child[c]);
1534
1535	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1536		zfs_post_autoreplace(vd->vdev_spa, vd);
1537		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1538	}
1539}
1540
1541/*
1542 * Validate the current config against the MOS config
1543 */
1544static boolean_t
1545spa_config_valid(spa_t *spa, nvlist_t *config)
1546{
1547	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1548	nvlist_t *nv;
1549
1550	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1551
1552	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1553	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1554
1555	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1556
1557	/*
1558	 * If we're doing a normal import, then build up any additional
1559	 * diagnostic information about missing devices in this config.
1560	 * We'll pass this up to the user for further processing.
1561	 */
1562	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1563		nvlist_t **child, *nv;
1564		uint64_t idx = 0;
1565
1566		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1567		    KM_SLEEP);
1568		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1569
1570		for (int c = 0; c < rvd->vdev_children; c++) {
1571			vdev_t *tvd = rvd->vdev_child[c];
1572			vdev_t *mtvd  = mrvd->vdev_child[c];
1573
1574			if (tvd->vdev_ops == &vdev_missing_ops &&
1575			    mtvd->vdev_ops != &vdev_missing_ops &&
1576			    mtvd->vdev_islog)
1577				child[idx++] = vdev_config_generate(spa, mtvd,
1578				    B_FALSE, 0);
1579		}
1580
1581		if (idx) {
1582			VERIFY(nvlist_add_nvlist_array(nv,
1583			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1584			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1585			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1586
1587			for (int i = 0; i < idx; i++)
1588				nvlist_free(child[i]);
1589		}
1590		nvlist_free(nv);
1591		kmem_free(child, rvd->vdev_children * sizeof (char **));
1592	}
1593
1594	/*
1595	 * Compare the root vdev tree with the information we have
1596	 * from the MOS config (mrvd). Check each top-level vdev
1597	 * with the corresponding MOS config top-level (mtvd).
1598	 */
1599	for (int c = 0; c < rvd->vdev_children; c++) {
1600		vdev_t *tvd = rvd->vdev_child[c];
1601		vdev_t *mtvd  = mrvd->vdev_child[c];
1602
1603		/*
1604		 * Resolve any "missing" vdevs in the current configuration.
1605		 * If we find that the MOS config has more accurate information
1606		 * about the top-level vdev then use that vdev instead.
1607		 */
1608		if (tvd->vdev_ops == &vdev_missing_ops &&
1609		    mtvd->vdev_ops != &vdev_missing_ops) {
1610
1611			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1612				continue;
1613
1614			/*
1615			 * Device specific actions.
1616			 */
1617			if (mtvd->vdev_islog) {
1618				spa_set_log_state(spa, SPA_LOG_CLEAR);
1619			} else {
1620				/*
1621				 * XXX - once we have 'readonly' pool
1622				 * support we should be able to handle
1623				 * missing data devices by transitioning
1624				 * the pool to readonly.
1625				 */
1626				continue;
1627			}
1628
1629			/*
1630			 * Swap the missing vdev with the data we were
1631			 * able to obtain from the MOS config.
1632			 */
1633			vdev_remove_child(rvd, tvd);
1634			vdev_remove_child(mrvd, mtvd);
1635
1636			vdev_add_child(rvd, mtvd);
1637			vdev_add_child(mrvd, tvd);
1638
1639			spa_config_exit(spa, SCL_ALL, FTAG);
1640			vdev_load(mtvd);
1641			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1642
1643			vdev_reopen(rvd);
1644		} else if (mtvd->vdev_islog) {
1645			/*
1646			 * Load the slog device's state from the MOS config
1647			 * since it's possible that the label does not
1648			 * contain the most up-to-date information.
1649			 */
1650			vdev_load_log_state(tvd, mtvd);
1651			vdev_reopen(tvd);
1652		}
1653	}
1654	vdev_free(mrvd);
1655	spa_config_exit(spa, SCL_ALL, FTAG);
1656
1657	/*
1658	 * Ensure we were able to validate the config.
1659	 */
1660	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1661}
1662
1663/*
1664 * Check for missing log devices
1665 */
1666static int
1667spa_check_logs(spa_t *spa)
1668{
1669	switch (spa->spa_log_state) {
1670	case SPA_LOG_MISSING:
1671		/* need to recheck in case slog has been restored */
1672	case SPA_LOG_UNKNOWN:
1673		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1674		    DS_FIND_CHILDREN)) {
1675			spa_set_log_state(spa, SPA_LOG_MISSING);
1676			return (1);
1677		}
1678		break;
1679	}
1680	return (0);
1681}
1682
1683static boolean_t
1684spa_passivate_log(spa_t *spa)
1685{
1686	vdev_t *rvd = spa->spa_root_vdev;
1687	boolean_t slog_found = B_FALSE;
1688
1689	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1690
1691	if (!spa_has_slogs(spa))
1692		return (B_FALSE);
1693
1694	for (int c = 0; c < rvd->vdev_children; c++) {
1695		vdev_t *tvd = rvd->vdev_child[c];
1696		metaslab_group_t *mg = tvd->vdev_mg;
1697
1698		if (tvd->vdev_islog) {
1699			metaslab_group_passivate(mg);
1700			slog_found = B_TRUE;
1701		}
1702	}
1703
1704	return (slog_found);
1705}
1706
1707static void
1708spa_activate_log(spa_t *spa)
1709{
1710	vdev_t *rvd = spa->spa_root_vdev;
1711
1712	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1713
1714	for (int c = 0; c < rvd->vdev_children; c++) {
1715		vdev_t *tvd = rvd->vdev_child[c];
1716		metaslab_group_t *mg = tvd->vdev_mg;
1717
1718		if (tvd->vdev_islog)
1719			metaslab_group_activate(mg);
1720	}
1721}
1722
1723int
1724spa_offline_log(spa_t *spa)
1725{
1726	int error = 0;
1727
1728	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1729	    NULL, DS_FIND_CHILDREN)) == 0) {
1730
1731		/*
1732		 * We successfully offlined the log device, sync out the
1733		 * current txg so that the "stubby" block can be removed
1734		 * by zil_sync().
1735		 */
1736		txg_wait_synced(spa->spa_dsl_pool, 0);
1737	}
1738	return (error);
1739}
1740
1741static void
1742spa_aux_check_removed(spa_aux_vdev_t *sav)
1743{
1744	int i;
1745
1746	for (i = 0; i < sav->sav_count; i++)
1747		spa_check_removed(sav->sav_vdevs[i]);
1748}
1749
1750void
1751spa_claim_notify(zio_t *zio)
1752{
1753	spa_t *spa = zio->io_spa;
1754
1755	if (zio->io_error)
1756		return;
1757
1758	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1759	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1760		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1761	mutex_exit(&spa->spa_props_lock);
1762}
1763
1764typedef struct spa_load_error {
1765	uint64_t	sle_meta_count;
1766	uint64_t	sle_data_count;
1767} spa_load_error_t;
1768
1769static void
1770spa_load_verify_done(zio_t *zio)
1771{
1772	blkptr_t *bp = zio->io_bp;
1773	spa_load_error_t *sle = zio->io_private;
1774	dmu_object_type_t type = BP_GET_TYPE(bp);
1775	int error = zio->io_error;
1776
1777	if (error) {
1778		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1779		    type != DMU_OT_INTENT_LOG)
1780			atomic_add_64(&sle->sle_meta_count, 1);
1781		else
1782			atomic_add_64(&sle->sle_data_count, 1);
1783	}
1784	zio_data_buf_free(zio->io_data, zio->io_size);
1785}
1786
1787/*ARGSUSED*/
1788static int
1789spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1790    const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1791{
1792	if (bp != NULL) {
1793		zio_t *rio = arg;
1794		size_t size = BP_GET_PSIZE(bp);
1795		void *data = zio_data_buf_alloc(size);
1796
1797		zio_nowait(zio_read(rio, spa, bp, data, size,
1798		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1799		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1800		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1801	}
1802	return (0);
1803}
1804
1805static int
1806spa_load_verify(spa_t *spa)
1807{
1808	zio_t *rio;
1809	spa_load_error_t sle = { 0 };
1810	zpool_rewind_policy_t policy;
1811	boolean_t verify_ok = B_FALSE;
1812	int error;
1813
1814	zpool_get_rewind_policy(spa->spa_config, &policy);
1815
1816	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1817		return (0);
1818
1819	rio = zio_root(spa, NULL, &sle,
1820	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1821
1822	error = traverse_pool(spa, spa->spa_verify_min_txg,
1823	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1824
1825	(void) zio_wait(rio);
1826
1827	spa->spa_load_meta_errors = sle.sle_meta_count;
1828	spa->spa_load_data_errors = sle.sle_data_count;
1829
1830	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1831	    sle.sle_data_count <= policy.zrp_maxdata) {
1832		int64_t loss = 0;
1833
1834		verify_ok = B_TRUE;
1835		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1836		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1837
1838		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1839		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1840		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1841		VERIFY(nvlist_add_int64(spa->spa_load_info,
1842		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1843		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1844		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1845	} else {
1846		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1847	}
1848
1849	if (error) {
1850		if (error != ENXIO && error != EIO)
1851			error = EIO;
1852		return (error);
1853	}
1854
1855	return (verify_ok ? 0 : EIO);
1856}
1857
1858/*
1859 * Find a value in the pool props object.
1860 */
1861static void
1862spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1863{
1864	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1865	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1866}
1867
1868/*
1869 * Find a value in the pool directory object.
1870 */
1871static int
1872spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1873{
1874	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1875	    name, sizeof (uint64_t), 1, val));
1876}
1877
1878static int
1879spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1880{
1881	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1882	return (err);
1883}
1884
1885/*
1886 * Fix up config after a partly-completed split.  This is done with the
1887 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1888 * pool have that entry in their config, but only the splitting one contains
1889 * a list of all the guids of the vdevs that are being split off.
1890 *
1891 * This function determines what to do with that list: either rejoin
1892 * all the disks to the pool, or complete the splitting process.  To attempt
1893 * the rejoin, each disk that is offlined is marked online again, and
1894 * we do a reopen() call.  If the vdev label for every disk that was
1895 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1896 * then we call vdev_split() on each disk, and complete the split.
1897 *
1898 * Otherwise we leave the config alone, with all the vdevs in place in
1899 * the original pool.
1900 */
1901static void
1902spa_try_repair(spa_t *spa, nvlist_t *config)
1903{
1904	uint_t extracted;
1905	uint64_t *glist;
1906	uint_t i, gcount;
1907	nvlist_t *nvl;
1908	vdev_t **vd;
1909	boolean_t attempt_reopen;
1910
1911	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1912		return;
1913
1914	/* check that the config is complete */
1915	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1916	    &glist, &gcount) != 0)
1917		return;
1918
1919	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1920
1921	/* attempt to online all the vdevs & validate */
1922	attempt_reopen = B_TRUE;
1923	for (i = 0; i < gcount; i++) {
1924		if (glist[i] == 0)	/* vdev is hole */
1925			continue;
1926
1927		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1928		if (vd[i] == NULL) {
1929			/*
1930			 * Don't bother attempting to reopen the disks;
1931			 * just do the split.
1932			 */
1933			attempt_reopen = B_FALSE;
1934		} else {
1935			/* attempt to re-online it */
1936			vd[i]->vdev_offline = B_FALSE;
1937		}
1938	}
1939
1940	if (attempt_reopen) {
1941		vdev_reopen(spa->spa_root_vdev);
1942
1943		/* check each device to see what state it's in */
1944		for (extracted = 0, i = 0; i < gcount; i++) {
1945			if (vd[i] != NULL &&
1946			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1947				break;
1948			++extracted;
1949		}
1950	}
1951
1952	/*
1953	 * If every disk has been moved to the new pool, or if we never
1954	 * even attempted to look at them, then we split them off for
1955	 * good.
1956	 */
1957	if (!attempt_reopen || gcount == extracted) {
1958		for (i = 0; i < gcount; i++)
1959			if (vd[i] != NULL)
1960				vdev_split(vd[i]);
1961		vdev_reopen(spa->spa_root_vdev);
1962	}
1963
1964	kmem_free(vd, gcount * sizeof (vdev_t *));
1965}
1966
1967static int
1968spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1969    boolean_t mosconfig)
1970{
1971	nvlist_t *config = spa->spa_config;
1972	char *ereport = FM_EREPORT_ZFS_POOL;
1973	char *comment;
1974	int error;
1975	uint64_t pool_guid;
1976	nvlist_t *nvl;
1977
1978	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1979		return (EINVAL);
1980
1981	ASSERT(spa->spa_comment == NULL);
1982	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1983		spa->spa_comment = spa_strdup(comment);
1984
1985	/*
1986	 * Versioning wasn't explicitly added to the label until later, so if
1987	 * it's not present treat it as the initial version.
1988	 */
1989	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1990	    &spa->spa_ubsync.ub_version) != 0)
1991		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1992
1993	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1994	    &spa->spa_config_txg);
1995
1996	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1997	    spa_guid_exists(pool_guid, 0)) {
1998		error = EEXIST;
1999	} else {
2000		spa->spa_config_guid = pool_guid;
2001
2002		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2003		    &nvl) == 0) {
2004			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2005			    KM_SLEEP) == 0);
2006		}
2007
2008		nvlist_free(spa->spa_load_info);
2009		spa->spa_load_info = fnvlist_alloc();
2010
2011		gethrestime(&spa->spa_loaded_ts);
2012		error = spa_load_impl(spa, pool_guid, config, state, type,
2013		    mosconfig, &ereport);
2014	}
2015
2016	spa->spa_minref = refcount_count(&spa->spa_refcount);
2017	if (error) {
2018		if (error != EEXIST) {
2019			spa->spa_loaded_ts.tv_sec = 0;
2020			spa->spa_loaded_ts.tv_nsec = 0;
2021		}
2022		if (error != EBADF) {
2023			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2024		}
2025	}
2026	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2027	spa->spa_ena = 0;
2028
2029	return (error);
2030}
2031
2032/*
2033 * Load an existing storage pool, using the pool's builtin spa_config as a
2034 * source of configuration information.
2035 */
2036static int
2037spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2038    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2039    char **ereport)
2040{
2041	int error = 0;
2042	nvlist_t *nvroot = NULL;
2043	nvlist_t *label;
2044	vdev_t *rvd;
2045	uberblock_t *ub = &spa->spa_uberblock;
2046	uint64_t children, config_cache_txg = spa->spa_config_txg;
2047	int orig_mode = spa->spa_mode;
2048	int parse;
2049	uint64_t obj;
2050	boolean_t missing_feat_write = B_FALSE;
2051
2052	/*
2053	 * If this is an untrusted config, access the pool in read-only mode.
2054	 * This prevents things like resilvering recently removed devices.
2055	 */
2056	if (!mosconfig)
2057		spa->spa_mode = FREAD;
2058
2059	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2060
2061	spa->spa_load_state = state;
2062
2063	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2064		return (EINVAL);
2065
2066	parse = (type == SPA_IMPORT_EXISTING ?
2067	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2068
2069	/*
2070	 * Create "The Godfather" zio to hold all async IOs
2071	 */
2072	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2073	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2074
2075	/*
2076	 * Parse the configuration into a vdev tree.  We explicitly set the
2077	 * value that will be returned by spa_version() since parsing the
2078	 * configuration requires knowing the version number.
2079	 */
2080	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2081	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2082	spa_config_exit(spa, SCL_ALL, FTAG);
2083
2084	if (error != 0)
2085		return (error);
2086
2087	ASSERT(spa->spa_root_vdev == rvd);
2088
2089	if (type != SPA_IMPORT_ASSEMBLE) {
2090		ASSERT(spa_guid(spa) == pool_guid);
2091	}
2092
2093	/*
2094	 * Try to open all vdevs, loading each label in the process.
2095	 */
2096	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2097	error = vdev_open(rvd);
2098	spa_config_exit(spa, SCL_ALL, FTAG);
2099	if (error != 0)
2100		return (error);
2101
2102	/*
2103	 * We need to validate the vdev labels against the configuration that
2104	 * we have in hand, which is dependent on the setting of mosconfig. If
2105	 * mosconfig is true then we're validating the vdev labels based on
2106	 * that config.  Otherwise, we're validating against the cached config
2107	 * (zpool.cache) that was read when we loaded the zfs module, and then
2108	 * later we will recursively call spa_load() and validate against
2109	 * the vdev config.
2110	 *
2111	 * If we're assembling a new pool that's been split off from an
2112	 * existing pool, the labels haven't yet been updated so we skip
2113	 * validation for now.
2114	 */
2115	if (type != SPA_IMPORT_ASSEMBLE) {
2116		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2117		error = vdev_validate(rvd, mosconfig);
2118		spa_config_exit(spa, SCL_ALL, FTAG);
2119
2120		if (error != 0)
2121			return (error);
2122
2123		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2124			return (ENXIO);
2125	}
2126
2127	/*
2128	 * Find the best uberblock.
2129	 */
2130	vdev_uberblock_load(rvd, ub, &label);
2131
2132	/*
2133	 * If we weren't able to find a single valid uberblock, return failure.
2134	 */
2135	if (ub->ub_txg == 0) {
2136		nvlist_free(label);
2137		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2138	}
2139
2140	/*
2141	 * If the pool has an unsupported version we can't open it.
2142	 */
2143	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2144		nvlist_free(label);
2145		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2146	}
2147
2148	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2149		nvlist_t *features;
2150
2151		/*
2152		 * If we weren't able to find what's necessary for reading the
2153		 * MOS in the label, return failure.
2154		 */
2155		if (label == NULL || nvlist_lookup_nvlist(label,
2156		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2157			nvlist_free(label);
2158			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2159			    ENXIO));
2160		}
2161
2162		/*
2163		 * Update our in-core representation with the definitive values
2164		 * from the label.
2165		 */
2166		nvlist_free(spa->spa_label_features);
2167		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2168	}
2169
2170	nvlist_free(label);
2171
2172	/*
2173	 * Look through entries in the label nvlist's features_for_read. If
2174	 * there is a feature listed there which we don't understand then we
2175	 * cannot open a pool.
2176	 */
2177	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2178		nvlist_t *unsup_feat;
2179
2180		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2181		    0);
2182
2183		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2184		    NULL); nvp != NULL;
2185		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2186			if (!zfeature_is_supported(nvpair_name(nvp))) {
2187				VERIFY(nvlist_add_string(unsup_feat,
2188				    nvpair_name(nvp), "") == 0);
2189			}
2190		}
2191
2192		if (!nvlist_empty(unsup_feat)) {
2193			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2194			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2195			nvlist_free(unsup_feat);
2196			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2197			    ENOTSUP));
2198		}
2199
2200		nvlist_free(unsup_feat);
2201	}
2202
2203	/*
2204	 * If the vdev guid sum doesn't match the uberblock, we have an
2205	 * incomplete configuration.  We first check to see if the pool
2206	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2207	 * If it is, defer the vdev_guid_sum check till later so we
2208	 * can handle missing vdevs.
2209	 */
2210	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2211	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2212	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2213		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2214
2215	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2216		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2217		spa_try_repair(spa, config);
2218		spa_config_exit(spa, SCL_ALL, FTAG);
2219		nvlist_free(spa->spa_config_splitting);
2220		spa->spa_config_splitting = NULL;
2221	}
2222
2223	/*
2224	 * Initialize internal SPA structures.
2225	 */
2226	spa->spa_state = POOL_STATE_ACTIVE;
2227	spa->spa_ubsync = spa->spa_uberblock;
2228	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2229	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2230	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2231	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2232	spa->spa_claim_max_txg = spa->spa_first_txg;
2233	spa->spa_prev_software_version = ub->ub_software_version;
2234
2235	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2236	if (error)
2237		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2238	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2239
2240	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2241		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2242
2243	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2244		boolean_t missing_feat_read = B_FALSE;
2245		nvlist_t *unsup_feat, *enabled_feat;
2246
2247		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2248		    &spa->spa_feat_for_read_obj) != 0) {
2249			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2250		}
2251
2252		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2253		    &spa->spa_feat_for_write_obj) != 0) {
2254			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2255		}
2256
2257		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2258		    &spa->spa_feat_desc_obj) != 0) {
2259			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2260		}
2261
2262		enabled_feat = fnvlist_alloc();
2263		unsup_feat = fnvlist_alloc();
2264
2265		if (!feature_is_supported(spa->spa_meta_objset,
2266		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2267		    unsup_feat, enabled_feat))
2268			missing_feat_read = B_TRUE;
2269
2270		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2271			if (!feature_is_supported(spa->spa_meta_objset,
2272			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2273			    unsup_feat, enabled_feat)) {
2274				missing_feat_write = B_TRUE;
2275			}
2276		}
2277
2278		fnvlist_add_nvlist(spa->spa_load_info,
2279		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2280
2281		if (!nvlist_empty(unsup_feat)) {
2282			fnvlist_add_nvlist(spa->spa_load_info,
2283			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2284		}
2285
2286		fnvlist_free(enabled_feat);
2287		fnvlist_free(unsup_feat);
2288
2289		if (!missing_feat_read) {
2290			fnvlist_add_boolean(spa->spa_load_info,
2291			    ZPOOL_CONFIG_CAN_RDONLY);
2292		}
2293
2294		/*
2295		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2296		 * twofold: to determine whether the pool is available for
2297		 * import in read-write mode and (if it is not) whether the
2298		 * pool is available for import in read-only mode. If the pool
2299		 * is available for import in read-write mode, it is displayed
2300		 * as available in userland; if it is not available for import
2301		 * in read-only mode, it is displayed as unavailable in
2302		 * userland. If the pool is available for import in read-only
2303		 * mode but not read-write mode, it is displayed as unavailable
2304		 * in userland with a special note that the pool is actually
2305		 * available for open in read-only mode.
2306		 *
2307		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2308		 * missing a feature for write, we must first determine whether
2309		 * the pool can be opened read-only before returning to
2310		 * userland in order to know whether to display the
2311		 * abovementioned note.
2312		 */
2313		if (missing_feat_read || (missing_feat_write &&
2314		    spa_writeable(spa))) {
2315			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2316			    ENOTSUP));
2317		}
2318	}
2319
2320	spa->spa_is_initializing = B_TRUE;
2321	error = dsl_pool_open(spa->spa_dsl_pool);
2322	spa->spa_is_initializing = B_FALSE;
2323	if (error != 0)
2324		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2325
2326	if (!mosconfig) {
2327		uint64_t hostid;
2328		nvlist_t *policy = NULL, *nvconfig;
2329
2330		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2331			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2332
2333		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2334		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2335			char *hostname;
2336			unsigned long myhostid = 0;
2337
2338			VERIFY(nvlist_lookup_string(nvconfig,
2339			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2340
2341#ifdef	_KERNEL
2342			myhostid = zone_get_hostid(NULL);
2343#else	/* _KERNEL */
2344			/*
2345			 * We're emulating the system's hostid in userland, so
2346			 * we can't use zone_get_hostid().
2347			 */
2348			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2349#endif	/* _KERNEL */
2350			if (check_hostid && hostid != 0 && myhostid != 0 &&
2351			    hostid != myhostid) {
2352				nvlist_free(nvconfig);
2353				cmn_err(CE_WARN, "pool '%s' could not be "
2354				    "loaded as it was last accessed by "
2355				    "another system (host: %s hostid: 0x%lx). "
2356				    "See: http://illumos.org/msg/ZFS-8000-EY",
2357				    spa_name(spa), hostname,
2358				    (unsigned long)hostid);
2359				return (EBADF);
2360			}
2361		}
2362		if (nvlist_lookup_nvlist(spa->spa_config,
2363		    ZPOOL_REWIND_POLICY, &policy) == 0)
2364			VERIFY(nvlist_add_nvlist(nvconfig,
2365			    ZPOOL_REWIND_POLICY, policy) == 0);
2366
2367		spa_config_set(spa, nvconfig);
2368		spa_unload(spa);
2369		spa_deactivate(spa);
2370		spa_activate(spa, orig_mode);
2371
2372		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2373	}
2374
2375	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2376		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2377	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2378	if (error != 0)
2379		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2380
2381	/*
2382	 * Load the bit that tells us to use the new accounting function
2383	 * (raid-z deflation).  If we have an older pool, this will not
2384	 * be present.
2385	 */
2386	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2387	if (error != 0 && error != ENOENT)
2388		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2389
2390	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2391	    &spa->spa_creation_version);
2392	if (error != 0 && error != ENOENT)
2393		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2394
2395	/*
2396	 * Load the persistent error log.  If we have an older pool, this will
2397	 * not be present.
2398	 */
2399	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2400	if (error != 0 && error != ENOENT)
2401		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2402
2403	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2404	    &spa->spa_errlog_scrub);
2405	if (error != 0 && error != ENOENT)
2406		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2407
2408	/*
2409	 * Load the history object.  If we have an older pool, this
2410	 * will not be present.
2411	 */
2412	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2413	if (error != 0 && error != ENOENT)
2414		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2415
2416	/*
2417	 * If we're assembling the pool from the split-off vdevs of
2418	 * an existing pool, we don't want to attach the spares & cache
2419	 * devices.
2420	 */
2421
2422	/*
2423	 * Load any hot spares for this pool.
2424	 */
2425	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2426	if (error != 0 && error != ENOENT)
2427		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2428	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2429		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2430		if (load_nvlist(spa, spa->spa_spares.sav_object,
2431		    &spa->spa_spares.sav_config) != 0)
2432			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2433
2434		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2435		spa_load_spares(spa);
2436		spa_config_exit(spa, SCL_ALL, FTAG);
2437	} else if (error == 0) {
2438		spa->spa_spares.sav_sync = B_TRUE;
2439	}
2440
2441	/*
2442	 * Load any level 2 ARC devices for this pool.
2443	 */
2444	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2445	    &spa->spa_l2cache.sav_object);
2446	if (error != 0 && error != ENOENT)
2447		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2449		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2450		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2451		    &spa->spa_l2cache.sav_config) != 0)
2452			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2453
2454		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2455		spa_load_l2cache(spa);
2456		spa_config_exit(spa, SCL_ALL, FTAG);
2457	} else if (error == 0) {
2458		spa->spa_l2cache.sav_sync = B_TRUE;
2459	}
2460
2461	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2462
2463	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2464	if (error && error != ENOENT)
2465		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466
2467	if (error == 0) {
2468		uint64_t autoreplace;
2469
2470		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2471		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2472		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2473		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2474		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2475		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2476		    &spa->spa_dedup_ditto);
2477
2478		spa->spa_autoreplace = (autoreplace != 0);
2479	}
2480
2481	/*
2482	 * If the 'autoreplace' property is set, then post a resource notifying
2483	 * the ZFS DE that it should not issue any faults for unopenable
2484	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2485	 * unopenable vdevs so that the normal autoreplace handler can take
2486	 * over.
2487	 */
2488	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2489		spa_check_removed(spa->spa_root_vdev);
2490		/*
2491		 * For the import case, this is done in spa_import(), because
2492		 * at this point we're using the spare definitions from
2493		 * the MOS config, not necessarily from the userland config.
2494		 */
2495		if (state != SPA_LOAD_IMPORT) {
2496			spa_aux_check_removed(&spa->spa_spares);
2497			spa_aux_check_removed(&spa->spa_l2cache);
2498		}
2499	}
2500
2501	/*
2502	 * Load the vdev state for all toplevel vdevs.
2503	 */
2504	vdev_load(rvd);
2505
2506	/*
2507	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2508	 */
2509	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2510	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2511	spa_config_exit(spa, SCL_ALL, FTAG);
2512
2513	/*
2514	 * Load the DDTs (dedup tables).
2515	 */
2516	error = ddt_load(spa);
2517	if (error != 0)
2518		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2519
2520	spa_update_dspace(spa);
2521
2522	/*
2523	 * Validate the config, using the MOS config to fill in any
2524	 * information which might be missing.  If we fail to validate
2525	 * the config then declare the pool unfit for use. If we're
2526	 * assembling a pool from a split, the log is not transferred
2527	 * over.
2528	 */
2529	if (type != SPA_IMPORT_ASSEMBLE) {
2530		nvlist_t *nvconfig;
2531
2532		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2533			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2534
2535		if (!spa_config_valid(spa, nvconfig)) {
2536			nvlist_free(nvconfig);
2537			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2538			    ENXIO));
2539		}
2540		nvlist_free(nvconfig);
2541
2542		/*
2543		 * Now that we've validated the config, check the state of the
2544		 * root vdev.  If it can't be opened, it indicates one or
2545		 * more toplevel vdevs are faulted.
2546		 */
2547		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2548			return (ENXIO);
2549
2550		if (spa_check_logs(spa)) {
2551			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2552			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2553		}
2554	}
2555
2556	if (missing_feat_write) {
2557		ASSERT(state == SPA_LOAD_TRYIMPORT);
2558
2559		/*
2560		 * At this point, we know that we can open the pool in
2561		 * read-only mode but not read-write mode. We now have enough
2562		 * information and can return to userland.
2563		 */
2564		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2565	}
2566
2567	/*
2568	 * We've successfully opened the pool, verify that we're ready
2569	 * to start pushing transactions.
2570	 */
2571	if (state != SPA_LOAD_TRYIMPORT) {
2572		if (error = spa_load_verify(spa))
2573			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2574			    error));
2575	}
2576
2577	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2578	    spa->spa_load_max_txg == UINT64_MAX)) {
2579		dmu_tx_t *tx;
2580		int need_update = B_FALSE;
2581
2582		ASSERT(state != SPA_LOAD_TRYIMPORT);
2583
2584		/*
2585		 * Claim log blocks that haven't been committed yet.
2586		 * This must all happen in a single txg.
2587		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2588		 * invoked from zil_claim_log_block()'s i/o done callback.
2589		 * Price of rollback is that we abandon the log.
2590		 */
2591		spa->spa_claiming = B_TRUE;
2592
2593		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2594		    spa_first_txg(spa));
2595		(void) dmu_objset_find(spa_name(spa),
2596		    zil_claim, tx, DS_FIND_CHILDREN);
2597		dmu_tx_commit(tx);
2598
2599		spa->spa_claiming = B_FALSE;
2600
2601		spa_set_log_state(spa, SPA_LOG_GOOD);
2602		spa->spa_sync_on = B_TRUE;
2603		txg_sync_start(spa->spa_dsl_pool);
2604
2605		/*
2606		 * Wait for all claims to sync.  We sync up to the highest
2607		 * claimed log block birth time so that claimed log blocks
2608		 * don't appear to be from the future.  spa_claim_max_txg
2609		 * will have been set for us by either zil_check_log_chain()
2610		 * (invoked from spa_check_logs()) or zil_claim() above.
2611		 */
2612		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2613
2614		/*
2615		 * If the config cache is stale, or we have uninitialized
2616		 * metaslabs (see spa_vdev_add()), then update the config.
2617		 *
2618		 * If this is a verbatim import, trust the current
2619		 * in-core spa_config and update the disk labels.
2620		 */
2621		if (config_cache_txg != spa->spa_config_txg ||
2622		    state == SPA_LOAD_IMPORT ||
2623		    state == SPA_LOAD_RECOVER ||
2624		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2625			need_update = B_TRUE;
2626
2627		for (int c = 0; c < rvd->vdev_children; c++)
2628			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2629				need_update = B_TRUE;
2630
2631		/*
2632		 * Update the config cache asychronously in case we're the
2633		 * root pool, in which case the config cache isn't writable yet.
2634		 */
2635		if (need_update)
2636			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2637
2638		/*
2639		 * Check all DTLs to see if anything needs resilvering.
2640		 */
2641		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2642		    vdev_resilver_needed(rvd, NULL, NULL))
2643			spa_async_request(spa, SPA_ASYNC_RESILVER);
2644
2645		/*
2646		 * Delete any inconsistent datasets.
2647		 */
2648		(void) dmu_objset_find(spa_name(spa),
2649		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2650
2651		/*
2652		 * Clean up any stale temporary dataset userrefs.
2653		 */
2654		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2655	}
2656
2657	return (0);
2658}
2659
2660static int
2661spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2662{
2663	int mode = spa->spa_mode;
2664
2665	spa_unload(spa);
2666	spa_deactivate(spa);
2667
2668	spa->spa_load_max_txg--;
2669
2670	spa_activate(spa, mode);
2671	spa_async_suspend(spa);
2672
2673	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2674}
2675
2676/*
2677 * If spa_load() fails this function will try loading prior txg's. If
2678 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2679 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2680 * function will not rewind the pool and will return the same error as
2681 * spa_load().
2682 */
2683static int
2684spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2685    uint64_t max_request, int rewind_flags)
2686{
2687	nvlist_t *loadinfo = NULL;
2688	nvlist_t *config = NULL;
2689	int load_error, rewind_error;
2690	uint64_t safe_rewind_txg;
2691	uint64_t min_txg;
2692
2693	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2694		spa->spa_load_max_txg = spa->spa_load_txg;
2695		spa_set_log_state(spa, SPA_LOG_CLEAR);
2696	} else {
2697		spa->spa_load_max_txg = max_request;
2698	}
2699
2700	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2701	    mosconfig);
2702	if (load_error == 0)
2703		return (0);
2704
2705	if (spa->spa_root_vdev != NULL)
2706		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2707
2708	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2709	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2710
2711	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2712		nvlist_free(config);
2713		return (load_error);
2714	}
2715
2716	if (state == SPA_LOAD_RECOVER) {
2717		/* Price of rolling back is discarding txgs, including log */
2718		spa_set_log_state(spa, SPA_LOG_CLEAR);
2719	} else {
2720		/*
2721		 * If we aren't rolling back save the load info from our first
2722		 * import attempt so that we can restore it after attempting
2723		 * to rewind.
2724		 */
2725		loadinfo = spa->spa_load_info;
2726		spa->spa_load_info = fnvlist_alloc();
2727	}
2728
2729	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2730	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2731	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2732	    TXG_INITIAL : safe_rewind_txg;
2733
2734	/*
2735	 * Continue as long as we're finding errors, we're still within
2736	 * the acceptable rewind range, and we're still finding uberblocks
2737	 */
2738	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2739	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2740		if (spa->spa_load_max_txg < safe_rewind_txg)
2741			spa->spa_extreme_rewind = B_TRUE;
2742		rewind_error = spa_load_retry(spa, state, mosconfig);
2743	}
2744
2745	spa->spa_extreme_rewind = B_FALSE;
2746	spa->spa_load_max_txg = UINT64_MAX;
2747
2748	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2749		spa_config_set(spa, config);
2750
2751	if (state == SPA_LOAD_RECOVER) {
2752		ASSERT3P(loadinfo, ==, NULL);
2753		return (rewind_error);
2754	} else {
2755		/* Store the rewind info as part of the initial load info */
2756		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2757		    spa->spa_load_info);
2758
2759		/* Restore the initial load info */
2760		fnvlist_free(spa->spa_load_info);
2761		spa->spa_load_info = loadinfo;
2762
2763		return (load_error);
2764	}
2765}
2766
2767/*
2768 * Pool Open/Import
2769 *
2770 * The import case is identical to an open except that the configuration is sent
2771 * down from userland, instead of grabbed from the configuration cache.  For the
2772 * case of an open, the pool configuration will exist in the
2773 * POOL_STATE_UNINITIALIZED state.
2774 *
2775 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2776 * the same time open the pool, without having to keep around the spa_t in some
2777 * ambiguous state.
2778 */
2779static int
2780spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2781    nvlist_t **config)
2782{
2783	spa_t *spa;
2784	spa_load_state_t state = SPA_LOAD_OPEN;
2785	int error;
2786	int locked = B_FALSE;
2787	int firstopen = B_FALSE;
2788
2789	*spapp = NULL;
2790
2791	/*
2792	 * As disgusting as this is, we need to support recursive calls to this
2793	 * function because dsl_dir_open() is called during spa_load(), and ends
2794	 * up calling spa_open() again.  The real fix is to figure out how to
2795	 * avoid dsl_dir_open() calling this in the first place.
2796	 */
2797	if (mutex_owner(&spa_namespace_lock) != curthread) {
2798		mutex_enter(&spa_namespace_lock);
2799		locked = B_TRUE;
2800	}
2801
2802	if ((spa = spa_lookup(pool)) == NULL) {
2803		if (locked)
2804			mutex_exit(&spa_namespace_lock);
2805		return (ENOENT);
2806	}
2807
2808	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2809		zpool_rewind_policy_t policy;
2810
2811		firstopen = B_TRUE;
2812
2813		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2814		    &policy);
2815		if (policy.zrp_request & ZPOOL_DO_REWIND)
2816			state = SPA_LOAD_RECOVER;
2817
2818		spa_activate(spa, spa_mode_global);
2819
2820		if (state != SPA_LOAD_RECOVER)
2821			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2822
2823		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2824		    policy.zrp_request);
2825
2826		if (error == EBADF) {
2827			/*
2828			 * If vdev_validate() returns failure (indicated by
2829			 * EBADF), it indicates that one of the vdevs indicates
2830			 * that the pool has been exported or destroyed.  If
2831			 * this is the case, the config cache is out of sync and
2832			 * we should remove the pool from the namespace.
2833			 */
2834			spa_unload(spa);
2835			spa_deactivate(spa);
2836			spa_config_sync(spa, B_TRUE, B_TRUE);
2837			spa_remove(spa);
2838			if (locked)
2839				mutex_exit(&spa_namespace_lock);
2840			return (ENOENT);
2841		}
2842
2843		if (error) {
2844			/*
2845			 * We can't open the pool, but we still have useful
2846			 * information: the state of each vdev after the
2847			 * attempted vdev_open().  Return this to the user.
2848			 */
2849			if (config != NULL && spa->spa_config) {
2850				VERIFY(nvlist_dup(spa->spa_config, config,
2851				    KM_SLEEP) == 0);
2852				VERIFY(nvlist_add_nvlist(*config,
2853				    ZPOOL_CONFIG_LOAD_INFO,
2854				    spa->spa_load_info) == 0);
2855			}
2856			spa_unload(spa);
2857			spa_deactivate(spa);
2858			spa->spa_last_open_failed = error;
2859			if (locked)
2860				mutex_exit(&spa_namespace_lock);
2861			*spapp = NULL;
2862			return (error);
2863		}
2864	}
2865
2866	spa_open_ref(spa, tag);
2867
2868	if (config != NULL)
2869		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2870
2871	/*
2872	 * If we've recovered the pool, pass back any information we
2873	 * gathered while doing the load.
2874	 */
2875	if (state == SPA_LOAD_RECOVER) {
2876		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2877		    spa->spa_load_info) == 0);
2878	}
2879
2880	if (locked) {
2881		spa->spa_last_open_failed = 0;
2882		spa->spa_last_ubsync_txg = 0;
2883		spa->spa_load_txg = 0;
2884		mutex_exit(&spa_namespace_lock);
2885#ifdef __FreeBSD__
2886#ifdef _KERNEL
2887		if (firstopen)
2888			zvol_create_minors(pool);
2889#endif
2890#endif
2891	}
2892
2893	*spapp = spa;
2894
2895	return (0);
2896}
2897
2898int
2899spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2900    nvlist_t **config)
2901{
2902	return (spa_open_common(name, spapp, tag, policy, config));
2903}
2904
2905int
2906spa_open(const char *name, spa_t **spapp, void *tag)
2907{
2908	return (spa_open_common(name, spapp, tag, NULL, NULL));
2909}
2910
2911/*
2912 * Lookup the given spa_t, incrementing the inject count in the process,
2913 * preventing it from being exported or destroyed.
2914 */
2915spa_t *
2916spa_inject_addref(char *name)
2917{
2918	spa_t *spa;
2919
2920	mutex_enter(&spa_namespace_lock);
2921	if ((spa = spa_lookup(name)) == NULL) {
2922		mutex_exit(&spa_namespace_lock);
2923		return (NULL);
2924	}
2925	spa->spa_inject_ref++;
2926	mutex_exit(&spa_namespace_lock);
2927
2928	return (spa);
2929}
2930
2931void
2932spa_inject_delref(spa_t *spa)
2933{
2934	mutex_enter(&spa_namespace_lock);
2935	spa->spa_inject_ref--;
2936	mutex_exit(&spa_namespace_lock);
2937}
2938
2939/*
2940 * Add spares device information to the nvlist.
2941 */
2942static void
2943spa_add_spares(spa_t *spa, nvlist_t *config)
2944{
2945	nvlist_t **spares;
2946	uint_t i, nspares;
2947	nvlist_t *nvroot;
2948	uint64_t guid;
2949	vdev_stat_t *vs;
2950	uint_t vsc;
2951	uint64_t pool;
2952
2953	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2954
2955	if (spa->spa_spares.sav_count == 0)
2956		return;
2957
2958	VERIFY(nvlist_lookup_nvlist(config,
2959	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2960	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2961	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2962	if (nspares != 0) {
2963		VERIFY(nvlist_add_nvlist_array(nvroot,
2964		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2965		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2966		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2967
2968		/*
2969		 * Go through and find any spares which have since been
2970		 * repurposed as an active spare.  If this is the case, update
2971		 * their status appropriately.
2972		 */
2973		for (i = 0; i < nspares; i++) {
2974			VERIFY(nvlist_lookup_uint64(spares[i],
2975			    ZPOOL_CONFIG_GUID, &guid) == 0);
2976			if (spa_spare_exists(guid, &pool, NULL) &&
2977			    pool != 0ULL) {
2978				VERIFY(nvlist_lookup_uint64_array(
2979				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2980				    (uint64_t **)&vs, &vsc) == 0);
2981				vs->vs_state = VDEV_STATE_CANT_OPEN;
2982				vs->vs_aux = VDEV_AUX_SPARED;
2983			}
2984		}
2985	}
2986}
2987
2988/*
2989 * Add l2cache device information to the nvlist, including vdev stats.
2990 */
2991static void
2992spa_add_l2cache(spa_t *spa, nvlist_t *config)
2993{
2994	nvlist_t **l2cache;
2995	uint_t i, j, nl2cache;
2996	nvlist_t *nvroot;
2997	uint64_t guid;
2998	vdev_t *vd;
2999	vdev_stat_t *vs;
3000	uint_t vsc;
3001
3002	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3003
3004	if (spa->spa_l2cache.sav_count == 0)
3005		return;
3006
3007	VERIFY(nvlist_lookup_nvlist(config,
3008	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3009	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3010	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3011	if (nl2cache != 0) {
3012		VERIFY(nvlist_add_nvlist_array(nvroot,
3013		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3014		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3015		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3016
3017		/*
3018		 * Update level 2 cache device stats.
3019		 */
3020
3021		for (i = 0; i < nl2cache; i++) {
3022			VERIFY(nvlist_lookup_uint64(l2cache[i],
3023			    ZPOOL_CONFIG_GUID, &guid) == 0);
3024
3025			vd = NULL;
3026			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3027				if (guid ==
3028				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3029					vd = spa->spa_l2cache.sav_vdevs[j];
3030					break;
3031				}
3032			}
3033			ASSERT(vd != NULL);
3034
3035			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3036			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3037			    == 0);
3038			vdev_get_stats(vd, vs);
3039		}
3040	}
3041}
3042
3043static void
3044spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3045{
3046	nvlist_t *features;
3047	zap_cursor_t zc;
3048	zap_attribute_t za;
3049
3050	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3051	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3052
3053	if (spa->spa_feat_for_read_obj != 0) {
3054		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3055		    spa->spa_feat_for_read_obj);
3056		    zap_cursor_retrieve(&zc, &za) == 0;
3057		    zap_cursor_advance(&zc)) {
3058			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3059			    za.za_num_integers == 1);
3060			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3061			    za.za_first_integer));
3062		}
3063		zap_cursor_fini(&zc);
3064	}
3065
3066	if (spa->spa_feat_for_write_obj != 0) {
3067		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3068		    spa->spa_feat_for_write_obj);
3069		    zap_cursor_retrieve(&zc, &za) == 0;
3070		    zap_cursor_advance(&zc)) {
3071			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3072			    za.za_num_integers == 1);
3073			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3074			    za.za_first_integer));
3075		}
3076		zap_cursor_fini(&zc);
3077	}
3078
3079	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3080	    features) == 0);
3081	nvlist_free(features);
3082}
3083
3084int
3085spa_get_stats(const char *name, nvlist_t **config,
3086    char *altroot, size_t buflen)
3087{
3088	int error;
3089	spa_t *spa;
3090
3091	*config = NULL;
3092	error = spa_open_common(name, &spa, FTAG, NULL, config);
3093
3094	if (spa != NULL) {
3095		/*
3096		 * This still leaves a window of inconsistency where the spares
3097		 * or l2cache devices could change and the config would be
3098		 * self-inconsistent.
3099		 */
3100		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3101
3102		if (*config != NULL) {
3103			uint64_t loadtimes[2];
3104
3105			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3106			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3107			VERIFY(nvlist_add_uint64_array(*config,
3108			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3109
3110			VERIFY(nvlist_add_uint64(*config,
3111			    ZPOOL_CONFIG_ERRCOUNT,
3112			    spa_get_errlog_size(spa)) == 0);
3113
3114			if (spa_suspended(spa))
3115				VERIFY(nvlist_add_uint64(*config,
3116				    ZPOOL_CONFIG_SUSPENDED,
3117				    spa->spa_failmode) == 0);
3118
3119			spa_add_spares(spa, *config);
3120			spa_add_l2cache(spa, *config);
3121			spa_add_feature_stats(spa, *config);
3122		}
3123	}
3124
3125	/*
3126	 * We want to get the alternate root even for faulted pools, so we cheat
3127	 * and call spa_lookup() directly.
3128	 */
3129	if (altroot) {
3130		if (spa == NULL) {
3131			mutex_enter(&spa_namespace_lock);
3132			spa = spa_lookup(name);
3133			if (spa)
3134				spa_altroot(spa, altroot, buflen);
3135			else
3136				altroot[0] = '\0';
3137			spa = NULL;
3138			mutex_exit(&spa_namespace_lock);
3139		} else {
3140			spa_altroot(spa, altroot, buflen);
3141		}
3142	}
3143
3144	if (spa != NULL) {
3145		spa_config_exit(spa, SCL_CONFIG, FTAG);
3146		spa_close(spa, FTAG);
3147	}
3148
3149	return (error);
3150}
3151
3152/*
3153 * Validate that the auxiliary device array is well formed.  We must have an
3154 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3155 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3156 * specified, as long as they are well-formed.
3157 */
3158static int
3159spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3160    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3161    vdev_labeltype_t label)
3162{
3163	nvlist_t **dev;
3164	uint_t i, ndev;
3165	vdev_t *vd;
3166	int error;
3167
3168	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3169
3170	/*
3171	 * It's acceptable to have no devs specified.
3172	 */
3173	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3174		return (0);
3175
3176	if (ndev == 0)
3177		return (EINVAL);
3178
3179	/*
3180	 * Make sure the pool is formatted with a version that supports this
3181	 * device type.
3182	 */
3183	if (spa_version(spa) < version)
3184		return (ENOTSUP);
3185
3186	/*
3187	 * Set the pending device list so we correctly handle device in-use
3188	 * checking.
3189	 */
3190	sav->sav_pending = dev;
3191	sav->sav_npending = ndev;
3192
3193	for (i = 0; i < ndev; i++) {
3194		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3195		    mode)) != 0)
3196			goto out;
3197
3198		if (!vd->vdev_ops->vdev_op_leaf) {
3199			vdev_free(vd);
3200			error = EINVAL;
3201			goto out;
3202		}
3203
3204		/*
3205		 * The L2ARC currently only supports disk devices in
3206		 * kernel context.  For user-level testing, we allow it.
3207		 */
3208#ifdef _KERNEL
3209		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3210		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3211			error = ENOTBLK;
3212			vdev_free(vd);
3213			goto out;
3214		}
3215#endif
3216		vd->vdev_top = vd;
3217
3218		if ((error = vdev_open(vd)) == 0 &&
3219		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3220			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3221			    vd->vdev_guid) == 0);
3222		}
3223
3224		vdev_free(vd);
3225
3226		if (error &&
3227		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3228			goto out;
3229		else
3230			error = 0;
3231	}
3232
3233out:
3234	sav->sav_pending = NULL;
3235	sav->sav_npending = 0;
3236	return (error);
3237}
3238
3239static int
3240spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3241{
3242	int error;
3243
3244	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3245
3246	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3247	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3248	    VDEV_LABEL_SPARE)) != 0) {
3249		return (error);
3250	}
3251
3252	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3253	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3254	    VDEV_LABEL_L2CACHE));
3255}
3256
3257static void
3258spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3259    const char *config)
3260{
3261	int i;
3262
3263	if (sav->sav_config != NULL) {
3264		nvlist_t **olddevs;
3265		uint_t oldndevs;
3266		nvlist_t **newdevs;
3267
3268		/*
3269		 * Generate new dev list by concatentating with the
3270		 * current dev list.
3271		 */
3272		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3273		    &olddevs, &oldndevs) == 0);
3274
3275		newdevs = kmem_alloc(sizeof (void *) *
3276		    (ndevs + oldndevs), KM_SLEEP);
3277		for (i = 0; i < oldndevs; i++)
3278			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3279			    KM_SLEEP) == 0);
3280		for (i = 0; i < ndevs; i++)
3281			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3282			    KM_SLEEP) == 0);
3283
3284		VERIFY(nvlist_remove(sav->sav_config, config,
3285		    DATA_TYPE_NVLIST_ARRAY) == 0);
3286
3287		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3288		    config, newdevs, ndevs + oldndevs) == 0);
3289		for (i = 0; i < oldndevs + ndevs; i++)
3290			nvlist_free(newdevs[i]);
3291		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3292	} else {
3293		/*
3294		 * Generate a new dev list.
3295		 */
3296		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3297		    KM_SLEEP) == 0);
3298		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3299		    devs, ndevs) == 0);
3300	}
3301}
3302
3303/*
3304 * Stop and drop level 2 ARC devices
3305 */
3306void
3307spa_l2cache_drop(spa_t *spa)
3308{
3309	vdev_t *vd;
3310	int i;
3311	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3312
3313	for (i = 0; i < sav->sav_count; i++) {
3314		uint64_t pool;
3315
3316		vd = sav->sav_vdevs[i];
3317		ASSERT(vd != NULL);
3318
3319		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3320		    pool != 0ULL && l2arc_vdev_present(vd))
3321			l2arc_remove_vdev(vd);
3322	}
3323}
3324
3325/*
3326 * Pool Creation
3327 */
3328int
3329spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3330    const char *history_str, nvlist_t *zplprops)
3331{
3332	spa_t *spa;
3333	char *altroot = NULL;
3334	vdev_t *rvd;
3335	dsl_pool_t *dp;
3336	dmu_tx_t *tx;
3337	int error = 0;
3338	uint64_t txg = TXG_INITIAL;
3339	nvlist_t **spares, **l2cache;
3340	uint_t nspares, nl2cache;
3341	uint64_t version, obj;
3342	boolean_t has_features;
3343
3344	/*
3345	 * If this pool already exists, return failure.
3346	 */
3347	mutex_enter(&spa_namespace_lock);
3348	if (spa_lookup(pool) != NULL) {
3349		mutex_exit(&spa_namespace_lock);
3350		return (EEXIST);
3351	}
3352
3353	/*
3354	 * Allocate a new spa_t structure.
3355	 */
3356	(void) nvlist_lookup_string(props,
3357	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3358	spa = spa_add(pool, NULL, altroot);
3359	spa_activate(spa, spa_mode_global);
3360
3361	if (props && (error = spa_prop_validate(spa, props))) {
3362		spa_deactivate(spa);
3363		spa_remove(spa);
3364		mutex_exit(&spa_namespace_lock);
3365		return (error);
3366	}
3367
3368	has_features = B_FALSE;
3369	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3370	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3371		if (zpool_prop_feature(nvpair_name(elem)))
3372			has_features = B_TRUE;
3373	}
3374
3375	if (has_features || nvlist_lookup_uint64(props,
3376	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3377		version = SPA_VERSION;
3378	}
3379	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3380
3381	spa->spa_first_txg = txg;
3382	spa->spa_uberblock.ub_txg = txg - 1;
3383	spa->spa_uberblock.ub_version = version;
3384	spa->spa_ubsync = spa->spa_uberblock;
3385
3386	/*
3387	 * Create "The Godfather" zio to hold all async IOs
3388	 */
3389	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3390	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3391
3392	/*
3393	 * Create the root vdev.
3394	 */
3395	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3396
3397	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3398
3399	ASSERT(error != 0 || rvd != NULL);
3400	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3401
3402	if (error == 0 && !zfs_allocatable_devs(nvroot))
3403		error = EINVAL;
3404
3405	if (error == 0 &&
3406	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3407	    (error = spa_validate_aux(spa, nvroot, txg,
3408	    VDEV_ALLOC_ADD)) == 0) {
3409		for (int c = 0; c < rvd->vdev_children; c++) {
3410			vdev_metaslab_set_size(rvd->vdev_child[c]);
3411			vdev_expand(rvd->vdev_child[c], txg);
3412		}
3413	}
3414
3415	spa_config_exit(spa, SCL_ALL, FTAG);
3416
3417	if (error != 0) {
3418		spa_unload(spa);
3419		spa_deactivate(spa);
3420		spa_remove(spa);
3421		mutex_exit(&spa_namespace_lock);
3422		return (error);
3423	}
3424
3425	/*
3426	 * Get the list of spares, if specified.
3427	 */
3428	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3429	    &spares, &nspares) == 0) {
3430		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3431		    KM_SLEEP) == 0);
3432		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3433		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3434		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3435		spa_load_spares(spa);
3436		spa_config_exit(spa, SCL_ALL, FTAG);
3437		spa->spa_spares.sav_sync = B_TRUE;
3438	}
3439
3440	/*
3441	 * Get the list of level 2 cache devices, if specified.
3442	 */
3443	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3444	    &l2cache, &nl2cache) == 0) {
3445		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3446		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3447		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3448		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3449		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3450		spa_load_l2cache(spa);
3451		spa_config_exit(spa, SCL_ALL, FTAG);
3452		spa->spa_l2cache.sav_sync = B_TRUE;
3453	}
3454
3455	spa->spa_is_initializing = B_TRUE;
3456	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3457	spa->spa_meta_objset = dp->dp_meta_objset;
3458	spa->spa_is_initializing = B_FALSE;
3459
3460	/*
3461	 * Create DDTs (dedup tables).
3462	 */
3463	ddt_create(spa);
3464
3465	spa_update_dspace(spa);
3466
3467	tx = dmu_tx_create_assigned(dp, txg);
3468
3469	/*
3470	 * Create the pool config object.
3471	 */
3472	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3473	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3474	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3475
3476	if (zap_add(spa->spa_meta_objset,
3477	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3478	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3479		cmn_err(CE_PANIC, "failed to add pool config");
3480	}
3481
3482	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3483		spa_feature_create_zap_objects(spa, tx);
3484
3485	if (zap_add(spa->spa_meta_objset,
3486	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3487	    sizeof (uint64_t), 1, &version, tx) != 0) {
3488		cmn_err(CE_PANIC, "failed to add pool version");
3489	}
3490
3491	/* Newly created pools with the right version are always deflated. */
3492	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3493		spa->spa_deflate = TRUE;
3494		if (zap_add(spa->spa_meta_objset,
3495		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3496		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3497			cmn_err(CE_PANIC, "failed to add deflate");
3498		}
3499	}
3500
3501	/*
3502	 * Create the deferred-free bpobj.  Turn off compression
3503	 * because sync-to-convergence takes longer if the blocksize
3504	 * keeps changing.
3505	 */
3506	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3507	dmu_object_set_compress(spa->spa_meta_objset, obj,
3508	    ZIO_COMPRESS_OFF, tx);
3509	if (zap_add(spa->spa_meta_objset,
3510	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3511	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3512		cmn_err(CE_PANIC, "failed to add bpobj");
3513	}
3514	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3515	    spa->spa_meta_objset, obj));
3516
3517	/*
3518	 * Create the pool's history object.
3519	 */
3520	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3521		spa_history_create_obj(spa, tx);
3522
3523	/*
3524	 * Set pool properties.
3525	 */
3526	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3527	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3528	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3529	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3530
3531	if (props != NULL) {
3532		spa_configfile_set(spa, props, B_FALSE);
3533		spa_sync_props(spa, props, tx);
3534	}
3535
3536	dmu_tx_commit(tx);
3537
3538	spa->spa_sync_on = B_TRUE;
3539	txg_sync_start(spa->spa_dsl_pool);
3540
3541	/*
3542	 * We explicitly wait for the first transaction to complete so that our
3543	 * bean counters are appropriately updated.
3544	 */
3545	txg_wait_synced(spa->spa_dsl_pool, txg);
3546
3547	spa_config_sync(spa, B_FALSE, B_TRUE);
3548
3549	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3550		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3551	spa_history_log_version(spa, LOG_POOL_CREATE);
3552
3553	spa->spa_minref = refcount_count(&spa->spa_refcount);
3554
3555	mutex_exit(&spa_namespace_lock);
3556
3557	return (0);
3558}
3559
3560#ifdef _KERNEL
3561#if defined(sun)
3562/*
3563 * Get the root pool information from the root disk, then import the root pool
3564 * during the system boot up time.
3565 */
3566extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3567
3568static nvlist_t *
3569spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3570{
3571	nvlist_t *config;
3572	nvlist_t *nvtop, *nvroot;
3573	uint64_t pgid;
3574
3575	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3576		return (NULL);
3577
3578	/*
3579	 * Add this top-level vdev to the child array.
3580	 */
3581	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3582	    &nvtop) == 0);
3583	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3584	    &pgid) == 0);
3585	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3586
3587	/*
3588	 * Put this pool's top-level vdevs into a root vdev.
3589	 */
3590	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3591	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3592	    VDEV_TYPE_ROOT) == 0);
3593	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3594	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3595	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3596	    &nvtop, 1) == 0);
3597
3598	/*
3599	 * Replace the existing vdev_tree with the new root vdev in
3600	 * this pool's configuration (remove the old, add the new).
3601	 */
3602	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3603	nvlist_free(nvroot);
3604	return (config);
3605}
3606
3607/*
3608 * Walk the vdev tree and see if we can find a device with "better"
3609 * configuration. A configuration is "better" if the label on that
3610 * device has a more recent txg.
3611 */
3612static void
3613spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3614{
3615	for (int c = 0; c < vd->vdev_children; c++)
3616		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3617
3618	if (vd->vdev_ops->vdev_op_leaf) {
3619		nvlist_t *label;
3620		uint64_t label_txg;
3621
3622		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3623		    &label) != 0)
3624			return;
3625
3626		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3627		    &label_txg) == 0);
3628
3629		/*
3630		 * Do we have a better boot device?
3631		 */
3632		if (label_txg > *txg) {
3633			*txg = label_txg;
3634			*avd = vd;
3635		}
3636		nvlist_free(label);
3637	}
3638}
3639
3640/*
3641 * Import a root pool.
3642 *
3643 * For x86. devpath_list will consist of devid and/or physpath name of
3644 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3645 * The GRUB "findroot" command will return the vdev we should boot.
3646 *
3647 * For Sparc, devpath_list consists the physpath name of the booting device
3648 * no matter the rootpool is a single device pool or a mirrored pool.
3649 * e.g.
3650 *	"/pci@1f,0/ide@d/disk@0,0:a"
3651 */
3652int
3653spa_import_rootpool(char *devpath, char *devid)
3654{
3655	spa_t *spa;
3656	vdev_t *rvd, *bvd, *avd = NULL;
3657	nvlist_t *config, *nvtop;
3658	uint64_t guid, txg;
3659	char *pname;
3660	int error;
3661
3662	/*
3663	 * Read the label from the boot device and generate a configuration.
3664	 */
3665	config = spa_generate_rootconf(devpath, devid, &guid);
3666#if defined(_OBP) && defined(_KERNEL)
3667	if (config == NULL) {
3668		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3669			/* iscsi boot */
3670			get_iscsi_bootpath_phy(devpath);
3671			config = spa_generate_rootconf(devpath, devid, &guid);
3672		}
3673	}
3674#endif
3675	if (config == NULL) {
3676		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3677		    devpath);
3678		return (EIO);
3679	}
3680
3681	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3682	    &pname) == 0);
3683	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3684
3685	mutex_enter(&spa_namespace_lock);
3686	if ((spa = spa_lookup(pname)) != NULL) {
3687		/*
3688		 * Remove the existing root pool from the namespace so that we
3689		 * can replace it with the correct config we just read in.
3690		 */
3691		spa_remove(spa);
3692	}
3693
3694	spa = spa_add(pname, config, NULL);
3695	spa->spa_is_root = B_TRUE;
3696	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3697
3698	/*
3699	 * Build up a vdev tree based on the boot device's label config.
3700	 */
3701	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3702	    &nvtop) == 0);
3703	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3704	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3705	    VDEV_ALLOC_ROOTPOOL);
3706	spa_config_exit(spa, SCL_ALL, FTAG);
3707	if (error) {
3708		mutex_exit(&spa_namespace_lock);
3709		nvlist_free(config);
3710		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3711		    pname);
3712		return (error);
3713	}
3714
3715	/*
3716	 * Get the boot vdev.
3717	 */
3718	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3719		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3720		    (u_longlong_t)guid);
3721		error = ENOENT;
3722		goto out;
3723	}
3724
3725	/*
3726	 * Determine if there is a better boot device.
3727	 */
3728	avd = bvd;
3729	spa_alt_rootvdev(rvd, &avd, &txg);
3730	if (avd != bvd) {
3731		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3732		    "try booting from '%s'", avd->vdev_path);
3733		error = EINVAL;
3734		goto out;
3735	}
3736
3737	/*
3738	 * If the boot device is part of a spare vdev then ensure that
3739	 * we're booting off the active spare.
3740	 */
3741	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3742	    !bvd->vdev_isspare) {
3743		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3744		    "try booting from '%s'",
3745		    bvd->vdev_parent->
3746		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3747		error = EINVAL;
3748		goto out;
3749	}
3750
3751	error = 0;
3752	spa_history_log_version(spa, LOG_POOL_IMPORT);
3753out:
3754	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3755	vdev_free(rvd);
3756	spa_config_exit(spa, SCL_ALL, FTAG);
3757	mutex_exit(&spa_namespace_lock);
3758
3759	nvlist_free(config);
3760	return (error);
3761}
3762
3763#else
3764
3765extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3766    uint64_t *count);
3767
3768static nvlist_t *
3769spa_generate_rootconf(const char *name)
3770{
3771	nvlist_t **configs, **tops;
3772	nvlist_t *config;
3773	nvlist_t *best_cfg, *nvtop, *nvroot;
3774	uint64_t *holes;
3775	uint64_t best_txg;
3776	uint64_t nchildren;
3777	uint64_t pgid;
3778	uint64_t count;
3779	uint64_t i;
3780	uint_t   nholes;
3781
3782	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3783		return (NULL);
3784
3785	ASSERT3U(count, !=, 0);
3786	best_txg = 0;
3787	for (i = 0; i < count; i++) {
3788		uint64_t txg;
3789
3790		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3791		    &txg) == 0);
3792		if (txg > best_txg) {
3793			best_txg = txg;
3794			best_cfg = configs[i];
3795		}
3796	}
3797
3798	/*
3799	 * Multi-vdev root pool configuration discovery is not supported yet.
3800	 */
3801	nchildren = 1;
3802	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3803	holes = NULL;
3804	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3805	    &holes, &nholes);
3806
3807	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3808	for (i = 0; i < nchildren; i++) {
3809		if (i >= count)
3810			break;
3811		if (configs[i] == NULL)
3812			continue;
3813		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3814		    &nvtop) == 0);
3815		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3816	}
3817	for (i = 0; holes != NULL && i < nholes; i++) {
3818		if (i >= nchildren)
3819			continue;
3820		if (tops[holes[i]] != NULL)
3821			continue;
3822		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3823		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3824		    VDEV_TYPE_HOLE) == 0);
3825		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3826		    holes[i]) == 0);
3827		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3828		    0) == 0);
3829	}
3830	for (i = 0; i < nchildren; i++) {
3831		if (tops[i] != NULL)
3832			continue;
3833		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3834		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3835		    VDEV_TYPE_MISSING) == 0);
3836		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3837		    i) == 0);
3838		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3839		    0) == 0);
3840	}
3841
3842	/*
3843	 * Create pool config based on the best vdev config.
3844	 */
3845	nvlist_dup(best_cfg, &config, KM_SLEEP);
3846
3847	/*
3848	 * Put this pool's top-level vdevs into a root vdev.
3849	 */
3850	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3851	    &pgid) == 0);
3852	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3853	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3854	    VDEV_TYPE_ROOT) == 0);
3855	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3856	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3857	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3858	    tops, nchildren) == 0);
3859
3860	/*
3861	 * Replace the existing vdev_tree with the new root vdev in
3862	 * this pool's configuration (remove the old, add the new).
3863	 */
3864	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3865
3866	/*
3867	 * Drop vdev config elements that should not be present at pool level.
3868	 */
3869	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3870	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
3871
3872	for (i = 0; i < count; i++)
3873		nvlist_free(configs[i]);
3874	kmem_free(configs, count * sizeof(void *));
3875	for (i = 0; i < nchildren; i++)
3876		nvlist_free(tops[i]);
3877	kmem_free(tops, nchildren * sizeof(void *));
3878	nvlist_free(nvroot);
3879	return (config);
3880}
3881
3882int
3883spa_import_rootpool(const char *name)
3884{
3885	spa_t *spa;
3886	vdev_t *rvd, *bvd, *avd = NULL;
3887	nvlist_t *config, *nvtop;
3888	uint64_t txg;
3889	char *pname;
3890	int error;
3891
3892	/*
3893	 * Read the label from the boot device and generate a configuration.
3894	 */
3895	config = spa_generate_rootconf(name);
3896
3897	mutex_enter(&spa_namespace_lock);
3898	if (config != NULL) {
3899		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3900		    &pname) == 0 && strcmp(name, pname) == 0);
3901		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
3902		    == 0);
3903
3904		if ((spa = spa_lookup(pname)) != NULL) {
3905			/*
3906			 * Remove the existing root pool from the namespace so
3907			 * that we can replace it with the correct config
3908			 * we just read in.
3909			 */
3910			spa_remove(spa);
3911		}
3912		spa = spa_add(pname, config, NULL);
3913
3914		/*
3915		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
3916		 * via spa_version().
3917		 */
3918		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3919		    &spa->spa_ubsync.ub_version) != 0)
3920			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3921	} else if ((spa = spa_lookup(name)) == NULL) {
3922		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
3923		    name);
3924		return (EIO);
3925	} else {
3926		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
3927	}
3928	spa->spa_is_root = B_TRUE;
3929	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3930
3931	/*
3932	 * Build up a vdev tree based on the boot device's label config.
3933	 */
3934	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3935	    &nvtop) == 0);
3936	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3937	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3938	    VDEV_ALLOC_ROOTPOOL);
3939	spa_config_exit(spa, SCL_ALL, FTAG);
3940	if (error) {
3941		mutex_exit(&spa_namespace_lock);
3942		nvlist_free(config);
3943		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3944		    pname);
3945		return (error);
3946	}
3947
3948	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3949	vdev_free(rvd);
3950	spa_config_exit(spa, SCL_ALL, FTAG);
3951	mutex_exit(&spa_namespace_lock);
3952
3953	nvlist_free(config);
3954	return (0);
3955}
3956
3957#endif	/* sun */
3958#endif
3959
3960/*
3961 * Import a non-root pool into the system.
3962 */
3963int
3964spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3965{
3966	spa_t *spa;
3967	char *altroot = NULL;
3968	spa_load_state_t state = SPA_LOAD_IMPORT;
3969	zpool_rewind_policy_t policy;
3970	uint64_t mode = spa_mode_global;
3971	uint64_t readonly = B_FALSE;
3972	int error;
3973	nvlist_t *nvroot;
3974	nvlist_t **spares, **l2cache;
3975	uint_t nspares, nl2cache;
3976
3977	/*
3978	 * If a pool with this name exists, return failure.
3979	 */
3980	mutex_enter(&spa_namespace_lock);
3981	if (spa_lookup(pool) != NULL) {
3982		mutex_exit(&spa_namespace_lock);
3983		return (EEXIST);
3984	}
3985
3986	/*
3987	 * Create and initialize the spa structure.
3988	 */
3989	(void) nvlist_lookup_string(props,
3990	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3991	(void) nvlist_lookup_uint64(props,
3992	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3993	if (readonly)
3994		mode = FREAD;
3995	spa = spa_add(pool, config, altroot);
3996	spa->spa_import_flags = flags;
3997
3998	/*
3999	 * Verbatim import - Take a pool and insert it into the namespace
4000	 * as if it had been loaded at boot.
4001	 */
4002	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4003		if (props != NULL)
4004			spa_configfile_set(spa, props, B_FALSE);
4005
4006		spa_config_sync(spa, B_FALSE, B_TRUE);
4007
4008		mutex_exit(&spa_namespace_lock);
4009		spa_history_log_version(spa, LOG_POOL_IMPORT);
4010
4011		return (0);
4012	}
4013
4014	spa_activate(spa, mode);
4015
4016	/*
4017	 * Don't start async tasks until we know everything is healthy.
4018	 */
4019	spa_async_suspend(spa);
4020
4021	zpool_get_rewind_policy(config, &policy);
4022	if (policy.zrp_request & ZPOOL_DO_REWIND)
4023		state = SPA_LOAD_RECOVER;
4024
4025	/*
4026	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4027	 * because the user-supplied config is actually the one to trust when
4028	 * doing an import.
4029	 */
4030	if (state != SPA_LOAD_RECOVER)
4031		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4032
4033	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4034	    policy.zrp_request);
4035
4036	/*
4037	 * Propagate anything learned while loading the pool and pass it
4038	 * back to caller (i.e. rewind info, missing devices, etc).
4039	 */
4040	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4041	    spa->spa_load_info) == 0);
4042
4043	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4044	/*
4045	 * Toss any existing sparelist, as it doesn't have any validity
4046	 * anymore, and conflicts with spa_has_spare().
4047	 */
4048	if (spa->spa_spares.sav_config) {
4049		nvlist_free(spa->spa_spares.sav_config);
4050		spa->spa_spares.sav_config = NULL;
4051		spa_load_spares(spa);
4052	}
4053	if (spa->spa_l2cache.sav_config) {
4054		nvlist_free(spa->spa_l2cache.sav_config);
4055		spa->spa_l2cache.sav_config = NULL;
4056		spa_load_l2cache(spa);
4057	}
4058
4059	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4060	    &nvroot) == 0);
4061	if (error == 0)
4062		error = spa_validate_aux(spa, nvroot, -1ULL,
4063		    VDEV_ALLOC_SPARE);
4064	if (error == 0)
4065		error = spa_validate_aux(spa, nvroot, -1ULL,
4066		    VDEV_ALLOC_L2CACHE);
4067	spa_config_exit(spa, SCL_ALL, FTAG);
4068
4069	if (props != NULL)
4070		spa_configfile_set(spa, props, B_FALSE);
4071
4072	if (error != 0 || (props && spa_writeable(spa) &&
4073	    (error = spa_prop_set(spa, props)))) {
4074		spa_unload(spa);
4075		spa_deactivate(spa);
4076		spa_remove(spa);
4077		mutex_exit(&spa_namespace_lock);
4078		return (error);
4079	}
4080
4081	spa_async_resume(spa);
4082
4083	/*
4084	 * Override any spares and level 2 cache devices as specified by
4085	 * the user, as these may have correct device names/devids, etc.
4086	 */
4087	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4088	    &spares, &nspares) == 0) {
4089		if (spa->spa_spares.sav_config)
4090			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4091			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4092		else
4093			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4094			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4095		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4096		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4097		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4098		spa_load_spares(spa);
4099		spa_config_exit(spa, SCL_ALL, FTAG);
4100		spa->spa_spares.sav_sync = B_TRUE;
4101	}
4102	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4103	    &l2cache, &nl2cache) == 0) {
4104		if (spa->spa_l2cache.sav_config)
4105			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4106			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4107		else
4108			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4109			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4110		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4111		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4112		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4113		spa_load_l2cache(spa);
4114		spa_config_exit(spa, SCL_ALL, FTAG);
4115		spa->spa_l2cache.sav_sync = B_TRUE;
4116	}
4117
4118	/*
4119	 * Check for any removed devices.
4120	 */
4121	if (spa->spa_autoreplace) {
4122		spa_aux_check_removed(&spa->spa_spares);
4123		spa_aux_check_removed(&spa->spa_l2cache);
4124	}
4125
4126	if (spa_writeable(spa)) {
4127		/*
4128		 * Update the config cache to include the newly-imported pool.
4129		 */
4130		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4131	}
4132
4133	/*
4134	 * It's possible that the pool was expanded while it was exported.
4135	 * We kick off an async task to handle this for us.
4136	 */
4137	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4138
4139	mutex_exit(&spa_namespace_lock);
4140	spa_history_log_version(spa, LOG_POOL_IMPORT);
4141
4142#ifdef __FreeBSD__
4143#ifdef _KERNEL
4144	zvol_create_minors(pool);
4145#endif
4146#endif
4147	return (0);
4148}
4149
4150nvlist_t *
4151spa_tryimport(nvlist_t *tryconfig)
4152{
4153	nvlist_t *config = NULL;
4154	char *poolname;
4155	spa_t *spa;
4156	uint64_t state;
4157	int error;
4158
4159	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4160		return (NULL);
4161
4162	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4163		return (NULL);
4164
4165	/*
4166	 * Create and initialize the spa structure.
4167	 */
4168	mutex_enter(&spa_namespace_lock);
4169	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4170	spa_activate(spa, FREAD);
4171
4172	/*
4173	 * Pass off the heavy lifting to spa_load().
4174	 * Pass TRUE for mosconfig because the user-supplied config
4175	 * is actually the one to trust when doing an import.
4176	 */
4177	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4178
4179	/*
4180	 * If 'tryconfig' was at least parsable, return the current config.
4181	 */
4182	if (spa->spa_root_vdev != NULL) {
4183		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4184		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4185		    poolname) == 0);
4186		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4187		    state) == 0);
4188		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4189		    spa->spa_uberblock.ub_timestamp) == 0);
4190		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4191		    spa->spa_load_info) == 0);
4192
4193		/*
4194		 * If the bootfs property exists on this pool then we
4195		 * copy it out so that external consumers can tell which
4196		 * pools are bootable.
4197		 */
4198		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4199			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4200
4201			/*
4202			 * We have to play games with the name since the
4203			 * pool was opened as TRYIMPORT_NAME.
4204			 */
4205			if (dsl_dsobj_to_dsname(spa_name(spa),
4206			    spa->spa_bootfs, tmpname) == 0) {
4207				char *cp;
4208				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4209
4210				cp = strchr(tmpname, '/');
4211				if (cp == NULL) {
4212					(void) strlcpy(dsname, tmpname,
4213					    MAXPATHLEN);
4214				} else {
4215					(void) snprintf(dsname, MAXPATHLEN,
4216					    "%s/%s", poolname, ++cp);
4217				}
4218				VERIFY(nvlist_add_string(config,
4219				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4220				kmem_free(dsname, MAXPATHLEN);
4221			}
4222			kmem_free(tmpname, MAXPATHLEN);
4223		}
4224
4225		/*
4226		 * Add the list of hot spares and level 2 cache devices.
4227		 */
4228		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4229		spa_add_spares(spa, config);
4230		spa_add_l2cache(spa, config);
4231		spa_config_exit(spa, SCL_CONFIG, FTAG);
4232	}
4233
4234	spa_unload(spa);
4235	spa_deactivate(spa);
4236	spa_remove(spa);
4237	mutex_exit(&spa_namespace_lock);
4238
4239	return (config);
4240}
4241
4242/*
4243 * Pool export/destroy
4244 *
4245 * The act of destroying or exporting a pool is very simple.  We make sure there
4246 * is no more pending I/O and any references to the pool are gone.  Then, we
4247 * update the pool state and sync all the labels to disk, removing the
4248 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4249 * we don't sync the labels or remove the configuration cache.
4250 */
4251static int
4252spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4253    boolean_t force, boolean_t hardforce)
4254{
4255	spa_t *spa;
4256
4257	if (oldconfig)
4258		*oldconfig = NULL;
4259
4260	if (!(spa_mode_global & FWRITE))
4261		return (EROFS);
4262
4263	mutex_enter(&spa_namespace_lock);
4264	if ((spa = spa_lookup(pool)) == NULL) {
4265		mutex_exit(&spa_namespace_lock);
4266		return (ENOENT);
4267	}
4268
4269	/*
4270	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4271	 * reacquire the namespace lock, and see if we can export.
4272	 */
4273	spa_open_ref(spa, FTAG);
4274	mutex_exit(&spa_namespace_lock);
4275	spa_async_suspend(spa);
4276	mutex_enter(&spa_namespace_lock);
4277	spa_close(spa, FTAG);
4278
4279	/*
4280	 * The pool will be in core if it's openable,
4281	 * in which case we can modify its state.
4282	 */
4283	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4284		/*
4285		 * Objsets may be open only because they're dirty, so we
4286		 * have to force it to sync before checking spa_refcnt.
4287		 */
4288		txg_wait_synced(spa->spa_dsl_pool, 0);
4289
4290		/*
4291		 * A pool cannot be exported or destroyed if there are active
4292		 * references.  If we are resetting a pool, allow references by
4293		 * fault injection handlers.
4294		 */
4295		if (!spa_refcount_zero(spa) ||
4296		    (spa->spa_inject_ref != 0 &&
4297		    new_state != POOL_STATE_UNINITIALIZED)) {
4298			spa_async_resume(spa);
4299			mutex_exit(&spa_namespace_lock);
4300			return (EBUSY);
4301		}
4302
4303		/*
4304		 * A pool cannot be exported if it has an active shared spare.
4305		 * This is to prevent other pools stealing the active spare
4306		 * from an exported pool. At user's own will, such pool can
4307		 * be forcedly exported.
4308		 */
4309		if (!force && new_state == POOL_STATE_EXPORTED &&
4310		    spa_has_active_shared_spare(spa)) {
4311			spa_async_resume(spa);
4312			mutex_exit(&spa_namespace_lock);
4313			return (EXDEV);
4314		}
4315
4316		/*
4317		 * We want this to be reflected on every label,
4318		 * so mark them all dirty.  spa_unload() will do the
4319		 * final sync that pushes these changes out.
4320		 */
4321		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4322			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4323			spa->spa_state = new_state;
4324			spa->spa_final_txg = spa_last_synced_txg(spa) +
4325			    TXG_DEFER_SIZE + 1;
4326			vdev_config_dirty(spa->spa_root_vdev);
4327			spa_config_exit(spa, SCL_ALL, FTAG);
4328		}
4329	}
4330
4331	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4332
4333	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4334		spa_unload(spa);
4335		spa_deactivate(spa);
4336	}
4337
4338	if (oldconfig && spa->spa_config)
4339		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4340
4341	if (new_state != POOL_STATE_UNINITIALIZED) {
4342		if (!hardforce)
4343			spa_config_sync(spa, B_TRUE, B_TRUE);
4344		spa_remove(spa);
4345	}
4346	mutex_exit(&spa_namespace_lock);
4347
4348	return (0);
4349}
4350
4351/*
4352 * Destroy a storage pool.
4353 */
4354int
4355spa_destroy(char *pool)
4356{
4357	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4358	    B_FALSE, B_FALSE));
4359}
4360
4361/*
4362 * Export a storage pool.
4363 */
4364int
4365spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4366    boolean_t hardforce)
4367{
4368	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4369	    force, hardforce));
4370}
4371
4372/*
4373 * Similar to spa_export(), this unloads the spa_t without actually removing it
4374 * from the namespace in any way.
4375 */
4376int
4377spa_reset(char *pool)
4378{
4379	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4380	    B_FALSE, B_FALSE));
4381}
4382
4383/*
4384 * ==========================================================================
4385 * Device manipulation
4386 * ==========================================================================
4387 */
4388
4389/*
4390 * Add a device to a storage pool.
4391 */
4392int
4393spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4394{
4395	uint64_t txg, id;
4396	int error;
4397	vdev_t *rvd = spa->spa_root_vdev;
4398	vdev_t *vd, *tvd;
4399	nvlist_t **spares, **l2cache;
4400	uint_t nspares, nl2cache;
4401
4402	ASSERT(spa_writeable(spa));
4403
4404	txg = spa_vdev_enter(spa);
4405
4406	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4407	    VDEV_ALLOC_ADD)) != 0)
4408		return (spa_vdev_exit(spa, NULL, txg, error));
4409
4410	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4411
4412	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4413	    &nspares) != 0)
4414		nspares = 0;
4415
4416	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4417	    &nl2cache) != 0)
4418		nl2cache = 0;
4419
4420	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4421		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4422
4423	if (vd->vdev_children != 0 &&
4424	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4425		return (spa_vdev_exit(spa, vd, txg, error));
4426
4427	/*
4428	 * We must validate the spares and l2cache devices after checking the
4429	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4430	 */
4431	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4432		return (spa_vdev_exit(spa, vd, txg, error));
4433
4434	/*
4435	 * Transfer each new top-level vdev from vd to rvd.
4436	 */
4437	for (int c = 0; c < vd->vdev_children; c++) {
4438
4439		/*
4440		 * Set the vdev id to the first hole, if one exists.
4441		 */
4442		for (id = 0; id < rvd->vdev_children; id++) {
4443			if (rvd->vdev_child[id]->vdev_ishole) {
4444				vdev_free(rvd->vdev_child[id]);
4445				break;
4446			}
4447		}
4448		tvd = vd->vdev_child[c];
4449		vdev_remove_child(vd, tvd);
4450		tvd->vdev_id = id;
4451		vdev_add_child(rvd, tvd);
4452		vdev_config_dirty(tvd);
4453	}
4454
4455	if (nspares != 0) {
4456		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4457		    ZPOOL_CONFIG_SPARES);
4458		spa_load_spares(spa);
4459		spa->spa_spares.sav_sync = B_TRUE;
4460	}
4461
4462	if (nl2cache != 0) {
4463		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4464		    ZPOOL_CONFIG_L2CACHE);
4465		spa_load_l2cache(spa);
4466		spa->spa_l2cache.sav_sync = B_TRUE;
4467	}
4468
4469	/*
4470	 * We have to be careful when adding new vdevs to an existing pool.
4471	 * If other threads start allocating from these vdevs before we
4472	 * sync the config cache, and we lose power, then upon reboot we may
4473	 * fail to open the pool because there are DVAs that the config cache
4474	 * can't translate.  Therefore, we first add the vdevs without
4475	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4476	 * and then let spa_config_update() initialize the new metaslabs.
4477	 *
4478	 * spa_load() checks for added-but-not-initialized vdevs, so that
4479	 * if we lose power at any point in this sequence, the remaining
4480	 * steps will be completed the next time we load the pool.
4481	 */
4482	(void) spa_vdev_exit(spa, vd, txg, 0);
4483
4484	mutex_enter(&spa_namespace_lock);
4485	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4486	mutex_exit(&spa_namespace_lock);
4487
4488	return (0);
4489}
4490
4491/*
4492 * Attach a device to a mirror.  The arguments are the path to any device
4493 * in the mirror, and the nvroot for the new device.  If the path specifies
4494 * a device that is not mirrored, we automatically insert the mirror vdev.
4495 *
4496 * If 'replacing' is specified, the new device is intended to replace the
4497 * existing device; in this case the two devices are made into their own
4498 * mirror using the 'replacing' vdev, which is functionally identical to
4499 * the mirror vdev (it actually reuses all the same ops) but has a few
4500 * extra rules: you can't attach to it after it's been created, and upon
4501 * completion of resilvering, the first disk (the one being replaced)
4502 * is automatically detached.
4503 */
4504int
4505spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4506{
4507	uint64_t txg, dtl_max_txg;
4508	vdev_t *rvd = spa->spa_root_vdev;
4509	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4510	vdev_ops_t *pvops;
4511	char *oldvdpath, *newvdpath;
4512	int newvd_isspare;
4513	int error;
4514
4515	ASSERT(spa_writeable(spa));
4516
4517	txg = spa_vdev_enter(spa);
4518
4519	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4520
4521	if (oldvd == NULL)
4522		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4523
4524	if (!oldvd->vdev_ops->vdev_op_leaf)
4525		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4526
4527	pvd = oldvd->vdev_parent;
4528
4529	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4530	    VDEV_ALLOC_ATTACH)) != 0)
4531		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4532
4533	if (newrootvd->vdev_children != 1)
4534		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4535
4536	newvd = newrootvd->vdev_child[0];
4537
4538	if (!newvd->vdev_ops->vdev_op_leaf)
4539		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4540
4541	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4542		return (spa_vdev_exit(spa, newrootvd, txg, error));
4543
4544	/*
4545	 * Spares can't replace logs
4546	 */
4547	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4548		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4549
4550	if (!replacing) {
4551		/*
4552		 * For attach, the only allowable parent is a mirror or the root
4553		 * vdev.
4554		 */
4555		if (pvd->vdev_ops != &vdev_mirror_ops &&
4556		    pvd->vdev_ops != &vdev_root_ops)
4557			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4558
4559		pvops = &vdev_mirror_ops;
4560	} else {
4561		/*
4562		 * Active hot spares can only be replaced by inactive hot
4563		 * spares.
4564		 */
4565		if (pvd->vdev_ops == &vdev_spare_ops &&
4566		    oldvd->vdev_isspare &&
4567		    !spa_has_spare(spa, newvd->vdev_guid))
4568			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4569
4570		/*
4571		 * If the source is a hot spare, and the parent isn't already a
4572		 * spare, then we want to create a new hot spare.  Otherwise, we
4573		 * want to create a replacing vdev.  The user is not allowed to
4574		 * attach to a spared vdev child unless the 'isspare' state is
4575		 * the same (spare replaces spare, non-spare replaces
4576		 * non-spare).
4577		 */
4578		if (pvd->vdev_ops == &vdev_replacing_ops &&
4579		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4580			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4581		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4582		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4583			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4584		}
4585
4586		if (newvd->vdev_isspare)
4587			pvops = &vdev_spare_ops;
4588		else
4589			pvops = &vdev_replacing_ops;
4590	}
4591
4592	/*
4593	 * Make sure the new device is big enough.
4594	 */
4595	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4596		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4597
4598	/*
4599	 * The new device cannot have a higher alignment requirement
4600	 * than the top-level vdev.
4601	 */
4602	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4603		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4604
4605	/*
4606	 * If this is an in-place replacement, update oldvd's path and devid
4607	 * to make it distinguishable from newvd, and unopenable from now on.
4608	 */
4609	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4610		spa_strfree(oldvd->vdev_path);
4611		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4612		    KM_SLEEP);
4613		(void) sprintf(oldvd->vdev_path, "%s/%s",
4614		    newvd->vdev_path, "old");
4615		if (oldvd->vdev_devid != NULL) {
4616			spa_strfree(oldvd->vdev_devid);
4617			oldvd->vdev_devid = NULL;
4618		}
4619	}
4620
4621	/* mark the device being resilvered */
4622	newvd->vdev_resilvering = B_TRUE;
4623
4624	/*
4625	 * If the parent is not a mirror, or if we're replacing, insert the new
4626	 * mirror/replacing/spare vdev above oldvd.
4627	 */
4628	if (pvd->vdev_ops != pvops)
4629		pvd = vdev_add_parent(oldvd, pvops);
4630
4631	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4632	ASSERT(pvd->vdev_ops == pvops);
4633	ASSERT(oldvd->vdev_parent == pvd);
4634
4635	/*
4636	 * Extract the new device from its root and add it to pvd.
4637	 */
4638	vdev_remove_child(newrootvd, newvd);
4639	newvd->vdev_id = pvd->vdev_children;
4640	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4641	vdev_add_child(pvd, newvd);
4642
4643	tvd = newvd->vdev_top;
4644	ASSERT(pvd->vdev_top == tvd);
4645	ASSERT(tvd->vdev_parent == rvd);
4646
4647	vdev_config_dirty(tvd);
4648
4649	/*
4650	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4651	 * for any dmu_sync-ed blocks.  It will propagate upward when
4652	 * spa_vdev_exit() calls vdev_dtl_reassess().
4653	 */
4654	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4655
4656	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4657	    dtl_max_txg - TXG_INITIAL);
4658
4659	if (newvd->vdev_isspare) {
4660		spa_spare_activate(newvd);
4661		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4662	}
4663
4664	oldvdpath = spa_strdup(oldvd->vdev_path);
4665	newvdpath = spa_strdup(newvd->vdev_path);
4666	newvd_isspare = newvd->vdev_isspare;
4667
4668	/*
4669	 * Mark newvd's DTL dirty in this txg.
4670	 */
4671	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4672
4673	/*
4674	 * Restart the resilver
4675	 */
4676	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4677
4678	/*
4679	 * Commit the config
4680	 */
4681	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4682
4683	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4684	    "%s vdev=%s %s vdev=%s",
4685	    replacing && newvd_isspare ? "spare in" :
4686	    replacing ? "replace" : "attach", newvdpath,
4687	    replacing ? "for" : "to", oldvdpath);
4688
4689	spa_strfree(oldvdpath);
4690	spa_strfree(newvdpath);
4691
4692	if (spa->spa_bootfs)
4693		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4694
4695	return (0);
4696}
4697
4698/*
4699 * Detach a device from a mirror or replacing vdev.
4700 * If 'replace_done' is specified, only detach if the parent
4701 * is a replacing vdev.
4702 */
4703int
4704spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4705{
4706	uint64_t txg;
4707	int error;
4708	vdev_t *rvd = spa->spa_root_vdev;
4709	vdev_t *vd, *pvd, *cvd, *tvd;
4710	boolean_t unspare = B_FALSE;
4711	uint64_t unspare_guid = 0;
4712	char *vdpath;
4713
4714	ASSERT(spa_writeable(spa));
4715
4716	txg = spa_vdev_enter(spa);
4717
4718	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4719
4720	if (vd == NULL)
4721		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4722
4723	if (!vd->vdev_ops->vdev_op_leaf)
4724		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4725
4726	pvd = vd->vdev_parent;
4727
4728	/*
4729	 * If the parent/child relationship is not as expected, don't do it.
4730	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4731	 * vdev that's replacing B with C.  The user's intent in replacing
4732	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4733	 * the replace by detaching C, the expected behavior is to end up
4734	 * M(A,B).  But suppose that right after deciding to detach C,
4735	 * the replacement of B completes.  We would have M(A,C), and then
4736	 * ask to detach C, which would leave us with just A -- not what
4737	 * the user wanted.  To prevent this, we make sure that the
4738	 * parent/child relationship hasn't changed -- in this example,
4739	 * that C's parent is still the replacing vdev R.
4740	 */
4741	if (pvd->vdev_guid != pguid && pguid != 0)
4742		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4743
4744	/*
4745	 * Only 'replacing' or 'spare' vdevs can be replaced.
4746	 */
4747	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4748	    pvd->vdev_ops != &vdev_spare_ops)
4749		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4750
4751	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4752	    spa_version(spa) >= SPA_VERSION_SPARES);
4753
4754	/*
4755	 * Only mirror, replacing, and spare vdevs support detach.
4756	 */
4757	if (pvd->vdev_ops != &vdev_replacing_ops &&
4758	    pvd->vdev_ops != &vdev_mirror_ops &&
4759	    pvd->vdev_ops != &vdev_spare_ops)
4760		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4761
4762	/*
4763	 * If this device has the only valid copy of some data,
4764	 * we cannot safely detach it.
4765	 */
4766	if (vdev_dtl_required(vd))
4767		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4768
4769	ASSERT(pvd->vdev_children >= 2);
4770
4771	/*
4772	 * If we are detaching the second disk from a replacing vdev, then
4773	 * check to see if we changed the original vdev's path to have "/old"
4774	 * at the end in spa_vdev_attach().  If so, undo that change now.
4775	 */
4776	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4777	    vd->vdev_path != NULL) {
4778		size_t len = strlen(vd->vdev_path);
4779
4780		for (int c = 0; c < pvd->vdev_children; c++) {
4781			cvd = pvd->vdev_child[c];
4782
4783			if (cvd == vd || cvd->vdev_path == NULL)
4784				continue;
4785
4786			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4787			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4788				spa_strfree(cvd->vdev_path);
4789				cvd->vdev_path = spa_strdup(vd->vdev_path);
4790				break;
4791			}
4792		}
4793	}
4794
4795	/*
4796	 * If we are detaching the original disk from a spare, then it implies
4797	 * that the spare should become a real disk, and be removed from the
4798	 * active spare list for the pool.
4799	 */
4800	if (pvd->vdev_ops == &vdev_spare_ops &&
4801	    vd->vdev_id == 0 &&
4802	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4803		unspare = B_TRUE;
4804
4805	/*
4806	 * Erase the disk labels so the disk can be used for other things.
4807	 * This must be done after all other error cases are handled,
4808	 * but before we disembowel vd (so we can still do I/O to it).
4809	 * But if we can't do it, don't treat the error as fatal --
4810	 * it may be that the unwritability of the disk is the reason
4811	 * it's being detached!
4812	 */
4813	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4814
4815	/*
4816	 * Remove vd from its parent and compact the parent's children.
4817	 */
4818	vdev_remove_child(pvd, vd);
4819	vdev_compact_children(pvd);
4820
4821	/*
4822	 * Remember one of the remaining children so we can get tvd below.
4823	 */
4824	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4825
4826	/*
4827	 * If we need to remove the remaining child from the list of hot spares,
4828	 * do it now, marking the vdev as no longer a spare in the process.
4829	 * We must do this before vdev_remove_parent(), because that can
4830	 * change the GUID if it creates a new toplevel GUID.  For a similar
4831	 * reason, we must remove the spare now, in the same txg as the detach;
4832	 * otherwise someone could attach a new sibling, change the GUID, and
4833	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4834	 */
4835	if (unspare) {
4836		ASSERT(cvd->vdev_isspare);
4837		spa_spare_remove(cvd);
4838		unspare_guid = cvd->vdev_guid;
4839		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4840		cvd->vdev_unspare = B_TRUE;
4841	}
4842
4843	/*
4844	 * If the parent mirror/replacing vdev only has one child,
4845	 * the parent is no longer needed.  Remove it from the tree.
4846	 */
4847	if (pvd->vdev_children == 1) {
4848		if (pvd->vdev_ops == &vdev_spare_ops)
4849			cvd->vdev_unspare = B_FALSE;
4850		vdev_remove_parent(cvd);
4851		cvd->vdev_resilvering = B_FALSE;
4852	}
4853
4854
4855	/*
4856	 * We don't set tvd until now because the parent we just removed
4857	 * may have been the previous top-level vdev.
4858	 */
4859	tvd = cvd->vdev_top;
4860	ASSERT(tvd->vdev_parent == rvd);
4861
4862	/*
4863	 * Reevaluate the parent vdev state.
4864	 */
4865	vdev_propagate_state(cvd);
4866
4867	/*
4868	 * If the 'autoexpand' property is set on the pool then automatically
4869	 * try to expand the size of the pool. For example if the device we
4870	 * just detached was smaller than the others, it may be possible to
4871	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4872	 * first so that we can obtain the updated sizes of the leaf vdevs.
4873	 */
4874	if (spa->spa_autoexpand) {
4875		vdev_reopen(tvd);
4876		vdev_expand(tvd, txg);
4877	}
4878
4879	vdev_config_dirty(tvd);
4880
4881	/*
4882	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4883	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4884	 * But first make sure we're not on any *other* txg's DTL list, to
4885	 * prevent vd from being accessed after it's freed.
4886	 */
4887	vdpath = spa_strdup(vd->vdev_path);
4888	for (int t = 0; t < TXG_SIZE; t++)
4889		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4890	vd->vdev_detached = B_TRUE;
4891	vdev_dirty(tvd, VDD_DTL, vd, txg);
4892
4893	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4894
4895	/* hang on to the spa before we release the lock */
4896	spa_open_ref(spa, FTAG);
4897
4898	error = spa_vdev_exit(spa, vd, txg, 0);
4899
4900	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4901	    "vdev=%s", vdpath);
4902	spa_strfree(vdpath);
4903
4904	/*
4905	 * If this was the removal of the original device in a hot spare vdev,
4906	 * then we want to go through and remove the device from the hot spare
4907	 * list of every other pool.
4908	 */
4909	if (unspare) {
4910		spa_t *altspa = NULL;
4911
4912		mutex_enter(&spa_namespace_lock);
4913		while ((altspa = spa_next(altspa)) != NULL) {
4914			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4915			    altspa == spa)
4916				continue;
4917
4918			spa_open_ref(altspa, FTAG);
4919			mutex_exit(&spa_namespace_lock);
4920			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4921			mutex_enter(&spa_namespace_lock);
4922			spa_close(altspa, FTAG);
4923		}
4924		mutex_exit(&spa_namespace_lock);
4925
4926		/* search the rest of the vdevs for spares to remove */
4927		spa_vdev_resilver_done(spa);
4928	}
4929
4930	/* all done with the spa; OK to release */
4931	mutex_enter(&spa_namespace_lock);
4932	spa_close(spa, FTAG);
4933	mutex_exit(&spa_namespace_lock);
4934
4935	return (error);
4936}
4937
4938/*
4939 * Split a set of devices from their mirrors, and create a new pool from them.
4940 */
4941int
4942spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4943    nvlist_t *props, boolean_t exp)
4944{
4945	int error = 0;
4946	uint64_t txg, *glist;
4947	spa_t *newspa;
4948	uint_t c, children, lastlog;
4949	nvlist_t **child, *nvl, *tmp;
4950	dmu_tx_t *tx;
4951	char *altroot = NULL;
4952	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4953	boolean_t activate_slog;
4954
4955	ASSERT(spa_writeable(spa));
4956
4957	txg = spa_vdev_enter(spa);
4958
4959	/* clear the log and flush everything up to now */
4960	activate_slog = spa_passivate_log(spa);
4961	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4962	error = spa_offline_log(spa);
4963	txg = spa_vdev_config_enter(spa);
4964
4965	if (activate_slog)
4966		spa_activate_log(spa);
4967
4968	if (error != 0)
4969		return (spa_vdev_exit(spa, NULL, txg, error));
4970
4971	/* check new spa name before going any further */
4972	if (spa_lookup(newname) != NULL)
4973		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4974
4975	/*
4976	 * scan through all the children to ensure they're all mirrors
4977	 */
4978	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4979	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4980	    &children) != 0)
4981		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4982
4983	/* first, check to ensure we've got the right child count */
4984	rvd = spa->spa_root_vdev;
4985	lastlog = 0;
4986	for (c = 0; c < rvd->vdev_children; c++) {
4987		vdev_t *vd = rvd->vdev_child[c];
4988
4989		/* don't count the holes & logs as children */
4990		if (vd->vdev_islog || vd->vdev_ishole) {
4991			if (lastlog == 0)
4992				lastlog = c;
4993			continue;
4994		}
4995
4996		lastlog = 0;
4997	}
4998	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4999		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5000
5001	/* next, ensure no spare or cache devices are part of the split */
5002	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5003	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5004		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5005
5006	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5007	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5008
5009	/* then, loop over each vdev and validate it */
5010	for (c = 0; c < children; c++) {
5011		uint64_t is_hole = 0;
5012
5013		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5014		    &is_hole);
5015
5016		if (is_hole != 0) {
5017			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5018			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5019				continue;
5020			} else {
5021				error = EINVAL;
5022				break;
5023			}
5024		}
5025
5026		/* which disk is going to be split? */
5027		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5028		    &glist[c]) != 0) {
5029			error = EINVAL;
5030			break;
5031		}
5032
5033		/* look it up in the spa */
5034		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5035		if (vml[c] == NULL) {
5036			error = ENODEV;
5037			break;
5038		}
5039
5040		/* make sure there's nothing stopping the split */
5041		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5042		    vml[c]->vdev_islog ||
5043		    vml[c]->vdev_ishole ||
5044		    vml[c]->vdev_isspare ||
5045		    vml[c]->vdev_isl2cache ||
5046		    !vdev_writeable(vml[c]) ||
5047		    vml[c]->vdev_children != 0 ||
5048		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5049		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5050			error = EINVAL;
5051			break;
5052		}
5053
5054		if (vdev_dtl_required(vml[c])) {
5055			error = EBUSY;
5056			break;
5057		}
5058
5059		/* we need certain info from the top level */
5060		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5061		    vml[c]->vdev_top->vdev_ms_array) == 0);
5062		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5063		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5064		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5065		    vml[c]->vdev_top->vdev_asize) == 0);
5066		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5067		    vml[c]->vdev_top->vdev_ashift) == 0);
5068	}
5069
5070	if (error != 0) {
5071		kmem_free(vml, children * sizeof (vdev_t *));
5072		kmem_free(glist, children * sizeof (uint64_t));
5073		return (spa_vdev_exit(spa, NULL, txg, error));
5074	}
5075
5076	/* stop writers from using the disks */
5077	for (c = 0; c < children; c++) {
5078		if (vml[c] != NULL)
5079			vml[c]->vdev_offline = B_TRUE;
5080	}
5081	vdev_reopen(spa->spa_root_vdev);
5082
5083	/*
5084	 * Temporarily record the splitting vdevs in the spa config.  This
5085	 * will disappear once the config is regenerated.
5086	 */
5087	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5088	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5089	    glist, children) == 0);
5090	kmem_free(glist, children * sizeof (uint64_t));
5091
5092	mutex_enter(&spa->spa_props_lock);
5093	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5094	    nvl) == 0);
5095	mutex_exit(&spa->spa_props_lock);
5096	spa->spa_config_splitting = nvl;
5097	vdev_config_dirty(spa->spa_root_vdev);
5098
5099	/* configure and create the new pool */
5100	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5101	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5102	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5103	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5104	    spa_version(spa)) == 0);
5105	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5106	    spa->spa_config_txg) == 0);
5107	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5108	    spa_generate_guid(NULL)) == 0);
5109	(void) nvlist_lookup_string(props,
5110	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5111
5112	/* add the new pool to the namespace */
5113	newspa = spa_add(newname, config, altroot);
5114	newspa->spa_config_txg = spa->spa_config_txg;
5115	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5116
5117	/* release the spa config lock, retaining the namespace lock */
5118	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5119
5120	if (zio_injection_enabled)
5121		zio_handle_panic_injection(spa, FTAG, 1);
5122
5123	spa_activate(newspa, spa_mode_global);
5124	spa_async_suspend(newspa);
5125
5126#ifndef sun
5127	/* mark that we are creating new spa by splitting */
5128	newspa->spa_splitting_newspa = B_TRUE;
5129#endif
5130	/* create the new pool from the disks of the original pool */
5131	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5132#ifndef sun
5133	newspa->spa_splitting_newspa = B_FALSE;
5134#endif
5135	if (error)
5136		goto out;
5137
5138	/* if that worked, generate a real config for the new pool */
5139	if (newspa->spa_root_vdev != NULL) {
5140		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5141		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5142		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5143		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5144		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5145		    B_TRUE));
5146	}
5147
5148	/* set the props */
5149	if (props != NULL) {
5150		spa_configfile_set(newspa, props, B_FALSE);
5151		error = spa_prop_set(newspa, props);
5152		if (error)
5153			goto out;
5154	}
5155
5156	/* flush everything */
5157	txg = spa_vdev_config_enter(newspa);
5158	vdev_config_dirty(newspa->spa_root_vdev);
5159	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5160
5161	if (zio_injection_enabled)
5162		zio_handle_panic_injection(spa, FTAG, 2);
5163
5164	spa_async_resume(newspa);
5165
5166	/* finally, update the original pool's config */
5167	txg = spa_vdev_config_enter(spa);
5168	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5169	error = dmu_tx_assign(tx, TXG_WAIT);
5170	if (error != 0)
5171		dmu_tx_abort(tx);
5172	for (c = 0; c < children; c++) {
5173		if (vml[c] != NULL) {
5174			vdev_split(vml[c]);
5175			if (error == 0)
5176				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
5177				    spa, tx, "vdev=%s",
5178				    vml[c]->vdev_path);
5179			vdev_free(vml[c]);
5180		}
5181	}
5182	vdev_config_dirty(spa->spa_root_vdev);
5183	spa->spa_config_splitting = NULL;
5184	nvlist_free(nvl);
5185	if (error == 0)
5186		dmu_tx_commit(tx);
5187	(void) spa_vdev_exit(spa, NULL, txg, 0);
5188
5189	if (zio_injection_enabled)
5190		zio_handle_panic_injection(spa, FTAG, 3);
5191
5192	/* split is complete; log a history record */
5193	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
5194	    "split new pool %s from pool %s", newname, spa_name(spa));
5195
5196	kmem_free(vml, children * sizeof (vdev_t *));
5197
5198	/* if we're not going to mount the filesystems in userland, export */
5199	if (exp)
5200		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5201		    B_FALSE, B_FALSE);
5202
5203	return (error);
5204
5205out:
5206	spa_unload(newspa);
5207	spa_deactivate(newspa);
5208	spa_remove(newspa);
5209
5210	txg = spa_vdev_config_enter(spa);
5211
5212	/* re-online all offlined disks */
5213	for (c = 0; c < children; c++) {
5214		if (vml[c] != NULL)
5215			vml[c]->vdev_offline = B_FALSE;
5216	}
5217	vdev_reopen(spa->spa_root_vdev);
5218
5219	nvlist_free(spa->spa_config_splitting);
5220	spa->spa_config_splitting = NULL;
5221	(void) spa_vdev_exit(spa, NULL, txg, error);
5222
5223	kmem_free(vml, children * sizeof (vdev_t *));
5224	return (error);
5225}
5226
5227static nvlist_t *
5228spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5229{
5230	for (int i = 0; i < count; i++) {
5231		uint64_t guid;
5232
5233		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5234		    &guid) == 0);
5235
5236		if (guid == target_guid)
5237			return (nvpp[i]);
5238	}
5239
5240	return (NULL);
5241}
5242
5243static void
5244spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5245	nvlist_t *dev_to_remove)
5246{
5247	nvlist_t **newdev = NULL;
5248
5249	if (count > 1)
5250		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5251
5252	for (int i = 0, j = 0; i < count; i++) {
5253		if (dev[i] == dev_to_remove)
5254			continue;
5255		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5256	}
5257
5258	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5259	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5260
5261	for (int i = 0; i < count - 1; i++)
5262		nvlist_free(newdev[i]);
5263
5264	if (count > 1)
5265		kmem_free(newdev, (count - 1) * sizeof (void *));
5266}
5267
5268/*
5269 * Evacuate the device.
5270 */
5271static int
5272spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5273{
5274	uint64_t txg;
5275	int error = 0;
5276
5277	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5278	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5279	ASSERT(vd == vd->vdev_top);
5280
5281	/*
5282	 * Evacuate the device.  We don't hold the config lock as writer
5283	 * since we need to do I/O but we do keep the
5284	 * spa_namespace_lock held.  Once this completes the device
5285	 * should no longer have any blocks allocated on it.
5286	 */
5287	if (vd->vdev_islog) {
5288		if (vd->vdev_stat.vs_alloc != 0)
5289			error = spa_offline_log(spa);
5290	} else {
5291		error = ENOTSUP;
5292	}
5293
5294	if (error)
5295		return (error);
5296
5297	/*
5298	 * The evacuation succeeded.  Remove any remaining MOS metadata
5299	 * associated with this vdev, and wait for these changes to sync.
5300	 */
5301	ASSERT0(vd->vdev_stat.vs_alloc);
5302	txg = spa_vdev_config_enter(spa);
5303	vd->vdev_removing = B_TRUE;
5304	vdev_dirty(vd, 0, NULL, txg);
5305	vdev_config_dirty(vd);
5306	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5307
5308	return (0);
5309}
5310
5311/*
5312 * Complete the removal by cleaning up the namespace.
5313 */
5314static void
5315spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5316{
5317	vdev_t *rvd = spa->spa_root_vdev;
5318	uint64_t id = vd->vdev_id;
5319	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5320
5321	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5322	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5323	ASSERT(vd == vd->vdev_top);
5324
5325	/*
5326	 * Only remove any devices which are empty.
5327	 */
5328	if (vd->vdev_stat.vs_alloc != 0)
5329		return;
5330
5331	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5332
5333	if (list_link_active(&vd->vdev_state_dirty_node))
5334		vdev_state_clean(vd);
5335	if (list_link_active(&vd->vdev_config_dirty_node))
5336		vdev_config_clean(vd);
5337
5338	vdev_free(vd);
5339
5340	if (last_vdev) {
5341		vdev_compact_children(rvd);
5342	} else {
5343		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5344		vdev_add_child(rvd, vd);
5345	}
5346	vdev_config_dirty(rvd);
5347
5348	/*
5349	 * Reassess the health of our root vdev.
5350	 */
5351	vdev_reopen(rvd);
5352}
5353
5354/*
5355 * Remove a device from the pool -
5356 *
5357 * Removing a device from the vdev namespace requires several steps
5358 * and can take a significant amount of time.  As a result we use
5359 * the spa_vdev_config_[enter/exit] functions which allow us to
5360 * grab and release the spa_config_lock while still holding the namespace
5361 * lock.  During each step the configuration is synced out.
5362 */
5363
5364/*
5365 * Remove a device from the pool.  Currently, this supports removing only hot
5366 * spares, slogs, and level 2 ARC devices.
5367 */
5368int
5369spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5370{
5371	vdev_t *vd;
5372	metaslab_group_t *mg;
5373	nvlist_t **spares, **l2cache, *nv;
5374	uint64_t txg = 0;
5375	uint_t nspares, nl2cache;
5376	int error = 0;
5377	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5378
5379	ASSERT(spa_writeable(spa));
5380
5381	if (!locked)
5382		txg = spa_vdev_enter(spa);
5383
5384	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5385
5386	if (spa->spa_spares.sav_vdevs != NULL &&
5387	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5388	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5389	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5390		/*
5391		 * Only remove the hot spare if it's not currently in use
5392		 * in this pool.
5393		 */
5394		if (vd == NULL || unspare) {
5395			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5396			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5397			spa_load_spares(spa);
5398			spa->spa_spares.sav_sync = B_TRUE;
5399		} else {
5400			error = EBUSY;
5401		}
5402	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5403	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5404	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5405	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5406		/*
5407		 * Cache devices can always be removed.
5408		 */
5409		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5410		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5411		spa_load_l2cache(spa);
5412		spa->spa_l2cache.sav_sync = B_TRUE;
5413	} else if (vd != NULL && vd->vdev_islog) {
5414		ASSERT(!locked);
5415		ASSERT(vd == vd->vdev_top);
5416
5417		/*
5418		 * XXX - Once we have bp-rewrite this should
5419		 * become the common case.
5420		 */
5421
5422		mg = vd->vdev_mg;
5423
5424		/*
5425		 * Stop allocating from this vdev.
5426		 */
5427		metaslab_group_passivate(mg);
5428
5429		/*
5430		 * Wait for the youngest allocations and frees to sync,
5431		 * and then wait for the deferral of those frees to finish.
5432		 */
5433		spa_vdev_config_exit(spa, NULL,
5434		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5435
5436		/*
5437		 * Attempt to evacuate the vdev.
5438		 */
5439		error = spa_vdev_remove_evacuate(spa, vd);
5440
5441		txg = spa_vdev_config_enter(spa);
5442
5443		/*
5444		 * If we couldn't evacuate the vdev, unwind.
5445		 */
5446		if (error) {
5447			metaslab_group_activate(mg);
5448			return (spa_vdev_exit(spa, NULL, txg, error));
5449		}
5450
5451		/*
5452		 * Clean up the vdev namespace.
5453		 */
5454		spa_vdev_remove_from_namespace(spa, vd);
5455
5456	} else if (vd != NULL) {
5457		/*
5458		 * Normal vdevs cannot be removed (yet).
5459		 */
5460		error = ENOTSUP;
5461	} else {
5462		/*
5463		 * There is no vdev of any kind with the specified guid.
5464		 */
5465		error = ENOENT;
5466	}
5467
5468	if (!locked)
5469		return (spa_vdev_exit(spa, NULL, txg, error));
5470
5471	return (error);
5472}
5473
5474/*
5475 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5476 * current spared, so we can detach it.
5477 */
5478static vdev_t *
5479spa_vdev_resilver_done_hunt(vdev_t *vd)
5480{
5481	vdev_t *newvd, *oldvd;
5482
5483	for (int c = 0; c < vd->vdev_children; c++) {
5484		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5485		if (oldvd != NULL)
5486			return (oldvd);
5487	}
5488
5489	/*
5490	 * Check for a completed replacement.  We always consider the first
5491	 * vdev in the list to be the oldest vdev, and the last one to be
5492	 * the newest (see spa_vdev_attach() for how that works).  In
5493	 * the case where the newest vdev is faulted, we will not automatically
5494	 * remove it after a resilver completes.  This is OK as it will require
5495	 * user intervention to determine which disk the admin wishes to keep.
5496	 */
5497	if (vd->vdev_ops == &vdev_replacing_ops) {
5498		ASSERT(vd->vdev_children > 1);
5499
5500		newvd = vd->vdev_child[vd->vdev_children - 1];
5501		oldvd = vd->vdev_child[0];
5502
5503		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5504		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5505		    !vdev_dtl_required(oldvd))
5506			return (oldvd);
5507	}
5508
5509	/*
5510	 * Check for a completed resilver with the 'unspare' flag set.
5511	 */
5512	if (vd->vdev_ops == &vdev_spare_ops) {
5513		vdev_t *first = vd->vdev_child[0];
5514		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5515
5516		if (last->vdev_unspare) {
5517			oldvd = first;
5518			newvd = last;
5519		} else if (first->vdev_unspare) {
5520			oldvd = last;
5521			newvd = first;
5522		} else {
5523			oldvd = NULL;
5524		}
5525
5526		if (oldvd != NULL &&
5527		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5528		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5529		    !vdev_dtl_required(oldvd))
5530			return (oldvd);
5531
5532		/*
5533		 * If there are more than two spares attached to a disk,
5534		 * and those spares are not required, then we want to
5535		 * attempt to free them up now so that they can be used
5536		 * by other pools.  Once we're back down to a single
5537		 * disk+spare, we stop removing them.
5538		 */
5539		if (vd->vdev_children > 2) {
5540			newvd = vd->vdev_child[1];
5541
5542			if (newvd->vdev_isspare && last->vdev_isspare &&
5543			    vdev_dtl_empty(last, DTL_MISSING) &&
5544			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5545			    !vdev_dtl_required(newvd))
5546				return (newvd);
5547		}
5548	}
5549
5550	return (NULL);
5551}
5552
5553static void
5554spa_vdev_resilver_done(spa_t *spa)
5555{
5556	vdev_t *vd, *pvd, *ppvd;
5557	uint64_t guid, sguid, pguid, ppguid;
5558
5559	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5560
5561	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5562		pvd = vd->vdev_parent;
5563		ppvd = pvd->vdev_parent;
5564		guid = vd->vdev_guid;
5565		pguid = pvd->vdev_guid;
5566		ppguid = ppvd->vdev_guid;
5567		sguid = 0;
5568		/*
5569		 * If we have just finished replacing a hot spared device, then
5570		 * we need to detach the parent's first child (the original hot
5571		 * spare) as well.
5572		 */
5573		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5574		    ppvd->vdev_children == 2) {
5575			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5576			sguid = ppvd->vdev_child[1]->vdev_guid;
5577		}
5578		spa_config_exit(spa, SCL_ALL, FTAG);
5579		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5580			return;
5581		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5582			return;
5583		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5584	}
5585
5586	spa_config_exit(spa, SCL_ALL, FTAG);
5587}
5588
5589/*
5590 * Update the stored path or FRU for this vdev.
5591 */
5592int
5593spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5594    boolean_t ispath)
5595{
5596	vdev_t *vd;
5597	boolean_t sync = B_FALSE;
5598
5599	ASSERT(spa_writeable(spa));
5600
5601	spa_vdev_state_enter(spa, SCL_ALL);
5602
5603	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5604		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5605
5606	if (!vd->vdev_ops->vdev_op_leaf)
5607		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5608
5609	if (ispath) {
5610		if (strcmp(value, vd->vdev_path) != 0) {
5611			spa_strfree(vd->vdev_path);
5612			vd->vdev_path = spa_strdup(value);
5613			sync = B_TRUE;
5614		}
5615	} else {
5616		if (vd->vdev_fru == NULL) {
5617			vd->vdev_fru = spa_strdup(value);
5618			sync = B_TRUE;
5619		} else if (strcmp(value, vd->vdev_fru) != 0) {
5620			spa_strfree(vd->vdev_fru);
5621			vd->vdev_fru = spa_strdup(value);
5622			sync = B_TRUE;
5623		}
5624	}
5625
5626	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5627}
5628
5629int
5630spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5631{
5632	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5633}
5634
5635int
5636spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5637{
5638	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5639}
5640
5641/*
5642 * ==========================================================================
5643 * SPA Scanning
5644 * ==========================================================================
5645 */
5646
5647int
5648spa_scan_stop(spa_t *spa)
5649{
5650	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5651	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5652		return (EBUSY);
5653	return (dsl_scan_cancel(spa->spa_dsl_pool));
5654}
5655
5656int
5657spa_scan(spa_t *spa, pool_scan_func_t func)
5658{
5659	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5660
5661	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5662		return (ENOTSUP);
5663
5664	/*
5665	 * If a resilver was requested, but there is no DTL on a
5666	 * writeable leaf device, we have nothing to do.
5667	 */
5668	if (func == POOL_SCAN_RESILVER &&
5669	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5670		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5671		return (0);
5672	}
5673
5674	return (dsl_scan(spa->spa_dsl_pool, func));
5675}
5676
5677/*
5678 * ==========================================================================
5679 * SPA async task processing
5680 * ==========================================================================
5681 */
5682
5683static void
5684spa_async_remove(spa_t *spa, vdev_t *vd)
5685{
5686	if (vd->vdev_remove_wanted) {
5687		vd->vdev_remove_wanted = B_FALSE;
5688		vd->vdev_delayed_close = B_FALSE;
5689		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5690
5691		/*
5692		 * We want to clear the stats, but we don't want to do a full
5693		 * vdev_clear() as that will cause us to throw away
5694		 * degraded/faulted state as well as attempt to reopen the
5695		 * device, all of which is a waste.
5696		 */
5697		vd->vdev_stat.vs_read_errors = 0;
5698		vd->vdev_stat.vs_write_errors = 0;
5699		vd->vdev_stat.vs_checksum_errors = 0;
5700
5701		vdev_state_dirty(vd->vdev_top);
5702	}
5703
5704	for (int c = 0; c < vd->vdev_children; c++)
5705		spa_async_remove(spa, vd->vdev_child[c]);
5706}
5707
5708static void
5709spa_async_probe(spa_t *spa, vdev_t *vd)
5710{
5711	if (vd->vdev_probe_wanted) {
5712		vd->vdev_probe_wanted = B_FALSE;
5713		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5714	}
5715
5716	for (int c = 0; c < vd->vdev_children; c++)
5717		spa_async_probe(spa, vd->vdev_child[c]);
5718}
5719
5720static void
5721spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5722{
5723	sysevent_id_t eid;
5724	nvlist_t *attr;
5725	char *physpath;
5726
5727	if (!spa->spa_autoexpand)
5728		return;
5729
5730	for (int c = 0; c < vd->vdev_children; c++) {
5731		vdev_t *cvd = vd->vdev_child[c];
5732		spa_async_autoexpand(spa, cvd);
5733	}
5734
5735	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5736		return;
5737
5738	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5739	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5740
5741	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5742	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5743
5744	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5745	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5746
5747	nvlist_free(attr);
5748	kmem_free(physpath, MAXPATHLEN);
5749}
5750
5751static void
5752spa_async_thread(void *arg)
5753{
5754	spa_t *spa = arg;
5755	int tasks;
5756
5757	ASSERT(spa->spa_sync_on);
5758
5759	mutex_enter(&spa->spa_async_lock);
5760	tasks = spa->spa_async_tasks;
5761	spa->spa_async_tasks = 0;
5762	mutex_exit(&spa->spa_async_lock);
5763
5764	/*
5765	 * See if the config needs to be updated.
5766	 */
5767	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5768		uint64_t old_space, new_space;
5769
5770		mutex_enter(&spa_namespace_lock);
5771		old_space = metaslab_class_get_space(spa_normal_class(spa));
5772		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5773		new_space = metaslab_class_get_space(spa_normal_class(spa));
5774		mutex_exit(&spa_namespace_lock);
5775
5776		/*
5777		 * If the pool grew as a result of the config update,
5778		 * then log an internal history event.
5779		 */
5780		if (new_space != old_space) {
5781			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5782			    spa, NULL,
5783			    "pool '%s' size: %llu(+%llu)",
5784			    spa_name(spa), new_space, new_space - old_space);
5785		}
5786	}
5787
5788	/*
5789	 * See if any devices need to be marked REMOVED.
5790	 */
5791	if (tasks & SPA_ASYNC_REMOVE) {
5792		spa_vdev_state_enter(spa, SCL_NONE);
5793		spa_async_remove(spa, spa->spa_root_vdev);
5794		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5795			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5796		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5797			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5798		(void) spa_vdev_state_exit(spa, NULL, 0);
5799	}
5800
5801	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5802		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5803		spa_async_autoexpand(spa, spa->spa_root_vdev);
5804		spa_config_exit(spa, SCL_CONFIG, FTAG);
5805	}
5806
5807	/*
5808	 * See if any devices need to be probed.
5809	 */
5810	if (tasks & SPA_ASYNC_PROBE) {
5811		spa_vdev_state_enter(spa, SCL_NONE);
5812		spa_async_probe(spa, spa->spa_root_vdev);
5813		(void) spa_vdev_state_exit(spa, NULL, 0);
5814	}
5815
5816	/*
5817	 * If any devices are done replacing, detach them.
5818	 */
5819	if (tasks & SPA_ASYNC_RESILVER_DONE)
5820		spa_vdev_resilver_done(spa);
5821
5822	/*
5823	 * Kick off a resilver.
5824	 */
5825	if (tasks & SPA_ASYNC_RESILVER)
5826		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5827
5828	/*
5829	 * Let the world know that we're done.
5830	 */
5831	mutex_enter(&spa->spa_async_lock);
5832	spa->spa_async_thread = NULL;
5833	cv_broadcast(&spa->spa_async_cv);
5834	mutex_exit(&spa->spa_async_lock);
5835	thread_exit();
5836}
5837
5838void
5839spa_async_suspend(spa_t *spa)
5840{
5841	mutex_enter(&spa->spa_async_lock);
5842	spa->spa_async_suspended++;
5843	while (spa->spa_async_thread != NULL)
5844		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5845	mutex_exit(&spa->spa_async_lock);
5846}
5847
5848void
5849spa_async_resume(spa_t *spa)
5850{
5851	mutex_enter(&spa->spa_async_lock);
5852	ASSERT(spa->spa_async_suspended != 0);
5853	spa->spa_async_suspended--;
5854	mutex_exit(&spa->spa_async_lock);
5855}
5856
5857static void
5858spa_async_dispatch(spa_t *spa)
5859{
5860	mutex_enter(&spa->spa_async_lock);
5861	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5862	    spa->spa_async_thread == NULL &&
5863	    rootdir != NULL && !vn_is_readonly(rootdir))
5864		spa->spa_async_thread = thread_create(NULL, 0,
5865		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5866	mutex_exit(&spa->spa_async_lock);
5867}
5868
5869void
5870spa_async_request(spa_t *spa, int task)
5871{
5872	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5873	mutex_enter(&spa->spa_async_lock);
5874	spa->spa_async_tasks |= task;
5875	mutex_exit(&spa->spa_async_lock);
5876}
5877
5878/*
5879 * ==========================================================================
5880 * SPA syncing routines
5881 * ==========================================================================
5882 */
5883
5884static int
5885bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5886{
5887	bpobj_t *bpo = arg;
5888	bpobj_enqueue(bpo, bp, tx);
5889	return (0);
5890}
5891
5892static int
5893spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5894{
5895	zio_t *zio = arg;
5896
5897	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5898	    BP_GET_PSIZE(bp), zio->io_flags));
5899	return (0);
5900}
5901
5902static void
5903spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5904{
5905	char *packed = NULL;
5906	size_t bufsize;
5907	size_t nvsize = 0;
5908	dmu_buf_t *db;
5909
5910	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5911
5912	/*
5913	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5914	 * information.  This avoids the dbuf_will_dirty() path and
5915	 * saves us a pre-read to get data we don't actually care about.
5916	 */
5917	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5918	packed = kmem_alloc(bufsize, KM_SLEEP);
5919
5920	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5921	    KM_SLEEP) == 0);
5922	bzero(packed + nvsize, bufsize - nvsize);
5923
5924	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5925
5926	kmem_free(packed, bufsize);
5927
5928	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5929	dmu_buf_will_dirty(db, tx);
5930	*(uint64_t *)db->db_data = nvsize;
5931	dmu_buf_rele(db, FTAG);
5932}
5933
5934static void
5935spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5936    const char *config, const char *entry)
5937{
5938	nvlist_t *nvroot;
5939	nvlist_t **list;
5940	int i;
5941
5942	if (!sav->sav_sync)
5943		return;
5944
5945	/*
5946	 * Update the MOS nvlist describing the list of available devices.
5947	 * spa_validate_aux() will have already made sure this nvlist is
5948	 * valid and the vdevs are labeled appropriately.
5949	 */
5950	if (sav->sav_object == 0) {
5951		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5952		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5953		    sizeof (uint64_t), tx);
5954		VERIFY(zap_update(spa->spa_meta_objset,
5955		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5956		    &sav->sav_object, tx) == 0);
5957	}
5958
5959	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5960	if (sav->sav_count == 0) {
5961		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5962	} else {
5963		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5964		for (i = 0; i < sav->sav_count; i++)
5965			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5966			    B_FALSE, VDEV_CONFIG_L2CACHE);
5967		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5968		    sav->sav_count) == 0);
5969		for (i = 0; i < sav->sav_count; i++)
5970			nvlist_free(list[i]);
5971		kmem_free(list, sav->sav_count * sizeof (void *));
5972	}
5973
5974	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5975	nvlist_free(nvroot);
5976
5977	sav->sav_sync = B_FALSE;
5978}
5979
5980static void
5981spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5982{
5983	nvlist_t *config;
5984
5985	if (list_is_empty(&spa->spa_config_dirty_list))
5986		return;
5987
5988	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5989
5990	config = spa_config_generate(spa, spa->spa_root_vdev,
5991	    dmu_tx_get_txg(tx), B_FALSE);
5992
5993	/*
5994	 * If we're upgrading the spa version then make sure that
5995	 * the config object gets updated with the correct version.
5996	 */
5997	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5998		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5999		    spa->spa_uberblock.ub_version);
6000
6001	spa_config_exit(spa, SCL_STATE, FTAG);
6002
6003	if (spa->spa_config_syncing)
6004		nvlist_free(spa->spa_config_syncing);
6005	spa->spa_config_syncing = config;
6006
6007	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6008}
6009
6010static void
6011spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
6012{
6013	spa_t *spa = arg1;
6014	uint64_t version = *(uint64_t *)arg2;
6015
6016	/*
6017	 * Setting the version is special cased when first creating the pool.
6018	 */
6019	ASSERT(tx->tx_txg != TXG_INITIAL);
6020
6021	ASSERT(version <= SPA_VERSION);
6022	ASSERT(version >= spa_version(spa));
6023
6024	spa->spa_uberblock.ub_version = version;
6025	vdev_config_dirty(spa->spa_root_vdev);
6026}
6027
6028/*
6029 * Set zpool properties.
6030 */
6031static void
6032spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
6033{
6034	spa_t *spa = arg1;
6035	objset_t *mos = spa->spa_meta_objset;
6036	nvlist_t *nvp = arg2;
6037	nvpair_t *elem = NULL;
6038
6039	mutex_enter(&spa->spa_props_lock);
6040
6041	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6042		uint64_t intval;
6043		char *strval, *fname;
6044		zpool_prop_t prop;
6045		const char *propname;
6046		zprop_type_t proptype;
6047		zfeature_info_t *feature;
6048
6049		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6050		case ZPROP_INVAL:
6051			/*
6052			 * We checked this earlier in spa_prop_validate().
6053			 */
6054			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6055
6056			fname = strchr(nvpair_name(elem), '@') + 1;
6057			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
6058
6059			spa_feature_enable(spa, feature, tx);
6060			break;
6061
6062		case ZPOOL_PROP_VERSION:
6063			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6064			/*
6065			 * The version is synced seperatly before other
6066			 * properties and should be correct by now.
6067			 */
6068			ASSERT3U(spa_version(spa), >=, intval);
6069			break;
6070
6071		case ZPOOL_PROP_ALTROOT:
6072			/*
6073			 * 'altroot' is a non-persistent property. It should
6074			 * have been set temporarily at creation or import time.
6075			 */
6076			ASSERT(spa->spa_root != NULL);
6077			break;
6078
6079		case ZPOOL_PROP_READONLY:
6080		case ZPOOL_PROP_CACHEFILE:
6081			/*
6082			 * 'readonly' and 'cachefile' are also non-persisitent
6083			 * properties.
6084			 */
6085			break;
6086		case ZPOOL_PROP_COMMENT:
6087			VERIFY(nvpair_value_string(elem, &strval) == 0);
6088			if (spa->spa_comment != NULL)
6089				spa_strfree(spa->spa_comment);
6090			spa->spa_comment = spa_strdup(strval);
6091			/*
6092			 * We need to dirty the configuration on all the vdevs
6093			 * so that their labels get updated.  It's unnecessary
6094			 * to do this for pool creation since the vdev's
6095			 * configuratoin has already been dirtied.
6096			 */
6097			if (tx->tx_txg != TXG_INITIAL)
6098				vdev_config_dirty(spa->spa_root_vdev);
6099			break;
6100		default:
6101			/*
6102			 * Set pool property values in the poolprops mos object.
6103			 */
6104			if (spa->spa_pool_props_object == 0) {
6105				spa->spa_pool_props_object =
6106				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6107				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6108				    tx);
6109			}
6110
6111			/* normalize the property name */
6112			propname = zpool_prop_to_name(prop);
6113			proptype = zpool_prop_get_type(prop);
6114
6115			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6116				ASSERT(proptype == PROP_TYPE_STRING);
6117				VERIFY(nvpair_value_string(elem, &strval) == 0);
6118				VERIFY(zap_update(mos,
6119				    spa->spa_pool_props_object, propname,
6120				    1, strlen(strval) + 1, strval, tx) == 0);
6121
6122			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6123				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6124
6125				if (proptype == PROP_TYPE_INDEX) {
6126					const char *unused;
6127					VERIFY(zpool_prop_index_to_string(
6128					    prop, intval, &unused) == 0);
6129				}
6130				VERIFY(zap_update(mos,
6131				    spa->spa_pool_props_object, propname,
6132				    8, 1, &intval, tx) == 0);
6133			} else {
6134				ASSERT(0); /* not allowed */
6135			}
6136
6137			switch (prop) {
6138			case ZPOOL_PROP_DELEGATION:
6139				spa->spa_delegation = intval;
6140				break;
6141			case ZPOOL_PROP_BOOTFS:
6142				spa->spa_bootfs = intval;
6143				break;
6144			case ZPOOL_PROP_FAILUREMODE:
6145				spa->spa_failmode = intval;
6146				break;
6147			case ZPOOL_PROP_AUTOEXPAND:
6148				spa->spa_autoexpand = intval;
6149				if (tx->tx_txg != TXG_INITIAL)
6150					spa_async_request(spa,
6151					    SPA_ASYNC_AUTOEXPAND);
6152				break;
6153			case ZPOOL_PROP_DEDUPDITTO:
6154				spa->spa_dedup_ditto = intval;
6155				break;
6156			default:
6157				break;
6158			}
6159		}
6160
6161		/* log internal history if this is not a zpool create */
6162		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
6163		    tx->tx_txg != TXG_INITIAL) {
6164			spa_history_log_internal(LOG_POOL_PROPSET,
6165			    spa, tx, "%s %lld %s",
6166			    nvpair_name(elem), intval, spa_name(spa));
6167		}
6168	}
6169
6170	mutex_exit(&spa->spa_props_lock);
6171}
6172
6173/*
6174 * Perform one-time upgrade on-disk changes.  spa_version() does not
6175 * reflect the new version this txg, so there must be no changes this
6176 * txg to anything that the upgrade code depends on after it executes.
6177 * Therefore this must be called after dsl_pool_sync() does the sync
6178 * tasks.
6179 */
6180static void
6181spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6182{
6183	dsl_pool_t *dp = spa->spa_dsl_pool;
6184
6185	ASSERT(spa->spa_sync_pass == 1);
6186
6187	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6188	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6189		dsl_pool_create_origin(dp, tx);
6190
6191		/* Keeping the origin open increases spa_minref */
6192		spa->spa_minref += 3;
6193	}
6194
6195	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6196	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6197		dsl_pool_upgrade_clones(dp, tx);
6198	}
6199
6200	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6201	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6202		dsl_pool_upgrade_dir_clones(dp, tx);
6203
6204		/* Keeping the freedir open increases spa_minref */
6205		spa->spa_minref += 3;
6206	}
6207
6208	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6209	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6210		spa_feature_create_zap_objects(spa, tx);
6211	}
6212}
6213
6214/*
6215 * Sync the specified transaction group.  New blocks may be dirtied as
6216 * part of the process, so we iterate until it converges.
6217 */
6218void
6219spa_sync(spa_t *spa, uint64_t txg)
6220{
6221	dsl_pool_t *dp = spa->spa_dsl_pool;
6222	objset_t *mos = spa->spa_meta_objset;
6223	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6224	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6225	vdev_t *rvd = spa->spa_root_vdev;
6226	vdev_t *vd;
6227	dmu_tx_t *tx;
6228	int error;
6229
6230	VERIFY(spa_writeable(spa));
6231
6232	/*
6233	 * Lock out configuration changes.
6234	 */
6235	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6236
6237	spa->spa_syncing_txg = txg;
6238	spa->spa_sync_pass = 0;
6239
6240	/*
6241	 * If there are any pending vdev state changes, convert them
6242	 * into config changes that go out with this transaction group.
6243	 */
6244	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6245	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6246		/*
6247		 * We need the write lock here because, for aux vdevs,
6248		 * calling vdev_config_dirty() modifies sav_config.
6249		 * This is ugly and will become unnecessary when we
6250		 * eliminate the aux vdev wart by integrating all vdevs
6251		 * into the root vdev tree.
6252		 */
6253		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6254		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6255		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6256			vdev_state_clean(vd);
6257			vdev_config_dirty(vd);
6258		}
6259		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6260		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6261	}
6262	spa_config_exit(spa, SCL_STATE, FTAG);
6263
6264	tx = dmu_tx_create_assigned(dp, txg);
6265
6266	spa->spa_sync_starttime = gethrtime();
6267#ifdef illumos
6268	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6269	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6270#else	/* FreeBSD */
6271#ifdef _KERNEL
6272	callout_reset(&spa->spa_deadman_cycid,
6273	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6274#endif
6275#endif
6276
6277	/*
6278	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6279	 * set spa_deflate if we have no raid-z vdevs.
6280	 */
6281	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6282	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6283		int i;
6284
6285		for (i = 0; i < rvd->vdev_children; i++) {
6286			vd = rvd->vdev_child[i];
6287			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6288				break;
6289		}
6290		if (i == rvd->vdev_children) {
6291			spa->spa_deflate = TRUE;
6292			VERIFY(0 == zap_add(spa->spa_meta_objset,
6293			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6294			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6295		}
6296	}
6297
6298	/*
6299	 * If anything has changed in this txg, or if someone is waiting
6300	 * for this txg to sync (eg, spa_vdev_remove()), push the
6301	 * deferred frees from the previous txg.  If not, leave them
6302	 * alone so that we don't generate work on an otherwise idle
6303	 * system.
6304	 */
6305	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6306	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6307	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6308	    ((dsl_scan_active(dp->dp_scan) ||
6309	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6310		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6311		VERIFY3U(bpobj_iterate(defer_bpo,
6312		    spa_free_sync_cb, zio, tx), ==, 0);
6313		VERIFY0(zio_wait(zio));
6314	}
6315
6316	/*
6317	 * Iterate to convergence.
6318	 */
6319	do {
6320		int pass = ++spa->spa_sync_pass;
6321
6322		spa_sync_config_object(spa, tx);
6323		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6324		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6325		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6326		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6327		spa_errlog_sync(spa, txg);
6328		dsl_pool_sync(dp, txg);
6329
6330		if (pass < zfs_sync_pass_deferred_free) {
6331			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6332			bplist_iterate(free_bpl, spa_free_sync_cb,
6333			    zio, tx);
6334			VERIFY(zio_wait(zio) == 0);
6335		} else {
6336			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6337			    defer_bpo, tx);
6338		}
6339
6340		ddt_sync(spa, txg);
6341		dsl_scan_sync(dp, tx);
6342
6343		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6344			vdev_sync(vd, txg);
6345
6346		if (pass == 1)
6347			spa_sync_upgrades(spa, tx);
6348
6349	} while (dmu_objset_is_dirty(mos, txg));
6350
6351	/*
6352	 * Rewrite the vdev configuration (which includes the uberblock)
6353	 * to commit the transaction group.
6354	 *
6355	 * If there are no dirty vdevs, we sync the uberblock to a few
6356	 * random top-level vdevs that are known to be visible in the
6357	 * config cache (see spa_vdev_add() for a complete description).
6358	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6359	 */
6360	for (;;) {
6361		/*
6362		 * We hold SCL_STATE to prevent vdev open/close/etc.
6363		 * while we're attempting to write the vdev labels.
6364		 */
6365		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6366
6367		if (list_is_empty(&spa->spa_config_dirty_list)) {
6368			vdev_t *svd[SPA_DVAS_PER_BP];
6369			int svdcount = 0;
6370			int children = rvd->vdev_children;
6371			int c0 = spa_get_random(children);
6372
6373			for (int c = 0; c < children; c++) {
6374				vd = rvd->vdev_child[(c0 + c) % children];
6375				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6376					continue;
6377				svd[svdcount++] = vd;
6378				if (svdcount == SPA_DVAS_PER_BP)
6379					break;
6380			}
6381			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6382			if (error != 0)
6383				error = vdev_config_sync(svd, svdcount, txg,
6384				    B_TRUE);
6385		} else {
6386			error = vdev_config_sync(rvd->vdev_child,
6387			    rvd->vdev_children, txg, B_FALSE);
6388			if (error != 0)
6389				error = vdev_config_sync(rvd->vdev_child,
6390				    rvd->vdev_children, txg, B_TRUE);
6391		}
6392
6393		if (error == 0)
6394			spa->spa_last_synced_guid = rvd->vdev_guid;
6395
6396		spa_config_exit(spa, SCL_STATE, FTAG);
6397
6398		if (error == 0)
6399			break;
6400		zio_suspend(spa, NULL);
6401		zio_resume_wait(spa);
6402	}
6403	dmu_tx_commit(tx);
6404
6405#ifdef illumos
6406	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6407#else	/* FreeBSD */
6408#ifdef _KERNEL
6409	callout_drain(&spa->spa_deadman_cycid);
6410#endif
6411#endif
6412
6413	/*
6414	 * Clear the dirty config list.
6415	 */
6416	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6417		vdev_config_clean(vd);
6418
6419	/*
6420	 * Now that the new config has synced transactionally,
6421	 * let it become visible to the config cache.
6422	 */
6423	if (spa->spa_config_syncing != NULL) {
6424		spa_config_set(spa, spa->spa_config_syncing);
6425		spa->spa_config_txg = txg;
6426		spa->spa_config_syncing = NULL;
6427	}
6428
6429	spa->spa_ubsync = spa->spa_uberblock;
6430
6431	dsl_pool_sync_done(dp, txg);
6432
6433	/*
6434	 * Update usable space statistics.
6435	 */
6436	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6437		vdev_sync_done(vd, txg);
6438
6439	spa_update_dspace(spa);
6440
6441	/*
6442	 * It had better be the case that we didn't dirty anything
6443	 * since vdev_config_sync().
6444	 */
6445	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6446	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6447	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6448
6449	spa->spa_sync_pass = 0;
6450
6451	spa_config_exit(spa, SCL_CONFIG, FTAG);
6452
6453	spa_handle_ignored_writes(spa);
6454
6455	/*
6456	 * If any async tasks have been requested, kick them off.
6457	 */
6458	spa_async_dispatch(spa);
6459}
6460
6461/*
6462 * Sync all pools.  We don't want to hold the namespace lock across these
6463 * operations, so we take a reference on the spa_t and drop the lock during the
6464 * sync.
6465 */
6466void
6467spa_sync_allpools(void)
6468{
6469	spa_t *spa = NULL;
6470	mutex_enter(&spa_namespace_lock);
6471	while ((spa = spa_next(spa)) != NULL) {
6472		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6473		    !spa_writeable(spa) || spa_suspended(spa))
6474			continue;
6475		spa_open_ref(spa, FTAG);
6476		mutex_exit(&spa_namespace_lock);
6477		txg_wait_synced(spa_get_dsl(spa), 0);
6478		mutex_enter(&spa_namespace_lock);
6479		spa_close(spa, FTAG);
6480	}
6481	mutex_exit(&spa_namespace_lock);
6482}
6483
6484/*
6485 * ==========================================================================
6486 * Miscellaneous routines
6487 * ==========================================================================
6488 */
6489
6490/*
6491 * Remove all pools in the system.
6492 */
6493void
6494spa_evict_all(void)
6495{
6496	spa_t *spa;
6497
6498	/*
6499	 * Remove all cached state.  All pools should be closed now,
6500	 * so every spa in the AVL tree should be unreferenced.
6501	 */
6502	mutex_enter(&spa_namespace_lock);
6503	while ((spa = spa_next(NULL)) != NULL) {
6504		/*
6505		 * Stop async tasks.  The async thread may need to detach
6506		 * a device that's been replaced, which requires grabbing
6507		 * spa_namespace_lock, so we must drop it here.
6508		 */
6509		spa_open_ref(spa, FTAG);
6510		mutex_exit(&spa_namespace_lock);
6511		spa_async_suspend(spa);
6512		mutex_enter(&spa_namespace_lock);
6513		spa_close(spa, FTAG);
6514
6515		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6516			spa_unload(spa);
6517			spa_deactivate(spa);
6518		}
6519		spa_remove(spa);
6520	}
6521	mutex_exit(&spa_namespace_lock);
6522}
6523
6524vdev_t *
6525spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6526{
6527	vdev_t *vd;
6528	int i;
6529
6530	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6531		return (vd);
6532
6533	if (aux) {
6534		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6535			vd = spa->spa_l2cache.sav_vdevs[i];
6536			if (vd->vdev_guid == guid)
6537				return (vd);
6538		}
6539
6540		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6541			vd = spa->spa_spares.sav_vdevs[i];
6542			if (vd->vdev_guid == guid)
6543				return (vd);
6544		}
6545	}
6546
6547	return (NULL);
6548}
6549
6550void
6551spa_upgrade(spa_t *spa, uint64_t version)
6552{
6553	ASSERT(spa_writeable(spa));
6554
6555	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6556
6557	/*
6558	 * This should only be called for a non-faulted pool, and since a
6559	 * future version would result in an unopenable pool, this shouldn't be
6560	 * possible.
6561	 */
6562	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6563	ASSERT(version >= spa->spa_uberblock.ub_version);
6564
6565	spa->spa_uberblock.ub_version = version;
6566	vdev_config_dirty(spa->spa_root_vdev);
6567
6568	spa_config_exit(spa, SCL_ALL, FTAG);
6569
6570	txg_wait_synced(spa_get_dsl(spa), 0);
6571}
6572
6573boolean_t
6574spa_has_spare(spa_t *spa, uint64_t guid)
6575{
6576	int i;
6577	uint64_t spareguid;
6578	spa_aux_vdev_t *sav = &spa->spa_spares;
6579
6580	for (i = 0; i < sav->sav_count; i++)
6581		if (sav->sav_vdevs[i]->vdev_guid == guid)
6582			return (B_TRUE);
6583
6584	for (i = 0; i < sav->sav_npending; i++) {
6585		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6586		    &spareguid) == 0 && spareguid == guid)
6587			return (B_TRUE);
6588	}
6589
6590	return (B_FALSE);
6591}
6592
6593/*
6594 * Check if a pool has an active shared spare device.
6595 * Note: reference count of an active spare is 2, as a spare and as a replace
6596 */
6597static boolean_t
6598spa_has_active_shared_spare(spa_t *spa)
6599{
6600	int i, refcnt;
6601	uint64_t pool;
6602	spa_aux_vdev_t *sav = &spa->spa_spares;
6603
6604	for (i = 0; i < sav->sav_count; i++) {
6605		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6606		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6607		    refcnt > 2)
6608			return (B_TRUE);
6609	}
6610
6611	return (B_FALSE);
6612}
6613
6614/*
6615 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6616 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6617 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6618 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6619 * or zdb as real changes.
6620 */
6621void
6622spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6623{
6624#ifdef _KERNEL
6625	sysevent_t		*ev;
6626	sysevent_attr_list_t	*attr = NULL;
6627	sysevent_value_t	value;
6628	sysevent_id_t		eid;
6629
6630	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6631	    SE_SLEEP);
6632
6633	value.value_type = SE_DATA_TYPE_STRING;
6634	value.value.sv_string = spa_name(spa);
6635	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6636		goto done;
6637
6638	value.value_type = SE_DATA_TYPE_UINT64;
6639	value.value.sv_uint64 = spa_guid(spa);
6640	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6641		goto done;
6642
6643	if (vd) {
6644		value.value_type = SE_DATA_TYPE_UINT64;
6645		value.value.sv_uint64 = vd->vdev_guid;
6646		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6647		    SE_SLEEP) != 0)
6648			goto done;
6649
6650		if (vd->vdev_path) {
6651			value.value_type = SE_DATA_TYPE_STRING;
6652			value.value.sv_string = vd->vdev_path;
6653			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6654			    &value, SE_SLEEP) != 0)
6655				goto done;
6656		}
6657	}
6658
6659	if (sysevent_attach_attributes(ev, attr) != 0)
6660		goto done;
6661	attr = NULL;
6662
6663	(void) log_sysevent(ev, SE_SLEEP, &eid);
6664
6665done:
6666	if (attr)
6667		sysevent_free_attr(attr);
6668	sysevent_free(ev);
6669#endif
6670}
6671