spa.c revision 230514
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011 by Delphix. All rights reserved.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu.h>
39#include <sys/dmu_tx.h>
40#include <sys/zap.h>
41#include <sys/zil.h>
42#include <sys/ddt.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/metaslab_impl.h>
46#include <sys/uberblock_impl.h>
47#include <sys/txg.h>
48#include <sys/avl.h>
49#include <sys/dmu_traverse.h>
50#include <sys/dmu_objset.h>
51#include <sys/unique.h>
52#include <sys/dsl_pool.h>
53#include <sys/dsl_dataset.h>
54#include <sys/dsl_dir.h>
55#include <sys/dsl_prop.h>
56#include <sys/dsl_synctask.h>
57#include <sys/fs/zfs.h>
58#include <sys/arc.h>
59#include <sys/callb.h>
60#include <sys/spa_boot.h>
61#include <sys/zfs_ioctl.h>
62#include <sys/dsl_scan.h>
63#include <sys/zvol.h>
64
65#ifdef	_KERNEL
66#include <sys/callb.h>
67#include <sys/cpupart.h>
68#include <sys/zone.h>
69#endif	/* _KERNEL */
70
71#include "zfs_prop.h"
72#include "zfs_comutil.h"
73
74/* Check hostid on import? */
75static int check_hostid = 1;
76
77SYSCTL_DECL(_vfs_zfs);
78TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
79SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
80    "Check hostid on import?");
81
82typedef enum zti_modes {
83	zti_mode_fixed,			/* value is # of threads (min 1) */
84	zti_mode_online_percent,	/* value is % of online CPUs */
85	zti_mode_batch,			/* cpu-intensive; value is ignored */
86	zti_mode_null,			/* don't create a taskq */
87	zti_nmodes
88} zti_modes_t;
89
90#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
91#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
92#define	ZTI_BATCH	{ zti_mode_batch, 0 }
93#define	ZTI_NULL	{ zti_mode_null, 0 }
94
95#define	ZTI_ONE		ZTI_FIX(1)
96
97typedef struct zio_taskq_info {
98	enum zti_modes zti_mode;
99	uint_t zti_value;
100} zio_taskq_info_t;
101
102static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
103	"issue", "issue_high", "intr", "intr_high"
104};
105
106/*
107 * Define the taskq threads for the following I/O types:
108 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
109 */
110const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
111	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
112	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
113	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
114	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
115	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
116	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
117	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
118};
119
120static dsl_syncfunc_t spa_sync_props;
121static boolean_t spa_has_active_shared_spare(spa_t *spa);
122static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
123    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
124    char **ereport);
125static void spa_vdev_resilver_done(spa_t *spa);
126
127uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
128#ifdef PSRSET_BIND
129id_t		zio_taskq_psrset_bind = PS_NONE;
130#endif
131#ifdef SYSDC
132boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
133#endif
134uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
135
136boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
137
138/*
139 * This (illegal) pool name is used when temporarily importing a spa_t in order
140 * to get the vdev stats associated with the imported devices.
141 */
142#define	TRYIMPORT_NAME	"$import"
143
144/*
145 * ==========================================================================
146 * SPA properties routines
147 * ==========================================================================
148 */
149
150/*
151 * Add a (source=src, propname=propval) list to an nvlist.
152 */
153static void
154spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
155    uint64_t intval, zprop_source_t src)
156{
157	const char *propname = zpool_prop_to_name(prop);
158	nvlist_t *propval;
159
160	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
161	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
162
163	if (strval != NULL)
164		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
165	else
166		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
167
168	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
169	nvlist_free(propval);
170}
171
172/*
173 * Get property values from the spa configuration.
174 */
175static void
176spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
177{
178	uint64_t size;
179	uint64_t alloc;
180	uint64_t cap, version;
181	zprop_source_t src = ZPROP_SRC_NONE;
182	spa_config_dirent_t *dp;
183
184	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
185
186	if (spa->spa_root_vdev != NULL) {
187		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
188		size = metaslab_class_get_space(spa_normal_class(spa));
189		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
190		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
191		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
192		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
193		    size - alloc, src);
194		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
195		    (spa_mode(spa) == FREAD), src);
196
197		cap = (size == 0) ? 0 : (alloc * 100 / size);
198		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
199
200		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
201		    ddt_get_pool_dedup_ratio(spa), src);
202
203		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
204		    spa->spa_root_vdev->vdev_state, src);
205
206		version = spa_version(spa);
207		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
208			src = ZPROP_SRC_DEFAULT;
209		else
210			src = ZPROP_SRC_LOCAL;
211		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
212	}
213
214	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
215
216	if (spa->spa_comment != NULL) {
217		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
218		    0, ZPROP_SRC_LOCAL);
219	}
220
221	if (spa->spa_root != NULL)
222		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
223		    0, ZPROP_SRC_LOCAL);
224
225	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
226		if (dp->scd_path == NULL) {
227			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
228			    "none", 0, ZPROP_SRC_LOCAL);
229		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
230			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
231			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
232		}
233	}
234}
235
236/*
237 * Get zpool property values.
238 */
239int
240spa_prop_get(spa_t *spa, nvlist_t **nvp)
241{
242	objset_t *mos = spa->spa_meta_objset;
243	zap_cursor_t zc;
244	zap_attribute_t za;
245	int err;
246
247	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
248
249	mutex_enter(&spa->spa_props_lock);
250
251	/*
252	 * Get properties from the spa config.
253	 */
254	spa_prop_get_config(spa, nvp);
255
256	/* If no pool property object, no more prop to get. */
257	if (mos == NULL || spa->spa_pool_props_object == 0) {
258		mutex_exit(&spa->spa_props_lock);
259		return (0);
260	}
261
262	/*
263	 * Get properties from the MOS pool property object.
264	 */
265	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
266	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
267	    zap_cursor_advance(&zc)) {
268		uint64_t intval = 0;
269		char *strval = NULL;
270		zprop_source_t src = ZPROP_SRC_DEFAULT;
271		zpool_prop_t prop;
272
273		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
274			continue;
275
276		switch (za.za_integer_length) {
277		case 8:
278			/* integer property */
279			if (za.za_first_integer !=
280			    zpool_prop_default_numeric(prop))
281				src = ZPROP_SRC_LOCAL;
282
283			if (prop == ZPOOL_PROP_BOOTFS) {
284				dsl_pool_t *dp;
285				dsl_dataset_t *ds = NULL;
286
287				dp = spa_get_dsl(spa);
288				rw_enter(&dp->dp_config_rwlock, RW_READER);
289				if (err = dsl_dataset_hold_obj(dp,
290				    za.za_first_integer, FTAG, &ds)) {
291					rw_exit(&dp->dp_config_rwlock);
292					break;
293				}
294
295				strval = kmem_alloc(
296				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
297				    KM_SLEEP);
298				dsl_dataset_name(ds, strval);
299				dsl_dataset_rele(ds, FTAG);
300				rw_exit(&dp->dp_config_rwlock);
301			} else {
302				strval = NULL;
303				intval = za.za_first_integer;
304			}
305
306			spa_prop_add_list(*nvp, prop, strval, intval, src);
307
308			if (strval != NULL)
309				kmem_free(strval,
310				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
311
312			break;
313
314		case 1:
315			/* string property */
316			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
317			err = zap_lookup(mos, spa->spa_pool_props_object,
318			    za.za_name, 1, za.za_num_integers, strval);
319			if (err) {
320				kmem_free(strval, za.za_num_integers);
321				break;
322			}
323			spa_prop_add_list(*nvp, prop, strval, 0, src);
324			kmem_free(strval, za.za_num_integers);
325			break;
326
327		default:
328			break;
329		}
330	}
331	zap_cursor_fini(&zc);
332	mutex_exit(&spa->spa_props_lock);
333out:
334	if (err && err != ENOENT) {
335		nvlist_free(*nvp);
336		*nvp = NULL;
337		return (err);
338	}
339
340	return (0);
341}
342
343/*
344 * Validate the given pool properties nvlist and modify the list
345 * for the property values to be set.
346 */
347static int
348spa_prop_validate(spa_t *spa, nvlist_t *props)
349{
350	nvpair_t *elem;
351	int error = 0, reset_bootfs = 0;
352	uint64_t objnum;
353
354	elem = NULL;
355	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
356		zpool_prop_t prop;
357		char *propname, *strval;
358		uint64_t intval;
359		objset_t *os;
360		char *slash, *check;
361
362		propname = nvpair_name(elem);
363
364		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
365			return (EINVAL);
366
367		switch (prop) {
368		case ZPOOL_PROP_VERSION:
369			error = nvpair_value_uint64(elem, &intval);
370			if (!error &&
371			    (intval < spa_version(spa) || intval > SPA_VERSION))
372				error = EINVAL;
373			break;
374
375		case ZPOOL_PROP_DELEGATION:
376		case ZPOOL_PROP_AUTOREPLACE:
377		case ZPOOL_PROP_LISTSNAPS:
378		case ZPOOL_PROP_AUTOEXPAND:
379			error = nvpair_value_uint64(elem, &intval);
380			if (!error && intval > 1)
381				error = EINVAL;
382			break;
383
384		case ZPOOL_PROP_BOOTFS:
385			/*
386			 * If the pool version is less than SPA_VERSION_BOOTFS,
387			 * or the pool is still being created (version == 0),
388			 * the bootfs property cannot be set.
389			 */
390			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
391				error = ENOTSUP;
392				break;
393			}
394
395			/*
396			 * Make sure the vdev config is bootable
397			 */
398			if (!vdev_is_bootable(spa->spa_root_vdev)) {
399				error = ENOTSUP;
400				break;
401			}
402
403			reset_bootfs = 1;
404
405			error = nvpair_value_string(elem, &strval);
406
407			if (!error) {
408				uint64_t compress;
409
410				if (strval == NULL || strval[0] == '\0') {
411					objnum = zpool_prop_default_numeric(
412					    ZPOOL_PROP_BOOTFS);
413					break;
414				}
415
416				if (error = dmu_objset_hold(strval, FTAG, &os))
417					break;
418
419				/* Must be ZPL and not gzip compressed. */
420
421				if (dmu_objset_type(os) != DMU_OST_ZFS) {
422					error = ENOTSUP;
423				} else if ((error = dsl_prop_get_integer(strval,
424				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
425				    &compress, NULL)) == 0 &&
426				    !BOOTFS_COMPRESS_VALID(compress)) {
427					error = ENOTSUP;
428				} else {
429					objnum = dmu_objset_id(os);
430				}
431				dmu_objset_rele(os, FTAG);
432			}
433			break;
434
435		case ZPOOL_PROP_FAILUREMODE:
436			error = nvpair_value_uint64(elem, &intval);
437			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
438			    intval > ZIO_FAILURE_MODE_PANIC))
439				error = EINVAL;
440
441			/*
442			 * This is a special case which only occurs when
443			 * the pool has completely failed. This allows
444			 * the user to change the in-core failmode property
445			 * without syncing it out to disk (I/Os might
446			 * currently be blocked). We do this by returning
447			 * EIO to the caller (spa_prop_set) to trick it
448			 * into thinking we encountered a property validation
449			 * error.
450			 */
451			if (!error && spa_suspended(spa)) {
452				spa->spa_failmode = intval;
453				error = EIO;
454			}
455			break;
456
457		case ZPOOL_PROP_CACHEFILE:
458			if ((error = nvpair_value_string(elem, &strval)) != 0)
459				break;
460
461			if (strval[0] == '\0')
462				break;
463
464			if (strcmp(strval, "none") == 0)
465				break;
466
467			if (strval[0] != '/') {
468				error = EINVAL;
469				break;
470			}
471
472			slash = strrchr(strval, '/');
473			ASSERT(slash != NULL);
474
475			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
476			    strcmp(slash, "/..") == 0)
477				error = EINVAL;
478			break;
479
480		case ZPOOL_PROP_COMMENT:
481			if ((error = nvpair_value_string(elem, &strval)) != 0)
482				break;
483			for (check = strval; *check != '\0'; check++) {
484				/*
485				 * The kernel doesn't have an easy isprint()
486				 * check.  For this kernel check, we merely
487				 * check ASCII apart from DEL.  Fix this if
488				 * there is an easy-to-use kernel isprint().
489				 */
490				if (*check >= 0x7f) {
491					error = EINVAL;
492					break;
493				}
494				check++;
495			}
496			if (strlen(strval) > ZPROP_MAX_COMMENT)
497				error = E2BIG;
498			break;
499
500		case ZPOOL_PROP_DEDUPDITTO:
501			if (spa_version(spa) < SPA_VERSION_DEDUP)
502				error = ENOTSUP;
503			else
504				error = nvpair_value_uint64(elem, &intval);
505			if (error == 0 &&
506			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
507				error = EINVAL;
508			break;
509		}
510
511		if (error)
512			break;
513	}
514
515	if (!error && reset_bootfs) {
516		error = nvlist_remove(props,
517		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
518
519		if (!error) {
520			error = nvlist_add_uint64(props,
521			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
522		}
523	}
524
525	return (error);
526}
527
528void
529spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
530{
531	char *cachefile;
532	spa_config_dirent_t *dp;
533
534	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
535	    &cachefile) != 0)
536		return;
537
538	dp = kmem_alloc(sizeof (spa_config_dirent_t),
539	    KM_SLEEP);
540
541	if (cachefile[0] == '\0')
542		dp->scd_path = spa_strdup(spa_config_path);
543	else if (strcmp(cachefile, "none") == 0)
544		dp->scd_path = NULL;
545	else
546		dp->scd_path = spa_strdup(cachefile);
547
548	list_insert_head(&spa->spa_config_list, dp);
549	if (need_sync)
550		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
551}
552
553int
554spa_prop_set(spa_t *spa, nvlist_t *nvp)
555{
556	int error;
557	nvpair_t *elem;
558	boolean_t need_sync = B_FALSE;
559	zpool_prop_t prop;
560
561	if ((error = spa_prop_validate(spa, nvp)) != 0)
562		return (error);
563
564	elem = NULL;
565	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
566		if ((prop = zpool_name_to_prop(
567		    nvpair_name(elem))) == ZPROP_INVAL)
568			return (EINVAL);
569
570		if (prop == ZPOOL_PROP_CACHEFILE ||
571		    prop == ZPOOL_PROP_ALTROOT ||
572		    prop == ZPOOL_PROP_READONLY)
573			continue;
574
575		need_sync = B_TRUE;
576		break;
577	}
578
579	if (need_sync)
580		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
581		    spa, nvp, 3));
582	else
583		return (0);
584}
585
586/*
587 * If the bootfs property value is dsobj, clear it.
588 */
589void
590spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
591{
592	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
593		VERIFY(zap_remove(spa->spa_meta_objset,
594		    spa->spa_pool_props_object,
595		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
596		spa->spa_bootfs = 0;
597	}
598}
599
600/*
601 * Change the GUID for the pool.  This is done so that we can later
602 * re-import a pool built from a clone of our own vdevs.  We will modify
603 * the root vdev's guid, our own pool guid, and then mark all of our
604 * vdevs dirty.  Note that we must make sure that all our vdevs are
605 * online when we do this, or else any vdevs that weren't present
606 * would be orphaned from our pool.  We are also going to issue a
607 * sysevent to update any watchers.
608 */
609int
610spa_change_guid(spa_t *spa)
611{
612	uint64_t	oldguid, newguid;
613	uint64_t	txg;
614
615	if (!(spa_mode_global & FWRITE))
616		return (EROFS);
617
618	txg = spa_vdev_enter(spa);
619
620	if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
621		return (spa_vdev_exit(spa, NULL, txg, ENXIO));
622
623	oldguid = spa_guid(spa);
624	newguid = spa_generate_guid(NULL);
625	ASSERT3U(oldguid, !=, newguid);
626
627	spa->spa_root_vdev->vdev_guid = newguid;
628	spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
629
630	vdev_config_dirty(spa->spa_root_vdev);
631
632	spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
633
634	return (spa_vdev_exit(spa, NULL, txg, 0));
635}
636
637/*
638 * ==========================================================================
639 * SPA state manipulation (open/create/destroy/import/export)
640 * ==========================================================================
641 */
642
643static int
644spa_error_entry_compare(const void *a, const void *b)
645{
646	spa_error_entry_t *sa = (spa_error_entry_t *)a;
647	spa_error_entry_t *sb = (spa_error_entry_t *)b;
648	int ret;
649
650	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
651	    sizeof (zbookmark_t));
652
653	if (ret < 0)
654		return (-1);
655	else if (ret > 0)
656		return (1);
657	else
658		return (0);
659}
660
661/*
662 * Utility function which retrieves copies of the current logs and
663 * re-initializes them in the process.
664 */
665void
666spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
667{
668	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
669
670	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
671	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
672
673	avl_create(&spa->spa_errlist_scrub,
674	    spa_error_entry_compare, sizeof (spa_error_entry_t),
675	    offsetof(spa_error_entry_t, se_avl));
676	avl_create(&spa->spa_errlist_last,
677	    spa_error_entry_compare, sizeof (spa_error_entry_t),
678	    offsetof(spa_error_entry_t, se_avl));
679}
680
681static taskq_t *
682spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
683    uint_t value)
684{
685	uint_t flags = TASKQ_PREPOPULATE;
686	boolean_t batch = B_FALSE;
687
688	switch (mode) {
689	case zti_mode_null:
690		return (NULL);		/* no taskq needed */
691
692	case zti_mode_fixed:
693		ASSERT3U(value, >=, 1);
694		value = MAX(value, 1);
695		break;
696
697	case zti_mode_batch:
698		batch = B_TRUE;
699		flags |= TASKQ_THREADS_CPU_PCT;
700		value = zio_taskq_batch_pct;
701		break;
702
703	case zti_mode_online_percent:
704		flags |= TASKQ_THREADS_CPU_PCT;
705		break;
706
707	default:
708		panic("unrecognized mode for %s taskq (%u:%u) in "
709		    "spa_activate()",
710		    name, mode, value);
711		break;
712	}
713
714#ifdef SYSDC
715	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
716		if (batch)
717			flags |= TASKQ_DC_BATCH;
718
719		return (taskq_create_sysdc(name, value, 50, INT_MAX,
720		    spa->spa_proc, zio_taskq_basedc, flags));
721	}
722#endif
723	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
724	    spa->spa_proc, flags));
725}
726
727static void
728spa_create_zio_taskqs(spa_t *spa)
729{
730	for (int t = 0; t < ZIO_TYPES; t++) {
731		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
732			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
733			enum zti_modes mode = ztip->zti_mode;
734			uint_t value = ztip->zti_value;
735			char name[32];
736
737			(void) snprintf(name, sizeof (name),
738			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
739
740			spa->spa_zio_taskq[t][q] =
741			    spa_taskq_create(spa, name, mode, value);
742		}
743	}
744}
745
746#ifdef _KERNEL
747#ifdef SPA_PROCESS
748static void
749spa_thread(void *arg)
750{
751	callb_cpr_t cprinfo;
752
753	spa_t *spa = arg;
754	user_t *pu = PTOU(curproc);
755
756	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
757	    spa->spa_name);
758
759	ASSERT(curproc != &p0);
760	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
761	    "zpool-%s", spa->spa_name);
762	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
763
764#ifdef PSRSET_BIND
765	/* bind this thread to the requested psrset */
766	if (zio_taskq_psrset_bind != PS_NONE) {
767		pool_lock();
768		mutex_enter(&cpu_lock);
769		mutex_enter(&pidlock);
770		mutex_enter(&curproc->p_lock);
771
772		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
773		    0, NULL, NULL) == 0)  {
774			curthread->t_bind_pset = zio_taskq_psrset_bind;
775		} else {
776			cmn_err(CE_WARN,
777			    "Couldn't bind process for zfs pool \"%s\" to "
778			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
779		}
780
781		mutex_exit(&curproc->p_lock);
782		mutex_exit(&pidlock);
783		mutex_exit(&cpu_lock);
784		pool_unlock();
785	}
786#endif
787
788#ifdef SYSDC
789	if (zio_taskq_sysdc) {
790		sysdc_thread_enter(curthread, 100, 0);
791	}
792#endif
793
794	spa->spa_proc = curproc;
795	spa->spa_did = curthread->t_did;
796
797	spa_create_zio_taskqs(spa);
798
799	mutex_enter(&spa->spa_proc_lock);
800	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
801
802	spa->spa_proc_state = SPA_PROC_ACTIVE;
803	cv_broadcast(&spa->spa_proc_cv);
804
805	CALLB_CPR_SAFE_BEGIN(&cprinfo);
806	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
807		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
808	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
809
810	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
811	spa->spa_proc_state = SPA_PROC_GONE;
812	spa->spa_proc = &p0;
813	cv_broadcast(&spa->spa_proc_cv);
814	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
815
816	mutex_enter(&curproc->p_lock);
817	lwp_exit();
818}
819#endif	/* SPA_PROCESS */
820#endif
821
822/*
823 * Activate an uninitialized pool.
824 */
825static void
826spa_activate(spa_t *spa, int mode)
827{
828	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
829
830	spa->spa_state = POOL_STATE_ACTIVE;
831	spa->spa_mode = mode;
832
833	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
834	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
835
836	/* Try to create a covering process */
837	mutex_enter(&spa->spa_proc_lock);
838	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
839	ASSERT(spa->spa_proc == &p0);
840	spa->spa_did = 0;
841
842#ifdef SPA_PROCESS
843	/* Only create a process if we're going to be around a while. */
844	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
845		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
846		    NULL, 0) == 0) {
847			spa->spa_proc_state = SPA_PROC_CREATED;
848			while (spa->spa_proc_state == SPA_PROC_CREATED) {
849				cv_wait(&spa->spa_proc_cv,
850				    &spa->spa_proc_lock);
851			}
852			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
853			ASSERT(spa->spa_proc != &p0);
854			ASSERT(spa->spa_did != 0);
855		} else {
856#ifdef _KERNEL
857			cmn_err(CE_WARN,
858			    "Couldn't create process for zfs pool \"%s\"\n",
859			    spa->spa_name);
860#endif
861		}
862	}
863#endif	/* SPA_PROCESS */
864	mutex_exit(&spa->spa_proc_lock);
865
866	/* If we didn't create a process, we need to create our taskqs. */
867	ASSERT(spa->spa_proc == &p0);
868	if (spa->spa_proc == &p0) {
869		spa_create_zio_taskqs(spa);
870	}
871
872	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
873	    offsetof(vdev_t, vdev_config_dirty_node));
874	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
875	    offsetof(vdev_t, vdev_state_dirty_node));
876
877	txg_list_create(&spa->spa_vdev_txg_list,
878	    offsetof(struct vdev, vdev_txg_node));
879
880	avl_create(&spa->spa_errlist_scrub,
881	    spa_error_entry_compare, sizeof (spa_error_entry_t),
882	    offsetof(spa_error_entry_t, se_avl));
883	avl_create(&spa->spa_errlist_last,
884	    spa_error_entry_compare, sizeof (spa_error_entry_t),
885	    offsetof(spa_error_entry_t, se_avl));
886}
887
888/*
889 * Opposite of spa_activate().
890 */
891static void
892spa_deactivate(spa_t *spa)
893{
894	ASSERT(spa->spa_sync_on == B_FALSE);
895	ASSERT(spa->spa_dsl_pool == NULL);
896	ASSERT(spa->spa_root_vdev == NULL);
897	ASSERT(spa->spa_async_zio_root == NULL);
898	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
899
900	txg_list_destroy(&spa->spa_vdev_txg_list);
901
902	list_destroy(&spa->spa_config_dirty_list);
903	list_destroy(&spa->spa_state_dirty_list);
904
905	for (int t = 0; t < ZIO_TYPES; t++) {
906		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
907			if (spa->spa_zio_taskq[t][q] != NULL)
908				taskq_destroy(spa->spa_zio_taskq[t][q]);
909			spa->spa_zio_taskq[t][q] = NULL;
910		}
911	}
912
913	metaslab_class_destroy(spa->spa_normal_class);
914	spa->spa_normal_class = NULL;
915
916	metaslab_class_destroy(spa->spa_log_class);
917	spa->spa_log_class = NULL;
918
919	/*
920	 * If this was part of an import or the open otherwise failed, we may
921	 * still have errors left in the queues.  Empty them just in case.
922	 */
923	spa_errlog_drain(spa);
924
925	avl_destroy(&spa->spa_errlist_scrub);
926	avl_destroy(&spa->spa_errlist_last);
927
928	spa->spa_state = POOL_STATE_UNINITIALIZED;
929
930	mutex_enter(&spa->spa_proc_lock);
931	if (spa->spa_proc_state != SPA_PROC_NONE) {
932		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
933		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
934		cv_broadcast(&spa->spa_proc_cv);
935		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
936			ASSERT(spa->spa_proc != &p0);
937			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
938		}
939		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
940		spa->spa_proc_state = SPA_PROC_NONE;
941	}
942	ASSERT(spa->spa_proc == &p0);
943	mutex_exit(&spa->spa_proc_lock);
944
945#ifdef SPA_PROCESS
946	/*
947	 * We want to make sure spa_thread() has actually exited the ZFS
948	 * module, so that the module can't be unloaded out from underneath
949	 * it.
950	 */
951	if (spa->spa_did != 0) {
952		thread_join(spa->spa_did);
953		spa->spa_did = 0;
954	}
955#endif	/* SPA_PROCESS */
956}
957
958/*
959 * Verify a pool configuration, and construct the vdev tree appropriately.  This
960 * will create all the necessary vdevs in the appropriate layout, with each vdev
961 * in the CLOSED state.  This will prep the pool before open/creation/import.
962 * All vdev validation is done by the vdev_alloc() routine.
963 */
964static int
965spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
966    uint_t id, int atype)
967{
968	nvlist_t **child;
969	uint_t children;
970	int error;
971
972	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
973		return (error);
974
975	if ((*vdp)->vdev_ops->vdev_op_leaf)
976		return (0);
977
978	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
979	    &child, &children);
980
981	if (error == ENOENT)
982		return (0);
983
984	if (error) {
985		vdev_free(*vdp);
986		*vdp = NULL;
987		return (EINVAL);
988	}
989
990	for (int c = 0; c < children; c++) {
991		vdev_t *vd;
992		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
993		    atype)) != 0) {
994			vdev_free(*vdp);
995			*vdp = NULL;
996			return (error);
997		}
998	}
999
1000	ASSERT(*vdp != NULL);
1001
1002	return (0);
1003}
1004
1005/*
1006 * Opposite of spa_load().
1007 */
1008static void
1009spa_unload(spa_t *spa)
1010{
1011	int i;
1012
1013	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1014
1015	/*
1016	 * Stop async tasks.
1017	 */
1018	spa_async_suspend(spa);
1019
1020	/*
1021	 * Stop syncing.
1022	 */
1023	if (spa->spa_sync_on) {
1024		txg_sync_stop(spa->spa_dsl_pool);
1025		spa->spa_sync_on = B_FALSE;
1026	}
1027
1028	/*
1029	 * Wait for any outstanding async I/O to complete.
1030	 */
1031	if (spa->spa_async_zio_root != NULL) {
1032		(void) zio_wait(spa->spa_async_zio_root);
1033		spa->spa_async_zio_root = NULL;
1034	}
1035
1036	bpobj_close(&spa->spa_deferred_bpobj);
1037
1038	/*
1039	 * Close the dsl pool.
1040	 */
1041	if (spa->spa_dsl_pool) {
1042		dsl_pool_close(spa->spa_dsl_pool);
1043		spa->spa_dsl_pool = NULL;
1044		spa->spa_meta_objset = NULL;
1045	}
1046
1047	ddt_unload(spa);
1048
1049	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1050
1051	/*
1052	 * Drop and purge level 2 cache
1053	 */
1054	spa_l2cache_drop(spa);
1055
1056	/*
1057	 * Close all vdevs.
1058	 */
1059	if (spa->spa_root_vdev)
1060		vdev_free(spa->spa_root_vdev);
1061	ASSERT(spa->spa_root_vdev == NULL);
1062
1063	for (i = 0; i < spa->spa_spares.sav_count; i++)
1064		vdev_free(spa->spa_spares.sav_vdevs[i]);
1065	if (spa->spa_spares.sav_vdevs) {
1066		kmem_free(spa->spa_spares.sav_vdevs,
1067		    spa->spa_spares.sav_count * sizeof (void *));
1068		spa->spa_spares.sav_vdevs = NULL;
1069	}
1070	if (spa->spa_spares.sav_config) {
1071		nvlist_free(spa->spa_spares.sav_config);
1072		spa->spa_spares.sav_config = NULL;
1073	}
1074	spa->spa_spares.sav_count = 0;
1075
1076	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1077		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1078		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1079	}
1080	if (spa->spa_l2cache.sav_vdevs) {
1081		kmem_free(spa->spa_l2cache.sav_vdevs,
1082		    spa->spa_l2cache.sav_count * sizeof (void *));
1083		spa->spa_l2cache.sav_vdevs = NULL;
1084	}
1085	if (spa->spa_l2cache.sav_config) {
1086		nvlist_free(spa->spa_l2cache.sav_config);
1087		spa->spa_l2cache.sav_config = NULL;
1088	}
1089	spa->spa_l2cache.sav_count = 0;
1090
1091	spa->spa_async_suspended = 0;
1092
1093	if (spa->spa_comment != NULL) {
1094		spa_strfree(spa->spa_comment);
1095		spa->spa_comment = NULL;
1096	}
1097
1098	spa_config_exit(spa, SCL_ALL, FTAG);
1099}
1100
1101/*
1102 * Load (or re-load) the current list of vdevs describing the active spares for
1103 * this pool.  When this is called, we have some form of basic information in
1104 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1105 * then re-generate a more complete list including status information.
1106 */
1107static void
1108spa_load_spares(spa_t *spa)
1109{
1110	nvlist_t **spares;
1111	uint_t nspares;
1112	int i;
1113	vdev_t *vd, *tvd;
1114
1115	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1116
1117	/*
1118	 * First, close and free any existing spare vdevs.
1119	 */
1120	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1121		vd = spa->spa_spares.sav_vdevs[i];
1122
1123		/* Undo the call to spa_activate() below */
1124		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1125		    B_FALSE)) != NULL && tvd->vdev_isspare)
1126			spa_spare_remove(tvd);
1127		vdev_close(vd);
1128		vdev_free(vd);
1129	}
1130
1131	if (spa->spa_spares.sav_vdevs)
1132		kmem_free(spa->spa_spares.sav_vdevs,
1133		    spa->spa_spares.sav_count * sizeof (void *));
1134
1135	if (spa->spa_spares.sav_config == NULL)
1136		nspares = 0;
1137	else
1138		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1139		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1140
1141	spa->spa_spares.sav_count = (int)nspares;
1142	spa->spa_spares.sav_vdevs = NULL;
1143
1144	if (nspares == 0)
1145		return;
1146
1147	/*
1148	 * Construct the array of vdevs, opening them to get status in the
1149	 * process.   For each spare, there is potentially two different vdev_t
1150	 * structures associated with it: one in the list of spares (used only
1151	 * for basic validation purposes) and one in the active vdev
1152	 * configuration (if it's spared in).  During this phase we open and
1153	 * validate each vdev on the spare list.  If the vdev also exists in the
1154	 * active configuration, then we also mark this vdev as an active spare.
1155	 */
1156	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1157	    KM_SLEEP);
1158	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1159		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1160		    VDEV_ALLOC_SPARE) == 0);
1161		ASSERT(vd != NULL);
1162
1163		spa->spa_spares.sav_vdevs[i] = vd;
1164
1165		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1166		    B_FALSE)) != NULL) {
1167			if (!tvd->vdev_isspare)
1168				spa_spare_add(tvd);
1169
1170			/*
1171			 * We only mark the spare active if we were successfully
1172			 * able to load the vdev.  Otherwise, importing a pool
1173			 * with a bad active spare would result in strange
1174			 * behavior, because multiple pool would think the spare
1175			 * is actively in use.
1176			 *
1177			 * There is a vulnerability here to an equally bizarre
1178			 * circumstance, where a dead active spare is later
1179			 * brought back to life (onlined or otherwise).  Given
1180			 * the rarity of this scenario, and the extra complexity
1181			 * it adds, we ignore the possibility.
1182			 */
1183			if (!vdev_is_dead(tvd))
1184				spa_spare_activate(tvd);
1185		}
1186
1187		vd->vdev_top = vd;
1188		vd->vdev_aux = &spa->spa_spares;
1189
1190		if (vdev_open(vd) != 0)
1191			continue;
1192
1193		if (vdev_validate_aux(vd) == 0)
1194			spa_spare_add(vd);
1195	}
1196
1197	/*
1198	 * Recompute the stashed list of spares, with status information
1199	 * this time.
1200	 */
1201	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1202	    DATA_TYPE_NVLIST_ARRAY) == 0);
1203
1204	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1205	    KM_SLEEP);
1206	for (i = 0; i < spa->spa_spares.sav_count; i++)
1207		spares[i] = vdev_config_generate(spa,
1208		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1209	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1210	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1211	for (i = 0; i < spa->spa_spares.sav_count; i++)
1212		nvlist_free(spares[i]);
1213	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1214}
1215
1216/*
1217 * Load (or re-load) the current list of vdevs describing the active l2cache for
1218 * this pool.  When this is called, we have some form of basic information in
1219 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1220 * then re-generate a more complete list including status information.
1221 * Devices which are already active have their details maintained, and are
1222 * not re-opened.
1223 */
1224static void
1225spa_load_l2cache(spa_t *spa)
1226{
1227	nvlist_t **l2cache;
1228	uint_t nl2cache;
1229	int i, j, oldnvdevs;
1230	uint64_t guid;
1231	vdev_t *vd, **oldvdevs, **newvdevs;
1232	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1233
1234	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1235
1236	if (sav->sav_config != NULL) {
1237		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1238		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1239		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1240	} else {
1241		nl2cache = 0;
1242	}
1243
1244	oldvdevs = sav->sav_vdevs;
1245	oldnvdevs = sav->sav_count;
1246	sav->sav_vdevs = NULL;
1247	sav->sav_count = 0;
1248
1249	/*
1250	 * Process new nvlist of vdevs.
1251	 */
1252	for (i = 0; i < nl2cache; i++) {
1253		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1254		    &guid) == 0);
1255
1256		newvdevs[i] = NULL;
1257		for (j = 0; j < oldnvdevs; j++) {
1258			vd = oldvdevs[j];
1259			if (vd != NULL && guid == vd->vdev_guid) {
1260				/*
1261				 * Retain previous vdev for add/remove ops.
1262				 */
1263				newvdevs[i] = vd;
1264				oldvdevs[j] = NULL;
1265				break;
1266			}
1267		}
1268
1269		if (newvdevs[i] == NULL) {
1270			/*
1271			 * Create new vdev
1272			 */
1273			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1274			    VDEV_ALLOC_L2CACHE) == 0);
1275			ASSERT(vd != NULL);
1276			newvdevs[i] = vd;
1277
1278			/*
1279			 * Commit this vdev as an l2cache device,
1280			 * even if it fails to open.
1281			 */
1282			spa_l2cache_add(vd);
1283
1284			vd->vdev_top = vd;
1285			vd->vdev_aux = sav;
1286
1287			spa_l2cache_activate(vd);
1288
1289			if (vdev_open(vd) != 0)
1290				continue;
1291
1292			(void) vdev_validate_aux(vd);
1293
1294			if (!vdev_is_dead(vd))
1295				l2arc_add_vdev(spa, vd);
1296		}
1297	}
1298
1299	/*
1300	 * Purge vdevs that were dropped
1301	 */
1302	for (i = 0; i < oldnvdevs; i++) {
1303		uint64_t pool;
1304
1305		vd = oldvdevs[i];
1306		if (vd != NULL) {
1307			ASSERT(vd->vdev_isl2cache);
1308
1309			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1310			    pool != 0ULL && l2arc_vdev_present(vd))
1311				l2arc_remove_vdev(vd);
1312			vdev_clear_stats(vd);
1313			vdev_free(vd);
1314		}
1315	}
1316
1317	if (oldvdevs)
1318		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1319
1320	if (sav->sav_config == NULL)
1321		goto out;
1322
1323	sav->sav_vdevs = newvdevs;
1324	sav->sav_count = (int)nl2cache;
1325
1326	/*
1327	 * Recompute the stashed list of l2cache devices, with status
1328	 * information this time.
1329	 */
1330	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1331	    DATA_TYPE_NVLIST_ARRAY) == 0);
1332
1333	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1334	for (i = 0; i < sav->sav_count; i++)
1335		l2cache[i] = vdev_config_generate(spa,
1336		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1337	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1338	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1339out:
1340	for (i = 0; i < sav->sav_count; i++)
1341		nvlist_free(l2cache[i]);
1342	if (sav->sav_count)
1343		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1344}
1345
1346static int
1347load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1348{
1349	dmu_buf_t *db;
1350	char *packed = NULL;
1351	size_t nvsize = 0;
1352	int error;
1353	*value = NULL;
1354
1355	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1356	nvsize = *(uint64_t *)db->db_data;
1357	dmu_buf_rele(db, FTAG);
1358
1359	packed = kmem_alloc(nvsize, KM_SLEEP);
1360	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1361	    DMU_READ_PREFETCH);
1362	if (error == 0)
1363		error = nvlist_unpack(packed, nvsize, value, 0);
1364	kmem_free(packed, nvsize);
1365
1366	return (error);
1367}
1368
1369/*
1370 * Checks to see if the given vdev could not be opened, in which case we post a
1371 * sysevent to notify the autoreplace code that the device has been removed.
1372 */
1373static void
1374spa_check_removed(vdev_t *vd)
1375{
1376	for (int c = 0; c < vd->vdev_children; c++)
1377		spa_check_removed(vd->vdev_child[c]);
1378
1379	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1380		zfs_post_autoreplace(vd->vdev_spa, vd);
1381		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1382	}
1383}
1384
1385/*
1386 * Validate the current config against the MOS config
1387 */
1388static boolean_t
1389spa_config_valid(spa_t *spa, nvlist_t *config)
1390{
1391	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1392	nvlist_t *nv;
1393
1394	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1395
1396	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1397	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1398
1399	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1400
1401	/*
1402	 * If we're doing a normal import, then build up any additional
1403	 * diagnostic information about missing devices in this config.
1404	 * We'll pass this up to the user for further processing.
1405	 */
1406	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1407		nvlist_t **child, *nv;
1408		uint64_t idx = 0;
1409
1410		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1411		    KM_SLEEP);
1412		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1413
1414		for (int c = 0; c < rvd->vdev_children; c++) {
1415			vdev_t *tvd = rvd->vdev_child[c];
1416			vdev_t *mtvd  = mrvd->vdev_child[c];
1417
1418			if (tvd->vdev_ops == &vdev_missing_ops &&
1419			    mtvd->vdev_ops != &vdev_missing_ops &&
1420			    mtvd->vdev_islog)
1421				child[idx++] = vdev_config_generate(spa, mtvd,
1422				    B_FALSE, 0);
1423		}
1424
1425		if (idx) {
1426			VERIFY(nvlist_add_nvlist_array(nv,
1427			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1428			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1429			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1430
1431			for (int i = 0; i < idx; i++)
1432				nvlist_free(child[i]);
1433		}
1434		nvlist_free(nv);
1435		kmem_free(child, rvd->vdev_children * sizeof (char **));
1436	}
1437
1438	/*
1439	 * Compare the root vdev tree with the information we have
1440	 * from the MOS config (mrvd). Check each top-level vdev
1441	 * with the corresponding MOS config top-level (mtvd).
1442	 */
1443	for (int c = 0; c < rvd->vdev_children; c++) {
1444		vdev_t *tvd = rvd->vdev_child[c];
1445		vdev_t *mtvd  = mrvd->vdev_child[c];
1446
1447		/*
1448		 * Resolve any "missing" vdevs in the current configuration.
1449		 * If we find that the MOS config has more accurate information
1450		 * about the top-level vdev then use that vdev instead.
1451		 */
1452		if (tvd->vdev_ops == &vdev_missing_ops &&
1453		    mtvd->vdev_ops != &vdev_missing_ops) {
1454
1455			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1456				continue;
1457
1458			/*
1459			 * Device specific actions.
1460			 */
1461			if (mtvd->vdev_islog) {
1462				spa_set_log_state(spa, SPA_LOG_CLEAR);
1463			} else {
1464				/*
1465				 * XXX - once we have 'readonly' pool
1466				 * support we should be able to handle
1467				 * missing data devices by transitioning
1468				 * the pool to readonly.
1469				 */
1470				continue;
1471			}
1472
1473			/*
1474			 * Swap the missing vdev with the data we were
1475			 * able to obtain from the MOS config.
1476			 */
1477			vdev_remove_child(rvd, tvd);
1478			vdev_remove_child(mrvd, mtvd);
1479
1480			vdev_add_child(rvd, mtvd);
1481			vdev_add_child(mrvd, tvd);
1482
1483			spa_config_exit(spa, SCL_ALL, FTAG);
1484			vdev_load(mtvd);
1485			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1486
1487			vdev_reopen(rvd);
1488		} else if (mtvd->vdev_islog) {
1489			/*
1490			 * Load the slog device's state from the MOS config
1491			 * since it's possible that the label does not
1492			 * contain the most up-to-date information.
1493			 */
1494			vdev_load_log_state(tvd, mtvd);
1495			vdev_reopen(tvd);
1496		}
1497	}
1498	vdev_free(mrvd);
1499	spa_config_exit(spa, SCL_ALL, FTAG);
1500
1501	/*
1502	 * Ensure we were able to validate the config.
1503	 */
1504	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1505}
1506
1507/*
1508 * Check for missing log devices
1509 */
1510static int
1511spa_check_logs(spa_t *spa)
1512{
1513	switch (spa->spa_log_state) {
1514	case SPA_LOG_MISSING:
1515		/* need to recheck in case slog has been restored */
1516	case SPA_LOG_UNKNOWN:
1517		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1518		    DS_FIND_CHILDREN)) {
1519			spa_set_log_state(spa, SPA_LOG_MISSING);
1520			return (1);
1521		}
1522		break;
1523	}
1524	return (0);
1525}
1526
1527static boolean_t
1528spa_passivate_log(spa_t *spa)
1529{
1530	vdev_t *rvd = spa->spa_root_vdev;
1531	boolean_t slog_found = B_FALSE;
1532
1533	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1534
1535	if (!spa_has_slogs(spa))
1536		return (B_FALSE);
1537
1538	for (int c = 0; c < rvd->vdev_children; c++) {
1539		vdev_t *tvd = rvd->vdev_child[c];
1540		metaslab_group_t *mg = tvd->vdev_mg;
1541
1542		if (tvd->vdev_islog) {
1543			metaslab_group_passivate(mg);
1544			slog_found = B_TRUE;
1545		}
1546	}
1547
1548	return (slog_found);
1549}
1550
1551static void
1552spa_activate_log(spa_t *spa)
1553{
1554	vdev_t *rvd = spa->spa_root_vdev;
1555
1556	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1557
1558	for (int c = 0; c < rvd->vdev_children; c++) {
1559		vdev_t *tvd = rvd->vdev_child[c];
1560		metaslab_group_t *mg = tvd->vdev_mg;
1561
1562		if (tvd->vdev_islog)
1563			metaslab_group_activate(mg);
1564	}
1565}
1566
1567int
1568spa_offline_log(spa_t *spa)
1569{
1570	int error = 0;
1571
1572	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1573	    NULL, DS_FIND_CHILDREN)) == 0) {
1574
1575		/*
1576		 * We successfully offlined the log device, sync out the
1577		 * current txg so that the "stubby" block can be removed
1578		 * by zil_sync().
1579		 */
1580		txg_wait_synced(spa->spa_dsl_pool, 0);
1581	}
1582	return (error);
1583}
1584
1585static void
1586spa_aux_check_removed(spa_aux_vdev_t *sav)
1587{
1588	int i;
1589
1590	for (i = 0; i < sav->sav_count; i++)
1591		spa_check_removed(sav->sav_vdevs[i]);
1592}
1593
1594void
1595spa_claim_notify(zio_t *zio)
1596{
1597	spa_t *spa = zio->io_spa;
1598
1599	if (zio->io_error)
1600		return;
1601
1602	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1603	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1604		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1605	mutex_exit(&spa->spa_props_lock);
1606}
1607
1608typedef struct spa_load_error {
1609	uint64_t	sle_meta_count;
1610	uint64_t	sle_data_count;
1611} spa_load_error_t;
1612
1613static void
1614spa_load_verify_done(zio_t *zio)
1615{
1616	blkptr_t *bp = zio->io_bp;
1617	spa_load_error_t *sle = zio->io_private;
1618	dmu_object_type_t type = BP_GET_TYPE(bp);
1619	int error = zio->io_error;
1620
1621	if (error) {
1622		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1623		    type != DMU_OT_INTENT_LOG)
1624			atomic_add_64(&sle->sle_meta_count, 1);
1625		else
1626			atomic_add_64(&sle->sle_data_count, 1);
1627	}
1628	zio_data_buf_free(zio->io_data, zio->io_size);
1629}
1630
1631/*ARGSUSED*/
1632static int
1633spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1634    arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1635{
1636	if (bp != NULL) {
1637		zio_t *rio = arg;
1638		size_t size = BP_GET_PSIZE(bp);
1639		void *data = zio_data_buf_alloc(size);
1640
1641		zio_nowait(zio_read(rio, spa, bp, data, size,
1642		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1643		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1644		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1645	}
1646	return (0);
1647}
1648
1649static int
1650spa_load_verify(spa_t *spa)
1651{
1652	zio_t *rio;
1653	spa_load_error_t sle = { 0 };
1654	zpool_rewind_policy_t policy;
1655	boolean_t verify_ok = B_FALSE;
1656	int error;
1657
1658	zpool_get_rewind_policy(spa->spa_config, &policy);
1659
1660	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1661		return (0);
1662
1663	rio = zio_root(spa, NULL, &sle,
1664	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1665
1666	error = traverse_pool(spa, spa->spa_verify_min_txg,
1667	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1668
1669	(void) zio_wait(rio);
1670
1671	spa->spa_load_meta_errors = sle.sle_meta_count;
1672	spa->spa_load_data_errors = sle.sle_data_count;
1673
1674	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1675	    sle.sle_data_count <= policy.zrp_maxdata) {
1676		int64_t loss = 0;
1677
1678		verify_ok = B_TRUE;
1679		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1680		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1681
1682		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1683		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1684		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1685		VERIFY(nvlist_add_int64(spa->spa_load_info,
1686		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1687		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1688		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1689	} else {
1690		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1691	}
1692
1693	if (error) {
1694		if (error != ENXIO && error != EIO)
1695			error = EIO;
1696		return (error);
1697	}
1698
1699	return (verify_ok ? 0 : EIO);
1700}
1701
1702/*
1703 * Find a value in the pool props object.
1704 */
1705static void
1706spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1707{
1708	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1709	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1710}
1711
1712/*
1713 * Find a value in the pool directory object.
1714 */
1715static int
1716spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1717{
1718	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1719	    name, sizeof (uint64_t), 1, val));
1720}
1721
1722static int
1723spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1724{
1725	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1726	return (err);
1727}
1728
1729/*
1730 * Fix up config after a partly-completed split.  This is done with the
1731 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1732 * pool have that entry in their config, but only the splitting one contains
1733 * a list of all the guids of the vdevs that are being split off.
1734 *
1735 * This function determines what to do with that list: either rejoin
1736 * all the disks to the pool, or complete the splitting process.  To attempt
1737 * the rejoin, each disk that is offlined is marked online again, and
1738 * we do a reopen() call.  If the vdev label for every disk that was
1739 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1740 * then we call vdev_split() on each disk, and complete the split.
1741 *
1742 * Otherwise we leave the config alone, with all the vdevs in place in
1743 * the original pool.
1744 */
1745static void
1746spa_try_repair(spa_t *spa, nvlist_t *config)
1747{
1748	uint_t extracted;
1749	uint64_t *glist;
1750	uint_t i, gcount;
1751	nvlist_t *nvl;
1752	vdev_t **vd;
1753	boolean_t attempt_reopen;
1754
1755	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1756		return;
1757
1758	/* check that the config is complete */
1759	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1760	    &glist, &gcount) != 0)
1761		return;
1762
1763	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1764
1765	/* attempt to online all the vdevs & validate */
1766	attempt_reopen = B_TRUE;
1767	for (i = 0; i < gcount; i++) {
1768		if (glist[i] == 0)	/* vdev is hole */
1769			continue;
1770
1771		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1772		if (vd[i] == NULL) {
1773			/*
1774			 * Don't bother attempting to reopen the disks;
1775			 * just do the split.
1776			 */
1777			attempt_reopen = B_FALSE;
1778		} else {
1779			/* attempt to re-online it */
1780			vd[i]->vdev_offline = B_FALSE;
1781		}
1782	}
1783
1784	if (attempt_reopen) {
1785		vdev_reopen(spa->spa_root_vdev);
1786
1787		/* check each device to see what state it's in */
1788		for (extracted = 0, i = 0; i < gcount; i++) {
1789			if (vd[i] != NULL &&
1790			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1791				break;
1792			++extracted;
1793		}
1794	}
1795
1796	/*
1797	 * If every disk has been moved to the new pool, or if we never
1798	 * even attempted to look at them, then we split them off for
1799	 * good.
1800	 */
1801	if (!attempt_reopen || gcount == extracted) {
1802		for (i = 0; i < gcount; i++)
1803			if (vd[i] != NULL)
1804				vdev_split(vd[i]);
1805		vdev_reopen(spa->spa_root_vdev);
1806	}
1807
1808	kmem_free(vd, gcount * sizeof (vdev_t *));
1809}
1810
1811static int
1812spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1813    boolean_t mosconfig)
1814{
1815	nvlist_t *config = spa->spa_config;
1816	char *ereport = FM_EREPORT_ZFS_POOL;
1817	char *comment;
1818	int error;
1819	uint64_t pool_guid;
1820	nvlist_t *nvl;
1821
1822	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1823		return (EINVAL);
1824
1825	ASSERT(spa->spa_comment == NULL);
1826	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1827		spa->spa_comment = spa_strdup(comment);
1828
1829	/*
1830	 * Versioning wasn't explicitly added to the label until later, so if
1831	 * it's not present treat it as the initial version.
1832	 */
1833	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1834	    &spa->spa_ubsync.ub_version) != 0)
1835		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1836
1837	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1838	    &spa->spa_config_txg);
1839
1840	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1841	    spa_guid_exists(pool_guid, 0)) {
1842		error = EEXIST;
1843	} else {
1844		spa->spa_config_guid = pool_guid;
1845
1846		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1847		    &nvl) == 0) {
1848			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1849			    KM_SLEEP) == 0);
1850		}
1851
1852		gethrestime(&spa->spa_loaded_ts);
1853		error = spa_load_impl(spa, pool_guid, config, state, type,
1854		    mosconfig, &ereport);
1855	}
1856
1857	spa->spa_minref = refcount_count(&spa->spa_refcount);
1858	if (error) {
1859		if (error != EEXIST) {
1860			spa->spa_loaded_ts.tv_sec = 0;
1861			spa->spa_loaded_ts.tv_nsec = 0;
1862		}
1863		if (error != EBADF) {
1864			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1865		}
1866	}
1867	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1868	spa->spa_ena = 0;
1869
1870	return (error);
1871}
1872
1873/*
1874 * Load an existing storage pool, using the pool's builtin spa_config as a
1875 * source of configuration information.
1876 */
1877static int
1878spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1879    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1880    char **ereport)
1881{
1882	int error = 0;
1883	nvlist_t *nvroot = NULL;
1884	vdev_t *rvd;
1885	uberblock_t *ub = &spa->spa_uberblock;
1886	uint64_t children, config_cache_txg = spa->spa_config_txg;
1887	int orig_mode = spa->spa_mode;
1888	int parse;
1889	uint64_t obj;
1890
1891	/*
1892	 * If this is an untrusted config, access the pool in read-only mode.
1893	 * This prevents things like resilvering recently removed devices.
1894	 */
1895	if (!mosconfig)
1896		spa->spa_mode = FREAD;
1897
1898	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1899
1900	spa->spa_load_state = state;
1901
1902	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1903		return (EINVAL);
1904
1905	parse = (type == SPA_IMPORT_EXISTING ?
1906	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1907
1908	/*
1909	 * Create "The Godfather" zio to hold all async IOs
1910	 */
1911	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1912	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1913
1914	/*
1915	 * Parse the configuration into a vdev tree.  We explicitly set the
1916	 * value that will be returned by spa_version() since parsing the
1917	 * configuration requires knowing the version number.
1918	 */
1919	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1920	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1921	spa_config_exit(spa, SCL_ALL, FTAG);
1922
1923	if (error != 0)
1924		return (error);
1925
1926	ASSERT(spa->spa_root_vdev == rvd);
1927
1928	if (type != SPA_IMPORT_ASSEMBLE) {
1929		ASSERT(spa_guid(spa) == pool_guid);
1930	}
1931
1932	/*
1933	 * Try to open all vdevs, loading each label in the process.
1934	 */
1935	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1936	error = vdev_open(rvd);
1937	spa_config_exit(spa, SCL_ALL, FTAG);
1938	if (error != 0)
1939		return (error);
1940
1941	/*
1942	 * We need to validate the vdev labels against the configuration that
1943	 * we have in hand, which is dependent on the setting of mosconfig. If
1944	 * mosconfig is true then we're validating the vdev labels based on
1945	 * that config.  Otherwise, we're validating against the cached config
1946	 * (zpool.cache) that was read when we loaded the zfs module, and then
1947	 * later we will recursively call spa_load() and validate against
1948	 * the vdev config.
1949	 *
1950	 * If we're assembling a new pool that's been split off from an
1951	 * existing pool, the labels haven't yet been updated so we skip
1952	 * validation for now.
1953	 */
1954	if (type != SPA_IMPORT_ASSEMBLE) {
1955		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1956		error = vdev_validate(rvd, mosconfig);
1957		spa_config_exit(spa, SCL_ALL, FTAG);
1958
1959		if (error != 0)
1960			return (error);
1961
1962		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1963			return (ENXIO);
1964	}
1965
1966	/*
1967	 * Find the best uberblock.
1968	 */
1969	vdev_uberblock_load(NULL, rvd, ub);
1970
1971	/*
1972	 * If we weren't able to find a single valid uberblock, return failure.
1973	 */
1974	if (ub->ub_txg == 0)
1975		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1976
1977	/*
1978	 * If the pool is newer than the code, we can't open it.
1979	 */
1980	if (ub->ub_version > SPA_VERSION)
1981		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1982
1983	/*
1984	 * If the vdev guid sum doesn't match the uberblock, we have an
1985	 * incomplete configuration.  We first check to see if the pool
1986	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1987	 * If it is, defer the vdev_guid_sum check till later so we
1988	 * can handle missing vdevs.
1989	 */
1990	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1991	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1992	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1993		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1994
1995	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1996		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1997		spa_try_repair(spa, config);
1998		spa_config_exit(spa, SCL_ALL, FTAG);
1999		nvlist_free(spa->spa_config_splitting);
2000		spa->spa_config_splitting = NULL;
2001	}
2002
2003	/*
2004	 * Initialize internal SPA structures.
2005	 */
2006	spa->spa_state = POOL_STATE_ACTIVE;
2007	spa->spa_ubsync = spa->spa_uberblock;
2008	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2009	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2010	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2011	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2012	spa->spa_claim_max_txg = spa->spa_first_txg;
2013	spa->spa_prev_software_version = ub->ub_software_version;
2014
2015	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2016	if (error)
2017		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2018	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2019
2020	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2021		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2022
2023	if (!mosconfig) {
2024		uint64_t hostid;
2025		nvlist_t *policy = NULL, *nvconfig;
2026
2027		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2028			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2029
2030		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2031		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2032			char *hostname;
2033			unsigned long myhostid = 0;
2034
2035			VERIFY(nvlist_lookup_string(nvconfig,
2036			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2037
2038#ifdef	_KERNEL
2039			myhostid = zone_get_hostid(NULL);
2040#else	/* _KERNEL */
2041			/*
2042			 * We're emulating the system's hostid in userland, so
2043			 * we can't use zone_get_hostid().
2044			 */
2045			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2046#endif	/* _KERNEL */
2047			if (check_hostid && hostid != 0 && myhostid != 0 &&
2048			    hostid != myhostid) {
2049				nvlist_free(nvconfig);
2050				cmn_err(CE_WARN, "pool '%s' could not be "
2051				    "loaded as it was last accessed by "
2052				    "another system (host: %s hostid: 0x%lx). "
2053				    "See: http://www.sun.com/msg/ZFS-8000-EY",
2054				    spa_name(spa), hostname,
2055				    (unsigned long)hostid);
2056				return (EBADF);
2057			}
2058		}
2059		if (nvlist_lookup_nvlist(spa->spa_config,
2060		    ZPOOL_REWIND_POLICY, &policy) == 0)
2061			VERIFY(nvlist_add_nvlist(nvconfig,
2062			    ZPOOL_REWIND_POLICY, policy) == 0);
2063
2064		spa_config_set(spa, nvconfig);
2065		spa_unload(spa);
2066		spa_deactivate(spa);
2067		spa_activate(spa, orig_mode);
2068
2069		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2070	}
2071
2072	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2073		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2074	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2075	if (error != 0)
2076		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2077
2078	/*
2079	 * Load the bit that tells us to use the new accounting function
2080	 * (raid-z deflation).  If we have an older pool, this will not
2081	 * be present.
2082	 */
2083	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2084	if (error != 0 && error != ENOENT)
2085		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2086
2087	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2088	    &spa->spa_creation_version);
2089	if (error != 0 && error != ENOENT)
2090		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2091
2092	/*
2093	 * Load the persistent error log.  If we have an older pool, this will
2094	 * not be present.
2095	 */
2096	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2097	if (error != 0 && error != ENOENT)
2098		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2099
2100	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2101	    &spa->spa_errlog_scrub);
2102	if (error != 0 && error != ENOENT)
2103		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2104
2105	/*
2106	 * Load the history object.  If we have an older pool, this
2107	 * will not be present.
2108	 */
2109	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2110	if (error != 0 && error != ENOENT)
2111		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2112
2113	/*
2114	 * If we're assembling the pool from the split-off vdevs of
2115	 * an existing pool, we don't want to attach the spares & cache
2116	 * devices.
2117	 */
2118
2119	/*
2120	 * Load any hot spares for this pool.
2121	 */
2122	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2123	if (error != 0 && error != ENOENT)
2124		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2125	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2126		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2127		if (load_nvlist(spa, spa->spa_spares.sav_object,
2128		    &spa->spa_spares.sav_config) != 0)
2129			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2130
2131		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2132		spa_load_spares(spa);
2133		spa_config_exit(spa, SCL_ALL, FTAG);
2134	} else if (error == 0) {
2135		spa->spa_spares.sav_sync = B_TRUE;
2136	}
2137
2138	/*
2139	 * Load any level 2 ARC devices for this pool.
2140	 */
2141	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2142	    &spa->spa_l2cache.sav_object);
2143	if (error != 0 && error != ENOENT)
2144		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2145	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2146		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2147		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2148		    &spa->spa_l2cache.sav_config) != 0)
2149			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2150
2151		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2152		spa_load_l2cache(spa);
2153		spa_config_exit(spa, SCL_ALL, FTAG);
2154	} else if (error == 0) {
2155		spa->spa_l2cache.sav_sync = B_TRUE;
2156	}
2157
2158	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2159
2160	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2161	if (error && error != ENOENT)
2162		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2163
2164	if (error == 0) {
2165		uint64_t autoreplace;
2166
2167		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2168		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2169		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2170		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2171		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2172		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2173		    &spa->spa_dedup_ditto);
2174
2175		spa->spa_autoreplace = (autoreplace != 0);
2176	}
2177
2178	/*
2179	 * If the 'autoreplace' property is set, then post a resource notifying
2180	 * the ZFS DE that it should not issue any faults for unopenable
2181	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2182	 * unopenable vdevs so that the normal autoreplace handler can take
2183	 * over.
2184	 */
2185	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2186		spa_check_removed(spa->spa_root_vdev);
2187		/*
2188		 * For the import case, this is done in spa_import(), because
2189		 * at this point we're using the spare definitions from
2190		 * the MOS config, not necessarily from the userland config.
2191		 */
2192		if (state != SPA_LOAD_IMPORT) {
2193			spa_aux_check_removed(&spa->spa_spares);
2194			spa_aux_check_removed(&spa->spa_l2cache);
2195		}
2196	}
2197
2198	/*
2199	 * Load the vdev state for all toplevel vdevs.
2200	 */
2201	vdev_load(rvd);
2202
2203	/*
2204	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2205	 */
2206	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2207	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2208	spa_config_exit(spa, SCL_ALL, FTAG);
2209
2210	/*
2211	 * Load the DDTs (dedup tables).
2212	 */
2213	error = ddt_load(spa);
2214	if (error != 0)
2215		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2216
2217	spa_update_dspace(spa);
2218
2219	/*
2220	 * Validate the config, using the MOS config to fill in any
2221	 * information which might be missing.  If we fail to validate
2222	 * the config then declare the pool unfit for use. If we're
2223	 * assembling a pool from a split, the log is not transferred
2224	 * over.
2225	 */
2226	if (type != SPA_IMPORT_ASSEMBLE) {
2227		nvlist_t *nvconfig;
2228
2229		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2230			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2231
2232		if (!spa_config_valid(spa, nvconfig)) {
2233			nvlist_free(nvconfig);
2234			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2235			    ENXIO));
2236		}
2237		nvlist_free(nvconfig);
2238
2239		/*
2240		 * Now that we've validate the config, check the state of the
2241		 * root vdev.  If it can't be opened, it indicates one or
2242		 * more toplevel vdevs are faulted.
2243		 */
2244		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2245			return (ENXIO);
2246
2247		if (spa_check_logs(spa)) {
2248			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2249			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2250		}
2251	}
2252
2253	/*
2254	 * We've successfully opened the pool, verify that we're ready
2255	 * to start pushing transactions.
2256	 */
2257	if (state != SPA_LOAD_TRYIMPORT) {
2258		if (error = spa_load_verify(spa))
2259			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2260			    error));
2261	}
2262
2263	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2264	    spa->spa_load_max_txg == UINT64_MAX)) {
2265		dmu_tx_t *tx;
2266		int need_update = B_FALSE;
2267
2268		ASSERT(state != SPA_LOAD_TRYIMPORT);
2269
2270		/*
2271		 * Claim log blocks that haven't been committed yet.
2272		 * This must all happen in a single txg.
2273		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2274		 * invoked from zil_claim_log_block()'s i/o done callback.
2275		 * Price of rollback is that we abandon the log.
2276		 */
2277		spa->spa_claiming = B_TRUE;
2278
2279		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2280		    spa_first_txg(spa));
2281		(void) dmu_objset_find(spa_name(spa),
2282		    zil_claim, tx, DS_FIND_CHILDREN);
2283		dmu_tx_commit(tx);
2284
2285		spa->spa_claiming = B_FALSE;
2286
2287		spa_set_log_state(spa, SPA_LOG_GOOD);
2288		spa->spa_sync_on = B_TRUE;
2289		txg_sync_start(spa->spa_dsl_pool);
2290
2291		/*
2292		 * Wait for all claims to sync.  We sync up to the highest
2293		 * claimed log block birth time so that claimed log blocks
2294		 * don't appear to be from the future.  spa_claim_max_txg
2295		 * will have been set for us by either zil_check_log_chain()
2296		 * (invoked from spa_check_logs()) or zil_claim() above.
2297		 */
2298		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2299
2300		/*
2301		 * If the config cache is stale, or we have uninitialized
2302		 * metaslabs (see spa_vdev_add()), then update the config.
2303		 *
2304		 * If this is a verbatim import, trust the current
2305		 * in-core spa_config and update the disk labels.
2306		 */
2307		if (config_cache_txg != spa->spa_config_txg ||
2308		    state == SPA_LOAD_IMPORT ||
2309		    state == SPA_LOAD_RECOVER ||
2310		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2311			need_update = B_TRUE;
2312
2313		for (int c = 0; c < rvd->vdev_children; c++)
2314			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2315				need_update = B_TRUE;
2316
2317		/*
2318		 * Update the config cache asychronously in case we're the
2319		 * root pool, in which case the config cache isn't writable yet.
2320		 */
2321		if (need_update)
2322			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2323
2324		/*
2325		 * Check all DTLs to see if anything needs resilvering.
2326		 */
2327		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2328		    vdev_resilver_needed(rvd, NULL, NULL))
2329			spa_async_request(spa, SPA_ASYNC_RESILVER);
2330
2331		/*
2332		 * Delete any inconsistent datasets.
2333		 */
2334		(void) dmu_objset_find(spa_name(spa),
2335		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2336
2337		/*
2338		 * Clean up any stale temporary dataset userrefs.
2339		 */
2340		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2341	}
2342
2343	return (0);
2344}
2345
2346static int
2347spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2348{
2349	int mode = spa->spa_mode;
2350
2351	spa_unload(spa);
2352	spa_deactivate(spa);
2353
2354	spa->spa_load_max_txg--;
2355
2356	spa_activate(spa, mode);
2357	spa_async_suspend(spa);
2358
2359	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2360}
2361
2362static int
2363spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2364    uint64_t max_request, int rewind_flags)
2365{
2366	nvlist_t *config = NULL;
2367	int load_error, rewind_error;
2368	uint64_t safe_rewind_txg;
2369	uint64_t min_txg;
2370
2371	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2372		spa->spa_load_max_txg = spa->spa_load_txg;
2373		spa_set_log_state(spa, SPA_LOG_CLEAR);
2374	} else {
2375		spa->spa_load_max_txg = max_request;
2376	}
2377
2378	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2379	    mosconfig);
2380	if (load_error == 0)
2381		return (0);
2382
2383	if (spa->spa_root_vdev != NULL)
2384		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2385
2386	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2387	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2388
2389	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2390		nvlist_free(config);
2391		return (load_error);
2392	}
2393
2394	/* Price of rolling back is discarding txgs, including log */
2395	if (state == SPA_LOAD_RECOVER)
2396		spa_set_log_state(spa, SPA_LOG_CLEAR);
2397
2398	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2399	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2400	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2401	    TXG_INITIAL : safe_rewind_txg;
2402
2403	/*
2404	 * Continue as long as we're finding errors, we're still within
2405	 * the acceptable rewind range, and we're still finding uberblocks
2406	 */
2407	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2408	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2409		if (spa->spa_load_max_txg < safe_rewind_txg)
2410			spa->spa_extreme_rewind = B_TRUE;
2411		rewind_error = spa_load_retry(spa, state, mosconfig);
2412	}
2413
2414	spa->spa_extreme_rewind = B_FALSE;
2415	spa->spa_load_max_txg = UINT64_MAX;
2416
2417	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2418		spa_config_set(spa, config);
2419
2420	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2421}
2422
2423/*
2424 * Pool Open/Import
2425 *
2426 * The import case is identical to an open except that the configuration is sent
2427 * down from userland, instead of grabbed from the configuration cache.  For the
2428 * case of an open, the pool configuration will exist in the
2429 * POOL_STATE_UNINITIALIZED state.
2430 *
2431 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2432 * the same time open the pool, without having to keep around the spa_t in some
2433 * ambiguous state.
2434 */
2435static int
2436spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2437    nvlist_t **config)
2438{
2439	spa_t *spa;
2440	spa_load_state_t state = SPA_LOAD_OPEN;
2441	int error;
2442	int locked = B_FALSE;
2443	int firstopen = B_FALSE;
2444
2445	*spapp = NULL;
2446
2447	/*
2448	 * As disgusting as this is, we need to support recursive calls to this
2449	 * function because dsl_dir_open() is called during spa_load(), and ends
2450	 * up calling spa_open() again.  The real fix is to figure out how to
2451	 * avoid dsl_dir_open() calling this in the first place.
2452	 */
2453	if (mutex_owner(&spa_namespace_lock) != curthread) {
2454		mutex_enter(&spa_namespace_lock);
2455		locked = B_TRUE;
2456	}
2457
2458	if ((spa = spa_lookup(pool)) == NULL) {
2459		if (locked)
2460			mutex_exit(&spa_namespace_lock);
2461		return (ENOENT);
2462	}
2463
2464	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2465		zpool_rewind_policy_t policy;
2466
2467		firstopen = B_TRUE;
2468
2469		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2470		    &policy);
2471		if (policy.zrp_request & ZPOOL_DO_REWIND)
2472			state = SPA_LOAD_RECOVER;
2473
2474		spa_activate(spa, spa_mode_global);
2475
2476		if (state != SPA_LOAD_RECOVER)
2477			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2478
2479		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2480		    policy.zrp_request);
2481
2482		if (error == EBADF) {
2483			/*
2484			 * If vdev_validate() returns failure (indicated by
2485			 * EBADF), it indicates that one of the vdevs indicates
2486			 * that the pool has been exported or destroyed.  If
2487			 * this is the case, the config cache is out of sync and
2488			 * we should remove the pool from the namespace.
2489			 */
2490			spa_unload(spa);
2491			spa_deactivate(spa);
2492			spa_config_sync(spa, B_TRUE, B_TRUE);
2493			spa_remove(spa);
2494			if (locked)
2495				mutex_exit(&spa_namespace_lock);
2496			return (ENOENT);
2497		}
2498
2499		if (error) {
2500			/*
2501			 * We can't open the pool, but we still have useful
2502			 * information: the state of each vdev after the
2503			 * attempted vdev_open().  Return this to the user.
2504			 */
2505			if (config != NULL && spa->spa_config) {
2506				VERIFY(nvlist_dup(spa->spa_config, config,
2507				    KM_SLEEP) == 0);
2508				VERIFY(nvlist_add_nvlist(*config,
2509				    ZPOOL_CONFIG_LOAD_INFO,
2510				    spa->spa_load_info) == 0);
2511			}
2512			spa_unload(spa);
2513			spa_deactivate(spa);
2514			spa->spa_last_open_failed = error;
2515			if (locked)
2516				mutex_exit(&spa_namespace_lock);
2517			*spapp = NULL;
2518			return (error);
2519		}
2520	}
2521
2522	spa_open_ref(spa, tag);
2523
2524	if (config != NULL)
2525		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2526
2527	/*
2528	 * If we've recovered the pool, pass back any information we
2529	 * gathered while doing the load.
2530	 */
2531	if (state == SPA_LOAD_RECOVER) {
2532		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2533		    spa->spa_load_info) == 0);
2534	}
2535
2536	if (locked) {
2537		spa->spa_last_open_failed = 0;
2538		spa->spa_last_ubsync_txg = 0;
2539		spa->spa_load_txg = 0;
2540		mutex_exit(&spa_namespace_lock);
2541#ifdef __FreeBSD__
2542#ifdef _KERNEL
2543		if (firstopen)
2544			zvol_create_minors(pool);
2545#endif
2546#endif
2547	}
2548
2549	*spapp = spa;
2550
2551	return (0);
2552}
2553
2554int
2555spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2556    nvlist_t **config)
2557{
2558	return (spa_open_common(name, spapp, tag, policy, config));
2559}
2560
2561int
2562spa_open(const char *name, spa_t **spapp, void *tag)
2563{
2564	return (spa_open_common(name, spapp, tag, NULL, NULL));
2565}
2566
2567/*
2568 * Lookup the given spa_t, incrementing the inject count in the process,
2569 * preventing it from being exported or destroyed.
2570 */
2571spa_t *
2572spa_inject_addref(char *name)
2573{
2574	spa_t *spa;
2575
2576	mutex_enter(&spa_namespace_lock);
2577	if ((spa = spa_lookup(name)) == NULL) {
2578		mutex_exit(&spa_namespace_lock);
2579		return (NULL);
2580	}
2581	spa->spa_inject_ref++;
2582	mutex_exit(&spa_namespace_lock);
2583
2584	return (spa);
2585}
2586
2587void
2588spa_inject_delref(spa_t *spa)
2589{
2590	mutex_enter(&spa_namespace_lock);
2591	spa->spa_inject_ref--;
2592	mutex_exit(&spa_namespace_lock);
2593}
2594
2595/*
2596 * Add spares device information to the nvlist.
2597 */
2598static void
2599spa_add_spares(spa_t *spa, nvlist_t *config)
2600{
2601	nvlist_t **spares;
2602	uint_t i, nspares;
2603	nvlist_t *nvroot;
2604	uint64_t guid;
2605	vdev_stat_t *vs;
2606	uint_t vsc;
2607	uint64_t pool;
2608
2609	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2610
2611	if (spa->spa_spares.sav_count == 0)
2612		return;
2613
2614	VERIFY(nvlist_lookup_nvlist(config,
2615	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2616	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2617	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2618	if (nspares != 0) {
2619		VERIFY(nvlist_add_nvlist_array(nvroot,
2620		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2621		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2622		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2623
2624		/*
2625		 * Go through and find any spares which have since been
2626		 * repurposed as an active spare.  If this is the case, update
2627		 * their status appropriately.
2628		 */
2629		for (i = 0; i < nspares; i++) {
2630			VERIFY(nvlist_lookup_uint64(spares[i],
2631			    ZPOOL_CONFIG_GUID, &guid) == 0);
2632			if (spa_spare_exists(guid, &pool, NULL) &&
2633			    pool != 0ULL) {
2634				VERIFY(nvlist_lookup_uint64_array(
2635				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2636				    (uint64_t **)&vs, &vsc) == 0);
2637				vs->vs_state = VDEV_STATE_CANT_OPEN;
2638				vs->vs_aux = VDEV_AUX_SPARED;
2639			}
2640		}
2641	}
2642}
2643
2644/*
2645 * Add l2cache device information to the nvlist, including vdev stats.
2646 */
2647static void
2648spa_add_l2cache(spa_t *spa, nvlist_t *config)
2649{
2650	nvlist_t **l2cache;
2651	uint_t i, j, nl2cache;
2652	nvlist_t *nvroot;
2653	uint64_t guid;
2654	vdev_t *vd;
2655	vdev_stat_t *vs;
2656	uint_t vsc;
2657
2658	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2659
2660	if (spa->spa_l2cache.sav_count == 0)
2661		return;
2662
2663	VERIFY(nvlist_lookup_nvlist(config,
2664	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2665	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2666	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2667	if (nl2cache != 0) {
2668		VERIFY(nvlist_add_nvlist_array(nvroot,
2669		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2670		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2671		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2672
2673		/*
2674		 * Update level 2 cache device stats.
2675		 */
2676
2677		for (i = 0; i < nl2cache; i++) {
2678			VERIFY(nvlist_lookup_uint64(l2cache[i],
2679			    ZPOOL_CONFIG_GUID, &guid) == 0);
2680
2681			vd = NULL;
2682			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2683				if (guid ==
2684				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2685					vd = spa->spa_l2cache.sav_vdevs[j];
2686					break;
2687				}
2688			}
2689			ASSERT(vd != NULL);
2690
2691			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2692			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2693			    == 0);
2694			vdev_get_stats(vd, vs);
2695		}
2696	}
2697}
2698
2699int
2700spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2701{
2702	int error;
2703	spa_t *spa;
2704
2705	*config = NULL;
2706	error = spa_open_common(name, &spa, FTAG, NULL, config);
2707
2708	if (spa != NULL) {
2709		/*
2710		 * This still leaves a window of inconsistency where the spares
2711		 * or l2cache devices could change and the config would be
2712		 * self-inconsistent.
2713		 */
2714		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2715
2716		if (*config != NULL) {
2717			uint64_t loadtimes[2];
2718
2719			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2720			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2721			VERIFY(nvlist_add_uint64_array(*config,
2722			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2723
2724			VERIFY(nvlist_add_uint64(*config,
2725			    ZPOOL_CONFIG_ERRCOUNT,
2726			    spa_get_errlog_size(spa)) == 0);
2727
2728			if (spa_suspended(spa))
2729				VERIFY(nvlist_add_uint64(*config,
2730				    ZPOOL_CONFIG_SUSPENDED,
2731				    spa->spa_failmode) == 0);
2732
2733			spa_add_spares(spa, *config);
2734			spa_add_l2cache(spa, *config);
2735		}
2736	}
2737
2738	/*
2739	 * We want to get the alternate root even for faulted pools, so we cheat
2740	 * and call spa_lookup() directly.
2741	 */
2742	if (altroot) {
2743		if (spa == NULL) {
2744			mutex_enter(&spa_namespace_lock);
2745			spa = spa_lookup(name);
2746			if (spa)
2747				spa_altroot(spa, altroot, buflen);
2748			else
2749				altroot[0] = '\0';
2750			spa = NULL;
2751			mutex_exit(&spa_namespace_lock);
2752		} else {
2753			spa_altroot(spa, altroot, buflen);
2754		}
2755	}
2756
2757	if (spa != NULL) {
2758		spa_config_exit(spa, SCL_CONFIG, FTAG);
2759		spa_close(spa, FTAG);
2760	}
2761
2762	return (error);
2763}
2764
2765/*
2766 * Validate that the auxiliary device array is well formed.  We must have an
2767 * array of nvlists, each which describes a valid leaf vdev.  If this is an
2768 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2769 * specified, as long as they are well-formed.
2770 */
2771static int
2772spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2773    spa_aux_vdev_t *sav, const char *config, uint64_t version,
2774    vdev_labeltype_t label)
2775{
2776	nvlist_t **dev;
2777	uint_t i, ndev;
2778	vdev_t *vd;
2779	int error;
2780
2781	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2782
2783	/*
2784	 * It's acceptable to have no devs specified.
2785	 */
2786	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2787		return (0);
2788
2789	if (ndev == 0)
2790		return (EINVAL);
2791
2792	/*
2793	 * Make sure the pool is formatted with a version that supports this
2794	 * device type.
2795	 */
2796	if (spa_version(spa) < version)
2797		return (ENOTSUP);
2798
2799	/*
2800	 * Set the pending device list so we correctly handle device in-use
2801	 * checking.
2802	 */
2803	sav->sav_pending = dev;
2804	sav->sav_npending = ndev;
2805
2806	for (i = 0; i < ndev; i++) {
2807		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2808		    mode)) != 0)
2809			goto out;
2810
2811		if (!vd->vdev_ops->vdev_op_leaf) {
2812			vdev_free(vd);
2813			error = EINVAL;
2814			goto out;
2815		}
2816
2817		/*
2818		 * The L2ARC currently only supports disk devices in
2819		 * kernel context.  For user-level testing, we allow it.
2820		 */
2821#ifdef _KERNEL
2822		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2823		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2824			error = ENOTBLK;
2825			vdev_free(vd);
2826			goto out;
2827		}
2828#endif
2829		vd->vdev_top = vd;
2830
2831		if ((error = vdev_open(vd)) == 0 &&
2832		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2833			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2834			    vd->vdev_guid) == 0);
2835		}
2836
2837		vdev_free(vd);
2838
2839		if (error &&
2840		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2841			goto out;
2842		else
2843			error = 0;
2844	}
2845
2846out:
2847	sav->sav_pending = NULL;
2848	sav->sav_npending = 0;
2849	return (error);
2850}
2851
2852static int
2853spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2854{
2855	int error;
2856
2857	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2858
2859	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2860	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2861	    VDEV_LABEL_SPARE)) != 0) {
2862		return (error);
2863	}
2864
2865	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2866	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2867	    VDEV_LABEL_L2CACHE));
2868}
2869
2870static void
2871spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2872    const char *config)
2873{
2874	int i;
2875
2876	if (sav->sav_config != NULL) {
2877		nvlist_t **olddevs;
2878		uint_t oldndevs;
2879		nvlist_t **newdevs;
2880
2881		/*
2882		 * Generate new dev list by concatentating with the
2883		 * current dev list.
2884		 */
2885		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2886		    &olddevs, &oldndevs) == 0);
2887
2888		newdevs = kmem_alloc(sizeof (void *) *
2889		    (ndevs + oldndevs), KM_SLEEP);
2890		for (i = 0; i < oldndevs; i++)
2891			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2892			    KM_SLEEP) == 0);
2893		for (i = 0; i < ndevs; i++)
2894			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2895			    KM_SLEEP) == 0);
2896
2897		VERIFY(nvlist_remove(sav->sav_config, config,
2898		    DATA_TYPE_NVLIST_ARRAY) == 0);
2899
2900		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2901		    config, newdevs, ndevs + oldndevs) == 0);
2902		for (i = 0; i < oldndevs + ndevs; i++)
2903			nvlist_free(newdevs[i]);
2904		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2905	} else {
2906		/*
2907		 * Generate a new dev list.
2908		 */
2909		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2910		    KM_SLEEP) == 0);
2911		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2912		    devs, ndevs) == 0);
2913	}
2914}
2915
2916/*
2917 * Stop and drop level 2 ARC devices
2918 */
2919void
2920spa_l2cache_drop(spa_t *spa)
2921{
2922	vdev_t *vd;
2923	int i;
2924	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2925
2926	for (i = 0; i < sav->sav_count; i++) {
2927		uint64_t pool;
2928
2929		vd = sav->sav_vdevs[i];
2930		ASSERT(vd != NULL);
2931
2932		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2933		    pool != 0ULL && l2arc_vdev_present(vd))
2934			l2arc_remove_vdev(vd);
2935	}
2936}
2937
2938/*
2939 * Pool Creation
2940 */
2941int
2942spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2943    const char *history_str, nvlist_t *zplprops)
2944{
2945	spa_t *spa;
2946	char *altroot = NULL;
2947	vdev_t *rvd;
2948	dsl_pool_t *dp;
2949	dmu_tx_t *tx;
2950	int error = 0;
2951	uint64_t txg = TXG_INITIAL;
2952	nvlist_t **spares, **l2cache;
2953	uint_t nspares, nl2cache;
2954	uint64_t version, obj;
2955
2956	/*
2957	 * If this pool already exists, return failure.
2958	 */
2959	mutex_enter(&spa_namespace_lock);
2960	if (spa_lookup(pool) != NULL) {
2961		mutex_exit(&spa_namespace_lock);
2962		return (EEXIST);
2963	}
2964
2965	/*
2966	 * Allocate a new spa_t structure.
2967	 */
2968	(void) nvlist_lookup_string(props,
2969	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2970	spa = spa_add(pool, NULL, altroot);
2971	spa_activate(spa, spa_mode_global);
2972
2973	if (props && (error = spa_prop_validate(spa, props))) {
2974		spa_deactivate(spa);
2975		spa_remove(spa);
2976		mutex_exit(&spa_namespace_lock);
2977		return (error);
2978	}
2979
2980	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2981	    &version) != 0)
2982		version = SPA_VERSION;
2983	ASSERT(version <= SPA_VERSION);
2984
2985	spa->spa_first_txg = txg;
2986	spa->spa_uberblock.ub_txg = txg - 1;
2987	spa->spa_uberblock.ub_version = version;
2988	spa->spa_ubsync = spa->spa_uberblock;
2989
2990	/*
2991	 * Create "The Godfather" zio to hold all async IOs
2992	 */
2993	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2994	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2995
2996	/*
2997	 * Create the root vdev.
2998	 */
2999	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3000
3001	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3002
3003	ASSERT(error != 0 || rvd != NULL);
3004	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3005
3006	if (error == 0 && !zfs_allocatable_devs(nvroot))
3007		error = EINVAL;
3008
3009	if (error == 0 &&
3010	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3011	    (error = spa_validate_aux(spa, nvroot, txg,
3012	    VDEV_ALLOC_ADD)) == 0) {
3013		for (int c = 0; c < rvd->vdev_children; c++) {
3014			vdev_metaslab_set_size(rvd->vdev_child[c]);
3015			vdev_expand(rvd->vdev_child[c], txg);
3016		}
3017	}
3018
3019	spa_config_exit(spa, SCL_ALL, FTAG);
3020
3021	if (error != 0) {
3022		spa_unload(spa);
3023		spa_deactivate(spa);
3024		spa_remove(spa);
3025		mutex_exit(&spa_namespace_lock);
3026		return (error);
3027	}
3028
3029	/*
3030	 * Get the list of spares, if specified.
3031	 */
3032	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3033	    &spares, &nspares) == 0) {
3034		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3035		    KM_SLEEP) == 0);
3036		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3037		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3038		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3039		spa_load_spares(spa);
3040		spa_config_exit(spa, SCL_ALL, FTAG);
3041		spa->spa_spares.sav_sync = B_TRUE;
3042	}
3043
3044	/*
3045	 * Get the list of level 2 cache devices, if specified.
3046	 */
3047	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3048	    &l2cache, &nl2cache) == 0) {
3049		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3050		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3051		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3052		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3053		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3054		spa_load_l2cache(spa);
3055		spa_config_exit(spa, SCL_ALL, FTAG);
3056		spa->spa_l2cache.sav_sync = B_TRUE;
3057	}
3058
3059	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3060	spa->spa_meta_objset = dp->dp_meta_objset;
3061
3062	/*
3063	 * Create DDTs (dedup tables).
3064	 */
3065	ddt_create(spa);
3066
3067	spa_update_dspace(spa);
3068
3069	tx = dmu_tx_create_assigned(dp, txg);
3070
3071	/*
3072	 * Create the pool config object.
3073	 */
3074	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3075	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3076	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3077
3078	if (zap_add(spa->spa_meta_objset,
3079	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3080	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3081		cmn_err(CE_PANIC, "failed to add pool config");
3082	}
3083
3084	if (zap_add(spa->spa_meta_objset,
3085	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3086	    sizeof (uint64_t), 1, &version, tx) != 0) {
3087		cmn_err(CE_PANIC, "failed to add pool version");
3088	}
3089
3090	/* Newly created pools with the right version are always deflated. */
3091	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3092		spa->spa_deflate = TRUE;
3093		if (zap_add(spa->spa_meta_objset,
3094		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3095		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3096			cmn_err(CE_PANIC, "failed to add deflate");
3097		}
3098	}
3099
3100	/*
3101	 * Create the deferred-free bpobj.  Turn off compression
3102	 * because sync-to-convergence takes longer if the blocksize
3103	 * keeps changing.
3104	 */
3105	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3106	dmu_object_set_compress(spa->spa_meta_objset, obj,
3107	    ZIO_COMPRESS_OFF, tx);
3108	if (zap_add(spa->spa_meta_objset,
3109	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3110	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3111		cmn_err(CE_PANIC, "failed to add bpobj");
3112	}
3113	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3114	    spa->spa_meta_objset, obj));
3115
3116	/*
3117	 * Create the pool's history object.
3118	 */
3119	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3120		spa_history_create_obj(spa, tx);
3121
3122	/*
3123	 * Set pool properties.
3124	 */
3125	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3126	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3127	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3128	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3129
3130	if (props != NULL) {
3131		spa_configfile_set(spa, props, B_FALSE);
3132		spa_sync_props(spa, props, tx);
3133	}
3134
3135	dmu_tx_commit(tx);
3136
3137	spa->spa_sync_on = B_TRUE;
3138	txg_sync_start(spa->spa_dsl_pool);
3139
3140	/*
3141	 * We explicitly wait for the first transaction to complete so that our
3142	 * bean counters are appropriately updated.
3143	 */
3144	txg_wait_synced(spa->spa_dsl_pool, txg);
3145
3146	spa_config_sync(spa, B_FALSE, B_TRUE);
3147
3148	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3149		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3150	spa_history_log_version(spa, LOG_POOL_CREATE);
3151
3152	spa->spa_minref = refcount_count(&spa->spa_refcount);
3153
3154	mutex_exit(&spa_namespace_lock);
3155
3156	return (0);
3157}
3158
3159#if defined(sun)
3160#ifdef _KERNEL
3161/*
3162 * Get the root pool information from the root disk, then import the root pool
3163 * during the system boot up time.
3164 */
3165extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3166
3167static nvlist_t *
3168spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3169{
3170	nvlist_t *config;
3171	nvlist_t *nvtop, *nvroot;
3172	uint64_t pgid;
3173
3174	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3175		return (NULL);
3176
3177	/*
3178	 * Add this top-level vdev to the child array.
3179	 */
3180	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3181	    &nvtop) == 0);
3182	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3183	    &pgid) == 0);
3184	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3185
3186	/*
3187	 * Put this pool's top-level vdevs into a root vdev.
3188	 */
3189	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3190	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3191	    VDEV_TYPE_ROOT) == 0);
3192	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3193	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3194	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3195	    &nvtop, 1) == 0);
3196
3197	/*
3198	 * Replace the existing vdev_tree with the new root vdev in
3199	 * this pool's configuration (remove the old, add the new).
3200	 */
3201	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3202	nvlist_free(nvroot);
3203	return (config);
3204}
3205
3206/*
3207 * Walk the vdev tree and see if we can find a device with "better"
3208 * configuration. A configuration is "better" if the label on that
3209 * device has a more recent txg.
3210 */
3211static void
3212spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3213{
3214	for (int c = 0; c < vd->vdev_children; c++)
3215		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3216
3217	if (vd->vdev_ops->vdev_op_leaf) {
3218		nvlist_t *label;
3219		uint64_t label_txg;
3220
3221		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3222		    &label) != 0)
3223			return;
3224
3225		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3226		    &label_txg) == 0);
3227
3228		/*
3229		 * Do we have a better boot device?
3230		 */
3231		if (label_txg > *txg) {
3232			*txg = label_txg;
3233			*avd = vd;
3234		}
3235		nvlist_free(label);
3236	}
3237}
3238
3239/*
3240 * Import a root pool.
3241 *
3242 * For x86. devpath_list will consist of devid and/or physpath name of
3243 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3244 * The GRUB "findroot" command will return the vdev we should boot.
3245 *
3246 * For Sparc, devpath_list consists the physpath name of the booting device
3247 * no matter the rootpool is a single device pool or a mirrored pool.
3248 * e.g.
3249 *	"/pci@1f,0/ide@d/disk@0,0:a"
3250 */
3251int
3252spa_import_rootpool(char *devpath, char *devid)
3253{
3254	spa_t *spa;
3255	vdev_t *rvd, *bvd, *avd = NULL;
3256	nvlist_t *config, *nvtop;
3257	uint64_t guid, txg;
3258	char *pname;
3259	int error;
3260
3261	/*
3262	 * Read the label from the boot device and generate a configuration.
3263	 */
3264	config = spa_generate_rootconf(devpath, devid, &guid);
3265#if defined(_OBP) && defined(_KERNEL)
3266	if (config == NULL) {
3267		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3268			/* iscsi boot */
3269			get_iscsi_bootpath_phy(devpath);
3270			config = spa_generate_rootconf(devpath, devid, &guid);
3271		}
3272	}
3273#endif
3274	if (config == NULL) {
3275		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3276		    devpath);
3277		return (EIO);
3278	}
3279
3280	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3281	    &pname) == 0);
3282	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3283
3284	mutex_enter(&spa_namespace_lock);
3285	if ((spa = spa_lookup(pname)) != NULL) {
3286		/*
3287		 * Remove the existing root pool from the namespace so that we
3288		 * can replace it with the correct config we just read in.
3289		 */
3290		spa_remove(spa);
3291	}
3292
3293	spa = spa_add(pname, config, NULL);
3294	spa->spa_is_root = B_TRUE;
3295	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3296
3297	/*
3298	 * Build up a vdev tree based on the boot device's label config.
3299	 */
3300	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3301	    &nvtop) == 0);
3302	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3303	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3304	    VDEV_ALLOC_ROOTPOOL);
3305	spa_config_exit(spa, SCL_ALL, FTAG);
3306	if (error) {
3307		mutex_exit(&spa_namespace_lock);
3308		nvlist_free(config);
3309		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3310		    pname);
3311		return (error);
3312	}
3313
3314	/*
3315	 * Get the boot vdev.
3316	 */
3317	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3318		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3319		    (u_longlong_t)guid);
3320		error = ENOENT;
3321		goto out;
3322	}
3323
3324	/*
3325	 * Determine if there is a better boot device.
3326	 */
3327	avd = bvd;
3328	spa_alt_rootvdev(rvd, &avd, &txg);
3329	if (avd != bvd) {
3330		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3331		    "try booting from '%s'", avd->vdev_path);
3332		error = EINVAL;
3333		goto out;
3334	}
3335
3336	/*
3337	 * If the boot device is part of a spare vdev then ensure that
3338	 * we're booting off the active spare.
3339	 */
3340	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3341	    !bvd->vdev_isspare) {
3342		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3343		    "try booting from '%s'",
3344		    bvd->vdev_parent->
3345		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3346		error = EINVAL;
3347		goto out;
3348	}
3349
3350	error = 0;
3351	spa_history_log_version(spa, LOG_POOL_IMPORT);
3352out:
3353	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3354	vdev_free(rvd);
3355	spa_config_exit(spa, SCL_ALL, FTAG);
3356	mutex_exit(&spa_namespace_lock);
3357
3358	nvlist_free(config);
3359	return (error);
3360}
3361
3362#endif
3363#endif	/* sun */
3364
3365/*
3366 * Import a non-root pool into the system.
3367 */
3368int
3369spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3370{
3371	spa_t *spa;
3372	char *altroot = NULL;
3373	spa_load_state_t state = SPA_LOAD_IMPORT;
3374	zpool_rewind_policy_t policy;
3375	uint64_t mode = spa_mode_global;
3376	uint64_t readonly = B_FALSE;
3377	int error;
3378	nvlist_t *nvroot;
3379	nvlist_t **spares, **l2cache;
3380	uint_t nspares, nl2cache;
3381
3382	/*
3383	 * If a pool with this name exists, return failure.
3384	 */
3385	mutex_enter(&spa_namespace_lock);
3386	if (spa_lookup(pool) != NULL) {
3387		mutex_exit(&spa_namespace_lock);
3388		return (EEXIST);
3389	}
3390
3391	/*
3392	 * Create and initialize the spa structure.
3393	 */
3394	(void) nvlist_lookup_string(props,
3395	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3396	(void) nvlist_lookup_uint64(props,
3397	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3398	if (readonly)
3399		mode = FREAD;
3400	spa = spa_add(pool, config, altroot);
3401	spa->spa_import_flags = flags;
3402
3403	/*
3404	 * Verbatim import - Take a pool and insert it into the namespace
3405	 * as if it had been loaded at boot.
3406	 */
3407	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3408		if (props != NULL)
3409			spa_configfile_set(spa, props, B_FALSE);
3410
3411		spa_config_sync(spa, B_FALSE, B_TRUE);
3412
3413		mutex_exit(&spa_namespace_lock);
3414		spa_history_log_version(spa, LOG_POOL_IMPORT);
3415
3416		return (0);
3417	}
3418
3419	spa_activate(spa, mode);
3420
3421	/*
3422	 * Don't start async tasks until we know everything is healthy.
3423	 */
3424	spa_async_suspend(spa);
3425
3426	zpool_get_rewind_policy(config, &policy);
3427	if (policy.zrp_request & ZPOOL_DO_REWIND)
3428		state = SPA_LOAD_RECOVER;
3429
3430	/*
3431	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3432	 * because the user-supplied config is actually the one to trust when
3433	 * doing an import.
3434	 */
3435	if (state != SPA_LOAD_RECOVER)
3436		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3437
3438	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3439	    policy.zrp_request);
3440
3441	/*
3442	 * Propagate anything learned while loading the pool and pass it
3443	 * back to caller (i.e. rewind info, missing devices, etc).
3444	 */
3445	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3446	    spa->spa_load_info) == 0);
3447
3448	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3449	/*
3450	 * Toss any existing sparelist, as it doesn't have any validity
3451	 * anymore, and conflicts with spa_has_spare().
3452	 */
3453	if (spa->spa_spares.sav_config) {
3454		nvlist_free(spa->spa_spares.sav_config);
3455		spa->spa_spares.sav_config = NULL;
3456		spa_load_spares(spa);
3457	}
3458	if (spa->spa_l2cache.sav_config) {
3459		nvlist_free(spa->spa_l2cache.sav_config);
3460		spa->spa_l2cache.sav_config = NULL;
3461		spa_load_l2cache(spa);
3462	}
3463
3464	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3465	    &nvroot) == 0);
3466	if (error == 0)
3467		error = spa_validate_aux(spa, nvroot, -1ULL,
3468		    VDEV_ALLOC_SPARE);
3469	if (error == 0)
3470		error = spa_validate_aux(spa, nvroot, -1ULL,
3471		    VDEV_ALLOC_L2CACHE);
3472	spa_config_exit(spa, SCL_ALL, FTAG);
3473
3474	if (props != NULL)
3475		spa_configfile_set(spa, props, B_FALSE);
3476
3477	if (error != 0 || (props && spa_writeable(spa) &&
3478	    (error = spa_prop_set(spa, props)))) {
3479		spa_unload(spa);
3480		spa_deactivate(spa);
3481		spa_remove(spa);
3482		mutex_exit(&spa_namespace_lock);
3483		return (error);
3484	}
3485
3486	spa_async_resume(spa);
3487
3488	/*
3489	 * Override any spares and level 2 cache devices as specified by
3490	 * the user, as these may have correct device names/devids, etc.
3491	 */
3492	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3493	    &spares, &nspares) == 0) {
3494		if (spa->spa_spares.sav_config)
3495			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3496			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3497		else
3498			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3499			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3500		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3501		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3502		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3503		spa_load_spares(spa);
3504		spa_config_exit(spa, SCL_ALL, FTAG);
3505		spa->spa_spares.sav_sync = B_TRUE;
3506	}
3507	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3508	    &l2cache, &nl2cache) == 0) {
3509		if (spa->spa_l2cache.sav_config)
3510			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3511			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3512		else
3513			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3514			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3515		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3516		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3517		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3518		spa_load_l2cache(spa);
3519		spa_config_exit(spa, SCL_ALL, FTAG);
3520		spa->spa_l2cache.sav_sync = B_TRUE;
3521	}
3522
3523	/*
3524	 * Check for any removed devices.
3525	 */
3526	if (spa->spa_autoreplace) {
3527		spa_aux_check_removed(&spa->spa_spares);
3528		spa_aux_check_removed(&spa->spa_l2cache);
3529	}
3530
3531	if (spa_writeable(spa)) {
3532		/*
3533		 * Update the config cache to include the newly-imported pool.
3534		 */
3535		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3536	}
3537
3538	/*
3539	 * It's possible that the pool was expanded while it was exported.
3540	 * We kick off an async task to handle this for us.
3541	 */
3542	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3543
3544	mutex_exit(&spa_namespace_lock);
3545	spa_history_log_version(spa, LOG_POOL_IMPORT);
3546
3547#ifdef __FreeBSD__
3548#ifdef _KERNEL
3549	zvol_create_minors(pool);
3550#endif
3551#endif
3552	return (0);
3553}
3554
3555nvlist_t *
3556spa_tryimport(nvlist_t *tryconfig)
3557{
3558	nvlist_t *config = NULL;
3559	char *poolname;
3560	spa_t *spa;
3561	uint64_t state;
3562	int error;
3563
3564	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3565		return (NULL);
3566
3567	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3568		return (NULL);
3569
3570	/*
3571	 * Create and initialize the spa structure.
3572	 */
3573	mutex_enter(&spa_namespace_lock);
3574	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3575	spa_activate(spa, FREAD);
3576
3577	/*
3578	 * Pass off the heavy lifting to spa_load().
3579	 * Pass TRUE for mosconfig because the user-supplied config
3580	 * is actually the one to trust when doing an import.
3581	 */
3582	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3583
3584	/*
3585	 * If 'tryconfig' was at least parsable, return the current config.
3586	 */
3587	if (spa->spa_root_vdev != NULL) {
3588		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3589		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3590		    poolname) == 0);
3591		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3592		    state) == 0);
3593		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3594		    spa->spa_uberblock.ub_timestamp) == 0);
3595
3596		/*
3597		 * If the bootfs property exists on this pool then we
3598		 * copy it out so that external consumers can tell which
3599		 * pools are bootable.
3600		 */
3601		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3602			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3603
3604			/*
3605			 * We have to play games with the name since the
3606			 * pool was opened as TRYIMPORT_NAME.
3607			 */
3608			if (dsl_dsobj_to_dsname(spa_name(spa),
3609			    spa->spa_bootfs, tmpname) == 0) {
3610				char *cp;
3611				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3612
3613				cp = strchr(tmpname, '/');
3614				if (cp == NULL) {
3615					(void) strlcpy(dsname, tmpname,
3616					    MAXPATHLEN);
3617				} else {
3618					(void) snprintf(dsname, MAXPATHLEN,
3619					    "%s/%s", poolname, ++cp);
3620				}
3621				VERIFY(nvlist_add_string(config,
3622				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3623				kmem_free(dsname, MAXPATHLEN);
3624			}
3625			kmem_free(tmpname, MAXPATHLEN);
3626		}
3627
3628		/*
3629		 * Add the list of hot spares and level 2 cache devices.
3630		 */
3631		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3632		spa_add_spares(spa, config);
3633		spa_add_l2cache(spa, config);
3634		spa_config_exit(spa, SCL_CONFIG, FTAG);
3635	}
3636
3637	spa_unload(spa);
3638	spa_deactivate(spa);
3639	spa_remove(spa);
3640	mutex_exit(&spa_namespace_lock);
3641
3642	return (config);
3643}
3644
3645/*
3646 * Pool export/destroy
3647 *
3648 * The act of destroying or exporting a pool is very simple.  We make sure there
3649 * is no more pending I/O and any references to the pool are gone.  Then, we
3650 * update the pool state and sync all the labels to disk, removing the
3651 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3652 * we don't sync the labels or remove the configuration cache.
3653 */
3654static int
3655spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3656    boolean_t force, boolean_t hardforce)
3657{
3658	spa_t *spa;
3659
3660	if (oldconfig)
3661		*oldconfig = NULL;
3662
3663	if (!(spa_mode_global & FWRITE))
3664		return (EROFS);
3665
3666	mutex_enter(&spa_namespace_lock);
3667	if ((spa = spa_lookup(pool)) == NULL) {
3668		mutex_exit(&spa_namespace_lock);
3669		return (ENOENT);
3670	}
3671
3672	/*
3673	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3674	 * reacquire the namespace lock, and see if we can export.
3675	 */
3676	spa_open_ref(spa, FTAG);
3677	mutex_exit(&spa_namespace_lock);
3678	spa_async_suspend(spa);
3679	mutex_enter(&spa_namespace_lock);
3680	spa_close(spa, FTAG);
3681
3682	/*
3683	 * The pool will be in core if it's openable,
3684	 * in which case we can modify its state.
3685	 */
3686	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3687		/*
3688		 * Objsets may be open only because they're dirty, so we
3689		 * have to force it to sync before checking spa_refcnt.
3690		 */
3691		txg_wait_synced(spa->spa_dsl_pool, 0);
3692
3693		/*
3694		 * A pool cannot be exported or destroyed if there are active
3695		 * references.  If we are resetting a pool, allow references by
3696		 * fault injection handlers.
3697		 */
3698		if (!spa_refcount_zero(spa) ||
3699		    (spa->spa_inject_ref != 0 &&
3700		    new_state != POOL_STATE_UNINITIALIZED)) {
3701			spa_async_resume(spa);
3702			mutex_exit(&spa_namespace_lock);
3703			return (EBUSY);
3704		}
3705
3706		/*
3707		 * A pool cannot be exported if it has an active shared spare.
3708		 * This is to prevent other pools stealing the active spare
3709		 * from an exported pool. At user's own will, such pool can
3710		 * be forcedly exported.
3711		 */
3712		if (!force && new_state == POOL_STATE_EXPORTED &&
3713		    spa_has_active_shared_spare(spa)) {
3714			spa_async_resume(spa);
3715			mutex_exit(&spa_namespace_lock);
3716			return (EXDEV);
3717		}
3718
3719		/*
3720		 * We want this to be reflected on every label,
3721		 * so mark them all dirty.  spa_unload() will do the
3722		 * final sync that pushes these changes out.
3723		 */
3724		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3725			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3726			spa->spa_state = new_state;
3727			spa->spa_final_txg = spa_last_synced_txg(spa) +
3728			    TXG_DEFER_SIZE + 1;
3729			vdev_config_dirty(spa->spa_root_vdev);
3730			spa_config_exit(spa, SCL_ALL, FTAG);
3731		}
3732	}
3733
3734	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3735
3736	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3737		spa_unload(spa);
3738		spa_deactivate(spa);
3739	}
3740
3741	if (oldconfig && spa->spa_config)
3742		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3743
3744	if (new_state != POOL_STATE_UNINITIALIZED) {
3745		if (!hardforce)
3746			spa_config_sync(spa, B_TRUE, B_TRUE);
3747		spa_remove(spa);
3748	}
3749	mutex_exit(&spa_namespace_lock);
3750
3751	return (0);
3752}
3753
3754/*
3755 * Destroy a storage pool.
3756 */
3757int
3758spa_destroy(char *pool)
3759{
3760	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3761	    B_FALSE, B_FALSE));
3762}
3763
3764/*
3765 * Export a storage pool.
3766 */
3767int
3768spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3769    boolean_t hardforce)
3770{
3771	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3772	    force, hardforce));
3773}
3774
3775/*
3776 * Similar to spa_export(), this unloads the spa_t without actually removing it
3777 * from the namespace in any way.
3778 */
3779int
3780spa_reset(char *pool)
3781{
3782	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3783	    B_FALSE, B_FALSE));
3784}
3785
3786/*
3787 * ==========================================================================
3788 * Device manipulation
3789 * ==========================================================================
3790 */
3791
3792/*
3793 * Add a device to a storage pool.
3794 */
3795int
3796spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3797{
3798	uint64_t txg, id;
3799	int error;
3800	vdev_t *rvd = spa->spa_root_vdev;
3801	vdev_t *vd, *tvd;
3802	nvlist_t **spares, **l2cache;
3803	uint_t nspares, nl2cache;
3804
3805	ASSERT(spa_writeable(spa));
3806
3807	txg = spa_vdev_enter(spa);
3808
3809	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3810	    VDEV_ALLOC_ADD)) != 0)
3811		return (spa_vdev_exit(spa, NULL, txg, error));
3812
3813	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3814
3815	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3816	    &nspares) != 0)
3817		nspares = 0;
3818
3819	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3820	    &nl2cache) != 0)
3821		nl2cache = 0;
3822
3823	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3824		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3825
3826	if (vd->vdev_children != 0 &&
3827	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3828		return (spa_vdev_exit(spa, vd, txg, error));
3829
3830	/*
3831	 * We must validate the spares and l2cache devices after checking the
3832	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3833	 */
3834	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3835		return (spa_vdev_exit(spa, vd, txg, error));
3836
3837	/*
3838	 * Transfer each new top-level vdev from vd to rvd.
3839	 */
3840	for (int c = 0; c < vd->vdev_children; c++) {
3841
3842		/*
3843		 * Set the vdev id to the first hole, if one exists.
3844		 */
3845		for (id = 0; id < rvd->vdev_children; id++) {
3846			if (rvd->vdev_child[id]->vdev_ishole) {
3847				vdev_free(rvd->vdev_child[id]);
3848				break;
3849			}
3850		}
3851		tvd = vd->vdev_child[c];
3852		vdev_remove_child(vd, tvd);
3853		tvd->vdev_id = id;
3854		vdev_add_child(rvd, tvd);
3855		vdev_config_dirty(tvd);
3856	}
3857
3858	if (nspares != 0) {
3859		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3860		    ZPOOL_CONFIG_SPARES);
3861		spa_load_spares(spa);
3862		spa->spa_spares.sav_sync = B_TRUE;
3863	}
3864
3865	if (nl2cache != 0) {
3866		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3867		    ZPOOL_CONFIG_L2CACHE);
3868		spa_load_l2cache(spa);
3869		spa->spa_l2cache.sav_sync = B_TRUE;
3870	}
3871
3872	/*
3873	 * We have to be careful when adding new vdevs to an existing pool.
3874	 * If other threads start allocating from these vdevs before we
3875	 * sync the config cache, and we lose power, then upon reboot we may
3876	 * fail to open the pool because there are DVAs that the config cache
3877	 * can't translate.  Therefore, we first add the vdevs without
3878	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3879	 * and then let spa_config_update() initialize the new metaslabs.
3880	 *
3881	 * spa_load() checks for added-but-not-initialized vdevs, so that
3882	 * if we lose power at any point in this sequence, the remaining
3883	 * steps will be completed the next time we load the pool.
3884	 */
3885	(void) spa_vdev_exit(spa, vd, txg, 0);
3886
3887	mutex_enter(&spa_namespace_lock);
3888	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3889	mutex_exit(&spa_namespace_lock);
3890
3891	return (0);
3892}
3893
3894/*
3895 * Attach a device to a mirror.  The arguments are the path to any device
3896 * in the mirror, and the nvroot for the new device.  If the path specifies
3897 * a device that is not mirrored, we automatically insert the mirror vdev.
3898 *
3899 * If 'replacing' is specified, the new device is intended to replace the
3900 * existing device; in this case the two devices are made into their own
3901 * mirror using the 'replacing' vdev, which is functionally identical to
3902 * the mirror vdev (it actually reuses all the same ops) but has a few
3903 * extra rules: you can't attach to it after it's been created, and upon
3904 * completion of resilvering, the first disk (the one being replaced)
3905 * is automatically detached.
3906 */
3907int
3908spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3909{
3910	uint64_t txg, dtl_max_txg;
3911	vdev_t *rvd = spa->spa_root_vdev;
3912	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3913	vdev_ops_t *pvops;
3914	char *oldvdpath, *newvdpath;
3915	int newvd_isspare;
3916	int error;
3917
3918	ASSERT(spa_writeable(spa));
3919
3920	txg = spa_vdev_enter(spa);
3921
3922	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3923
3924	if (oldvd == NULL)
3925		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3926
3927	if (!oldvd->vdev_ops->vdev_op_leaf)
3928		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3929
3930	pvd = oldvd->vdev_parent;
3931
3932	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3933	    VDEV_ALLOC_ATTACH)) != 0)
3934		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3935
3936	if (newrootvd->vdev_children != 1)
3937		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3938
3939	newvd = newrootvd->vdev_child[0];
3940
3941	if (!newvd->vdev_ops->vdev_op_leaf)
3942		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3943
3944	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3945		return (spa_vdev_exit(spa, newrootvd, txg, error));
3946
3947	/*
3948	 * Spares can't replace logs
3949	 */
3950	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3951		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3952
3953	if (!replacing) {
3954		/*
3955		 * For attach, the only allowable parent is a mirror or the root
3956		 * vdev.
3957		 */
3958		if (pvd->vdev_ops != &vdev_mirror_ops &&
3959		    pvd->vdev_ops != &vdev_root_ops)
3960			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3961
3962		pvops = &vdev_mirror_ops;
3963	} else {
3964		/*
3965		 * Active hot spares can only be replaced by inactive hot
3966		 * spares.
3967		 */
3968		if (pvd->vdev_ops == &vdev_spare_ops &&
3969		    oldvd->vdev_isspare &&
3970		    !spa_has_spare(spa, newvd->vdev_guid))
3971			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3972
3973		/*
3974		 * If the source is a hot spare, and the parent isn't already a
3975		 * spare, then we want to create a new hot spare.  Otherwise, we
3976		 * want to create a replacing vdev.  The user is not allowed to
3977		 * attach to a spared vdev child unless the 'isspare' state is
3978		 * the same (spare replaces spare, non-spare replaces
3979		 * non-spare).
3980		 */
3981		if (pvd->vdev_ops == &vdev_replacing_ops &&
3982		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3983			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3984		} else if (pvd->vdev_ops == &vdev_spare_ops &&
3985		    newvd->vdev_isspare != oldvd->vdev_isspare) {
3986			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3987		}
3988
3989		if (newvd->vdev_isspare)
3990			pvops = &vdev_spare_ops;
3991		else
3992			pvops = &vdev_replacing_ops;
3993	}
3994
3995	/*
3996	 * Make sure the new device is big enough.
3997	 */
3998	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3999		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4000
4001	/*
4002	 * The new device cannot have a higher alignment requirement
4003	 * than the top-level vdev.
4004	 */
4005	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4006		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4007
4008	/*
4009	 * If this is an in-place replacement, update oldvd's path and devid
4010	 * to make it distinguishable from newvd, and unopenable from now on.
4011	 */
4012	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4013		spa_strfree(oldvd->vdev_path);
4014		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4015		    KM_SLEEP);
4016		(void) sprintf(oldvd->vdev_path, "%s/%s",
4017		    newvd->vdev_path, "old");
4018		if (oldvd->vdev_devid != NULL) {
4019			spa_strfree(oldvd->vdev_devid);
4020			oldvd->vdev_devid = NULL;
4021		}
4022	}
4023
4024	/* mark the device being resilvered */
4025	newvd->vdev_resilvering = B_TRUE;
4026
4027	/*
4028	 * If the parent is not a mirror, or if we're replacing, insert the new
4029	 * mirror/replacing/spare vdev above oldvd.
4030	 */
4031	if (pvd->vdev_ops != pvops)
4032		pvd = vdev_add_parent(oldvd, pvops);
4033
4034	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4035	ASSERT(pvd->vdev_ops == pvops);
4036	ASSERT(oldvd->vdev_parent == pvd);
4037
4038	/*
4039	 * Extract the new device from its root and add it to pvd.
4040	 */
4041	vdev_remove_child(newrootvd, newvd);
4042	newvd->vdev_id = pvd->vdev_children;
4043	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4044	vdev_add_child(pvd, newvd);
4045
4046	tvd = newvd->vdev_top;
4047	ASSERT(pvd->vdev_top == tvd);
4048	ASSERT(tvd->vdev_parent == rvd);
4049
4050	vdev_config_dirty(tvd);
4051
4052	/*
4053	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4054	 * for any dmu_sync-ed blocks.  It will propagate upward when
4055	 * spa_vdev_exit() calls vdev_dtl_reassess().
4056	 */
4057	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4058
4059	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4060	    dtl_max_txg - TXG_INITIAL);
4061
4062	if (newvd->vdev_isspare) {
4063		spa_spare_activate(newvd);
4064		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4065	}
4066
4067	oldvdpath = spa_strdup(oldvd->vdev_path);
4068	newvdpath = spa_strdup(newvd->vdev_path);
4069	newvd_isspare = newvd->vdev_isspare;
4070
4071	/*
4072	 * Mark newvd's DTL dirty in this txg.
4073	 */
4074	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4075
4076	/*
4077	 * Restart the resilver
4078	 */
4079	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4080
4081	/*
4082	 * Commit the config
4083	 */
4084	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4085
4086	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4087	    "%s vdev=%s %s vdev=%s",
4088	    replacing && newvd_isspare ? "spare in" :
4089	    replacing ? "replace" : "attach", newvdpath,
4090	    replacing ? "for" : "to", oldvdpath);
4091
4092	spa_strfree(oldvdpath);
4093	spa_strfree(newvdpath);
4094
4095	if (spa->spa_bootfs)
4096		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4097
4098	return (0);
4099}
4100
4101/*
4102 * Detach a device from a mirror or replacing vdev.
4103 * If 'replace_done' is specified, only detach if the parent
4104 * is a replacing vdev.
4105 */
4106int
4107spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4108{
4109	uint64_t txg;
4110	int error;
4111	vdev_t *rvd = spa->spa_root_vdev;
4112	vdev_t *vd, *pvd, *cvd, *tvd;
4113	boolean_t unspare = B_FALSE;
4114	uint64_t unspare_guid;
4115	char *vdpath;
4116
4117	ASSERT(spa_writeable(spa));
4118
4119	txg = spa_vdev_enter(spa);
4120
4121	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4122
4123	if (vd == NULL)
4124		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4125
4126	if (!vd->vdev_ops->vdev_op_leaf)
4127		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4128
4129	pvd = vd->vdev_parent;
4130
4131	/*
4132	 * If the parent/child relationship is not as expected, don't do it.
4133	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4134	 * vdev that's replacing B with C.  The user's intent in replacing
4135	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4136	 * the replace by detaching C, the expected behavior is to end up
4137	 * M(A,B).  But suppose that right after deciding to detach C,
4138	 * the replacement of B completes.  We would have M(A,C), and then
4139	 * ask to detach C, which would leave us with just A -- not what
4140	 * the user wanted.  To prevent this, we make sure that the
4141	 * parent/child relationship hasn't changed -- in this example,
4142	 * that C's parent is still the replacing vdev R.
4143	 */
4144	if (pvd->vdev_guid != pguid && pguid != 0)
4145		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4146
4147	/*
4148	 * Only 'replacing' or 'spare' vdevs can be replaced.
4149	 */
4150	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4151	    pvd->vdev_ops != &vdev_spare_ops)
4152		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4153
4154	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4155	    spa_version(spa) >= SPA_VERSION_SPARES);
4156
4157	/*
4158	 * Only mirror, replacing, and spare vdevs support detach.
4159	 */
4160	if (pvd->vdev_ops != &vdev_replacing_ops &&
4161	    pvd->vdev_ops != &vdev_mirror_ops &&
4162	    pvd->vdev_ops != &vdev_spare_ops)
4163		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4164
4165	/*
4166	 * If this device has the only valid copy of some data,
4167	 * we cannot safely detach it.
4168	 */
4169	if (vdev_dtl_required(vd))
4170		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4171
4172	ASSERT(pvd->vdev_children >= 2);
4173
4174	/*
4175	 * If we are detaching the second disk from a replacing vdev, then
4176	 * check to see if we changed the original vdev's path to have "/old"
4177	 * at the end in spa_vdev_attach().  If so, undo that change now.
4178	 */
4179	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4180	    vd->vdev_path != NULL) {
4181		size_t len = strlen(vd->vdev_path);
4182
4183		for (int c = 0; c < pvd->vdev_children; c++) {
4184			cvd = pvd->vdev_child[c];
4185
4186			if (cvd == vd || cvd->vdev_path == NULL)
4187				continue;
4188
4189			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4190			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4191				spa_strfree(cvd->vdev_path);
4192				cvd->vdev_path = spa_strdup(vd->vdev_path);
4193				break;
4194			}
4195		}
4196	}
4197
4198	/*
4199	 * If we are detaching the original disk from a spare, then it implies
4200	 * that the spare should become a real disk, and be removed from the
4201	 * active spare list for the pool.
4202	 */
4203	if (pvd->vdev_ops == &vdev_spare_ops &&
4204	    vd->vdev_id == 0 &&
4205	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4206		unspare = B_TRUE;
4207
4208	/*
4209	 * Erase the disk labels so the disk can be used for other things.
4210	 * This must be done after all other error cases are handled,
4211	 * but before we disembowel vd (so we can still do I/O to it).
4212	 * But if we can't do it, don't treat the error as fatal --
4213	 * it may be that the unwritability of the disk is the reason
4214	 * it's being detached!
4215	 */
4216	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4217
4218	/*
4219	 * Remove vd from its parent and compact the parent's children.
4220	 */
4221	vdev_remove_child(pvd, vd);
4222	vdev_compact_children(pvd);
4223
4224	/*
4225	 * Remember one of the remaining children so we can get tvd below.
4226	 */
4227	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4228
4229	/*
4230	 * If we need to remove the remaining child from the list of hot spares,
4231	 * do it now, marking the vdev as no longer a spare in the process.
4232	 * We must do this before vdev_remove_parent(), because that can
4233	 * change the GUID if it creates a new toplevel GUID.  For a similar
4234	 * reason, we must remove the spare now, in the same txg as the detach;
4235	 * otherwise someone could attach a new sibling, change the GUID, and
4236	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4237	 */
4238	if (unspare) {
4239		ASSERT(cvd->vdev_isspare);
4240		spa_spare_remove(cvd);
4241		unspare_guid = cvd->vdev_guid;
4242		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4243		cvd->vdev_unspare = B_TRUE;
4244	}
4245
4246	/*
4247	 * If the parent mirror/replacing vdev only has one child,
4248	 * the parent is no longer needed.  Remove it from the tree.
4249	 */
4250	if (pvd->vdev_children == 1) {
4251		if (pvd->vdev_ops == &vdev_spare_ops)
4252			cvd->vdev_unspare = B_FALSE;
4253		vdev_remove_parent(cvd);
4254		cvd->vdev_resilvering = B_FALSE;
4255	}
4256
4257
4258	/*
4259	 * We don't set tvd until now because the parent we just removed
4260	 * may have been the previous top-level vdev.
4261	 */
4262	tvd = cvd->vdev_top;
4263	ASSERT(tvd->vdev_parent == rvd);
4264
4265	/*
4266	 * Reevaluate the parent vdev state.
4267	 */
4268	vdev_propagate_state(cvd);
4269
4270	/*
4271	 * If the 'autoexpand' property is set on the pool then automatically
4272	 * try to expand the size of the pool. For example if the device we
4273	 * just detached was smaller than the others, it may be possible to
4274	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4275	 * first so that we can obtain the updated sizes of the leaf vdevs.
4276	 */
4277	if (spa->spa_autoexpand) {
4278		vdev_reopen(tvd);
4279		vdev_expand(tvd, txg);
4280	}
4281
4282	vdev_config_dirty(tvd);
4283
4284	/*
4285	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4286	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4287	 * But first make sure we're not on any *other* txg's DTL list, to
4288	 * prevent vd from being accessed after it's freed.
4289	 */
4290	vdpath = spa_strdup(vd->vdev_path);
4291	for (int t = 0; t < TXG_SIZE; t++)
4292		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4293	vd->vdev_detached = B_TRUE;
4294	vdev_dirty(tvd, VDD_DTL, vd, txg);
4295
4296	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4297
4298	/* hang on to the spa before we release the lock */
4299	spa_open_ref(spa, FTAG);
4300
4301	error = spa_vdev_exit(spa, vd, txg, 0);
4302
4303	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4304	    "vdev=%s", vdpath);
4305	spa_strfree(vdpath);
4306
4307	/*
4308	 * If this was the removal of the original device in a hot spare vdev,
4309	 * then we want to go through and remove the device from the hot spare
4310	 * list of every other pool.
4311	 */
4312	if (unspare) {
4313		spa_t *altspa = NULL;
4314
4315		mutex_enter(&spa_namespace_lock);
4316		while ((altspa = spa_next(altspa)) != NULL) {
4317			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4318			    altspa == spa)
4319				continue;
4320
4321			spa_open_ref(altspa, FTAG);
4322			mutex_exit(&spa_namespace_lock);
4323			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4324			mutex_enter(&spa_namespace_lock);
4325			spa_close(altspa, FTAG);
4326		}
4327		mutex_exit(&spa_namespace_lock);
4328
4329		/* search the rest of the vdevs for spares to remove */
4330		spa_vdev_resilver_done(spa);
4331	}
4332
4333	/* all done with the spa; OK to release */
4334	mutex_enter(&spa_namespace_lock);
4335	spa_close(spa, FTAG);
4336	mutex_exit(&spa_namespace_lock);
4337
4338	return (error);
4339}
4340
4341/*
4342 * Split a set of devices from their mirrors, and create a new pool from them.
4343 */
4344int
4345spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4346    nvlist_t *props, boolean_t exp)
4347{
4348	int error = 0;
4349	uint64_t txg, *glist;
4350	spa_t *newspa;
4351	uint_t c, children, lastlog;
4352	nvlist_t **child, *nvl, *tmp;
4353	dmu_tx_t *tx;
4354	char *altroot = NULL;
4355	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4356	boolean_t activate_slog;
4357
4358	ASSERT(spa_writeable(spa));
4359
4360	txg = spa_vdev_enter(spa);
4361
4362	/* clear the log and flush everything up to now */
4363	activate_slog = spa_passivate_log(spa);
4364	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4365	error = spa_offline_log(spa);
4366	txg = spa_vdev_config_enter(spa);
4367
4368	if (activate_slog)
4369		spa_activate_log(spa);
4370
4371	if (error != 0)
4372		return (spa_vdev_exit(spa, NULL, txg, error));
4373
4374	/* check new spa name before going any further */
4375	if (spa_lookup(newname) != NULL)
4376		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4377
4378	/*
4379	 * scan through all the children to ensure they're all mirrors
4380	 */
4381	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4382	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4383	    &children) != 0)
4384		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4385
4386	/* first, check to ensure we've got the right child count */
4387	rvd = spa->spa_root_vdev;
4388	lastlog = 0;
4389	for (c = 0; c < rvd->vdev_children; c++) {
4390		vdev_t *vd = rvd->vdev_child[c];
4391
4392		/* don't count the holes & logs as children */
4393		if (vd->vdev_islog || vd->vdev_ishole) {
4394			if (lastlog == 0)
4395				lastlog = c;
4396			continue;
4397		}
4398
4399		lastlog = 0;
4400	}
4401	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4402		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4403
4404	/* next, ensure no spare or cache devices are part of the split */
4405	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4406	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4407		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4408
4409	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4410	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4411
4412	/* then, loop over each vdev and validate it */
4413	for (c = 0; c < children; c++) {
4414		uint64_t is_hole = 0;
4415
4416		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4417		    &is_hole);
4418
4419		if (is_hole != 0) {
4420			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4421			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4422				continue;
4423			} else {
4424				error = EINVAL;
4425				break;
4426			}
4427		}
4428
4429		/* which disk is going to be split? */
4430		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4431		    &glist[c]) != 0) {
4432			error = EINVAL;
4433			break;
4434		}
4435
4436		/* look it up in the spa */
4437		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4438		if (vml[c] == NULL) {
4439			error = ENODEV;
4440			break;
4441		}
4442
4443		/* make sure there's nothing stopping the split */
4444		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4445		    vml[c]->vdev_islog ||
4446		    vml[c]->vdev_ishole ||
4447		    vml[c]->vdev_isspare ||
4448		    vml[c]->vdev_isl2cache ||
4449		    !vdev_writeable(vml[c]) ||
4450		    vml[c]->vdev_children != 0 ||
4451		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4452		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4453			error = EINVAL;
4454			break;
4455		}
4456
4457		if (vdev_dtl_required(vml[c])) {
4458			error = EBUSY;
4459			break;
4460		}
4461
4462		/* we need certain info from the top level */
4463		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4464		    vml[c]->vdev_top->vdev_ms_array) == 0);
4465		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4466		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4467		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4468		    vml[c]->vdev_top->vdev_asize) == 0);
4469		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4470		    vml[c]->vdev_top->vdev_ashift) == 0);
4471	}
4472
4473	if (error != 0) {
4474		kmem_free(vml, children * sizeof (vdev_t *));
4475		kmem_free(glist, children * sizeof (uint64_t));
4476		return (spa_vdev_exit(spa, NULL, txg, error));
4477	}
4478
4479	/* stop writers from using the disks */
4480	for (c = 0; c < children; c++) {
4481		if (vml[c] != NULL)
4482			vml[c]->vdev_offline = B_TRUE;
4483	}
4484	vdev_reopen(spa->spa_root_vdev);
4485
4486	/*
4487	 * Temporarily record the splitting vdevs in the spa config.  This
4488	 * will disappear once the config is regenerated.
4489	 */
4490	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4491	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4492	    glist, children) == 0);
4493	kmem_free(glist, children * sizeof (uint64_t));
4494
4495	mutex_enter(&spa->spa_props_lock);
4496	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4497	    nvl) == 0);
4498	mutex_exit(&spa->spa_props_lock);
4499	spa->spa_config_splitting = nvl;
4500	vdev_config_dirty(spa->spa_root_vdev);
4501
4502	/* configure and create the new pool */
4503	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4504	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4505	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4506	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4507	    spa_version(spa)) == 0);
4508	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4509	    spa->spa_config_txg) == 0);
4510	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4511	    spa_generate_guid(NULL)) == 0);
4512	(void) nvlist_lookup_string(props,
4513	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4514
4515	/* add the new pool to the namespace */
4516	newspa = spa_add(newname, config, altroot);
4517	newspa->spa_config_txg = spa->spa_config_txg;
4518	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4519
4520	/* release the spa config lock, retaining the namespace lock */
4521	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4522
4523	if (zio_injection_enabled)
4524		zio_handle_panic_injection(spa, FTAG, 1);
4525
4526	spa_activate(newspa, spa_mode_global);
4527	spa_async_suspend(newspa);
4528
4529#ifndef sun
4530	/* mark that we are creating new spa by splitting */
4531	newspa->spa_splitting_newspa = B_TRUE;
4532#endif
4533	/* create the new pool from the disks of the original pool */
4534	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4535#ifndef sun
4536	newspa->spa_splitting_newspa = B_FALSE;
4537#endif
4538	if (error)
4539		goto out;
4540
4541	/* if that worked, generate a real config for the new pool */
4542	if (newspa->spa_root_vdev != NULL) {
4543		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4544		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4545		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4546		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4547		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4548		    B_TRUE));
4549	}
4550
4551	/* set the props */
4552	if (props != NULL) {
4553		spa_configfile_set(newspa, props, B_FALSE);
4554		error = spa_prop_set(newspa, props);
4555		if (error)
4556			goto out;
4557	}
4558
4559	/* flush everything */
4560	txg = spa_vdev_config_enter(newspa);
4561	vdev_config_dirty(newspa->spa_root_vdev);
4562	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4563
4564	if (zio_injection_enabled)
4565		zio_handle_panic_injection(spa, FTAG, 2);
4566
4567	spa_async_resume(newspa);
4568
4569	/* finally, update the original pool's config */
4570	txg = spa_vdev_config_enter(spa);
4571	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4572	error = dmu_tx_assign(tx, TXG_WAIT);
4573	if (error != 0)
4574		dmu_tx_abort(tx);
4575	for (c = 0; c < children; c++) {
4576		if (vml[c] != NULL) {
4577			vdev_split(vml[c]);
4578			if (error == 0)
4579				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4580				    spa, tx, "vdev=%s",
4581				    vml[c]->vdev_path);
4582			vdev_free(vml[c]);
4583		}
4584	}
4585	vdev_config_dirty(spa->spa_root_vdev);
4586	spa->spa_config_splitting = NULL;
4587	nvlist_free(nvl);
4588	if (error == 0)
4589		dmu_tx_commit(tx);
4590	(void) spa_vdev_exit(spa, NULL, txg, 0);
4591
4592	if (zio_injection_enabled)
4593		zio_handle_panic_injection(spa, FTAG, 3);
4594
4595	/* split is complete; log a history record */
4596	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4597	    "split new pool %s from pool %s", newname, spa_name(spa));
4598
4599	kmem_free(vml, children * sizeof (vdev_t *));
4600
4601	/* if we're not going to mount the filesystems in userland, export */
4602	if (exp)
4603		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4604		    B_FALSE, B_FALSE);
4605
4606	return (error);
4607
4608out:
4609	spa_unload(newspa);
4610	spa_deactivate(newspa);
4611	spa_remove(newspa);
4612
4613	txg = spa_vdev_config_enter(spa);
4614
4615	/* re-online all offlined disks */
4616	for (c = 0; c < children; c++) {
4617		if (vml[c] != NULL)
4618			vml[c]->vdev_offline = B_FALSE;
4619	}
4620	vdev_reopen(spa->spa_root_vdev);
4621
4622	nvlist_free(spa->spa_config_splitting);
4623	spa->spa_config_splitting = NULL;
4624	(void) spa_vdev_exit(spa, NULL, txg, error);
4625
4626	kmem_free(vml, children * sizeof (vdev_t *));
4627	return (error);
4628}
4629
4630static nvlist_t *
4631spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4632{
4633	for (int i = 0; i < count; i++) {
4634		uint64_t guid;
4635
4636		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4637		    &guid) == 0);
4638
4639		if (guid == target_guid)
4640			return (nvpp[i]);
4641	}
4642
4643	return (NULL);
4644}
4645
4646static void
4647spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4648	nvlist_t *dev_to_remove)
4649{
4650	nvlist_t **newdev = NULL;
4651
4652	if (count > 1)
4653		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4654
4655	for (int i = 0, j = 0; i < count; i++) {
4656		if (dev[i] == dev_to_remove)
4657			continue;
4658		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4659	}
4660
4661	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4662	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4663
4664	for (int i = 0; i < count - 1; i++)
4665		nvlist_free(newdev[i]);
4666
4667	if (count > 1)
4668		kmem_free(newdev, (count - 1) * sizeof (void *));
4669}
4670
4671/*
4672 * Evacuate the device.
4673 */
4674static int
4675spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4676{
4677	uint64_t txg;
4678	int error = 0;
4679
4680	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4681	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4682	ASSERT(vd == vd->vdev_top);
4683
4684	/*
4685	 * Evacuate the device.  We don't hold the config lock as writer
4686	 * since we need to do I/O but we do keep the
4687	 * spa_namespace_lock held.  Once this completes the device
4688	 * should no longer have any blocks allocated on it.
4689	 */
4690	if (vd->vdev_islog) {
4691		if (vd->vdev_stat.vs_alloc != 0)
4692			error = spa_offline_log(spa);
4693	} else {
4694		error = ENOTSUP;
4695	}
4696
4697	if (error)
4698		return (error);
4699
4700	/*
4701	 * The evacuation succeeded.  Remove any remaining MOS metadata
4702	 * associated with this vdev, and wait for these changes to sync.
4703	 */
4704	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4705	txg = spa_vdev_config_enter(spa);
4706	vd->vdev_removing = B_TRUE;
4707	vdev_dirty(vd, 0, NULL, txg);
4708	vdev_config_dirty(vd);
4709	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4710
4711	return (0);
4712}
4713
4714/*
4715 * Complete the removal by cleaning up the namespace.
4716 */
4717static void
4718spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4719{
4720	vdev_t *rvd = spa->spa_root_vdev;
4721	uint64_t id = vd->vdev_id;
4722	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4723
4724	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4725	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4726	ASSERT(vd == vd->vdev_top);
4727
4728	/*
4729	 * Only remove any devices which are empty.
4730	 */
4731	if (vd->vdev_stat.vs_alloc != 0)
4732		return;
4733
4734	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4735
4736	if (list_link_active(&vd->vdev_state_dirty_node))
4737		vdev_state_clean(vd);
4738	if (list_link_active(&vd->vdev_config_dirty_node))
4739		vdev_config_clean(vd);
4740
4741	vdev_free(vd);
4742
4743	if (last_vdev) {
4744		vdev_compact_children(rvd);
4745	} else {
4746		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4747		vdev_add_child(rvd, vd);
4748	}
4749	vdev_config_dirty(rvd);
4750
4751	/*
4752	 * Reassess the health of our root vdev.
4753	 */
4754	vdev_reopen(rvd);
4755}
4756
4757/*
4758 * Remove a device from the pool -
4759 *
4760 * Removing a device from the vdev namespace requires several steps
4761 * and can take a significant amount of time.  As a result we use
4762 * the spa_vdev_config_[enter/exit] functions which allow us to
4763 * grab and release the spa_config_lock while still holding the namespace
4764 * lock.  During each step the configuration is synced out.
4765 */
4766
4767/*
4768 * Remove a device from the pool.  Currently, this supports removing only hot
4769 * spares, slogs, and level 2 ARC devices.
4770 */
4771int
4772spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4773{
4774	vdev_t *vd;
4775	metaslab_group_t *mg;
4776	nvlist_t **spares, **l2cache, *nv;
4777	uint64_t txg = 0;
4778	uint_t nspares, nl2cache;
4779	int error = 0;
4780	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4781
4782	ASSERT(spa_writeable(spa));
4783
4784	if (!locked)
4785		txg = spa_vdev_enter(spa);
4786
4787	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4788
4789	if (spa->spa_spares.sav_vdevs != NULL &&
4790	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4791	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4792	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4793		/*
4794		 * Only remove the hot spare if it's not currently in use
4795		 * in this pool.
4796		 */
4797		if (vd == NULL || unspare) {
4798			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4799			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4800			spa_load_spares(spa);
4801			spa->spa_spares.sav_sync = B_TRUE;
4802		} else {
4803			error = EBUSY;
4804		}
4805	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4806	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4807	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4808	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4809		/*
4810		 * Cache devices can always be removed.
4811		 */
4812		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4813		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4814		spa_load_l2cache(spa);
4815		spa->spa_l2cache.sav_sync = B_TRUE;
4816	} else if (vd != NULL && vd->vdev_islog) {
4817		ASSERT(!locked);
4818		ASSERT(vd == vd->vdev_top);
4819
4820		/*
4821		 * XXX - Once we have bp-rewrite this should
4822		 * become the common case.
4823		 */
4824
4825		mg = vd->vdev_mg;
4826
4827		/*
4828		 * Stop allocating from this vdev.
4829		 */
4830		metaslab_group_passivate(mg);
4831
4832		/*
4833		 * Wait for the youngest allocations and frees to sync,
4834		 * and then wait for the deferral of those frees to finish.
4835		 */
4836		spa_vdev_config_exit(spa, NULL,
4837		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4838
4839		/*
4840		 * Attempt to evacuate the vdev.
4841		 */
4842		error = spa_vdev_remove_evacuate(spa, vd);
4843
4844		txg = spa_vdev_config_enter(spa);
4845
4846		/*
4847		 * If we couldn't evacuate the vdev, unwind.
4848		 */
4849		if (error) {
4850			metaslab_group_activate(mg);
4851			return (spa_vdev_exit(spa, NULL, txg, error));
4852		}
4853
4854		/*
4855		 * Clean up the vdev namespace.
4856		 */
4857		spa_vdev_remove_from_namespace(spa, vd);
4858
4859	} else if (vd != NULL) {
4860		/*
4861		 * Normal vdevs cannot be removed (yet).
4862		 */
4863		error = ENOTSUP;
4864	} else {
4865		/*
4866		 * There is no vdev of any kind with the specified guid.
4867		 */
4868		error = ENOENT;
4869	}
4870
4871	if (!locked)
4872		return (spa_vdev_exit(spa, NULL, txg, error));
4873
4874	return (error);
4875}
4876
4877/*
4878 * Find any device that's done replacing, or a vdev marked 'unspare' that's
4879 * current spared, so we can detach it.
4880 */
4881static vdev_t *
4882spa_vdev_resilver_done_hunt(vdev_t *vd)
4883{
4884	vdev_t *newvd, *oldvd;
4885
4886	for (int c = 0; c < vd->vdev_children; c++) {
4887		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4888		if (oldvd != NULL)
4889			return (oldvd);
4890	}
4891
4892	/*
4893	 * Check for a completed replacement.  We always consider the first
4894	 * vdev in the list to be the oldest vdev, and the last one to be
4895	 * the newest (see spa_vdev_attach() for how that works).  In
4896	 * the case where the newest vdev is faulted, we will not automatically
4897	 * remove it after a resilver completes.  This is OK as it will require
4898	 * user intervention to determine which disk the admin wishes to keep.
4899	 */
4900	if (vd->vdev_ops == &vdev_replacing_ops) {
4901		ASSERT(vd->vdev_children > 1);
4902
4903		newvd = vd->vdev_child[vd->vdev_children - 1];
4904		oldvd = vd->vdev_child[0];
4905
4906		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4907		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4908		    !vdev_dtl_required(oldvd))
4909			return (oldvd);
4910	}
4911
4912	/*
4913	 * Check for a completed resilver with the 'unspare' flag set.
4914	 */
4915	if (vd->vdev_ops == &vdev_spare_ops) {
4916		vdev_t *first = vd->vdev_child[0];
4917		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4918
4919		if (last->vdev_unspare) {
4920			oldvd = first;
4921			newvd = last;
4922		} else if (first->vdev_unspare) {
4923			oldvd = last;
4924			newvd = first;
4925		} else {
4926			oldvd = NULL;
4927		}
4928
4929		if (oldvd != NULL &&
4930		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4931		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4932		    !vdev_dtl_required(oldvd))
4933			return (oldvd);
4934
4935		/*
4936		 * If there are more than two spares attached to a disk,
4937		 * and those spares are not required, then we want to
4938		 * attempt to free them up now so that they can be used
4939		 * by other pools.  Once we're back down to a single
4940		 * disk+spare, we stop removing them.
4941		 */
4942		if (vd->vdev_children > 2) {
4943			newvd = vd->vdev_child[1];
4944
4945			if (newvd->vdev_isspare && last->vdev_isspare &&
4946			    vdev_dtl_empty(last, DTL_MISSING) &&
4947			    vdev_dtl_empty(last, DTL_OUTAGE) &&
4948			    !vdev_dtl_required(newvd))
4949				return (newvd);
4950		}
4951	}
4952
4953	return (NULL);
4954}
4955
4956static void
4957spa_vdev_resilver_done(spa_t *spa)
4958{
4959	vdev_t *vd, *pvd, *ppvd;
4960	uint64_t guid, sguid, pguid, ppguid;
4961
4962	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4963
4964	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4965		pvd = vd->vdev_parent;
4966		ppvd = pvd->vdev_parent;
4967		guid = vd->vdev_guid;
4968		pguid = pvd->vdev_guid;
4969		ppguid = ppvd->vdev_guid;
4970		sguid = 0;
4971		/*
4972		 * If we have just finished replacing a hot spared device, then
4973		 * we need to detach the parent's first child (the original hot
4974		 * spare) as well.
4975		 */
4976		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4977		    ppvd->vdev_children == 2) {
4978			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4979			sguid = ppvd->vdev_child[1]->vdev_guid;
4980		}
4981		spa_config_exit(spa, SCL_ALL, FTAG);
4982		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4983			return;
4984		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4985			return;
4986		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4987	}
4988
4989	spa_config_exit(spa, SCL_ALL, FTAG);
4990}
4991
4992/*
4993 * Update the stored path or FRU for this vdev.
4994 */
4995int
4996spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4997    boolean_t ispath)
4998{
4999	vdev_t *vd;
5000	boolean_t sync = B_FALSE;
5001
5002	ASSERT(spa_writeable(spa));
5003
5004	spa_vdev_state_enter(spa, SCL_ALL);
5005
5006	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5007		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5008
5009	if (!vd->vdev_ops->vdev_op_leaf)
5010		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5011
5012	if (ispath) {
5013		if (strcmp(value, vd->vdev_path) != 0) {
5014			spa_strfree(vd->vdev_path);
5015			vd->vdev_path = spa_strdup(value);
5016			sync = B_TRUE;
5017		}
5018	} else {
5019		if (vd->vdev_fru == NULL) {
5020			vd->vdev_fru = spa_strdup(value);
5021			sync = B_TRUE;
5022		} else if (strcmp(value, vd->vdev_fru) != 0) {
5023			spa_strfree(vd->vdev_fru);
5024			vd->vdev_fru = spa_strdup(value);
5025			sync = B_TRUE;
5026		}
5027	}
5028
5029	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5030}
5031
5032int
5033spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5034{
5035	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5036}
5037
5038int
5039spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5040{
5041	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5042}
5043
5044/*
5045 * ==========================================================================
5046 * SPA Scanning
5047 * ==========================================================================
5048 */
5049
5050int
5051spa_scan_stop(spa_t *spa)
5052{
5053	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5054	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5055		return (EBUSY);
5056	return (dsl_scan_cancel(spa->spa_dsl_pool));
5057}
5058
5059int
5060spa_scan(spa_t *spa, pool_scan_func_t func)
5061{
5062	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5063
5064	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5065		return (ENOTSUP);
5066
5067	/*
5068	 * If a resilver was requested, but there is no DTL on a
5069	 * writeable leaf device, we have nothing to do.
5070	 */
5071	if (func == POOL_SCAN_RESILVER &&
5072	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5073		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5074		return (0);
5075	}
5076
5077	return (dsl_scan(spa->spa_dsl_pool, func));
5078}
5079
5080/*
5081 * ==========================================================================
5082 * SPA async task processing
5083 * ==========================================================================
5084 */
5085
5086static void
5087spa_async_remove(spa_t *spa, vdev_t *vd)
5088{
5089	if (vd->vdev_remove_wanted) {
5090		vd->vdev_remove_wanted = B_FALSE;
5091		vd->vdev_delayed_close = B_FALSE;
5092		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5093
5094		/*
5095		 * We want to clear the stats, but we don't want to do a full
5096		 * vdev_clear() as that will cause us to throw away
5097		 * degraded/faulted state as well as attempt to reopen the
5098		 * device, all of which is a waste.
5099		 */
5100		vd->vdev_stat.vs_read_errors = 0;
5101		vd->vdev_stat.vs_write_errors = 0;
5102		vd->vdev_stat.vs_checksum_errors = 0;
5103
5104		vdev_state_dirty(vd->vdev_top);
5105	}
5106
5107	for (int c = 0; c < vd->vdev_children; c++)
5108		spa_async_remove(spa, vd->vdev_child[c]);
5109}
5110
5111static void
5112spa_async_probe(spa_t *spa, vdev_t *vd)
5113{
5114	if (vd->vdev_probe_wanted) {
5115		vd->vdev_probe_wanted = B_FALSE;
5116		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5117	}
5118
5119	for (int c = 0; c < vd->vdev_children; c++)
5120		spa_async_probe(spa, vd->vdev_child[c]);
5121}
5122
5123static void
5124spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5125{
5126	sysevent_id_t eid;
5127	nvlist_t *attr;
5128	char *physpath;
5129
5130	if (!spa->spa_autoexpand)
5131		return;
5132
5133	for (int c = 0; c < vd->vdev_children; c++) {
5134		vdev_t *cvd = vd->vdev_child[c];
5135		spa_async_autoexpand(spa, cvd);
5136	}
5137
5138	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5139		return;
5140
5141	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5142	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5143
5144	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5145	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5146
5147	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5148	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5149
5150	nvlist_free(attr);
5151	kmem_free(physpath, MAXPATHLEN);
5152}
5153
5154static void
5155spa_async_thread(void *arg)
5156{
5157	spa_t *spa = arg;
5158	int tasks;
5159
5160	ASSERT(spa->spa_sync_on);
5161
5162	mutex_enter(&spa->spa_async_lock);
5163	tasks = spa->spa_async_tasks;
5164	spa->spa_async_tasks = 0;
5165	mutex_exit(&spa->spa_async_lock);
5166
5167	/*
5168	 * See if the config needs to be updated.
5169	 */
5170	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5171		uint64_t old_space, new_space;
5172
5173		mutex_enter(&spa_namespace_lock);
5174		old_space = metaslab_class_get_space(spa_normal_class(spa));
5175		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5176		new_space = metaslab_class_get_space(spa_normal_class(spa));
5177		mutex_exit(&spa_namespace_lock);
5178
5179		/*
5180		 * If the pool grew as a result of the config update,
5181		 * then log an internal history event.
5182		 */
5183		if (new_space != old_space) {
5184			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5185			    spa, NULL,
5186			    "pool '%s' size: %llu(+%llu)",
5187			    spa_name(spa), new_space, new_space - old_space);
5188		}
5189	}
5190
5191	/*
5192	 * See if any devices need to be marked REMOVED.
5193	 */
5194	if (tasks & SPA_ASYNC_REMOVE) {
5195		spa_vdev_state_enter(spa, SCL_NONE);
5196		spa_async_remove(spa, spa->spa_root_vdev);
5197		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5198			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5199		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5200			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5201		(void) spa_vdev_state_exit(spa, NULL, 0);
5202	}
5203
5204	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5205		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5206		spa_async_autoexpand(spa, spa->spa_root_vdev);
5207		spa_config_exit(spa, SCL_CONFIG, FTAG);
5208	}
5209
5210	/*
5211	 * See if any devices need to be probed.
5212	 */
5213	if (tasks & SPA_ASYNC_PROBE) {
5214		spa_vdev_state_enter(spa, SCL_NONE);
5215		spa_async_probe(spa, spa->spa_root_vdev);
5216		(void) spa_vdev_state_exit(spa, NULL, 0);
5217	}
5218
5219	/*
5220	 * If any devices are done replacing, detach them.
5221	 */
5222	if (tasks & SPA_ASYNC_RESILVER_DONE)
5223		spa_vdev_resilver_done(spa);
5224
5225	/*
5226	 * Kick off a resilver.
5227	 */
5228	if (tasks & SPA_ASYNC_RESILVER)
5229		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5230
5231	/*
5232	 * Let the world know that we're done.
5233	 */
5234	mutex_enter(&spa->spa_async_lock);
5235	spa->spa_async_thread = NULL;
5236	cv_broadcast(&spa->spa_async_cv);
5237	mutex_exit(&spa->spa_async_lock);
5238	thread_exit();
5239}
5240
5241void
5242spa_async_suspend(spa_t *spa)
5243{
5244	mutex_enter(&spa->spa_async_lock);
5245	spa->spa_async_suspended++;
5246	while (spa->spa_async_thread != NULL)
5247		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5248	mutex_exit(&spa->spa_async_lock);
5249}
5250
5251void
5252spa_async_resume(spa_t *spa)
5253{
5254	mutex_enter(&spa->spa_async_lock);
5255	ASSERT(spa->spa_async_suspended != 0);
5256	spa->spa_async_suspended--;
5257	mutex_exit(&spa->spa_async_lock);
5258}
5259
5260static void
5261spa_async_dispatch(spa_t *spa)
5262{
5263	mutex_enter(&spa->spa_async_lock);
5264	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5265	    spa->spa_async_thread == NULL &&
5266	    rootdir != NULL && !vn_is_readonly(rootdir))
5267		spa->spa_async_thread = thread_create(NULL, 0,
5268		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5269	mutex_exit(&spa->spa_async_lock);
5270}
5271
5272void
5273spa_async_request(spa_t *spa, int task)
5274{
5275	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5276	mutex_enter(&spa->spa_async_lock);
5277	spa->spa_async_tasks |= task;
5278	mutex_exit(&spa->spa_async_lock);
5279}
5280
5281/*
5282 * ==========================================================================
5283 * SPA syncing routines
5284 * ==========================================================================
5285 */
5286
5287static int
5288bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5289{
5290	bpobj_t *bpo = arg;
5291	bpobj_enqueue(bpo, bp, tx);
5292	return (0);
5293}
5294
5295static int
5296spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5297{
5298	zio_t *zio = arg;
5299
5300	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5301	    zio->io_flags));
5302	return (0);
5303}
5304
5305static void
5306spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5307{
5308	char *packed = NULL;
5309	size_t bufsize;
5310	size_t nvsize = 0;
5311	dmu_buf_t *db;
5312
5313	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5314
5315	/*
5316	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5317	 * information.  This avoids the dbuf_will_dirty() path and
5318	 * saves us a pre-read to get data we don't actually care about.
5319	 */
5320	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5321	packed = kmem_alloc(bufsize, KM_SLEEP);
5322
5323	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5324	    KM_SLEEP) == 0);
5325	bzero(packed + nvsize, bufsize - nvsize);
5326
5327	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5328
5329	kmem_free(packed, bufsize);
5330
5331	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5332	dmu_buf_will_dirty(db, tx);
5333	*(uint64_t *)db->db_data = nvsize;
5334	dmu_buf_rele(db, FTAG);
5335}
5336
5337static void
5338spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5339    const char *config, const char *entry)
5340{
5341	nvlist_t *nvroot;
5342	nvlist_t **list;
5343	int i;
5344
5345	if (!sav->sav_sync)
5346		return;
5347
5348	/*
5349	 * Update the MOS nvlist describing the list of available devices.
5350	 * spa_validate_aux() will have already made sure this nvlist is
5351	 * valid and the vdevs are labeled appropriately.
5352	 */
5353	if (sav->sav_object == 0) {
5354		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5355		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5356		    sizeof (uint64_t), tx);
5357		VERIFY(zap_update(spa->spa_meta_objset,
5358		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5359		    &sav->sav_object, tx) == 0);
5360	}
5361
5362	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5363	if (sav->sav_count == 0) {
5364		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5365	} else {
5366		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5367		for (i = 0; i < sav->sav_count; i++)
5368			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5369			    B_FALSE, VDEV_CONFIG_L2CACHE);
5370		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5371		    sav->sav_count) == 0);
5372		for (i = 0; i < sav->sav_count; i++)
5373			nvlist_free(list[i]);
5374		kmem_free(list, sav->sav_count * sizeof (void *));
5375	}
5376
5377	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5378	nvlist_free(nvroot);
5379
5380	sav->sav_sync = B_FALSE;
5381}
5382
5383static void
5384spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5385{
5386	nvlist_t *config;
5387
5388	if (list_is_empty(&spa->spa_config_dirty_list))
5389		return;
5390
5391	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5392
5393	config = spa_config_generate(spa, spa->spa_root_vdev,
5394	    dmu_tx_get_txg(tx), B_FALSE);
5395
5396	spa_config_exit(spa, SCL_STATE, FTAG);
5397
5398	if (spa->spa_config_syncing)
5399		nvlist_free(spa->spa_config_syncing);
5400	spa->spa_config_syncing = config;
5401
5402	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5403}
5404
5405/*
5406 * Set zpool properties.
5407 */
5408static void
5409spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5410{
5411	spa_t *spa = arg1;
5412	objset_t *mos = spa->spa_meta_objset;
5413	nvlist_t *nvp = arg2;
5414	nvpair_t *elem;
5415	uint64_t intval;
5416	char *strval;
5417	zpool_prop_t prop;
5418	const char *propname;
5419	zprop_type_t proptype;
5420
5421	mutex_enter(&spa->spa_props_lock);
5422
5423	elem = NULL;
5424	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5425		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5426		case ZPOOL_PROP_VERSION:
5427			/*
5428			 * Only set version for non-zpool-creation cases
5429			 * (set/import). spa_create() needs special care
5430			 * for version setting.
5431			 */
5432			if (tx->tx_txg != TXG_INITIAL) {
5433				VERIFY(nvpair_value_uint64(elem,
5434				    &intval) == 0);
5435				ASSERT(intval <= SPA_VERSION);
5436				ASSERT(intval >= spa_version(spa));
5437				spa->spa_uberblock.ub_version = intval;
5438				vdev_config_dirty(spa->spa_root_vdev);
5439			}
5440			break;
5441
5442		case ZPOOL_PROP_ALTROOT:
5443			/*
5444			 * 'altroot' is a non-persistent property. It should
5445			 * have been set temporarily at creation or import time.
5446			 */
5447			ASSERT(spa->spa_root != NULL);
5448			break;
5449
5450		case ZPOOL_PROP_READONLY:
5451		case ZPOOL_PROP_CACHEFILE:
5452			/*
5453			 * 'readonly' and 'cachefile' are also non-persisitent
5454			 * properties.
5455			 */
5456			break;
5457		case ZPOOL_PROP_COMMENT:
5458			VERIFY(nvpair_value_string(elem, &strval) == 0);
5459			if (spa->spa_comment != NULL)
5460				spa_strfree(spa->spa_comment);
5461			spa->spa_comment = spa_strdup(strval);
5462			/*
5463			 * We need to dirty the configuration on all the vdevs
5464			 * so that their labels get updated.  It's unnecessary
5465			 * to do this for pool creation since the vdev's
5466			 * configuratoin has already been dirtied.
5467			 */
5468			if (tx->tx_txg != TXG_INITIAL)
5469				vdev_config_dirty(spa->spa_root_vdev);
5470			break;
5471		default:
5472			/*
5473			 * Set pool property values in the poolprops mos object.
5474			 */
5475			if (spa->spa_pool_props_object == 0) {
5476				VERIFY((spa->spa_pool_props_object =
5477				    zap_create(mos, DMU_OT_POOL_PROPS,
5478				    DMU_OT_NONE, 0, tx)) > 0);
5479
5480				VERIFY(zap_update(mos,
5481				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5482				    8, 1, &spa->spa_pool_props_object, tx)
5483				    == 0);
5484			}
5485
5486			/* normalize the property name */
5487			propname = zpool_prop_to_name(prop);
5488			proptype = zpool_prop_get_type(prop);
5489
5490			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5491				ASSERT(proptype == PROP_TYPE_STRING);
5492				VERIFY(nvpair_value_string(elem, &strval) == 0);
5493				VERIFY(zap_update(mos,
5494				    spa->spa_pool_props_object, propname,
5495				    1, strlen(strval) + 1, strval, tx) == 0);
5496
5497			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5498				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5499
5500				if (proptype == PROP_TYPE_INDEX) {
5501					const char *unused;
5502					VERIFY(zpool_prop_index_to_string(
5503					    prop, intval, &unused) == 0);
5504				}
5505				VERIFY(zap_update(mos,
5506				    spa->spa_pool_props_object, propname,
5507				    8, 1, &intval, tx) == 0);
5508			} else {
5509				ASSERT(0); /* not allowed */
5510			}
5511
5512			switch (prop) {
5513			case ZPOOL_PROP_DELEGATION:
5514				spa->spa_delegation = intval;
5515				break;
5516			case ZPOOL_PROP_BOOTFS:
5517				spa->spa_bootfs = intval;
5518				break;
5519			case ZPOOL_PROP_FAILUREMODE:
5520				spa->spa_failmode = intval;
5521				break;
5522			case ZPOOL_PROP_AUTOEXPAND:
5523				spa->spa_autoexpand = intval;
5524				if (tx->tx_txg != TXG_INITIAL)
5525					spa_async_request(spa,
5526					    SPA_ASYNC_AUTOEXPAND);
5527				break;
5528			case ZPOOL_PROP_DEDUPDITTO:
5529				spa->spa_dedup_ditto = intval;
5530				break;
5531			default:
5532				break;
5533			}
5534		}
5535
5536		/* log internal history if this is not a zpool create */
5537		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5538		    tx->tx_txg != TXG_INITIAL) {
5539			spa_history_log_internal(LOG_POOL_PROPSET,
5540			    spa, tx, "%s %lld %s",
5541			    nvpair_name(elem), intval, spa_name(spa));
5542		}
5543	}
5544
5545	mutex_exit(&spa->spa_props_lock);
5546}
5547
5548/*
5549 * Perform one-time upgrade on-disk changes.  spa_version() does not
5550 * reflect the new version this txg, so there must be no changes this
5551 * txg to anything that the upgrade code depends on after it executes.
5552 * Therefore this must be called after dsl_pool_sync() does the sync
5553 * tasks.
5554 */
5555static void
5556spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5557{
5558	dsl_pool_t *dp = spa->spa_dsl_pool;
5559
5560	ASSERT(spa->spa_sync_pass == 1);
5561
5562	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5563	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5564		dsl_pool_create_origin(dp, tx);
5565
5566		/* Keeping the origin open increases spa_minref */
5567		spa->spa_minref += 3;
5568	}
5569
5570	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5571	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5572		dsl_pool_upgrade_clones(dp, tx);
5573	}
5574
5575	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5576	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5577		dsl_pool_upgrade_dir_clones(dp, tx);
5578
5579		/* Keeping the freedir open increases spa_minref */
5580		spa->spa_minref += 3;
5581	}
5582}
5583
5584/*
5585 * Sync the specified transaction group.  New blocks may be dirtied as
5586 * part of the process, so we iterate until it converges.
5587 */
5588void
5589spa_sync(spa_t *spa, uint64_t txg)
5590{
5591	dsl_pool_t *dp = spa->spa_dsl_pool;
5592	objset_t *mos = spa->spa_meta_objset;
5593	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5594	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5595	vdev_t *rvd = spa->spa_root_vdev;
5596	vdev_t *vd;
5597	dmu_tx_t *tx;
5598	int error;
5599
5600	VERIFY(spa_writeable(spa));
5601
5602	/*
5603	 * Lock out configuration changes.
5604	 */
5605	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5606
5607	spa->spa_syncing_txg = txg;
5608	spa->spa_sync_pass = 0;
5609
5610	/*
5611	 * If there are any pending vdev state changes, convert them
5612	 * into config changes that go out with this transaction group.
5613	 */
5614	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5615	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5616		/*
5617		 * We need the write lock here because, for aux vdevs,
5618		 * calling vdev_config_dirty() modifies sav_config.
5619		 * This is ugly and will become unnecessary when we
5620		 * eliminate the aux vdev wart by integrating all vdevs
5621		 * into the root vdev tree.
5622		 */
5623		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5624		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5625		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5626			vdev_state_clean(vd);
5627			vdev_config_dirty(vd);
5628		}
5629		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5630		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5631	}
5632	spa_config_exit(spa, SCL_STATE, FTAG);
5633
5634	tx = dmu_tx_create_assigned(dp, txg);
5635
5636	/*
5637	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5638	 * set spa_deflate if we have no raid-z vdevs.
5639	 */
5640	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5641	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5642		int i;
5643
5644		for (i = 0; i < rvd->vdev_children; i++) {
5645			vd = rvd->vdev_child[i];
5646			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5647				break;
5648		}
5649		if (i == rvd->vdev_children) {
5650			spa->spa_deflate = TRUE;
5651			VERIFY(0 == zap_add(spa->spa_meta_objset,
5652			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5653			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5654		}
5655	}
5656
5657	/*
5658	 * If anything has changed in this txg, or if someone is waiting
5659	 * for this txg to sync (eg, spa_vdev_remove()), push the
5660	 * deferred frees from the previous txg.  If not, leave them
5661	 * alone so that we don't generate work on an otherwise idle
5662	 * system.
5663	 */
5664	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5665	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5666	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5667	    ((dsl_scan_active(dp->dp_scan) ||
5668	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5669		zio_t *zio = zio_root(spa, NULL, NULL, 0);
5670		VERIFY3U(bpobj_iterate(defer_bpo,
5671		    spa_free_sync_cb, zio, tx), ==, 0);
5672		VERIFY3U(zio_wait(zio), ==, 0);
5673	}
5674
5675	/*
5676	 * Iterate to convergence.
5677	 */
5678	do {
5679		int pass = ++spa->spa_sync_pass;
5680
5681		spa_sync_config_object(spa, tx);
5682		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5683		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5684		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5685		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5686		spa_errlog_sync(spa, txg);
5687		dsl_pool_sync(dp, txg);
5688
5689		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5690			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5691			bplist_iterate(free_bpl, spa_free_sync_cb,
5692			    zio, tx);
5693			VERIFY(zio_wait(zio) == 0);
5694		} else {
5695			bplist_iterate(free_bpl, bpobj_enqueue_cb,
5696			    defer_bpo, tx);
5697		}
5698
5699		ddt_sync(spa, txg);
5700		dsl_scan_sync(dp, tx);
5701
5702		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5703			vdev_sync(vd, txg);
5704
5705		if (pass == 1)
5706			spa_sync_upgrades(spa, tx);
5707
5708	} while (dmu_objset_is_dirty(mos, txg));
5709
5710	/*
5711	 * Rewrite the vdev configuration (which includes the uberblock)
5712	 * to commit the transaction group.
5713	 *
5714	 * If there are no dirty vdevs, we sync the uberblock to a few
5715	 * random top-level vdevs that are known to be visible in the
5716	 * config cache (see spa_vdev_add() for a complete description).
5717	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5718	 */
5719	for (;;) {
5720		/*
5721		 * We hold SCL_STATE to prevent vdev open/close/etc.
5722		 * while we're attempting to write the vdev labels.
5723		 */
5724		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5725
5726		if (list_is_empty(&spa->spa_config_dirty_list)) {
5727			vdev_t *svd[SPA_DVAS_PER_BP];
5728			int svdcount = 0;
5729			int children = rvd->vdev_children;
5730			int c0 = spa_get_random(children);
5731
5732			for (int c = 0; c < children; c++) {
5733				vd = rvd->vdev_child[(c0 + c) % children];
5734				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5735					continue;
5736				svd[svdcount++] = vd;
5737				if (svdcount == SPA_DVAS_PER_BP)
5738					break;
5739			}
5740			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5741			if (error != 0)
5742				error = vdev_config_sync(svd, svdcount, txg,
5743				    B_TRUE);
5744		} else {
5745			error = vdev_config_sync(rvd->vdev_child,
5746			    rvd->vdev_children, txg, B_FALSE);
5747			if (error != 0)
5748				error = vdev_config_sync(rvd->vdev_child,
5749				    rvd->vdev_children, txg, B_TRUE);
5750		}
5751
5752		spa_config_exit(spa, SCL_STATE, FTAG);
5753
5754		if (error == 0)
5755			break;
5756		zio_suspend(spa, NULL);
5757		zio_resume_wait(spa);
5758	}
5759	dmu_tx_commit(tx);
5760
5761	/*
5762	 * Clear the dirty config list.
5763	 */
5764	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5765		vdev_config_clean(vd);
5766
5767	/*
5768	 * Now that the new config has synced transactionally,
5769	 * let it become visible to the config cache.
5770	 */
5771	if (spa->spa_config_syncing != NULL) {
5772		spa_config_set(spa, spa->spa_config_syncing);
5773		spa->spa_config_txg = txg;
5774		spa->spa_config_syncing = NULL;
5775	}
5776
5777	spa->spa_ubsync = spa->spa_uberblock;
5778
5779	dsl_pool_sync_done(dp, txg);
5780
5781	/*
5782	 * Update usable space statistics.
5783	 */
5784	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5785		vdev_sync_done(vd, txg);
5786
5787	spa_update_dspace(spa);
5788
5789	/*
5790	 * It had better be the case that we didn't dirty anything
5791	 * since vdev_config_sync().
5792	 */
5793	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5794	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5795	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5796
5797	spa->spa_sync_pass = 0;
5798
5799	spa_config_exit(spa, SCL_CONFIG, FTAG);
5800
5801	spa_handle_ignored_writes(spa);
5802
5803	/*
5804	 * If any async tasks have been requested, kick them off.
5805	 */
5806	spa_async_dispatch(spa);
5807}
5808
5809/*
5810 * Sync all pools.  We don't want to hold the namespace lock across these
5811 * operations, so we take a reference on the spa_t and drop the lock during the
5812 * sync.
5813 */
5814void
5815spa_sync_allpools(void)
5816{
5817	spa_t *spa = NULL;
5818	mutex_enter(&spa_namespace_lock);
5819	while ((spa = spa_next(spa)) != NULL) {
5820		if (spa_state(spa) != POOL_STATE_ACTIVE ||
5821		    !spa_writeable(spa) || spa_suspended(spa))
5822			continue;
5823		spa_open_ref(spa, FTAG);
5824		mutex_exit(&spa_namespace_lock);
5825		txg_wait_synced(spa_get_dsl(spa), 0);
5826		mutex_enter(&spa_namespace_lock);
5827		spa_close(spa, FTAG);
5828	}
5829	mutex_exit(&spa_namespace_lock);
5830}
5831
5832/*
5833 * ==========================================================================
5834 * Miscellaneous routines
5835 * ==========================================================================
5836 */
5837
5838/*
5839 * Remove all pools in the system.
5840 */
5841void
5842spa_evict_all(void)
5843{
5844	spa_t *spa;
5845
5846	/*
5847	 * Remove all cached state.  All pools should be closed now,
5848	 * so every spa in the AVL tree should be unreferenced.
5849	 */
5850	mutex_enter(&spa_namespace_lock);
5851	while ((spa = spa_next(NULL)) != NULL) {
5852		/*
5853		 * Stop async tasks.  The async thread may need to detach
5854		 * a device that's been replaced, which requires grabbing
5855		 * spa_namespace_lock, so we must drop it here.
5856		 */
5857		spa_open_ref(spa, FTAG);
5858		mutex_exit(&spa_namespace_lock);
5859		spa_async_suspend(spa);
5860		mutex_enter(&spa_namespace_lock);
5861		spa_close(spa, FTAG);
5862
5863		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5864			spa_unload(spa);
5865			spa_deactivate(spa);
5866		}
5867		spa_remove(spa);
5868	}
5869	mutex_exit(&spa_namespace_lock);
5870}
5871
5872vdev_t *
5873spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5874{
5875	vdev_t *vd;
5876	int i;
5877
5878	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5879		return (vd);
5880
5881	if (aux) {
5882		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5883			vd = spa->spa_l2cache.sav_vdevs[i];
5884			if (vd->vdev_guid == guid)
5885				return (vd);
5886		}
5887
5888		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5889			vd = spa->spa_spares.sav_vdevs[i];
5890			if (vd->vdev_guid == guid)
5891				return (vd);
5892		}
5893	}
5894
5895	return (NULL);
5896}
5897
5898void
5899spa_upgrade(spa_t *spa, uint64_t version)
5900{
5901	ASSERT(spa_writeable(spa));
5902
5903	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5904
5905	/*
5906	 * This should only be called for a non-faulted pool, and since a
5907	 * future version would result in an unopenable pool, this shouldn't be
5908	 * possible.
5909	 */
5910	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5911	ASSERT(version >= spa->spa_uberblock.ub_version);
5912
5913	spa->spa_uberblock.ub_version = version;
5914	vdev_config_dirty(spa->spa_root_vdev);
5915
5916	spa_config_exit(spa, SCL_ALL, FTAG);
5917
5918	txg_wait_synced(spa_get_dsl(spa), 0);
5919}
5920
5921boolean_t
5922spa_has_spare(spa_t *spa, uint64_t guid)
5923{
5924	int i;
5925	uint64_t spareguid;
5926	spa_aux_vdev_t *sav = &spa->spa_spares;
5927
5928	for (i = 0; i < sav->sav_count; i++)
5929		if (sav->sav_vdevs[i]->vdev_guid == guid)
5930			return (B_TRUE);
5931
5932	for (i = 0; i < sav->sav_npending; i++) {
5933		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5934		    &spareguid) == 0 && spareguid == guid)
5935			return (B_TRUE);
5936	}
5937
5938	return (B_FALSE);
5939}
5940
5941/*
5942 * Check if a pool has an active shared spare device.
5943 * Note: reference count of an active spare is 2, as a spare and as a replace
5944 */
5945static boolean_t
5946spa_has_active_shared_spare(spa_t *spa)
5947{
5948	int i, refcnt;
5949	uint64_t pool;
5950	spa_aux_vdev_t *sav = &spa->spa_spares;
5951
5952	for (i = 0; i < sav->sav_count; i++) {
5953		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5954		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5955		    refcnt > 2)
5956			return (B_TRUE);
5957	}
5958
5959	return (B_FALSE);
5960}
5961
5962/*
5963 * Post a sysevent corresponding to the given event.  The 'name' must be one of
5964 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5965 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5966 * in the userland libzpool, as we don't want consumers to misinterpret ztest
5967 * or zdb as real changes.
5968 */
5969void
5970spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5971{
5972#ifdef _KERNEL
5973	sysevent_t		*ev;
5974	sysevent_attr_list_t	*attr = NULL;
5975	sysevent_value_t	value;
5976	sysevent_id_t		eid;
5977
5978	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5979	    SE_SLEEP);
5980
5981	value.value_type = SE_DATA_TYPE_STRING;
5982	value.value.sv_string = spa_name(spa);
5983	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5984		goto done;
5985
5986	value.value_type = SE_DATA_TYPE_UINT64;
5987	value.value.sv_uint64 = spa_guid(spa);
5988	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5989		goto done;
5990
5991	if (vd) {
5992		value.value_type = SE_DATA_TYPE_UINT64;
5993		value.value.sv_uint64 = vd->vdev_guid;
5994		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5995		    SE_SLEEP) != 0)
5996			goto done;
5997
5998		if (vd->vdev_path) {
5999			value.value_type = SE_DATA_TYPE_STRING;
6000			value.value.sv_string = vd->vdev_path;
6001			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6002			    &value, SE_SLEEP) != 0)
6003				goto done;
6004		}
6005	}
6006
6007	if (sysevent_attach_attributes(ev, attr) != 0)
6008		goto done;
6009	attr = NULL;
6010
6011	(void) log_sysevent(ev, SE_SLEEP, &eid);
6012
6013done:
6014	if (attr)
6015		sysevent_free_attr(attr);
6016	sysevent_free(ev);
6017#endif
6018}
6019