spa.c revision 240415
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu.h>
39#include <sys/dmu_tx.h>
40#include <sys/zap.h>
41#include <sys/zil.h>
42#include <sys/ddt.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/metaslab_impl.h>
46#include <sys/uberblock_impl.h>
47#include <sys/txg.h>
48#include <sys/avl.h>
49#include <sys/dmu_traverse.h>
50#include <sys/dmu_objset.h>
51#include <sys/unique.h>
52#include <sys/dsl_pool.h>
53#include <sys/dsl_dataset.h>
54#include <sys/dsl_dir.h>
55#include <sys/dsl_prop.h>
56#include <sys/dsl_synctask.h>
57#include <sys/fs/zfs.h>
58#include <sys/arc.h>
59#include <sys/callb.h>
60#include <sys/spa_boot.h>
61#include <sys/zfs_ioctl.h>
62#include <sys/dsl_scan.h>
63#include <sys/zfeature.h>
64#include <sys/zvol.h>
65
66#ifdef	_KERNEL
67#include <sys/callb.h>
68#include <sys/cpupart.h>
69#include <sys/zone.h>
70#endif	/* _KERNEL */
71
72#include "zfs_prop.h"
73#include "zfs_comutil.h"
74
75/* Check hostid on import? */
76static int check_hostid = 1;
77
78SYSCTL_DECL(_vfs_zfs);
79TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
80SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
81    "Check hostid on import?");
82
83typedef enum zti_modes {
84	zti_mode_fixed,			/* value is # of threads (min 1) */
85	zti_mode_online_percent,	/* value is % of online CPUs */
86	zti_mode_batch,			/* cpu-intensive; value is ignored */
87	zti_mode_null,			/* don't create a taskq */
88	zti_nmodes
89} zti_modes_t;
90
91#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
92#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
93#define	ZTI_BATCH	{ zti_mode_batch, 0 }
94#define	ZTI_NULL	{ zti_mode_null, 0 }
95
96#define	ZTI_ONE		ZTI_FIX(1)
97
98typedef struct zio_taskq_info {
99	enum zti_modes zti_mode;
100	uint_t zti_value;
101} zio_taskq_info_t;
102
103static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
104	"issue", "issue_high", "intr", "intr_high"
105};
106
107/*
108 * Define the taskq threads for the following I/O types:
109 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
110 */
111const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
112	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
113	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
114	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
115	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
116	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
117	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
118	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
119};
120
121static dsl_syncfunc_t spa_sync_version;
122static dsl_syncfunc_t spa_sync_props;
123static dsl_checkfunc_t spa_change_guid_check;
124static dsl_syncfunc_t spa_change_guid_sync;
125static boolean_t spa_has_active_shared_spare(spa_t *spa);
126static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
127    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
128    char **ereport);
129static void spa_vdev_resilver_done(spa_t *spa);
130
131uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
132#ifdef PSRSET_BIND
133id_t		zio_taskq_psrset_bind = PS_NONE;
134#endif
135#ifdef SYSDC
136boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
137#endif
138uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
139
140boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
141
142/*
143 * This (illegal) pool name is used when temporarily importing a spa_t in order
144 * to get the vdev stats associated with the imported devices.
145 */
146#define	TRYIMPORT_NAME	"$import"
147
148/*
149 * ==========================================================================
150 * SPA properties routines
151 * ==========================================================================
152 */
153
154/*
155 * Add a (source=src, propname=propval) list to an nvlist.
156 */
157static void
158spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
159    uint64_t intval, zprop_source_t src)
160{
161	const char *propname = zpool_prop_to_name(prop);
162	nvlist_t *propval;
163
164	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
165	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
166
167	if (strval != NULL)
168		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
169	else
170		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
171
172	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
173	nvlist_free(propval);
174}
175
176/*
177 * Get property values from the spa configuration.
178 */
179static void
180spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
181{
182	vdev_t *rvd = spa->spa_root_vdev;
183	dsl_pool_t *pool = spa->spa_dsl_pool;
184	uint64_t size;
185	uint64_t alloc;
186	uint64_t space;
187	uint64_t cap, version;
188	zprop_source_t src = ZPROP_SRC_NONE;
189	spa_config_dirent_t *dp;
190
191	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
192
193	if (rvd != NULL) {
194		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
195		size = metaslab_class_get_space(spa_normal_class(spa));
196		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
197		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
198		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
199		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
200		    size - alloc, src);
201
202		space = 0;
203		for (int c = 0; c < rvd->vdev_children; c++) {
204			vdev_t *tvd = rvd->vdev_child[c];
205			space += tvd->vdev_max_asize - tvd->vdev_asize;
206		}
207		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
208		    src);
209
210		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
211		    (spa_mode(spa) == FREAD), src);
212
213		cap = (size == 0) ? 0 : (alloc * 100 / size);
214		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
215
216		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
217		    ddt_get_pool_dedup_ratio(spa), src);
218
219		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
220		    rvd->vdev_state, src);
221
222		version = spa_version(spa);
223		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
224			src = ZPROP_SRC_DEFAULT;
225		else
226			src = ZPROP_SRC_LOCAL;
227		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
228	}
229
230	if (pool != NULL) {
231		dsl_dir_t *freedir = pool->dp_free_dir;
232
233		/*
234		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
235		 * when opening pools before this version freedir will be NULL.
236		 */
237		if (freedir != NULL) {
238			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
239			    freedir->dd_phys->dd_used_bytes, src);
240		} else {
241			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
242			    NULL, 0, src);
243		}
244	}
245
246	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
247
248	if (spa->spa_comment != NULL) {
249		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
250		    0, ZPROP_SRC_LOCAL);
251	}
252
253	if (spa->spa_root != NULL)
254		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
255		    0, ZPROP_SRC_LOCAL);
256
257	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
258		if (dp->scd_path == NULL) {
259			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
260			    "none", 0, ZPROP_SRC_LOCAL);
261		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
262			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
263			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
264		}
265	}
266}
267
268/*
269 * Get zpool property values.
270 */
271int
272spa_prop_get(spa_t *spa, nvlist_t **nvp)
273{
274	objset_t *mos = spa->spa_meta_objset;
275	zap_cursor_t zc;
276	zap_attribute_t za;
277	int err;
278
279	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
280
281	mutex_enter(&spa->spa_props_lock);
282
283	/*
284	 * Get properties from the spa config.
285	 */
286	spa_prop_get_config(spa, nvp);
287
288	/* If no pool property object, no more prop to get. */
289	if (mos == NULL || spa->spa_pool_props_object == 0) {
290		mutex_exit(&spa->spa_props_lock);
291		return (0);
292	}
293
294	/*
295	 * Get properties from the MOS pool property object.
296	 */
297	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
298	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
299	    zap_cursor_advance(&zc)) {
300		uint64_t intval = 0;
301		char *strval = NULL;
302		zprop_source_t src = ZPROP_SRC_DEFAULT;
303		zpool_prop_t prop;
304
305		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
306			continue;
307
308		switch (za.za_integer_length) {
309		case 8:
310			/* integer property */
311			if (za.za_first_integer !=
312			    zpool_prop_default_numeric(prop))
313				src = ZPROP_SRC_LOCAL;
314
315			if (prop == ZPOOL_PROP_BOOTFS) {
316				dsl_pool_t *dp;
317				dsl_dataset_t *ds = NULL;
318
319				dp = spa_get_dsl(spa);
320				rw_enter(&dp->dp_config_rwlock, RW_READER);
321				if (err = dsl_dataset_hold_obj(dp,
322				    za.za_first_integer, FTAG, &ds)) {
323					rw_exit(&dp->dp_config_rwlock);
324					break;
325				}
326
327				strval = kmem_alloc(
328				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
329				    KM_SLEEP);
330				dsl_dataset_name(ds, strval);
331				dsl_dataset_rele(ds, FTAG);
332				rw_exit(&dp->dp_config_rwlock);
333			} else {
334				strval = NULL;
335				intval = za.za_first_integer;
336			}
337
338			spa_prop_add_list(*nvp, prop, strval, intval, src);
339
340			if (strval != NULL)
341				kmem_free(strval,
342				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
343
344			break;
345
346		case 1:
347			/* string property */
348			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
349			err = zap_lookup(mos, spa->spa_pool_props_object,
350			    za.za_name, 1, za.za_num_integers, strval);
351			if (err) {
352				kmem_free(strval, za.za_num_integers);
353				break;
354			}
355			spa_prop_add_list(*nvp, prop, strval, 0, src);
356			kmem_free(strval, za.za_num_integers);
357			break;
358
359		default:
360			break;
361		}
362	}
363	zap_cursor_fini(&zc);
364	mutex_exit(&spa->spa_props_lock);
365out:
366	if (err && err != ENOENT) {
367		nvlist_free(*nvp);
368		*nvp = NULL;
369		return (err);
370	}
371
372	return (0);
373}
374
375/*
376 * Validate the given pool properties nvlist and modify the list
377 * for the property values to be set.
378 */
379static int
380spa_prop_validate(spa_t *spa, nvlist_t *props)
381{
382	nvpair_t *elem;
383	int error = 0, reset_bootfs = 0;
384	uint64_t objnum;
385	boolean_t has_feature = B_FALSE;
386
387	elem = NULL;
388	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
389		uint64_t intval;
390		char *strval, *slash, *check, *fname;
391		const char *propname = nvpair_name(elem);
392		zpool_prop_t prop = zpool_name_to_prop(propname);
393
394		switch (prop) {
395		case ZPROP_INVAL:
396			if (!zpool_prop_feature(propname)) {
397				error = EINVAL;
398				break;
399			}
400
401			/*
402			 * Sanitize the input.
403			 */
404			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
405				error = EINVAL;
406				break;
407			}
408
409			if (nvpair_value_uint64(elem, &intval) != 0) {
410				error = EINVAL;
411				break;
412			}
413
414			if (intval != 0) {
415				error = EINVAL;
416				break;
417			}
418
419			fname = strchr(propname, '@') + 1;
420			if (zfeature_lookup_name(fname, NULL) != 0) {
421				error = EINVAL;
422				break;
423			}
424
425			has_feature = B_TRUE;
426			break;
427
428		case ZPOOL_PROP_VERSION:
429			error = nvpair_value_uint64(elem, &intval);
430			if (!error &&
431			    (intval < spa_version(spa) ||
432			    intval > SPA_VERSION_BEFORE_FEATURES ||
433			    has_feature))
434				error = EINVAL;
435			break;
436
437		case ZPOOL_PROP_DELEGATION:
438		case ZPOOL_PROP_AUTOREPLACE:
439		case ZPOOL_PROP_LISTSNAPS:
440		case ZPOOL_PROP_AUTOEXPAND:
441			error = nvpair_value_uint64(elem, &intval);
442			if (!error && intval > 1)
443				error = EINVAL;
444			break;
445
446		case ZPOOL_PROP_BOOTFS:
447			/*
448			 * If the pool version is less than SPA_VERSION_BOOTFS,
449			 * or the pool is still being created (version == 0),
450			 * the bootfs property cannot be set.
451			 */
452			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
453				error = ENOTSUP;
454				break;
455			}
456
457			/*
458			 * Make sure the vdev config is bootable
459			 */
460			if (!vdev_is_bootable(spa->spa_root_vdev)) {
461				error = ENOTSUP;
462				break;
463			}
464
465			reset_bootfs = 1;
466
467			error = nvpair_value_string(elem, &strval);
468
469			if (!error) {
470				objset_t *os;
471				uint64_t compress;
472
473				if (strval == NULL || strval[0] == '\0') {
474					objnum = zpool_prop_default_numeric(
475					    ZPOOL_PROP_BOOTFS);
476					break;
477				}
478
479				if (error = dmu_objset_hold(strval, FTAG, &os))
480					break;
481
482				/* Must be ZPL and not gzip compressed. */
483
484				if (dmu_objset_type(os) != DMU_OST_ZFS) {
485					error = ENOTSUP;
486				} else if ((error = dsl_prop_get_integer(strval,
487				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
488				    &compress, NULL)) == 0 &&
489				    !BOOTFS_COMPRESS_VALID(compress)) {
490					error = ENOTSUP;
491				} else {
492					objnum = dmu_objset_id(os);
493				}
494				dmu_objset_rele(os, FTAG);
495			}
496			break;
497
498		case ZPOOL_PROP_FAILUREMODE:
499			error = nvpair_value_uint64(elem, &intval);
500			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
501			    intval > ZIO_FAILURE_MODE_PANIC))
502				error = EINVAL;
503
504			/*
505			 * This is a special case which only occurs when
506			 * the pool has completely failed. This allows
507			 * the user to change the in-core failmode property
508			 * without syncing it out to disk (I/Os might
509			 * currently be blocked). We do this by returning
510			 * EIO to the caller (spa_prop_set) to trick it
511			 * into thinking we encountered a property validation
512			 * error.
513			 */
514			if (!error && spa_suspended(spa)) {
515				spa->spa_failmode = intval;
516				error = EIO;
517			}
518			break;
519
520		case ZPOOL_PROP_CACHEFILE:
521			if ((error = nvpair_value_string(elem, &strval)) != 0)
522				break;
523
524			if (strval[0] == '\0')
525				break;
526
527			if (strcmp(strval, "none") == 0)
528				break;
529
530			if (strval[0] != '/') {
531				error = EINVAL;
532				break;
533			}
534
535			slash = strrchr(strval, '/');
536			ASSERT(slash != NULL);
537
538			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
539			    strcmp(slash, "/..") == 0)
540				error = EINVAL;
541			break;
542
543		case ZPOOL_PROP_COMMENT:
544			if ((error = nvpair_value_string(elem, &strval)) != 0)
545				break;
546			for (check = strval; *check != '\0'; check++) {
547				/*
548				 * The kernel doesn't have an easy isprint()
549				 * check.  For this kernel check, we merely
550				 * check ASCII apart from DEL.  Fix this if
551				 * there is an easy-to-use kernel isprint().
552				 */
553				if (*check >= 0x7f) {
554					error = EINVAL;
555					break;
556				}
557				check++;
558			}
559			if (strlen(strval) > ZPROP_MAX_COMMENT)
560				error = E2BIG;
561			break;
562
563		case ZPOOL_PROP_DEDUPDITTO:
564			if (spa_version(spa) < SPA_VERSION_DEDUP)
565				error = ENOTSUP;
566			else
567				error = nvpair_value_uint64(elem, &intval);
568			if (error == 0 &&
569			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
570				error = EINVAL;
571			break;
572		}
573
574		if (error)
575			break;
576	}
577
578	if (!error && reset_bootfs) {
579		error = nvlist_remove(props,
580		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
581
582		if (!error) {
583			error = nvlist_add_uint64(props,
584			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
585		}
586	}
587
588	return (error);
589}
590
591void
592spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
593{
594	char *cachefile;
595	spa_config_dirent_t *dp;
596
597	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
598	    &cachefile) != 0)
599		return;
600
601	dp = kmem_alloc(sizeof (spa_config_dirent_t),
602	    KM_SLEEP);
603
604	if (cachefile[0] == '\0')
605		dp->scd_path = spa_strdup(spa_config_path);
606	else if (strcmp(cachefile, "none") == 0)
607		dp->scd_path = NULL;
608	else
609		dp->scd_path = spa_strdup(cachefile);
610
611	list_insert_head(&spa->spa_config_list, dp);
612	if (need_sync)
613		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
614}
615
616int
617spa_prop_set(spa_t *spa, nvlist_t *nvp)
618{
619	int error;
620	nvpair_t *elem = NULL;
621	boolean_t need_sync = B_FALSE;
622
623	if ((error = spa_prop_validate(spa, nvp)) != 0)
624		return (error);
625
626	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
627		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
628
629		if (prop == ZPOOL_PROP_CACHEFILE ||
630		    prop == ZPOOL_PROP_ALTROOT ||
631		    prop == ZPOOL_PROP_READONLY)
632			continue;
633
634		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
635			uint64_t ver;
636
637			if (prop == ZPOOL_PROP_VERSION) {
638				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
639			} else {
640				ASSERT(zpool_prop_feature(nvpair_name(elem)));
641				ver = SPA_VERSION_FEATURES;
642				need_sync = B_TRUE;
643			}
644
645			/* Save time if the version is already set. */
646			if (ver == spa_version(spa))
647				continue;
648
649			/*
650			 * In addition to the pool directory object, we might
651			 * create the pool properties object, the features for
652			 * read object, the features for write object, or the
653			 * feature descriptions object.
654			 */
655			error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
656			    spa_sync_version, spa, &ver, 6);
657			if (error)
658				return (error);
659			continue;
660		}
661
662		need_sync = B_TRUE;
663		break;
664	}
665
666	if (need_sync) {
667		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
668		    spa, nvp, 6));
669	}
670
671	return (0);
672}
673
674/*
675 * If the bootfs property value is dsobj, clear it.
676 */
677void
678spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
679{
680	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
681		VERIFY(zap_remove(spa->spa_meta_objset,
682		    spa->spa_pool_props_object,
683		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
684		spa->spa_bootfs = 0;
685	}
686}
687
688/*ARGSUSED*/
689static int
690spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx)
691{
692	spa_t *spa = arg1;
693	uint64_t *newguid = arg2;
694	vdev_t *rvd = spa->spa_root_vdev;
695	uint64_t vdev_state;
696
697	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
698	vdev_state = rvd->vdev_state;
699	spa_config_exit(spa, SCL_STATE, FTAG);
700
701	if (vdev_state != VDEV_STATE_HEALTHY)
702		return (ENXIO);
703
704	ASSERT3U(spa_guid(spa), !=, *newguid);
705
706	return (0);
707}
708
709static void
710spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx)
711{
712	spa_t *spa = arg1;
713	uint64_t *newguid = arg2;
714	uint64_t oldguid;
715	vdev_t *rvd = spa->spa_root_vdev;
716
717	oldguid = spa_guid(spa);
718
719	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
720	rvd->vdev_guid = *newguid;
721	rvd->vdev_guid_sum += (*newguid - oldguid);
722	vdev_config_dirty(rvd);
723	spa_config_exit(spa, SCL_STATE, FTAG);
724
725#ifdef __FreeBSD__
726	/*
727	 * TODO: until recent illumos logging changes are merged
728	 *       log reguid as pool property change
729	 */
730	spa_history_log_internal(LOG_POOL_PROPSET, spa, tx,
731	    "guid change old=%llu new=%llu", oldguid, *newguid);
732#else
733	spa_history_log_internal(spa, "guid change", tx, "old=%lld new=%lld",
734	    oldguid, *newguid);
735#endif
736}
737
738/*
739 * Change the GUID for the pool.  This is done so that we can later
740 * re-import a pool built from a clone of our own vdevs.  We will modify
741 * the root vdev's guid, our own pool guid, and then mark all of our
742 * vdevs dirty.  Note that we must make sure that all our vdevs are
743 * online when we do this, or else any vdevs that weren't present
744 * would be orphaned from our pool.  We are also going to issue a
745 * sysevent to update any watchers.
746 */
747int
748spa_change_guid(spa_t *spa)
749{
750	int error;
751	uint64_t guid;
752
753	mutex_enter(&spa_namespace_lock);
754	guid = spa_generate_guid(NULL);
755
756	error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check,
757	    spa_change_guid_sync, spa, &guid, 5);
758
759	if (error == 0) {
760		spa_config_sync(spa, B_FALSE, B_TRUE);
761		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
762	}
763
764	mutex_exit(&spa_namespace_lock);
765
766	return (error);
767}
768
769/*
770 * ==========================================================================
771 * SPA state manipulation (open/create/destroy/import/export)
772 * ==========================================================================
773 */
774
775static int
776spa_error_entry_compare(const void *a, const void *b)
777{
778	spa_error_entry_t *sa = (spa_error_entry_t *)a;
779	spa_error_entry_t *sb = (spa_error_entry_t *)b;
780	int ret;
781
782	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
783	    sizeof (zbookmark_t));
784
785	if (ret < 0)
786		return (-1);
787	else if (ret > 0)
788		return (1);
789	else
790		return (0);
791}
792
793/*
794 * Utility function which retrieves copies of the current logs and
795 * re-initializes them in the process.
796 */
797void
798spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
799{
800	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
801
802	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
803	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
804
805	avl_create(&spa->spa_errlist_scrub,
806	    spa_error_entry_compare, sizeof (spa_error_entry_t),
807	    offsetof(spa_error_entry_t, se_avl));
808	avl_create(&spa->spa_errlist_last,
809	    spa_error_entry_compare, sizeof (spa_error_entry_t),
810	    offsetof(spa_error_entry_t, se_avl));
811}
812
813static taskq_t *
814spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
815    uint_t value)
816{
817	uint_t flags = TASKQ_PREPOPULATE;
818	boolean_t batch = B_FALSE;
819
820	switch (mode) {
821	case zti_mode_null:
822		return (NULL);		/* no taskq needed */
823
824	case zti_mode_fixed:
825		ASSERT3U(value, >=, 1);
826		value = MAX(value, 1);
827		break;
828
829	case zti_mode_batch:
830		batch = B_TRUE;
831		flags |= TASKQ_THREADS_CPU_PCT;
832		value = zio_taskq_batch_pct;
833		break;
834
835	case zti_mode_online_percent:
836		flags |= TASKQ_THREADS_CPU_PCT;
837		break;
838
839	default:
840		panic("unrecognized mode for %s taskq (%u:%u) in "
841		    "spa_activate()",
842		    name, mode, value);
843		break;
844	}
845
846#ifdef SYSDC
847	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
848		if (batch)
849			flags |= TASKQ_DC_BATCH;
850
851		return (taskq_create_sysdc(name, value, 50, INT_MAX,
852		    spa->spa_proc, zio_taskq_basedc, flags));
853	}
854#endif
855	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
856	    spa->spa_proc, flags));
857}
858
859static void
860spa_create_zio_taskqs(spa_t *spa)
861{
862	for (int t = 0; t < ZIO_TYPES; t++) {
863		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
864			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
865			enum zti_modes mode = ztip->zti_mode;
866			uint_t value = ztip->zti_value;
867			char name[32];
868
869			(void) snprintf(name, sizeof (name),
870			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
871
872			spa->spa_zio_taskq[t][q] =
873			    spa_taskq_create(spa, name, mode, value);
874		}
875	}
876}
877
878#ifdef _KERNEL
879#ifdef SPA_PROCESS
880static void
881spa_thread(void *arg)
882{
883	callb_cpr_t cprinfo;
884
885	spa_t *spa = arg;
886	user_t *pu = PTOU(curproc);
887
888	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
889	    spa->spa_name);
890
891	ASSERT(curproc != &p0);
892	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
893	    "zpool-%s", spa->spa_name);
894	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
895
896#ifdef PSRSET_BIND
897	/* bind this thread to the requested psrset */
898	if (zio_taskq_psrset_bind != PS_NONE) {
899		pool_lock();
900		mutex_enter(&cpu_lock);
901		mutex_enter(&pidlock);
902		mutex_enter(&curproc->p_lock);
903
904		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
905		    0, NULL, NULL) == 0)  {
906			curthread->t_bind_pset = zio_taskq_psrset_bind;
907		} else {
908			cmn_err(CE_WARN,
909			    "Couldn't bind process for zfs pool \"%s\" to "
910			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
911		}
912
913		mutex_exit(&curproc->p_lock);
914		mutex_exit(&pidlock);
915		mutex_exit(&cpu_lock);
916		pool_unlock();
917	}
918#endif
919
920#ifdef SYSDC
921	if (zio_taskq_sysdc) {
922		sysdc_thread_enter(curthread, 100, 0);
923	}
924#endif
925
926	spa->spa_proc = curproc;
927	spa->spa_did = curthread->t_did;
928
929	spa_create_zio_taskqs(spa);
930
931	mutex_enter(&spa->spa_proc_lock);
932	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
933
934	spa->spa_proc_state = SPA_PROC_ACTIVE;
935	cv_broadcast(&spa->spa_proc_cv);
936
937	CALLB_CPR_SAFE_BEGIN(&cprinfo);
938	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
939		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
940	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
941
942	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
943	spa->spa_proc_state = SPA_PROC_GONE;
944	spa->spa_proc = &p0;
945	cv_broadcast(&spa->spa_proc_cv);
946	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
947
948	mutex_enter(&curproc->p_lock);
949	lwp_exit();
950}
951#endif	/* SPA_PROCESS */
952#endif
953
954/*
955 * Activate an uninitialized pool.
956 */
957static void
958spa_activate(spa_t *spa, int mode)
959{
960	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
961
962	spa->spa_state = POOL_STATE_ACTIVE;
963	spa->spa_mode = mode;
964
965	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
966	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
967
968	/* Try to create a covering process */
969	mutex_enter(&spa->spa_proc_lock);
970	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
971	ASSERT(spa->spa_proc == &p0);
972	spa->spa_did = 0;
973
974#ifdef SPA_PROCESS
975	/* Only create a process if we're going to be around a while. */
976	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
977		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
978		    NULL, 0) == 0) {
979			spa->spa_proc_state = SPA_PROC_CREATED;
980			while (spa->spa_proc_state == SPA_PROC_CREATED) {
981				cv_wait(&spa->spa_proc_cv,
982				    &spa->spa_proc_lock);
983			}
984			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
985			ASSERT(spa->spa_proc != &p0);
986			ASSERT(spa->spa_did != 0);
987		} else {
988#ifdef _KERNEL
989			cmn_err(CE_WARN,
990			    "Couldn't create process for zfs pool \"%s\"\n",
991			    spa->spa_name);
992#endif
993		}
994	}
995#endif	/* SPA_PROCESS */
996	mutex_exit(&spa->spa_proc_lock);
997
998	/* If we didn't create a process, we need to create our taskqs. */
999	ASSERT(spa->spa_proc == &p0);
1000	if (spa->spa_proc == &p0) {
1001		spa_create_zio_taskqs(spa);
1002	}
1003
1004	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1005	    offsetof(vdev_t, vdev_config_dirty_node));
1006	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1007	    offsetof(vdev_t, vdev_state_dirty_node));
1008
1009	txg_list_create(&spa->spa_vdev_txg_list,
1010	    offsetof(struct vdev, vdev_txg_node));
1011
1012	avl_create(&spa->spa_errlist_scrub,
1013	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1014	    offsetof(spa_error_entry_t, se_avl));
1015	avl_create(&spa->spa_errlist_last,
1016	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1017	    offsetof(spa_error_entry_t, se_avl));
1018}
1019
1020/*
1021 * Opposite of spa_activate().
1022 */
1023static void
1024spa_deactivate(spa_t *spa)
1025{
1026	ASSERT(spa->spa_sync_on == B_FALSE);
1027	ASSERT(spa->spa_dsl_pool == NULL);
1028	ASSERT(spa->spa_root_vdev == NULL);
1029	ASSERT(spa->spa_async_zio_root == NULL);
1030	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1031
1032	txg_list_destroy(&spa->spa_vdev_txg_list);
1033
1034	list_destroy(&spa->spa_config_dirty_list);
1035	list_destroy(&spa->spa_state_dirty_list);
1036
1037	for (int t = 0; t < ZIO_TYPES; t++) {
1038		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1039			if (spa->spa_zio_taskq[t][q] != NULL)
1040				taskq_destroy(spa->spa_zio_taskq[t][q]);
1041			spa->spa_zio_taskq[t][q] = NULL;
1042		}
1043	}
1044
1045	metaslab_class_destroy(spa->spa_normal_class);
1046	spa->spa_normal_class = NULL;
1047
1048	metaslab_class_destroy(spa->spa_log_class);
1049	spa->spa_log_class = NULL;
1050
1051	/*
1052	 * If this was part of an import or the open otherwise failed, we may
1053	 * still have errors left in the queues.  Empty them just in case.
1054	 */
1055	spa_errlog_drain(spa);
1056
1057	avl_destroy(&spa->spa_errlist_scrub);
1058	avl_destroy(&spa->spa_errlist_last);
1059
1060	spa->spa_state = POOL_STATE_UNINITIALIZED;
1061
1062	mutex_enter(&spa->spa_proc_lock);
1063	if (spa->spa_proc_state != SPA_PROC_NONE) {
1064		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1065		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1066		cv_broadcast(&spa->spa_proc_cv);
1067		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1068			ASSERT(spa->spa_proc != &p0);
1069			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1070		}
1071		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1072		spa->spa_proc_state = SPA_PROC_NONE;
1073	}
1074	ASSERT(spa->spa_proc == &p0);
1075	mutex_exit(&spa->spa_proc_lock);
1076
1077#ifdef SPA_PROCESS
1078	/*
1079	 * We want to make sure spa_thread() has actually exited the ZFS
1080	 * module, so that the module can't be unloaded out from underneath
1081	 * it.
1082	 */
1083	if (spa->spa_did != 0) {
1084		thread_join(spa->spa_did);
1085		spa->spa_did = 0;
1086	}
1087#endif	/* SPA_PROCESS */
1088}
1089
1090/*
1091 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1092 * will create all the necessary vdevs in the appropriate layout, with each vdev
1093 * in the CLOSED state.  This will prep the pool before open/creation/import.
1094 * All vdev validation is done by the vdev_alloc() routine.
1095 */
1096static int
1097spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1098    uint_t id, int atype)
1099{
1100	nvlist_t **child;
1101	uint_t children;
1102	int error;
1103
1104	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1105		return (error);
1106
1107	if ((*vdp)->vdev_ops->vdev_op_leaf)
1108		return (0);
1109
1110	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1111	    &child, &children);
1112
1113	if (error == ENOENT)
1114		return (0);
1115
1116	if (error) {
1117		vdev_free(*vdp);
1118		*vdp = NULL;
1119		return (EINVAL);
1120	}
1121
1122	for (int c = 0; c < children; c++) {
1123		vdev_t *vd;
1124		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1125		    atype)) != 0) {
1126			vdev_free(*vdp);
1127			*vdp = NULL;
1128			return (error);
1129		}
1130	}
1131
1132	ASSERT(*vdp != NULL);
1133
1134	return (0);
1135}
1136
1137/*
1138 * Opposite of spa_load().
1139 */
1140static void
1141spa_unload(spa_t *spa)
1142{
1143	int i;
1144
1145	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1146
1147	/*
1148	 * Stop async tasks.
1149	 */
1150	spa_async_suspend(spa);
1151
1152	/*
1153	 * Stop syncing.
1154	 */
1155	if (spa->spa_sync_on) {
1156		txg_sync_stop(spa->spa_dsl_pool);
1157		spa->spa_sync_on = B_FALSE;
1158	}
1159
1160	/*
1161	 * Wait for any outstanding async I/O to complete.
1162	 */
1163	if (spa->spa_async_zio_root != NULL) {
1164		(void) zio_wait(spa->spa_async_zio_root);
1165		spa->spa_async_zio_root = NULL;
1166	}
1167
1168	bpobj_close(&spa->spa_deferred_bpobj);
1169
1170	/*
1171	 * Close the dsl pool.
1172	 */
1173	if (spa->spa_dsl_pool) {
1174		dsl_pool_close(spa->spa_dsl_pool);
1175		spa->spa_dsl_pool = NULL;
1176		spa->spa_meta_objset = NULL;
1177	}
1178
1179	ddt_unload(spa);
1180
1181	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1182
1183	/*
1184	 * Drop and purge level 2 cache
1185	 */
1186	spa_l2cache_drop(spa);
1187
1188	/*
1189	 * Close all vdevs.
1190	 */
1191	if (spa->spa_root_vdev)
1192		vdev_free(spa->spa_root_vdev);
1193	ASSERT(spa->spa_root_vdev == NULL);
1194
1195	for (i = 0; i < spa->spa_spares.sav_count; i++)
1196		vdev_free(spa->spa_spares.sav_vdevs[i]);
1197	if (spa->spa_spares.sav_vdevs) {
1198		kmem_free(spa->spa_spares.sav_vdevs,
1199		    spa->spa_spares.sav_count * sizeof (void *));
1200		spa->spa_spares.sav_vdevs = NULL;
1201	}
1202	if (spa->spa_spares.sav_config) {
1203		nvlist_free(spa->spa_spares.sav_config);
1204		spa->spa_spares.sav_config = NULL;
1205	}
1206	spa->spa_spares.sav_count = 0;
1207
1208	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1209		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1210		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1211	}
1212	if (spa->spa_l2cache.sav_vdevs) {
1213		kmem_free(spa->spa_l2cache.sav_vdevs,
1214		    spa->spa_l2cache.sav_count * sizeof (void *));
1215		spa->spa_l2cache.sav_vdevs = NULL;
1216	}
1217	if (spa->spa_l2cache.sav_config) {
1218		nvlist_free(spa->spa_l2cache.sav_config);
1219		spa->spa_l2cache.sav_config = NULL;
1220	}
1221	spa->spa_l2cache.sav_count = 0;
1222
1223	spa->spa_async_suspended = 0;
1224
1225	if (spa->spa_comment != NULL) {
1226		spa_strfree(spa->spa_comment);
1227		spa->spa_comment = NULL;
1228	}
1229
1230	spa_config_exit(spa, SCL_ALL, FTAG);
1231}
1232
1233/*
1234 * Load (or re-load) the current list of vdevs describing the active spares for
1235 * this pool.  When this is called, we have some form of basic information in
1236 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1237 * then re-generate a more complete list including status information.
1238 */
1239static void
1240spa_load_spares(spa_t *spa)
1241{
1242	nvlist_t **spares;
1243	uint_t nspares;
1244	int i;
1245	vdev_t *vd, *tvd;
1246
1247	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1248
1249	/*
1250	 * First, close and free any existing spare vdevs.
1251	 */
1252	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1253		vd = spa->spa_spares.sav_vdevs[i];
1254
1255		/* Undo the call to spa_activate() below */
1256		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1257		    B_FALSE)) != NULL && tvd->vdev_isspare)
1258			spa_spare_remove(tvd);
1259		vdev_close(vd);
1260		vdev_free(vd);
1261	}
1262
1263	if (spa->spa_spares.sav_vdevs)
1264		kmem_free(spa->spa_spares.sav_vdevs,
1265		    spa->spa_spares.sav_count * sizeof (void *));
1266
1267	if (spa->spa_spares.sav_config == NULL)
1268		nspares = 0;
1269	else
1270		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1271		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1272
1273	spa->spa_spares.sav_count = (int)nspares;
1274	spa->spa_spares.sav_vdevs = NULL;
1275
1276	if (nspares == 0)
1277		return;
1278
1279	/*
1280	 * Construct the array of vdevs, opening them to get status in the
1281	 * process.   For each spare, there is potentially two different vdev_t
1282	 * structures associated with it: one in the list of spares (used only
1283	 * for basic validation purposes) and one in the active vdev
1284	 * configuration (if it's spared in).  During this phase we open and
1285	 * validate each vdev on the spare list.  If the vdev also exists in the
1286	 * active configuration, then we also mark this vdev as an active spare.
1287	 */
1288	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1289	    KM_SLEEP);
1290	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1291		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1292		    VDEV_ALLOC_SPARE) == 0);
1293		ASSERT(vd != NULL);
1294
1295		spa->spa_spares.sav_vdevs[i] = vd;
1296
1297		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1298		    B_FALSE)) != NULL) {
1299			if (!tvd->vdev_isspare)
1300				spa_spare_add(tvd);
1301
1302			/*
1303			 * We only mark the spare active if we were successfully
1304			 * able to load the vdev.  Otherwise, importing a pool
1305			 * with a bad active spare would result in strange
1306			 * behavior, because multiple pool would think the spare
1307			 * is actively in use.
1308			 *
1309			 * There is a vulnerability here to an equally bizarre
1310			 * circumstance, where a dead active spare is later
1311			 * brought back to life (onlined or otherwise).  Given
1312			 * the rarity of this scenario, and the extra complexity
1313			 * it adds, we ignore the possibility.
1314			 */
1315			if (!vdev_is_dead(tvd))
1316				spa_spare_activate(tvd);
1317		}
1318
1319		vd->vdev_top = vd;
1320		vd->vdev_aux = &spa->spa_spares;
1321
1322		if (vdev_open(vd) != 0)
1323			continue;
1324
1325		if (vdev_validate_aux(vd) == 0)
1326			spa_spare_add(vd);
1327	}
1328
1329	/*
1330	 * Recompute the stashed list of spares, with status information
1331	 * this time.
1332	 */
1333	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1334	    DATA_TYPE_NVLIST_ARRAY) == 0);
1335
1336	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1337	    KM_SLEEP);
1338	for (i = 0; i < spa->spa_spares.sav_count; i++)
1339		spares[i] = vdev_config_generate(spa,
1340		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1341	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1342	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1343	for (i = 0; i < spa->spa_spares.sav_count; i++)
1344		nvlist_free(spares[i]);
1345	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1346}
1347
1348/*
1349 * Load (or re-load) the current list of vdevs describing the active l2cache for
1350 * this pool.  When this is called, we have some form of basic information in
1351 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1352 * then re-generate a more complete list including status information.
1353 * Devices which are already active have their details maintained, and are
1354 * not re-opened.
1355 */
1356static void
1357spa_load_l2cache(spa_t *spa)
1358{
1359	nvlist_t **l2cache;
1360	uint_t nl2cache;
1361	int i, j, oldnvdevs;
1362	uint64_t guid;
1363	vdev_t *vd, **oldvdevs, **newvdevs;
1364	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1365
1366	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1367
1368	if (sav->sav_config != NULL) {
1369		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1370		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1371		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1372	} else {
1373		nl2cache = 0;
1374	}
1375
1376	oldvdevs = sav->sav_vdevs;
1377	oldnvdevs = sav->sav_count;
1378	sav->sav_vdevs = NULL;
1379	sav->sav_count = 0;
1380
1381	/*
1382	 * Process new nvlist of vdevs.
1383	 */
1384	for (i = 0; i < nl2cache; i++) {
1385		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1386		    &guid) == 0);
1387
1388		newvdevs[i] = NULL;
1389		for (j = 0; j < oldnvdevs; j++) {
1390			vd = oldvdevs[j];
1391			if (vd != NULL && guid == vd->vdev_guid) {
1392				/*
1393				 * Retain previous vdev for add/remove ops.
1394				 */
1395				newvdevs[i] = vd;
1396				oldvdevs[j] = NULL;
1397				break;
1398			}
1399		}
1400
1401		if (newvdevs[i] == NULL) {
1402			/*
1403			 * Create new vdev
1404			 */
1405			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1406			    VDEV_ALLOC_L2CACHE) == 0);
1407			ASSERT(vd != NULL);
1408			newvdevs[i] = vd;
1409
1410			/*
1411			 * Commit this vdev as an l2cache device,
1412			 * even if it fails to open.
1413			 */
1414			spa_l2cache_add(vd);
1415
1416			vd->vdev_top = vd;
1417			vd->vdev_aux = sav;
1418
1419			spa_l2cache_activate(vd);
1420
1421			if (vdev_open(vd) != 0)
1422				continue;
1423
1424			(void) vdev_validate_aux(vd);
1425
1426			if (!vdev_is_dead(vd))
1427				l2arc_add_vdev(spa, vd);
1428		}
1429	}
1430
1431	/*
1432	 * Purge vdevs that were dropped
1433	 */
1434	for (i = 0; i < oldnvdevs; i++) {
1435		uint64_t pool;
1436
1437		vd = oldvdevs[i];
1438		if (vd != NULL) {
1439			ASSERT(vd->vdev_isl2cache);
1440
1441			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1442			    pool != 0ULL && l2arc_vdev_present(vd))
1443				l2arc_remove_vdev(vd);
1444			vdev_clear_stats(vd);
1445			vdev_free(vd);
1446		}
1447	}
1448
1449	if (oldvdevs)
1450		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1451
1452	if (sav->sav_config == NULL)
1453		goto out;
1454
1455	sav->sav_vdevs = newvdevs;
1456	sav->sav_count = (int)nl2cache;
1457
1458	/*
1459	 * Recompute the stashed list of l2cache devices, with status
1460	 * information this time.
1461	 */
1462	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1463	    DATA_TYPE_NVLIST_ARRAY) == 0);
1464
1465	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1466	for (i = 0; i < sav->sav_count; i++)
1467		l2cache[i] = vdev_config_generate(spa,
1468		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1469	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1470	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1471out:
1472	for (i = 0; i < sav->sav_count; i++)
1473		nvlist_free(l2cache[i]);
1474	if (sav->sav_count)
1475		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1476}
1477
1478static int
1479load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1480{
1481	dmu_buf_t *db;
1482	char *packed = NULL;
1483	size_t nvsize = 0;
1484	int error;
1485	*value = NULL;
1486
1487	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1488	nvsize = *(uint64_t *)db->db_data;
1489	dmu_buf_rele(db, FTAG);
1490
1491	packed = kmem_alloc(nvsize, KM_SLEEP);
1492	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1493	    DMU_READ_PREFETCH);
1494	if (error == 0)
1495		error = nvlist_unpack(packed, nvsize, value, 0);
1496	kmem_free(packed, nvsize);
1497
1498	return (error);
1499}
1500
1501/*
1502 * Checks to see if the given vdev could not be opened, in which case we post a
1503 * sysevent to notify the autoreplace code that the device has been removed.
1504 */
1505static void
1506spa_check_removed(vdev_t *vd)
1507{
1508	for (int c = 0; c < vd->vdev_children; c++)
1509		spa_check_removed(vd->vdev_child[c]);
1510
1511	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1512		zfs_post_autoreplace(vd->vdev_spa, vd);
1513		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1514	}
1515}
1516
1517/*
1518 * Validate the current config against the MOS config
1519 */
1520static boolean_t
1521spa_config_valid(spa_t *spa, nvlist_t *config)
1522{
1523	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1524	nvlist_t *nv;
1525
1526	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1527
1528	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1529	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1530
1531	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1532
1533	/*
1534	 * If we're doing a normal import, then build up any additional
1535	 * diagnostic information about missing devices in this config.
1536	 * We'll pass this up to the user for further processing.
1537	 */
1538	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1539		nvlist_t **child, *nv;
1540		uint64_t idx = 0;
1541
1542		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1543		    KM_SLEEP);
1544		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1545
1546		for (int c = 0; c < rvd->vdev_children; c++) {
1547			vdev_t *tvd = rvd->vdev_child[c];
1548			vdev_t *mtvd  = mrvd->vdev_child[c];
1549
1550			if (tvd->vdev_ops == &vdev_missing_ops &&
1551			    mtvd->vdev_ops != &vdev_missing_ops &&
1552			    mtvd->vdev_islog)
1553				child[idx++] = vdev_config_generate(spa, mtvd,
1554				    B_FALSE, 0);
1555		}
1556
1557		if (idx) {
1558			VERIFY(nvlist_add_nvlist_array(nv,
1559			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1560			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1561			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1562
1563			for (int i = 0; i < idx; i++)
1564				nvlist_free(child[i]);
1565		}
1566		nvlist_free(nv);
1567		kmem_free(child, rvd->vdev_children * sizeof (char **));
1568	}
1569
1570	/*
1571	 * Compare the root vdev tree with the information we have
1572	 * from the MOS config (mrvd). Check each top-level vdev
1573	 * with the corresponding MOS config top-level (mtvd).
1574	 */
1575	for (int c = 0; c < rvd->vdev_children; c++) {
1576		vdev_t *tvd = rvd->vdev_child[c];
1577		vdev_t *mtvd  = mrvd->vdev_child[c];
1578
1579		/*
1580		 * Resolve any "missing" vdevs in the current configuration.
1581		 * If we find that the MOS config has more accurate information
1582		 * about the top-level vdev then use that vdev instead.
1583		 */
1584		if (tvd->vdev_ops == &vdev_missing_ops &&
1585		    mtvd->vdev_ops != &vdev_missing_ops) {
1586
1587			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1588				continue;
1589
1590			/*
1591			 * Device specific actions.
1592			 */
1593			if (mtvd->vdev_islog) {
1594				spa_set_log_state(spa, SPA_LOG_CLEAR);
1595			} else {
1596				/*
1597				 * XXX - once we have 'readonly' pool
1598				 * support we should be able to handle
1599				 * missing data devices by transitioning
1600				 * the pool to readonly.
1601				 */
1602				continue;
1603			}
1604
1605			/*
1606			 * Swap the missing vdev with the data we were
1607			 * able to obtain from the MOS config.
1608			 */
1609			vdev_remove_child(rvd, tvd);
1610			vdev_remove_child(mrvd, mtvd);
1611
1612			vdev_add_child(rvd, mtvd);
1613			vdev_add_child(mrvd, tvd);
1614
1615			spa_config_exit(spa, SCL_ALL, FTAG);
1616			vdev_load(mtvd);
1617			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1618
1619			vdev_reopen(rvd);
1620		} else if (mtvd->vdev_islog) {
1621			/*
1622			 * Load the slog device's state from the MOS config
1623			 * since it's possible that the label does not
1624			 * contain the most up-to-date information.
1625			 */
1626			vdev_load_log_state(tvd, mtvd);
1627			vdev_reopen(tvd);
1628		}
1629	}
1630	vdev_free(mrvd);
1631	spa_config_exit(spa, SCL_ALL, FTAG);
1632
1633	/*
1634	 * Ensure we were able to validate the config.
1635	 */
1636	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1637}
1638
1639/*
1640 * Check for missing log devices
1641 */
1642static int
1643spa_check_logs(spa_t *spa)
1644{
1645	switch (spa->spa_log_state) {
1646	case SPA_LOG_MISSING:
1647		/* need to recheck in case slog has been restored */
1648	case SPA_LOG_UNKNOWN:
1649		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1650		    DS_FIND_CHILDREN)) {
1651			spa_set_log_state(spa, SPA_LOG_MISSING);
1652			return (1);
1653		}
1654		break;
1655	}
1656	return (0);
1657}
1658
1659static boolean_t
1660spa_passivate_log(spa_t *spa)
1661{
1662	vdev_t *rvd = spa->spa_root_vdev;
1663	boolean_t slog_found = B_FALSE;
1664
1665	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1666
1667	if (!spa_has_slogs(spa))
1668		return (B_FALSE);
1669
1670	for (int c = 0; c < rvd->vdev_children; c++) {
1671		vdev_t *tvd = rvd->vdev_child[c];
1672		metaslab_group_t *mg = tvd->vdev_mg;
1673
1674		if (tvd->vdev_islog) {
1675			metaslab_group_passivate(mg);
1676			slog_found = B_TRUE;
1677		}
1678	}
1679
1680	return (slog_found);
1681}
1682
1683static void
1684spa_activate_log(spa_t *spa)
1685{
1686	vdev_t *rvd = spa->spa_root_vdev;
1687
1688	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1689
1690	for (int c = 0; c < rvd->vdev_children; c++) {
1691		vdev_t *tvd = rvd->vdev_child[c];
1692		metaslab_group_t *mg = tvd->vdev_mg;
1693
1694		if (tvd->vdev_islog)
1695			metaslab_group_activate(mg);
1696	}
1697}
1698
1699int
1700spa_offline_log(spa_t *spa)
1701{
1702	int error = 0;
1703
1704	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1705	    NULL, DS_FIND_CHILDREN)) == 0) {
1706
1707		/*
1708		 * We successfully offlined the log device, sync out the
1709		 * current txg so that the "stubby" block can be removed
1710		 * by zil_sync().
1711		 */
1712		txg_wait_synced(spa->spa_dsl_pool, 0);
1713	}
1714	return (error);
1715}
1716
1717static void
1718spa_aux_check_removed(spa_aux_vdev_t *sav)
1719{
1720	int i;
1721
1722	for (i = 0; i < sav->sav_count; i++)
1723		spa_check_removed(sav->sav_vdevs[i]);
1724}
1725
1726void
1727spa_claim_notify(zio_t *zio)
1728{
1729	spa_t *spa = zio->io_spa;
1730
1731	if (zio->io_error)
1732		return;
1733
1734	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1735	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1736		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1737	mutex_exit(&spa->spa_props_lock);
1738}
1739
1740typedef struct spa_load_error {
1741	uint64_t	sle_meta_count;
1742	uint64_t	sle_data_count;
1743} spa_load_error_t;
1744
1745static void
1746spa_load_verify_done(zio_t *zio)
1747{
1748	blkptr_t *bp = zio->io_bp;
1749	spa_load_error_t *sle = zio->io_private;
1750	dmu_object_type_t type = BP_GET_TYPE(bp);
1751	int error = zio->io_error;
1752
1753	if (error) {
1754		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1755		    type != DMU_OT_INTENT_LOG)
1756			atomic_add_64(&sle->sle_meta_count, 1);
1757		else
1758			atomic_add_64(&sle->sle_data_count, 1);
1759	}
1760	zio_data_buf_free(zio->io_data, zio->io_size);
1761}
1762
1763/*ARGSUSED*/
1764static int
1765spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1766    arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1767{
1768	if (bp != NULL) {
1769		zio_t *rio = arg;
1770		size_t size = BP_GET_PSIZE(bp);
1771		void *data = zio_data_buf_alloc(size);
1772
1773		zio_nowait(zio_read(rio, spa, bp, data, size,
1774		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1775		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1776		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1777	}
1778	return (0);
1779}
1780
1781static int
1782spa_load_verify(spa_t *spa)
1783{
1784	zio_t *rio;
1785	spa_load_error_t sle = { 0 };
1786	zpool_rewind_policy_t policy;
1787	boolean_t verify_ok = B_FALSE;
1788	int error;
1789
1790	zpool_get_rewind_policy(spa->spa_config, &policy);
1791
1792	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1793		return (0);
1794
1795	rio = zio_root(spa, NULL, &sle,
1796	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1797
1798	error = traverse_pool(spa, spa->spa_verify_min_txg,
1799	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1800
1801	(void) zio_wait(rio);
1802
1803	spa->spa_load_meta_errors = sle.sle_meta_count;
1804	spa->spa_load_data_errors = sle.sle_data_count;
1805
1806	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1807	    sle.sle_data_count <= policy.zrp_maxdata) {
1808		int64_t loss = 0;
1809
1810		verify_ok = B_TRUE;
1811		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1812		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1813
1814		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1815		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1816		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1817		VERIFY(nvlist_add_int64(spa->spa_load_info,
1818		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1819		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1820		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1821	} else {
1822		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1823	}
1824
1825	if (error) {
1826		if (error != ENXIO && error != EIO)
1827			error = EIO;
1828		return (error);
1829	}
1830
1831	return (verify_ok ? 0 : EIO);
1832}
1833
1834/*
1835 * Find a value in the pool props object.
1836 */
1837static void
1838spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1839{
1840	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1841	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1842}
1843
1844/*
1845 * Find a value in the pool directory object.
1846 */
1847static int
1848spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1849{
1850	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1851	    name, sizeof (uint64_t), 1, val));
1852}
1853
1854static int
1855spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1856{
1857	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1858	return (err);
1859}
1860
1861/*
1862 * Fix up config after a partly-completed split.  This is done with the
1863 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1864 * pool have that entry in their config, but only the splitting one contains
1865 * a list of all the guids of the vdevs that are being split off.
1866 *
1867 * This function determines what to do with that list: either rejoin
1868 * all the disks to the pool, or complete the splitting process.  To attempt
1869 * the rejoin, each disk that is offlined is marked online again, and
1870 * we do a reopen() call.  If the vdev label for every disk that was
1871 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1872 * then we call vdev_split() on each disk, and complete the split.
1873 *
1874 * Otherwise we leave the config alone, with all the vdevs in place in
1875 * the original pool.
1876 */
1877static void
1878spa_try_repair(spa_t *spa, nvlist_t *config)
1879{
1880	uint_t extracted;
1881	uint64_t *glist;
1882	uint_t i, gcount;
1883	nvlist_t *nvl;
1884	vdev_t **vd;
1885	boolean_t attempt_reopen;
1886
1887	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1888		return;
1889
1890	/* check that the config is complete */
1891	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1892	    &glist, &gcount) != 0)
1893		return;
1894
1895	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1896
1897	/* attempt to online all the vdevs & validate */
1898	attempt_reopen = B_TRUE;
1899	for (i = 0; i < gcount; i++) {
1900		if (glist[i] == 0)	/* vdev is hole */
1901			continue;
1902
1903		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1904		if (vd[i] == NULL) {
1905			/*
1906			 * Don't bother attempting to reopen the disks;
1907			 * just do the split.
1908			 */
1909			attempt_reopen = B_FALSE;
1910		} else {
1911			/* attempt to re-online it */
1912			vd[i]->vdev_offline = B_FALSE;
1913		}
1914	}
1915
1916	if (attempt_reopen) {
1917		vdev_reopen(spa->spa_root_vdev);
1918
1919		/* check each device to see what state it's in */
1920		for (extracted = 0, i = 0; i < gcount; i++) {
1921			if (vd[i] != NULL &&
1922			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1923				break;
1924			++extracted;
1925		}
1926	}
1927
1928	/*
1929	 * If every disk has been moved to the new pool, or if we never
1930	 * even attempted to look at them, then we split them off for
1931	 * good.
1932	 */
1933	if (!attempt_reopen || gcount == extracted) {
1934		for (i = 0; i < gcount; i++)
1935			if (vd[i] != NULL)
1936				vdev_split(vd[i]);
1937		vdev_reopen(spa->spa_root_vdev);
1938	}
1939
1940	kmem_free(vd, gcount * sizeof (vdev_t *));
1941}
1942
1943static int
1944spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1945    boolean_t mosconfig)
1946{
1947	nvlist_t *config = spa->spa_config;
1948	char *ereport = FM_EREPORT_ZFS_POOL;
1949	char *comment;
1950	int error;
1951	uint64_t pool_guid;
1952	nvlist_t *nvl;
1953
1954	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1955		return (EINVAL);
1956
1957	ASSERT(spa->spa_comment == NULL);
1958	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1959		spa->spa_comment = spa_strdup(comment);
1960
1961	/*
1962	 * Versioning wasn't explicitly added to the label until later, so if
1963	 * it's not present treat it as the initial version.
1964	 */
1965	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1966	    &spa->spa_ubsync.ub_version) != 0)
1967		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1968
1969	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1970	    &spa->spa_config_txg);
1971
1972	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1973	    spa_guid_exists(pool_guid, 0)) {
1974		error = EEXIST;
1975	} else {
1976		spa->spa_config_guid = pool_guid;
1977
1978		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1979		    &nvl) == 0) {
1980			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1981			    KM_SLEEP) == 0);
1982		}
1983
1984		nvlist_free(spa->spa_load_info);
1985		spa->spa_load_info = fnvlist_alloc();
1986
1987		gethrestime(&spa->spa_loaded_ts);
1988		error = spa_load_impl(spa, pool_guid, config, state, type,
1989		    mosconfig, &ereport);
1990	}
1991
1992	spa->spa_minref = refcount_count(&spa->spa_refcount);
1993	if (error) {
1994		if (error != EEXIST) {
1995			spa->spa_loaded_ts.tv_sec = 0;
1996			spa->spa_loaded_ts.tv_nsec = 0;
1997		}
1998		if (error != EBADF) {
1999			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2000		}
2001	}
2002	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2003	spa->spa_ena = 0;
2004
2005	return (error);
2006}
2007
2008/*
2009 * Load an existing storage pool, using the pool's builtin spa_config as a
2010 * source of configuration information.
2011 */
2012static int
2013spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2014    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2015    char **ereport)
2016{
2017	int error = 0;
2018	nvlist_t *nvroot = NULL;
2019	nvlist_t *label;
2020	vdev_t *rvd;
2021	uberblock_t *ub = &spa->spa_uberblock;
2022	uint64_t children, config_cache_txg = spa->spa_config_txg;
2023	int orig_mode = spa->spa_mode;
2024	int parse;
2025	uint64_t obj;
2026	boolean_t missing_feat_write = B_FALSE;
2027
2028	/*
2029	 * If this is an untrusted config, access the pool in read-only mode.
2030	 * This prevents things like resilvering recently removed devices.
2031	 */
2032	if (!mosconfig)
2033		spa->spa_mode = FREAD;
2034
2035	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2036
2037	spa->spa_load_state = state;
2038
2039	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2040		return (EINVAL);
2041
2042	parse = (type == SPA_IMPORT_EXISTING ?
2043	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2044
2045	/*
2046	 * Create "The Godfather" zio to hold all async IOs
2047	 */
2048	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2049	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2050
2051	/*
2052	 * Parse the configuration into a vdev tree.  We explicitly set the
2053	 * value that will be returned by spa_version() since parsing the
2054	 * configuration requires knowing the version number.
2055	 */
2056	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2057	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2058	spa_config_exit(spa, SCL_ALL, FTAG);
2059
2060	if (error != 0)
2061		return (error);
2062
2063	ASSERT(spa->spa_root_vdev == rvd);
2064
2065	if (type != SPA_IMPORT_ASSEMBLE) {
2066		ASSERT(spa_guid(spa) == pool_guid);
2067	}
2068
2069	/*
2070	 * Try to open all vdevs, loading each label in the process.
2071	 */
2072	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2073	error = vdev_open(rvd);
2074	spa_config_exit(spa, SCL_ALL, FTAG);
2075	if (error != 0)
2076		return (error);
2077
2078	/*
2079	 * We need to validate the vdev labels against the configuration that
2080	 * we have in hand, which is dependent on the setting of mosconfig. If
2081	 * mosconfig is true then we're validating the vdev labels based on
2082	 * that config.  Otherwise, we're validating against the cached config
2083	 * (zpool.cache) that was read when we loaded the zfs module, and then
2084	 * later we will recursively call spa_load() and validate against
2085	 * the vdev config.
2086	 *
2087	 * If we're assembling a new pool that's been split off from an
2088	 * existing pool, the labels haven't yet been updated so we skip
2089	 * validation for now.
2090	 */
2091	if (type != SPA_IMPORT_ASSEMBLE) {
2092		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2093		error = vdev_validate(rvd, mosconfig);
2094		spa_config_exit(spa, SCL_ALL, FTAG);
2095
2096		if (error != 0)
2097			return (error);
2098
2099		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2100			return (ENXIO);
2101	}
2102
2103	/*
2104	 * Find the best uberblock.
2105	 */
2106	vdev_uberblock_load(rvd, ub, &label);
2107
2108	/*
2109	 * If we weren't able to find a single valid uberblock, return failure.
2110	 */
2111	if (ub->ub_txg == 0) {
2112		nvlist_free(label);
2113		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2114	}
2115
2116	/*
2117	 * If the pool has an unsupported version we can't open it.
2118	 */
2119	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2120		nvlist_free(label);
2121		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2122	}
2123
2124	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2125		nvlist_t *features;
2126
2127		/*
2128		 * If we weren't able to find what's necessary for reading the
2129		 * MOS in the label, return failure.
2130		 */
2131		if (label == NULL || nvlist_lookup_nvlist(label,
2132		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2133			nvlist_free(label);
2134			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2135			    ENXIO));
2136		}
2137
2138		/*
2139		 * Update our in-core representation with the definitive values
2140		 * from the label.
2141		 */
2142		nvlist_free(spa->spa_label_features);
2143		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2144	}
2145
2146	nvlist_free(label);
2147
2148	/*
2149	 * Look through entries in the label nvlist's features_for_read. If
2150	 * there is a feature listed there which we don't understand then we
2151	 * cannot open a pool.
2152	 */
2153	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2154		nvlist_t *unsup_feat;
2155
2156		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2157		    0);
2158
2159		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2160		    NULL); nvp != NULL;
2161		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2162			if (!zfeature_is_supported(nvpair_name(nvp))) {
2163				VERIFY(nvlist_add_string(unsup_feat,
2164				    nvpair_name(nvp), "") == 0);
2165			}
2166		}
2167
2168		if (!nvlist_empty(unsup_feat)) {
2169			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2170			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2171			nvlist_free(unsup_feat);
2172			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2173			    ENOTSUP));
2174		}
2175
2176		nvlist_free(unsup_feat);
2177	}
2178
2179	/*
2180	 * If the vdev guid sum doesn't match the uberblock, we have an
2181	 * incomplete configuration.  We first check to see if the pool
2182	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2183	 * If it is, defer the vdev_guid_sum check till later so we
2184	 * can handle missing vdevs.
2185	 */
2186	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2187	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2188	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2189		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2190
2191	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2192		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2193		spa_try_repair(spa, config);
2194		spa_config_exit(spa, SCL_ALL, FTAG);
2195		nvlist_free(spa->spa_config_splitting);
2196		spa->spa_config_splitting = NULL;
2197	}
2198
2199	/*
2200	 * Initialize internal SPA structures.
2201	 */
2202	spa->spa_state = POOL_STATE_ACTIVE;
2203	spa->spa_ubsync = spa->spa_uberblock;
2204	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2205	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2206	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2207	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2208	spa->spa_claim_max_txg = spa->spa_first_txg;
2209	spa->spa_prev_software_version = ub->ub_software_version;
2210
2211	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2212	if (error)
2213		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2214	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2215
2216	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2217		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2218
2219	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2220		boolean_t missing_feat_read = B_FALSE;
2221		nvlist_t *unsup_feat, *enabled_feat;
2222
2223		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2224		    &spa->spa_feat_for_read_obj) != 0) {
2225			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2226		}
2227
2228		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2229		    &spa->spa_feat_for_write_obj) != 0) {
2230			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2231		}
2232
2233		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2234		    &spa->spa_feat_desc_obj) != 0) {
2235			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2236		}
2237
2238		enabled_feat = fnvlist_alloc();
2239		unsup_feat = fnvlist_alloc();
2240
2241		if (!feature_is_supported(spa->spa_meta_objset,
2242		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2243		    unsup_feat, enabled_feat))
2244			missing_feat_read = B_TRUE;
2245
2246		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2247			if (!feature_is_supported(spa->spa_meta_objset,
2248			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2249			    unsup_feat, enabled_feat)) {
2250				missing_feat_write = B_TRUE;
2251			}
2252		}
2253
2254		fnvlist_add_nvlist(spa->spa_load_info,
2255		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2256
2257		if (!nvlist_empty(unsup_feat)) {
2258			fnvlist_add_nvlist(spa->spa_load_info,
2259			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2260		}
2261
2262		fnvlist_free(enabled_feat);
2263		fnvlist_free(unsup_feat);
2264
2265		if (!missing_feat_read) {
2266			fnvlist_add_boolean(spa->spa_load_info,
2267			    ZPOOL_CONFIG_CAN_RDONLY);
2268		}
2269
2270		/*
2271		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2272		 * twofold: to determine whether the pool is available for
2273		 * import in read-write mode and (if it is not) whether the
2274		 * pool is available for import in read-only mode. If the pool
2275		 * is available for import in read-write mode, it is displayed
2276		 * as available in userland; if it is not available for import
2277		 * in read-only mode, it is displayed as unavailable in
2278		 * userland. If the pool is available for import in read-only
2279		 * mode but not read-write mode, it is displayed as unavailable
2280		 * in userland with a special note that the pool is actually
2281		 * available for open in read-only mode.
2282		 *
2283		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2284		 * missing a feature for write, we must first determine whether
2285		 * the pool can be opened read-only before returning to
2286		 * userland in order to know whether to display the
2287		 * abovementioned note.
2288		 */
2289		if (missing_feat_read || (missing_feat_write &&
2290		    spa_writeable(spa))) {
2291			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2292			    ENOTSUP));
2293		}
2294	}
2295
2296	spa->spa_is_initializing = B_TRUE;
2297	error = dsl_pool_open(spa->spa_dsl_pool);
2298	spa->spa_is_initializing = B_FALSE;
2299	if (error != 0)
2300		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2301
2302	if (!mosconfig) {
2303		uint64_t hostid;
2304		nvlist_t *policy = NULL, *nvconfig;
2305
2306		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2307			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2308
2309		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2310		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2311			char *hostname;
2312			unsigned long myhostid = 0;
2313
2314			VERIFY(nvlist_lookup_string(nvconfig,
2315			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2316
2317#ifdef	_KERNEL
2318			myhostid = zone_get_hostid(NULL);
2319#else	/* _KERNEL */
2320			/*
2321			 * We're emulating the system's hostid in userland, so
2322			 * we can't use zone_get_hostid().
2323			 */
2324			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2325#endif	/* _KERNEL */
2326			if (check_hostid && hostid != 0 && myhostid != 0 &&
2327			    hostid != myhostid) {
2328				nvlist_free(nvconfig);
2329				cmn_err(CE_WARN, "pool '%s' could not be "
2330				    "loaded as it was last accessed by "
2331				    "another system (host: %s hostid: 0x%lx). "
2332				    "See: http://illumos.org/msg/ZFS-8000-EY",
2333				    spa_name(spa), hostname,
2334				    (unsigned long)hostid);
2335				return (EBADF);
2336			}
2337		}
2338		if (nvlist_lookup_nvlist(spa->spa_config,
2339		    ZPOOL_REWIND_POLICY, &policy) == 0)
2340			VERIFY(nvlist_add_nvlist(nvconfig,
2341			    ZPOOL_REWIND_POLICY, policy) == 0);
2342
2343		spa_config_set(spa, nvconfig);
2344		spa_unload(spa);
2345		spa_deactivate(spa);
2346		spa_activate(spa, orig_mode);
2347
2348		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2349	}
2350
2351	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2352		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2353	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2354	if (error != 0)
2355		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2356
2357	/*
2358	 * Load the bit that tells us to use the new accounting function
2359	 * (raid-z deflation).  If we have an older pool, this will not
2360	 * be present.
2361	 */
2362	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2363	if (error != 0 && error != ENOENT)
2364		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2365
2366	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2367	    &spa->spa_creation_version);
2368	if (error != 0 && error != ENOENT)
2369		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370
2371	/*
2372	 * Load the persistent error log.  If we have an older pool, this will
2373	 * not be present.
2374	 */
2375	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2376	if (error != 0 && error != ENOENT)
2377		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2378
2379	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2380	    &spa->spa_errlog_scrub);
2381	if (error != 0 && error != ENOENT)
2382		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2383
2384	/*
2385	 * Load the history object.  If we have an older pool, this
2386	 * will not be present.
2387	 */
2388	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2389	if (error != 0 && error != ENOENT)
2390		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2391
2392	/*
2393	 * If we're assembling the pool from the split-off vdevs of
2394	 * an existing pool, we don't want to attach the spares & cache
2395	 * devices.
2396	 */
2397
2398	/*
2399	 * Load any hot spares for this pool.
2400	 */
2401	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2402	if (error != 0 && error != ENOENT)
2403		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2404	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2405		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2406		if (load_nvlist(spa, spa->spa_spares.sav_object,
2407		    &spa->spa_spares.sav_config) != 0)
2408			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2409
2410		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2411		spa_load_spares(spa);
2412		spa_config_exit(spa, SCL_ALL, FTAG);
2413	} else if (error == 0) {
2414		spa->spa_spares.sav_sync = B_TRUE;
2415	}
2416
2417	/*
2418	 * Load any level 2 ARC devices for this pool.
2419	 */
2420	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2421	    &spa->spa_l2cache.sav_object);
2422	if (error != 0 && error != ENOENT)
2423		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2424	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2425		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2426		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2427		    &spa->spa_l2cache.sav_config) != 0)
2428			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2429
2430		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2431		spa_load_l2cache(spa);
2432		spa_config_exit(spa, SCL_ALL, FTAG);
2433	} else if (error == 0) {
2434		spa->spa_l2cache.sav_sync = B_TRUE;
2435	}
2436
2437	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2438
2439	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2440	if (error && error != ENOENT)
2441		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2442
2443	if (error == 0) {
2444		uint64_t autoreplace;
2445
2446		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2447		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2448		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2449		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2450		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2451		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2452		    &spa->spa_dedup_ditto);
2453
2454		spa->spa_autoreplace = (autoreplace != 0);
2455	}
2456
2457	/*
2458	 * If the 'autoreplace' property is set, then post a resource notifying
2459	 * the ZFS DE that it should not issue any faults for unopenable
2460	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2461	 * unopenable vdevs so that the normal autoreplace handler can take
2462	 * over.
2463	 */
2464	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2465		spa_check_removed(spa->spa_root_vdev);
2466		/*
2467		 * For the import case, this is done in spa_import(), because
2468		 * at this point we're using the spare definitions from
2469		 * the MOS config, not necessarily from the userland config.
2470		 */
2471		if (state != SPA_LOAD_IMPORT) {
2472			spa_aux_check_removed(&spa->spa_spares);
2473			spa_aux_check_removed(&spa->spa_l2cache);
2474		}
2475	}
2476
2477	/*
2478	 * Load the vdev state for all toplevel vdevs.
2479	 */
2480	vdev_load(rvd);
2481
2482	/*
2483	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2484	 */
2485	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2486	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2487	spa_config_exit(spa, SCL_ALL, FTAG);
2488
2489	/*
2490	 * Load the DDTs (dedup tables).
2491	 */
2492	error = ddt_load(spa);
2493	if (error != 0)
2494		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2495
2496	spa_update_dspace(spa);
2497
2498	/*
2499	 * Validate the config, using the MOS config to fill in any
2500	 * information which might be missing.  If we fail to validate
2501	 * the config then declare the pool unfit for use. If we're
2502	 * assembling a pool from a split, the log is not transferred
2503	 * over.
2504	 */
2505	if (type != SPA_IMPORT_ASSEMBLE) {
2506		nvlist_t *nvconfig;
2507
2508		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2509			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2510
2511		if (!spa_config_valid(spa, nvconfig)) {
2512			nvlist_free(nvconfig);
2513			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2514			    ENXIO));
2515		}
2516		nvlist_free(nvconfig);
2517
2518		/*
2519		 * Now that we've validated the config, check the state of the
2520		 * root vdev.  If it can't be opened, it indicates one or
2521		 * more toplevel vdevs are faulted.
2522		 */
2523		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2524			return (ENXIO);
2525
2526		if (spa_check_logs(spa)) {
2527			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2528			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2529		}
2530	}
2531
2532	if (missing_feat_write) {
2533		ASSERT(state == SPA_LOAD_TRYIMPORT);
2534
2535		/*
2536		 * At this point, we know that we can open the pool in
2537		 * read-only mode but not read-write mode. We now have enough
2538		 * information and can return to userland.
2539		 */
2540		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2541	}
2542
2543	/*
2544	 * We've successfully opened the pool, verify that we're ready
2545	 * to start pushing transactions.
2546	 */
2547	if (state != SPA_LOAD_TRYIMPORT) {
2548		if (error = spa_load_verify(spa))
2549			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2550			    error));
2551	}
2552
2553	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2554	    spa->spa_load_max_txg == UINT64_MAX)) {
2555		dmu_tx_t *tx;
2556		int need_update = B_FALSE;
2557
2558		ASSERT(state != SPA_LOAD_TRYIMPORT);
2559
2560		/*
2561		 * Claim log blocks that haven't been committed yet.
2562		 * This must all happen in a single txg.
2563		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2564		 * invoked from zil_claim_log_block()'s i/o done callback.
2565		 * Price of rollback is that we abandon the log.
2566		 */
2567		spa->spa_claiming = B_TRUE;
2568
2569		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2570		    spa_first_txg(spa));
2571		(void) dmu_objset_find(spa_name(spa),
2572		    zil_claim, tx, DS_FIND_CHILDREN);
2573		dmu_tx_commit(tx);
2574
2575		spa->spa_claiming = B_FALSE;
2576
2577		spa_set_log_state(spa, SPA_LOG_GOOD);
2578		spa->spa_sync_on = B_TRUE;
2579		txg_sync_start(spa->spa_dsl_pool);
2580
2581		/*
2582		 * Wait for all claims to sync.  We sync up to the highest
2583		 * claimed log block birth time so that claimed log blocks
2584		 * don't appear to be from the future.  spa_claim_max_txg
2585		 * will have been set for us by either zil_check_log_chain()
2586		 * (invoked from spa_check_logs()) or zil_claim() above.
2587		 */
2588		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2589
2590		/*
2591		 * If the config cache is stale, or we have uninitialized
2592		 * metaslabs (see spa_vdev_add()), then update the config.
2593		 *
2594		 * If this is a verbatim import, trust the current
2595		 * in-core spa_config and update the disk labels.
2596		 */
2597		if (config_cache_txg != spa->spa_config_txg ||
2598		    state == SPA_LOAD_IMPORT ||
2599		    state == SPA_LOAD_RECOVER ||
2600		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2601			need_update = B_TRUE;
2602
2603		for (int c = 0; c < rvd->vdev_children; c++)
2604			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2605				need_update = B_TRUE;
2606
2607		/*
2608		 * Update the config cache asychronously in case we're the
2609		 * root pool, in which case the config cache isn't writable yet.
2610		 */
2611		if (need_update)
2612			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2613
2614		/*
2615		 * Check all DTLs to see if anything needs resilvering.
2616		 */
2617		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2618		    vdev_resilver_needed(rvd, NULL, NULL))
2619			spa_async_request(spa, SPA_ASYNC_RESILVER);
2620
2621		/*
2622		 * Delete any inconsistent datasets.
2623		 */
2624		(void) dmu_objset_find(spa_name(spa),
2625		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2626
2627		/*
2628		 * Clean up any stale temporary dataset userrefs.
2629		 */
2630		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2631	}
2632
2633	return (0);
2634}
2635
2636static int
2637spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2638{
2639	int mode = spa->spa_mode;
2640
2641	spa_unload(spa);
2642	spa_deactivate(spa);
2643
2644	spa->spa_load_max_txg--;
2645
2646	spa_activate(spa, mode);
2647	spa_async_suspend(spa);
2648
2649	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2650}
2651
2652/*
2653 * If spa_load() fails this function will try loading prior txg's. If
2654 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2655 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2656 * function will not rewind the pool and will return the same error as
2657 * spa_load().
2658 */
2659static int
2660spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2661    uint64_t max_request, int rewind_flags)
2662{
2663	nvlist_t *loadinfo = NULL;
2664	nvlist_t *config = NULL;
2665	int load_error, rewind_error;
2666	uint64_t safe_rewind_txg;
2667	uint64_t min_txg;
2668
2669	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2670		spa->spa_load_max_txg = spa->spa_load_txg;
2671		spa_set_log_state(spa, SPA_LOG_CLEAR);
2672	} else {
2673		spa->spa_load_max_txg = max_request;
2674	}
2675
2676	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2677	    mosconfig);
2678	if (load_error == 0)
2679		return (0);
2680
2681	if (spa->spa_root_vdev != NULL)
2682		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2683
2684	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2685	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2686
2687	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2688		nvlist_free(config);
2689		return (load_error);
2690	}
2691
2692	if (state == SPA_LOAD_RECOVER) {
2693		/* Price of rolling back is discarding txgs, including log */
2694		spa_set_log_state(spa, SPA_LOG_CLEAR);
2695	} else {
2696		/*
2697		 * If we aren't rolling back save the load info from our first
2698		 * import attempt so that we can restore it after attempting
2699		 * to rewind.
2700		 */
2701		loadinfo = spa->spa_load_info;
2702		spa->spa_load_info = fnvlist_alloc();
2703	}
2704
2705	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2706	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2707	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2708	    TXG_INITIAL : safe_rewind_txg;
2709
2710	/*
2711	 * Continue as long as we're finding errors, we're still within
2712	 * the acceptable rewind range, and we're still finding uberblocks
2713	 */
2714	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2715	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2716		if (spa->spa_load_max_txg < safe_rewind_txg)
2717			spa->spa_extreme_rewind = B_TRUE;
2718		rewind_error = spa_load_retry(spa, state, mosconfig);
2719	}
2720
2721	spa->spa_extreme_rewind = B_FALSE;
2722	spa->spa_load_max_txg = UINT64_MAX;
2723
2724	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2725		spa_config_set(spa, config);
2726
2727	if (state == SPA_LOAD_RECOVER) {
2728		ASSERT3P(loadinfo, ==, NULL);
2729		return (rewind_error);
2730	} else {
2731		/* Store the rewind info as part of the initial load info */
2732		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2733		    spa->spa_load_info);
2734
2735		/* Restore the initial load info */
2736		fnvlist_free(spa->spa_load_info);
2737		spa->spa_load_info = loadinfo;
2738
2739		return (load_error);
2740	}
2741}
2742
2743/*
2744 * Pool Open/Import
2745 *
2746 * The import case is identical to an open except that the configuration is sent
2747 * down from userland, instead of grabbed from the configuration cache.  For the
2748 * case of an open, the pool configuration will exist in the
2749 * POOL_STATE_UNINITIALIZED state.
2750 *
2751 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2752 * the same time open the pool, without having to keep around the spa_t in some
2753 * ambiguous state.
2754 */
2755static int
2756spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2757    nvlist_t **config)
2758{
2759	spa_t *spa;
2760	spa_load_state_t state = SPA_LOAD_OPEN;
2761	int error;
2762	int locked = B_FALSE;
2763	int firstopen = B_FALSE;
2764
2765	*spapp = NULL;
2766
2767	/*
2768	 * As disgusting as this is, we need to support recursive calls to this
2769	 * function because dsl_dir_open() is called during spa_load(), and ends
2770	 * up calling spa_open() again.  The real fix is to figure out how to
2771	 * avoid dsl_dir_open() calling this in the first place.
2772	 */
2773	if (mutex_owner(&spa_namespace_lock) != curthread) {
2774		mutex_enter(&spa_namespace_lock);
2775		locked = B_TRUE;
2776	}
2777
2778	if ((spa = spa_lookup(pool)) == NULL) {
2779		if (locked)
2780			mutex_exit(&spa_namespace_lock);
2781		return (ENOENT);
2782	}
2783
2784	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2785		zpool_rewind_policy_t policy;
2786
2787		firstopen = B_TRUE;
2788
2789		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2790		    &policy);
2791		if (policy.zrp_request & ZPOOL_DO_REWIND)
2792			state = SPA_LOAD_RECOVER;
2793
2794		spa_activate(spa, spa_mode_global);
2795
2796		if (state != SPA_LOAD_RECOVER)
2797			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2798
2799		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2800		    policy.zrp_request);
2801
2802		if (error == EBADF) {
2803			/*
2804			 * If vdev_validate() returns failure (indicated by
2805			 * EBADF), it indicates that one of the vdevs indicates
2806			 * that the pool has been exported or destroyed.  If
2807			 * this is the case, the config cache is out of sync and
2808			 * we should remove the pool from the namespace.
2809			 */
2810			spa_unload(spa);
2811			spa_deactivate(spa);
2812			spa_config_sync(spa, B_TRUE, B_TRUE);
2813			spa_remove(spa);
2814			if (locked)
2815				mutex_exit(&spa_namespace_lock);
2816			return (ENOENT);
2817		}
2818
2819		if (error) {
2820			/*
2821			 * We can't open the pool, but we still have useful
2822			 * information: the state of each vdev after the
2823			 * attempted vdev_open().  Return this to the user.
2824			 */
2825			if (config != NULL && spa->spa_config) {
2826				VERIFY(nvlist_dup(spa->spa_config, config,
2827				    KM_SLEEP) == 0);
2828				VERIFY(nvlist_add_nvlist(*config,
2829				    ZPOOL_CONFIG_LOAD_INFO,
2830				    spa->spa_load_info) == 0);
2831			}
2832			spa_unload(spa);
2833			spa_deactivate(spa);
2834			spa->spa_last_open_failed = error;
2835			if (locked)
2836				mutex_exit(&spa_namespace_lock);
2837			*spapp = NULL;
2838			return (error);
2839		}
2840	}
2841
2842	spa_open_ref(spa, tag);
2843
2844	if (config != NULL)
2845		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2846
2847	/*
2848	 * If we've recovered the pool, pass back any information we
2849	 * gathered while doing the load.
2850	 */
2851	if (state == SPA_LOAD_RECOVER) {
2852		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2853		    spa->spa_load_info) == 0);
2854	}
2855
2856	if (locked) {
2857		spa->spa_last_open_failed = 0;
2858		spa->spa_last_ubsync_txg = 0;
2859		spa->spa_load_txg = 0;
2860		mutex_exit(&spa_namespace_lock);
2861#ifdef __FreeBSD__
2862#ifdef _KERNEL
2863		if (firstopen)
2864			zvol_create_minors(pool);
2865#endif
2866#endif
2867	}
2868
2869	*spapp = spa;
2870
2871	return (0);
2872}
2873
2874int
2875spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2876    nvlist_t **config)
2877{
2878	return (spa_open_common(name, spapp, tag, policy, config));
2879}
2880
2881int
2882spa_open(const char *name, spa_t **spapp, void *tag)
2883{
2884	return (spa_open_common(name, spapp, tag, NULL, NULL));
2885}
2886
2887/*
2888 * Lookup the given spa_t, incrementing the inject count in the process,
2889 * preventing it from being exported or destroyed.
2890 */
2891spa_t *
2892spa_inject_addref(char *name)
2893{
2894	spa_t *spa;
2895
2896	mutex_enter(&spa_namespace_lock);
2897	if ((spa = spa_lookup(name)) == NULL) {
2898		mutex_exit(&spa_namespace_lock);
2899		return (NULL);
2900	}
2901	spa->spa_inject_ref++;
2902	mutex_exit(&spa_namespace_lock);
2903
2904	return (spa);
2905}
2906
2907void
2908spa_inject_delref(spa_t *spa)
2909{
2910	mutex_enter(&spa_namespace_lock);
2911	spa->spa_inject_ref--;
2912	mutex_exit(&spa_namespace_lock);
2913}
2914
2915/*
2916 * Add spares device information to the nvlist.
2917 */
2918static void
2919spa_add_spares(spa_t *spa, nvlist_t *config)
2920{
2921	nvlist_t **spares;
2922	uint_t i, nspares;
2923	nvlist_t *nvroot;
2924	uint64_t guid;
2925	vdev_stat_t *vs;
2926	uint_t vsc;
2927	uint64_t pool;
2928
2929	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2930
2931	if (spa->spa_spares.sav_count == 0)
2932		return;
2933
2934	VERIFY(nvlist_lookup_nvlist(config,
2935	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2936	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2937	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2938	if (nspares != 0) {
2939		VERIFY(nvlist_add_nvlist_array(nvroot,
2940		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2941		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2942		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2943
2944		/*
2945		 * Go through and find any spares which have since been
2946		 * repurposed as an active spare.  If this is the case, update
2947		 * their status appropriately.
2948		 */
2949		for (i = 0; i < nspares; i++) {
2950			VERIFY(nvlist_lookup_uint64(spares[i],
2951			    ZPOOL_CONFIG_GUID, &guid) == 0);
2952			if (spa_spare_exists(guid, &pool, NULL) &&
2953			    pool != 0ULL) {
2954				VERIFY(nvlist_lookup_uint64_array(
2955				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2956				    (uint64_t **)&vs, &vsc) == 0);
2957				vs->vs_state = VDEV_STATE_CANT_OPEN;
2958				vs->vs_aux = VDEV_AUX_SPARED;
2959			}
2960		}
2961	}
2962}
2963
2964/*
2965 * Add l2cache device information to the nvlist, including vdev stats.
2966 */
2967static void
2968spa_add_l2cache(spa_t *spa, nvlist_t *config)
2969{
2970	nvlist_t **l2cache;
2971	uint_t i, j, nl2cache;
2972	nvlist_t *nvroot;
2973	uint64_t guid;
2974	vdev_t *vd;
2975	vdev_stat_t *vs;
2976	uint_t vsc;
2977
2978	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2979
2980	if (spa->spa_l2cache.sav_count == 0)
2981		return;
2982
2983	VERIFY(nvlist_lookup_nvlist(config,
2984	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2985	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2986	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2987	if (nl2cache != 0) {
2988		VERIFY(nvlist_add_nvlist_array(nvroot,
2989		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2990		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2991		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2992
2993		/*
2994		 * Update level 2 cache device stats.
2995		 */
2996
2997		for (i = 0; i < nl2cache; i++) {
2998			VERIFY(nvlist_lookup_uint64(l2cache[i],
2999			    ZPOOL_CONFIG_GUID, &guid) == 0);
3000
3001			vd = NULL;
3002			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3003				if (guid ==
3004				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3005					vd = spa->spa_l2cache.sav_vdevs[j];
3006					break;
3007				}
3008			}
3009			ASSERT(vd != NULL);
3010
3011			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3012			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3013			    == 0);
3014			vdev_get_stats(vd, vs);
3015		}
3016	}
3017}
3018
3019static void
3020spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3021{
3022	nvlist_t *features;
3023	zap_cursor_t zc;
3024	zap_attribute_t za;
3025
3026	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3027	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3028
3029	if (spa->spa_feat_for_read_obj != 0) {
3030		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3031		    spa->spa_feat_for_read_obj);
3032		    zap_cursor_retrieve(&zc, &za) == 0;
3033		    zap_cursor_advance(&zc)) {
3034			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3035			    za.za_num_integers == 1);
3036			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3037			    za.za_first_integer));
3038		}
3039		zap_cursor_fini(&zc);
3040	}
3041
3042	if (spa->spa_feat_for_write_obj != 0) {
3043		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3044		    spa->spa_feat_for_write_obj);
3045		    zap_cursor_retrieve(&zc, &za) == 0;
3046		    zap_cursor_advance(&zc)) {
3047			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3048			    za.za_num_integers == 1);
3049			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3050			    za.za_first_integer));
3051		}
3052		zap_cursor_fini(&zc);
3053	}
3054
3055	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3056	    features) == 0);
3057	nvlist_free(features);
3058}
3059
3060int
3061spa_get_stats(const char *name, nvlist_t **config,
3062    char *altroot, size_t buflen)
3063{
3064	int error;
3065	spa_t *spa;
3066
3067	*config = NULL;
3068	error = spa_open_common(name, &spa, FTAG, NULL, config);
3069
3070	if (spa != NULL) {
3071		/*
3072		 * This still leaves a window of inconsistency where the spares
3073		 * or l2cache devices could change and the config would be
3074		 * self-inconsistent.
3075		 */
3076		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3077
3078		if (*config != NULL) {
3079			uint64_t loadtimes[2];
3080
3081			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3082			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3083			VERIFY(nvlist_add_uint64_array(*config,
3084			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3085
3086			VERIFY(nvlist_add_uint64(*config,
3087			    ZPOOL_CONFIG_ERRCOUNT,
3088			    spa_get_errlog_size(spa)) == 0);
3089
3090			if (spa_suspended(spa))
3091				VERIFY(nvlist_add_uint64(*config,
3092				    ZPOOL_CONFIG_SUSPENDED,
3093				    spa->spa_failmode) == 0);
3094
3095			spa_add_spares(spa, *config);
3096			spa_add_l2cache(spa, *config);
3097			spa_add_feature_stats(spa, *config);
3098		}
3099	}
3100
3101	/*
3102	 * We want to get the alternate root even for faulted pools, so we cheat
3103	 * and call spa_lookup() directly.
3104	 */
3105	if (altroot) {
3106		if (spa == NULL) {
3107			mutex_enter(&spa_namespace_lock);
3108			spa = spa_lookup(name);
3109			if (spa)
3110				spa_altroot(spa, altroot, buflen);
3111			else
3112				altroot[0] = '\0';
3113			spa = NULL;
3114			mutex_exit(&spa_namespace_lock);
3115		} else {
3116			spa_altroot(spa, altroot, buflen);
3117		}
3118	}
3119
3120	if (spa != NULL) {
3121		spa_config_exit(spa, SCL_CONFIG, FTAG);
3122		spa_close(spa, FTAG);
3123	}
3124
3125	return (error);
3126}
3127
3128/*
3129 * Validate that the auxiliary device array is well formed.  We must have an
3130 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3131 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3132 * specified, as long as they are well-formed.
3133 */
3134static int
3135spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3136    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3137    vdev_labeltype_t label)
3138{
3139	nvlist_t **dev;
3140	uint_t i, ndev;
3141	vdev_t *vd;
3142	int error;
3143
3144	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3145
3146	/*
3147	 * It's acceptable to have no devs specified.
3148	 */
3149	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3150		return (0);
3151
3152	if (ndev == 0)
3153		return (EINVAL);
3154
3155	/*
3156	 * Make sure the pool is formatted with a version that supports this
3157	 * device type.
3158	 */
3159	if (spa_version(spa) < version)
3160		return (ENOTSUP);
3161
3162	/*
3163	 * Set the pending device list so we correctly handle device in-use
3164	 * checking.
3165	 */
3166	sav->sav_pending = dev;
3167	sav->sav_npending = ndev;
3168
3169	for (i = 0; i < ndev; i++) {
3170		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3171		    mode)) != 0)
3172			goto out;
3173
3174		if (!vd->vdev_ops->vdev_op_leaf) {
3175			vdev_free(vd);
3176			error = EINVAL;
3177			goto out;
3178		}
3179
3180		/*
3181		 * The L2ARC currently only supports disk devices in
3182		 * kernel context.  For user-level testing, we allow it.
3183		 */
3184#ifdef _KERNEL
3185		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3186		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3187			error = ENOTBLK;
3188			vdev_free(vd);
3189			goto out;
3190		}
3191#endif
3192		vd->vdev_top = vd;
3193
3194		if ((error = vdev_open(vd)) == 0 &&
3195		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3196			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3197			    vd->vdev_guid) == 0);
3198		}
3199
3200		vdev_free(vd);
3201
3202		if (error &&
3203		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3204			goto out;
3205		else
3206			error = 0;
3207	}
3208
3209out:
3210	sav->sav_pending = NULL;
3211	sav->sav_npending = 0;
3212	return (error);
3213}
3214
3215static int
3216spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3217{
3218	int error;
3219
3220	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3221
3222	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3223	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3224	    VDEV_LABEL_SPARE)) != 0) {
3225		return (error);
3226	}
3227
3228	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3229	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3230	    VDEV_LABEL_L2CACHE));
3231}
3232
3233static void
3234spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3235    const char *config)
3236{
3237	int i;
3238
3239	if (sav->sav_config != NULL) {
3240		nvlist_t **olddevs;
3241		uint_t oldndevs;
3242		nvlist_t **newdevs;
3243
3244		/*
3245		 * Generate new dev list by concatentating with the
3246		 * current dev list.
3247		 */
3248		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3249		    &olddevs, &oldndevs) == 0);
3250
3251		newdevs = kmem_alloc(sizeof (void *) *
3252		    (ndevs + oldndevs), KM_SLEEP);
3253		for (i = 0; i < oldndevs; i++)
3254			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3255			    KM_SLEEP) == 0);
3256		for (i = 0; i < ndevs; i++)
3257			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3258			    KM_SLEEP) == 0);
3259
3260		VERIFY(nvlist_remove(sav->sav_config, config,
3261		    DATA_TYPE_NVLIST_ARRAY) == 0);
3262
3263		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3264		    config, newdevs, ndevs + oldndevs) == 0);
3265		for (i = 0; i < oldndevs + ndevs; i++)
3266			nvlist_free(newdevs[i]);
3267		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3268	} else {
3269		/*
3270		 * Generate a new dev list.
3271		 */
3272		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3273		    KM_SLEEP) == 0);
3274		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3275		    devs, ndevs) == 0);
3276	}
3277}
3278
3279/*
3280 * Stop and drop level 2 ARC devices
3281 */
3282void
3283spa_l2cache_drop(spa_t *spa)
3284{
3285	vdev_t *vd;
3286	int i;
3287	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3288
3289	for (i = 0; i < sav->sav_count; i++) {
3290		uint64_t pool;
3291
3292		vd = sav->sav_vdevs[i];
3293		ASSERT(vd != NULL);
3294
3295		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3296		    pool != 0ULL && l2arc_vdev_present(vd))
3297			l2arc_remove_vdev(vd);
3298	}
3299}
3300
3301/*
3302 * Pool Creation
3303 */
3304int
3305spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3306    const char *history_str, nvlist_t *zplprops)
3307{
3308	spa_t *spa;
3309	char *altroot = NULL;
3310	vdev_t *rvd;
3311	dsl_pool_t *dp;
3312	dmu_tx_t *tx;
3313	int error = 0;
3314	uint64_t txg = TXG_INITIAL;
3315	nvlist_t **spares, **l2cache;
3316	uint_t nspares, nl2cache;
3317	uint64_t version, obj;
3318	boolean_t has_features;
3319
3320	/*
3321	 * If this pool already exists, return failure.
3322	 */
3323	mutex_enter(&spa_namespace_lock);
3324	if (spa_lookup(pool) != NULL) {
3325		mutex_exit(&spa_namespace_lock);
3326		return (EEXIST);
3327	}
3328
3329	/*
3330	 * Allocate a new spa_t structure.
3331	 */
3332	(void) nvlist_lookup_string(props,
3333	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3334	spa = spa_add(pool, NULL, altroot);
3335	spa_activate(spa, spa_mode_global);
3336
3337	if (props && (error = spa_prop_validate(spa, props))) {
3338		spa_deactivate(spa);
3339		spa_remove(spa);
3340		mutex_exit(&spa_namespace_lock);
3341		return (error);
3342	}
3343
3344	has_features = B_FALSE;
3345	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3346	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3347		if (zpool_prop_feature(nvpair_name(elem)))
3348			has_features = B_TRUE;
3349	}
3350
3351	if (has_features || nvlist_lookup_uint64(props,
3352	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3353		version = SPA_VERSION;
3354	}
3355	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3356
3357	spa->spa_first_txg = txg;
3358	spa->spa_uberblock.ub_txg = txg - 1;
3359	spa->spa_uberblock.ub_version = version;
3360	spa->spa_ubsync = spa->spa_uberblock;
3361
3362	/*
3363	 * Create "The Godfather" zio to hold all async IOs
3364	 */
3365	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3366	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3367
3368	/*
3369	 * Create the root vdev.
3370	 */
3371	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3372
3373	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3374
3375	ASSERT(error != 0 || rvd != NULL);
3376	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3377
3378	if (error == 0 && !zfs_allocatable_devs(nvroot))
3379		error = EINVAL;
3380
3381	if (error == 0 &&
3382	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3383	    (error = spa_validate_aux(spa, nvroot, txg,
3384	    VDEV_ALLOC_ADD)) == 0) {
3385		for (int c = 0; c < rvd->vdev_children; c++) {
3386			vdev_metaslab_set_size(rvd->vdev_child[c]);
3387			vdev_expand(rvd->vdev_child[c], txg);
3388		}
3389	}
3390
3391	spa_config_exit(spa, SCL_ALL, FTAG);
3392
3393	if (error != 0) {
3394		spa_unload(spa);
3395		spa_deactivate(spa);
3396		spa_remove(spa);
3397		mutex_exit(&spa_namespace_lock);
3398		return (error);
3399	}
3400
3401	/*
3402	 * Get the list of spares, if specified.
3403	 */
3404	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3405	    &spares, &nspares) == 0) {
3406		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3407		    KM_SLEEP) == 0);
3408		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3409		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3410		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3411		spa_load_spares(spa);
3412		spa_config_exit(spa, SCL_ALL, FTAG);
3413		spa->spa_spares.sav_sync = B_TRUE;
3414	}
3415
3416	/*
3417	 * Get the list of level 2 cache devices, if specified.
3418	 */
3419	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3420	    &l2cache, &nl2cache) == 0) {
3421		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3422		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3423		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3424		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3425		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3426		spa_load_l2cache(spa);
3427		spa_config_exit(spa, SCL_ALL, FTAG);
3428		spa->spa_l2cache.sav_sync = B_TRUE;
3429	}
3430
3431	spa->spa_is_initializing = B_TRUE;
3432	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3433	spa->spa_meta_objset = dp->dp_meta_objset;
3434	spa->spa_is_initializing = B_FALSE;
3435
3436	/*
3437	 * Create DDTs (dedup tables).
3438	 */
3439	ddt_create(spa);
3440
3441	spa_update_dspace(spa);
3442
3443	tx = dmu_tx_create_assigned(dp, txg);
3444
3445	/*
3446	 * Create the pool config object.
3447	 */
3448	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3449	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3450	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3451
3452	if (zap_add(spa->spa_meta_objset,
3453	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3454	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3455		cmn_err(CE_PANIC, "failed to add pool config");
3456	}
3457
3458	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3459		spa_feature_create_zap_objects(spa, tx);
3460
3461	if (zap_add(spa->spa_meta_objset,
3462	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3463	    sizeof (uint64_t), 1, &version, tx) != 0) {
3464		cmn_err(CE_PANIC, "failed to add pool version");
3465	}
3466
3467	/* Newly created pools with the right version are always deflated. */
3468	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3469		spa->spa_deflate = TRUE;
3470		if (zap_add(spa->spa_meta_objset,
3471		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3472		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3473			cmn_err(CE_PANIC, "failed to add deflate");
3474		}
3475	}
3476
3477	/*
3478	 * Create the deferred-free bpobj.  Turn off compression
3479	 * because sync-to-convergence takes longer if the blocksize
3480	 * keeps changing.
3481	 */
3482	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3483	dmu_object_set_compress(spa->spa_meta_objset, obj,
3484	    ZIO_COMPRESS_OFF, tx);
3485	if (zap_add(spa->spa_meta_objset,
3486	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3487	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3488		cmn_err(CE_PANIC, "failed to add bpobj");
3489	}
3490	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3491	    spa->spa_meta_objset, obj));
3492
3493	/*
3494	 * Create the pool's history object.
3495	 */
3496	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3497		spa_history_create_obj(spa, tx);
3498
3499	/*
3500	 * Set pool properties.
3501	 */
3502	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3503	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3504	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3505	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3506
3507	if (props != NULL) {
3508		spa_configfile_set(spa, props, B_FALSE);
3509		spa_sync_props(spa, props, tx);
3510	}
3511
3512	dmu_tx_commit(tx);
3513
3514	spa->spa_sync_on = B_TRUE;
3515	txg_sync_start(spa->spa_dsl_pool);
3516
3517	/*
3518	 * We explicitly wait for the first transaction to complete so that our
3519	 * bean counters are appropriately updated.
3520	 */
3521	txg_wait_synced(spa->spa_dsl_pool, txg);
3522
3523	spa_config_sync(spa, B_FALSE, B_TRUE);
3524
3525	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3526		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3527	spa_history_log_version(spa, LOG_POOL_CREATE);
3528
3529	spa->spa_minref = refcount_count(&spa->spa_refcount);
3530
3531	mutex_exit(&spa_namespace_lock);
3532
3533	return (0);
3534}
3535
3536#if defined(sun)
3537#ifdef _KERNEL
3538/*
3539 * Get the root pool information from the root disk, then import the root pool
3540 * during the system boot up time.
3541 */
3542extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3543
3544static nvlist_t *
3545spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3546{
3547	nvlist_t *config;
3548	nvlist_t *nvtop, *nvroot;
3549	uint64_t pgid;
3550
3551	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3552		return (NULL);
3553
3554	/*
3555	 * Add this top-level vdev to the child array.
3556	 */
3557	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3558	    &nvtop) == 0);
3559	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3560	    &pgid) == 0);
3561	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3562
3563	/*
3564	 * Put this pool's top-level vdevs into a root vdev.
3565	 */
3566	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3567	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3568	    VDEV_TYPE_ROOT) == 0);
3569	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3570	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3571	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3572	    &nvtop, 1) == 0);
3573
3574	/*
3575	 * Replace the existing vdev_tree with the new root vdev in
3576	 * this pool's configuration (remove the old, add the new).
3577	 */
3578	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3579	nvlist_free(nvroot);
3580	return (config);
3581}
3582
3583/*
3584 * Walk the vdev tree and see if we can find a device with "better"
3585 * configuration. A configuration is "better" if the label on that
3586 * device has a more recent txg.
3587 */
3588static void
3589spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3590{
3591	for (int c = 0; c < vd->vdev_children; c++)
3592		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3593
3594	if (vd->vdev_ops->vdev_op_leaf) {
3595		nvlist_t *label;
3596		uint64_t label_txg;
3597
3598		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3599		    &label) != 0)
3600			return;
3601
3602		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3603		    &label_txg) == 0);
3604
3605		/*
3606		 * Do we have a better boot device?
3607		 */
3608		if (label_txg > *txg) {
3609			*txg = label_txg;
3610			*avd = vd;
3611		}
3612		nvlist_free(label);
3613	}
3614}
3615
3616/*
3617 * Import a root pool.
3618 *
3619 * For x86. devpath_list will consist of devid and/or physpath name of
3620 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3621 * The GRUB "findroot" command will return the vdev we should boot.
3622 *
3623 * For Sparc, devpath_list consists the physpath name of the booting device
3624 * no matter the rootpool is a single device pool or a mirrored pool.
3625 * e.g.
3626 *	"/pci@1f,0/ide@d/disk@0,0:a"
3627 */
3628int
3629spa_import_rootpool(char *devpath, char *devid)
3630{
3631	spa_t *spa;
3632	vdev_t *rvd, *bvd, *avd = NULL;
3633	nvlist_t *config, *nvtop;
3634	uint64_t guid, txg;
3635	char *pname;
3636	int error;
3637
3638	/*
3639	 * Read the label from the boot device and generate a configuration.
3640	 */
3641	config = spa_generate_rootconf(devpath, devid, &guid);
3642#if defined(_OBP) && defined(_KERNEL)
3643	if (config == NULL) {
3644		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3645			/* iscsi boot */
3646			get_iscsi_bootpath_phy(devpath);
3647			config = spa_generate_rootconf(devpath, devid, &guid);
3648		}
3649	}
3650#endif
3651	if (config == NULL) {
3652		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3653		    devpath);
3654		return (EIO);
3655	}
3656
3657	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3658	    &pname) == 0);
3659	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3660
3661	mutex_enter(&spa_namespace_lock);
3662	if ((spa = spa_lookup(pname)) != NULL) {
3663		/*
3664		 * Remove the existing root pool from the namespace so that we
3665		 * can replace it with the correct config we just read in.
3666		 */
3667		spa_remove(spa);
3668	}
3669
3670	spa = spa_add(pname, config, NULL);
3671	spa->spa_is_root = B_TRUE;
3672	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3673
3674	/*
3675	 * Build up a vdev tree based on the boot device's label config.
3676	 */
3677	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3678	    &nvtop) == 0);
3679	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3680	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3681	    VDEV_ALLOC_ROOTPOOL);
3682	spa_config_exit(spa, SCL_ALL, FTAG);
3683	if (error) {
3684		mutex_exit(&spa_namespace_lock);
3685		nvlist_free(config);
3686		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3687		    pname);
3688		return (error);
3689	}
3690
3691	/*
3692	 * Get the boot vdev.
3693	 */
3694	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3695		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3696		    (u_longlong_t)guid);
3697		error = ENOENT;
3698		goto out;
3699	}
3700
3701	/*
3702	 * Determine if there is a better boot device.
3703	 */
3704	avd = bvd;
3705	spa_alt_rootvdev(rvd, &avd, &txg);
3706	if (avd != bvd) {
3707		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3708		    "try booting from '%s'", avd->vdev_path);
3709		error = EINVAL;
3710		goto out;
3711	}
3712
3713	/*
3714	 * If the boot device is part of a spare vdev then ensure that
3715	 * we're booting off the active spare.
3716	 */
3717	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3718	    !bvd->vdev_isspare) {
3719		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3720		    "try booting from '%s'",
3721		    bvd->vdev_parent->
3722		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3723		error = EINVAL;
3724		goto out;
3725	}
3726
3727	error = 0;
3728	spa_history_log_version(spa, LOG_POOL_IMPORT);
3729out:
3730	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3731	vdev_free(rvd);
3732	spa_config_exit(spa, SCL_ALL, FTAG);
3733	mutex_exit(&spa_namespace_lock);
3734
3735	nvlist_free(config);
3736	return (error);
3737}
3738
3739#endif
3740#endif	/* sun */
3741
3742/*
3743 * Import a non-root pool into the system.
3744 */
3745int
3746spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3747{
3748	spa_t *spa;
3749	char *altroot = NULL;
3750	spa_load_state_t state = SPA_LOAD_IMPORT;
3751	zpool_rewind_policy_t policy;
3752	uint64_t mode = spa_mode_global;
3753	uint64_t readonly = B_FALSE;
3754	int error;
3755	nvlist_t *nvroot;
3756	nvlist_t **spares, **l2cache;
3757	uint_t nspares, nl2cache;
3758
3759	/*
3760	 * If a pool with this name exists, return failure.
3761	 */
3762	mutex_enter(&spa_namespace_lock);
3763	if (spa_lookup(pool) != NULL) {
3764		mutex_exit(&spa_namespace_lock);
3765		return (EEXIST);
3766	}
3767
3768	/*
3769	 * Create and initialize the spa structure.
3770	 */
3771	(void) nvlist_lookup_string(props,
3772	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3773	(void) nvlist_lookup_uint64(props,
3774	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3775	if (readonly)
3776		mode = FREAD;
3777	spa = spa_add(pool, config, altroot);
3778	spa->spa_import_flags = flags;
3779
3780	/*
3781	 * Verbatim import - Take a pool and insert it into the namespace
3782	 * as if it had been loaded at boot.
3783	 */
3784	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3785		if (props != NULL)
3786			spa_configfile_set(spa, props, B_FALSE);
3787
3788		spa_config_sync(spa, B_FALSE, B_TRUE);
3789
3790		mutex_exit(&spa_namespace_lock);
3791		spa_history_log_version(spa, LOG_POOL_IMPORT);
3792
3793		return (0);
3794	}
3795
3796	spa_activate(spa, mode);
3797
3798	/*
3799	 * Don't start async tasks until we know everything is healthy.
3800	 */
3801	spa_async_suspend(spa);
3802
3803	zpool_get_rewind_policy(config, &policy);
3804	if (policy.zrp_request & ZPOOL_DO_REWIND)
3805		state = SPA_LOAD_RECOVER;
3806
3807	/*
3808	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3809	 * because the user-supplied config is actually the one to trust when
3810	 * doing an import.
3811	 */
3812	if (state != SPA_LOAD_RECOVER)
3813		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3814
3815	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3816	    policy.zrp_request);
3817
3818	/*
3819	 * Propagate anything learned while loading the pool and pass it
3820	 * back to caller (i.e. rewind info, missing devices, etc).
3821	 */
3822	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3823	    spa->spa_load_info) == 0);
3824
3825	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3826	/*
3827	 * Toss any existing sparelist, as it doesn't have any validity
3828	 * anymore, and conflicts with spa_has_spare().
3829	 */
3830	if (spa->spa_spares.sav_config) {
3831		nvlist_free(spa->spa_spares.sav_config);
3832		spa->spa_spares.sav_config = NULL;
3833		spa_load_spares(spa);
3834	}
3835	if (spa->spa_l2cache.sav_config) {
3836		nvlist_free(spa->spa_l2cache.sav_config);
3837		spa->spa_l2cache.sav_config = NULL;
3838		spa_load_l2cache(spa);
3839	}
3840
3841	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3842	    &nvroot) == 0);
3843	if (error == 0)
3844		error = spa_validate_aux(spa, nvroot, -1ULL,
3845		    VDEV_ALLOC_SPARE);
3846	if (error == 0)
3847		error = spa_validate_aux(spa, nvroot, -1ULL,
3848		    VDEV_ALLOC_L2CACHE);
3849	spa_config_exit(spa, SCL_ALL, FTAG);
3850
3851	if (props != NULL)
3852		spa_configfile_set(spa, props, B_FALSE);
3853
3854	if (error != 0 || (props && spa_writeable(spa) &&
3855	    (error = spa_prop_set(spa, props)))) {
3856		spa_unload(spa);
3857		spa_deactivate(spa);
3858		spa_remove(spa);
3859		mutex_exit(&spa_namespace_lock);
3860		return (error);
3861	}
3862
3863	spa_async_resume(spa);
3864
3865	/*
3866	 * Override any spares and level 2 cache devices as specified by
3867	 * the user, as these may have correct device names/devids, etc.
3868	 */
3869	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3870	    &spares, &nspares) == 0) {
3871		if (spa->spa_spares.sav_config)
3872			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3873			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3874		else
3875			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3876			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3877		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3878		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3879		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3880		spa_load_spares(spa);
3881		spa_config_exit(spa, SCL_ALL, FTAG);
3882		spa->spa_spares.sav_sync = B_TRUE;
3883	}
3884	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3885	    &l2cache, &nl2cache) == 0) {
3886		if (spa->spa_l2cache.sav_config)
3887			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3888			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3889		else
3890			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3891			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3892		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3893		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3894		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3895		spa_load_l2cache(spa);
3896		spa_config_exit(spa, SCL_ALL, FTAG);
3897		spa->spa_l2cache.sav_sync = B_TRUE;
3898	}
3899
3900	/*
3901	 * Check for any removed devices.
3902	 */
3903	if (spa->spa_autoreplace) {
3904		spa_aux_check_removed(&spa->spa_spares);
3905		spa_aux_check_removed(&spa->spa_l2cache);
3906	}
3907
3908	if (spa_writeable(spa)) {
3909		/*
3910		 * Update the config cache to include the newly-imported pool.
3911		 */
3912		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3913	}
3914
3915	/*
3916	 * It's possible that the pool was expanded while it was exported.
3917	 * We kick off an async task to handle this for us.
3918	 */
3919	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3920
3921	mutex_exit(&spa_namespace_lock);
3922	spa_history_log_version(spa, LOG_POOL_IMPORT);
3923
3924#ifdef __FreeBSD__
3925#ifdef _KERNEL
3926	zvol_create_minors(pool);
3927#endif
3928#endif
3929	return (0);
3930}
3931
3932nvlist_t *
3933spa_tryimport(nvlist_t *tryconfig)
3934{
3935	nvlist_t *config = NULL;
3936	char *poolname;
3937	spa_t *spa;
3938	uint64_t state;
3939	int error;
3940
3941	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3942		return (NULL);
3943
3944	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3945		return (NULL);
3946
3947	/*
3948	 * Create and initialize the spa structure.
3949	 */
3950	mutex_enter(&spa_namespace_lock);
3951	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3952	spa_activate(spa, FREAD);
3953
3954	/*
3955	 * Pass off the heavy lifting to spa_load().
3956	 * Pass TRUE for mosconfig because the user-supplied config
3957	 * is actually the one to trust when doing an import.
3958	 */
3959	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3960
3961	/*
3962	 * If 'tryconfig' was at least parsable, return the current config.
3963	 */
3964	if (spa->spa_root_vdev != NULL) {
3965		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3966		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3967		    poolname) == 0);
3968		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3969		    state) == 0);
3970		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3971		    spa->spa_uberblock.ub_timestamp) == 0);
3972		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3973		    spa->spa_load_info) == 0);
3974
3975		/*
3976		 * If the bootfs property exists on this pool then we
3977		 * copy it out so that external consumers can tell which
3978		 * pools are bootable.
3979		 */
3980		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3981			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3982
3983			/*
3984			 * We have to play games with the name since the
3985			 * pool was opened as TRYIMPORT_NAME.
3986			 */
3987			if (dsl_dsobj_to_dsname(spa_name(spa),
3988			    spa->spa_bootfs, tmpname) == 0) {
3989				char *cp;
3990				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3991
3992				cp = strchr(tmpname, '/');
3993				if (cp == NULL) {
3994					(void) strlcpy(dsname, tmpname,
3995					    MAXPATHLEN);
3996				} else {
3997					(void) snprintf(dsname, MAXPATHLEN,
3998					    "%s/%s", poolname, ++cp);
3999				}
4000				VERIFY(nvlist_add_string(config,
4001				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4002				kmem_free(dsname, MAXPATHLEN);
4003			}
4004			kmem_free(tmpname, MAXPATHLEN);
4005		}
4006
4007		/*
4008		 * Add the list of hot spares and level 2 cache devices.
4009		 */
4010		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4011		spa_add_spares(spa, config);
4012		spa_add_l2cache(spa, config);
4013		spa_config_exit(spa, SCL_CONFIG, FTAG);
4014	}
4015
4016	spa_unload(spa);
4017	spa_deactivate(spa);
4018	spa_remove(spa);
4019	mutex_exit(&spa_namespace_lock);
4020
4021	return (config);
4022}
4023
4024/*
4025 * Pool export/destroy
4026 *
4027 * The act of destroying or exporting a pool is very simple.  We make sure there
4028 * is no more pending I/O and any references to the pool are gone.  Then, we
4029 * update the pool state and sync all the labels to disk, removing the
4030 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4031 * we don't sync the labels or remove the configuration cache.
4032 */
4033static int
4034spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4035    boolean_t force, boolean_t hardforce)
4036{
4037	spa_t *spa;
4038
4039	if (oldconfig)
4040		*oldconfig = NULL;
4041
4042	if (!(spa_mode_global & FWRITE))
4043		return (EROFS);
4044
4045	mutex_enter(&spa_namespace_lock);
4046	if ((spa = spa_lookup(pool)) == NULL) {
4047		mutex_exit(&spa_namespace_lock);
4048		return (ENOENT);
4049	}
4050
4051	/*
4052	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4053	 * reacquire the namespace lock, and see if we can export.
4054	 */
4055	spa_open_ref(spa, FTAG);
4056	mutex_exit(&spa_namespace_lock);
4057	spa_async_suspend(spa);
4058	mutex_enter(&spa_namespace_lock);
4059	spa_close(spa, FTAG);
4060
4061	/*
4062	 * The pool will be in core if it's openable,
4063	 * in which case we can modify its state.
4064	 */
4065	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4066		/*
4067		 * Objsets may be open only because they're dirty, so we
4068		 * have to force it to sync before checking spa_refcnt.
4069		 */
4070		txg_wait_synced(spa->spa_dsl_pool, 0);
4071
4072		/*
4073		 * A pool cannot be exported or destroyed if there are active
4074		 * references.  If we are resetting a pool, allow references by
4075		 * fault injection handlers.
4076		 */
4077		if (!spa_refcount_zero(spa) ||
4078		    (spa->spa_inject_ref != 0 &&
4079		    new_state != POOL_STATE_UNINITIALIZED)) {
4080			spa_async_resume(spa);
4081			mutex_exit(&spa_namespace_lock);
4082			return (EBUSY);
4083		}
4084
4085		/*
4086		 * A pool cannot be exported if it has an active shared spare.
4087		 * This is to prevent other pools stealing the active spare
4088		 * from an exported pool. At user's own will, such pool can
4089		 * be forcedly exported.
4090		 */
4091		if (!force && new_state == POOL_STATE_EXPORTED &&
4092		    spa_has_active_shared_spare(spa)) {
4093			spa_async_resume(spa);
4094			mutex_exit(&spa_namespace_lock);
4095			return (EXDEV);
4096		}
4097
4098		/*
4099		 * We want this to be reflected on every label,
4100		 * so mark them all dirty.  spa_unload() will do the
4101		 * final sync that pushes these changes out.
4102		 */
4103		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4104			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4105			spa->spa_state = new_state;
4106			spa->spa_final_txg = spa_last_synced_txg(spa) +
4107			    TXG_DEFER_SIZE + 1;
4108			vdev_config_dirty(spa->spa_root_vdev);
4109			spa_config_exit(spa, SCL_ALL, FTAG);
4110		}
4111	}
4112
4113	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4114
4115	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4116		spa_unload(spa);
4117		spa_deactivate(spa);
4118	}
4119
4120	if (oldconfig && spa->spa_config)
4121		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4122
4123	if (new_state != POOL_STATE_UNINITIALIZED) {
4124		if (!hardforce)
4125			spa_config_sync(spa, B_TRUE, B_TRUE);
4126		spa_remove(spa);
4127	}
4128	mutex_exit(&spa_namespace_lock);
4129
4130	return (0);
4131}
4132
4133/*
4134 * Destroy a storage pool.
4135 */
4136int
4137spa_destroy(char *pool)
4138{
4139	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4140	    B_FALSE, B_FALSE));
4141}
4142
4143/*
4144 * Export a storage pool.
4145 */
4146int
4147spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4148    boolean_t hardforce)
4149{
4150	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4151	    force, hardforce));
4152}
4153
4154/*
4155 * Similar to spa_export(), this unloads the spa_t without actually removing it
4156 * from the namespace in any way.
4157 */
4158int
4159spa_reset(char *pool)
4160{
4161	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4162	    B_FALSE, B_FALSE));
4163}
4164
4165/*
4166 * ==========================================================================
4167 * Device manipulation
4168 * ==========================================================================
4169 */
4170
4171/*
4172 * Add a device to a storage pool.
4173 */
4174int
4175spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4176{
4177	uint64_t txg, id;
4178	int error;
4179	vdev_t *rvd = spa->spa_root_vdev;
4180	vdev_t *vd, *tvd;
4181	nvlist_t **spares, **l2cache;
4182	uint_t nspares, nl2cache;
4183
4184	ASSERT(spa_writeable(spa));
4185
4186	txg = spa_vdev_enter(spa);
4187
4188	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4189	    VDEV_ALLOC_ADD)) != 0)
4190		return (spa_vdev_exit(spa, NULL, txg, error));
4191
4192	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4193
4194	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4195	    &nspares) != 0)
4196		nspares = 0;
4197
4198	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4199	    &nl2cache) != 0)
4200		nl2cache = 0;
4201
4202	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4203		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4204
4205	if (vd->vdev_children != 0 &&
4206	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4207		return (spa_vdev_exit(spa, vd, txg, error));
4208
4209	/*
4210	 * We must validate the spares and l2cache devices after checking the
4211	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4212	 */
4213	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4214		return (spa_vdev_exit(spa, vd, txg, error));
4215
4216	/*
4217	 * Transfer each new top-level vdev from vd to rvd.
4218	 */
4219	for (int c = 0; c < vd->vdev_children; c++) {
4220
4221		/*
4222		 * Set the vdev id to the first hole, if one exists.
4223		 */
4224		for (id = 0; id < rvd->vdev_children; id++) {
4225			if (rvd->vdev_child[id]->vdev_ishole) {
4226				vdev_free(rvd->vdev_child[id]);
4227				break;
4228			}
4229		}
4230		tvd = vd->vdev_child[c];
4231		vdev_remove_child(vd, tvd);
4232		tvd->vdev_id = id;
4233		vdev_add_child(rvd, tvd);
4234		vdev_config_dirty(tvd);
4235	}
4236
4237	if (nspares != 0) {
4238		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4239		    ZPOOL_CONFIG_SPARES);
4240		spa_load_spares(spa);
4241		spa->spa_spares.sav_sync = B_TRUE;
4242	}
4243
4244	if (nl2cache != 0) {
4245		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4246		    ZPOOL_CONFIG_L2CACHE);
4247		spa_load_l2cache(spa);
4248		spa->spa_l2cache.sav_sync = B_TRUE;
4249	}
4250
4251	/*
4252	 * We have to be careful when adding new vdevs to an existing pool.
4253	 * If other threads start allocating from these vdevs before we
4254	 * sync the config cache, and we lose power, then upon reboot we may
4255	 * fail to open the pool because there are DVAs that the config cache
4256	 * can't translate.  Therefore, we first add the vdevs without
4257	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4258	 * and then let spa_config_update() initialize the new metaslabs.
4259	 *
4260	 * spa_load() checks for added-but-not-initialized vdevs, so that
4261	 * if we lose power at any point in this sequence, the remaining
4262	 * steps will be completed the next time we load the pool.
4263	 */
4264	(void) spa_vdev_exit(spa, vd, txg, 0);
4265
4266	mutex_enter(&spa_namespace_lock);
4267	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4268	mutex_exit(&spa_namespace_lock);
4269
4270	return (0);
4271}
4272
4273/*
4274 * Attach a device to a mirror.  The arguments are the path to any device
4275 * in the mirror, and the nvroot for the new device.  If the path specifies
4276 * a device that is not mirrored, we automatically insert the mirror vdev.
4277 *
4278 * If 'replacing' is specified, the new device is intended to replace the
4279 * existing device; in this case the two devices are made into their own
4280 * mirror using the 'replacing' vdev, which is functionally identical to
4281 * the mirror vdev (it actually reuses all the same ops) but has a few
4282 * extra rules: you can't attach to it after it's been created, and upon
4283 * completion of resilvering, the first disk (the one being replaced)
4284 * is automatically detached.
4285 */
4286int
4287spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4288{
4289	uint64_t txg, dtl_max_txg;
4290	vdev_t *rvd = spa->spa_root_vdev;
4291	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4292	vdev_ops_t *pvops;
4293	char *oldvdpath, *newvdpath;
4294	int newvd_isspare;
4295	int error;
4296
4297	ASSERT(spa_writeable(spa));
4298
4299	txg = spa_vdev_enter(spa);
4300
4301	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4302
4303	if (oldvd == NULL)
4304		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4305
4306	if (!oldvd->vdev_ops->vdev_op_leaf)
4307		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4308
4309	pvd = oldvd->vdev_parent;
4310
4311	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4312	    VDEV_ALLOC_ATTACH)) != 0)
4313		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4314
4315	if (newrootvd->vdev_children != 1)
4316		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4317
4318	newvd = newrootvd->vdev_child[0];
4319
4320	if (!newvd->vdev_ops->vdev_op_leaf)
4321		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4322
4323	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4324		return (spa_vdev_exit(spa, newrootvd, txg, error));
4325
4326	/*
4327	 * Spares can't replace logs
4328	 */
4329	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4330		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4331
4332	if (!replacing) {
4333		/*
4334		 * For attach, the only allowable parent is a mirror or the root
4335		 * vdev.
4336		 */
4337		if (pvd->vdev_ops != &vdev_mirror_ops &&
4338		    pvd->vdev_ops != &vdev_root_ops)
4339			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4340
4341		pvops = &vdev_mirror_ops;
4342	} else {
4343		/*
4344		 * Active hot spares can only be replaced by inactive hot
4345		 * spares.
4346		 */
4347		if (pvd->vdev_ops == &vdev_spare_ops &&
4348		    oldvd->vdev_isspare &&
4349		    !spa_has_spare(spa, newvd->vdev_guid))
4350			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4351
4352		/*
4353		 * If the source is a hot spare, and the parent isn't already a
4354		 * spare, then we want to create a new hot spare.  Otherwise, we
4355		 * want to create a replacing vdev.  The user is not allowed to
4356		 * attach to a spared vdev child unless the 'isspare' state is
4357		 * the same (spare replaces spare, non-spare replaces
4358		 * non-spare).
4359		 */
4360		if (pvd->vdev_ops == &vdev_replacing_ops &&
4361		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4362			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4363		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4364		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4365			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4366		}
4367
4368		if (newvd->vdev_isspare)
4369			pvops = &vdev_spare_ops;
4370		else
4371			pvops = &vdev_replacing_ops;
4372	}
4373
4374	/*
4375	 * Make sure the new device is big enough.
4376	 */
4377	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4378		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4379
4380	/*
4381	 * The new device cannot have a higher alignment requirement
4382	 * than the top-level vdev.
4383	 */
4384	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4385		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4386
4387	/*
4388	 * If this is an in-place replacement, update oldvd's path and devid
4389	 * to make it distinguishable from newvd, and unopenable from now on.
4390	 */
4391	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4392		spa_strfree(oldvd->vdev_path);
4393		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4394		    KM_SLEEP);
4395		(void) sprintf(oldvd->vdev_path, "%s/%s",
4396		    newvd->vdev_path, "old");
4397		if (oldvd->vdev_devid != NULL) {
4398			spa_strfree(oldvd->vdev_devid);
4399			oldvd->vdev_devid = NULL;
4400		}
4401	}
4402
4403	/* mark the device being resilvered */
4404	newvd->vdev_resilvering = B_TRUE;
4405
4406	/*
4407	 * If the parent is not a mirror, or if we're replacing, insert the new
4408	 * mirror/replacing/spare vdev above oldvd.
4409	 */
4410	if (pvd->vdev_ops != pvops)
4411		pvd = vdev_add_parent(oldvd, pvops);
4412
4413	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4414	ASSERT(pvd->vdev_ops == pvops);
4415	ASSERT(oldvd->vdev_parent == pvd);
4416
4417	/*
4418	 * Extract the new device from its root and add it to pvd.
4419	 */
4420	vdev_remove_child(newrootvd, newvd);
4421	newvd->vdev_id = pvd->vdev_children;
4422	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4423	vdev_add_child(pvd, newvd);
4424
4425	tvd = newvd->vdev_top;
4426	ASSERT(pvd->vdev_top == tvd);
4427	ASSERT(tvd->vdev_parent == rvd);
4428
4429	vdev_config_dirty(tvd);
4430
4431	/*
4432	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4433	 * for any dmu_sync-ed blocks.  It will propagate upward when
4434	 * spa_vdev_exit() calls vdev_dtl_reassess().
4435	 */
4436	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4437
4438	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4439	    dtl_max_txg - TXG_INITIAL);
4440
4441	if (newvd->vdev_isspare) {
4442		spa_spare_activate(newvd);
4443		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4444	}
4445
4446	oldvdpath = spa_strdup(oldvd->vdev_path);
4447	newvdpath = spa_strdup(newvd->vdev_path);
4448	newvd_isspare = newvd->vdev_isspare;
4449
4450	/*
4451	 * Mark newvd's DTL dirty in this txg.
4452	 */
4453	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4454
4455	/*
4456	 * Restart the resilver
4457	 */
4458	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4459
4460	/*
4461	 * Commit the config
4462	 */
4463	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4464
4465	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4466	    "%s vdev=%s %s vdev=%s",
4467	    replacing && newvd_isspare ? "spare in" :
4468	    replacing ? "replace" : "attach", newvdpath,
4469	    replacing ? "for" : "to", oldvdpath);
4470
4471	spa_strfree(oldvdpath);
4472	spa_strfree(newvdpath);
4473
4474	if (spa->spa_bootfs)
4475		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4476
4477	return (0);
4478}
4479
4480/*
4481 * Detach a device from a mirror or replacing vdev.
4482 * If 'replace_done' is specified, only detach if the parent
4483 * is a replacing vdev.
4484 */
4485int
4486spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4487{
4488	uint64_t txg;
4489	int error;
4490	vdev_t *rvd = spa->spa_root_vdev;
4491	vdev_t *vd, *pvd, *cvd, *tvd;
4492	boolean_t unspare = B_FALSE;
4493	uint64_t unspare_guid;
4494	char *vdpath;
4495
4496	ASSERT(spa_writeable(spa));
4497
4498	txg = spa_vdev_enter(spa);
4499
4500	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4501
4502	if (vd == NULL)
4503		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4504
4505	if (!vd->vdev_ops->vdev_op_leaf)
4506		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4507
4508	pvd = vd->vdev_parent;
4509
4510	/*
4511	 * If the parent/child relationship is not as expected, don't do it.
4512	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4513	 * vdev that's replacing B with C.  The user's intent in replacing
4514	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4515	 * the replace by detaching C, the expected behavior is to end up
4516	 * M(A,B).  But suppose that right after deciding to detach C,
4517	 * the replacement of B completes.  We would have M(A,C), and then
4518	 * ask to detach C, which would leave us with just A -- not what
4519	 * the user wanted.  To prevent this, we make sure that the
4520	 * parent/child relationship hasn't changed -- in this example,
4521	 * that C's parent is still the replacing vdev R.
4522	 */
4523	if (pvd->vdev_guid != pguid && pguid != 0)
4524		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4525
4526	/*
4527	 * Only 'replacing' or 'spare' vdevs can be replaced.
4528	 */
4529	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4530	    pvd->vdev_ops != &vdev_spare_ops)
4531		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4532
4533	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4534	    spa_version(spa) >= SPA_VERSION_SPARES);
4535
4536	/*
4537	 * Only mirror, replacing, and spare vdevs support detach.
4538	 */
4539	if (pvd->vdev_ops != &vdev_replacing_ops &&
4540	    pvd->vdev_ops != &vdev_mirror_ops &&
4541	    pvd->vdev_ops != &vdev_spare_ops)
4542		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4543
4544	/*
4545	 * If this device has the only valid copy of some data,
4546	 * we cannot safely detach it.
4547	 */
4548	if (vdev_dtl_required(vd))
4549		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4550
4551	ASSERT(pvd->vdev_children >= 2);
4552
4553	/*
4554	 * If we are detaching the second disk from a replacing vdev, then
4555	 * check to see if we changed the original vdev's path to have "/old"
4556	 * at the end in spa_vdev_attach().  If so, undo that change now.
4557	 */
4558	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4559	    vd->vdev_path != NULL) {
4560		size_t len = strlen(vd->vdev_path);
4561
4562		for (int c = 0; c < pvd->vdev_children; c++) {
4563			cvd = pvd->vdev_child[c];
4564
4565			if (cvd == vd || cvd->vdev_path == NULL)
4566				continue;
4567
4568			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4569			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4570				spa_strfree(cvd->vdev_path);
4571				cvd->vdev_path = spa_strdup(vd->vdev_path);
4572				break;
4573			}
4574		}
4575	}
4576
4577	/*
4578	 * If we are detaching the original disk from a spare, then it implies
4579	 * that the spare should become a real disk, and be removed from the
4580	 * active spare list for the pool.
4581	 */
4582	if (pvd->vdev_ops == &vdev_spare_ops &&
4583	    vd->vdev_id == 0 &&
4584	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4585		unspare = B_TRUE;
4586
4587	/*
4588	 * Erase the disk labels so the disk can be used for other things.
4589	 * This must be done after all other error cases are handled,
4590	 * but before we disembowel vd (so we can still do I/O to it).
4591	 * But if we can't do it, don't treat the error as fatal --
4592	 * it may be that the unwritability of the disk is the reason
4593	 * it's being detached!
4594	 */
4595	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4596
4597	/*
4598	 * Remove vd from its parent and compact the parent's children.
4599	 */
4600	vdev_remove_child(pvd, vd);
4601	vdev_compact_children(pvd);
4602
4603	/*
4604	 * Remember one of the remaining children so we can get tvd below.
4605	 */
4606	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4607
4608	/*
4609	 * If we need to remove the remaining child from the list of hot spares,
4610	 * do it now, marking the vdev as no longer a spare in the process.
4611	 * We must do this before vdev_remove_parent(), because that can
4612	 * change the GUID if it creates a new toplevel GUID.  For a similar
4613	 * reason, we must remove the spare now, in the same txg as the detach;
4614	 * otherwise someone could attach a new sibling, change the GUID, and
4615	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4616	 */
4617	if (unspare) {
4618		ASSERT(cvd->vdev_isspare);
4619		spa_spare_remove(cvd);
4620		unspare_guid = cvd->vdev_guid;
4621		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4622		cvd->vdev_unspare = B_TRUE;
4623	}
4624
4625	/*
4626	 * If the parent mirror/replacing vdev only has one child,
4627	 * the parent is no longer needed.  Remove it from the tree.
4628	 */
4629	if (pvd->vdev_children == 1) {
4630		if (pvd->vdev_ops == &vdev_spare_ops)
4631			cvd->vdev_unspare = B_FALSE;
4632		vdev_remove_parent(cvd);
4633		cvd->vdev_resilvering = B_FALSE;
4634	}
4635
4636
4637	/*
4638	 * We don't set tvd until now because the parent we just removed
4639	 * may have been the previous top-level vdev.
4640	 */
4641	tvd = cvd->vdev_top;
4642	ASSERT(tvd->vdev_parent == rvd);
4643
4644	/*
4645	 * Reevaluate the parent vdev state.
4646	 */
4647	vdev_propagate_state(cvd);
4648
4649	/*
4650	 * If the 'autoexpand' property is set on the pool then automatically
4651	 * try to expand the size of the pool. For example if the device we
4652	 * just detached was smaller than the others, it may be possible to
4653	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4654	 * first so that we can obtain the updated sizes of the leaf vdevs.
4655	 */
4656	if (spa->spa_autoexpand) {
4657		vdev_reopen(tvd);
4658		vdev_expand(tvd, txg);
4659	}
4660
4661	vdev_config_dirty(tvd);
4662
4663	/*
4664	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4665	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4666	 * But first make sure we're not on any *other* txg's DTL list, to
4667	 * prevent vd from being accessed after it's freed.
4668	 */
4669	vdpath = spa_strdup(vd->vdev_path);
4670	for (int t = 0; t < TXG_SIZE; t++)
4671		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4672	vd->vdev_detached = B_TRUE;
4673	vdev_dirty(tvd, VDD_DTL, vd, txg);
4674
4675	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4676
4677	/* hang on to the spa before we release the lock */
4678	spa_open_ref(spa, FTAG);
4679
4680	error = spa_vdev_exit(spa, vd, txg, 0);
4681
4682	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4683	    "vdev=%s", vdpath);
4684	spa_strfree(vdpath);
4685
4686	/*
4687	 * If this was the removal of the original device in a hot spare vdev,
4688	 * then we want to go through and remove the device from the hot spare
4689	 * list of every other pool.
4690	 */
4691	if (unspare) {
4692		spa_t *altspa = NULL;
4693
4694		mutex_enter(&spa_namespace_lock);
4695		while ((altspa = spa_next(altspa)) != NULL) {
4696			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4697			    altspa == spa)
4698				continue;
4699
4700			spa_open_ref(altspa, FTAG);
4701			mutex_exit(&spa_namespace_lock);
4702			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4703			mutex_enter(&spa_namespace_lock);
4704			spa_close(altspa, FTAG);
4705		}
4706		mutex_exit(&spa_namespace_lock);
4707
4708		/* search the rest of the vdevs for spares to remove */
4709		spa_vdev_resilver_done(spa);
4710	}
4711
4712	/* all done with the spa; OK to release */
4713	mutex_enter(&spa_namespace_lock);
4714	spa_close(spa, FTAG);
4715	mutex_exit(&spa_namespace_lock);
4716
4717	return (error);
4718}
4719
4720/*
4721 * Split a set of devices from their mirrors, and create a new pool from them.
4722 */
4723int
4724spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4725    nvlist_t *props, boolean_t exp)
4726{
4727	int error = 0;
4728	uint64_t txg, *glist;
4729	spa_t *newspa;
4730	uint_t c, children, lastlog;
4731	nvlist_t **child, *nvl, *tmp;
4732	dmu_tx_t *tx;
4733	char *altroot = NULL;
4734	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4735	boolean_t activate_slog;
4736
4737	ASSERT(spa_writeable(spa));
4738
4739	txg = spa_vdev_enter(spa);
4740
4741	/* clear the log and flush everything up to now */
4742	activate_slog = spa_passivate_log(spa);
4743	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4744	error = spa_offline_log(spa);
4745	txg = spa_vdev_config_enter(spa);
4746
4747	if (activate_slog)
4748		spa_activate_log(spa);
4749
4750	if (error != 0)
4751		return (spa_vdev_exit(spa, NULL, txg, error));
4752
4753	/* check new spa name before going any further */
4754	if (spa_lookup(newname) != NULL)
4755		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4756
4757	/*
4758	 * scan through all the children to ensure they're all mirrors
4759	 */
4760	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4761	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4762	    &children) != 0)
4763		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4764
4765	/* first, check to ensure we've got the right child count */
4766	rvd = spa->spa_root_vdev;
4767	lastlog = 0;
4768	for (c = 0; c < rvd->vdev_children; c++) {
4769		vdev_t *vd = rvd->vdev_child[c];
4770
4771		/* don't count the holes & logs as children */
4772		if (vd->vdev_islog || vd->vdev_ishole) {
4773			if (lastlog == 0)
4774				lastlog = c;
4775			continue;
4776		}
4777
4778		lastlog = 0;
4779	}
4780	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4781		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4782
4783	/* next, ensure no spare or cache devices are part of the split */
4784	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4785	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4786		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4787
4788	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4789	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4790
4791	/* then, loop over each vdev and validate it */
4792	for (c = 0; c < children; c++) {
4793		uint64_t is_hole = 0;
4794
4795		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4796		    &is_hole);
4797
4798		if (is_hole != 0) {
4799			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4800			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4801				continue;
4802			} else {
4803				error = EINVAL;
4804				break;
4805			}
4806		}
4807
4808		/* which disk is going to be split? */
4809		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4810		    &glist[c]) != 0) {
4811			error = EINVAL;
4812			break;
4813		}
4814
4815		/* look it up in the spa */
4816		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4817		if (vml[c] == NULL) {
4818			error = ENODEV;
4819			break;
4820		}
4821
4822		/* make sure there's nothing stopping the split */
4823		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4824		    vml[c]->vdev_islog ||
4825		    vml[c]->vdev_ishole ||
4826		    vml[c]->vdev_isspare ||
4827		    vml[c]->vdev_isl2cache ||
4828		    !vdev_writeable(vml[c]) ||
4829		    vml[c]->vdev_children != 0 ||
4830		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4831		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4832			error = EINVAL;
4833			break;
4834		}
4835
4836		if (vdev_dtl_required(vml[c])) {
4837			error = EBUSY;
4838			break;
4839		}
4840
4841		/* we need certain info from the top level */
4842		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4843		    vml[c]->vdev_top->vdev_ms_array) == 0);
4844		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4845		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4846		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4847		    vml[c]->vdev_top->vdev_asize) == 0);
4848		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4849		    vml[c]->vdev_top->vdev_ashift) == 0);
4850	}
4851
4852	if (error != 0) {
4853		kmem_free(vml, children * sizeof (vdev_t *));
4854		kmem_free(glist, children * sizeof (uint64_t));
4855		return (spa_vdev_exit(spa, NULL, txg, error));
4856	}
4857
4858	/* stop writers from using the disks */
4859	for (c = 0; c < children; c++) {
4860		if (vml[c] != NULL)
4861			vml[c]->vdev_offline = B_TRUE;
4862	}
4863	vdev_reopen(spa->spa_root_vdev);
4864
4865	/*
4866	 * Temporarily record the splitting vdevs in the spa config.  This
4867	 * will disappear once the config is regenerated.
4868	 */
4869	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4870	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4871	    glist, children) == 0);
4872	kmem_free(glist, children * sizeof (uint64_t));
4873
4874	mutex_enter(&spa->spa_props_lock);
4875	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4876	    nvl) == 0);
4877	mutex_exit(&spa->spa_props_lock);
4878	spa->spa_config_splitting = nvl;
4879	vdev_config_dirty(spa->spa_root_vdev);
4880
4881	/* configure and create the new pool */
4882	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4883	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4884	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4885	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4886	    spa_version(spa)) == 0);
4887	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4888	    spa->spa_config_txg) == 0);
4889	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4890	    spa_generate_guid(NULL)) == 0);
4891	(void) nvlist_lookup_string(props,
4892	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4893
4894	/* add the new pool to the namespace */
4895	newspa = spa_add(newname, config, altroot);
4896	newspa->spa_config_txg = spa->spa_config_txg;
4897	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4898
4899	/* release the spa config lock, retaining the namespace lock */
4900	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4901
4902	if (zio_injection_enabled)
4903		zio_handle_panic_injection(spa, FTAG, 1);
4904
4905	spa_activate(newspa, spa_mode_global);
4906	spa_async_suspend(newspa);
4907
4908#ifndef sun
4909	/* mark that we are creating new spa by splitting */
4910	newspa->spa_splitting_newspa = B_TRUE;
4911#endif
4912	/* create the new pool from the disks of the original pool */
4913	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4914#ifndef sun
4915	newspa->spa_splitting_newspa = B_FALSE;
4916#endif
4917	if (error)
4918		goto out;
4919
4920	/* if that worked, generate a real config for the new pool */
4921	if (newspa->spa_root_vdev != NULL) {
4922		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4923		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4924		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4925		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4926		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4927		    B_TRUE));
4928	}
4929
4930	/* set the props */
4931	if (props != NULL) {
4932		spa_configfile_set(newspa, props, B_FALSE);
4933		error = spa_prop_set(newspa, props);
4934		if (error)
4935			goto out;
4936	}
4937
4938	/* flush everything */
4939	txg = spa_vdev_config_enter(newspa);
4940	vdev_config_dirty(newspa->spa_root_vdev);
4941	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4942
4943	if (zio_injection_enabled)
4944		zio_handle_panic_injection(spa, FTAG, 2);
4945
4946	spa_async_resume(newspa);
4947
4948	/* finally, update the original pool's config */
4949	txg = spa_vdev_config_enter(spa);
4950	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4951	error = dmu_tx_assign(tx, TXG_WAIT);
4952	if (error != 0)
4953		dmu_tx_abort(tx);
4954	for (c = 0; c < children; c++) {
4955		if (vml[c] != NULL) {
4956			vdev_split(vml[c]);
4957			if (error == 0)
4958				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4959				    spa, tx, "vdev=%s",
4960				    vml[c]->vdev_path);
4961			vdev_free(vml[c]);
4962		}
4963	}
4964	vdev_config_dirty(spa->spa_root_vdev);
4965	spa->spa_config_splitting = NULL;
4966	nvlist_free(nvl);
4967	if (error == 0)
4968		dmu_tx_commit(tx);
4969	(void) spa_vdev_exit(spa, NULL, txg, 0);
4970
4971	if (zio_injection_enabled)
4972		zio_handle_panic_injection(spa, FTAG, 3);
4973
4974	/* split is complete; log a history record */
4975	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4976	    "split new pool %s from pool %s", newname, spa_name(spa));
4977
4978	kmem_free(vml, children * sizeof (vdev_t *));
4979
4980	/* if we're not going to mount the filesystems in userland, export */
4981	if (exp)
4982		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4983		    B_FALSE, B_FALSE);
4984
4985	return (error);
4986
4987out:
4988	spa_unload(newspa);
4989	spa_deactivate(newspa);
4990	spa_remove(newspa);
4991
4992	txg = spa_vdev_config_enter(spa);
4993
4994	/* re-online all offlined disks */
4995	for (c = 0; c < children; c++) {
4996		if (vml[c] != NULL)
4997			vml[c]->vdev_offline = B_FALSE;
4998	}
4999	vdev_reopen(spa->spa_root_vdev);
5000
5001	nvlist_free(spa->spa_config_splitting);
5002	spa->spa_config_splitting = NULL;
5003	(void) spa_vdev_exit(spa, NULL, txg, error);
5004
5005	kmem_free(vml, children * sizeof (vdev_t *));
5006	return (error);
5007}
5008
5009static nvlist_t *
5010spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5011{
5012	for (int i = 0; i < count; i++) {
5013		uint64_t guid;
5014
5015		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5016		    &guid) == 0);
5017
5018		if (guid == target_guid)
5019			return (nvpp[i]);
5020	}
5021
5022	return (NULL);
5023}
5024
5025static void
5026spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5027	nvlist_t *dev_to_remove)
5028{
5029	nvlist_t **newdev = NULL;
5030
5031	if (count > 1)
5032		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5033
5034	for (int i = 0, j = 0; i < count; i++) {
5035		if (dev[i] == dev_to_remove)
5036			continue;
5037		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5038	}
5039
5040	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5041	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5042
5043	for (int i = 0; i < count - 1; i++)
5044		nvlist_free(newdev[i]);
5045
5046	if (count > 1)
5047		kmem_free(newdev, (count - 1) * sizeof (void *));
5048}
5049
5050/*
5051 * Evacuate the device.
5052 */
5053static int
5054spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5055{
5056	uint64_t txg;
5057	int error = 0;
5058
5059	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5060	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5061	ASSERT(vd == vd->vdev_top);
5062
5063	/*
5064	 * Evacuate the device.  We don't hold the config lock as writer
5065	 * since we need to do I/O but we do keep the
5066	 * spa_namespace_lock held.  Once this completes the device
5067	 * should no longer have any blocks allocated on it.
5068	 */
5069	if (vd->vdev_islog) {
5070		if (vd->vdev_stat.vs_alloc != 0)
5071			error = spa_offline_log(spa);
5072	} else {
5073		error = ENOTSUP;
5074	}
5075
5076	if (error)
5077		return (error);
5078
5079	/*
5080	 * The evacuation succeeded.  Remove any remaining MOS metadata
5081	 * associated with this vdev, and wait for these changes to sync.
5082	 */
5083	ASSERT0(vd->vdev_stat.vs_alloc);
5084	txg = spa_vdev_config_enter(spa);
5085	vd->vdev_removing = B_TRUE;
5086	vdev_dirty(vd, 0, NULL, txg);
5087	vdev_config_dirty(vd);
5088	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5089
5090	return (0);
5091}
5092
5093/*
5094 * Complete the removal by cleaning up the namespace.
5095 */
5096static void
5097spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5098{
5099	vdev_t *rvd = spa->spa_root_vdev;
5100	uint64_t id = vd->vdev_id;
5101	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5102
5103	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5104	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5105	ASSERT(vd == vd->vdev_top);
5106
5107	/*
5108	 * Only remove any devices which are empty.
5109	 */
5110	if (vd->vdev_stat.vs_alloc != 0)
5111		return;
5112
5113	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5114
5115	if (list_link_active(&vd->vdev_state_dirty_node))
5116		vdev_state_clean(vd);
5117	if (list_link_active(&vd->vdev_config_dirty_node))
5118		vdev_config_clean(vd);
5119
5120	vdev_free(vd);
5121
5122	if (last_vdev) {
5123		vdev_compact_children(rvd);
5124	} else {
5125		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5126		vdev_add_child(rvd, vd);
5127	}
5128	vdev_config_dirty(rvd);
5129
5130	/*
5131	 * Reassess the health of our root vdev.
5132	 */
5133	vdev_reopen(rvd);
5134}
5135
5136/*
5137 * Remove a device from the pool -
5138 *
5139 * Removing a device from the vdev namespace requires several steps
5140 * and can take a significant amount of time.  As a result we use
5141 * the spa_vdev_config_[enter/exit] functions which allow us to
5142 * grab and release the spa_config_lock while still holding the namespace
5143 * lock.  During each step the configuration is synced out.
5144 */
5145
5146/*
5147 * Remove a device from the pool.  Currently, this supports removing only hot
5148 * spares, slogs, and level 2 ARC devices.
5149 */
5150int
5151spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5152{
5153	vdev_t *vd;
5154	metaslab_group_t *mg;
5155	nvlist_t **spares, **l2cache, *nv;
5156	uint64_t txg = 0;
5157	uint_t nspares, nl2cache;
5158	int error = 0;
5159	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5160
5161	ASSERT(spa_writeable(spa));
5162
5163	if (!locked)
5164		txg = spa_vdev_enter(spa);
5165
5166	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5167
5168	if (spa->spa_spares.sav_vdevs != NULL &&
5169	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5170	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5171	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5172		/*
5173		 * Only remove the hot spare if it's not currently in use
5174		 * in this pool.
5175		 */
5176		if (vd == NULL || unspare) {
5177			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5178			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5179			spa_load_spares(spa);
5180			spa->spa_spares.sav_sync = B_TRUE;
5181		} else {
5182			error = EBUSY;
5183		}
5184	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5185	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5186	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5187	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5188		/*
5189		 * Cache devices can always be removed.
5190		 */
5191		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5192		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5193		spa_load_l2cache(spa);
5194		spa->spa_l2cache.sav_sync = B_TRUE;
5195	} else if (vd != NULL && vd->vdev_islog) {
5196		ASSERT(!locked);
5197		ASSERT(vd == vd->vdev_top);
5198
5199		/*
5200		 * XXX - Once we have bp-rewrite this should
5201		 * become the common case.
5202		 */
5203
5204		mg = vd->vdev_mg;
5205
5206		/*
5207		 * Stop allocating from this vdev.
5208		 */
5209		metaslab_group_passivate(mg);
5210
5211		/*
5212		 * Wait for the youngest allocations and frees to sync,
5213		 * and then wait for the deferral of those frees to finish.
5214		 */
5215		spa_vdev_config_exit(spa, NULL,
5216		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5217
5218		/*
5219		 * Attempt to evacuate the vdev.
5220		 */
5221		error = spa_vdev_remove_evacuate(spa, vd);
5222
5223		txg = spa_vdev_config_enter(spa);
5224
5225		/*
5226		 * If we couldn't evacuate the vdev, unwind.
5227		 */
5228		if (error) {
5229			metaslab_group_activate(mg);
5230			return (spa_vdev_exit(spa, NULL, txg, error));
5231		}
5232
5233		/*
5234		 * Clean up the vdev namespace.
5235		 */
5236		spa_vdev_remove_from_namespace(spa, vd);
5237
5238	} else if (vd != NULL) {
5239		/*
5240		 * Normal vdevs cannot be removed (yet).
5241		 */
5242		error = ENOTSUP;
5243	} else {
5244		/*
5245		 * There is no vdev of any kind with the specified guid.
5246		 */
5247		error = ENOENT;
5248	}
5249
5250	if (!locked)
5251		return (spa_vdev_exit(spa, NULL, txg, error));
5252
5253	return (error);
5254}
5255
5256/*
5257 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5258 * current spared, so we can detach it.
5259 */
5260static vdev_t *
5261spa_vdev_resilver_done_hunt(vdev_t *vd)
5262{
5263	vdev_t *newvd, *oldvd;
5264
5265	for (int c = 0; c < vd->vdev_children; c++) {
5266		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5267		if (oldvd != NULL)
5268			return (oldvd);
5269	}
5270
5271	/*
5272	 * Check for a completed replacement.  We always consider the first
5273	 * vdev in the list to be the oldest vdev, and the last one to be
5274	 * the newest (see spa_vdev_attach() for how that works).  In
5275	 * the case where the newest vdev is faulted, we will not automatically
5276	 * remove it after a resilver completes.  This is OK as it will require
5277	 * user intervention to determine which disk the admin wishes to keep.
5278	 */
5279	if (vd->vdev_ops == &vdev_replacing_ops) {
5280		ASSERT(vd->vdev_children > 1);
5281
5282		newvd = vd->vdev_child[vd->vdev_children - 1];
5283		oldvd = vd->vdev_child[0];
5284
5285		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5286		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5287		    !vdev_dtl_required(oldvd))
5288			return (oldvd);
5289	}
5290
5291	/*
5292	 * Check for a completed resilver with the 'unspare' flag set.
5293	 */
5294	if (vd->vdev_ops == &vdev_spare_ops) {
5295		vdev_t *first = vd->vdev_child[0];
5296		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5297
5298		if (last->vdev_unspare) {
5299			oldvd = first;
5300			newvd = last;
5301		} else if (first->vdev_unspare) {
5302			oldvd = last;
5303			newvd = first;
5304		} else {
5305			oldvd = NULL;
5306		}
5307
5308		if (oldvd != NULL &&
5309		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5310		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5311		    !vdev_dtl_required(oldvd))
5312			return (oldvd);
5313
5314		/*
5315		 * If there are more than two spares attached to a disk,
5316		 * and those spares are not required, then we want to
5317		 * attempt to free them up now so that they can be used
5318		 * by other pools.  Once we're back down to a single
5319		 * disk+spare, we stop removing them.
5320		 */
5321		if (vd->vdev_children > 2) {
5322			newvd = vd->vdev_child[1];
5323
5324			if (newvd->vdev_isspare && last->vdev_isspare &&
5325			    vdev_dtl_empty(last, DTL_MISSING) &&
5326			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5327			    !vdev_dtl_required(newvd))
5328				return (newvd);
5329		}
5330	}
5331
5332	return (NULL);
5333}
5334
5335static void
5336spa_vdev_resilver_done(spa_t *spa)
5337{
5338	vdev_t *vd, *pvd, *ppvd;
5339	uint64_t guid, sguid, pguid, ppguid;
5340
5341	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5342
5343	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5344		pvd = vd->vdev_parent;
5345		ppvd = pvd->vdev_parent;
5346		guid = vd->vdev_guid;
5347		pguid = pvd->vdev_guid;
5348		ppguid = ppvd->vdev_guid;
5349		sguid = 0;
5350		/*
5351		 * If we have just finished replacing a hot spared device, then
5352		 * we need to detach the parent's first child (the original hot
5353		 * spare) as well.
5354		 */
5355		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5356		    ppvd->vdev_children == 2) {
5357			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5358			sguid = ppvd->vdev_child[1]->vdev_guid;
5359		}
5360		spa_config_exit(spa, SCL_ALL, FTAG);
5361		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5362			return;
5363		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5364			return;
5365		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5366	}
5367
5368	spa_config_exit(spa, SCL_ALL, FTAG);
5369}
5370
5371/*
5372 * Update the stored path or FRU for this vdev.
5373 */
5374int
5375spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5376    boolean_t ispath)
5377{
5378	vdev_t *vd;
5379	boolean_t sync = B_FALSE;
5380
5381	ASSERT(spa_writeable(spa));
5382
5383	spa_vdev_state_enter(spa, SCL_ALL);
5384
5385	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5386		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5387
5388	if (!vd->vdev_ops->vdev_op_leaf)
5389		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5390
5391	if (ispath) {
5392		if (strcmp(value, vd->vdev_path) != 0) {
5393			spa_strfree(vd->vdev_path);
5394			vd->vdev_path = spa_strdup(value);
5395			sync = B_TRUE;
5396		}
5397	} else {
5398		if (vd->vdev_fru == NULL) {
5399			vd->vdev_fru = spa_strdup(value);
5400			sync = B_TRUE;
5401		} else if (strcmp(value, vd->vdev_fru) != 0) {
5402			spa_strfree(vd->vdev_fru);
5403			vd->vdev_fru = spa_strdup(value);
5404			sync = B_TRUE;
5405		}
5406	}
5407
5408	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5409}
5410
5411int
5412spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5413{
5414	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5415}
5416
5417int
5418spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5419{
5420	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5421}
5422
5423/*
5424 * ==========================================================================
5425 * SPA Scanning
5426 * ==========================================================================
5427 */
5428
5429int
5430spa_scan_stop(spa_t *spa)
5431{
5432	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5433	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5434		return (EBUSY);
5435	return (dsl_scan_cancel(spa->spa_dsl_pool));
5436}
5437
5438int
5439spa_scan(spa_t *spa, pool_scan_func_t func)
5440{
5441	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5442
5443	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5444		return (ENOTSUP);
5445
5446	/*
5447	 * If a resilver was requested, but there is no DTL on a
5448	 * writeable leaf device, we have nothing to do.
5449	 */
5450	if (func == POOL_SCAN_RESILVER &&
5451	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5452		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5453		return (0);
5454	}
5455
5456	return (dsl_scan(spa->spa_dsl_pool, func));
5457}
5458
5459/*
5460 * ==========================================================================
5461 * SPA async task processing
5462 * ==========================================================================
5463 */
5464
5465static void
5466spa_async_remove(spa_t *spa, vdev_t *vd)
5467{
5468	if (vd->vdev_remove_wanted) {
5469		vd->vdev_remove_wanted = B_FALSE;
5470		vd->vdev_delayed_close = B_FALSE;
5471		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5472
5473		/*
5474		 * We want to clear the stats, but we don't want to do a full
5475		 * vdev_clear() as that will cause us to throw away
5476		 * degraded/faulted state as well as attempt to reopen the
5477		 * device, all of which is a waste.
5478		 */
5479		vd->vdev_stat.vs_read_errors = 0;
5480		vd->vdev_stat.vs_write_errors = 0;
5481		vd->vdev_stat.vs_checksum_errors = 0;
5482
5483		vdev_state_dirty(vd->vdev_top);
5484	}
5485
5486	for (int c = 0; c < vd->vdev_children; c++)
5487		spa_async_remove(spa, vd->vdev_child[c]);
5488}
5489
5490static void
5491spa_async_probe(spa_t *spa, vdev_t *vd)
5492{
5493	if (vd->vdev_probe_wanted) {
5494		vd->vdev_probe_wanted = B_FALSE;
5495		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5496	}
5497
5498	for (int c = 0; c < vd->vdev_children; c++)
5499		spa_async_probe(spa, vd->vdev_child[c]);
5500}
5501
5502static void
5503spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5504{
5505	sysevent_id_t eid;
5506	nvlist_t *attr;
5507	char *physpath;
5508
5509	if (!spa->spa_autoexpand)
5510		return;
5511
5512	for (int c = 0; c < vd->vdev_children; c++) {
5513		vdev_t *cvd = vd->vdev_child[c];
5514		spa_async_autoexpand(spa, cvd);
5515	}
5516
5517	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5518		return;
5519
5520	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5521	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5522
5523	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5524	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5525
5526	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5527	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5528
5529	nvlist_free(attr);
5530	kmem_free(physpath, MAXPATHLEN);
5531}
5532
5533static void
5534spa_async_thread(void *arg)
5535{
5536	spa_t *spa = arg;
5537	int tasks;
5538
5539	ASSERT(spa->spa_sync_on);
5540
5541	mutex_enter(&spa->spa_async_lock);
5542	tasks = spa->spa_async_tasks;
5543	spa->spa_async_tasks = 0;
5544	mutex_exit(&spa->spa_async_lock);
5545
5546	/*
5547	 * See if the config needs to be updated.
5548	 */
5549	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5550		uint64_t old_space, new_space;
5551
5552		mutex_enter(&spa_namespace_lock);
5553		old_space = metaslab_class_get_space(spa_normal_class(spa));
5554		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5555		new_space = metaslab_class_get_space(spa_normal_class(spa));
5556		mutex_exit(&spa_namespace_lock);
5557
5558		/*
5559		 * If the pool grew as a result of the config update,
5560		 * then log an internal history event.
5561		 */
5562		if (new_space != old_space) {
5563			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5564			    spa, NULL,
5565			    "pool '%s' size: %llu(+%llu)",
5566			    spa_name(spa), new_space, new_space - old_space);
5567		}
5568	}
5569
5570	/*
5571	 * See if any devices need to be marked REMOVED.
5572	 */
5573	if (tasks & SPA_ASYNC_REMOVE) {
5574		spa_vdev_state_enter(spa, SCL_NONE);
5575		spa_async_remove(spa, spa->spa_root_vdev);
5576		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5577			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5578		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5579			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5580		(void) spa_vdev_state_exit(spa, NULL, 0);
5581	}
5582
5583	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5584		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5585		spa_async_autoexpand(spa, spa->spa_root_vdev);
5586		spa_config_exit(spa, SCL_CONFIG, FTAG);
5587	}
5588
5589	/*
5590	 * See if any devices need to be probed.
5591	 */
5592	if (tasks & SPA_ASYNC_PROBE) {
5593		spa_vdev_state_enter(spa, SCL_NONE);
5594		spa_async_probe(spa, spa->spa_root_vdev);
5595		(void) spa_vdev_state_exit(spa, NULL, 0);
5596	}
5597
5598	/*
5599	 * If any devices are done replacing, detach them.
5600	 */
5601	if (tasks & SPA_ASYNC_RESILVER_DONE)
5602		spa_vdev_resilver_done(spa);
5603
5604	/*
5605	 * Kick off a resilver.
5606	 */
5607	if (tasks & SPA_ASYNC_RESILVER)
5608		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5609
5610	/*
5611	 * Let the world know that we're done.
5612	 */
5613	mutex_enter(&spa->spa_async_lock);
5614	spa->spa_async_thread = NULL;
5615	cv_broadcast(&spa->spa_async_cv);
5616	mutex_exit(&spa->spa_async_lock);
5617	thread_exit();
5618}
5619
5620void
5621spa_async_suspend(spa_t *spa)
5622{
5623	mutex_enter(&spa->spa_async_lock);
5624	spa->spa_async_suspended++;
5625	while (spa->spa_async_thread != NULL)
5626		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5627	mutex_exit(&spa->spa_async_lock);
5628}
5629
5630void
5631spa_async_resume(spa_t *spa)
5632{
5633	mutex_enter(&spa->spa_async_lock);
5634	ASSERT(spa->spa_async_suspended != 0);
5635	spa->spa_async_suspended--;
5636	mutex_exit(&spa->spa_async_lock);
5637}
5638
5639static void
5640spa_async_dispatch(spa_t *spa)
5641{
5642	mutex_enter(&spa->spa_async_lock);
5643	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5644	    spa->spa_async_thread == NULL &&
5645	    rootdir != NULL && !vn_is_readonly(rootdir))
5646		spa->spa_async_thread = thread_create(NULL, 0,
5647		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5648	mutex_exit(&spa->spa_async_lock);
5649}
5650
5651void
5652spa_async_request(spa_t *spa, int task)
5653{
5654	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5655	mutex_enter(&spa->spa_async_lock);
5656	spa->spa_async_tasks |= task;
5657	mutex_exit(&spa->spa_async_lock);
5658}
5659
5660/*
5661 * ==========================================================================
5662 * SPA syncing routines
5663 * ==========================================================================
5664 */
5665
5666static int
5667bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5668{
5669	bpobj_t *bpo = arg;
5670	bpobj_enqueue(bpo, bp, tx);
5671	return (0);
5672}
5673
5674static int
5675spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5676{
5677	zio_t *zio = arg;
5678
5679	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5680	    zio->io_flags));
5681	return (0);
5682}
5683
5684static void
5685spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5686{
5687	char *packed = NULL;
5688	size_t bufsize;
5689	size_t nvsize = 0;
5690	dmu_buf_t *db;
5691
5692	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5693
5694	/*
5695	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5696	 * information.  This avoids the dbuf_will_dirty() path and
5697	 * saves us a pre-read to get data we don't actually care about.
5698	 */
5699	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5700	packed = kmem_alloc(bufsize, KM_SLEEP);
5701
5702	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5703	    KM_SLEEP) == 0);
5704	bzero(packed + nvsize, bufsize - nvsize);
5705
5706	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5707
5708	kmem_free(packed, bufsize);
5709
5710	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5711	dmu_buf_will_dirty(db, tx);
5712	*(uint64_t *)db->db_data = nvsize;
5713	dmu_buf_rele(db, FTAG);
5714}
5715
5716static void
5717spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5718    const char *config, const char *entry)
5719{
5720	nvlist_t *nvroot;
5721	nvlist_t **list;
5722	int i;
5723
5724	if (!sav->sav_sync)
5725		return;
5726
5727	/*
5728	 * Update the MOS nvlist describing the list of available devices.
5729	 * spa_validate_aux() will have already made sure this nvlist is
5730	 * valid and the vdevs are labeled appropriately.
5731	 */
5732	if (sav->sav_object == 0) {
5733		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5734		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5735		    sizeof (uint64_t), tx);
5736		VERIFY(zap_update(spa->spa_meta_objset,
5737		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5738		    &sav->sav_object, tx) == 0);
5739	}
5740
5741	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5742	if (sav->sav_count == 0) {
5743		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5744	} else {
5745		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5746		for (i = 0; i < sav->sav_count; i++)
5747			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5748			    B_FALSE, VDEV_CONFIG_L2CACHE);
5749		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5750		    sav->sav_count) == 0);
5751		for (i = 0; i < sav->sav_count; i++)
5752			nvlist_free(list[i]);
5753		kmem_free(list, sav->sav_count * sizeof (void *));
5754	}
5755
5756	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5757	nvlist_free(nvroot);
5758
5759	sav->sav_sync = B_FALSE;
5760}
5761
5762static void
5763spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5764{
5765	nvlist_t *config;
5766
5767	if (list_is_empty(&spa->spa_config_dirty_list))
5768		return;
5769
5770	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5771
5772	config = spa_config_generate(spa, spa->spa_root_vdev,
5773	    dmu_tx_get_txg(tx), B_FALSE);
5774
5775	spa_config_exit(spa, SCL_STATE, FTAG);
5776
5777	if (spa->spa_config_syncing)
5778		nvlist_free(spa->spa_config_syncing);
5779	spa->spa_config_syncing = config;
5780
5781	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5782}
5783
5784static void
5785spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5786{
5787	spa_t *spa = arg1;
5788	uint64_t version = *(uint64_t *)arg2;
5789
5790	/*
5791	 * Setting the version is special cased when first creating the pool.
5792	 */
5793	ASSERT(tx->tx_txg != TXG_INITIAL);
5794
5795	ASSERT(version <= SPA_VERSION);
5796	ASSERT(version >= spa_version(spa));
5797
5798	spa->spa_uberblock.ub_version = version;
5799	vdev_config_dirty(spa->spa_root_vdev);
5800}
5801
5802/*
5803 * Set zpool properties.
5804 */
5805static void
5806spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5807{
5808	spa_t *spa = arg1;
5809	objset_t *mos = spa->spa_meta_objset;
5810	nvlist_t *nvp = arg2;
5811	nvpair_t *elem = NULL;
5812
5813	mutex_enter(&spa->spa_props_lock);
5814
5815	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5816		uint64_t intval;
5817		char *strval, *fname;
5818		zpool_prop_t prop;
5819		const char *propname;
5820		zprop_type_t proptype;
5821		zfeature_info_t *feature;
5822
5823		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5824		case ZPROP_INVAL:
5825			/*
5826			 * We checked this earlier in spa_prop_validate().
5827			 */
5828			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5829
5830			fname = strchr(nvpair_name(elem), '@') + 1;
5831			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5832
5833			spa_feature_enable(spa, feature, tx);
5834			break;
5835
5836		case ZPOOL_PROP_VERSION:
5837			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5838			/*
5839			 * The version is synced seperatly before other
5840			 * properties and should be correct by now.
5841			 */
5842			ASSERT3U(spa_version(spa), >=, intval);
5843			break;
5844
5845		case ZPOOL_PROP_ALTROOT:
5846			/*
5847			 * 'altroot' is a non-persistent property. It should
5848			 * have been set temporarily at creation or import time.
5849			 */
5850			ASSERT(spa->spa_root != NULL);
5851			break;
5852
5853		case ZPOOL_PROP_READONLY:
5854		case ZPOOL_PROP_CACHEFILE:
5855			/*
5856			 * 'readonly' and 'cachefile' are also non-persisitent
5857			 * properties.
5858			 */
5859			break;
5860		case ZPOOL_PROP_COMMENT:
5861			VERIFY(nvpair_value_string(elem, &strval) == 0);
5862			if (spa->spa_comment != NULL)
5863				spa_strfree(spa->spa_comment);
5864			spa->spa_comment = spa_strdup(strval);
5865			/*
5866			 * We need to dirty the configuration on all the vdevs
5867			 * so that their labels get updated.  It's unnecessary
5868			 * to do this for pool creation since the vdev's
5869			 * configuratoin has already been dirtied.
5870			 */
5871			if (tx->tx_txg != TXG_INITIAL)
5872				vdev_config_dirty(spa->spa_root_vdev);
5873			break;
5874		default:
5875			/*
5876			 * Set pool property values in the poolprops mos object.
5877			 */
5878			if (spa->spa_pool_props_object == 0) {
5879				spa->spa_pool_props_object =
5880				    zap_create_link(mos, DMU_OT_POOL_PROPS,
5881				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5882				    tx);
5883			}
5884
5885			/* normalize the property name */
5886			propname = zpool_prop_to_name(prop);
5887			proptype = zpool_prop_get_type(prop);
5888
5889			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5890				ASSERT(proptype == PROP_TYPE_STRING);
5891				VERIFY(nvpair_value_string(elem, &strval) == 0);
5892				VERIFY(zap_update(mos,
5893				    spa->spa_pool_props_object, propname,
5894				    1, strlen(strval) + 1, strval, tx) == 0);
5895
5896			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5897				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5898
5899				if (proptype == PROP_TYPE_INDEX) {
5900					const char *unused;
5901					VERIFY(zpool_prop_index_to_string(
5902					    prop, intval, &unused) == 0);
5903				}
5904				VERIFY(zap_update(mos,
5905				    spa->spa_pool_props_object, propname,
5906				    8, 1, &intval, tx) == 0);
5907			} else {
5908				ASSERT(0); /* not allowed */
5909			}
5910
5911			switch (prop) {
5912			case ZPOOL_PROP_DELEGATION:
5913				spa->spa_delegation = intval;
5914				break;
5915			case ZPOOL_PROP_BOOTFS:
5916				spa->spa_bootfs = intval;
5917				break;
5918			case ZPOOL_PROP_FAILUREMODE:
5919				spa->spa_failmode = intval;
5920				break;
5921			case ZPOOL_PROP_AUTOEXPAND:
5922				spa->spa_autoexpand = intval;
5923				if (tx->tx_txg != TXG_INITIAL)
5924					spa_async_request(spa,
5925					    SPA_ASYNC_AUTOEXPAND);
5926				break;
5927			case ZPOOL_PROP_DEDUPDITTO:
5928				spa->spa_dedup_ditto = intval;
5929				break;
5930			default:
5931				break;
5932			}
5933		}
5934
5935		/* log internal history if this is not a zpool create */
5936		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5937		    tx->tx_txg != TXG_INITIAL) {
5938			spa_history_log_internal(LOG_POOL_PROPSET,
5939			    spa, tx, "%s %lld %s",
5940			    nvpair_name(elem), intval, spa_name(spa));
5941		}
5942	}
5943
5944	mutex_exit(&spa->spa_props_lock);
5945}
5946
5947/*
5948 * Perform one-time upgrade on-disk changes.  spa_version() does not
5949 * reflect the new version this txg, so there must be no changes this
5950 * txg to anything that the upgrade code depends on after it executes.
5951 * Therefore this must be called after dsl_pool_sync() does the sync
5952 * tasks.
5953 */
5954static void
5955spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5956{
5957	dsl_pool_t *dp = spa->spa_dsl_pool;
5958
5959	ASSERT(spa->spa_sync_pass == 1);
5960
5961	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5962	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5963		dsl_pool_create_origin(dp, tx);
5964
5965		/* Keeping the origin open increases spa_minref */
5966		spa->spa_minref += 3;
5967	}
5968
5969	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5970	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5971		dsl_pool_upgrade_clones(dp, tx);
5972	}
5973
5974	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5975	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5976		dsl_pool_upgrade_dir_clones(dp, tx);
5977
5978		/* Keeping the freedir open increases spa_minref */
5979		spa->spa_minref += 3;
5980	}
5981
5982	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
5983	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
5984		spa_feature_create_zap_objects(spa, tx);
5985	}
5986}
5987
5988/*
5989 * Sync the specified transaction group.  New blocks may be dirtied as
5990 * part of the process, so we iterate until it converges.
5991 */
5992void
5993spa_sync(spa_t *spa, uint64_t txg)
5994{
5995	dsl_pool_t *dp = spa->spa_dsl_pool;
5996	objset_t *mos = spa->spa_meta_objset;
5997	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5998	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5999	vdev_t *rvd = spa->spa_root_vdev;
6000	vdev_t *vd;
6001	dmu_tx_t *tx;
6002	int error;
6003
6004	VERIFY(spa_writeable(spa));
6005
6006	/*
6007	 * Lock out configuration changes.
6008	 */
6009	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6010
6011	spa->spa_syncing_txg = txg;
6012	spa->spa_sync_pass = 0;
6013
6014	/*
6015	 * If there are any pending vdev state changes, convert them
6016	 * into config changes that go out with this transaction group.
6017	 */
6018	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6019	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6020		/*
6021		 * We need the write lock here because, for aux vdevs,
6022		 * calling vdev_config_dirty() modifies sav_config.
6023		 * This is ugly and will become unnecessary when we
6024		 * eliminate the aux vdev wart by integrating all vdevs
6025		 * into the root vdev tree.
6026		 */
6027		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6028		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6029		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6030			vdev_state_clean(vd);
6031			vdev_config_dirty(vd);
6032		}
6033		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6034		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6035	}
6036	spa_config_exit(spa, SCL_STATE, FTAG);
6037
6038	tx = dmu_tx_create_assigned(dp, txg);
6039
6040	/*
6041	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6042	 * set spa_deflate if we have no raid-z vdevs.
6043	 */
6044	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6045	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6046		int i;
6047
6048		for (i = 0; i < rvd->vdev_children; i++) {
6049			vd = rvd->vdev_child[i];
6050			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6051				break;
6052		}
6053		if (i == rvd->vdev_children) {
6054			spa->spa_deflate = TRUE;
6055			VERIFY(0 == zap_add(spa->spa_meta_objset,
6056			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6057			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6058		}
6059	}
6060
6061	/*
6062	 * If anything has changed in this txg, or if someone is waiting
6063	 * for this txg to sync (eg, spa_vdev_remove()), push the
6064	 * deferred frees from the previous txg.  If not, leave them
6065	 * alone so that we don't generate work on an otherwise idle
6066	 * system.
6067	 */
6068	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6069	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6070	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6071	    ((dsl_scan_active(dp->dp_scan) ||
6072	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6073		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6074		VERIFY3U(bpobj_iterate(defer_bpo,
6075		    spa_free_sync_cb, zio, tx), ==, 0);
6076		VERIFY0(zio_wait(zio));
6077	}
6078
6079	/*
6080	 * Iterate to convergence.
6081	 */
6082	do {
6083		int pass = ++spa->spa_sync_pass;
6084
6085		spa_sync_config_object(spa, tx);
6086		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6087		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6088		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6089		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6090		spa_errlog_sync(spa, txg);
6091		dsl_pool_sync(dp, txg);
6092
6093		if (pass <= SYNC_PASS_DEFERRED_FREE) {
6094			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6095			bplist_iterate(free_bpl, spa_free_sync_cb,
6096			    zio, tx);
6097			VERIFY(zio_wait(zio) == 0);
6098		} else {
6099			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6100			    defer_bpo, tx);
6101		}
6102
6103		ddt_sync(spa, txg);
6104		dsl_scan_sync(dp, tx);
6105
6106		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6107			vdev_sync(vd, txg);
6108
6109		if (pass == 1)
6110			spa_sync_upgrades(spa, tx);
6111
6112	} while (dmu_objset_is_dirty(mos, txg));
6113
6114	/*
6115	 * Rewrite the vdev configuration (which includes the uberblock)
6116	 * to commit the transaction group.
6117	 *
6118	 * If there are no dirty vdevs, we sync the uberblock to a few
6119	 * random top-level vdevs that are known to be visible in the
6120	 * config cache (see spa_vdev_add() for a complete description).
6121	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6122	 */
6123	for (;;) {
6124		/*
6125		 * We hold SCL_STATE to prevent vdev open/close/etc.
6126		 * while we're attempting to write the vdev labels.
6127		 */
6128		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6129
6130		if (list_is_empty(&spa->spa_config_dirty_list)) {
6131			vdev_t *svd[SPA_DVAS_PER_BP];
6132			int svdcount = 0;
6133			int children = rvd->vdev_children;
6134			int c0 = spa_get_random(children);
6135
6136			for (int c = 0; c < children; c++) {
6137				vd = rvd->vdev_child[(c0 + c) % children];
6138				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6139					continue;
6140				svd[svdcount++] = vd;
6141				if (svdcount == SPA_DVAS_PER_BP)
6142					break;
6143			}
6144			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6145			if (error != 0)
6146				error = vdev_config_sync(svd, svdcount, txg,
6147				    B_TRUE);
6148		} else {
6149			error = vdev_config_sync(rvd->vdev_child,
6150			    rvd->vdev_children, txg, B_FALSE);
6151			if (error != 0)
6152				error = vdev_config_sync(rvd->vdev_child,
6153				    rvd->vdev_children, txg, B_TRUE);
6154		}
6155
6156		if (error == 0)
6157			spa->spa_last_synced_guid = rvd->vdev_guid;
6158
6159		spa_config_exit(spa, SCL_STATE, FTAG);
6160
6161		if (error == 0)
6162			break;
6163		zio_suspend(spa, NULL);
6164		zio_resume_wait(spa);
6165	}
6166	dmu_tx_commit(tx);
6167
6168	/*
6169	 * Clear the dirty config list.
6170	 */
6171	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6172		vdev_config_clean(vd);
6173
6174	/*
6175	 * Now that the new config has synced transactionally,
6176	 * let it become visible to the config cache.
6177	 */
6178	if (spa->spa_config_syncing != NULL) {
6179		spa_config_set(spa, spa->spa_config_syncing);
6180		spa->spa_config_txg = txg;
6181		spa->spa_config_syncing = NULL;
6182	}
6183
6184	spa->spa_ubsync = spa->spa_uberblock;
6185
6186	dsl_pool_sync_done(dp, txg);
6187
6188	/*
6189	 * Update usable space statistics.
6190	 */
6191	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6192		vdev_sync_done(vd, txg);
6193
6194	spa_update_dspace(spa);
6195
6196	/*
6197	 * It had better be the case that we didn't dirty anything
6198	 * since vdev_config_sync().
6199	 */
6200	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6201	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6202	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6203
6204	spa->spa_sync_pass = 0;
6205
6206	spa_config_exit(spa, SCL_CONFIG, FTAG);
6207
6208	spa_handle_ignored_writes(spa);
6209
6210	/*
6211	 * If any async tasks have been requested, kick them off.
6212	 */
6213	spa_async_dispatch(spa);
6214}
6215
6216/*
6217 * Sync all pools.  We don't want to hold the namespace lock across these
6218 * operations, so we take a reference on the spa_t and drop the lock during the
6219 * sync.
6220 */
6221void
6222spa_sync_allpools(void)
6223{
6224	spa_t *spa = NULL;
6225	mutex_enter(&spa_namespace_lock);
6226	while ((spa = spa_next(spa)) != NULL) {
6227		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6228		    !spa_writeable(spa) || spa_suspended(spa))
6229			continue;
6230		spa_open_ref(spa, FTAG);
6231		mutex_exit(&spa_namespace_lock);
6232		txg_wait_synced(spa_get_dsl(spa), 0);
6233		mutex_enter(&spa_namespace_lock);
6234		spa_close(spa, FTAG);
6235	}
6236	mutex_exit(&spa_namespace_lock);
6237}
6238
6239/*
6240 * ==========================================================================
6241 * Miscellaneous routines
6242 * ==========================================================================
6243 */
6244
6245/*
6246 * Remove all pools in the system.
6247 */
6248void
6249spa_evict_all(void)
6250{
6251	spa_t *spa;
6252
6253	/*
6254	 * Remove all cached state.  All pools should be closed now,
6255	 * so every spa in the AVL tree should be unreferenced.
6256	 */
6257	mutex_enter(&spa_namespace_lock);
6258	while ((spa = spa_next(NULL)) != NULL) {
6259		/*
6260		 * Stop async tasks.  The async thread may need to detach
6261		 * a device that's been replaced, which requires grabbing
6262		 * spa_namespace_lock, so we must drop it here.
6263		 */
6264		spa_open_ref(spa, FTAG);
6265		mutex_exit(&spa_namespace_lock);
6266		spa_async_suspend(spa);
6267		mutex_enter(&spa_namespace_lock);
6268		spa_close(spa, FTAG);
6269
6270		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6271			spa_unload(spa);
6272			spa_deactivate(spa);
6273		}
6274		spa_remove(spa);
6275	}
6276	mutex_exit(&spa_namespace_lock);
6277}
6278
6279vdev_t *
6280spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6281{
6282	vdev_t *vd;
6283	int i;
6284
6285	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6286		return (vd);
6287
6288	if (aux) {
6289		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6290			vd = spa->spa_l2cache.sav_vdevs[i];
6291			if (vd->vdev_guid == guid)
6292				return (vd);
6293		}
6294
6295		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6296			vd = spa->spa_spares.sav_vdevs[i];
6297			if (vd->vdev_guid == guid)
6298				return (vd);
6299		}
6300	}
6301
6302	return (NULL);
6303}
6304
6305void
6306spa_upgrade(spa_t *spa, uint64_t version)
6307{
6308	ASSERT(spa_writeable(spa));
6309
6310	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6311
6312	/*
6313	 * This should only be called for a non-faulted pool, and since a
6314	 * future version would result in an unopenable pool, this shouldn't be
6315	 * possible.
6316	 */
6317	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6318	ASSERT(version >= spa->spa_uberblock.ub_version);
6319
6320	spa->spa_uberblock.ub_version = version;
6321	vdev_config_dirty(spa->spa_root_vdev);
6322
6323	spa_config_exit(spa, SCL_ALL, FTAG);
6324
6325	txg_wait_synced(spa_get_dsl(spa), 0);
6326}
6327
6328boolean_t
6329spa_has_spare(spa_t *spa, uint64_t guid)
6330{
6331	int i;
6332	uint64_t spareguid;
6333	spa_aux_vdev_t *sav = &spa->spa_spares;
6334
6335	for (i = 0; i < sav->sav_count; i++)
6336		if (sav->sav_vdevs[i]->vdev_guid == guid)
6337			return (B_TRUE);
6338
6339	for (i = 0; i < sav->sav_npending; i++) {
6340		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6341		    &spareguid) == 0 && spareguid == guid)
6342			return (B_TRUE);
6343	}
6344
6345	return (B_FALSE);
6346}
6347
6348/*
6349 * Check if a pool has an active shared spare device.
6350 * Note: reference count of an active spare is 2, as a spare and as a replace
6351 */
6352static boolean_t
6353spa_has_active_shared_spare(spa_t *spa)
6354{
6355	int i, refcnt;
6356	uint64_t pool;
6357	spa_aux_vdev_t *sav = &spa->spa_spares;
6358
6359	for (i = 0; i < sav->sav_count; i++) {
6360		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6361		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6362		    refcnt > 2)
6363			return (B_TRUE);
6364	}
6365
6366	return (B_FALSE);
6367}
6368
6369/*
6370 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6371 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6372 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6373 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6374 * or zdb as real changes.
6375 */
6376void
6377spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6378{
6379#ifdef _KERNEL
6380	sysevent_t		*ev;
6381	sysevent_attr_list_t	*attr = NULL;
6382	sysevent_value_t	value;
6383	sysevent_id_t		eid;
6384
6385	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6386	    SE_SLEEP);
6387
6388	value.value_type = SE_DATA_TYPE_STRING;
6389	value.value.sv_string = spa_name(spa);
6390	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6391		goto done;
6392
6393	value.value_type = SE_DATA_TYPE_UINT64;
6394	value.value.sv_uint64 = spa_guid(spa);
6395	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6396		goto done;
6397
6398	if (vd) {
6399		value.value_type = SE_DATA_TYPE_UINT64;
6400		value.value.sv_uint64 = vd->vdev_guid;
6401		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6402		    SE_SLEEP) != 0)
6403			goto done;
6404
6405		if (vd->vdev_path) {
6406			value.value_type = SE_DATA_TYPE_STRING;
6407			value.value.sv_string = vd->vdev_path;
6408			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6409			    &value, SE_SLEEP) != 0)
6410				goto done;
6411		}
6412	}
6413
6414	if (sysevent_attach_attributes(ev, attr) != 0)
6415		goto done;
6416	attr = NULL;
6417
6418	(void) log_sysevent(ev, SE_SLEEP, &eid);
6419
6420done:
6421	if (attr)
6422		sysevent_free_attr(attr);
6423	sysevent_free(ev);
6424#endif
6425}
6426