spa.c revision 238926
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu.h>
39#include <sys/dmu_tx.h>
40#include <sys/zap.h>
41#include <sys/zil.h>
42#include <sys/ddt.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/metaslab_impl.h>
46#include <sys/uberblock_impl.h>
47#include <sys/txg.h>
48#include <sys/avl.h>
49#include <sys/dmu_traverse.h>
50#include <sys/dmu_objset.h>
51#include <sys/unique.h>
52#include <sys/dsl_pool.h>
53#include <sys/dsl_dataset.h>
54#include <sys/dsl_dir.h>
55#include <sys/dsl_prop.h>
56#include <sys/dsl_synctask.h>
57#include <sys/fs/zfs.h>
58#include <sys/arc.h>
59#include <sys/callb.h>
60#include <sys/spa_boot.h>
61#include <sys/zfs_ioctl.h>
62#include <sys/dsl_scan.h>
63#include <sys/zfeature.h>
64#include <sys/zvol.h>
65
66#ifdef	_KERNEL
67#include <sys/callb.h>
68#include <sys/cpupart.h>
69#include <sys/zone.h>
70#endif	/* _KERNEL */
71
72#include "zfs_prop.h"
73#include "zfs_comutil.h"
74
75/* Check hostid on import? */
76static int check_hostid = 1;
77
78SYSCTL_DECL(_vfs_zfs);
79TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
80SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
81    "Check hostid on import?");
82
83typedef enum zti_modes {
84	zti_mode_fixed,			/* value is # of threads (min 1) */
85	zti_mode_online_percent,	/* value is % of online CPUs */
86	zti_mode_batch,			/* cpu-intensive; value is ignored */
87	zti_mode_null,			/* don't create a taskq */
88	zti_nmodes
89} zti_modes_t;
90
91#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
92#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
93#define	ZTI_BATCH	{ zti_mode_batch, 0 }
94#define	ZTI_NULL	{ zti_mode_null, 0 }
95
96#define	ZTI_ONE		ZTI_FIX(1)
97
98typedef struct zio_taskq_info {
99	enum zti_modes zti_mode;
100	uint_t zti_value;
101} zio_taskq_info_t;
102
103static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
104	"issue", "issue_high", "intr", "intr_high"
105};
106
107/*
108 * Define the taskq threads for the following I/O types:
109 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
110 */
111const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
112	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
113	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
114	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
115	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
116	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
117	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
118	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
119};
120
121static dsl_syncfunc_t spa_sync_version;
122static dsl_syncfunc_t spa_sync_props;
123static boolean_t spa_has_active_shared_spare(spa_t *spa);
124static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
125    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
126    char **ereport);
127static void spa_vdev_resilver_done(spa_t *spa);
128
129uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
130#ifdef PSRSET_BIND
131id_t		zio_taskq_psrset_bind = PS_NONE;
132#endif
133#ifdef SYSDC
134boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
135#endif
136uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
137
138boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
139
140/*
141 * This (illegal) pool name is used when temporarily importing a spa_t in order
142 * to get the vdev stats associated with the imported devices.
143 */
144#define	TRYIMPORT_NAME	"$import"
145
146/*
147 * ==========================================================================
148 * SPA properties routines
149 * ==========================================================================
150 */
151
152/*
153 * Add a (source=src, propname=propval) list to an nvlist.
154 */
155static void
156spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
157    uint64_t intval, zprop_source_t src)
158{
159	const char *propname = zpool_prop_to_name(prop);
160	nvlist_t *propval;
161
162	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
163	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
164
165	if (strval != NULL)
166		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
167	else
168		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
169
170	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
171	nvlist_free(propval);
172}
173
174/*
175 * Get property values from the spa configuration.
176 */
177static void
178spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
179{
180	vdev_t *rvd = spa->spa_root_vdev;
181	dsl_pool_t *pool = spa->spa_dsl_pool;
182	uint64_t size;
183	uint64_t alloc;
184	uint64_t space;
185	uint64_t cap, version;
186	zprop_source_t src = ZPROP_SRC_NONE;
187	spa_config_dirent_t *dp;
188
189	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
190
191	if (rvd != NULL) {
192		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
193		size = metaslab_class_get_space(spa_normal_class(spa));
194		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
195		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
196		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
197		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
198		    size - alloc, src);
199
200		space = 0;
201		for (int c = 0; c < rvd->vdev_children; c++) {
202			vdev_t *tvd = rvd->vdev_child[c];
203			space += tvd->vdev_max_asize - tvd->vdev_asize;
204		}
205		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
206		    src);
207
208		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
209		    (spa_mode(spa) == FREAD), src);
210
211		cap = (size == 0) ? 0 : (alloc * 100 / size);
212		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
213
214		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
215		    ddt_get_pool_dedup_ratio(spa), src);
216
217		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
218		    rvd->vdev_state, src);
219
220		version = spa_version(spa);
221		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
222			src = ZPROP_SRC_DEFAULT;
223		else
224			src = ZPROP_SRC_LOCAL;
225		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
226	}
227
228	if (pool != NULL) {
229		dsl_dir_t *freedir = pool->dp_free_dir;
230
231		/*
232		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
233		 * when opening pools before this version freedir will be NULL.
234		 */
235		if (freedir != NULL) {
236			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
237			    freedir->dd_phys->dd_used_bytes, src);
238		} else {
239			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
240			    NULL, 0, src);
241		}
242	}
243
244	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
245
246	if (spa->spa_comment != NULL) {
247		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
248		    0, ZPROP_SRC_LOCAL);
249	}
250
251	if (spa->spa_root != NULL)
252		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
253		    0, ZPROP_SRC_LOCAL);
254
255	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
256		if (dp->scd_path == NULL) {
257			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
258			    "none", 0, ZPROP_SRC_LOCAL);
259		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
260			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
261			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
262		}
263	}
264}
265
266/*
267 * Get zpool property values.
268 */
269int
270spa_prop_get(spa_t *spa, nvlist_t **nvp)
271{
272	objset_t *mos = spa->spa_meta_objset;
273	zap_cursor_t zc;
274	zap_attribute_t za;
275	int err;
276
277	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
278
279	mutex_enter(&spa->spa_props_lock);
280
281	/*
282	 * Get properties from the spa config.
283	 */
284	spa_prop_get_config(spa, nvp);
285
286	/* If no pool property object, no more prop to get. */
287	if (mos == NULL || spa->spa_pool_props_object == 0) {
288		mutex_exit(&spa->spa_props_lock);
289		return (0);
290	}
291
292	/*
293	 * Get properties from the MOS pool property object.
294	 */
295	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
296	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
297	    zap_cursor_advance(&zc)) {
298		uint64_t intval = 0;
299		char *strval = NULL;
300		zprop_source_t src = ZPROP_SRC_DEFAULT;
301		zpool_prop_t prop;
302
303		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
304			continue;
305
306		switch (za.za_integer_length) {
307		case 8:
308			/* integer property */
309			if (za.za_first_integer !=
310			    zpool_prop_default_numeric(prop))
311				src = ZPROP_SRC_LOCAL;
312
313			if (prop == ZPOOL_PROP_BOOTFS) {
314				dsl_pool_t *dp;
315				dsl_dataset_t *ds = NULL;
316
317				dp = spa_get_dsl(spa);
318				rw_enter(&dp->dp_config_rwlock, RW_READER);
319				if (err = dsl_dataset_hold_obj(dp,
320				    za.za_first_integer, FTAG, &ds)) {
321					rw_exit(&dp->dp_config_rwlock);
322					break;
323				}
324
325				strval = kmem_alloc(
326				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
327				    KM_SLEEP);
328				dsl_dataset_name(ds, strval);
329				dsl_dataset_rele(ds, FTAG);
330				rw_exit(&dp->dp_config_rwlock);
331			} else {
332				strval = NULL;
333				intval = za.za_first_integer;
334			}
335
336			spa_prop_add_list(*nvp, prop, strval, intval, src);
337
338			if (strval != NULL)
339				kmem_free(strval,
340				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
341
342			break;
343
344		case 1:
345			/* string property */
346			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
347			err = zap_lookup(mos, spa->spa_pool_props_object,
348			    za.za_name, 1, za.za_num_integers, strval);
349			if (err) {
350				kmem_free(strval, za.za_num_integers);
351				break;
352			}
353			spa_prop_add_list(*nvp, prop, strval, 0, src);
354			kmem_free(strval, za.za_num_integers);
355			break;
356
357		default:
358			break;
359		}
360	}
361	zap_cursor_fini(&zc);
362	mutex_exit(&spa->spa_props_lock);
363out:
364	if (err && err != ENOENT) {
365		nvlist_free(*nvp);
366		*nvp = NULL;
367		return (err);
368	}
369
370	return (0);
371}
372
373/*
374 * Validate the given pool properties nvlist and modify the list
375 * for the property values to be set.
376 */
377static int
378spa_prop_validate(spa_t *spa, nvlist_t *props)
379{
380	nvpair_t *elem;
381	int error = 0, reset_bootfs = 0;
382	uint64_t objnum;
383	boolean_t has_feature = B_FALSE;
384
385	elem = NULL;
386	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
387		uint64_t intval;
388		char *strval, *slash, *check, *fname;
389		const char *propname = nvpair_name(elem);
390		zpool_prop_t prop = zpool_name_to_prop(propname);
391
392		switch (prop) {
393		case ZPROP_INVAL:
394			if (!zpool_prop_feature(propname)) {
395				error = EINVAL;
396				break;
397			}
398
399			/*
400			 * Sanitize the input.
401			 */
402			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
403				error = EINVAL;
404				break;
405			}
406
407			if (nvpair_value_uint64(elem, &intval) != 0) {
408				error = EINVAL;
409				break;
410			}
411
412			if (intval != 0) {
413				error = EINVAL;
414				break;
415			}
416
417			fname = strchr(propname, '@') + 1;
418			if (zfeature_lookup_name(fname, NULL) != 0) {
419				error = EINVAL;
420				break;
421			}
422
423			has_feature = B_TRUE;
424			break;
425
426		case ZPOOL_PROP_VERSION:
427			error = nvpair_value_uint64(elem, &intval);
428			if (!error &&
429			    (intval < spa_version(spa) ||
430			    intval > SPA_VERSION_BEFORE_FEATURES ||
431			    has_feature))
432				error = EINVAL;
433			break;
434
435		case ZPOOL_PROP_DELEGATION:
436		case ZPOOL_PROP_AUTOREPLACE:
437		case ZPOOL_PROP_LISTSNAPS:
438		case ZPOOL_PROP_AUTOEXPAND:
439			error = nvpair_value_uint64(elem, &intval);
440			if (!error && intval > 1)
441				error = EINVAL;
442			break;
443
444		case ZPOOL_PROP_BOOTFS:
445			/*
446			 * If the pool version is less than SPA_VERSION_BOOTFS,
447			 * or the pool is still being created (version == 0),
448			 * the bootfs property cannot be set.
449			 */
450			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
451				error = ENOTSUP;
452				break;
453			}
454
455			/*
456			 * Make sure the vdev config is bootable
457			 */
458			if (!vdev_is_bootable(spa->spa_root_vdev)) {
459				error = ENOTSUP;
460				break;
461			}
462
463			reset_bootfs = 1;
464
465			error = nvpair_value_string(elem, &strval);
466
467			if (!error) {
468				objset_t *os;
469				uint64_t compress;
470
471				if (strval == NULL || strval[0] == '\0') {
472					objnum = zpool_prop_default_numeric(
473					    ZPOOL_PROP_BOOTFS);
474					break;
475				}
476
477				if (error = dmu_objset_hold(strval, FTAG, &os))
478					break;
479
480				/* Must be ZPL and not gzip compressed. */
481
482				if (dmu_objset_type(os) != DMU_OST_ZFS) {
483					error = ENOTSUP;
484				} else if ((error = dsl_prop_get_integer(strval,
485				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
486				    &compress, NULL)) == 0 &&
487				    !BOOTFS_COMPRESS_VALID(compress)) {
488					error = ENOTSUP;
489				} else {
490					objnum = dmu_objset_id(os);
491				}
492				dmu_objset_rele(os, FTAG);
493			}
494			break;
495
496		case ZPOOL_PROP_FAILUREMODE:
497			error = nvpair_value_uint64(elem, &intval);
498			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
499			    intval > ZIO_FAILURE_MODE_PANIC))
500				error = EINVAL;
501
502			/*
503			 * This is a special case which only occurs when
504			 * the pool has completely failed. This allows
505			 * the user to change the in-core failmode property
506			 * without syncing it out to disk (I/Os might
507			 * currently be blocked). We do this by returning
508			 * EIO to the caller (spa_prop_set) to trick it
509			 * into thinking we encountered a property validation
510			 * error.
511			 */
512			if (!error && spa_suspended(spa)) {
513				spa->spa_failmode = intval;
514				error = EIO;
515			}
516			break;
517
518		case ZPOOL_PROP_CACHEFILE:
519			if ((error = nvpair_value_string(elem, &strval)) != 0)
520				break;
521
522			if (strval[0] == '\0')
523				break;
524
525			if (strcmp(strval, "none") == 0)
526				break;
527
528			if (strval[0] != '/') {
529				error = EINVAL;
530				break;
531			}
532
533			slash = strrchr(strval, '/');
534			ASSERT(slash != NULL);
535
536			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
537			    strcmp(slash, "/..") == 0)
538				error = EINVAL;
539			break;
540
541		case ZPOOL_PROP_COMMENT:
542			if ((error = nvpair_value_string(elem, &strval)) != 0)
543				break;
544			for (check = strval; *check != '\0'; check++) {
545				/*
546				 * The kernel doesn't have an easy isprint()
547				 * check.  For this kernel check, we merely
548				 * check ASCII apart from DEL.  Fix this if
549				 * there is an easy-to-use kernel isprint().
550				 */
551				if (*check >= 0x7f) {
552					error = EINVAL;
553					break;
554				}
555				check++;
556			}
557			if (strlen(strval) > ZPROP_MAX_COMMENT)
558				error = E2BIG;
559			break;
560
561		case ZPOOL_PROP_DEDUPDITTO:
562			if (spa_version(spa) < SPA_VERSION_DEDUP)
563				error = ENOTSUP;
564			else
565				error = nvpair_value_uint64(elem, &intval);
566			if (error == 0 &&
567			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
568				error = EINVAL;
569			break;
570		}
571
572		if (error)
573			break;
574	}
575
576	if (!error && reset_bootfs) {
577		error = nvlist_remove(props,
578		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
579
580		if (!error) {
581			error = nvlist_add_uint64(props,
582			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
583		}
584	}
585
586	return (error);
587}
588
589void
590spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
591{
592	char *cachefile;
593	spa_config_dirent_t *dp;
594
595	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
596	    &cachefile) != 0)
597		return;
598
599	dp = kmem_alloc(sizeof (spa_config_dirent_t),
600	    KM_SLEEP);
601
602	if (cachefile[0] == '\0')
603		dp->scd_path = spa_strdup(spa_config_path);
604	else if (strcmp(cachefile, "none") == 0)
605		dp->scd_path = NULL;
606	else
607		dp->scd_path = spa_strdup(cachefile);
608
609	list_insert_head(&spa->spa_config_list, dp);
610	if (need_sync)
611		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
612}
613
614int
615spa_prop_set(spa_t *spa, nvlist_t *nvp)
616{
617	int error;
618	nvpair_t *elem = NULL;
619	boolean_t need_sync = B_FALSE;
620
621	if ((error = spa_prop_validate(spa, nvp)) != 0)
622		return (error);
623
624	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
625		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
626
627		if (prop == ZPOOL_PROP_CACHEFILE ||
628		    prop == ZPOOL_PROP_ALTROOT ||
629		    prop == ZPOOL_PROP_READONLY)
630			continue;
631
632		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
633			uint64_t ver;
634
635			if (prop == ZPOOL_PROP_VERSION) {
636				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
637			} else {
638				ASSERT(zpool_prop_feature(nvpair_name(elem)));
639				ver = SPA_VERSION_FEATURES;
640				need_sync = B_TRUE;
641			}
642
643			/* Save time if the version is already set. */
644			if (ver == spa_version(spa))
645				continue;
646
647			/*
648			 * In addition to the pool directory object, we might
649			 * create the pool properties object, the features for
650			 * read object, the features for write object, or the
651			 * feature descriptions object.
652			 */
653			error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
654			    spa_sync_version, spa, &ver, 6);
655			if (error)
656				return (error);
657			continue;
658		}
659
660		need_sync = B_TRUE;
661		break;
662	}
663
664	if (need_sync) {
665		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
666		    spa, nvp, 6));
667	}
668
669	return (0);
670}
671
672/*
673 * If the bootfs property value is dsobj, clear it.
674 */
675void
676spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
677{
678	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
679		VERIFY(zap_remove(spa->spa_meta_objset,
680		    spa->spa_pool_props_object,
681		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
682		spa->spa_bootfs = 0;
683	}
684}
685
686/*
687 * Change the GUID for the pool.  This is done so that we can later
688 * re-import a pool built from a clone of our own vdevs.  We will modify
689 * the root vdev's guid, our own pool guid, and then mark all of our
690 * vdevs dirty.  Note that we must make sure that all our vdevs are
691 * online when we do this, or else any vdevs that weren't present
692 * would be orphaned from our pool.  We are also going to issue a
693 * sysevent to update any watchers.
694 */
695int
696spa_change_guid(spa_t *spa)
697{
698	uint64_t	oldguid, newguid;
699	uint64_t	txg;
700
701	if (!(spa_mode_global & FWRITE))
702		return (EROFS);
703
704	txg = spa_vdev_enter(spa);
705
706	if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
707		return (spa_vdev_exit(spa, NULL, txg, ENXIO));
708
709	oldguid = spa_guid(spa);
710	newguid = spa_generate_guid(NULL);
711	ASSERT3U(oldguid, !=, newguid);
712
713	spa->spa_root_vdev->vdev_guid = newguid;
714	spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
715
716	vdev_config_dirty(spa->spa_root_vdev);
717
718	spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
719
720	return (spa_vdev_exit(spa, NULL, txg, 0));
721}
722
723/*
724 * ==========================================================================
725 * SPA state manipulation (open/create/destroy/import/export)
726 * ==========================================================================
727 */
728
729static int
730spa_error_entry_compare(const void *a, const void *b)
731{
732	spa_error_entry_t *sa = (spa_error_entry_t *)a;
733	spa_error_entry_t *sb = (spa_error_entry_t *)b;
734	int ret;
735
736	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
737	    sizeof (zbookmark_t));
738
739	if (ret < 0)
740		return (-1);
741	else if (ret > 0)
742		return (1);
743	else
744		return (0);
745}
746
747/*
748 * Utility function which retrieves copies of the current logs and
749 * re-initializes them in the process.
750 */
751void
752spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
753{
754	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
755
756	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
757	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
758
759	avl_create(&spa->spa_errlist_scrub,
760	    spa_error_entry_compare, sizeof (spa_error_entry_t),
761	    offsetof(spa_error_entry_t, se_avl));
762	avl_create(&spa->spa_errlist_last,
763	    spa_error_entry_compare, sizeof (spa_error_entry_t),
764	    offsetof(spa_error_entry_t, se_avl));
765}
766
767static taskq_t *
768spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
769    uint_t value)
770{
771	uint_t flags = TASKQ_PREPOPULATE;
772	boolean_t batch = B_FALSE;
773
774	switch (mode) {
775	case zti_mode_null:
776		return (NULL);		/* no taskq needed */
777
778	case zti_mode_fixed:
779		ASSERT3U(value, >=, 1);
780		value = MAX(value, 1);
781		break;
782
783	case zti_mode_batch:
784		batch = B_TRUE;
785		flags |= TASKQ_THREADS_CPU_PCT;
786		value = zio_taskq_batch_pct;
787		break;
788
789	case zti_mode_online_percent:
790		flags |= TASKQ_THREADS_CPU_PCT;
791		break;
792
793	default:
794		panic("unrecognized mode for %s taskq (%u:%u) in "
795		    "spa_activate()",
796		    name, mode, value);
797		break;
798	}
799
800#ifdef SYSDC
801	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
802		if (batch)
803			flags |= TASKQ_DC_BATCH;
804
805		return (taskq_create_sysdc(name, value, 50, INT_MAX,
806		    spa->spa_proc, zio_taskq_basedc, flags));
807	}
808#endif
809	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
810	    spa->spa_proc, flags));
811}
812
813static void
814spa_create_zio_taskqs(spa_t *spa)
815{
816	for (int t = 0; t < ZIO_TYPES; t++) {
817		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
818			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
819			enum zti_modes mode = ztip->zti_mode;
820			uint_t value = ztip->zti_value;
821			char name[32];
822
823			(void) snprintf(name, sizeof (name),
824			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
825
826			spa->spa_zio_taskq[t][q] =
827			    spa_taskq_create(spa, name, mode, value);
828		}
829	}
830}
831
832#ifdef _KERNEL
833#ifdef SPA_PROCESS
834static void
835spa_thread(void *arg)
836{
837	callb_cpr_t cprinfo;
838
839	spa_t *spa = arg;
840	user_t *pu = PTOU(curproc);
841
842	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
843	    spa->spa_name);
844
845	ASSERT(curproc != &p0);
846	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
847	    "zpool-%s", spa->spa_name);
848	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
849
850#ifdef PSRSET_BIND
851	/* bind this thread to the requested psrset */
852	if (zio_taskq_psrset_bind != PS_NONE) {
853		pool_lock();
854		mutex_enter(&cpu_lock);
855		mutex_enter(&pidlock);
856		mutex_enter(&curproc->p_lock);
857
858		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
859		    0, NULL, NULL) == 0)  {
860			curthread->t_bind_pset = zio_taskq_psrset_bind;
861		} else {
862			cmn_err(CE_WARN,
863			    "Couldn't bind process for zfs pool \"%s\" to "
864			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
865		}
866
867		mutex_exit(&curproc->p_lock);
868		mutex_exit(&pidlock);
869		mutex_exit(&cpu_lock);
870		pool_unlock();
871	}
872#endif
873
874#ifdef SYSDC
875	if (zio_taskq_sysdc) {
876		sysdc_thread_enter(curthread, 100, 0);
877	}
878#endif
879
880	spa->spa_proc = curproc;
881	spa->spa_did = curthread->t_did;
882
883	spa_create_zio_taskqs(spa);
884
885	mutex_enter(&spa->spa_proc_lock);
886	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
887
888	spa->spa_proc_state = SPA_PROC_ACTIVE;
889	cv_broadcast(&spa->spa_proc_cv);
890
891	CALLB_CPR_SAFE_BEGIN(&cprinfo);
892	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
893		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
894	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
895
896	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
897	spa->spa_proc_state = SPA_PROC_GONE;
898	spa->spa_proc = &p0;
899	cv_broadcast(&spa->spa_proc_cv);
900	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
901
902	mutex_enter(&curproc->p_lock);
903	lwp_exit();
904}
905#endif	/* SPA_PROCESS */
906#endif
907
908/*
909 * Activate an uninitialized pool.
910 */
911static void
912spa_activate(spa_t *spa, int mode)
913{
914	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
915
916	spa->spa_state = POOL_STATE_ACTIVE;
917	spa->spa_mode = mode;
918
919	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
920	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
921
922	/* Try to create a covering process */
923	mutex_enter(&spa->spa_proc_lock);
924	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
925	ASSERT(spa->spa_proc == &p0);
926	spa->spa_did = 0;
927
928#ifdef SPA_PROCESS
929	/* Only create a process if we're going to be around a while. */
930	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
931		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
932		    NULL, 0) == 0) {
933			spa->spa_proc_state = SPA_PROC_CREATED;
934			while (spa->spa_proc_state == SPA_PROC_CREATED) {
935				cv_wait(&spa->spa_proc_cv,
936				    &spa->spa_proc_lock);
937			}
938			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
939			ASSERT(spa->spa_proc != &p0);
940			ASSERT(spa->spa_did != 0);
941		} else {
942#ifdef _KERNEL
943			cmn_err(CE_WARN,
944			    "Couldn't create process for zfs pool \"%s\"\n",
945			    spa->spa_name);
946#endif
947		}
948	}
949#endif	/* SPA_PROCESS */
950	mutex_exit(&spa->spa_proc_lock);
951
952	/* If we didn't create a process, we need to create our taskqs. */
953	ASSERT(spa->spa_proc == &p0);
954	if (spa->spa_proc == &p0) {
955		spa_create_zio_taskqs(spa);
956	}
957
958	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
959	    offsetof(vdev_t, vdev_config_dirty_node));
960	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
961	    offsetof(vdev_t, vdev_state_dirty_node));
962
963	txg_list_create(&spa->spa_vdev_txg_list,
964	    offsetof(struct vdev, vdev_txg_node));
965
966	avl_create(&spa->spa_errlist_scrub,
967	    spa_error_entry_compare, sizeof (spa_error_entry_t),
968	    offsetof(spa_error_entry_t, se_avl));
969	avl_create(&spa->spa_errlist_last,
970	    spa_error_entry_compare, sizeof (spa_error_entry_t),
971	    offsetof(spa_error_entry_t, se_avl));
972}
973
974/*
975 * Opposite of spa_activate().
976 */
977static void
978spa_deactivate(spa_t *spa)
979{
980	ASSERT(spa->spa_sync_on == B_FALSE);
981	ASSERT(spa->spa_dsl_pool == NULL);
982	ASSERT(spa->spa_root_vdev == NULL);
983	ASSERT(spa->spa_async_zio_root == NULL);
984	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
985
986	txg_list_destroy(&spa->spa_vdev_txg_list);
987
988	list_destroy(&spa->spa_config_dirty_list);
989	list_destroy(&spa->spa_state_dirty_list);
990
991	for (int t = 0; t < ZIO_TYPES; t++) {
992		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
993			if (spa->spa_zio_taskq[t][q] != NULL)
994				taskq_destroy(spa->spa_zio_taskq[t][q]);
995			spa->spa_zio_taskq[t][q] = NULL;
996		}
997	}
998
999	metaslab_class_destroy(spa->spa_normal_class);
1000	spa->spa_normal_class = NULL;
1001
1002	metaslab_class_destroy(spa->spa_log_class);
1003	spa->spa_log_class = NULL;
1004
1005	/*
1006	 * If this was part of an import or the open otherwise failed, we may
1007	 * still have errors left in the queues.  Empty them just in case.
1008	 */
1009	spa_errlog_drain(spa);
1010
1011	avl_destroy(&spa->spa_errlist_scrub);
1012	avl_destroy(&spa->spa_errlist_last);
1013
1014	spa->spa_state = POOL_STATE_UNINITIALIZED;
1015
1016	mutex_enter(&spa->spa_proc_lock);
1017	if (spa->spa_proc_state != SPA_PROC_NONE) {
1018		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1019		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1020		cv_broadcast(&spa->spa_proc_cv);
1021		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1022			ASSERT(spa->spa_proc != &p0);
1023			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1024		}
1025		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1026		spa->spa_proc_state = SPA_PROC_NONE;
1027	}
1028	ASSERT(spa->spa_proc == &p0);
1029	mutex_exit(&spa->spa_proc_lock);
1030
1031#ifdef SPA_PROCESS
1032	/*
1033	 * We want to make sure spa_thread() has actually exited the ZFS
1034	 * module, so that the module can't be unloaded out from underneath
1035	 * it.
1036	 */
1037	if (spa->spa_did != 0) {
1038		thread_join(spa->spa_did);
1039		spa->spa_did = 0;
1040	}
1041#endif	/* SPA_PROCESS */
1042}
1043
1044/*
1045 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1046 * will create all the necessary vdevs in the appropriate layout, with each vdev
1047 * in the CLOSED state.  This will prep the pool before open/creation/import.
1048 * All vdev validation is done by the vdev_alloc() routine.
1049 */
1050static int
1051spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1052    uint_t id, int atype)
1053{
1054	nvlist_t **child;
1055	uint_t children;
1056	int error;
1057
1058	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1059		return (error);
1060
1061	if ((*vdp)->vdev_ops->vdev_op_leaf)
1062		return (0);
1063
1064	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1065	    &child, &children);
1066
1067	if (error == ENOENT)
1068		return (0);
1069
1070	if (error) {
1071		vdev_free(*vdp);
1072		*vdp = NULL;
1073		return (EINVAL);
1074	}
1075
1076	for (int c = 0; c < children; c++) {
1077		vdev_t *vd;
1078		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1079		    atype)) != 0) {
1080			vdev_free(*vdp);
1081			*vdp = NULL;
1082			return (error);
1083		}
1084	}
1085
1086	ASSERT(*vdp != NULL);
1087
1088	return (0);
1089}
1090
1091/*
1092 * Opposite of spa_load().
1093 */
1094static void
1095spa_unload(spa_t *spa)
1096{
1097	int i;
1098
1099	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1100
1101	/*
1102	 * Stop async tasks.
1103	 */
1104	spa_async_suspend(spa);
1105
1106	/*
1107	 * Stop syncing.
1108	 */
1109	if (spa->spa_sync_on) {
1110		txg_sync_stop(spa->spa_dsl_pool);
1111		spa->spa_sync_on = B_FALSE;
1112	}
1113
1114	/*
1115	 * Wait for any outstanding async I/O to complete.
1116	 */
1117	if (spa->spa_async_zio_root != NULL) {
1118		(void) zio_wait(spa->spa_async_zio_root);
1119		spa->spa_async_zio_root = NULL;
1120	}
1121
1122	bpobj_close(&spa->spa_deferred_bpobj);
1123
1124	/*
1125	 * Close the dsl pool.
1126	 */
1127	if (spa->spa_dsl_pool) {
1128		dsl_pool_close(spa->spa_dsl_pool);
1129		spa->spa_dsl_pool = NULL;
1130		spa->spa_meta_objset = NULL;
1131	}
1132
1133	ddt_unload(spa);
1134
1135	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1136
1137	/*
1138	 * Drop and purge level 2 cache
1139	 */
1140	spa_l2cache_drop(spa);
1141
1142	/*
1143	 * Close all vdevs.
1144	 */
1145	if (spa->spa_root_vdev)
1146		vdev_free(spa->spa_root_vdev);
1147	ASSERT(spa->spa_root_vdev == NULL);
1148
1149	for (i = 0; i < spa->spa_spares.sav_count; i++)
1150		vdev_free(spa->spa_spares.sav_vdevs[i]);
1151	if (spa->spa_spares.sav_vdevs) {
1152		kmem_free(spa->spa_spares.sav_vdevs,
1153		    spa->spa_spares.sav_count * sizeof (void *));
1154		spa->spa_spares.sav_vdevs = NULL;
1155	}
1156	if (spa->spa_spares.sav_config) {
1157		nvlist_free(spa->spa_spares.sav_config);
1158		spa->spa_spares.sav_config = NULL;
1159	}
1160	spa->spa_spares.sav_count = 0;
1161
1162	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1163		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1164		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1165	}
1166	if (spa->spa_l2cache.sav_vdevs) {
1167		kmem_free(spa->spa_l2cache.sav_vdevs,
1168		    spa->spa_l2cache.sav_count * sizeof (void *));
1169		spa->spa_l2cache.sav_vdevs = NULL;
1170	}
1171	if (spa->spa_l2cache.sav_config) {
1172		nvlist_free(spa->spa_l2cache.sav_config);
1173		spa->spa_l2cache.sav_config = NULL;
1174	}
1175	spa->spa_l2cache.sav_count = 0;
1176
1177	spa->spa_async_suspended = 0;
1178
1179	if (spa->spa_comment != NULL) {
1180		spa_strfree(spa->spa_comment);
1181		spa->spa_comment = NULL;
1182	}
1183
1184	spa_config_exit(spa, SCL_ALL, FTAG);
1185}
1186
1187/*
1188 * Load (or re-load) the current list of vdevs describing the active spares for
1189 * this pool.  When this is called, we have some form of basic information in
1190 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1191 * then re-generate a more complete list including status information.
1192 */
1193static void
1194spa_load_spares(spa_t *spa)
1195{
1196	nvlist_t **spares;
1197	uint_t nspares;
1198	int i;
1199	vdev_t *vd, *tvd;
1200
1201	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1202
1203	/*
1204	 * First, close and free any existing spare vdevs.
1205	 */
1206	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1207		vd = spa->spa_spares.sav_vdevs[i];
1208
1209		/* Undo the call to spa_activate() below */
1210		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1211		    B_FALSE)) != NULL && tvd->vdev_isspare)
1212			spa_spare_remove(tvd);
1213		vdev_close(vd);
1214		vdev_free(vd);
1215	}
1216
1217	if (spa->spa_spares.sav_vdevs)
1218		kmem_free(spa->spa_spares.sav_vdevs,
1219		    spa->spa_spares.sav_count * sizeof (void *));
1220
1221	if (spa->spa_spares.sav_config == NULL)
1222		nspares = 0;
1223	else
1224		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1225		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1226
1227	spa->spa_spares.sav_count = (int)nspares;
1228	spa->spa_spares.sav_vdevs = NULL;
1229
1230	if (nspares == 0)
1231		return;
1232
1233	/*
1234	 * Construct the array of vdevs, opening them to get status in the
1235	 * process.   For each spare, there is potentially two different vdev_t
1236	 * structures associated with it: one in the list of spares (used only
1237	 * for basic validation purposes) and one in the active vdev
1238	 * configuration (if it's spared in).  During this phase we open and
1239	 * validate each vdev on the spare list.  If the vdev also exists in the
1240	 * active configuration, then we also mark this vdev as an active spare.
1241	 */
1242	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1243	    KM_SLEEP);
1244	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1245		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1246		    VDEV_ALLOC_SPARE) == 0);
1247		ASSERT(vd != NULL);
1248
1249		spa->spa_spares.sav_vdevs[i] = vd;
1250
1251		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1252		    B_FALSE)) != NULL) {
1253			if (!tvd->vdev_isspare)
1254				spa_spare_add(tvd);
1255
1256			/*
1257			 * We only mark the spare active if we were successfully
1258			 * able to load the vdev.  Otherwise, importing a pool
1259			 * with a bad active spare would result in strange
1260			 * behavior, because multiple pool would think the spare
1261			 * is actively in use.
1262			 *
1263			 * There is a vulnerability here to an equally bizarre
1264			 * circumstance, where a dead active spare is later
1265			 * brought back to life (onlined or otherwise).  Given
1266			 * the rarity of this scenario, and the extra complexity
1267			 * it adds, we ignore the possibility.
1268			 */
1269			if (!vdev_is_dead(tvd))
1270				spa_spare_activate(tvd);
1271		}
1272
1273		vd->vdev_top = vd;
1274		vd->vdev_aux = &spa->spa_spares;
1275
1276		if (vdev_open(vd) != 0)
1277			continue;
1278
1279		if (vdev_validate_aux(vd) == 0)
1280			spa_spare_add(vd);
1281	}
1282
1283	/*
1284	 * Recompute the stashed list of spares, with status information
1285	 * this time.
1286	 */
1287	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1288	    DATA_TYPE_NVLIST_ARRAY) == 0);
1289
1290	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1291	    KM_SLEEP);
1292	for (i = 0; i < spa->spa_spares.sav_count; i++)
1293		spares[i] = vdev_config_generate(spa,
1294		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1295	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1296	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1297	for (i = 0; i < spa->spa_spares.sav_count; i++)
1298		nvlist_free(spares[i]);
1299	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1300}
1301
1302/*
1303 * Load (or re-load) the current list of vdevs describing the active l2cache for
1304 * this pool.  When this is called, we have some form of basic information in
1305 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1306 * then re-generate a more complete list including status information.
1307 * Devices which are already active have their details maintained, and are
1308 * not re-opened.
1309 */
1310static void
1311spa_load_l2cache(spa_t *spa)
1312{
1313	nvlist_t **l2cache;
1314	uint_t nl2cache;
1315	int i, j, oldnvdevs;
1316	uint64_t guid;
1317	vdev_t *vd, **oldvdevs, **newvdevs;
1318	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1319
1320	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1321
1322	if (sav->sav_config != NULL) {
1323		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1324		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1325		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1326	} else {
1327		nl2cache = 0;
1328	}
1329
1330	oldvdevs = sav->sav_vdevs;
1331	oldnvdevs = sav->sav_count;
1332	sav->sav_vdevs = NULL;
1333	sav->sav_count = 0;
1334
1335	/*
1336	 * Process new nvlist of vdevs.
1337	 */
1338	for (i = 0; i < nl2cache; i++) {
1339		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1340		    &guid) == 0);
1341
1342		newvdevs[i] = NULL;
1343		for (j = 0; j < oldnvdevs; j++) {
1344			vd = oldvdevs[j];
1345			if (vd != NULL && guid == vd->vdev_guid) {
1346				/*
1347				 * Retain previous vdev for add/remove ops.
1348				 */
1349				newvdevs[i] = vd;
1350				oldvdevs[j] = NULL;
1351				break;
1352			}
1353		}
1354
1355		if (newvdevs[i] == NULL) {
1356			/*
1357			 * Create new vdev
1358			 */
1359			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1360			    VDEV_ALLOC_L2CACHE) == 0);
1361			ASSERT(vd != NULL);
1362			newvdevs[i] = vd;
1363
1364			/*
1365			 * Commit this vdev as an l2cache device,
1366			 * even if it fails to open.
1367			 */
1368			spa_l2cache_add(vd);
1369
1370			vd->vdev_top = vd;
1371			vd->vdev_aux = sav;
1372
1373			spa_l2cache_activate(vd);
1374
1375			if (vdev_open(vd) != 0)
1376				continue;
1377
1378			(void) vdev_validate_aux(vd);
1379
1380			if (!vdev_is_dead(vd))
1381				l2arc_add_vdev(spa, vd);
1382		}
1383	}
1384
1385	/*
1386	 * Purge vdevs that were dropped
1387	 */
1388	for (i = 0; i < oldnvdevs; i++) {
1389		uint64_t pool;
1390
1391		vd = oldvdevs[i];
1392		if (vd != NULL) {
1393			ASSERT(vd->vdev_isl2cache);
1394
1395			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1396			    pool != 0ULL && l2arc_vdev_present(vd))
1397				l2arc_remove_vdev(vd);
1398			vdev_clear_stats(vd);
1399			vdev_free(vd);
1400		}
1401	}
1402
1403	if (oldvdevs)
1404		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1405
1406	if (sav->sav_config == NULL)
1407		goto out;
1408
1409	sav->sav_vdevs = newvdevs;
1410	sav->sav_count = (int)nl2cache;
1411
1412	/*
1413	 * Recompute the stashed list of l2cache devices, with status
1414	 * information this time.
1415	 */
1416	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1417	    DATA_TYPE_NVLIST_ARRAY) == 0);
1418
1419	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1420	for (i = 0; i < sav->sav_count; i++)
1421		l2cache[i] = vdev_config_generate(spa,
1422		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1423	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1424	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1425out:
1426	for (i = 0; i < sav->sav_count; i++)
1427		nvlist_free(l2cache[i]);
1428	if (sav->sav_count)
1429		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1430}
1431
1432static int
1433load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1434{
1435	dmu_buf_t *db;
1436	char *packed = NULL;
1437	size_t nvsize = 0;
1438	int error;
1439	*value = NULL;
1440
1441	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1442	nvsize = *(uint64_t *)db->db_data;
1443	dmu_buf_rele(db, FTAG);
1444
1445	packed = kmem_alloc(nvsize, KM_SLEEP);
1446	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1447	    DMU_READ_PREFETCH);
1448	if (error == 0)
1449		error = nvlist_unpack(packed, nvsize, value, 0);
1450	kmem_free(packed, nvsize);
1451
1452	return (error);
1453}
1454
1455/*
1456 * Checks to see if the given vdev could not be opened, in which case we post a
1457 * sysevent to notify the autoreplace code that the device has been removed.
1458 */
1459static void
1460spa_check_removed(vdev_t *vd)
1461{
1462	for (int c = 0; c < vd->vdev_children; c++)
1463		spa_check_removed(vd->vdev_child[c]);
1464
1465	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1466		zfs_post_autoreplace(vd->vdev_spa, vd);
1467		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1468	}
1469}
1470
1471/*
1472 * Validate the current config against the MOS config
1473 */
1474static boolean_t
1475spa_config_valid(spa_t *spa, nvlist_t *config)
1476{
1477	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1478	nvlist_t *nv;
1479
1480	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1481
1482	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1483	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1484
1485	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1486
1487	/*
1488	 * If we're doing a normal import, then build up any additional
1489	 * diagnostic information about missing devices in this config.
1490	 * We'll pass this up to the user for further processing.
1491	 */
1492	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1493		nvlist_t **child, *nv;
1494		uint64_t idx = 0;
1495
1496		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1497		    KM_SLEEP);
1498		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1499
1500		for (int c = 0; c < rvd->vdev_children; c++) {
1501			vdev_t *tvd = rvd->vdev_child[c];
1502			vdev_t *mtvd  = mrvd->vdev_child[c];
1503
1504			if (tvd->vdev_ops == &vdev_missing_ops &&
1505			    mtvd->vdev_ops != &vdev_missing_ops &&
1506			    mtvd->vdev_islog)
1507				child[idx++] = vdev_config_generate(spa, mtvd,
1508				    B_FALSE, 0);
1509		}
1510
1511		if (idx) {
1512			VERIFY(nvlist_add_nvlist_array(nv,
1513			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1514			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1515			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1516
1517			for (int i = 0; i < idx; i++)
1518				nvlist_free(child[i]);
1519		}
1520		nvlist_free(nv);
1521		kmem_free(child, rvd->vdev_children * sizeof (char **));
1522	}
1523
1524	/*
1525	 * Compare the root vdev tree with the information we have
1526	 * from the MOS config (mrvd). Check each top-level vdev
1527	 * with the corresponding MOS config top-level (mtvd).
1528	 */
1529	for (int c = 0; c < rvd->vdev_children; c++) {
1530		vdev_t *tvd = rvd->vdev_child[c];
1531		vdev_t *mtvd  = mrvd->vdev_child[c];
1532
1533		/*
1534		 * Resolve any "missing" vdevs in the current configuration.
1535		 * If we find that the MOS config has more accurate information
1536		 * about the top-level vdev then use that vdev instead.
1537		 */
1538		if (tvd->vdev_ops == &vdev_missing_ops &&
1539		    mtvd->vdev_ops != &vdev_missing_ops) {
1540
1541			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1542				continue;
1543
1544			/*
1545			 * Device specific actions.
1546			 */
1547			if (mtvd->vdev_islog) {
1548				spa_set_log_state(spa, SPA_LOG_CLEAR);
1549			} else {
1550				/*
1551				 * XXX - once we have 'readonly' pool
1552				 * support we should be able to handle
1553				 * missing data devices by transitioning
1554				 * the pool to readonly.
1555				 */
1556				continue;
1557			}
1558
1559			/*
1560			 * Swap the missing vdev with the data we were
1561			 * able to obtain from the MOS config.
1562			 */
1563			vdev_remove_child(rvd, tvd);
1564			vdev_remove_child(mrvd, mtvd);
1565
1566			vdev_add_child(rvd, mtvd);
1567			vdev_add_child(mrvd, tvd);
1568
1569			spa_config_exit(spa, SCL_ALL, FTAG);
1570			vdev_load(mtvd);
1571			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1572
1573			vdev_reopen(rvd);
1574		} else if (mtvd->vdev_islog) {
1575			/*
1576			 * Load the slog device's state from the MOS config
1577			 * since it's possible that the label does not
1578			 * contain the most up-to-date information.
1579			 */
1580			vdev_load_log_state(tvd, mtvd);
1581			vdev_reopen(tvd);
1582		}
1583	}
1584	vdev_free(mrvd);
1585	spa_config_exit(spa, SCL_ALL, FTAG);
1586
1587	/*
1588	 * Ensure we were able to validate the config.
1589	 */
1590	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1591}
1592
1593/*
1594 * Check for missing log devices
1595 */
1596static int
1597spa_check_logs(spa_t *spa)
1598{
1599	switch (spa->spa_log_state) {
1600	case SPA_LOG_MISSING:
1601		/* need to recheck in case slog has been restored */
1602	case SPA_LOG_UNKNOWN:
1603		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1604		    DS_FIND_CHILDREN)) {
1605			spa_set_log_state(spa, SPA_LOG_MISSING);
1606			return (1);
1607		}
1608		break;
1609	}
1610	return (0);
1611}
1612
1613static boolean_t
1614spa_passivate_log(spa_t *spa)
1615{
1616	vdev_t *rvd = spa->spa_root_vdev;
1617	boolean_t slog_found = B_FALSE;
1618
1619	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1620
1621	if (!spa_has_slogs(spa))
1622		return (B_FALSE);
1623
1624	for (int c = 0; c < rvd->vdev_children; c++) {
1625		vdev_t *tvd = rvd->vdev_child[c];
1626		metaslab_group_t *mg = tvd->vdev_mg;
1627
1628		if (tvd->vdev_islog) {
1629			metaslab_group_passivate(mg);
1630			slog_found = B_TRUE;
1631		}
1632	}
1633
1634	return (slog_found);
1635}
1636
1637static void
1638spa_activate_log(spa_t *spa)
1639{
1640	vdev_t *rvd = spa->spa_root_vdev;
1641
1642	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1643
1644	for (int c = 0; c < rvd->vdev_children; c++) {
1645		vdev_t *tvd = rvd->vdev_child[c];
1646		metaslab_group_t *mg = tvd->vdev_mg;
1647
1648		if (tvd->vdev_islog)
1649			metaslab_group_activate(mg);
1650	}
1651}
1652
1653int
1654spa_offline_log(spa_t *spa)
1655{
1656	int error = 0;
1657
1658	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1659	    NULL, DS_FIND_CHILDREN)) == 0) {
1660
1661		/*
1662		 * We successfully offlined the log device, sync out the
1663		 * current txg so that the "stubby" block can be removed
1664		 * by zil_sync().
1665		 */
1666		txg_wait_synced(spa->spa_dsl_pool, 0);
1667	}
1668	return (error);
1669}
1670
1671static void
1672spa_aux_check_removed(spa_aux_vdev_t *sav)
1673{
1674	int i;
1675
1676	for (i = 0; i < sav->sav_count; i++)
1677		spa_check_removed(sav->sav_vdevs[i]);
1678}
1679
1680void
1681spa_claim_notify(zio_t *zio)
1682{
1683	spa_t *spa = zio->io_spa;
1684
1685	if (zio->io_error)
1686		return;
1687
1688	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1689	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1690		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1691	mutex_exit(&spa->spa_props_lock);
1692}
1693
1694typedef struct spa_load_error {
1695	uint64_t	sle_meta_count;
1696	uint64_t	sle_data_count;
1697} spa_load_error_t;
1698
1699static void
1700spa_load_verify_done(zio_t *zio)
1701{
1702	blkptr_t *bp = zio->io_bp;
1703	spa_load_error_t *sle = zio->io_private;
1704	dmu_object_type_t type = BP_GET_TYPE(bp);
1705	int error = zio->io_error;
1706
1707	if (error) {
1708		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1709		    type != DMU_OT_INTENT_LOG)
1710			atomic_add_64(&sle->sle_meta_count, 1);
1711		else
1712			atomic_add_64(&sle->sle_data_count, 1);
1713	}
1714	zio_data_buf_free(zio->io_data, zio->io_size);
1715}
1716
1717/*ARGSUSED*/
1718static int
1719spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1720    arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1721{
1722	if (bp != NULL) {
1723		zio_t *rio = arg;
1724		size_t size = BP_GET_PSIZE(bp);
1725		void *data = zio_data_buf_alloc(size);
1726
1727		zio_nowait(zio_read(rio, spa, bp, data, size,
1728		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1729		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1730		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1731	}
1732	return (0);
1733}
1734
1735static int
1736spa_load_verify(spa_t *spa)
1737{
1738	zio_t *rio;
1739	spa_load_error_t sle = { 0 };
1740	zpool_rewind_policy_t policy;
1741	boolean_t verify_ok = B_FALSE;
1742	int error;
1743
1744	zpool_get_rewind_policy(spa->spa_config, &policy);
1745
1746	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1747		return (0);
1748
1749	rio = zio_root(spa, NULL, &sle,
1750	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1751
1752	error = traverse_pool(spa, spa->spa_verify_min_txg,
1753	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1754
1755	(void) zio_wait(rio);
1756
1757	spa->spa_load_meta_errors = sle.sle_meta_count;
1758	spa->spa_load_data_errors = sle.sle_data_count;
1759
1760	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1761	    sle.sle_data_count <= policy.zrp_maxdata) {
1762		int64_t loss = 0;
1763
1764		verify_ok = B_TRUE;
1765		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1766		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1767
1768		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1769		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1770		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1771		VERIFY(nvlist_add_int64(spa->spa_load_info,
1772		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1773		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1774		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1775	} else {
1776		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1777	}
1778
1779	if (error) {
1780		if (error != ENXIO && error != EIO)
1781			error = EIO;
1782		return (error);
1783	}
1784
1785	return (verify_ok ? 0 : EIO);
1786}
1787
1788/*
1789 * Find a value in the pool props object.
1790 */
1791static void
1792spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1793{
1794	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1795	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1796}
1797
1798/*
1799 * Find a value in the pool directory object.
1800 */
1801static int
1802spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1803{
1804	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1805	    name, sizeof (uint64_t), 1, val));
1806}
1807
1808static int
1809spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1810{
1811	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1812	return (err);
1813}
1814
1815/*
1816 * Fix up config after a partly-completed split.  This is done with the
1817 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1818 * pool have that entry in their config, but only the splitting one contains
1819 * a list of all the guids of the vdevs that are being split off.
1820 *
1821 * This function determines what to do with that list: either rejoin
1822 * all the disks to the pool, or complete the splitting process.  To attempt
1823 * the rejoin, each disk that is offlined is marked online again, and
1824 * we do a reopen() call.  If the vdev label for every disk that was
1825 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1826 * then we call vdev_split() on each disk, and complete the split.
1827 *
1828 * Otherwise we leave the config alone, with all the vdevs in place in
1829 * the original pool.
1830 */
1831static void
1832spa_try_repair(spa_t *spa, nvlist_t *config)
1833{
1834	uint_t extracted;
1835	uint64_t *glist;
1836	uint_t i, gcount;
1837	nvlist_t *nvl;
1838	vdev_t **vd;
1839	boolean_t attempt_reopen;
1840
1841	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1842		return;
1843
1844	/* check that the config is complete */
1845	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1846	    &glist, &gcount) != 0)
1847		return;
1848
1849	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1850
1851	/* attempt to online all the vdevs & validate */
1852	attempt_reopen = B_TRUE;
1853	for (i = 0; i < gcount; i++) {
1854		if (glist[i] == 0)	/* vdev is hole */
1855			continue;
1856
1857		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1858		if (vd[i] == NULL) {
1859			/*
1860			 * Don't bother attempting to reopen the disks;
1861			 * just do the split.
1862			 */
1863			attempt_reopen = B_FALSE;
1864		} else {
1865			/* attempt to re-online it */
1866			vd[i]->vdev_offline = B_FALSE;
1867		}
1868	}
1869
1870	if (attempt_reopen) {
1871		vdev_reopen(spa->spa_root_vdev);
1872
1873		/* check each device to see what state it's in */
1874		for (extracted = 0, i = 0; i < gcount; i++) {
1875			if (vd[i] != NULL &&
1876			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1877				break;
1878			++extracted;
1879		}
1880	}
1881
1882	/*
1883	 * If every disk has been moved to the new pool, or if we never
1884	 * even attempted to look at them, then we split them off for
1885	 * good.
1886	 */
1887	if (!attempt_reopen || gcount == extracted) {
1888		for (i = 0; i < gcount; i++)
1889			if (vd[i] != NULL)
1890				vdev_split(vd[i]);
1891		vdev_reopen(spa->spa_root_vdev);
1892	}
1893
1894	kmem_free(vd, gcount * sizeof (vdev_t *));
1895}
1896
1897static int
1898spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1899    boolean_t mosconfig)
1900{
1901	nvlist_t *config = spa->spa_config;
1902	char *ereport = FM_EREPORT_ZFS_POOL;
1903	char *comment;
1904	int error;
1905	uint64_t pool_guid;
1906	nvlist_t *nvl;
1907
1908	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1909		return (EINVAL);
1910
1911	ASSERT(spa->spa_comment == NULL);
1912	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1913		spa->spa_comment = spa_strdup(comment);
1914
1915	/*
1916	 * Versioning wasn't explicitly added to the label until later, so if
1917	 * it's not present treat it as the initial version.
1918	 */
1919	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1920	    &spa->spa_ubsync.ub_version) != 0)
1921		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1922
1923	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1924	    &spa->spa_config_txg);
1925
1926	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1927	    spa_guid_exists(pool_guid, 0)) {
1928		error = EEXIST;
1929	} else {
1930		spa->spa_config_guid = pool_guid;
1931
1932		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1933		    &nvl) == 0) {
1934			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1935			    KM_SLEEP) == 0);
1936		}
1937
1938		nvlist_free(spa->spa_load_info);
1939		spa->spa_load_info = fnvlist_alloc();
1940
1941		gethrestime(&spa->spa_loaded_ts);
1942		error = spa_load_impl(spa, pool_guid, config, state, type,
1943		    mosconfig, &ereport);
1944	}
1945
1946	spa->spa_minref = refcount_count(&spa->spa_refcount);
1947	if (error) {
1948		if (error != EEXIST) {
1949			spa->spa_loaded_ts.tv_sec = 0;
1950			spa->spa_loaded_ts.tv_nsec = 0;
1951		}
1952		if (error != EBADF) {
1953			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1954		}
1955	}
1956	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1957	spa->spa_ena = 0;
1958
1959	return (error);
1960}
1961
1962/*
1963 * Load an existing storage pool, using the pool's builtin spa_config as a
1964 * source of configuration information.
1965 */
1966static int
1967spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1968    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1969    char **ereport)
1970{
1971	int error = 0;
1972	nvlist_t *nvroot = NULL;
1973	nvlist_t *label;
1974	vdev_t *rvd;
1975	uberblock_t *ub = &spa->spa_uberblock;
1976	uint64_t children, config_cache_txg = spa->spa_config_txg;
1977	int orig_mode = spa->spa_mode;
1978	int parse;
1979	uint64_t obj;
1980	boolean_t missing_feat_write = B_FALSE;
1981
1982	/*
1983	 * If this is an untrusted config, access the pool in read-only mode.
1984	 * This prevents things like resilvering recently removed devices.
1985	 */
1986	if (!mosconfig)
1987		spa->spa_mode = FREAD;
1988
1989	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1990
1991	spa->spa_load_state = state;
1992
1993	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1994		return (EINVAL);
1995
1996	parse = (type == SPA_IMPORT_EXISTING ?
1997	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1998
1999	/*
2000	 * Create "The Godfather" zio to hold all async IOs
2001	 */
2002	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2003	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2004
2005	/*
2006	 * Parse the configuration into a vdev tree.  We explicitly set the
2007	 * value that will be returned by spa_version() since parsing the
2008	 * configuration requires knowing the version number.
2009	 */
2010	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2011	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2012	spa_config_exit(spa, SCL_ALL, FTAG);
2013
2014	if (error != 0)
2015		return (error);
2016
2017	ASSERT(spa->spa_root_vdev == rvd);
2018
2019	if (type != SPA_IMPORT_ASSEMBLE) {
2020		ASSERT(spa_guid(spa) == pool_guid);
2021	}
2022
2023	/*
2024	 * Try to open all vdevs, loading each label in the process.
2025	 */
2026	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2027	error = vdev_open(rvd);
2028	spa_config_exit(spa, SCL_ALL, FTAG);
2029	if (error != 0)
2030		return (error);
2031
2032	/*
2033	 * We need to validate the vdev labels against the configuration that
2034	 * we have in hand, which is dependent on the setting of mosconfig. If
2035	 * mosconfig is true then we're validating the vdev labels based on
2036	 * that config.  Otherwise, we're validating against the cached config
2037	 * (zpool.cache) that was read when we loaded the zfs module, and then
2038	 * later we will recursively call spa_load() and validate against
2039	 * the vdev config.
2040	 *
2041	 * If we're assembling a new pool that's been split off from an
2042	 * existing pool, the labels haven't yet been updated so we skip
2043	 * validation for now.
2044	 */
2045	if (type != SPA_IMPORT_ASSEMBLE) {
2046		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2047		error = vdev_validate(rvd, mosconfig);
2048		spa_config_exit(spa, SCL_ALL, FTAG);
2049
2050		if (error != 0)
2051			return (error);
2052
2053		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2054			return (ENXIO);
2055	}
2056
2057	/*
2058	 * Find the best uberblock.
2059	 */
2060	vdev_uberblock_load(rvd, ub, &label);
2061
2062	/*
2063	 * If we weren't able to find a single valid uberblock, return failure.
2064	 */
2065	if (ub->ub_txg == 0) {
2066		nvlist_free(label);
2067		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2068	}
2069
2070	/*
2071	 * If the pool has an unsupported version we can't open it.
2072	 */
2073	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2074		nvlist_free(label);
2075		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2076	}
2077
2078	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2079		nvlist_t *features;
2080
2081		/*
2082		 * If we weren't able to find what's necessary for reading the
2083		 * MOS in the label, return failure.
2084		 */
2085		if (label == NULL || nvlist_lookup_nvlist(label,
2086		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2087			nvlist_free(label);
2088			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2089			    ENXIO));
2090		}
2091
2092		/*
2093		 * Update our in-core representation with the definitive values
2094		 * from the label.
2095		 */
2096		nvlist_free(spa->spa_label_features);
2097		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2098	}
2099
2100	nvlist_free(label);
2101
2102	/*
2103	 * Look through entries in the label nvlist's features_for_read. If
2104	 * there is a feature listed there which we don't understand then we
2105	 * cannot open a pool.
2106	 */
2107	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2108		nvlist_t *unsup_feat;
2109
2110		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2111		    0);
2112
2113		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2114		    NULL); nvp != NULL;
2115		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2116			if (!zfeature_is_supported(nvpair_name(nvp))) {
2117				VERIFY(nvlist_add_string(unsup_feat,
2118				    nvpair_name(nvp), "") == 0);
2119			}
2120		}
2121
2122		if (!nvlist_empty(unsup_feat)) {
2123			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2124			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2125			nvlist_free(unsup_feat);
2126			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2127			    ENOTSUP));
2128		}
2129
2130		nvlist_free(unsup_feat);
2131	}
2132
2133	/*
2134	 * If the vdev guid sum doesn't match the uberblock, we have an
2135	 * incomplete configuration.  We first check to see if the pool
2136	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2137	 * If it is, defer the vdev_guid_sum check till later so we
2138	 * can handle missing vdevs.
2139	 */
2140	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2141	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2142	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2143		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2144
2145	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2146		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2147		spa_try_repair(spa, config);
2148		spa_config_exit(spa, SCL_ALL, FTAG);
2149		nvlist_free(spa->spa_config_splitting);
2150		spa->spa_config_splitting = NULL;
2151	}
2152
2153	/*
2154	 * Initialize internal SPA structures.
2155	 */
2156	spa->spa_state = POOL_STATE_ACTIVE;
2157	spa->spa_ubsync = spa->spa_uberblock;
2158	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2159	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2160	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2161	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2162	spa->spa_claim_max_txg = spa->spa_first_txg;
2163	spa->spa_prev_software_version = ub->ub_software_version;
2164
2165	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2166	if (error)
2167		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2168	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2169
2170	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2171		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2172
2173	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2174		boolean_t missing_feat_read = B_FALSE;
2175		nvlist_t *unsup_feat, *enabled_feat;
2176
2177		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2178		    &spa->spa_feat_for_read_obj) != 0) {
2179			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2180		}
2181
2182		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2183		    &spa->spa_feat_for_write_obj) != 0) {
2184			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2185		}
2186
2187		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2188		    &spa->spa_feat_desc_obj) != 0) {
2189			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2190		}
2191
2192		enabled_feat = fnvlist_alloc();
2193		unsup_feat = fnvlist_alloc();
2194
2195		if (!feature_is_supported(spa->spa_meta_objset,
2196		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2197		    unsup_feat, enabled_feat))
2198			missing_feat_read = B_TRUE;
2199
2200		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2201			if (!feature_is_supported(spa->spa_meta_objset,
2202			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2203			    unsup_feat, enabled_feat)) {
2204				missing_feat_write = B_TRUE;
2205			}
2206		}
2207
2208		fnvlist_add_nvlist(spa->spa_load_info,
2209		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2210
2211		if (!nvlist_empty(unsup_feat)) {
2212			fnvlist_add_nvlist(spa->spa_load_info,
2213			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2214		}
2215
2216		fnvlist_free(enabled_feat);
2217		fnvlist_free(unsup_feat);
2218
2219		if (!missing_feat_read) {
2220			fnvlist_add_boolean(spa->spa_load_info,
2221			    ZPOOL_CONFIG_CAN_RDONLY);
2222		}
2223
2224		/*
2225		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2226		 * twofold: to determine whether the pool is available for
2227		 * import in read-write mode and (if it is not) whether the
2228		 * pool is available for import in read-only mode. If the pool
2229		 * is available for import in read-write mode, it is displayed
2230		 * as available in userland; if it is not available for import
2231		 * in read-only mode, it is displayed as unavailable in
2232		 * userland. If the pool is available for import in read-only
2233		 * mode but not read-write mode, it is displayed as unavailable
2234		 * in userland with a special note that the pool is actually
2235		 * available for open in read-only mode.
2236		 *
2237		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2238		 * missing a feature for write, we must first determine whether
2239		 * the pool can be opened read-only before returning to
2240		 * userland in order to know whether to display the
2241		 * abovementioned note.
2242		 */
2243		if (missing_feat_read || (missing_feat_write &&
2244		    spa_writeable(spa))) {
2245			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2246			    ENOTSUP));
2247		}
2248	}
2249
2250	spa->spa_is_initializing = B_TRUE;
2251	error = dsl_pool_open(spa->spa_dsl_pool);
2252	spa->spa_is_initializing = B_FALSE;
2253	if (error != 0)
2254		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2255
2256	if (!mosconfig) {
2257		uint64_t hostid;
2258		nvlist_t *policy = NULL, *nvconfig;
2259
2260		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2261			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2262
2263		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2264		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2265			char *hostname;
2266			unsigned long myhostid = 0;
2267
2268			VERIFY(nvlist_lookup_string(nvconfig,
2269			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2270
2271#ifdef	_KERNEL
2272			myhostid = zone_get_hostid(NULL);
2273#else	/* _KERNEL */
2274			/*
2275			 * We're emulating the system's hostid in userland, so
2276			 * we can't use zone_get_hostid().
2277			 */
2278			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2279#endif	/* _KERNEL */
2280			if (check_hostid && hostid != 0 && myhostid != 0 &&
2281			    hostid != myhostid) {
2282				nvlist_free(nvconfig);
2283				cmn_err(CE_WARN, "pool '%s' could not be "
2284				    "loaded as it was last accessed by "
2285				    "another system (host: %s hostid: 0x%lx). "
2286				    "See: http://illumos.org/msg/ZFS-8000-EY",
2287				    spa_name(spa), hostname,
2288				    (unsigned long)hostid);
2289				return (EBADF);
2290			}
2291		}
2292		if (nvlist_lookup_nvlist(spa->spa_config,
2293		    ZPOOL_REWIND_POLICY, &policy) == 0)
2294			VERIFY(nvlist_add_nvlist(nvconfig,
2295			    ZPOOL_REWIND_POLICY, policy) == 0);
2296
2297		spa_config_set(spa, nvconfig);
2298		spa_unload(spa);
2299		spa_deactivate(spa);
2300		spa_activate(spa, orig_mode);
2301
2302		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2303	}
2304
2305	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2306		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2307	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2308	if (error != 0)
2309		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2310
2311	/*
2312	 * Load the bit that tells us to use the new accounting function
2313	 * (raid-z deflation).  If we have an older pool, this will not
2314	 * be present.
2315	 */
2316	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2317	if (error != 0 && error != ENOENT)
2318		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2319
2320	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2321	    &spa->spa_creation_version);
2322	if (error != 0 && error != ENOENT)
2323		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2324
2325	/*
2326	 * Load the persistent error log.  If we have an older pool, this will
2327	 * not be present.
2328	 */
2329	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2330	if (error != 0 && error != ENOENT)
2331		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2332
2333	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2334	    &spa->spa_errlog_scrub);
2335	if (error != 0 && error != ENOENT)
2336		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2337
2338	/*
2339	 * Load the history object.  If we have an older pool, this
2340	 * will not be present.
2341	 */
2342	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2343	if (error != 0 && error != ENOENT)
2344		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2345
2346	/*
2347	 * If we're assembling the pool from the split-off vdevs of
2348	 * an existing pool, we don't want to attach the spares & cache
2349	 * devices.
2350	 */
2351
2352	/*
2353	 * Load any hot spares for this pool.
2354	 */
2355	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2356	if (error != 0 && error != ENOENT)
2357		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2358	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2359		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2360		if (load_nvlist(spa, spa->spa_spares.sav_object,
2361		    &spa->spa_spares.sav_config) != 0)
2362			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2363
2364		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2365		spa_load_spares(spa);
2366		spa_config_exit(spa, SCL_ALL, FTAG);
2367	} else if (error == 0) {
2368		spa->spa_spares.sav_sync = B_TRUE;
2369	}
2370
2371	/*
2372	 * Load any level 2 ARC devices for this pool.
2373	 */
2374	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2375	    &spa->spa_l2cache.sav_object);
2376	if (error != 0 && error != ENOENT)
2377		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2378	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2379		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2380		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2381		    &spa->spa_l2cache.sav_config) != 0)
2382			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2383
2384		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2385		spa_load_l2cache(spa);
2386		spa_config_exit(spa, SCL_ALL, FTAG);
2387	} else if (error == 0) {
2388		spa->spa_l2cache.sav_sync = B_TRUE;
2389	}
2390
2391	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2392
2393	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2394	if (error && error != ENOENT)
2395		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2396
2397	if (error == 0) {
2398		uint64_t autoreplace;
2399
2400		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2401		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2402		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2403		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2404		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2405		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2406		    &spa->spa_dedup_ditto);
2407
2408		spa->spa_autoreplace = (autoreplace != 0);
2409	}
2410
2411	/*
2412	 * If the 'autoreplace' property is set, then post a resource notifying
2413	 * the ZFS DE that it should not issue any faults for unopenable
2414	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2415	 * unopenable vdevs so that the normal autoreplace handler can take
2416	 * over.
2417	 */
2418	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2419		spa_check_removed(spa->spa_root_vdev);
2420		/*
2421		 * For the import case, this is done in spa_import(), because
2422		 * at this point we're using the spare definitions from
2423		 * the MOS config, not necessarily from the userland config.
2424		 */
2425		if (state != SPA_LOAD_IMPORT) {
2426			spa_aux_check_removed(&spa->spa_spares);
2427			spa_aux_check_removed(&spa->spa_l2cache);
2428		}
2429	}
2430
2431	/*
2432	 * Load the vdev state for all toplevel vdevs.
2433	 */
2434	vdev_load(rvd);
2435
2436	/*
2437	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2438	 */
2439	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2440	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2441	spa_config_exit(spa, SCL_ALL, FTAG);
2442
2443	/*
2444	 * Load the DDTs (dedup tables).
2445	 */
2446	error = ddt_load(spa);
2447	if (error != 0)
2448		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2449
2450	spa_update_dspace(spa);
2451
2452	/*
2453	 * Validate the config, using the MOS config to fill in any
2454	 * information which might be missing.  If we fail to validate
2455	 * the config then declare the pool unfit for use. If we're
2456	 * assembling a pool from a split, the log is not transferred
2457	 * over.
2458	 */
2459	if (type != SPA_IMPORT_ASSEMBLE) {
2460		nvlist_t *nvconfig;
2461
2462		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2463			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464
2465		if (!spa_config_valid(spa, nvconfig)) {
2466			nvlist_free(nvconfig);
2467			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2468			    ENXIO));
2469		}
2470		nvlist_free(nvconfig);
2471
2472		/*
2473		 * Now that we've validated the config, check the state of the
2474		 * root vdev.  If it can't be opened, it indicates one or
2475		 * more toplevel vdevs are faulted.
2476		 */
2477		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2478			return (ENXIO);
2479
2480		if (spa_check_logs(spa)) {
2481			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2482			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2483		}
2484	}
2485
2486	if (missing_feat_write) {
2487		ASSERT(state == SPA_LOAD_TRYIMPORT);
2488
2489		/*
2490		 * At this point, we know that we can open the pool in
2491		 * read-only mode but not read-write mode. We now have enough
2492		 * information and can return to userland.
2493		 */
2494		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2495	}
2496
2497	/*
2498	 * We've successfully opened the pool, verify that we're ready
2499	 * to start pushing transactions.
2500	 */
2501	if (state != SPA_LOAD_TRYIMPORT) {
2502		if (error = spa_load_verify(spa))
2503			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2504			    error));
2505	}
2506
2507	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2508	    spa->spa_load_max_txg == UINT64_MAX)) {
2509		dmu_tx_t *tx;
2510		int need_update = B_FALSE;
2511
2512		ASSERT(state != SPA_LOAD_TRYIMPORT);
2513
2514		/*
2515		 * Claim log blocks that haven't been committed yet.
2516		 * This must all happen in a single txg.
2517		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2518		 * invoked from zil_claim_log_block()'s i/o done callback.
2519		 * Price of rollback is that we abandon the log.
2520		 */
2521		spa->spa_claiming = B_TRUE;
2522
2523		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2524		    spa_first_txg(spa));
2525		(void) dmu_objset_find(spa_name(spa),
2526		    zil_claim, tx, DS_FIND_CHILDREN);
2527		dmu_tx_commit(tx);
2528
2529		spa->spa_claiming = B_FALSE;
2530
2531		spa_set_log_state(spa, SPA_LOG_GOOD);
2532		spa->spa_sync_on = B_TRUE;
2533		txg_sync_start(spa->spa_dsl_pool);
2534
2535		/*
2536		 * Wait for all claims to sync.  We sync up to the highest
2537		 * claimed log block birth time so that claimed log blocks
2538		 * don't appear to be from the future.  spa_claim_max_txg
2539		 * will have been set for us by either zil_check_log_chain()
2540		 * (invoked from spa_check_logs()) or zil_claim() above.
2541		 */
2542		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2543
2544		/*
2545		 * If the config cache is stale, or we have uninitialized
2546		 * metaslabs (see spa_vdev_add()), then update the config.
2547		 *
2548		 * If this is a verbatim import, trust the current
2549		 * in-core spa_config and update the disk labels.
2550		 */
2551		if (config_cache_txg != spa->spa_config_txg ||
2552		    state == SPA_LOAD_IMPORT ||
2553		    state == SPA_LOAD_RECOVER ||
2554		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2555			need_update = B_TRUE;
2556
2557		for (int c = 0; c < rvd->vdev_children; c++)
2558			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2559				need_update = B_TRUE;
2560
2561		/*
2562		 * Update the config cache asychronously in case we're the
2563		 * root pool, in which case the config cache isn't writable yet.
2564		 */
2565		if (need_update)
2566			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2567
2568		/*
2569		 * Check all DTLs to see if anything needs resilvering.
2570		 */
2571		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2572		    vdev_resilver_needed(rvd, NULL, NULL))
2573			spa_async_request(spa, SPA_ASYNC_RESILVER);
2574
2575		/*
2576		 * Delete any inconsistent datasets.
2577		 */
2578		(void) dmu_objset_find(spa_name(spa),
2579		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2580
2581		/*
2582		 * Clean up any stale temporary dataset userrefs.
2583		 */
2584		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2585	}
2586
2587	return (0);
2588}
2589
2590static int
2591spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2592{
2593	int mode = spa->spa_mode;
2594
2595	spa_unload(spa);
2596	spa_deactivate(spa);
2597
2598	spa->spa_load_max_txg--;
2599
2600	spa_activate(spa, mode);
2601	spa_async_suspend(spa);
2602
2603	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2604}
2605
2606/*
2607 * If spa_load() fails this function will try loading prior txg's. If
2608 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2609 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2610 * function will not rewind the pool and will return the same error as
2611 * spa_load().
2612 */
2613static int
2614spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2615    uint64_t max_request, int rewind_flags)
2616{
2617	nvlist_t *loadinfo = NULL;
2618	nvlist_t *config = NULL;
2619	int load_error, rewind_error;
2620	uint64_t safe_rewind_txg;
2621	uint64_t min_txg;
2622
2623	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2624		spa->spa_load_max_txg = spa->spa_load_txg;
2625		spa_set_log_state(spa, SPA_LOG_CLEAR);
2626	} else {
2627		spa->spa_load_max_txg = max_request;
2628	}
2629
2630	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2631	    mosconfig);
2632	if (load_error == 0)
2633		return (0);
2634
2635	if (spa->spa_root_vdev != NULL)
2636		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2637
2638	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2639	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2640
2641	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2642		nvlist_free(config);
2643		return (load_error);
2644	}
2645
2646	if (state == SPA_LOAD_RECOVER) {
2647		/* Price of rolling back is discarding txgs, including log */
2648		spa_set_log_state(spa, SPA_LOG_CLEAR);
2649	} else {
2650		/*
2651		 * If we aren't rolling back save the load info from our first
2652		 * import attempt so that we can restore it after attempting
2653		 * to rewind.
2654		 */
2655		loadinfo = spa->spa_load_info;
2656		spa->spa_load_info = fnvlist_alloc();
2657	}
2658
2659	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2660	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2661	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2662	    TXG_INITIAL : safe_rewind_txg;
2663
2664	/*
2665	 * Continue as long as we're finding errors, we're still within
2666	 * the acceptable rewind range, and we're still finding uberblocks
2667	 */
2668	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2669	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2670		if (spa->spa_load_max_txg < safe_rewind_txg)
2671			spa->spa_extreme_rewind = B_TRUE;
2672		rewind_error = spa_load_retry(spa, state, mosconfig);
2673	}
2674
2675	spa->spa_extreme_rewind = B_FALSE;
2676	spa->spa_load_max_txg = UINT64_MAX;
2677
2678	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2679		spa_config_set(spa, config);
2680
2681	if (state == SPA_LOAD_RECOVER) {
2682		ASSERT3P(loadinfo, ==, NULL);
2683		return (rewind_error);
2684	} else {
2685		/* Store the rewind info as part of the initial load info */
2686		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2687		    spa->spa_load_info);
2688
2689		/* Restore the initial load info */
2690		fnvlist_free(spa->spa_load_info);
2691		spa->spa_load_info = loadinfo;
2692
2693		return (load_error);
2694	}
2695}
2696
2697/*
2698 * Pool Open/Import
2699 *
2700 * The import case is identical to an open except that the configuration is sent
2701 * down from userland, instead of grabbed from the configuration cache.  For the
2702 * case of an open, the pool configuration will exist in the
2703 * POOL_STATE_UNINITIALIZED state.
2704 *
2705 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2706 * the same time open the pool, without having to keep around the spa_t in some
2707 * ambiguous state.
2708 */
2709static int
2710spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2711    nvlist_t **config)
2712{
2713	spa_t *spa;
2714	spa_load_state_t state = SPA_LOAD_OPEN;
2715	int error;
2716	int locked = B_FALSE;
2717	int firstopen = B_FALSE;
2718
2719	*spapp = NULL;
2720
2721	/*
2722	 * As disgusting as this is, we need to support recursive calls to this
2723	 * function because dsl_dir_open() is called during spa_load(), and ends
2724	 * up calling spa_open() again.  The real fix is to figure out how to
2725	 * avoid dsl_dir_open() calling this in the first place.
2726	 */
2727	if (mutex_owner(&spa_namespace_lock) != curthread) {
2728		mutex_enter(&spa_namespace_lock);
2729		locked = B_TRUE;
2730	}
2731
2732	if ((spa = spa_lookup(pool)) == NULL) {
2733		if (locked)
2734			mutex_exit(&spa_namespace_lock);
2735		return (ENOENT);
2736	}
2737
2738	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2739		zpool_rewind_policy_t policy;
2740
2741		firstopen = B_TRUE;
2742
2743		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2744		    &policy);
2745		if (policy.zrp_request & ZPOOL_DO_REWIND)
2746			state = SPA_LOAD_RECOVER;
2747
2748		spa_activate(spa, spa_mode_global);
2749
2750		if (state != SPA_LOAD_RECOVER)
2751			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2752
2753		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2754		    policy.zrp_request);
2755
2756		if (error == EBADF) {
2757			/*
2758			 * If vdev_validate() returns failure (indicated by
2759			 * EBADF), it indicates that one of the vdevs indicates
2760			 * that the pool has been exported or destroyed.  If
2761			 * this is the case, the config cache is out of sync and
2762			 * we should remove the pool from the namespace.
2763			 */
2764			spa_unload(spa);
2765			spa_deactivate(spa);
2766			spa_config_sync(spa, B_TRUE, B_TRUE);
2767			spa_remove(spa);
2768			if (locked)
2769				mutex_exit(&spa_namespace_lock);
2770			return (ENOENT);
2771		}
2772
2773		if (error) {
2774			/*
2775			 * We can't open the pool, but we still have useful
2776			 * information: the state of each vdev after the
2777			 * attempted vdev_open().  Return this to the user.
2778			 */
2779			if (config != NULL && spa->spa_config) {
2780				VERIFY(nvlist_dup(spa->spa_config, config,
2781				    KM_SLEEP) == 0);
2782				VERIFY(nvlist_add_nvlist(*config,
2783				    ZPOOL_CONFIG_LOAD_INFO,
2784				    spa->spa_load_info) == 0);
2785			}
2786			spa_unload(spa);
2787			spa_deactivate(spa);
2788			spa->spa_last_open_failed = error;
2789			if (locked)
2790				mutex_exit(&spa_namespace_lock);
2791			*spapp = NULL;
2792			return (error);
2793		}
2794	}
2795
2796	spa_open_ref(spa, tag);
2797
2798	if (config != NULL)
2799		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2800
2801	/*
2802	 * If we've recovered the pool, pass back any information we
2803	 * gathered while doing the load.
2804	 */
2805	if (state == SPA_LOAD_RECOVER) {
2806		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2807		    spa->spa_load_info) == 0);
2808	}
2809
2810	if (locked) {
2811		spa->spa_last_open_failed = 0;
2812		spa->spa_last_ubsync_txg = 0;
2813		spa->spa_load_txg = 0;
2814		mutex_exit(&spa_namespace_lock);
2815#ifdef __FreeBSD__
2816#ifdef _KERNEL
2817		if (firstopen)
2818			zvol_create_minors(pool);
2819#endif
2820#endif
2821	}
2822
2823	*spapp = spa;
2824
2825	return (0);
2826}
2827
2828int
2829spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2830    nvlist_t **config)
2831{
2832	return (spa_open_common(name, spapp, tag, policy, config));
2833}
2834
2835int
2836spa_open(const char *name, spa_t **spapp, void *tag)
2837{
2838	return (spa_open_common(name, spapp, tag, NULL, NULL));
2839}
2840
2841/*
2842 * Lookup the given spa_t, incrementing the inject count in the process,
2843 * preventing it from being exported or destroyed.
2844 */
2845spa_t *
2846spa_inject_addref(char *name)
2847{
2848	spa_t *spa;
2849
2850	mutex_enter(&spa_namespace_lock);
2851	if ((spa = spa_lookup(name)) == NULL) {
2852		mutex_exit(&spa_namespace_lock);
2853		return (NULL);
2854	}
2855	spa->spa_inject_ref++;
2856	mutex_exit(&spa_namespace_lock);
2857
2858	return (spa);
2859}
2860
2861void
2862spa_inject_delref(spa_t *spa)
2863{
2864	mutex_enter(&spa_namespace_lock);
2865	spa->spa_inject_ref--;
2866	mutex_exit(&spa_namespace_lock);
2867}
2868
2869/*
2870 * Add spares device information to the nvlist.
2871 */
2872static void
2873spa_add_spares(spa_t *spa, nvlist_t *config)
2874{
2875	nvlist_t **spares;
2876	uint_t i, nspares;
2877	nvlist_t *nvroot;
2878	uint64_t guid;
2879	vdev_stat_t *vs;
2880	uint_t vsc;
2881	uint64_t pool;
2882
2883	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2884
2885	if (spa->spa_spares.sav_count == 0)
2886		return;
2887
2888	VERIFY(nvlist_lookup_nvlist(config,
2889	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2890	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2891	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2892	if (nspares != 0) {
2893		VERIFY(nvlist_add_nvlist_array(nvroot,
2894		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2895		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2896		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2897
2898		/*
2899		 * Go through and find any spares which have since been
2900		 * repurposed as an active spare.  If this is the case, update
2901		 * their status appropriately.
2902		 */
2903		for (i = 0; i < nspares; i++) {
2904			VERIFY(nvlist_lookup_uint64(spares[i],
2905			    ZPOOL_CONFIG_GUID, &guid) == 0);
2906			if (spa_spare_exists(guid, &pool, NULL) &&
2907			    pool != 0ULL) {
2908				VERIFY(nvlist_lookup_uint64_array(
2909				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2910				    (uint64_t **)&vs, &vsc) == 0);
2911				vs->vs_state = VDEV_STATE_CANT_OPEN;
2912				vs->vs_aux = VDEV_AUX_SPARED;
2913			}
2914		}
2915	}
2916}
2917
2918/*
2919 * Add l2cache device information to the nvlist, including vdev stats.
2920 */
2921static void
2922spa_add_l2cache(spa_t *spa, nvlist_t *config)
2923{
2924	nvlist_t **l2cache;
2925	uint_t i, j, nl2cache;
2926	nvlist_t *nvroot;
2927	uint64_t guid;
2928	vdev_t *vd;
2929	vdev_stat_t *vs;
2930	uint_t vsc;
2931
2932	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2933
2934	if (spa->spa_l2cache.sav_count == 0)
2935		return;
2936
2937	VERIFY(nvlist_lookup_nvlist(config,
2938	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2939	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2940	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2941	if (nl2cache != 0) {
2942		VERIFY(nvlist_add_nvlist_array(nvroot,
2943		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2944		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2945		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2946
2947		/*
2948		 * Update level 2 cache device stats.
2949		 */
2950
2951		for (i = 0; i < nl2cache; i++) {
2952			VERIFY(nvlist_lookup_uint64(l2cache[i],
2953			    ZPOOL_CONFIG_GUID, &guid) == 0);
2954
2955			vd = NULL;
2956			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2957				if (guid ==
2958				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2959					vd = spa->spa_l2cache.sav_vdevs[j];
2960					break;
2961				}
2962			}
2963			ASSERT(vd != NULL);
2964
2965			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2966			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2967			    == 0);
2968			vdev_get_stats(vd, vs);
2969		}
2970	}
2971}
2972
2973static void
2974spa_add_feature_stats(spa_t *spa, nvlist_t *config)
2975{
2976	nvlist_t *features;
2977	zap_cursor_t zc;
2978	zap_attribute_t za;
2979
2980	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2981	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2982
2983	if (spa->spa_feat_for_read_obj != 0) {
2984		for (zap_cursor_init(&zc, spa->spa_meta_objset,
2985		    spa->spa_feat_for_read_obj);
2986		    zap_cursor_retrieve(&zc, &za) == 0;
2987		    zap_cursor_advance(&zc)) {
2988			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
2989			    za.za_num_integers == 1);
2990			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
2991			    za.za_first_integer));
2992		}
2993		zap_cursor_fini(&zc);
2994	}
2995
2996	if (spa->spa_feat_for_write_obj != 0) {
2997		for (zap_cursor_init(&zc, spa->spa_meta_objset,
2998		    spa->spa_feat_for_write_obj);
2999		    zap_cursor_retrieve(&zc, &za) == 0;
3000		    zap_cursor_advance(&zc)) {
3001			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3002			    za.za_num_integers == 1);
3003			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3004			    za.za_first_integer));
3005		}
3006		zap_cursor_fini(&zc);
3007	}
3008
3009	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3010	    features) == 0);
3011	nvlist_free(features);
3012}
3013
3014int
3015spa_get_stats(const char *name, nvlist_t **config,
3016    char *altroot, size_t buflen)
3017{
3018	int error;
3019	spa_t *spa;
3020
3021	*config = NULL;
3022	error = spa_open_common(name, &spa, FTAG, NULL, config);
3023
3024	if (spa != NULL) {
3025		/*
3026		 * This still leaves a window of inconsistency where the spares
3027		 * or l2cache devices could change and the config would be
3028		 * self-inconsistent.
3029		 */
3030		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3031
3032		if (*config != NULL) {
3033			uint64_t loadtimes[2];
3034
3035			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3036			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3037			VERIFY(nvlist_add_uint64_array(*config,
3038			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3039
3040			VERIFY(nvlist_add_uint64(*config,
3041			    ZPOOL_CONFIG_ERRCOUNT,
3042			    spa_get_errlog_size(spa)) == 0);
3043
3044			if (spa_suspended(spa))
3045				VERIFY(nvlist_add_uint64(*config,
3046				    ZPOOL_CONFIG_SUSPENDED,
3047				    spa->spa_failmode) == 0);
3048
3049			spa_add_spares(spa, *config);
3050			spa_add_l2cache(spa, *config);
3051			spa_add_feature_stats(spa, *config);
3052		}
3053	}
3054
3055	/*
3056	 * We want to get the alternate root even for faulted pools, so we cheat
3057	 * and call spa_lookup() directly.
3058	 */
3059	if (altroot) {
3060		if (spa == NULL) {
3061			mutex_enter(&spa_namespace_lock);
3062			spa = spa_lookup(name);
3063			if (spa)
3064				spa_altroot(spa, altroot, buflen);
3065			else
3066				altroot[0] = '\0';
3067			spa = NULL;
3068			mutex_exit(&spa_namespace_lock);
3069		} else {
3070			spa_altroot(spa, altroot, buflen);
3071		}
3072	}
3073
3074	if (spa != NULL) {
3075		spa_config_exit(spa, SCL_CONFIG, FTAG);
3076		spa_close(spa, FTAG);
3077	}
3078
3079	return (error);
3080}
3081
3082/*
3083 * Validate that the auxiliary device array is well formed.  We must have an
3084 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3085 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3086 * specified, as long as they are well-formed.
3087 */
3088static int
3089spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3090    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3091    vdev_labeltype_t label)
3092{
3093	nvlist_t **dev;
3094	uint_t i, ndev;
3095	vdev_t *vd;
3096	int error;
3097
3098	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3099
3100	/*
3101	 * It's acceptable to have no devs specified.
3102	 */
3103	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3104		return (0);
3105
3106	if (ndev == 0)
3107		return (EINVAL);
3108
3109	/*
3110	 * Make sure the pool is formatted with a version that supports this
3111	 * device type.
3112	 */
3113	if (spa_version(spa) < version)
3114		return (ENOTSUP);
3115
3116	/*
3117	 * Set the pending device list so we correctly handle device in-use
3118	 * checking.
3119	 */
3120	sav->sav_pending = dev;
3121	sav->sav_npending = ndev;
3122
3123	for (i = 0; i < ndev; i++) {
3124		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3125		    mode)) != 0)
3126			goto out;
3127
3128		if (!vd->vdev_ops->vdev_op_leaf) {
3129			vdev_free(vd);
3130			error = EINVAL;
3131			goto out;
3132		}
3133
3134		/*
3135		 * The L2ARC currently only supports disk devices in
3136		 * kernel context.  For user-level testing, we allow it.
3137		 */
3138#ifdef _KERNEL
3139		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3140		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3141			error = ENOTBLK;
3142			vdev_free(vd);
3143			goto out;
3144		}
3145#endif
3146		vd->vdev_top = vd;
3147
3148		if ((error = vdev_open(vd)) == 0 &&
3149		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3150			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3151			    vd->vdev_guid) == 0);
3152		}
3153
3154		vdev_free(vd);
3155
3156		if (error &&
3157		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3158			goto out;
3159		else
3160			error = 0;
3161	}
3162
3163out:
3164	sav->sav_pending = NULL;
3165	sav->sav_npending = 0;
3166	return (error);
3167}
3168
3169static int
3170spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3171{
3172	int error;
3173
3174	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3175
3176	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3177	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3178	    VDEV_LABEL_SPARE)) != 0) {
3179		return (error);
3180	}
3181
3182	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3183	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3184	    VDEV_LABEL_L2CACHE));
3185}
3186
3187static void
3188spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3189    const char *config)
3190{
3191	int i;
3192
3193	if (sav->sav_config != NULL) {
3194		nvlist_t **olddevs;
3195		uint_t oldndevs;
3196		nvlist_t **newdevs;
3197
3198		/*
3199		 * Generate new dev list by concatentating with the
3200		 * current dev list.
3201		 */
3202		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3203		    &olddevs, &oldndevs) == 0);
3204
3205		newdevs = kmem_alloc(sizeof (void *) *
3206		    (ndevs + oldndevs), KM_SLEEP);
3207		for (i = 0; i < oldndevs; i++)
3208			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3209			    KM_SLEEP) == 0);
3210		for (i = 0; i < ndevs; i++)
3211			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3212			    KM_SLEEP) == 0);
3213
3214		VERIFY(nvlist_remove(sav->sav_config, config,
3215		    DATA_TYPE_NVLIST_ARRAY) == 0);
3216
3217		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3218		    config, newdevs, ndevs + oldndevs) == 0);
3219		for (i = 0; i < oldndevs + ndevs; i++)
3220			nvlist_free(newdevs[i]);
3221		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3222	} else {
3223		/*
3224		 * Generate a new dev list.
3225		 */
3226		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3227		    KM_SLEEP) == 0);
3228		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3229		    devs, ndevs) == 0);
3230	}
3231}
3232
3233/*
3234 * Stop and drop level 2 ARC devices
3235 */
3236void
3237spa_l2cache_drop(spa_t *spa)
3238{
3239	vdev_t *vd;
3240	int i;
3241	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3242
3243	for (i = 0; i < sav->sav_count; i++) {
3244		uint64_t pool;
3245
3246		vd = sav->sav_vdevs[i];
3247		ASSERT(vd != NULL);
3248
3249		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3250		    pool != 0ULL && l2arc_vdev_present(vd))
3251			l2arc_remove_vdev(vd);
3252	}
3253}
3254
3255/*
3256 * Pool Creation
3257 */
3258int
3259spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3260    const char *history_str, nvlist_t *zplprops)
3261{
3262	spa_t *spa;
3263	char *altroot = NULL;
3264	vdev_t *rvd;
3265	dsl_pool_t *dp;
3266	dmu_tx_t *tx;
3267	int error = 0;
3268	uint64_t txg = TXG_INITIAL;
3269	nvlist_t **spares, **l2cache;
3270	uint_t nspares, nl2cache;
3271	uint64_t version, obj;
3272	boolean_t has_features;
3273
3274	/*
3275	 * If this pool already exists, return failure.
3276	 */
3277	mutex_enter(&spa_namespace_lock);
3278	if (spa_lookup(pool) != NULL) {
3279		mutex_exit(&spa_namespace_lock);
3280		return (EEXIST);
3281	}
3282
3283	/*
3284	 * Allocate a new spa_t structure.
3285	 */
3286	(void) nvlist_lookup_string(props,
3287	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3288	spa = spa_add(pool, NULL, altroot);
3289	spa_activate(spa, spa_mode_global);
3290
3291	if (props && (error = spa_prop_validate(spa, props))) {
3292		spa_deactivate(spa);
3293		spa_remove(spa);
3294		mutex_exit(&spa_namespace_lock);
3295		return (error);
3296	}
3297
3298	has_features = B_FALSE;
3299	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3300	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3301		if (zpool_prop_feature(nvpair_name(elem)))
3302			has_features = B_TRUE;
3303	}
3304
3305	if (has_features || nvlist_lookup_uint64(props,
3306	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3307		version = SPA_VERSION;
3308	}
3309	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3310
3311	spa->spa_first_txg = txg;
3312	spa->spa_uberblock.ub_txg = txg - 1;
3313	spa->spa_uberblock.ub_version = version;
3314	spa->spa_ubsync = spa->spa_uberblock;
3315
3316	/*
3317	 * Create "The Godfather" zio to hold all async IOs
3318	 */
3319	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3320	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3321
3322	/*
3323	 * Create the root vdev.
3324	 */
3325	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3326
3327	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3328
3329	ASSERT(error != 0 || rvd != NULL);
3330	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3331
3332	if (error == 0 && !zfs_allocatable_devs(nvroot))
3333		error = EINVAL;
3334
3335	if (error == 0 &&
3336	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3337	    (error = spa_validate_aux(spa, nvroot, txg,
3338	    VDEV_ALLOC_ADD)) == 0) {
3339		for (int c = 0; c < rvd->vdev_children; c++) {
3340			vdev_metaslab_set_size(rvd->vdev_child[c]);
3341			vdev_expand(rvd->vdev_child[c], txg);
3342		}
3343	}
3344
3345	spa_config_exit(spa, SCL_ALL, FTAG);
3346
3347	if (error != 0) {
3348		spa_unload(spa);
3349		spa_deactivate(spa);
3350		spa_remove(spa);
3351		mutex_exit(&spa_namespace_lock);
3352		return (error);
3353	}
3354
3355	/*
3356	 * Get the list of spares, if specified.
3357	 */
3358	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3359	    &spares, &nspares) == 0) {
3360		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3361		    KM_SLEEP) == 0);
3362		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3363		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3364		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3365		spa_load_spares(spa);
3366		spa_config_exit(spa, SCL_ALL, FTAG);
3367		spa->spa_spares.sav_sync = B_TRUE;
3368	}
3369
3370	/*
3371	 * Get the list of level 2 cache devices, if specified.
3372	 */
3373	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3374	    &l2cache, &nl2cache) == 0) {
3375		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3376		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3377		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3378		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3379		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3380		spa_load_l2cache(spa);
3381		spa_config_exit(spa, SCL_ALL, FTAG);
3382		spa->spa_l2cache.sav_sync = B_TRUE;
3383	}
3384
3385	spa->spa_is_initializing = B_TRUE;
3386	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3387	spa->spa_meta_objset = dp->dp_meta_objset;
3388	spa->spa_is_initializing = B_FALSE;
3389
3390	/*
3391	 * Create DDTs (dedup tables).
3392	 */
3393	ddt_create(spa);
3394
3395	spa_update_dspace(spa);
3396
3397	tx = dmu_tx_create_assigned(dp, txg);
3398
3399	/*
3400	 * Create the pool config object.
3401	 */
3402	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3403	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3404	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3405
3406	if (zap_add(spa->spa_meta_objset,
3407	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3408	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3409		cmn_err(CE_PANIC, "failed to add pool config");
3410	}
3411
3412	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3413		spa_feature_create_zap_objects(spa, tx);
3414
3415	if (zap_add(spa->spa_meta_objset,
3416	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3417	    sizeof (uint64_t), 1, &version, tx) != 0) {
3418		cmn_err(CE_PANIC, "failed to add pool version");
3419	}
3420
3421	/* Newly created pools with the right version are always deflated. */
3422	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3423		spa->spa_deflate = TRUE;
3424		if (zap_add(spa->spa_meta_objset,
3425		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3426		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3427			cmn_err(CE_PANIC, "failed to add deflate");
3428		}
3429	}
3430
3431	/*
3432	 * Create the deferred-free bpobj.  Turn off compression
3433	 * because sync-to-convergence takes longer if the blocksize
3434	 * keeps changing.
3435	 */
3436	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3437	dmu_object_set_compress(spa->spa_meta_objset, obj,
3438	    ZIO_COMPRESS_OFF, tx);
3439	if (zap_add(spa->spa_meta_objset,
3440	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3441	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3442		cmn_err(CE_PANIC, "failed to add bpobj");
3443	}
3444	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3445	    spa->spa_meta_objset, obj));
3446
3447	/*
3448	 * Create the pool's history object.
3449	 */
3450	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3451		spa_history_create_obj(spa, tx);
3452
3453	/*
3454	 * Set pool properties.
3455	 */
3456	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3457	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3458	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3459	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3460
3461	if (props != NULL) {
3462		spa_configfile_set(spa, props, B_FALSE);
3463		spa_sync_props(spa, props, tx);
3464	}
3465
3466	dmu_tx_commit(tx);
3467
3468	spa->spa_sync_on = B_TRUE;
3469	txg_sync_start(spa->spa_dsl_pool);
3470
3471	/*
3472	 * We explicitly wait for the first transaction to complete so that our
3473	 * bean counters are appropriately updated.
3474	 */
3475	txg_wait_synced(spa->spa_dsl_pool, txg);
3476
3477	spa_config_sync(spa, B_FALSE, B_TRUE);
3478
3479	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3480		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3481	spa_history_log_version(spa, LOG_POOL_CREATE);
3482
3483	spa->spa_minref = refcount_count(&spa->spa_refcount);
3484
3485	mutex_exit(&spa_namespace_lock);
3486
3487	return (0);
3488}
3489
3490#if defined(sun)
3491#ifdef _KERNEL
3492/*
3493 * Get the root pool information from the root disk, then import the root pool
3494 * during the system boot up time.
3495 */
3496extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3497
3498static nvlist_t *
3499spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3500{
3501	nvlist_t *config;
3502	nvlist_t *nvtop, *nvroot;
3503	uint64_t pgid;
3504
3505	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3506		return (NULL);
3507
3508	/*
3509	 * Add this top-level vdev to the child array.
3510	 */
3511	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3512	    &nvtop) == 0);
3513	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3514	    &pgid) == 0);
3515	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3516
3517	/*
3518	 * Put this pool's top-level vdevs into a root vdev.
3519	 */
3520	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3521	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3522	    VDEV_TYPE_ROOT) == 0);
3523	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3524	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3525	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3526	    &nvtop, 1) == 0);
3527
3528	/*
3529	 * Replace the existing vdev_tree with the new root vdev in
3530	 * this pool's configuration (remove the old, add the new).
3531	 */
3532	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3533	nvlist_free(nvroot);
3534	return (config);
3535}
3536
3537/*
3538 * Walk the vdev tree and see if we can find a device with "better"
3539 * configuration. A configuration is "better" if the label on that
3540 * device has a more recent txg.
3541 */
3542static void
3543spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3544{
3545	for (int c = 0; c < vd->vdev_children; c++)
3546		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3547
3548	if (vd->vdev_ops->vdev_op_leaf) {
3549		nvlist_t *label;
3550		uint64_t label_txg;
3551
3552		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3553		    &label) != 0)
3554			return;
3555
3556		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3557		    &label_txg) == 0);
3558
3559		/*
3560		 * Do we have a better boot device?
3561		 */
3562		if (label_txg > *txg) {
3563			*txg = label_txg;
3564			*avd = vd;
3565		}
3566		nvlist_free(label);
3567	}
3568}
3569
3570/*
3571 * Import a root pool.
3572 *
3573 * For x86. devpath_list will consist of devid and/or physpath name of
3574 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3575 * The GRUB "findroot" command will return the vdev we should boot.
3576 *
3577 * For Sparc, devpath_list consists the physpath name of the booting device
3578 * no matter the rootpool is a single device pool or a mirrored pool.
3579 * e.g.
3580 *	"/pci@1f,0/ide@d/disk@0,0:a"
3581 */
3582int
3583spa_import_rootpool(char *devpath, char *devid)
3584{
3585	spa_t *spa;
3586	vdev_t *rvd, *bvd, *avd = NULL;
3587	nvlist_t *config, *nvtop;
3588	uint64_t guid, txg;
3589	char *pname;
3590	int error;
3591
3592	/*
3593	 * Read the label from the boot device and generate a configuration.
3594	 */
3595	config = spa_generate_rootconf(devpath, devid, &guid);
3596#if defined(_OBP) && defined(_KERNEL)
3597	if (config == NULL) {
3598		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3599			/* iscsi boot */
3600			get_iscsi_bootpath_phy(devpath);
3601			config = spa_generate_rootconf(devpath, devid, &guid);
3602		}
3603	}
3604#endif
3605	if (config == NULL) {
3606		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3607		    devpath);
3608		return (EIO);
3609	}
3610
3611	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3612	    &pname) == 0);
3613	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3614
3615	mutex_enter(&spa_namespace_lock);
3616	if ((spa = spa_lookup(pname)) != NULL) {
3617		/*
3618		 * Remove the existing root pool from the namespace so that we
3619		 * can replace it with the correct config we just read in.
3620		 */
3621		spa_remove(spa);
3622	}
3623
3624	spa = spa_add(pname, config, NULL);
3625	spa->spa_is_root = B_TRUE;
3626	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3627
3628	/*
3629	 * Build up a vdev tree based on the boot device's label config.
3630	 */
3631	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3632	    &nvtop) == 0);
3633	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3634	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3635	    VDEV_ALLOC_ROOTPOOL);
3636	spa_config_exit(spa, SCL_ALL, FTAG);
3637	if (error) {
3638		mutex_exit(&spa_namespace_lock);
3639		nvlist_free(config);
3640		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3641		    pname);
3642		return (error);
3643	}
3644
3645	/*
3646	 * Get the boot vdev.
3647	 */
3648	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3649		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3650		    (u_longlong_t)guid);
3651		error = ENOENT;
3652		goto out;
3653	}
3654
3655	/*
3656	 * Determine if there is a better boot device.
3657	 */
3658	avd = bvd;
3659	spa_alt_rootvdev(rvd, &avd, &txg);
3660	if (avd != bvd) {
3661		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3662		    "try booting from '%s'", avd->vdev_path);
3663		error = EINVAL;
3664		goto out;
3665	}
3666
3667	/*
3668	 * If the boot device is part of a spare vdev then ensure that
3669	 * we're booting off the active spare.
3670	 */
3671	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3672	    !bvd->vdev_isspare) {
3673		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3674		    "try booting from '%s'",
3675		    bvd->vdev_parent->
3676		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3677		error = EINVAL;
3678		goto out;
3679	}
3680
3681	error = 0;
3682	spa_history_log_version(spa, LOG_POOL_IMPORT);
3683out:
3684	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3685	vdev_free(rvd);
3686	spa_config_exit(spa, SCL_ALL, FTAG);
3687	mutex_exit(&spa_namespace_lock);
3688
3689	nvlist_free(config);
3690	return (error);
3691}
3692
3693#endif
3694#endif	/* sun */
3695
3696/*
3697 * Import a non-root pool into the system.
3698 */
3699int
3700spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3701{
3702	spa_t *spa;
3703	char *altroot = NULL;
3704	spa_load_state_t state = SPA_LOAD_IMPORT;
3705	zpool_rewind_policy_t policy;
3706	uint64_t mode = spa_mode_global;
3707	uint64_t readonly = B_FALSE;
3708	int error;
3709	nvlist_t *nvroot;
3710	nvlist_t **spares, **l2cache;
3711	uint_t nspares, nl2cache;
3712
3713	/*
3714	 * If a pool with this name exists, return failure.
3715	 */
3716	mutex_enter(&spa_namespace_lock);
3717	if (spa_lookup(pool) != NULL) {
3718		mutex_exit(&spa_namespace_lock);
3719		return (EEXIST);
3720	}
3721
3722	/*
3723	 * Create and initialize the spa structure.
3724	 */
3725	(void) nvlist_lookup_string(props,
3726	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3727	(void) nvlist_lookup_uint64(props,
3728	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3729	if (readonly)
3730		mode = FREAD;
3731	spa = spa_add(pool, config, altroot);
3732	spa->spa_import_flags = flags;
3733
3734	/*
3735	 * Verbatim import - Take a pool and insert it into the namespace
3736	 * as if it had been loaded at boot.
3737	 */
3738	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3739		if (props != NULL)
3740			spa_configfile_set(spa, props, B_FALSE);
3741
3742		spa_config_sync(spa, B_FALSE, B_TRUE);
3743
3744		mutex_exit(&spa_namespace_lock);
3745		spa_history_log_version(spa, LOG_POOL_IMPORT);
3746
3747		return (0);
3748	}
3749
3750	spa_activate(spa, mode);
3751
3752	/*
3753	 * Don't start async tasks until we know everything is healthy.
3754	 */
3755	spa_async_suspend(spa);
3756
3757	zpool_get_rewind_policy(config, &policy);
3758	if (policy.zrp_request & ZPOOL_DO_REWIND)
3759		state = SPA_LOAD_RECOVER;
3760
3761	/*
3762	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3763	 * because the user-supplied config is actually the one to trust when
3764	 * doing an import.
3765	 */
3766	if (state != SPA_LOAD_RECOVER)
3767		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3768
3769	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3770	    policy.zrp_request);
3771
3772	/*
3773	 * Propagate anything learned while loading the pool and pass it
3774	 * back to caller (i.e. rewind info, missing devices, etc).
3775	 */
3776	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3777	    spa->spa_load_info) == 0);
3778
3779	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3780	/*
3781	 * Toss any existing sparelist, as it doesn't have any validity
3782	 * anymore, and conflicts with spa_has_spare().
3783	 */
3784	if (spa->spa_spares.sav_config) {
3785		nvlist_free(spa->spa_spares.sav_config);
3786		spa->spa_spares.sav_config = NULL;
3787		spa_load_spares(spa);
3788	}
3789	if (spa->spa_l2cache.sav_config) {
3790		nvlist_free(spa->spa_l2cache.sav_config);
3791		spa->spa_l2cache.sav_config = NULL;
3792		spa_load_l2cache(spa);
3793	}
3794
3795	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3796	    &nvroot) == 0);
3797	if (error == 0)
3798		error = spa_validate_aux(spa, nvroot, -1ULL,
3799		    VDEV_ALLOC_SPARE);
3800	if (error == 0)
3801		error = spa_validate_aux(spa, nvroot, -1ULL,
3802		    VDEV_ALLOC_L2CACHE);
3803	spa_config_exit(spa, SCL_ALL, FTAG);
3804
3805	if (props != NULL)
3806		spa_configfile_set(spa, props, B_FALSE);
3807
3808	if (error != 0 || (props && spa_writeable(spa) &&
3809	    (error = spa_prop_set(spa, props)))) {
3810		spa_unload(spa);
3811		spa_deactivate(spa);
3812		spa_remove(spa);
3813		mutex_exit(&spa_namespace_lock);
3814		return (error);
3815	}
3816
3817	spa_async_resume(spa);
3818
3819	/*
3820	 * Override any spares and level 2 cache devices as specified by
3821	 * the user, as these may have correct device names/devids, etc.
3822	 */
3823	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3824	    &spares, &nspares) == 0) {
3825		if (spa->spa_spares.sav_config)
3826			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3827			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3828		else
3829			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3830			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3831		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3832		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3833		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3834		spa_load_spares(spa);
3835		spa_config_exit(spa, SCL_ALL, FTAG);
3836		spa->spa_spares.sav_sync = B_TRUE;
3837	}
3838	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3839	    &l2cache, &nl2cache) == 0) {
3840		if (spa->spa_l2cache.sav_config)
3841			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3842			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3843		else
3844			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3845			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3846		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3847		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3848		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3849		spa_load_l2cache(spa);
3850		spa_config_exit(spa, SCL_ALL, FTAG);
3851		spa->spa_l2cache.sav_sync = B_TRUE;
3852	}
3853
3854	/*
3855	 * Check for any removed devices.
3856	 */
3857	if (spa->spa_autoreplace) {
3858		spa_aux_check_removed(&spa->spa_spares);
3859		spa_aux_check_removed(&spa->spa_l2cache);
3860	}
3861
3862	if (spa_writeable(spa)) {
3863		/*
3864		 * Update the config cache to include the newly-imported pool.
3865		 */
3866		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3867	}
3868
3869	/*
3870	 * It's possible that the pool was expanded while it was exported.
3871	 * We kick off an async task to handle this for us.
3872	 */
3873	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3874
3875	mutex_exit(&spa_namespace_lock);
3876	spa_history_log_version(spa, LOG_POOL_IMPORT);
3877
3878#ifdef __FreeBSD__
3879#ifdef _KERNEL
3880	zvol_create_minors(pool);
3881#endif
3882#endif
3883	return (0);
3884}
3885
3886nvlist_t *
3887spa_tryimport(nvlist_t *tryconfig)
3888{
3889	nvlist_t *config = NULL;
3890	char *poolname;
3891	spa_t *spa;
3892	uint64_t state;
3893	int error;
3894
3895	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3896		return (NULL);
3897
3898	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3899		return (NULL);
3900
3901	/*
3902	 * Create and initialize the spa structure.
3903	 */
3904	mutex_enter(&spa_namespace_lock);
3905	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3906	spa_activate(spa, FREAD);
3907
3908	/*
3909	 * Pass off the heavy lifting to spa_load().
3910	 * Pass TRUE for mosconfig because the user-supplied config
3911	 * is actually the one to trust when doing an import.
3912	 */
3913	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3914
3915	/*
3916	 * If 'tryconfig' was at least parsable, return the current config.
3917	 */
3918	if (spa->spa_root_vdev != NULL) {
3919		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3920		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3921		    poolname) == 0);
3922		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3923		    state) == 0);
3924		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3925		    spa->spa_uberblock.ub_timestamp) == 0);
3926		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3927		    spa->spa_load_info) == 0);
3928
3929		/*
3930		 * If the bootfs property exists on this pool then we
3931		 * copy it out so that external consumers can tell which
3932		 * pools are bootable.
3933		 */
3934		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3935			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3936
3937			/*
3938			 * We have to play games with the name since the
3939			 * pool was opened as TRYIMPORT_NAME.
3940			 */
3941			if (dsl_dsobj_to_dsname(spa_name(spa),
3942			    spa->spa_bootfs, tmpname) == 0) {
3943				char *cp;
3944				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3945
3946				cp = strchr(tmpname, '/');
3947				if (cp == NULL) {
3948					(void) strlcpy(dsname, tmpname,
3949					    MAXPATHLEN);
3950				} else {
3951					(void) snprintf(dsname, MAXPATHLEN,
3952					    "%s/%s", poolname, ++cp);
3953				}
3954				VERIFY(nvlist_add_string(config,
3955				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3956				kmem_free(dsname, MAXPATHLEN);
3957			}
3958			kmem_free(tmpname, MAXPATHLEN);
3959		}
3960
3961		/*
3962		 * Add the list of hot spares and level 2 cache devices.
3963		 */
3964		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3965		spa_add_spares(spa, config);
3966		spa_add_l2cache(spa, config);
3967		spa_config_exit(spa, SCL_CONFIG, FTAG);
3968	}
3969
3970	spa_unload(spa);
3971	spa_deactivate(spa);
3972	spa_remove(spa);
3973	mutex_exit(&spa_namespace_lock);
3974
3975	return (config);
3976}
3977
3978/*
3979 * Pool export/destroy
3980 *
3981 * The act of destroying or exporting a pool is very simple.  We make sure there
3982 * is no more pending I/O and any references to the pool are gone.  Then, we
3983 * update the pool state and sync all the labels to disk, removing the
3984 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3985 * we don't sync the labels or remove the configuration cache.
3986 */
3987static int
3988spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3989    boolean_t force, boolean_t hardforce)
3990{
3991	spa_t *spa;
3992
3993	if (oldconfig)
3994		*oldconfig = NULL;
3995
3996	if (!(spa_mode_global & FWRITE))
3997		return (EROFS);
3998
3999	mutex_enter(&spa_namespace_lock);
4000	if ((spa = spa_lookup(pool)) == NULL) {
4001		mutex_exit(&spa_namespace_lock);
4002		return (ENOENT);
4003	}
4004
4005	/*
4006	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4007	 * reacquire the namespace lock, and see if we can export.
4008	 */
4009	spa_open_ref(spa, FTAG);
4010	mutex_exit(&spa_namespace_lock);
4011	spa_async_suspend(spa);
4012	mutex_enter(&spa_namespace_lock);
4013	spa_close(spa, FTAG);
4014
4015	/*
4016	 * The pool will be in core if it's openable,
4017	 * in which case we can modify its state.
4018	 */
4019	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4020		/*
4021		 * Objsets may be open only because they're dirty, so we
4022		 * have to force it to sync before checking spa_refcnt.
4023		 */
4024		txg_wait_synced(spa->spa_dsl_pool, 0);
4025
4026		/*
4027		 * A pool cannot be exported or destroyed if there are active
4028		 * references.  If we are resetting a pool, allow references by
4029		 * fault injection handlers.
4030		 */
4031		if (!spa_refcount_zero(spa) ||
4032		    (spa->spa_inject_ref != 0 &&
4033		    new_state != POOL_STATE_UNINITIALIZED)) {
4034			spa_async_resume(spa);
4035			mutex_exit(&spa_namespace_lock);
4036			return (EBUSY);
4037		}
4038
4039		/*
4040		 * A pool cannot be exported if it has an active shared spare.
4041		 * This is to prevent other pools stealing the active spare
4042		 * from an exported pool. At user's own will, such pool can
4043		 * be forcedly exported.
4044		 */
4045		if (!force && new_state == POOL_STATE_EXPORTED &&
4046		    spa_has_active_shared_spare(spa)) {
4047			spa_async_resume(spa);
4048			mutex_exit(&spa_namespace_lock);
4049			return (EXDEV);
4050		}
4051
4052		/*
4053		 * We want this to be reflected on every label,
4054		 * so mark them all dirty.  spa_unload() will do the
4055		 * final sync that pushes these changes out.
4056		 */
4057		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4058			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4059			spa->spa_state = new_state;
4060			spa->spa_final_txg = spa_last_synced_txg(spa) +
4061			    TXG_DEFER_SIZE + 1;
4062			vdev_config_dirty(spa->spa_root_vdev);
4063			spa_config_exit(spa, SCL_ALL, FTAG);
4064		}
4065	}
4066
4067	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4068
4069	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4070		spa_unload(spa);
4071		spa_deactivate(spa);
4072	}
4073
4074	if (oldconfig && spa->spa_config)
4075		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4076
4077	if (new_state != POOL_STATE_UNINITIALIZED) {
4078		if (!hardforce)
4079			spa_config_sync(spa, B_TRUE, B_TRUE);
4080		spa_remove(spa);
4081	}
4082	mutex_exit(&spa_namespace_lock);
4083
4084	return (0);
4085}
4086
4087/*
4088 * Destroy a storage pool.
4089 */
4090int
4091spa_destroy(char *pool)
4092{
4093	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4094	    B_FALSE, B_FALSE));
4095}
4096
4097/*
4098 * Export a storage pool.
4099 */
4100int
4101spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4102    boolean_t hardforce)
4103{
4104	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4105	    force, hardforce));
4106}
4107
4108/*
4109 * Similar to spa_export(), this unloads the spa_t without actually removing it
4110 * from the namespace in any way.
4111 */
4112int
4113spa_reset(char *pool)
4114{
4115	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4116	    B_FALSE, B_FALSE));
4117}
4118
4119/*
4120 * ==========================================================================
4121 * Device manipulation
4122 * ==========================================================================
4123 */
4124
4125/*
4126 * Add a device to a storage pool.
4127 */
4128int
4129spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4130{
4131	uint64_t txg, id;
4132	int error;
4133	vdev_t *rvd = spa->spa_root_vdev;
4134	vdev_t *vd, *tvd;
4135	nvlist_t **spares, **l2cache;
4136	uint_t nspares, nl2cache;
4137
4138	ASSERT(spa_writeable(spa));
4139
4140	txg = spa_vdev_enter(spa);
4141
4142	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4143	    VDEV_ALLOC_ADD)) != 0)
4144		return (spa_vdev_exit(spa, NULL, txg, error));
4145
4146	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4147
4148	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4149	    &nspares) != 0)
4150		nspares = 0;
4151
4152	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4153	    &nl2cache) != 0)
4154		nl2cache = 0;
4155
4156	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4157		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4158
4159	if (vd->vdev_children != 0 &&
4160	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4161		return (spa_vdev_exit(spa, vd, txg, error));
4162
4163	/*
4164	 * We must validate the spares and l2cache devices after checking the
4165	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4166	 */
4167	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4168		return (spa_vdev_exit(spa, vd, txg, error));
4169
4170	/*
4171	 * Transfer each new top-level vdev from vd to rvd.
4172	 */
4173	for (int c = 0; c < vd->vdev_children; c++) {
4174
4175		/*
4176		 * Set the vdev id to the first hole, if one exists.
4177		 */
4178		for (id = 0; id < rvd->vdev_children; id++) {
4179			if (rvd->vdev_child[id]->vdev_ishole) {
4180				vdev_free(rvd->vdev_child[id]);
4181				break;
4182			}
4183		}
4184		tvd = vd->vdev_child[c];
4185		vdev_remove_child(vd, tvd);
4186		tvd->vdev_id = id;
4187		vdev_add_child(rvd, tvd);
4188		vdev_config_dirty(tvd);
4189	}
4190
4191	if (nspares != 0) {
4192		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4193		    ZPOOL_CONFIG_SPARES);
4194		spa_load_spares(spa);
4195		spa->spa_spares.sav_sync = B_TRUE;
4196	}
4197
4198	if (nl2cache != 0) {
4199		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4200		    ZPOOL_CONFIG_L2CACHE);
4201		spa_load_l2cache(spa);
4202		spa->spa_l2cache.sav_sync = B_TRUE;
4203	}
4204
4205	/*
4206	 * We have to be careful when adding new vdevs to an existing pool.
4207	 * If other threads start allocating from these vdevs before we
4208	 * sync the config cache, and we lose power, then upon reboot we may
4209	 * fail to open the pool because there are DVAs that the config cache
4210	 * can't translate.  Therefore, we first add the vdevs without
4211	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4212	 * and then let spa_config_update() initialize the new metaslabs.
4213	 *
4214	 * spa_load() checks for added-but-not-initialized vdevs, so that
4215	 * if we lose power at any point in this sequence, the remaining
4216	 * steps will be completed the next time we load the pool.
4217	 */
4218	(void) spa_vdev_exit(spa, vd, txg, 0);
4219
4220	mutex_enter(&spa_namespace_lock);
4221	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4222	mutex_exit(&spa_namespace_lock);
4223
4224	return (0);
4225}
4226
4227/*
4228 * Attach a device to a mirror.  The arguments are the path to any device
4229 * in the mirror, and the nvroot for the new device.  If the path specifies
4230 * a device that is not mirrored, we automatically insert the mirror vdev.
4231 *
4232 * If 'replacing' is specified, the new device is intended to replace the
4233 * existing device; in this case the two devices are made into their own
4234 * mirror using the 'replacing' vdev, which is functionally identical to
4235 * the mirror vdev (it actually reuses all the same ops) but has a few
4236 * extra rules: you can't attach to it after it's been created, and upon
4237 * completion of resilvering, the first disk (the one being replaced)
4238 * is automatically detached.
4239 */
4240int
4241spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4242{
4243	uint64_t txg, dtl_max_txg;
4244	vdev_t *rvd = spa->spa_root_vdev;
4245	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4246	vdev_ops_t *pvops;
4247	char *oldvdpath, *newvdpath;
4248	int newvd_isspare;
4249	int error;
4250
4251	ASSERT(spa_writeable(spa));
4252
4253	txg = spa_vdev_enter(spa);
4254
4255	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4256
4257	if (oldvd == NULL)
4258		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4259
4260	if (!oldvd->vdev_ops->vdev_op_leaf)
4261		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4262
4263	pvd = oldvd->vdev_parent;
4264
4265	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4266	    VDEV_ALLOC_ATTACH)) != 0)
4267		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4268
4269	if (newrootvd->vdev_children != 1)
4270		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4271
4272	newvd = newrootvd->vdev_child[0];
4273
4274	if (!newvd->vdev_ops->vdev_op_leaf)
4275		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4276
4277	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4278		return (spa_vdev_exit(spa, newrootvd, txg, error));
4279
4280	/*
4281	 * Spares can't replace logs
4282	 */
4283	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4284		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4285
4286	if (!replacing) {
4287		/*
4288		 * For attach, the only allowable parent is a mirror or the root
4289		 * vdev.
4290		 */
4291		if (pvd->vdev_ops != &vdev_mirror_ops &&
4292		    pvd->vdev_ops != &vdev_root_ops)
4293			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4294
4295		pvops = &vdev_mirror_ops;
4296	} else {
4297		/*
4298		 * Active hot spares can only be replaced by inactive hot
4299		 * spares.
4300		 */
4301		if (pvd->vdev_ops == &vdev_spare_ops &&
4302		    oldvd->vdev_isspare &&
4303		    !spa_has_spare(spa, newvd->vdev_guid))
4304			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4305
4306		/*
4307		 * If the source is a hot spare, and the parent isn't already a
4308		 * spare, then we want to create a new hot spare.  Otherwise, we
4309		 * want to create a replacing vdev.  The user is not allowed to
4310		 * attach to a spared vdev child unless the 'isspare' state is
4311		 * the same (spare replaces spare, non-spare replaces
4312		 * non-spare).
4313		 */
4314		if (pvd->vdev_ops == &vdev_replacing_ops &&
4315		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4316			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4317		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4318		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4319			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4320		}
4321
4322		if (newvd->vdev_isspare)
4323			pvops = &vdev_spare_ops;
4324		else
4325			pvops = &vdev_replacing_ops;
4326	}
4327
4328	/*
4329	 * Make sure the new device is big enough.
4330	 */
4331	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4332		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4333
4334	/*
4335	 * The new device cannot have a higher alignment requirement
4336	 * than the top-level vdev.
4337	 */
4338	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4339		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4340
4341	/*
4342	 * If this is an in-place replacement, update oldvd's path and devid
4343	 * to make it distinguishable from newvd, and unopenable from now on.
4344	 */
4345	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4346		spa_strfree(oldvd->vdev_path);
4347		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4348		    KM_SLEEP);
4349		(void) sprintf(oldvd->vdev_path, "%s/%s",
4350		    newvd->vdev_path, "old");
4351		if (oldvd->vdev_devid != NULL) {
4352			spa_strfree(oldvd->vdev_devid);
4353			oldvd->vdev_devid = NULL;
4354		}
4355	}
4356
4357	/* mark the device being resilvered */
4358	newvd->vdev_resilvering = B_TRUE;
4359
4360	/*
4361	 * If the parent is not a mirror, or if we're replacing, insert the new
4362	 * mirror/replacing/spare vdev above oldvd.
4363	 */
4364	if (pvd->vdev_ops != pvops)
4365		pvd = vdev_add_parent(oldvd, pvops);
4366
4367	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4368	ASSERT(pvd->vdev_ops == pvops);
4369	ASSERT(oldvd->vdev_parent == pvd);
4370
4371	/*
4372	 * Extract the new device from its root and add it to pvd.
4373	 */
4374	vdev_remove_child(newrootvd, newvd);
4375	newvd->vdev_id = pvd->vdev_children;
4376	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4377	vdev_add_child(pvd, newvd);
4378
4379	tvd = newvd->vdev_top;
4380	ASSERT(pvd->vdev_top == tvd);
4381	ASSERT(tvd->vdev_parent == rvd);
4382
4383	vdev_config_dirty(tvd);
4384
4385	/*
4386	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4387	 * for any dmu_sync-ed blocks.  It will propagate upward when
4388	 * spa_vdev_exit() calls vdev_dtl_reassess().
4389	 */
4390	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4391
4392	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4393	    dtl_max_txg - TXG_INITIAL);
4394
4395	if (newvd->vdev_isspare) {
4396		spa_spare_activate(newvd);
4397		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4398	}
4399
4400	oldvdpath = spa_strdup(oldvd->vdev_path);
4401	newvdpath = spa_strdup(newvd->vdev_path);
4402	newvd_isspare = newvd->vdev_isspare;
4403
4404	/*
4405	 * Mark newvd's DTL dirty in this txg.
4406	 */
4407	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4408
4409	/*
4410	 * Restart the resilver
4411	 */
4412	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4413
4414	/*
4415	 * Commit the config
4416	 */
4417	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4418
4419	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4420	    "%s vdev=%s %s vdev=%s",
4421	    replacing && newvd_isspare ? "spare in" :
4422	    replacing ? "replace" : "attach", newvdpath,
4423	    replacing ? "for" : "to", oldvdpath);
4424
4425	spa_strfree(oldvdpath);
4426	spa_strfree(newvdpath);
4427
4428	if (spa->spa_bootfs)
4429		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4430
4431	return (0);
4432}
4433
4434/*
4435 * Detach a device from a mirror or replacing vdev.
4436 * If 'replace_done' is specified, only detach if the parent
4437 * is a replacing vdev.
4438 */
4439int
4440spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4441{
4442	uint64_t txg;
4443	int error;
4444	vdev_t *rvd = spa->spa_root_vdev;
4445	vdev_t *vd, *pvd, *cvd, *tvd;
4446	boolean_t unspare = B_FALSE;
4447	uint64_t unspare_guid;
4448	char *vdpath;
4449
4450	ASSERT(spa_writeable(spa));
4451
4452	txg = spa_vdev_enter(spa);
4453
4454	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4455
4456	if (vd == NULL)
4457		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4458
4459	if (!vd->vdev_ops->vdev_op_leaf)
4460		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4461
4462	pvd = vd->vdev_parent;
4463
4464	/*
4465	 * If the parent/child relationship is not as expected, don't do it.
4466	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4467	 * vdev that's replacing B with C.  The user's intent in replacing
4468	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4469	 * the replace by detaching C, the expected behavior is to end up
4470	 * M(A,B).  But suppose that right after deciding to detach C,
4471	 * the replacement of B completes.  We would have M(A,C), and then
4472	 * ask to detach C, which would leave us with just A -- not what
4473	 * the user wanted.  To prevent this, we make sure that the
4474	 * parent/child relationship hasn't changed -- in this example,
4475	 * that C's parent is still the replacing vdev R.
4476	 */
4477	if (pvd->vdev_guid != pguid && pguid != 0)
4478		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4479
4480	/*
4481	 * Only 'replacing' or 'spare' vdevs can be replaced.
4482	 */
4483	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4484	    pvd->vdev_ops != &vdev_spare_ops)
4485		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4486
4487	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4488	    spa_version(spa) >= SPA_VERSION_SPARES);
4489
4490	/*
4491	 * Only mirror, replacing, and spare vdevs support detach.
4492	 */
4493	if (pvd->vdev_ops != &vdev_replacing_ops &&
4494	    pvd->vdev_ops != &vdev_mirror_ops &&
4495	    pvd->vdev_ops != &vdev_spare_ops)
4496		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4497
4498	/*
4499	 * If this device has the only valid copy of some data,
4500	 * we cannot safely detach it.
4501	 */
4502	if (vdev_dtl_required(vd))
4503		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4504
4505	ASSERT(pvd->vdev_children >= 2);
4506
4507	/*
4508	 * If we are detaching the second disk from a replacing vdev, then
4509	 * check to see if we changed the original vdev's path to have "/old"
4510	 * at the end in spa_vdev_attach().  If so, undo that change now.
4511	 */
4512	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4513	    vd->vdev_path != NULL) {
4514		size_t len = strlen(vd->vdev_path);
4515
4516		for (int c = 0; c < pvd->vdev_children; c++) {
4517			cvd = pvd->vdev_child[c];
4518
4519			if (cvd == vd || cvd->vdev_path == NULL)
4520				continue;
4521
4522			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4523			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4524				spa_strfree(cvd->vdev_path);
4525				cvd->vdev_path = spa_strdup(vd->vdev_path);
4526				break;
4527			}
4528		}
4529	}
4530
4531	/*
4532	 * If we are detaching the original disk from a spare, then it implies
4533	 * that the spare should become a real disk, and be removed from the
4534	 * active spare list for the pool.
4535	 */
4536	if (pvd->vdev_ops == &vdev_spare_ops &&
4537	    vd->vdev_id == 0 &&
4538	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4539		unspare = B_TRUE;
4540
4541	/*
4542	 * Erase the disk labels so the disk can be used for other things.
4543	 * This must be done after all other error cases are handled,
4544	 * but before we disembowel vd (so we can still do I/O to it).
4545	 * But if we can't do it, don't treat the error as fatal --
4546	 * it may be that the unwritability of the disk is the reason
4547	 * it's being detached!
4548	 */
4549	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4550
4551	/*
4552	 * Remove vd from its parent and compact the parent's children.
4553	 */
4554	vdev_remove_child(pvd, vd);
4555	vdev_compact_children(pvd);
4556
4557	/*
4558	 * Remember one of the remaining children so we can get tvd below.
4559	 */
4560	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4561
4562	/*
4563	 * If we need to remove the remaining child from the list of hot spares,
4564	 * do it now, marking the vdev as no longer a spare in the process.
4565	 * We must do this before vdev_remove_parent(), because that can
4566	 * change the GUID if it creates a new toplevel GUID.  For a similar
4567	 * reason, we must remove the spare now, in the same txg as the detach;
4568	 * otherwise someone could attach a new sibling, change the GUID, and
4569	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4570	 */
4571	if (unspare) {
4572		ASSERT(cvd->vdev_isspare);
4573		spa_spare_remove(cvd);
4574		unspare_guid = cvd->vdev_guid;
4575		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4576		cvd->vdev_unspare = B_TRUE;
4577	}
4578
4579	/*
4580	 * If the parent mirror/replacing vdev only has one child,
4581	 * the parent is no longer needed.  Remove it from the tree.
4582	 */
4583	if (pvd->vdev_children == 1) {
4584		if (pvd->vdev_ops == &vdev_spare_ops)
4585			cvd->vdev_unspare = B_FALSE;
4586		vdev_remove_parent(cvd);
4587		cvd->vdev_resilvering = B_FALSE;
4588	}
4589
4590
4591	/*
4592	 * We don't set tvd until now because the parent we just removed
4593	 * may have been the previous top-level vdev.
4594	 */
4595	tvd = cvd->vdev_top;
4596	ASSERT(tvd->vdev_parent == rvd);
4597
4598	/*
4599	 * Reevaluate the parent vdev state.
4600	 */
4601	vdev_propagate_state(cvd);
4602
4603	/*
4604	 * If the 'autoexpand' property is set on the pool then automatically
4605	 * try to expand the size of the pool. For example if the device we
4606	 * just detached was smaller than the others, it may be possible to
4607	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4608	 * first so that we can obtain the updated sizes of the leaf vdevs.
4609	 */
4610	if (spa->spa_autoexpand) {
4611		vdev_reopen(tvd);
4612		vdev_expand(tvd, txg);
4613	}
4614
4615	vdev_config_dirty(tvd);
4616
4617	/*
4618	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4619	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4620	 * But first make sure we're not on any *other* txg's DTL list, to
4621	 * prevent vd from being accessed after it's freed.
4622	 */
4623	vdpath = spa_strdup(vd->vdev_path);
4624	for (int t = 0; t < TXG_SIZE; t++)
4625		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4626	vd->vdev_detached = B_TRUE;
4627	vdev_dirty(tvd, VDD_DTL, vd, txg);
4628
4629	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4630
4631	/* hang on to the spa before we release the lock */
4632	spa_open_ref(spa, FTAG);
4633
4634	error = spa_vdev_exit(spa, vd, txg, 0);
4635
4636	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4637	    "vdev=%s", vdpath);
4638	spa_strfree(vdpath);
4639
4640	/*
4641	 * If this was the removal of the original device in a hot spare vdev,
4642	 * then we want to go through and remove the device from the hot spare
4643	 * list of every other pool.
4644	 */
4645	if (unspare) {
4646		spa_t *altspa = NULL;
4647
4648		mutex_enter(&spa_namespace_lock);
4649		while ((altspa = spa_next(altspa)) != NULL) {
4650			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4651			    altspa == spa)
4652				continue;
4653
4654			spa_open_ref(altspa, FTAG);
4655			mutex_exit(&spa_namespace_lock);
4656			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4657			mutex_enter(&spa_namespace_lock);
4658			spa_close(altspa, FTAG);
4659		}
4660		mutex_exit(&spa_namespace_lock);
4661
4662		/* search the rest of the vdevs for spares to remove */
4663		spa_vdev_resilver_done(spa);
4664	}
4665
4666	/* all done with the spa; OK to release */
4667	mutex_enter(&spa_namespace_lock);
4668	spa_close(spa, FTAG);
4669	mutex_exit(&spa_namespace_lock);
4670
4671	return (error);
4672}
4673
4674/*
4675 * Split a set of devices from their mirrors, and create a new pool from them.
4676 */
4677int
4678spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4679    nvlist_t *props, boolean_t exp)
4680{
4681	int error = 0;
4682	uint64_t txg, *glist;
4683	spa_t *newspa;
4684	uint_t c, children, lastlog;
4685	nvlist_t **child, *nvl, *tmp;
4686	dmu_tx_t *tx;
4687	char *altroot = NULL;
4688	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4689	boolean_t activate_slog;
4690
4691	ASSERT(spa_writeable(spa));
4692
4693	txg = spa_vdev_enter(spa);
4694
4695	/* clear the log and flush everything up to now */
4696	activate_slog = spa_passivate_log(spa);
4697	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4698	error = spa_offline_log(spa);
4699	txg = spa_vdev_config_enter(spa);
4700
4701	if (activate_slog)
4702		spa_activate_log(spa);
4703
4704	if (error != 0)
4705		return (spa_vdev_exit(spa, NULL, txg, error));
4706
4707	/* check new spa name before going any further */
4708	if (spa_lookup(newname) != NULL)
4709		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4710
4711	/*
4712	 * scan through all the children to ensure they're all mirrors
4713	 */
4714	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4715	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4716	    &children) != 0)
4717		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4718
4719	/* first, check to ensure we've got the right child count */
4720	rvd = spa->spa_root_vdev;
4721	lastlog = 0;
4722	for (c = 0; c < rvd->vdev_children; c++) {
4723		vdev_t *vd = rvd->vdev_child[c];
4724
4725		/* don't count the holes & logs as children */
4726		if (vd->vdev_islog || vd->vdev_ishole) {
4727			if (lastlog == 0)
4728				lastlog = c;
4729			continue;
4730		}
4731
4732		lastlog = 0;
4733	}
4734	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4735		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4736
4737	/* next, ensure no spare or cache devices are part of the split */
4738	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4739	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4740		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4741
4742	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4743	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4744
4745	/* then, loop over each vdev and validate it */
4746	for (c = 0; c < children; c++) {
4747		uint64_t is_hole = 0;
4748
4749		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4750		    &is_hole);
4751
4752		if (is_hole != 0) {
4753			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4754			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4755				continue;
4756			} else {
4757				error = EINVAL;
4758				break;
4759			}
4760		}
4761
4762		/* which disk is going to be split? */
4763		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4764		    &glist[c]) != 0) {
4765			error = EINVAL;
4766			break;
4767		}
4768
4769		/* look it up in the spa */
4770		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4771		if (vml[c] == NULL) {
4772			error = ENODEV;
4773			break;
4774		}
4775
4776		/* make sure there's nothing stopping the split */
4777		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4778		    vml[c]->vdev_islog ||
4779		    vml[c]->vdev_ishole ||
4780		    vml[c]->vdev_isspare ||
4781		    vml[c]->vdev_isl2cache ||
4782		    !vdev_writeable(vml[c]) ||
4783		    vml[c]->vdev_children != 0 ||
4784		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4785		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4786			error = EINVAL;
4787			break;
4788		}
4789
4790		if (vdev_dtl_required(vml[c])) {
4791			error = EBUSY;
4792			break;
4793		}
4794
4795		/* we need certain info from the top level */
4796		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4797		    vml[c]->vdev_top->vdev_ms_array) == 0);
4798		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4799		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4800		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4801		    vml[c]->vdev_top->vdev_asize) == 0);
4802		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4803		    vml[c]->vdev_top->vdev_ashift) == 0);
4804	}
4805
4806	if (error != 0) {
4807		kmem_free(vml, children * sizeof (vdev_t *));
4808		kmem_free(glist, children * sizeof (uint64_t));
4809		return (spa_vdev_exit(spa, NULL, txg, error));
4810	}
4811
4812	/* stop writers from using the disks */
4813	for (c = 0; c < children; c++) {
4814		if (vml[c] != NULL)
4815			vml[c]->vdev_offline = B_TRUE;
4816	}
4817	vdev_reopen(spa->spa_root_vdev);
4818
4819	/*
4820	 * Temporarily record the splitting vdevs in the spa config.  This
4821	 * will disappear once the config is regenerated.
4822	 */
4823	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4824	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4825	    glist, children) == 0);
4826	kmem_free(glist, children * sizeof (uint64_t));
4827
4828	mutex_enter(&spa->spa_props_lock);
4829	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4830	    nvl) == 0);
4831	mutex_exit(&spa->spa_props_lock);
4832	spa->spa_config_splitting = nvl;
4833	vdev_config_dirty(spa->spa_root_vdev);
4834
4835	/* configure and create the new pool */
4836	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4837	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4838	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4839	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4840	    spa_version(spa)) == 0);
4841	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4842	    spa->spa_config_txg) == 0);
4843	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4844	    spa_generate_guid(NULL)) == 0);
4845	(void) nvlist_lookup_string(props,
4846	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4847
4848	/* add the new pool to the namespace */
4849	newspa = spa_add(newname, config, altroot);
4850	newspa->spa_config_txg = spa->spa_config_txg;
4851	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4852
4853	/* release the spa config lock, retaining the namespace lock */
4854	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4855
4856	if (zio_injection_enabled)
4857		zio_handle_panic_injection(spa, FTAG, 1);
4858
4859	spa_activate(newspa, spa_mode_global);
4860	spa_async_suspend(newspa);
4861
4862#ifndef sun
4863	/* mark that we are creating new spa by splitting */
4864	newspa->spa_splitting_newspa = B_TRUE;
4865#endif
4866	/* create the new pool from the disks of the original pool */
4867	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4868#ifndef sun
4869	newspa->spa_splitting_newspa = B_FALSE;
4870#endif
4871	if (error)
4872		goto out;
4873
4874	/* if that worked, generate a real config for the new pool */
4875	if (newspa->spa_root_vdev != NULL) {
4876		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4877		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4878		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4879		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4880		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4881		    B_TRUE));
4882	}
4883
4884	/* set the props */
4885	if (props != NULL) {
4886		spa_configfile_set(newspa, props, B_FALSE);
4887		error = spa_prop_set(newspa, props);
4888		if (error)
4889			goto out;
4890	}
4891
4892	/* flush everything */
4893	txg = spa_vdev_config_enter(newspa);
4894	vdev_config_dirty(newspa->spa_root_vdev);
4895	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4896
4897	if (zio_injection_enabled)
4898		zio_handle_panic_injection(spa, FTAG, 2);
4899
4900	spa_async_resume(newspa);
4901
4902	/* finally, update the original pool's config */
4903	txg = spa_vdev_config_enter(spa);
4904	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4905	error = dmu_tx_assign(tx, TXG_WAIT);
4906	if (error != 0)
4907		dmu_tx_abort(tx);
4908	for (c = 0; c < children; c++) {
4909		if (vml[c] != NULL) {
4910			vdev_split(vml[c]);
4911			if (error == 0)
4912				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4913				    spa, tx, "vdev=%s",
4914				    vml[c]->vdev_path);
4915			vdev_free(vml[c]);
4916		}
4917	}
4918	vdev_config_dirty(spa->spa_root_vdev);
4919	spa->spa_config_splitting = NULL;
4920	nvlist_free(nvl);
4921	if (error == 0)
4922		dmu_tx_commit(tx);
4923	(void) spa_vdev_exit(spa, NULL, txg, 0);
4924
4925	if (zio_injection_enabled)
4926		zio_handle_panic_injection(spa, FTAG, 3);
4927
4928	/* split is complete; log a history record */
4929	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4930	    "split new pool %s from pool %s", newname, spa_name(spa));
4931
4932	kmem_free(vml, children * sizeof (vdev_t *));
4933
4934	/* if we're not going to mount the filesystems in userland, export */
4935	if (exp)
4936		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4937		    B_FALSE, B_FALSE);
4938
4939	return (error);
4940
4941out:
4942	spa_unload(newspa);
4943	spa_deactivate(newspa);
4944	spa_remove(newspa);
4945
4946	txg = spa_vdev_config_enter(spa);
4947
4948	/* re-online all offlined disks */
4949	for (c = 0; c < children; c++) {
4950		if (vml[c] != NULL)
4951			vml[c]->vdev_offline = B_FALSE;
4952	}
4953	vdev_reopen(spa->spa_root_vdev);
4954
4955	nvlist_free(spa->spa_config_splitting);
4956	spa->spa_config_splitting = NULL;
4957	(void) spa_vdev_exit(spa, NULL, txg, error);
4958
4959	kmem_free(vml, children * sizeof (vdev_t *));
4960	return (error);
4961}
4962
4963static nvlist_t *
4964spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4965{
4966	for (int i = 0; i < count; i++) {
4967		uint64_t guid;
4968
4969		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4970		    &guid) == 0);
4971
4972		if (guid == target_guid)
4973			return (nvpp[i]);
4974	}
4975
4976	return (NULL);
4977}
4978
4979static void
4980spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4981	nvlist_t *dev_to_remove)
4982{
4983	nvlist_t **newdev = NULL;
4984
4985	if (count > 1)
4986		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4987
4988	for (int i = 0, j = 0; i < count; i++) {
4989		if (dev[i] == dev_to_remove)
4990			continue;
4991		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4992	}
4993
4994	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4995	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4996
4997	for (int i = 0; i < count - 1; i++)
4998		nvlist_free(newdev[i]);
4999
5000	if (count > 1)
5001		kmem_free(newdev, (count - 1) * sizeof (void *));
5002}
5003
5004/*
5005 * Evacuate the device.
5006 */
5007static int
5008spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5009{
5010	uint64_t txg;
5011	int error = 0;
5012
5013	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5014	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5015	ASSERT(vd == vd->vdev_top);
5016
5017	/*
5018	 * Evacuate the device.  We don't hold the config lock as writer
5019	 * since we need to do I/O but we do keep the
5020	 * spa_namespace_lock held.  Once this completes the device
5021	 * should no longer have any blocks allocated on it.
5022	 */
5023	if (vd->vdev_islog) {
5024		if (vd->vdev_stat.vs_alloc != 0)
5025			error = spa_offline_log(spa);
5026	} else {
5027		error = ENOTSUP;
5028	}
5029
5030	if (error)
5031		return (error);
5032
5033	/*
5034	 * The evacuation succeeded.  Remove any remaining MOS metadata
5035	 * associated with this vdev, and wait for these changes to sync.
5036	 */
5037	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
5038	txg = spa_vdev_config_enter(spa);
5039	vd->vdev_removing = B_TRUE;
5040	vdev_dirty(vd, 0, NULL, txg);
5041	vdev_config_dirty(vd);
5042	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5043
5044	return (0);
5045}
5046
5047/*
5048 * Complete the removal by cleaning up the namespace.
5049 */
5050static void
5051spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5052{
5053	vdev_t *rvd = spa->spa_root_vdev;
5054	uint64_t id = vd->vdev_id;
5055	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5056
5057	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5058	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5059	ASSERT(vd == vd->vdev_top);
5060
5061	/*
5062	 * Only remove any devices which are empty.
5063	 */
5064	if (vd->vdev_stat.vs_alloc != 0)
5065		return;
5066
5067	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5068
5069	if (list_link_active(&vd->vdev_state_dirty_node))
5070		vdev_state_clean(vd);
5071	if (list_link_active(&vd->vdev_config_dirty_node))
5072		vdev_config_clean(vd);
5073
5074	vdev_free(vd);
5075
5076	if (last_vdev) {
5077		vdev_compact_children(rvd);
5078	} else {
5079		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5080		vdev_add_child(rvd, vd);
5081	}
5082	vdev_config_dirty(rvd);
5083
5084	/*
5085	 * Reassess the health of our root vdev.
5086	 */
5087	vdev_reopen(rvd);
5088}
5089
5090/*
5091 * Remove a device from the pool -
5092 *
5093 * Removing a device from the vdev namespace requires several steps
5094 * and can take a significant amount of time.  As a result we use
5095 * the spa_vdev_config_[enter/exit] functions which allow us to
5096 * grab and release the spa_config_lock while still holding the namespace
5097 * lock.  During each step the configuration is synced out.
5098 */
5099
5100/*
5101 * Remove a device from the pool.  Currently, this supports removing only hot
5102 * spares, slogs, and level 2 ARC devices.
5103 */
5104int
5105spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5106{
5107	vdev_t *vd;
5108	metaslab_group_t *mg;
5109	nvlist_t **spares, **l2cache, *nv;
5110	uint64_t txg = 0;
5111	uint_t nspares, nl2cache;
5112	int error = 0;
5113	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5114
5115	ASSERT(spa_writeable(spa));
5116
5117	if (!locked)
5118		txg = spa_vdev_enter(spa);
5119
5120	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5121
5122	if (spa->spa_spares.sav_vdevs != NULL &&
5123	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5124	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5125	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5126		/*
5127		 * Only remove the hot spare if it's not currently in use
5128		 * in this pool.
5129		 */
5130		if (vd == NULL || unspare) {
5131			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5132			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5133			spa_load_spares(spa);
5134			spa->spa_spares.sav_sync = B_TRUE;
5135		} else {
5136			error = EBUSY;
5137		}
5138	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5139	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5140	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5141	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5142		/*
5143		 * Cache devices can always be removed.
5144		 */
5145		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5146		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5147		spa_load_l2cache(spa);
5148		spa->spa_l2cache.sav_sync = B_TRUE;
5149	} else if (vd != NULL && vd->vdev_islog) {
5150		ASSERT(!locked);
5151		ASSERT(vd == vd->vdev_top);
5152
5153		/*
5154		 * XXX - Once we have bp-rewrite this should
5155		 * become the common case.
5156		 */
5157
5158		mg = vd->vdev_mg;
5159
5160		/*
5161		 * Stop allocating from this vdev.
5162		 */
5163		metaslab_group_passivate(mg);
5164
5165		/*
5166		 * Wait for the youngest allocations and frees to sync,
5167		 * and then wait for the deferral of those frees to finish.
5168		 */
5169		spa_vdev_config_exit(spa, NULL,
5170		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5171
5172		/*
5173		 * Attempt to evacuate the vdev.
5174		 */
5175		error = spa_vdev_remove_evacuate(spa, vd);
5176
5177		txg = spa_vdev_config_enter(spa);
5178
5179		/*
5180		 * If we couldn't evacuate the vdev, unwind.
5181		 */
5182		if (error) {
5183			metaslab_group_activate(mg);
5184			return (spa_vdev_exit(spa, NULL, txg, error));
5185		}
5186
5187		/*
5188		 * Clean up the vdev namespace.
5189		 */
5190		spa_vdev_remove_from_namespace(spa, vd);
5191
5192	} else if (vd != NULL) {
5193		/*
5194		 * Normal vdevs cannot be removed (yet).
5195		 */
5196		error = ENOTSUP;
5197	} else {
5198		/*
5199		 * There is no vdev of any kind with the specified guid.
5200		 */
5201		error = ENOENT;
5202	}
5203
5204	if (!locked)
5205		return (spa_vdev_exit(spa, NULL, txg, error));
5206
5207	return (error);
5208}
5209
5210/*
5211 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5212 * current spared, so we can detach it.
5213 */
5214static vdev_t *
5215spa_vdev_resilver_done_hunt(vdev_t *vd)
5216{
5217	vdev_t *newvd, *oldvd;
5218
5219	for (int c = 0; c < vd->vdev_children; c++) {
5220		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5221		if (oldvd != NULL)
5222			return (oldvd);
5223	}
5224
5225	/*
5226	 * Check for a completed replacement.  We always consider the first
5227	 * vdev in the list to be the oldest vdev, and the last one to be
5228	 * the newest (see spa_vdev_attach() for how that works).  In
5229	 * the case where the newest vdev is faulted, we will not automatically
5230	 * remove it after a resilver completes.  This is OK as it will require
5231	 * user intervention to determine which disk the admin wishes to keep.
5232	 */
5233	if (vd->vdev_ops == &vdev_replacing_ops) {
5234		ASSERT(vd->vdev_children > 1);
5235
5236		newvd = vd->vdev_child[vd->vdev_children - 1];
5237		oldvd = vd->vdev_child[0];
5238
5239		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5240		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5241		    !vdev_dtl_required(oldvd))
5242			return (oldvd);
5243	}
5244
5245	/*
5246	 * Check for a completed resilver with the 'unspare' flag set.
5247	 */
5248	if (vd->vdev_ops == &vdev_spare_ops) {
5249		vdev_t *first = vd->vdev_child[0];
5250		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5251
5252		if (last->vdev_unspare) {
5253			oldvd = first;
5254			newvd = last;
5255		} else if (first->vdev_unspare) {
5256			oldvd = last;
5257			newvd = first;
5258		} else {
5259			oldvd = NULL;
5260		}
5261
5262		if (oldvd != NULL &&
5263		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5264		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5265		    !vdev_dtl_required(oldvd))
5266			return (oldvd);
5267
5268		/*
5269		 * If there are more than two spares attached to a disk,
5270		 * and those spares are not required, then we want to
5271		 * attempt to free them up now so that they can be used
5272		 * by other pools.  Once we're back down to a single
5273		 * disk+spare, we stop removing them.
5274		 */
5275		if (vd->vdev_children > 2) {
5276			newvd = vd->vdev_child[1];
5277
5278			if (newvd->vdev_isspare && last->vdev_isspare &&
5279			    vdev_dtl_empty(last, DTL_MISSING) &&
5280			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5281			    !vdev_dtl_required(newvd))
5282				return (newvd);
5283		}
5284	}
5285
5286	return (NULL);
5287}
5288
5289static void
5290spa_vdev_resilver_done(spa_t *spa)
5291{
5292	vdev_t *vd, *pvd, *ppvd;
5293	uint64_t guid, sguid, pguid, ppguid;
5294
5295	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5296
5297	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5298		pvd = vd->vdev_parent;
5299		ppvd = pvd->vdev_parent;
5300		guid = vd->vdev_guid;
5301		pguid = pvd->vdev_guid;
5302		ppguid = ppvd->vdev_guid;
5303		sguid = 0;
5304		/*
5305		 * If we have just finished replacing a hot spared device, then
5306		 * we need to detach the parent's first child (the original hot
5307		 * spare) as well.
5308		 */
5309		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5310		    ppvd->vdev_children == 2) {
5311			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5312			sguid = ppvd->vdev_child[1]->vdev_guid;
5313		}
5314		spa_config_exit(spa, SCL_ALL, FTAG);
5315		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5316			return;
5317		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5318			return;
5319		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5320	}
5321
5322	spa_config_exit(spa, SCL_ALL, FTAG);
5323}
5324
5325/*
5326 * Update the stored path or FRU for this vdev.
5327 */
5328int
5329spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5330    boolean_t ispath)
5331{
5332	vdev_t *vd;
5333	boolean_t sync = B_FALSE;
5334
5335	ASSERT(spa_writeable(spa));
5336
5337	spa_vdev_state_enter(spa, SCL_ALL);
5338
5339	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5340		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5341
5342	if (!vd->vdev_ops->vdev_op_leaf)
5343		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5344
5345	if (ispath) {
5346		if (strcmp(value, vd->vdev_path) != 0) {
5347			spa_strfree(vd->vdev_path);
5348			vd->vdev_path = spa_strdup(value);
5349			sync = B_TRUE;
5350		}
5351	} else {
5352		if (vd->vdev_fru == NULL) {
5353			vd->vdev_fru = spa_strdup(value);
5354			sync = B_TRUE;
5355		} else if (strcmp(value, vd->vdev_fru) != 0) {
5356			spa_strfree(vd->vdev_fru);
5357			vd->vdev_fru = spa_strdup(value);
5358			sync = B_TRUE;
5359		}
5360	}
5361
5362	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5363}
5364
5365int
5366spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5367{
5368	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5369}
5370
5371int
5372spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5373{
5374	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5375}
5376
5377/*
5378 * ==========================================================================
5379 * SPA Scanning
5380 * ==========================================================================
5381 */
5382
5383int
5384spa_scan_stop(spa_t *spa)
5385{
5386	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5387	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5388		return (EBUSY);
5389	return (dsl_scan_cancel(spa->spa_dsl_pool));
5390}
5391
5392int
5393spa_scan(spa_t *spa, pool_scan_func_t func)
5394{
5395	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5396
5397	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5398		return (ENOTSUP);
5399
5400	/*
5401	 * If a resilver was requested, but there is no DTL on a
5402	 * writeable leaf device, we have nothing to do.
5403	 */
5404	if (func == POOL_SCAN_RESILVER &&
5405	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5406		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5407		return (0);
5408	}
5409
5410	return (dsl_scan(spa->spa_dsl_pool, func));
5411}
5412
5413/*
5414 * ==========================================================================
5415 * SPA async task processing
5416 * ==========================================================================
5417 */
5418
5419static void
5420spa_async_remove(spa_t *spa, vdev_t *vd)
5421{
5422	if (vd->vdev_remove_wanted) {
5423		vd->vdev_remove_wanted = B_FALSE;
5424		vd->vdev_delayed_close = B_FALSE;
5425		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5426
5427		/*
5428		 * We want to clear the stats, but we don't want to do a full
5429		 * vdev_clear() as that will cause us to throw away
5430		 * degraded/faulted state as well as attempt to reopen the
5431		 * device, all of which is a waste.
5432		 */
5433		vd->vdev_stat.vs_read_errors = 0;
5434		vd->vdev_stat.vs_write_errors = 0;
5435		vd->vdev_stat.vs_checksum_errors = 0;
5436
5437		vdev_state_dirty(vd->vdev_top);
5438	}
5439
5440	for (int c = 0; c < vd->vdev_children; c++)
5441		spa_async_remove(spa, vd->vdev_child[c]);
5442}
5443
5444static void
5445spa_async_probe(spa_t *spa, vdev_t *vd)
5446{
5447	if (vd->vdev_probe_wanted) {
5448		vd->vdev_probe_wanted = B_FALSE;
5449		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5450	}
5451
5452	for (int c = 0; c < vd->vdev_children; c++)
5453		spa_async_probe(spa, vd->vdev_child[c]);
5454}
5455
5456static void
5457spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5458{
5459	sysevent_id_t eid;
5460	nvlist_t *attr;
5461	char *physpath;
5462
5463	if (!spa->spa_autoexpand)
5464		return;
5465
5466	for (int c = 0; c < vd->vdev_children; c++) {
5467		vdev_t *cvd = vd->vdev_child[c];
5468		spa_async_autoexpand(spa, cvd);
5469	}
5470
5471	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5472		return;
5473
5474	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5475	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5476
5477	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5478	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5479
5480	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5481	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5482
5483	nvlist_free(attr);
5484	kmem_free(physpath, MAXPATHLEN);
5485}
5486
5487static void
5488spa_async_thread(void *arg)
5489{
5490	spa_t *spa = arg;
5491	int tasks;
5492
5493	ASSERT(spa->spa_sync_on);
5494
5495	mutex_enter(&spa->spa_async_lock);
5496	tasks = spa->spa_async_tasks;
5497	spa->spa_async_tasks = 0;
5498	mutex_exit(&spa->spa_async_lock);
5499
5500	/*
5501	 * See if the config needs to be updated.
5502	 */
5503	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5504		uint64_t old_space, new_space;
5505
5506		mutex_enter(&spa_namespace_lock);
5507		old_space = metaslab_class_get_space(spa_normal_class(spa));
5508		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5509		new_space = metaslab_class_get_space(spa_normal_class(spa));
5510		mutex_exit(&spa_namespace_lock);
5511
5512		/*
5513		 * If the pool grew as a result of the config update,
5514		 * then log an internal history event.
5515		 */
5516		if (new_space != old_space) {
5517			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5518			    spa, NULL,
5519			    "pool '%s' size: %llu(+%llu)",
5520			    spa_name(spa), new_space, new_space - old_space);
5521		}
5522	}
5523
5524	/*
5525	 * See if any devices need to be marked REMOVED.
5526	 */
5527	if (tasks & SPA_ASYNC_REMOVE) {
5528		spa_vdev_state_enter(spa, SCL_NONE);
5529		spa_async_remove(spa, spa->spa_root_vdev);
5530		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5531			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5532		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5533			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5534		(void) spa_vdev_state_exit(spa, NULL, 0);
5535	}
5536
5537	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5538		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5539		spa_async_autoexpand(spa, spa->spa_root_vdev);
5540		spa_config_exit(spa, SCL_CONFIG, FTAG);
5541	}
5542
5543	/*
5544	 * See if any devices need to be probed.
5545	 */
5546	if (tasks & SPA_ASYNC_PROBE) {
5547		spa_vdev_state_enter(spa, SCL_NONE);
5548		spa_async_probe(spa, spa->spa_root_vdev);
5549		(void) spa_vdev_state_exit(spa, NULL, 0);
5550	}
5551
5552	/*
5553	 * If any devices are done replacing, detach them.
5554	 */
5555	if (tasks & SPA_ASYNC_RESILVER_DONE)
5556		spa_vdev_resilver_done(spa);
5557
5558	/*
5559	 * Kick off a resilver.
5560	 */
5561	if (tasks & SPA_ASYNC_RESILVER)
5562		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5563
5564	/*
5565	 * Let the world know that we're done.
5566	 */
5567	mutex_enter(&spa->spa_async_lock);
5568	spa->spa_async_thread = NULL;
5569	cv_broadcast(&spa->spa_async_cv);
5570	mutex_exit(&spa->spa_async_lock);
5571	thread_exit();
5572}
5573
5574void
5575spa_async_suspend(spa_t *spa)
5576{
5577	mutex_enter(&spa->spa_async_lock);
5578	spa->spa_async_suspended++;
5579	while (spa->spa_async_thread != NULL)
5580		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5581	mutex_exit(&spa->spa_async_lock);
5582}
5583
5584void
5585spa_async_resume(spa_t *spa)
5586{
5587	mutex_enter(&spa->spa_async_lock);
5588	ASSERT(spa->spa_async_suspended != 0);
5589	spa->spa_async_suspended--;
5590	mutex_exit(&spa->spa_async_lock);
5591}
5592
5593static void
5594spa_async_dispatch(spa_t *spa)
5595{
5596	mutex_enter(&spa->spa_async_lock);
5597	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5598	    spa->spa_async_thread == NULL &&
5599	    rootdir != NULL && !vn_is_readonly(rootdir))
5600		spa->spa_async_thread = thread_create(NULL, 0,
5601		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5602	mutex_exit(&spa->spa_async_lock);
5603}
5604
5605void
5606spa_async_request(spa_t *spa, int task)
5607{
5608	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5609	mutex_enter(&spa->spa_async_lock);
5610	spa->spa_async_tasks |= task;
5611	mutex_exit(&spa->spa_async_lock);
5612}
5613
5614/*
5615 * ==========================================================================
5616 * SPA syncing routines
5617 * ==========================================================================
5618 */
5619
5620static int
5621bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5622{
5623	bpobj_t *bpo = arg;
5624	bpobj_enqueue(bpo, bp, tx);
5625	return (0);
5626}
5627
5628static int
5629spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5630{
5631	zio_t *zio = arg;
5632
5633	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5634	    zio->io_flags));
5635	return (0);
5636}
5637
5638static void
5639spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5640{
5641	char *packed = NULL;
5642	size_t bufsize;
5643	size_t nvsize = 0;
5644	dmu_buf_t *db;
5645
5646	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5647
5648	/*
5649	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5650	 * information.  This avoids the dbuf_will_dirty() path and
5651	 * saves us a pre-read to get data we don't actually care about.
5652	 */
5653	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5654	packed = kmem_alloc(bufsize, KM_SLEEP);
5655
5656	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5657	    KM_SLEEP) == 0);
5658	bzero(packed + nvsize, bufsize - nvsize);
5659
5660	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5661
5662	kmem_free(packed, bufsize);
5663
5664	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5665	dmu_buf_will_dirty(db, tx);
5666	*(uint64_t *)db->db_data = nvsize;
5667	dmu_buf_rele(db, FTAG);
5668}
5669
5670static void
5671spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5672    const char *config, const char *entry)
5673{
5674	nvlist_t *nvroot;
5675	nvlist_t **list;
5676	int i;
5677
5678	if (!sav->sav_sync)
5679		return;
5680
5681	/*
5682	 * Update the MOS nvlist describing the list of available devices.
5683	 * spa_validate_aux() will have already made sure this nvlist is
5684	 * valid and the vdevs are labeled appropriately.
5685	 */
5686	if (sav->sav_object == 0) {
5687		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5688		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5689		    sizeof (uint64_t), tx);
5690		VERIFY(zap_update(spa->spa_meta_objset,
5691		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5692		    &sav->sav_object, tx) == 0);
5693	}
5694
5695	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5696	if (sav->sav_count == 0) {
5697		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5698	} else {
5699		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5700		for (i = 0; i < sav->sav_count; i++)
5701			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5702			    B_FALSE, VDEV_CONFIG_L2CACHE);
5703		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5704		    sav->sav_count) == 0);
5705		for (i = 0; i < sav->sav_count; i++)
5706			nvlist_free(list[i]);
5707		kmem_free(list, sav->sav_count * sizeof (void *));
5708	}
5709
5710	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5711	nvlist_free(nvroot);
5712
5713	sav->sav_sync = B_FALSE;
5714}
5715
5716static void
5717spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5718{
5719	nvlist_t *config;
5720
5721	if (list_is_empty(&spa->spa_config_dirty_list))
5722		return;
5723
5724	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5725
5726	config = spa_config_generate(spa, spa->spa_root_vdev,
5727	    dmu_tx_get_txg(tx), B_FALSE);
5728
5729	spa_config_exit(spa, SCL_STATE, FTAG);
5730
5731	if (spa->spa_config_syncing)
5732		nvlist_free(spa->spa_config_syncing);
5733	spa->spa_config_syncing = config;
5734
5735	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5736}
5737
5738static void
5739spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5740{
5741	spa_t *spa = arg1;
5742	uint64_t version = *(uint64_t *)arg2;
5743
5744	/*
5745	 * Setting the version is special cased when first creating the pool.
5746	 */
5747	ASSERT(tx->tx_txg != TXG_INITIAL);
5748
5749	ASSERT(version <= SPA_VERSION);
5750	ASSERT(version >= spa_version(spa));
5751
5752	spa->spa_uberblock.ub_version = version;
5753	vdev_config_dirty(spa->spa_root_vdev);
5754}
5755
5756/*
5757 * Set zpool properties.
5758 */
5759static void
5760spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5761{
5762	spa_t *spa = arg1;
5763	objset_t *mos = spa->spa_meta_objset;
5764	nvlist_t *nvp = arg2;
5765	nvpair_t *elem = NULL;
5766
5767	mutex_enter(&spa->spa_props_lock);
5768
5769	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5770		uint64_t intval;
5771		char *strval, *fname;
5772		zpool_prop_t prop;
5773		const char *propname;
5774		zprop_type_t proptype;
5775		zfeature_info_t *feature;
5776
5777		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5778		case ZPROP_INVAL:
5779			/*
5780			 * We checked this earlier in spa_prop_validate().
5781			 */
5782			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5783
5784			fname = strchr(nvpair_name(elem), '@') + 1;
5785			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5786
5787			spa_feature_enable(spa, feature, tx);
5788			break;
5789
5790		case ZPOOL_PROP_VERSION:
5791			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5792			/*
5793			 * The version is synced seperatly before other
5794			 * properties and should be correct by now.
5795			 */
5796			ASSERT3U(spa_version(spa), >=, intval);
5797			break;
5798
5799		case ZPOOL_PROP_ALTROOT:
5800			/*
5801			 * 'altroot' is a non-persistent property. It should
5802			 * have been set temporarily at creation or import time.
5803			 */
5804			ASSERT(spa->spa_root != NULL);
5805			break;
5806
5807		case ZPOOL_PROP_READONLY:
5808		case ZPOOL_PROP_CACHEFILE:
5809			/*
5810			 * 'readonly' and 'cachefile' are also non-persisitent
5811			 * properties.
5812			 */
5813			break;
5814		case ZPOOL_PROP_COMMENT:
5815			VERIFY(nvpair_value_string(elem, &strval) == 0);
5816			if (spa->spa_comment != NULL)
5817				spa_strfree(spa->spa_comment);
5818			spa->spa_comment = spa_strdup(strval);
5819			/*
5820			 * We need to dirty the configuration on all the vdevs
5821			 * so that their labels get updated.  It's unnecessary
5822			 * to do this for pool creation since the vdev's
5823			 * configuratoin has already been dirtied.
5824			 */
5825			if (tx->tx_txg != TXG_INITIAL)
5826				vdev_config_dirty(spa->spa_root_vdev);
5827			break;
5828		default:
5829			/*
5830			 * Set pool property values in the poolprops mos object.
5831			 */
5832			if (spa->spa_pool_props_object == 0) {
5833				spa->spa_pool_props_object =
5834				    zap_create_link(mos, DMU_OT_POOL_PROPS,
5835				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5836				    tx);
5837			}
5838
5839			/* normalize the property name */
5840			propname = zpool_prop_to_name(prop);
5841			proptype = zpool_prop_get_type(prop);
5842
5843			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5844				ASSERT(proptype == PROP_TYPE_STRING);
5845				VERIFY(nvpair_value_string(elem, &strval) == 0);
5846				VERIFY(zap_update(mos,
5847				    spa->spa_pool_props_object, propname,
5848				    1, strlen(strval) + 1, strval, tx) == 0);
5849
5850			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5851				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5852
5853				if (proptype == PROP_TYPE_INDEX) {
5854					const char *unused;
5855					VERIFY(zpool_prop_index_to_string(
5856					    prop, intval, &unused) == 0);
5857				}
5858				VERIFY(zap_update(mos,
5859				    spa->spa_pool_props_object, propname,
5860				    8, 1, &intval, tx) == 0);
5861			} else {
5862				ASSERT(0); /* not allowed */
5863			}
5864
5865			switch (prop) {
5866			case ZPOOL_PROP_DELEGATION:
5867				spa->spa_delegation = intval;
5868				break;
5869			case ZPOOL_PROP_BOOTFS:
5870				spa->spa_bootfs = intval;
5871				break;
5872			case ZPOOL_PROP_FAILUREMODE:
5873				spa->spa_failmode = intval;
5874				break;
5875			case ZPOOL_PROP_AUTOEXPAND:
5876				spa->spa_autoexpand = intval;
5877				if (tx->tx_txg != TXG_INITIAL)
5878					spa_async_request(spa,
5879					    SPA_ASYNC_AUTOEXPAND);
5880				break;
5881			case ZPOOL_PROP_DEDUPDITTO:
5882				spa->spa_dedup_ditto = intval;
5883				break;
5884			default:
5885				break;
5886			}
5887		}
5888
5889		/* log internal history if this is not a zpool create */
5890		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5891		    tx->tx_txg != TXG_INITIAL) {
5892			spa_history_log_internal(LOG_POOL_PROPSET,
5893			    spa, tx, "%s %lld %s",
5894			    nvpair_name(elem), intval, spa_name(spa));
5895		}
5896	}
5897
5898	mutex_exit(&spa->spa_props_lock);
5899}
5900
5901/*
5902 * Perform one-time upgrade on-disk changes.  spa_version() does not
5903 * reflect the new version this txg, so there must be no changes this
5904 * txg to anything that the upgrade code depends on after it executes.
5905 * Therefore this must be called after dsl_pool_sync() does the sync
5906 * tasks.
5907 */
5908static void
5909spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5910{
5911	dsl_pool_t *dp = spa->spa_dsl_pool;
5912
5913	ASSERT(spa->spa_sync_pass == 1);
5914
5915	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5916	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5917		dsl_pool_create_origin(dp, tx);
5918
5919		/* Keeping the origin open increases spa_minref */
5920		spa->spa_minref += 3;
5921	}
5922
5923	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5924	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5925		dsl_pool_upgrade_clones(dp, tx);
5926	}
5927
5928	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5929	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5930		dsl_pool_upgrade_dir_clones(dp, tx);
5931
5932		/* Keeping the freedir open increases spa_minref */
5933		spa->spa_minref += 3;
5934	}
5935
5936	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
5937	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
5938		spa_feature_create_zap_objects(spa, tx);
5939	}
5940}
5941
5942/*
5943 * Sync the specified transaction group.  New blocks may be dirtied as
5944 * part of the process, so we iterate until it converges.
5945 */
5946void
5947spa_sync(spa_t *spa, uint64_t txg)
5948{
5949	dsl_pool_t *dp = spa->spa_dsl_pool;
5950	objset_t *mos = spa->spa_meta_objset;
5951	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5952	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5953	vdev_t *rvd = spa->spa_root_vdev;
5954	vdev_t *vd;
5955	dmu_tx_t *tx;
5956	int error;
5957
5958	VERIFY(spa_writeable(spa));
5959
5960	/*
5961	 * Lock out configuration changes.
5962	 */
5963	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5964
5965	spa->spa_syncing_txg = txg;
5966	spa->spa_sync_pass = 0;
5967
5968	/*
5969	 * If there are any pending vdev state changes, convert them
5970	 * into config changes that go out with this transaction group.
5971	 */
5972	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5973	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5974		/*
5975		 * We need the write lock here because, for aux vdevs,
5976		 * calling vdev_config_dirty() modifies sav_config.
5977		 * This is ugly and will become unnecessary when we
5978		 * eliminate the aux vdev wart by integrating all vdevs
5979		 * into the root vdev tree.
5980		 */
5981		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5982		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5983		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5984			vdev_state_clean(vd);
5985			vdev_config_dirty(vd);
5986		}
5987		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5988		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5989	}
5990	spa_config_exit(spa, SCL_STATE, FTAG);
5991
5992	tx = dmu_tx_create_assigned(dp, txg);
5993
5994	/*
5995	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5996	 * set spa_deflate if we have no raid-z vdevs.
5997	 */
5998	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5999	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6000		int i;
6001
6002		for (i = 0; i < rvd->vdev_children; i++) {
6003			vd = rvd->vdev_child[i];
6004			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6005				break;
6006		}
6007		if (i == rvd->vdev_children) {
6008			spa->spa_deflate = TRUE;
6009			VERIFY(0 == zap_add(spa->spa_meta_objset,
6010			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6011			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6012		}
6013	}
6014
6015	/*
6016	 * If anything has changed in this txg, or if someone is waiting
6017	 * for this txg to sync (eg, spa_vdev_remove()), push the
6018	 * deferred frees from the previous txg.  If not, leave them
6019	 * alone so that we don't generate work on an otherwise idle
6020	 * system.
6021	 */
6022	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6023	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6024	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6025	    ((dsl_scan_active(dp->dp_scan) ||
6026	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6027		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6028		VERIFY3U(bpobj_iterate(defer_bpo,
6029		    spa_free_sync_cb, zio, tx), ==, 0);
6030		VERIFY3U(zio_wait(zio), ==, 0);
6031	}
6032
6033	/*
6034	 * Iterate to convergence.
6035	 */
6036	do {
6037		int pass = ++spa->spa_sync_pass;
6038
6039		spa_sync_config_object(spa, tx);
6040		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6041		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6042		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6043		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6044		spa_errlog_sync(spa, txg);
6045		dsl_pool_sync(dp, txg);
6046
6047		if (pass <= SYNC_PASS_DEFERRED_FREE) {
6048			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6049			bplist_iterate(free_bpl, spa_free_sync_cb,
6050			    zio, tx);
6051			VERIFY(zio_wait(zio) == 0);
6052		} else {
6053			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6054			    defer_bpo, tx);
6055		}
6056
6057		ddt_sync(spa, txg);
6058		dsl_scan_sync(dp, tx);
6059
6060		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6061			vdev_sync(vd, txg);
6062
6063		if (pass == 1)
6064			spa_sync_upgrades(spa, tx);
6065
6066	} while (dmu_objset_is_dirty(mos, txg));
6067
6068	/*
6069	 * Rewrite the vdev configuration (which includes the uberblock)
6070	 * to commit the transaction group.
6071	 *
6072	 * If there are no dirty vdevs, we sync the uberblock to a few
6073	 * random top-level vdevs that are known to be visible in the
6074	 * config cache (see spa_vdev_add() for a complete description).
6075	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6076	 */
6077	for (;;) {
6078		/*
6079		 * We hold SCL_STATE to prevent vdev open/close/etc.
6080		 * while we're attempting to write the vdev labels.
6081		 */
6082		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6083
6084		if (list_is_empty(&spa->spa_config_dirty_list)) {
6085			vdev_t *svd[SPA_DVAS_PER_BP];
6086			int svdcount = 0;
6087			int children = rvd->vdev_children;
6088			int c0 = spa_get_random(children);
6089
6090			for (int c = 0; c < children; c++) {
6091				vd = rvd->vdev_child[(c0 + c) % children];
6092				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6093					continue;
6094				svd[svdcount++] = vd;
6095				if (svdcount == SPA_DVAS_PER_BP)
6096					break;
6097			}
6098			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6099			if (error != 0)
6100				error = vdev_config_sync(svd, svdcount, txg,
6101				    B_TRUE);
6102		} else {
6103			error = vdev_config_sync(rvd->vdev_child,
6104			    rvd->vdev_children, txg, B_FALSE);
6105			if (error != 0)
6106				error = vdev_config_sync(rvd->vdev_child,
6107				    rvd->vdev_children, txg, B_TRUE);
6108		}
6109
6110		spa_config_exit(spa, SCL_STATE, FTAG);
6111
6112		if (error == 0)
6113			break;
6114		zio_suspend(spa, NULL);
6115		zio_resume_wait(spa);
6116	}
6117	dmu_tx_commit(tx);
6118
6119	/*
6120	 * Clear the dirty config list.
6121	 */
6122	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6123		vdev_config_clean(vd);
6124
6125	/*
6126	 * Now that the new config has synced transactionally,
6127	 * let it become visible to the config cache.
6128	 */
6129	if (spa->spa_config_syncing != NULL) {
6130		spa_config_set(spa, spa->spa_config_syncing);
6131		spa->spa_config_txg = txg;
6132		spa->spa_config_syncing = NULL;
6133	}
6134
6135	spa->spa_ubsync = spa->spa_uberblock;
6136
6137	dsl_pool_sync_done(dp, txg);
6138
6139	/*
6140	 * Update usable space statistics.
6141	 */
6142	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6143		vdev_sync_done(vd, txg);
6144
6145	spa_update_dspace(spa);
6146
6147	/*
6148	 * It had better be the case that we didn't dirty anything
6149	 * since vdev_config_sync().
6150	 */
6151	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6152	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6153	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6154
6155	spa->spa_sync_pass = 0;
6156
6157	spa_config_exit(spa, SCL_CONFIG, FTAG);
6158
6159	spa_handle_ignored_writes(spa);
6160
6161	/*
6162	 * If any async tasks have been requested, kick them off.
6163	 */
6164	spa_async_dispatch(spa);
6165}
6166
6167/*
6168 * Sync all pools.  We don't want to hold the namespace lock across these
6169 * operations, so we take a reference on the spa_t and drop the lock during the
6170 * sync.
6171 */
6172void
6173spa_sync_allpools(void)
6174{
6175	spa_t *spa = NULL;
6176	mutex_enter(&spa_namespace_lock);
6177	while ((spa = spa_next(spa)) != NULL) {
6178		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6179		    !spa_writeable(spa) || spa_suspended(spa))
6180			continue;
6181		spa_open_ref(spa, FTAG);
6182		mutex_exit(&spa_namespace_lock);
6183		txg_wait_synced(spa_get_dsl(spa), 0);
6184		mutex_enter(&spa_namespace_lock);
6185		spa_close(spa, FTAG);
6186	}
6187	mutex_exit(&spa_namespace_lock);
6188}
6189
6190/*
6191 * ==========================================================================
6192 * Miscellaneous routines
6193 * ==========================================================================
6194 */
6195
6196/*
6197 * Remove all pools in the system.
6198 */
6199void
6200spa_evict_all(void)
6201{
6202	spa_t *spa;
6203
6204	/*
6205	 * Remove all cached state.  All pools should be closed now,
6206	 * so every spa in the AVL tree should be unreferenced.
6207	 */
6208	mutex_enter(&spa_namespace_lock);
6209	while ((spa = spa_next(NULL)) != NULL) {
6210		/*
6211		 * Stop async tasks.  The async thread may need to detach
6212		 * a device that's been replaced, which requires grabbing
6213		 * spa_namespace_lock, so we must drop it here.
6214		 */
6215		spa_open_ref(spa, FTAG);
6216		mutex_exit(&spa_namespace_lock);
6217		spa_async_suspend(spa);
6218		mutex_enter(&spa_namespace_lock);
6219		spa_close(spa, FTAG);
6220
6221		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6222			spa_unload(spa);
6223			spa_deactivate(spa);
6224		}
6225		spa_remove(spa);
6226	}
6227	mutex_exit(&spa_namespace_lock);
6228}
6229
6230vdev_t *
6231spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6232{
6233	vdev_t *vd;
6234	int i;
6235
6236	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6237		return (vd);
6238
6239	if (aux) {
6240		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6241			vd = spa->spa_l2cache.sav_vdevs[i];
6242			if (vd->vdev_guid == guid)
6243				return (vd);
6244		}
6245
6246		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6247			vd = spa->spa_spares.sav_vdevs[i];
6248			if (vd->vdev_guid == guid)
6249				return (vd);
6250		}
6251	}
6252
6253	return (NULL);
6254}
6255
6256void
6257spa_upgrade(spa_t *spa, uint64_t version)
6258{
6259	ASSERT(spa_writeable(spa));
6260
6261	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6262
6263	/*
6264	 * This should only be called for a non-faulted pool, and since a
6265	 * future version would result in an unopenable pool, this shouldn't be
6266	 * possible.
6267	 */
6268	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6269	ASSERT(version >= spa->spa_uberblock.ub_version);
6270
6271	spa->spa_uberblock.ub_version = version;
6272	vdev_config_dirty(spa->spa_root_vdev);
6273
6274	spa_config_exit(spa, SCL_ALL, FTAG);
6275
6276	txg_wait_synced(spa_get_dsl(spa), 0);
6277}
6278
6279boolean_t
6280spa_has_spare(spa_t *spa, uint64_t guid)
6281{
6282	int i;
6283	uint64_t spareguid;
6284	spa_aux_vdev_t *sav = &spa->spa_spares;
6285
6286	for (i = 0; i < sav->sav_count; i++)
6287		if (sav->sav_vdevs[i]->vdev_guid == guid)
6288			return (B_TRUE);
6289
6290	for (i = 0; i < sav->sav_npending; i++) {
6291		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6292		    &spareguid) == 0 && spareguid == guid)
6293			return (B_TRUE);
6294	}
6295
6296	return (B_FALSE);
6297}
6298
6299/*
6300 * Check if a pool has an active shared spare device.
6301 * Note: reference count of an active spare is 2, as a spare and as a replace
6302 */
6303static boolean_t
6304spa_has_active_shared_spare(spa_t *spa)
6305{
6306	int i, refcnt;
6307	uint64_t pool;
6308	spa_aux_vdev_t *sav = &spa->spa_spares;
6309
6310	for (i = 0; i < sav->sav_count; i++) {
6311		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6312		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6313		    refcnt > 2)
6314			return (B_TRUE);
6315	}
6316
6317	return (B_FALSE);
6318}
6319
6320/*
6321 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6322 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6323 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6324 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6325 * or zdb as real changes.
6326 */
6327void
6328spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6329{
6330#ifdef _KERNEL
6331	sysevent_t		*ev;
6332	sysevent_attr_list_t	*attr = NULL;
6333	sysevent_value_t	value;
6334	sysevent_id_t		eid;
6335
6336	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6337	    SE_SLEEP);
6338
6339	value.value_type = SE_DATA_TYPE_STRING;
6340	value.value.sv_string = spa_name(spa);
6341	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6342		goto done;
6343
6344	value.value_type = SE_DATA_TYPE_UINT64;
6345	value.value.sv_uint64 = spa_guid(spa);
6346	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6347		goto done;
6348
6349	if (vd) {
6350		value.value_type = SE_DATA_TYPE_UINT64;
6351		value.value.sv_uint64 = vd->vdev_guid;
6352		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6353		    SE_SLEEP) != 0)
6354			goto done;
6355
6356		if (vd->vdev_path) {
6357			value.value_type = SE_DATA_TYPE_STRING;
6358			value.value.sv_string = vd->vdev_path;
6359			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6360			    &value, SE_SLEEP) != 0)
6361				goto done;
6362		}
6363	}
6364
6365	if (sysevent_attach_attributes(ev, attr) != 0)
6366		goto done;
6367	attr = NULL;
6368
6369	(void) log_sysevent(ev, SE_SLEEP, &eid);
6370
6371done:
6372	if (attr)
6373		sysevent_free_attr(attr);
6374	sysevent_free(ev);
6375#endif
6376}
6377