dtrace.c revision 179307
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29/*
30 * DTrace - Dynamic Tracing for Solaris
31 *
32 * This is the implementation of the Solaris Dynamic Tracing framework
33 * (DTrace).  The user-visible interface to DTrace is described at length in
34 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35 * library, the in-kernel DTrace framework, and the DTrace providers are
36 * described in the block comments in the <sys/dtrace.h> header file.  The
37 * internal architecture of DTrace is described in the block comments in the
38 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39 * implementation very much assume mastery of all of these sources; if one has
40 * an unanswered question about the implementation, one should consult them
41 * first.
42 *
43 * The functions here are ordered roughly as follows:
44 *
45 *   - Probe context functions
46 *   - Probe hashing functions
47 *   - Non-probe context utility functions
48 *   - Matching functions
49 *   - Provider-to-Framework API functions
50 *   - Probe management functions
51 *   - DIF object functions
52 *   - Format functions
53 *   - Predicate functions
54 *   - ECB functions
55 *   - Buffer functions
56 *   - Enabling functions
57 *   - DOF functions
58 *   - Anonymous enabling functions
59 *   - Consumer state functions
60 *   - Helper functions
61 *   - Hook functions
62 *   - Driver cookbook functions
63 *
64 * Each group of functions begins with a block comment labelled the "DTrace
65 * [Group] Functions", allowing one to find each block by searching forward
66 * on capital-f functions.
67 */
68#include <sys/errno.h>
69#if !defined(sun)
70#include <sys/time.h>
71#endif
72#include <sys/stat.h>
73#include <sys/modctl.h>
74#include <sys/conf.h>
75#include <sys/systm.h>
76#if defined(sun)
77#include <sys/ddi.h>
78#include <sys/sunddi.h>
79#endif
80#include <sys/cpuvar.h>
81#include <sys/kmem.h>
82#if defined(sun)
83#include <sys/strsubr.h>
84#endif
85#include <sys/sysmacros.h>
86#include <sys/dtrace_impl.h>
87#include <sys/atomic.h>
88#include <sys/cmn_err.h>
89#if defined(sun)
90#include <sys/mutex_impl.h>
91#include <sys/rwlock_impl.h>
92#endif
93#include <sys/ctf_api.h>
94#if defined(sun)
95#include <sys/panic.h>
96#include <sys/priv_impl.h>
97#endif
98#include <sys/policy.h>
99#if defined(sun)
100#include <sys/cred_impl.h>
101#include <sys/procfs_isa.h>
102#endif
103#include <sys/taskq.h>
104#if defined(sun)
105#include <sys/mkdev.h>
106#include <sys/kdi.h>
107#endif
108#include <sys/zone.h>
109#include <sys/socket.h>
110#include <netinet/in.h>
111
112/* FreeBSD includes: */
113#if !defined(sun)
114#include <sys/ctype.h>
115#include <sys/limits.h>
116#include <sys/kdb.h>
117#include <sys/kernel.h>
118#include <sys/malloc.h>
119#include <sys/sysctl.h>
120#include <sys/lock.h>
121#include <sys/mutex.h>
122#include <sys/sx.h>
123#include <sys/dtrace_bsd.h>
124#include <netinet/in.h>
125#include "dtrace_cddl.h"
126#include "dtrace_debug.c"
127#endif
128
129/*
130 * DTrace Tunable Variables
131 *
132 * The following variables may be tuned by adding a line to /etc/system that
133 * includes both the name of the DTrace module ("dtrace") and the name of the
134 * variable.  For example:
135 *
136 *   set dtrace:dtrace_destructive_disallow = 1
137 *
138 * In general, the only variables that one should be tuning this way are those
139 * that affect system-wide DTrace behavior, and for which the default behavior
140 * is undesirable.  Most of these variables are tunable on a per-consumer
141 * basis using DTrace options, and need not be tuned on a system-wide basis.
142 * When tuning these variables, avoid pathological values; while some attempt
143 * is made to verify the integrity of these variables, they are not considered
144 * part of the supported interface to DTrace, and they are therefore not
145 * checked comprehensively.  Further, these variables should not be tuned
146 * dynamically via "mdb -kw" or other means; they should only be tuned via
147 * /etc/system.
148 */
149int		dtrace_destructive_disallow = 0;
150dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
151size_t		dtrace_difo_maxsize = (256 * 1024);
152dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
153size_t		dtrace_global_maxsize = (16 * 1024);
154size_t		dtrace_actions_max = (16 * 1024);
155size_t		dtrace_retain_max = 1024;
156dtrace_optval_t	dtrace_helper_actions_max = 32;
157dtrace_optval_t	dtrace_helper_providers_max = 32;
158dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
159size_t		dtrace_strsize_default = 256;
160dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
161dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
162dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
163dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
164dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
165dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
166dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
167dtrace_optval_t	dtrace_nspec_default = 1;
168dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
169dtrace_optval_t dtrace_stackframes_default = 20;
170dtrace_optval_t dtrace_ustackframes_default = 20;
171dtrace_optval_t dtrace_jstackframes_default = 50;
172dtrace_optval_t dtrace_jstackstrsize_default = 512;
173int		dtrace_msgdsize_max = 128;
174hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
175hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
176int		dtrace_devdepth_max = 32;
177int		dtrace_err_verbose;
178hrtime_t	dtrace_deadman_interval = NANOSEC;
179hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
180hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
181
182/*
183 * DTrace External Variables
184 *
185 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
186 * available to DTrace consumers via the backtick (`) syntax.  One of these,
187 * dtrace_zero, is made deliberately so:  it is provided as a source of
188 * well-known, zero-filled memory.  While this variable is not documented,
189 * it is used by some translators as an implementation detail.
190 */
191const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
192
193/*
194 * DTrace Internal Variables
195 */
196#if defined(sun)
197static dev_info_t	*dtrace_devi;		/* device info */
198#endif
199#if defined(sun)
200static vmem_t		*dtrace_arena;		/* probe ID arena */
201static vmem_t		*dtrace_minor;		/* minor number arena */
202static taskq_t		*dtrace_taskq;		/* task queue */
203#else
204static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
205#endif
206static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
207static int		dtrace_nprobes;		/* number of probes */
208static dtrace_provider_t *dtrace_provider;	/* provider list */
209static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
210static int		dtrace_opens;		/* number of opens */
211static int		dtrace_helpers;		/* number of helpers */
212#if defined(sun)
213static void		*dtrace_softstate;	/* softstate pointer */
214#endif
215static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
216static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
217static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
218static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
219static int		dtrace_toxranges;	/* number of toxic ranges */
220static int		dtrace_toxranges_max;	/* size of toxic range array */
221static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
222static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
223static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
224static kthread_t	*dtrace_panicked;	/* panicking thread */
225static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
226static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
227static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
228static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
229static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
230#if !defined(sun)
231static struct mtx	dtrace_unr_mtx;
232MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
233int		dtrace_in_probe;	/* non-zero if executing a probe */
234#if defined(__i386__) || defined(__amd64__)
235uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
236#endif
237#endif
238
239/*
240 * DTrace Locking
241 * DTrace is protected by three (relatively coarse-grained) locks:
242 *
243 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
244 *     including enabling state, probes, ECBs, consumer state, helper state,
245 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
246 *     probe context is lock-free -- synchronization is handled via the
247 *     dtrace_sync() cross call mechanism.
248 *
249 * (2) dtrace_provider_lock is required when manipulating provider state, or
250 *     when provider state must be held constant.
251 *
252 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
253 *     when meta provider state must be held constant.
254 *
255 * The lock ordering between these three locks is dtrace_meta_lock before
256 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
257 * several places where dtrace_provider_lock is held by the framework as it
258 * calls into the providers -- which then call back into the framework,
259 * grabbing dtrace_lock.)
260 *
261 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
262 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
263 * role as a coarse-grained lock; it is acquired before both of these locks.
264 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
265 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
266 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
267 * acquired _between_ dtrace_provider_lock and dtrace_lock.
268 */
269static kmutex_t		dtrace_lock;		/* probe state lock */
270static kmutex_t		dtrace_provider_lock;	/* provider state lock */
271static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
272
273#if !defined(sun)
274/* XXX FreeBSD hacks. */
275static kmutex_t		mod_lock;
276
277#define cr_suid		cr_svuid
278#define cr_sgid		cr_svgid
279#define	ipaddr_t	in_addr_t
280#define mod_modname	pathname
281#define vuprintf	vprintf
282#define ttoproc(_a)	((_a)->td_proc)
283#define crgetzoneid(_a)	0
284#define	NCPU		MAXCPU
285#define SNOCD		0
286#define CPU_ON_INTR(_a)	0
287
288#define PRIV_EFFECTIVE		(1 << 0)
289#define PRIV_DTRACE_KERNEL	(1 << 1)
290#define PRIV_DTRACE_PROC	(1 << 2)
291#define PRIV_DTRACE_USER	(1 << 3)
292#define PRIV_PROC_OWNER		(1 << 4)
293#define PRIV_PROC_ZONE		(1 << 5)
294#define PRIV_ALL		~0
295
296SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
297#endif
298
299#if defined(sun)
300#define curcpu	CPU->cpu_id
301#endif
302
303
304/*
305 * DTrace Provider Variables
306 *
307 * These are the variables relating to DTrace as a provider (that is, the
308 * provider of the BEGIN, END, and ERROR probes).
309 */
310static dtrace_pattr_t	dtrace_provider_attr = {
311{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
312{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
313{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
314{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
315{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316};
317
318static void
319dtrace_nullop(void)
320{}
321
322static dtrace_pops_t	dtrace_provider_ops = {
323	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
324	(void (*)(void *, modctl_t *))dtrace_nullop,
325	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
326	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
327	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
328	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
329	NULL,
330	NULL,
331	NULL,
332	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
333};
334
335static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
336static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
337dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
338
339/*
340 * DTrace Helper Tracing Variables
341 */
342uint32_t dtrace_helptrace_next = 0;
343uint32_t dtrace_helptrace_nlocals;
344char	*dtrace_helptrace_buffer;
345int	dtrace_helptrace_bufsize = 512 * 1024;
346
347#ifdef DEBUG
348int	dtrace_helptrace_enabled = 1;
349#else
350int	dtrace_helptrace_enabled = 0;
351#endif
352
353/*
354 * DTrace Error Hashing
355 *
356 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
357 * table.  This is very useful for checking coverage of tests that are
358 * expected to induce DIF or DOF processing errors, and may be useful for
359 * debugging problems in the DIF code generator or in DOF generation .  The
360 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
361 */
362#ifdef DEBUG
363static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
364static const char *dtrace_errlast;
365static kthread_t *dtrace_errthread;
366static kmutex_t dtrace_errlock;
367#endif
368
369/*
370 * DTrace Macros and Constants
371 *
372 * These are various macros that are useful in various spots in the
373 * implementation, along with a few random constants that have no meaning
374 * outside of the implementation.  There is no real structure to this cpp
375 * mishmash -- but is there ever?
376 */
377#define	DTRACE_HASHSTR(hash, probe)	\
378	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
379
380#define	DTRACE_HASHNEXT(hash, probe)	\
381	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
382
383#define	DTRACE_HASHPREV(hash, probe)	\
384	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
385
386#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
387	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
388	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
389
390#define	DTRACE_AGGHASHSIZE_SLEW		17
391
392#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
393
394/*
395 * The key for a thread-local variable consists of the lower 61 bits of the
396 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
397 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
398 * equal to a variable identifier.  This is necessary (but not sufficient) to
399 * assure that global associative arrays never collide with thread-local
400 * variables.  To guarantee that they cannot collide, we must also define the
401 * order for keying dynamic variables.  That order is:
402 *
403 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
404 *
405 * Because the variable-key and the tls-key are in orthogonal spaces, there is
406 * no way for a global variable key signature to match a thread-local key
407 * signature.
408 */
409#if defined(sun)
410#define	DTRACE_TLS_THRKEY(where) { \
411	uint_t intr = 0; \
412	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
413	for (; actv; actv >>= 1) \
414		intr++; \
415	ASSERT(intr < (1 << 3)); \
416	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
417	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
418}
419#else
420#define	DTRACE_TLS_THRKEY(where) { \
421	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
422	uint_t intr = 0; \
423	uint_t actv = _c->cpu_intr_actv; \
424	for (; actv; actv >>= 1) \
425		intr++; \
426	ASSERT(intr < (1 << 3)); \
427	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
428	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
429}
430#endif
431
432#define	DT_BSWAP_8(x)	((x) & 0xff)
433#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
434#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
435#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
436
437#define	DT_MASK_LO 0x00000000FFFFFFFFULL
438
439#define	DTRACE_STORE(type, tomax, offset, what) \
440	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
441
442#ifndef __i386
443#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
444	if (addr & (size - 1)) {					\
445		*flags |= CPU_DTRACE_BADALIGN;				\
446		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
447		return (0);						\
448	}
449#else
450#define	DTRACE_ALIGNCHECK(addr, size, flags)
451#endif
452
453/*
454 * Test whether a range of memory starting at testaddr of size testsz falls
455 * within the range of memory described by addr, sz.  We take care to avoid
456 * problems with overflow and underflow of the unsigned quantities, and
457 * disallow all negative sizes.  Ranges of size 0 are allowed.
458 */
459#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
460	((testaddr) - (baseaddr) < (basesz) && \
461	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
462	(testaddr) + (testsz) >= (testaddr))
463
464/*
465 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
466 * alloc_sz on the righthand side of the comparison in order to avoid overflow
467 * or underflow in the comparison with it.  This is simpler than the INRANGE
468 * check above, because we know that the dtms_scratch_ptr is valid in the
469 * range.  Allocations of size zero are allowed.
470 */
471#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
472	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
473	(mstate)->dtms_scratch_ptr >= (alloc_sz))
474
475#define	DTRACE_LOADFUNC(bits)						\
476/*CSTYLED*/								\
477uint##bits##_t								\
478dtrace_load##bits(uintptr_t addr)					\
479{									\
480	size_t size = bits / NBBY;					\
481	/*CSTYLED*/							\
482	uint##bits##_t rval;						\
483	int i;								\
484	volatile uint16_t *flags = (volatile uint16_t *)		\
485	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
486									\
487	DTRACE_ALIGNCHECK(addr, size, flags);				\
488									\
489	for (i = 0; i < dtrace_toxranges; i++) {			\
490		if (addr >= dtrace_toxrange[i].dtt_limit)		\
491			continue;					\
492									\
493		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
494			continue;					\
495									\
496		/*							\
497		 * This address falls within a toxic region; return 0.	\
498		 */							\
499		*flags |= CPU_DTRACE_BADADDR;				\
500		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
501		return (0);						\
502	}								\
503									\
504	*flags |= CPU_DTRACE_NOFAULT;					\
505	/*CSTYLED*/							\
506	rval = *((volatile uint##bits##_t *)addr);			\
507	*flags &= ~CPU_DTRACE_NOFAULT;					\
508									\
509	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
510}
511
512#ifdef _LP64
513#define	dtrace_loadptr	dtrace_load64
514#else
515#define	dtrace_loadptr	dtrace_load32
516#endif
517
518#define	DTRACE_DYNHASH_FREE	0
519#define	DTRACE_DYNHASH_SINK	1
520#define	DTRACE_DYNHASH_VALID	2
521
522#define	DTRACE_MATCH_NEXT	0
523#define	DTRACE_MATCH_DONE	1
524#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
525#define	DTRACE_STATE_ALIGN	64
526
527#define	DTRACE_FLAGS2FLT(flags)						\
528	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
529	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
530	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
531	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
532	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
533	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
534	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
535	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
536	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
537	DTRACEFLT_UNKNOWN)
538
539#define	DTRACEACT_ISSTRING(act)						\
540	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
541	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
542
543/* Function prototype definitions: */
544static size_t dtrace_strlen(const char *, size_t);
545static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
546static void dtrace_enabling_provide(dtrace_provider_t *);
547static int dtrace_enabling_match(dtrace_enabling_t *, int *);
548static void dtrace_enabling_matchall(void);
549static dtrace_state_t *dtrace_anon_grab(void);
550#if defined(sun)
551static uint64_t dtrace_helper(int, dtrace_mstate_t *,
552    dtrace_state_t *, uint64_t, uint64_t);
553static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
554#endif
555static void dtrace_buffer_drop(dtrace_buffer_t *);
556static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
557    dtrace_state_t *, dtrace_mstate_t *);
558static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
559    dtrace_optval_t);
560static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
561#if defined(sun)
562static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
563#endif
564uint16_t dtrace_load16(uintptr_t);
565uint32_t dtrace_load32(uintptr_t);
566uint64_t dtrace_load64(uintptr_t);
567uint8_t dtrace_load8(uintptr_t);
568void dtrace_dynvar_clean(dtrace_dstate_t *);
569dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572
573/*
574 * DTrace Probe Context Functions
575 *
576 * These functions are called from probe context.  Because probe context is
577 * any context in which C may be called, arbitrarily locks may be held,
578 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579 * As a result, functions called from probe context may only call other DTrace
580 * support functions -- they may not interact at all with the system at large.
581 * (Note that the ASSERT macro is made probe-context safe by redefining it in
582 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583 * loads are to be performed from probe context, they _must_ be in terms of
584 * the safe dtrace_load*() variants.
585 *
586 * Some functions in this block are not actually called from probe context;
587 * for these functions, there will be a comment above the function reading
588 * "Note:  not called from probe context."
589 */
590void
591dtrace_panic(const char *format, ...)
592{
593	va_list alist;
594
595	va_start(alist, format);
596	dtrace_vpanic(format, alist);
597	va_end(alist);
598}
599
600int
601dtrace_assfail(const char *a, const char *f, int l)
602{
603	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604
605	/*
606	 * We just need something here that even the most clever compiler
607	 * cannot optimize away.
608	 */
609	return (a[(uintptr_t)f]);
610}
611
612/*
613 * Atomically increment a specified error counter from probe context.
614 */
615static void
616dtrace_error(uint32_t *counter)
617{
618	/*
619	 * Most counters stored to in probe context are per-CPU counters.
620	 * However, there are some error conditions that are sufficiently
621	 * arcane that they don't merit per-CPU storage.  If these counters
622	 * are incremented concurrently on different CPUs, scalability will be
623	 * adversely affected -- but we don't expect them to be white-hot in a
624	 * correctly constructed enabling...
625	 */
626	uint32_t oval, nval;
627
628	do {
629		oval = *counter;
630
631		if ((nval = oval + 1) == 0) {
632			/*
633			 * If the counter would wrap, set it to 1 -- assuring
634			 * that the counter is never zero when we have seen
635			 * errors.  (The counter must be 32-bits because we
636			 * aren't guaranteed a 64-bit compare&swap operation.)
637			 * To save this code both the infamy of being fingered
638			 * by a priggish news story and the indignity of being
639			 * the target of a neo-puritan witch trial, we're
640			 * carefully avoiding any colorful description of the
641			 * likelihood of this condition -- but suffice it to
642			 * say that it is only slightly more likely than the
643			 * overflow of predicate cache IDs, as discussed in
644			 * dtrace_predicate_create().
645			 */
646			nval = 1;
647		}
648	} while (dtrace_cas32(counter, oval, nval) != oval);
649}
650
651/*
652 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654 */
655DTRACE_LOADFUNC(8)
656DTRACE_LOADFUNC(16)
657DTRACE_LOADFUNC(32)
658DTRACE_LOADFUNC(64)
659
660static int
661dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662{
663	if (dest < mstate->dtms_scratch_base)
664		return (0);
665
666	if (dest + size < dest)
667		return (0);
668
669	if (dest + size > mstate->dtms_scratch_ptr)
670		return (0);
671
672	return (1);
673}
674
675static int
676dtrace_canstore_statvar(uint64_t addr, size_t sz,
677    dtrace_statvar_t **svars, int nsvars)
678{
679	int i;
680
681	for (i = 0; i < nsvars; i++) {
682		dtrace_statvar_t *svar = svars[i];
683
684		if (svar == NULL || svar->dtsv_size == 0)
685			continue;
686
687		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688			return (1);
689	}
690
691	return (0);
692}
693
694/*
695 * Check to see if the address is within a memory region to which a store may
696 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697 * region.  The caller of dtrace_canstore() is responsible for performing any
698 * alignment checks that are needed before stores are actually executed.
699 */
700static int
701dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702    dtrace_vstate_t *vstate)
703{
704	/*
705	 * First, check to see if the address is in scratch space...
706	 */
707	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708	    mstate->dtms_scratch_size))
709		return (1);
710
711	/*
712	 * Now check to see if it's a dynamic variable.  This check will pick
713	 * up both thread-local variables and any global dynamically-allocated
714	 * variables.
715	 */
716	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717	    vstate->dtvs_dynvars.dtds_size)) {
718		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719		uintptr_t base = (uintptr_t)dstate->dtds_base +
720		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721		uintptr_t chunkoffs;
722
723		/*
724		 * Before we assume that we can store here, we need to make
725		 * sure that it isn't in our metadata -- storing to our
726		 * dynamic variable metadata would corrupt our state.  For
727		 * the range to not include any dynamic variable metadata,
728		 * it must:
729		 *
730		 *	(1) Start above the hash table that is at the base of
731		 *	the dynamic variable space
732		 *
733		 *	(2) Have a starting chunk offset that is beyond the
734		 *	dtrace_dynvar_t that is at the base of every chunk
735		 *
736		 *	(3) Not span a chunk boundary
737		 *
738		 */
739		if (addr < base)
740			return (0);
741
742		chunkoffs = (addr - base) % dstate->dtds_chunksize;
743
744		if (chunkoffs < sizeof (dtrace_dynvar_t))
745			return (0);
746
747		if (chunkoffs + sz > dstate->dtds_chunksize)
748			return (0);
749
750		return (1);
751	}
752
753	/*
754	 * Finally, check the static local and global variables.  These checks
755	 * take the longest, so we perform them last.
756	 */
757	if (dtrace_canstore_statvar(addr, sz,
758	    vstate->dtvs_locals, vstate->dtvs_nlocals))
759		return (1);
760
761	if (dtrace_canstore_statvar(addr, sz,
762	    vstate->dtvs_globals, vstate->dtvs_nglobals))
763		return (1);
764
765	return (0);
766}
767
768
769/*
770 * Convenience routine to check to see if the address is within a memory
771 * region in which a load may be issued given the user's privilege level;
772 * if not, it sets the appropriate error flags and loads 'addr' into the
773 * illegal value slot.
774 *
775 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776 * appropriate memory access protection.
777 */
778static int
779dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780    dtrace_vstate_t *vstate)
781{
782	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783
784	/*
785	 * If we hold the privilege to read from kernel memory, then
786	 * everything is readable.
787	 */
788	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789		return (1);
790
791	/*
792	 * You can obviously read that which you can store.
793	 */
794	if (dtrace_canstore(addr, sz, mstate, vstate))
795		return (1);
796
797	/*
798	 * We're allowed to read from our own string table.
799	 */
800	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801	    mstate->dtms_difo->dtdo_strlen))
802		return (1);
803
804	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805	*illval = addr;
806	return (0);
807}
808
809/*
810 * Convenience routine to check to see if a given string is within a memory
811 * region in which a load may be issued given the user's privilege level;
812 * this exists so that we don't need to issue unnecessary dtrace_strlen()
813 * calls in the event that the user has all privileges.
814 */
815static int
816dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817    dtrace_vstate_t *vstate)
818{
819	size_t strsz;
820
821	/*
822	 * If we hold the privilege to read from kernel memory, then
823	 * everything is readable.
824	 */
825	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826		return (1);
827
828	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829	if (dtrace_canload(addr, strsz, mstate, vstate))
830		return (1);
831
832	return (0);
833}
834
835/*
836 * Convenience routine to check to see if a given variable is within a memory
837 * region in which a load may be issued given the user's privilege level.
838 */
839static int
840dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841    dtrace_vstate_t *vstate)
842{
843	size_t sz;
844	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845
846	/*
847	 * If we hold the privilege to read from kernel memory, then
848	 * everything is readable.
849	 */
850	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851		return (1);
852
853	if (type->dtdt_kind == DIF_TYPE_STRING)
854		sz = dtrace_strlen(src,
855		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856	else
857		sz = type->dtdt_size;
858
859	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860}
861
862/*
863 * Compare two strings using safe loads.
864 */
865static int
866dtrace_strncmp(char *s1, char *s2, size_t limit)
867{
868	uint8_t c1, c2;
869	volatile uint16_t *flags;
870
871	if (s1 == s2 || limit == 0)
872		return (0);
873
874	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875
876	do {
877		if (s1 == NULL) {
878			c1 = '\0';
879		} else {
880			c1 = dtrace_load8((uintptr_t)s1++);
881		}
882
883		if (s2 == NULL) {
884			c2 = '\0';
885		} else {
886			c2 = dtrace_load8((uintptr_t)s2++);
887		}
888
889		if (c1 != c2)
890			return (c1 - c2);
891	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892
893	return (0);
894}
895
896/*
897 * Compute strlen(s) for a string using safe memory accesses.  The additional
898 * len parameter is used to specify a maximum length to ensure completion.
899 */
900static size_t
901dtrace_strlen(const char *s, size_t lim)
902{
903	uint_t len;
904
905	for (len = 0; len != lim; len++) {
906		if (dtrace_load8((uintptr_t)s++) == '\0')
907			break;
908	}
909
910	return (len);
911}
912
913/*
914 * Check if an address falls within a toxic region.
915 */
916static int
917dtrace_istoxic(uintptr_t kaddr, size_t size)
918{
919	uintptr_t taddr, tsize;
920	int i;
921
922	for (i = 0; i < dtrace_toxranges; i++) {
923		taddr = dtrace_toxrange[i].dtt_base;
924		tsize = dtrace_toxrange[i].dtt_limit - taddr;
925
926		if (kaddr - taddr < tsize) {
927			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929			return (1);
930		}
931
932		if (taddr - kaddr < size) {
933			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935			return (1);
936		}
937	}
938
939	return (0);
940}
941
942/*
943 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944 * memory specified by the DIF program.  The dst is assumed to be safe memory
945 * that we can store to directly because it is managed by DTrace.  As with
946 * standard bcopy, overlapping copies are handled properly.
947 */
948static void
949dtrace_bcopy(const void *src, void *dst, size_t len)
950{
951	if (len != 0) {
952		uint8_t *s1 = dst;
953		const uint8_t *s2 = src;
954
955		if (s1 <= s2) {
956			do {
957				*s1++ = dtrace_load8((uintptr_t)s2++);
958			} while (--len != 0);
959		} else {
960			s2 += len;
961			s1 += len;
962
963			do {
964				*--s1 = dtrace_load8((uintptr_t)--s2);
965			} while (--len != 0);
966		}
967	}
968}
969
970/*
971 * Copy src to dst using safe memory accesses, up to either the specified
972 * length, or the point that a nul byte is encountered.  The src is assumed to
973 * be unsafe memory specified by the DIF program.  The dst is assumed to be
974 * safe memory that we can store to directly because it is managed by DTrace.
975 * Unlike dtrace_bcopy(), overlapping regions are not handled.
976 */
977static void
978dtrace_strcpy(const void *src, void *dst, size_t len)
979{
980	if (len != 0) {
981		uint8_t *s1 = dst, c;
982		const uint8_t *s2 = src;
983
984		do {
985			*s1++ = c = dtrace_load8((uintptr_t)s2++);
986		} while (--len != 0 && c != '\0');
987	}
988}
989
990/*
991 * Copy src to dst, deriving the size and type from the specified (BYREF)
992 * variable type.  The src is assumed to be unsafe memory specified by the DIF
993 * program.  The dst is assumed to be DTrace variable memory that is of the
994 * specified type; we assume that we can store to directly.
995 */
996static void
997dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998{
999	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000
1001	if (type->dtdt_kind == DIF_TYPE_STRING) {
1002		dtrace_strcpy(src, dst, type->dtdt_size);
1003	} else {
1004		dtrace_bcopy(src, dst, type->dtdt_size);
1005	}
1006}
1007
1008/*
1009 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011 * safe memory that we can access directly because it is managed by DTrace.
1012 */
1013static int
1014dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015{
1016	volatile uint16_t *flags;
1017
1018	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019
1020	if (s1 == s2)
1021		return (0);
1022
1023	if (s1 == NULL || s2 == NULL)
1024		return (1);
1025
1026	if (s1 != s2 && len != 0) {
1027		const uint8_t *ps1 = s1;
1028		const uint8_t *ps2 = s2;
1029
1030		do {
1031			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032				return (1);
1033		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034	}
1035	return (0);
1036}
1037
1038/*
1039 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040 * is for safe DTrace-managed memory only.
1041 */
1042static void
1043dtrace_bzero(void *dst, size_t len)
1044{
1045	uchar_t *cp;
1046
1047	for (cp = dst; len != 0; len--)
1048		*cp++ = 0;
1049}
1050
1051static void
1052dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053{
1054	uint64_t result[2];
1055
1056	result[0] = addend1[0] + addend2[0];
1057	result[1] = addend1[1] + addend2[1] +
1058	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059
1060	sum[0] = result[0];
1061	sum[1] = result[1];
1062}
1063
1064/*
1065 * Shift the 128-bit value in a by b. If b is positive, shift left.
1066 * If b is negative, shift right.
1067 */
1068static void
1069dtrace_shift_128(uint64_t *a, int b)
1070{
1071	uint64_t mask;
1072
1073	if (b == 0)
1074		return;
1075
1076	if (b < 0) {
1077		b = -b;
1078		if (b >= 64) {
1079			a[0] = a[1] >> (b - 64);
1080			a[1] = 0;
1081		} else {
1082			a[0] >>= b;
1083			mask = 1LL << (64 - b);
1084			mask -= 1;
1085			a[0] |= ((a[1] & mask) << (64 - b));
1086			a[1] >>= b;
1087		}
1088	} else {
1089		if (b >= 64) {
1090			a[1] = a[0] << (b - 64);
1091			a[0] = 0;
1092		} else {
1093			a[1] <<= b;
1094			mask = a[0] >> (64 - b);
1095			a[1] |= mask;
1096			a[0] <<= b;
1097		}
1098	}
1099}
1100
1101/*
1102 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103 * use native multiplication on those, and then re-combine into the
1104 * resulting 128-bit value.
1105 *
1106 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107 *     hi1 * hi2 << 64 +
1108 *     hi1 * lo2 << 32 +
1109 *     hi2 * lo1 << 32 +
1110 *     lo1 * lo2
1111 */
1112static void
1113dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114{
1115	uint64_t hi1, hi2, lo1, lo2;
1116	uint64_t tmp[2];
1117
1118	hi1 = factor1 >> 32;
1119	hi2 = factor2 >> 32;
1120
1121	lo1 = factor1 & DT_MASK_LO;
1122	lo2 = factor2 & DT_MASK_LO;
1123
1124	product[0] = lo1 * lo2;
1125	product[1] = hi1 * hi2;
1126
1127	tmp[0] = hi1 * lo2;
1128	tmp[1] = 0;
1129	dtrace_shift_128(tmp, 32);
1130	dtrace_add_128(product, tmp, product);
1131
1132	tmp[0] = hi2 * lo1;
1133	tmp[1] = 0;
1134	dtrace_shift_128(tmp, 32);
1135	dtrace_add_128(product, tmp, product);
1136}
1137
1138/*
1139 * This privilege check should be used by actions and subroutines to
1140 * verify that the user credentials of the process that enabled the
1141 * invoking ECB match the target credentials
1142 */
1143static int
1144dtrace_priv_proc_common_user(dtrace_state_t *state)
1145{
1146	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147
1148	/*
1149	 * We should always have a non-NULL state cred here, since if cred
1150	 * is null (anonymous tracing), we fast-path bypass this routine.
1151	 */
1152	ASSERT(s_cr != NULL);
1153
1154	if ((cr = CRED()) != NULL &&
1155	    s_cr->cr_uid == cr->cr_uid &&
1156	    s_cr->cr_uid == cr->cr_ruid &&
1157	    s_cr->cr_uid == cr->cr_suid &&
1158	    s_cr->cr_gid == cr->cr_gid &&
1159	    s_cr->cr_gid == cr->cr_rgid &&
1160	    s_cr->cr_gid == cr->cr_sgid)
1161		return (1);
1162
1163	return (0);
1164}
1165
1166/*
1167 * This privilege check should be used by actions and subroutines to
1168 * verify that the zone of the process that enabled the invoking ECB
1169 * matches the target credentials
1170 */
1171static int
1172dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173{
1174#if defined(sun)
1175	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176
1177	/*
1178	 * We should always have a non-NULL state cred here, since if cred
1179	 * is null (anonymous tracing), we fast-path bypass this routine.
1180	 */
1181	ASSERT(s_cr != NULL);
1182
1183	if ((cr = CRED()) != NULL &&
1184	    s_cr->cr_zone == cr->cr_zone)
1185		return (1);
1186
1187	return (0);
1188#else
1189	return (1);
1190#endif
1191}
1192
1193/*
1194 * This privilege check should be used by actions and subroutines to
1195 * verify that the process has not setuid or changed credentials.
1196 */
1197static int
1198dtrace_priv_proc_common_nocd(void)
1199{
1200	proc_t *proc;
1201
1202	if ((proc = ttoproc(curthread)) != NULL &&
1203	    !(proc->p_flag & SNOCD))
1204		return (1);
1205
1206	return (0);
1207}
1208
1209static int
1210dtrace_priv_proc_destructive(dtrace_state_t *state)
1211{
1212	int action = state->dts_cred.dcr_action;
1213
1214	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215	    dtrace_priv_proc_common_zone(state) == 0)
1216		goto bad;
1217
1218	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219	    dtrace_priv_proc_common_user(state) == 0)
1220		goto bad;
1221
1222	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223	    dtrace_priv_proc_common_nocd() == 0)
1224		goto bad;
1225
1226	return (1);
1227
1228bad:
1229	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230
1231	return (0);
1232}
1233
1234static int
1235dtrace_priv_proc_control(dtrace_state_t *state)
1236{
1237	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238		return (1);
1239
1240	if (dtrace_priv_proc_common_zone(state) &&
1241	    dtrace_priv_proc_common_user(state) &&
1242	    dtrace_priv_proc_common_nocd())
1243		return (1);
1244
1245	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246
1247	return (0);
1248}
1249
1250static int
1251dtrace_priv_proc(dtrace_state_t *state)
1252{
1253	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254		return (1);
1255
1256	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257
1258	return (0);
1259}
1260
1261static int
1262dtrace_priv_kernel(dtrace_state_t *state)
1263{
1264	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265		return (1);
1266
1267	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268
1269	return (0);
1270}
1271
1272static int
1273dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274{
1275	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276		return (1);
1277
1278	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279
1280	return (0);
1281}
1282
1283/*
1284 * Note:  not called from probe context.  This function is called
1285 * asynchronously (and at a regular interval) from outside of probe context to
1286 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288 */
1289void
1290dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291{
1292	dtrace_dynvar_t *dirty;
1293	dtrace_dstate_percpu_t *dcpu;
1294	int i, work = 0;
1295
1296	for (i = 0; i < NCPU; i++) {
1297		dcpu = &dstate->dtds_percpu[i];
1298
1299		ASSERT(dcpu->dtdsc_rinsing == NULL);
1300
1301		/*
1302		 * If the dirty list is NULL, there is no dirty work to do.
1303		 */
1304		if (dcpu->dtdsc_dirty == NULL)
1305			continue;
1306
1307		/*
1308		 * If the clean list is non-NULL, then we're not going to do
1309		 * any work for this CPU -- it means that there has not been
1310		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311		 * since the last time we cleaned house.
1312		 */
1313		if (dcpu->dtdsc_clean != NULL)
1314			continue;
1315
1316		work = 1;
1317
1318		/*
1319		 * Atomically move the dirty list aside.
1320		 */
1321		do {
1322			dirty = dcpu->dtdsc_dirty;
1323
1324			/*
1325			 * Before we zap the dirty list, set the rinsing list.
1326			 * (This allows for a potential assertion in
1327			 * dtrace_dynvar():  if a free dynamic variable appears
1328			 * on a hash chain, either the dirty list or the
1329			 * rinsing list for some CPU must be non-NULL.)
1330			 */
1331			dcpu->dtdsc_rinsing = dirty;
1332			dtrace_membar_producer();
1333		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334		    dirty, NULL) != dirty);
1335	}
1336
1337	if (!work) {
1338		/*
1339		 * We have no work to do; we can simply return.
1340		 */
1341		return;
1342	}
1343
1344	dtrace_sync();
1345
1346	for (i = 0; i < NCPU; i++) {
1347		dcpu = &dstate->dtds_percpu[i];
1348
1349		if (dcpu->dtdsc_rinsing == NULL)
1350			continue;
1351
1352		/*
1353		 * We are now guaranteed that no hash chain contains a pointer
1354		 * into this dirty list; we can make it clean.
1355		 */
1356		ASSERT(dcpu->dtdsc_clean == NULL);
1357		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358		dcpu->dtdsc_rinsing = NULL;
1359	}
1360
1361	/*
1362	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364	 * This prevents a race whereby a CPU incorrectly decides that
1365	 * the state should be something other than DTRACE_DSTATE_CLEAN
1366	 * after dtrace_dynvar_clean() has completed.
1367	 */
1368	dtrace_sync();
1369
1370	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371}
1372
1373/*
1374 * Depending on the value of the op parameter, this function looks-up,
1375 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376 * allocation is requested, this function will return a pointer to a
1377 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378 * variable can be allocated.  If NULL is returned, the appropriate counter
1379 * will be incremented.
1380 */
1381dtrace_dynvar_t *
1382dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385{
1386	uint64_t hashval = DTRACE_DYNHASH_VALID;
1387	dtrace_dynhash_t *hash = dstate->dtds_hash;
1388	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389	processorid_t me = curcpu, cpu = me;
1390	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391	size_t bucket, ksize;
1392	size_t chunksize = dstate->dtds_chunksize;
1393	uintptr_t kdata, lock, nstate;
1394	uint_t i;
1395
1396	ASSERT(nkeys != 0);
1397
1398	/*
1399	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400	 * algorithm.  For the by-value portions, we perform the algorithm in
1401	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402	 * bit, and seems to have only a minute effect on distribution.  For
1403	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404	 * over each referenced byte.  It's painful to do this, but it's much
1405	 * better than pathological hash distribution.  The efficacy of the
1406	 * hashing algorithm (and a comparison with other algorithms) may be
1407	 * found by running the ::dtrace_dynstat MDB dcmd.
1408	 */
1409	for (i = 0; i < nkeys; i++) {
1410		if (key[i].dttk_size == 0) {
1411			uint64_t val = key[i].dttk_value;
1412
1413			hashval += (val >> 48) & 0xffff;
1414			hashval += (hashval << 10);
1415			hashval ^= (hashval >> 6);
1416
1417			hashval += (val >> 32) & 0xffff;
1418			hashval += (hashval << 10);
1419			hashval ^= (hashval >> 6);
1420
1421			hashval += (val >> 16) & 0xffff;
1422			hashval += (hashval << 10);
1423			hashval ^= (hashval >> 6);
1424
1425			hashval += val & 0xffff;
1426			hashval += (hashval << 10);
1427			hashval ^= (hashval >> 6);
1428		} else {
1429			/*
1430			 * This is incredibly painful, but it beats the hell
1431			 * out of the alternative.
1432			 */
1433			uint64_t j, size = key[i].dttk_size;
1434			uintptr_t base = (uintptr_t)key[i].dttk_value;
1435
1436			if (!dtrace_canload(base, size, mstate, vstate))
1437				break;
1438
1439			for (j = 0; j < size; j++) {
1440				hashval += dtrace_load8(base + j);
1441				hashval += (hashval << 10);
1442				hashval ^= (hashval >> 6);
1443			}
1444		}
1445	}
1446
1447	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448		return (NULL);
1449
1450	hashval += (hashval << 3);
1451	hashval ^= (hashval >> 11);
1452	hashval += (hashval << 15);
1453
1454	/*
1455	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456	 * comes out to be one of our two sentinel hash values.  If this
1457	 * actually happens, we set the hashval to be a value known to be a
1458	 * non-sentinel value.
1459	 */
1460	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461		hashval = DTRACE_DYNHASH_VALID;
1462
1463	/*
1464	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1465	 * important here, tricks can be pulled to reduce it.  (However, it's
1466	 * critical that hash collisions be kept to an absolute minimum;
1467	 * they're much more painful than a divide.)  It's better to have a
1468	 * solution that generates few collisions and still keeps things
1469	 * relatively simple.
1470	 */
1471	bucket = hashval % dstate->dtds_hashsize;
1472
1473	if (op == DTRACE_DYNVAR_DEALLOC) {
1474		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475
1476		for (;;) {
1477			while ((lock = *lockp) & 1)
1478				continue;
1479
1480			if (dtrace_casptr((volatile void *)lockp,
1481			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482				break;
1483		}
1484
1485		dtrace_membar_producer();
1486	}
1487
1488top:
1489	prev = NULL;
1490	lock = hash[bucket].dtdh_lock;
1491
1492	dtrace_membar_consumer();
1493
1494	start = hash[bucket].dtdh_chain;
1495	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497	    op != DTRACE_DYNVAR_DEALLOC));
1498
1499	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502
1503		if (dvar->dtdv_hashval != hashval) {
1504			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505				/*
1506				 * We've reached the sink, and therefore the
1507				 * end of the hash chain; we can kick out of
1508				 * the loop knowing that we have seen a valid
1509				 * snapshot of state.
1510				 */
1511				ASSERT(dvar->dtdv_next == NULL);
1512				ASSERT(dvar == &dtrace_dynhash_sink);
1513				break;
1514			}
1515
1516			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517				/*
1518				 * We've gone off the rails:  somewhere along
1519				 * the line, one of the members of this hash
1520				 * chain was deleted.  Note that we could also
1521				 * detect this by simply letting this loop run
1522				 * to completion, as we would eventually hit
1523				 * the end of the dirty list.  However, we
1524				 * want to avoid running the length of the
1525				 * dirty list unnecessarily (it might be quite
1526				 * long), so we catch this as early as
1527				 * possible by detecting the hash marker.  In
1528				 * this case, we simply set dvar to NULL and
1529				 * break; the conditional after the loop will
1530				 * send us back to top.
1531				 */
1532				dvar = NULL;
1533				break;
1534			}
1535
1536			goto next;
1537		}
1538
1539		if (dtuple->dtt_nkeys != nkeys)
1540			goto next;
1541
1542		for (i = 0; i < nkeys; i++, dkey++) {
1543			if (dkey->dttk_size != key[i].dttk_size)
1544				goto next; /* size or type mismatch */
1545
1546			if (dkey->dttk_size != 0) {
1547				if (dtrace_bcmp(
1548				    (void *)(uintptr_t)key[i].dttk_value,
1549				    (void *)(uintptr_t)dkey->dttk_value,
1550				    dkey->dttk_size))
1551					goto next;
1552			} else {
1553				if (dkey->dttk_value != key[i].dttk_value)
1554					goto next;
1555			}
1556		}
1557
1558		if (op != DTRACE_DYNVAR_DEALLOC)
1559			return (dvar);
1560
1561		ASSERT(dvar->dtdv_next == NULL ||
1562		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563
1564		if (prev != NULL) {
1565			ASSERT(hash[bucket].dtdh_chain != dvar);
1566			ASSERT(start != dvar);
1567			ASSERT(prev->dtdv_next == dvar);
1568			prev->dtdv_next = dvar->dtdv_next;
1569		} else {
1570			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571			    start, dvar->dtdv_next) != start) {
1572				/*
1573				 * We have failed to atomically swing the
1574				 * hash table head pointer, presumably because
1575				 * of a conflicting allocation on another CPU.
1576				 * We need to reread the hash chain and try
1577				 * again.
1578				 */
1579				goto top;
1580			}
1581		}
1582
1583		dtrace_membar_producer();
1584
1585		/*
1586		 * Now set the hash value to indicate that it's free.
1587		 */
1588		ASSERT(hash[bucket].dtdh_chain != dvar);
1589		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590
1591		dtrace_membar_producer();
1592
1593		/*
1594		 * Set the next pointer to point at the dirty list, and
1595		 * atomically swing the dirty pointer to the newly freed dvar.
1596		 */
1597		do {
1598			next = dcpu->dtdsc_dirty;
1599			dvar->dtdv_next = next;
1600		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601
1602		/*
1603		 * Finally, unlock this hash bucket.
1604		 */
1605		ASSERT(hash[bucket].dtdh_lock == lock);
1606		ASSERT(lock & 1);
1607		hash[bucket].dtdh_lock++;
1608
1609		return (NULL);
1610next:
1611		prev = dvar;
1612		continue;
1613	}
1614
1615	if (dvar == NULL) {
1616		/*
1617		 * If dvar is NULL, it is because we went off the rails:
1618		 * one of the elements that we traversed in the hash chain
1619		 * was deleted while we were traversing it.  In this case,
1620		 * we assert that we aren't doing a dealloc (deallocs lock
1621		 * the hash bucket to prevent themselves from racing with
1622		 * one another), and retry the hash chain traversal.
1623		 */
1624		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625		goto top;
1626	}
1627
1628	if (op != DTRACE_DYNVAR_ALLOC) {
1629		/*
1630		 * If we are not to allocate a new variable, we want to
1631		 * return NULL now.  Before we return, check that the value
1632		 * of the lock word hasn't changed.  If it has, we may have
1633		 * seen an inconsistent snapshot.
1634		 */
1635		if (op == DTRACE_DYNVAR_NOALLOC) {
1636			if (hash[bucket].dtdh_lock != lock)
1637				goto top;
1638		} else {
1639			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640			ASSERT(hash[bucket].dtdh_lock == lock);
1641			ASSERT(lock & 1);
1642			hash[bucket].dtdh_lock++;
1643		}
1644
1645		return (NULL);
1646	}
1647
1648	/*
1649	 * We need to allocate a new dynamic variable.  The size we need is the
1650	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652	 * the size of any referred-to data (dsize).  We then round the final
1653	 * size up to the chunksize for allocation.
1654	 */
1655	for (ksize = 0, i = 0; i < nkeys; i++)
1656		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657
1658	/*
1659	 * This should be pretty much impossible, but could happen if, say,
1660	 * strange DIF specified the tuple.  Ideally, this should be an
1661	 * assertion and not an error condition -- but that requires that the
1662	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663	 * bullet-proof.  (That is, it must not be able to be fooled by
1664	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1665	 * solving this would presumably not amount to solving the Halting
1666	 * Problem -- but it still seems awfully hard.
1667	 */
1668	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669	    ksize + dsize > chunksize) {
1670		dcpu->dtdsc_drops++;
1671		return (NULL);
1672	}
1673
1674	nstate = DTRACE_DSTATE_EMPTY;
1675
1676	do {
1677retry:
1678		free = dcpu->dtdsc_free;
1679
1680		if (free == NULL) {
1681			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682			void *rval;
1683
1684			if (clean == NULL) {
1685				/*
1686				 * We're out of dynamic variable space on
1687				 * this CPU.  Unless we have tried all CPUs,
1688				 * we'll try to allocate from a different
1689				 * CPU.
1690				 */
1691				switch (dstate->dtds_state) {
1692				case DTRACE_DSTATE_CLEAN: {
1693					void *sp = &dstate->dtds_state;
1694
1695					if (++cpu >= NCPU)
1696						cpu = 0;
1697
1698					if (dcpu->dtdsc_dirty != NULL &&
1699					    nstate == DTRACE_DSTATE_EMPTY)
1700						nstate = DTRACE_DSTATE_DIRTY;
1701
1702					if (dcpu->dtdsc_rinsing != NULL)
1703						nstate = DTRACE_DSTATE_RINSING;
1704
1705					dcpu = &dstate->dtds_percpu[cpu];
1706
1707					if (cpu != me)
1708						goto retry;
1709
1710					(void) dtrace_cas32(sp,
1711					    DTRACE_DSTATE_CLEAN, nstate);
1712
1713					/*
1714					 * To increment the correct bean
1715					 * counter, take another lap.
1716					 */
1717					goto retry;
1718				}
1719
1720				case DTRACE_DSTATE_DIRTY:
1721					dcpu->dtdsc_dirty_drops++;
1722					break;
1723
1724				case DTRACE_DSTATE_RINSING:
1725					dcpu->dtdsc_rinsing_drops++;
1726					break;
1727
1728				case DTRACE_DSTATE_EMPTY:
1729					dcpu->dtdsc_drops++;
1730					break;
1731				}
1732
1733				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734				return (NULL);
1735			}
1736
1737			/*
1738			 * The clean list appears to be non-empty.  We want to
1739			 * move the clean list to the free list; we start by
1740			 * moving the clean pointer aside.
1741			 */
1742			if (dtrace_casptr(&dcpu->dtdsc_clean,
1743			    clean, NULL) != clean) {
1744				/*
1745				 * We are in one of two situations:
1746				 *
1747				 *  (a)	The clean list was switched to the
1748				 *	free list by another CPU.
1749				 *
1750				 *  (b)	The clean list was added to by the
1751				 *	cleansing cyclic.
1752				 *
1753				 * In either of these situations, we can
1754				 * just reattempt the free list allocation.
1755				 */
1756				goto retry;
1757			}
1758
1759			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760
1761			/*
1762			 * Now we'll move the clean list to the free list.
1763			 * It's impossible for this to fail:  the only way
1764			 * the free list can be updated is through this
1765			 * code path, and only one CPU can own the clean list.
1766			 * Thus, it would only be possible for this to fail if
1767			 * this code were racing with dtrace_dynvar_clean().
1768			 * (That is, if dtrace_dynvar_clean() updated the clean
1769			 * list, and we ended up racing to update the free
1770			 * list.)  This race is prevented by the dtrace_sync()
1771			 * in dtrace_dynvar_clean() -- which flushes the
1772			 * owners of the clean lists out before resetting
1773			 * the clean lists.
1774			 */
1775			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776			ASSERT(rval == NULL);
1777			goto retry;
1778		}
1779
1780		dvar = free;
1781		new_free = dvar->dtdv_next;
1782	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783
1784	/*
1785	 * We have now allocated a new chunk.  We copy the tuple keys into the
1786	 * tuple array and copy any referenced key data into the data space
1787	 * following the tuple array.  As we do this, we relocate dttk_value
1788	 * in the final tuple to point to the key data address in the chunk.
1789	 */
1790	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791	dvar->dtdv_data = (void *)(kdata + ksize);
1792	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793
1794	for (i = 0; i < nkeys; i++) {
1795		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796		size_t kesize = key[i].dttk_size;
1797
1798		if (kesize != 0) {
1799			dtrace_bcopy(
1800			    (const void *)(uintptr_t)key[i].dttk_value,
1801			    (void *)kdata, kesize);
1802			dkey->dttk_value = kdata;
1803			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804		} else {
1805			dkey->dttk_value = key[i].dttk_value;
1806		}
1807
1808		dkey->dttk_size = kesize;
1809	}
1810
1811	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812	dvar->dtdv_hashval = hashval;
1813	dvar->dtdv_next = start;
1814
1815	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816		return (dvar);
1817
1818	/*
1819	 * The cas has failed.  Either another CPU is adding an element to
1820	 * this hash chain, or another CPU is deleting an element from this
1821	 * hash chain.  The simplest way to deal with both of these cases
1822	 * (though not necessarily the most efficient) is to free our
1823	 * allocated block and tail-call ourselves.  Note that the free is
1824	 * to the dirty list and _not_ to the free list.  This is to prevent
1825	 * races with allocators, above.
1826	 */
1827	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828
1829	dtrace_membar_producer();
1830
1831	do {
1832		free = dcpu->dtdsc_dirty;
1833		dvar->dtdv_next = free;
1834	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835
1836	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837}
1838
1839/*ARGSUSED*/
1840static void
1841dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842{
1843	if ((int64_t)nval < (int64_t)*oval)
1844		*oval = nval;
1845}
1846
1847/*ARGSUSED*/
1848static void
1849dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850{
1851	if ((int64_t)nval > (int64_t)*oval)
1852		*oval = nval;
1853}
1854
1855static void
1856dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857{
1858	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859	int64_t val = (int64_t)nval;
1860
1861	if (val < 0) {
1862		for (i = 0; i < zero; i++) {
1863			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864				quanta[i] += incr;
1865				return;
1866			}
1867		}
1868	} else {
1869		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871				quanta[i - 1] += incr;
1872				return;
1873			}
1874		}
1875
1876		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877		return;
1878	}
1879
1880	ASSERT(0);
1881}
1882
1883static void
1884dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885{
1886	uint64_t arg = *lquanta++;
1887	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890	int32_t val = (int32_t)nval, level;
1891
1892	ASSERT(step != 0);
1893	ASSERT(levels != 0);
1894
1895	if (val < base) {
1896		/*
1897		 * This is an underflow.
1898		 */
1899		lquanta[0] += incr;
1900		return;
1901	}
1902
1903	level = (val - base) / step;
1904
1905	if (level < levels) {
1906		lquanta[level + 1] += incr;
1907		return;
1908	}
1909
1910	/*
1911	 * This is an overflow.
1912	 */
1913	lquanta[levels + 1] += incr;
1914}
1915
1916/*ARGSUSED*/
1917static void
1918dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1919{
1920	data[0]++;
1921	data[1] += nval;
1922}
1923
1924/*ARGSUSED*/
1925static void
1926dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1927{
1928	int64_t snval = (int64_t)nval;
1929	uint64_t tmp[2];
1930
1931	data[0]++;
1932	data[1] += nval;
1933
1934	/*
1935	 * What we want to say here is:
1936	 *
1937	 * data[2] += nval * nval;
1938	 *
1939	 * But given that nval is 64-bit, we could easily overflow, so
1940	 * we do this as 128-bit arithmetic.
1941	 */
1942	if (snval < 0)
1943		snval = -snval;
1944
1945	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1946	dtrace_add_128(data + 2, tmp, data + 2);
1947}
1948
1949/*ARGSUSED*/
1950static void
1951dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1952{
1953	*oval = *oval + 1;
1954}
1955
1956/*ARGSUSED*/
1957static void
1958dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1959{
1960	*oval += nval;
1961}
1962
1963/*
1964 * Aggregate given the tuple in the principal data buffer, and the aggregating
1965 * action denoted by the specified dtrace_aggregation_t.  The aggregation
1966 * buffer is specified as the buf parameter.  This routine does not return
1967 * failure; if there is no space in the aggregation buffer, the data will be
1968 * dropped, and a corresponding counter incremented.
1969 */
1970static void
1971dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1972    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1973{
1974	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1975	uint32_t i, ndx, size, fsize;
1976	uint32_t align = sizeof (uint64_t) - 1;
1977	dtrace_aggbuffer_t *agb;
1978	dtrace_aggkey_t *key;
1979	uint32_t hashval = 0, limit, isstr;
1980	caddr_t tomax, data, kdata;
1981	dtrace_actkind_t action;
1982	dtrace_action_t *act;
1983	uintptr_t offs;
1984
1985	if (buf == NULL)
1986		return;
1987
1988	if (!agg->dtag_hasarg) {
1989		/*
1990		 * Currently, only quantize() and lquantize() take additional
1991		 * arguments, and they have the same semantics:  an increment
1992		 * value that defaults to 1 when not present.  If additional
1993		 * aggregating actions take arguments, the setting of the
1994		 * default argument value will presumably have to become more
1995		 * sophisticated...
1996		 */
1997		arg = 1;
1998	}
1999
2000	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2001	size = rec->dtrd_offset - agg->dtag_base;
2002	fsize = size + rec->dtrd_size;
2003
2004	ASSERT(dbuf->dtb_tomax != NULL);
2005	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2006
2007	if ((tomax = buf->dtb_tomax) == NULL) {
2008		dtrace_buffer_drop(buf);
2009		return;
2010	}
2011
2012	/*
2013	 * The metastructure is always at the bottom of the buffer.
2014	 */
2015	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2016	    sizeof (dtrace_aggbuffer_t));
2017
2018	if (buf->dtb_offset == 0) {
2019		/*
2020		 * We just kludge up approximately 1/8th of the size to be
2021		 * buckets.  If this guess ends up being routinely
2022		 * off-the-mark, we may need to dynamically readjust this
2023		 * based on past performance.
2024		 */
2025		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2026
2027		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2028		    (uintptr_t)tomax || hashsize == 0) {
2029			/*
2030			 * We've been given a ludicrously small buffer;
2031			 * increment our drop count and leave.
2032			 */
2033			dtrace_buffer_drop(buf);
2034			return;
2035		}
2036
2037		/*
2038		 * And now, a pathetic attempt to try to get a an odd (or
2039		 * perchance, a prime) hash size for better hash distribution.
2040		 */
2041		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2042			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2043
2044		agb->dtagb_hashsize = hashsize;
2045		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2046		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2047		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2048
2049		for (i = 0; i < agb->dtagb_hashsize; i++)
2050			agb->dtagb_hash[i] = NULL;
2051	}
2052
2053	ASSERT(agg->dtag_first != NULL);
2054	ASSERT(agg->dtag_first->dta_intuple);
2055
2056	/*
2057	 * Calculate the hash value based on the key.  Note that we _don't_
2058	 * include the aggid in the hashing (but we will store it as part of
2059	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2060	 * algorithm: a simple, quick algorithm that has no known funnels, and
2061	 * gets good distribution in practice.  The efficacy of the hashing
2062	 * algorithm (and a comparison with other algorithms) may be found by
2063	 * running the ::dtrace_aggstat MDB dcmd.
2064	 */
2065	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2066		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2067		limit = i + act->dta_rec.dtrd_size;
2068		ASSERT(limit <= size);
2069		isstr = DTRACEACT_ISSTRING(act);
2070
2071		for (; i < limit; i++) {
2072			hashval += data[i];
2073			hashval += (hashval << 10);
2074			hashval ^= (hashval >> 6);
2075
2076			if (isstr && data[i] == '\0')
2077				break;
2078		}
2079	}
2080
2081	hashval += (hashval << 3);
2082	hashval ^= (hashval >> 11);
2083	hashval += (hashval << 15);
2084
2085	/*
2086	 * Yes, the divide here is expensive -- but it's generally the least
2087	 * of the performance issues given the amount of data that we iterate
2088	 * over to compute hash values, compare data, etc.
2089	 */
2090	ndx = hashval % agb->dtagb_hashsize;
2091
2092	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2093		ASSERT((caddr_t)key >= tomax);
2094		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2095
2096		if (hashval != key->dtak_hashval || key->dtak_size != size)
2097			continue;
2098
2099		kdata = key->dtak_data;
2100		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2101
2102		for (act = agg->dtag_first; act->dta_intuple;
2103		    act = act->dta_next) {
2104			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2105			limit = i + act->dta_rec.dtrd_size;
2106			ASSERT(limit <= size);
2107			isstr = DTRACEACT_ISSTRING(act);
2108
2109			for (; i < limit; i++) {
2110				if (kdata[i] != data[i])
2111					goto next;
2112
2113				if (isstr && data[i] == '\0')
2114					break;
2115			}
2116		}
2117
2118		if (action != key->dtak_action) {
2119			/*
2120			 * We are aggregating on the same value in the same
2121			 * aggregation with two different aggregating actions.
2122			 * (This should have been picked up in the compiler,
2123			 * so we may be dealing with errant or devious DIF.)
2124			 * This is an error condition; we indicate as much,
2125			 * and return.
2126			 */
2127			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2128			return;
2129		}
2130
2131		/*
2132		 * This is a hit:  we need to apply the aggregator to
2133		 * the value at this key.
2134		 */
2135		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2136		return;
2137next:
2138		continue;
2139	}
2140
2141	/*
2142	 * We didn't find it.  We need to allocate some zero-filled space,
2143	 * link it into the hash table appropriately, and apply the aggregator
2144	 * to the (zero-filled) value.
2145	 */
2146	offs = buf->dtb_offset;
2147	while (offs & (align - 1))
2148		offs += sizeof (uint32_t);
2149
2150	/*
2151	 * If we don't have enough room to both allocate a new key _and_
2152	 * its associated data, increment the drop count and return.
2153	 */
2154	if ((uintptr_t)tomax + offs + fsize >
2155	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2156		dtrace_buffer_drop(buf);
2157		return;
2158	}
2159
2160	/*CONSTCOND*/
2161	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2162	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2163	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2164
2165	key->dtak_data = kdata = tomax + offs;
2166	buf->dtb_offset = offs + fsize;
2167
2168	/*
2169	 * Now copy the data across.
2170	 */
2171	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2172
2173	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2174		kdata[i] = data[i];
2175
2176	/*
2177	 * Because strings are not zeroed out by default, we need to iterate
2178	 * looking for actions that store strings, and we need to explicitly
2179	 * pad these strings out with zeroes.
2180	 */
2181	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2182		int nul;
2183
2184		if (!DTRACEACT_ISSTRING(act))
2185			continue;
2186
2187		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2188		limit = i + act->dta_rec.dtrd_size;
2189		ASSERT(limit <= size);
2190
2191		for (nul = 0; i < limit; i++) {
2192			if (nul) {
2193				kdata[i] = '\0';
2194				continue;
2195			}
2196
2197			if (data[i] != '\0')
2198				continue;
2199
2200			nul = 1;
2201		}
2202	}
2203
2204	for (i = size; i < fsize; i++)
2205		kdata[i] = 0;
2206
2207	key->dtak_hashval = hashval;
2208	key->dtak_size = size;
2209	key->dtak_action = action;
2210	key->dtak_next = agb->dtagb_hash[ndx];
2211	agb->dtagb_hash[ndx] = key;
2212
2213	/*
2214	 * Finally, apply the aggregator.
2215	 */
2216	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2217	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2218}
2219
2220/*
2221 * Given consumer state, this routine finds a speculation in the INACTIVE
2222 * state and transitions it into the ACTIVE state.  If there is no speculation
2223 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2224 * incremented -- it is up to the caller to take appropriate action.
2225 */
2226static int
2227dtrace_speculation(dtrace_state_t *state)
2228{
2229	int i = 0;
2230	dtrace_speculation_state_t current;
2231	uint32_t *stat = &state->dts_speculations_unavail, count;
2232
2233	while (i < state->dts_nspeculations) {
2234		dtrace_speculation_t *spec = &state->dts_speculations[i];
2235
2236		current = spec->dtsp_state;
2237
2238		if (current != DTRACESPEC_INACTIVE) {
2239			if (current == DTRACESPEC_COMMITTINGMANY ||
2240			    current == DTRACESPEC_COMMITTING ||
2241			    current == DTRACESPEC_DISCARDING)
2242				stat = &state->dts_speculations_busy;
2243			i++;
2244			continue;
2245		}
2246
2247		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2248		    current, DTRACESPEC_ACTIVE) == current)
2249			return (i + 1);
2250	}
2251
2252	/*
2253	 * We couldn't find a speculation.  If we found as much as a single
2254	 * busy speculation buffer, we'll attribute this failure as "busy"
2255	 * instead of "unavail".
2256	 */
2257	do {
2258		count = *stat;
2259	} while (dtrace_cas32(stat, count, count + 1) != count);
2260
2261	return (0);
2262}
2263
2264/*
2265 * This routine commits an active speculation.  If the specified speculation
2266 * is not in a valid state to perform a commit(), this routine will silently do
2267 * nothing.  The state of the specified speculation is transitioned according
2268 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2269 */
2270static void
2271dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2272    dtrace_specid_t which)
2273{
2274	dtrace_speculation_t *spec;
2275	dtrace_buffer_t *src, *dest;
2276	uintptr_t daddr, saddr, dlimit;
2277	dtrace_speculation_state_t current, new = 0;
2278	intptr_t offs;
2279
2280	if (which == 0)
2281		return;
2282
2283	if (which > state->dts_nspeculations) {
2284		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2285		return;
2286	}
2287
2288	spec = &state->dts_speculations[which - 1];
2289	src = &spec->dtsp_buffer[cpu];
2290	dest = &state->dts_buffer[cpu];
2291
2292	do {
2293		current = spec->dtsp_state;
2294
2295		if (current == DTRACESPEC_COMMITTINGMANY)
2296			break;
2297
2298		switch (current) {
2299		case DTRACESPEC_INACTIVE:
2300		case DTRACESPEC_DISCARDING:
2301			return;
2302
2303		case DTRACESPEC_COMMITTING:
2304			/*
2305			 * This is only possible if we are (a) commit()'ing
2306			 * without having done a prior speculate() on this CPU
2307			 * and (b) racing with another commit() on a different
2308			 * CPU.  There's nothing to do -- we just assert that
2309			 * our offset is 0.
2310			 */
2311			ASSERT(src->dtb_offset == 0);
2312			return;
2313
2314		case DTRACESPEC_ACTIVE:
2315			new = DTRACESPEC_COMMITTING;
2316			break;
2317
2318		case DTRACESPEC_ACTIVEONE:
2319			/*
2320			 * This speculation is active on one CPU.  If our
2321			 * buffer offset is non-zero, we know that the one CPU
2322			 * must be us.  Otherwise, we are committing on a
2323			 * different CPU from the speculate(), and we must
2324			 * rely on being asynchronously cleaned.
2325			 */
2326			if (src->dtb_offset != 0) {
2327				new = DTRACESPEC_COMMITTING;
2328				break;
2329			}
2330			/*FALLTHROUGH*/
2331
2332		case DTRACESPEC_ACTIVEMANY:
2333			new = DTRACESPEC_COMMITTINGMANY;
2334			break;
2335
2336		default:
2337			ASSERT(0);
2338		}
2339	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2340	    current, new) != current);
2341
2342	/*
2343	 * We have set the state to indicate that we are committing this
2344	 * speculation.  Now reserve the necessary space in the destination
2345	 * buffer.
2346	 */
2347	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2348	    sizeof (uint64_t), state, NULL)) < 0) {
2349		dtrace_buffer_drop(dest);
2350		goto out;
2351	}
2352
2353	/*
2354	 * We have the space; copy the buffer across.  (Note that this is a
2355	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2356	 * a serious performance issue, a high-performance DTrace-specific
2357	 * bcopy() should obviously be invented.)
2358	 */
2359	daddr = (uintptr_t)dest->dtb_tomax + offs;
2360	dlimit = daddr + src->dtb_offset;
2361	saddr = (uintptr_t)src->dtb_tomax;
2362
2363	/*
2364	 * First, the aligned portion.
2365	 */
2366	while (dlimit - daddr >= sizeof (uint64_t)) {
2367		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2368
2369		daddr += sizeof (uint64_t);
2370		saddr += sizeof (uint64_t);
2371	}
2372
2373	/*
2374	 * Now any left-over bit...
2375	 */
2376	while (dlimit - daddr)
2377		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2378
2379	/*
2380	 * Finally, commit the reserved space in the destination buffer.
2381	 */
2382	dest->dtb_offset = offs + src->dtb_offset;
2383
2384out:
2385	/*
2386	 * If we're lucky enough to be the only active CPU on this speculation
2387	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2388	 */
2389	if (current == DTRACESPEC_ACTIVE ||
2390	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2391		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2392		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2393
2394		ASSERT(rval == DTRACESPEC_COMMITTING);
2395	}
2396
2397	src->dtb_offset = 0;
2398	src->dtb_xamot_drops += src->dtb_drops;
2399	src->dtb_drops = 0;
2400}
2401
2402/*
2403 * This routine discards an active speculation.  If the specified speculation
2404 * is not in a valid state to perform a discard(), this routine will silently
2405 * do nothing.  The state of the specified speculation is transitioned
2406 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2407 */
2408static void
2409dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2410    dtrace_specid_t which)
2411{
2412	dtrace_speculation_t *spec;
2413	dtrace_speculation_state_t current, new = 0;
2414	dtrace_buffer_t *buf;
2415
2416	if (which == 0)
2417		return;
2418
2419	if (which > state->dts_nspeculations) {
2420		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2421		return;
2422	}
2423
2424	spec = &state->dts_speculations[which - 1];
2425	buf = &spec->dtsp_buffer[cpu];
2426
2427	do {
2428		current = spec->dtsp_state;
2429
2430		switch (current) {
2431		case DTRACESPEC_INACTIVE:
2432		case DTRACESPEC_COMMITTINGMANY:
2433		case DTRACESPEC_COMMITTING:
2434		case DTRACESPEC_DISCARDING:
2435			return;
2436
2437		case DTRACESPEC_ACTIVE:
2438		case DTRACESPEC_ACTIVEMANY:
2439			new = DTRACESPEC_DISCARDING;
2440			break;
2441
2442		case DTRACESPEC_ACTIVEONE:
2443			if (buf->dtb_offset != 0) {
2444				new = DTRACESPEC_INACTIVE;
2445			} else {
2446				new = DTRACESPEC_DISCARDING;
2447			}
2448			break;
2449
2450		default:
2451			ASSERT(0);
2452		}
2453	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2454	    current, new) != current);
2455
2456	buf->dtb_offset = 0;
2457	buf->dtb_drops = 0;
2458}
2459
2460/*
2461 * Note:  not called from probe context.  This function is called
2462 * asynchronously from cross call context to clean any speculations that are
2463 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2464 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2465 * speculation.
2466 */
2467static void
2468dtrace_speculation_clean_here(dtrace_state_t *state)
2469{
2470	dtrace_icookie_t cookie;
2471	processorid_t cpu = curcpu;
2472	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2473	dtrace_specid_t i;
2474
2475	cookie = dtrace_interrupt_disable();
2476
2477	if (dest->dtb_tomax == NULL) {
2478		dtrace_interrupt_enable(cookie);
2479		return;
2480	}
2481
2482	for (i = 0; i < state->dts_nspeculations; i++) {
2483		dtrace_speculation_t *spec = &state->dts_speculations[i];
2484		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2485
2486		if (src->dtb_tomax == NULL)
2487			continue;
2488
2489		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2490			src->dtb_offset = 0;
2491			continue;
2492		}
2493
2494		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2495			continue;
2496
2497		if (src->dtb_offset == 0)
2498			continue;
2499
2500		dtrace_speculation_commit(state, cpu, i + 1);
2501	}
2502
2503	dtrace_interrupt_enable(cookie);
2504}
2505
2506/*
2507 * Note:  not called from probe context.  This function is called
2508 * asynchronously (and at a regular interval) to clean any speculations that
2509 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2510 * is work to be done, it cross calls all CPUs to perform that work;
2511 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2512 * INACTIVE state until they have been cleaned by all CPUs.
2513 */
2514static void
2515dtrace_speculation_clean(dtrace_state_t *state)
2516{
2517	int work = 0, rv;
2518	dtrace_specid_t i;
2519
2520	for (i = 0; i < state->dts_nspeculations; i++) {
2521		dtrace_speculation_t *spec = &state->dts_speculations[i];
2522
2523		ASSERT(!spec->dtsp_cleaning);
2524
2525		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2526		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2527			continue;
2528
2529		work++;
2530		spec->dtsp_cleaning = 1;
2531	}
2532
2533	if (!work)
2534		return;
2535
2536	dtrace_xcall(DTRACE_CPUALL,
2537	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2538
2539	/*
2540	 * We now know that all CPUs have committed or discarded their
2541	 * speculation buffers, as appropriate.  We can now set the state
2542	 * to inactive.
2543	 */
2544	for (i = 0; i < state->dts_nspeculations; i++) {
2545		dtrace_speculation_t *spec = &state->dts_speculations[i];
2546		dtrace_speculation_state_t current, new;
2547
2548		if (!spec->dtsp_cleaning)
2549			continue;
2550
2551		current = spec->dtsp_state;
2552		ASSERT(current == DTRACESPEC_DISCARDING ||
2553		    current == DTRACESPEC_COMMITTINGMANY);
2554
2555		new = DTRACESPEC_INACTIVE;
2556
2557		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2558		ASSERT(rv == current);
2559		spec->dtsp_cleaning = 0;
2560	}
2561}
2562
2563/*
2564 * Called as part of a speculate() to get the speculative buffer associated
2565 * with a given speculation.  Returns NULL if the specified speculation is not
2566 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2567 * the active CPU is not the specified CPU -- the speculation will be
2568 * atomically transitioned into the ACTIVEMANY state.
2569 */
2570static dtrace_buffer_t *
2571dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2572    dtrace_specid_t which)
2573{
2574	dtrace_speculation_t *spec;
2575	dtrace_speculation_state_t current, new = 0;
2576	dtrace_buffer_t *buf;
2577
2578	if (which == 0)
2579		return (NULL);
2580
2581	if (which > state->dts_nspeculations) {
2582		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2583		return (NULL);
2584	}
2585
2586	spec = &state->dts_speculations[which - 1];
2587	buf = &spec->dtsp_buffer[cpuid];
2588
2589	do {
2590		current = spec->dtsp_state;
2591
2592		switch (current) {
2593		case DTRACESPEC_INACTIVE:
2594		case DTRACESPEC_COMMITTINGMANY:
2595		case DTRACESPEC_DISCARDING:
2596			return (NULL);
2597
2598		case DTRACESPEC_COMMITTING:
2599			ASSERT(buf->dtb_offset == 0);
2600			return (NULL);
2601
2602		case DTRACESPEC_ACTIVEONE:
2603			/*
2604			 * This speculation is currently active on one CPU.
2605			 * Check the offset in the buffer; if it's non-zero,
2606			 * that CPU must be us (and we leave the state alone).
2607			 * If it's zero, assume that we're starting on a new
2608			 * CPU -- and change the state to indicate that the
2609			 * speculation is active on more than one CPU.
2610			 */
2611			if (buf->dtb_offset != 0)
2612				return (buf);
2613
2614			new = DTRACESPEC_ACTIVEMANY;
2615			break;
2616
2617		case DTRACESPEC_ACTIVEMANY:
2618			return (buf);
2619
2620		case DTRACESPEC_ACTIVE:
2621			new = DTRACESPEC_ACTIVEONE;
2622			break;
2623
2624		default:
2625			ASSERT(0);
2626		}
2627	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2628	    current, new) != current);
2629
2630	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2631	return (buf);
2632}
2633
2634/*
2635 * Return a string.  In the event that the user lacks the privilege to access
2636 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2637 * don't fail access checking.
2638 *
2639 * dtrace_dif_variable() uses this routine as a helper for various
2640 * builtin values such as 'execname' and 'probefunc.'
2641 */
2642uintptr_t
2643dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2644    dtrace_mstate_t *mstate)
2645{
2646	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2647	uintptr_t ret;
2648	size_t strsz;
2649
2650	/*
2651	 * The easy case: this probe is allowed to read all of memory, so
2652	 * we can just return this as a vanilla pointer.
2653	 */
2654	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2655		return (addr);
2656
2657	/*
2658	 * This is the tougher case: we copy the string in question from
2659	 * kernel memory into scratch memory and return it that way: this
2660	 * ensures that we won't trip up when access checking tests the
2661	 * BYREF return value.
2662	 */
2663	strsz = dtrace_strlen((char *)addr, size) + 1;
2664
2665	if (mstate->dtms_scratch_ptr + strsz >
2666	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2667		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2668		return (0);
2669	}
2670
2671	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2672	    strsz);
2673	ret = mstate->dtms_scratch_ptr;
2674	mstate->dtms_scratch_ptr += strsz;
2675	return (ret);
2676}
2677
2678/*
2679 * Return a string from a memoy address which is known to have one or
2680 * more concatenated, individually zero terminated, sub-strings.
2681 * In the event that the user lacks the privilege to access
2682 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2683 * don't fail access checking.
2684 *
2685 * dtrace_dif_variable() uses this routine as a helper for various
2686 * builtin values such as 'execargs'.
2687 */
2688static uintptr_t
2689dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2690    dtrace_mstate_t *mstate)
2691{
2692	char *p;
2693	size_t i;
2694	uintptr_t ret;
2695
2696	if (mstate->dtms_scratch_ptr + strsz >
2697	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2698		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2699		return (0);
2700	}
2701
2702	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2703	    strsz);
2704
2705	/* Replace sub-string termination characters with a space. */
2706	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2707	    p++, i++)
2708		if (*p == '\0')
2709			*p = ' ';
2710
2711	ret = mstate->dtms_scratch_ptr;
2712	mstate->dtms_scratch_ptr += strsz;
2713	return (ret);
2714}
2715
2716/*
2717 * This function implements the DIF emulator's variable lookups.  The emulator
2718 * passes a reserved variable identifier and optional built-in array index.
2719 */
2720static uint64_t
2721dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2722    uint64_t ndx)
2723{
2724	/*
2725	 * If we're accessing one of the uncached arguments, we'll turn this
2726	 * into a reference in the args array.
2727	 */
2728	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2729		ndx = v - DIF_VAR_ARG0;
2730		v = DIF_VAR_ARGS;
2731	}
2732
2733	switch (v) {
2734	case DIF_VAR_ARGS:
2735		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2736		if (ndx >= sizeof (mstate->dtms_arg) /
2737		    sizeof (mstate->dtms_arg[0])) {
2738			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2739			dtrace_provider_t *pv;
2740			uint64_t val;
2741
2742			pv = mstate->dtms_probe->dtpr_provider;
2743			if (pv->dtpv_pops.dtps_getargval != NULL)
2744				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2745				    mstate->dtms_probe->dtpr_id,
2746				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2747			else
2748				val = dtrace_getarg(ndx, aframes);
2749
2750			/*
2751			 * This is regrettably required to keep the compiler
2752			 * from tail-optimizing the call to dtrace_getarg().
2753			 * The condition always evaluates to true, but the
2754			 * compiler has no way of figuring that out a priori.
2755			 * (None of this would be necessary if the compiler
2756			 * could be relied upon to _always_ tail-optimize
2757			 * the call to dtrace_getarg() -- but it can't.)
2758			 */
2759			if (mstate->dtms_probe != NULL)
2760				return (val);
2761
2762			ASSERT(0);
2763		}
2764
2765		return (mstate->dtms_arg[ndx]);
2766
2767#if defined(sun)
2768	case DIF_VAR_UREGS: {
2769		klwp_t *lwp;
2770
2771		if (!dtrace_priv_proc(state))
2772			return (0);
2773
2774		if ((lwp = curthread->t_lwp) == NULL) {
2775			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2776			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2777			return (0);
2778		}
2779
2780		return (dtrace_getreg(lwp->lwp_regs, ndx));
2781		return (0);
2782	}
2783#endif
2784
2785	case DIF_VAR_CURTHREAD:
2786		if (!dtrace_priv_kernel(state))
2787			return (0);
2788		return ((uint64_t)(uintptr_t)curthread);
2789
2790	case DIF_VAR_TIMESTAMP:
2791		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2792			mstate->dtms_timestamp = dtrace_gethrtime();
2793			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2794		}
2795		return (mstate->dtms_timestamp);
2796
2797	case DIF_VAR_VTIMESTAMP:
2798		ASSERT(dtrace_vtime_references != 0);
2799		return (curthread->t_dtrace_vtime);
2800
2801	case DIF_VAR_WALLTIMESTAMP:
2802		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2803			mstate->dtms_walltimestamp = dtrace_gethrestime();
2804			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2805		}
2806		return (mstate->dtms_walltimestamp);
2807
2808#if defined(sun)
2809	case DIF_VAR_IPL:
2810		if (!dtrace_priv_kernel(state))
2811			return (0);
2812		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2813			mstate->dtms_ipl = dtrace_getipl();
2814			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2815		}
2816		return (mstate->dtms_ipl);
2817#endif
2818
2819	case DIF_VAR_EPID:
2820		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2821		return (mstate->dtms_epid);
2822
2823	case DIF_VAR_ID:
2824		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2825		return (mstate->dtms_probe->dtpr_id);
2826
2827	case DIF_VAR_STACKDEPTH:
2828		if (!dtrace_priv_kernel(state))
2829			return (0);
2830		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2831			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2832
2833			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2834			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2835		}
2836		return (mstate->dtms_stackdepth);
2837
2838#if defined(sun)
2839	case DIF_VAR_USTACKDEPTH:
2840		if (!dtrace_priv_proc(state))
2841			return (0);
2842		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2843			/*
2844			 * See comment in DIF_VAR_PID.
2845			 */
2846			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2847			    CPU_ON_INTR(CPU)) {
2848				mstate->dtms_ustackdepth = 0;
2849			} else {
2850				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2851				mstate->dtms_ustackdepth =
2852				    dtrace_getustackdepth();
2853				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2854			}
2855			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2856		}
2857		return (mstate->dtms_ustackdepth);
2858#endif
2859
2860	case DIF_VAR_CALLER:
2861		if (!dtrace_priv_kernel(state))
2862			return (0);
2863		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2864			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2865
2866			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2867				/*
2868				 * If this is an unanchored probe, we are
2869				 * required to go through the slow path:
2870				 * dtrace_caller() only guarantees correct
2871				 * results for anchored probes.
2872				 */
2873				pc_t caller[2] = {0, 0};
2874
2875				dtrace_getpcstack(caller, 2, aframes,
2876				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2877				mstate->dtms_caller = caller[1];
2878			} else if ((mstate->dtms_caller =
2879			    dtrace_caller(aframes)) == -1) {
2880				/*
2881				 * We have failed to do this the quick way;
2882				 * we must resort to the slower approach of
2883				 * calling dtrace_getpcstack().
2884				 */
2885				pc_t caller = 0;
2886
2887				dtrace_getpcstack(&caller, 1, aframes, NULL);
2888				mstate->dtms_caller = caller;
2889			}
2890
2891			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2892		}
2893		return (mstate->dtms_caller);
2894
2895#if defined(sun)
2896	case DIF_VAR_UCALLER:
2897		if (!dtrace_priv_proc(state))
2898			return (0);
2899
2900		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2901			uint64_t ustack[3];
2902
2903			/*
2904			 * dtrace_getupcstack() fills in the first uint64_t
2905			 * with the current PID.  The second uint64_t will
2906			 * be the program counter at user-level.  The third
2907			 * uint64_t will contain the caller, which is what
2908			 * we're after.
2909			 */
2910			ustack[2] = 0;
2911			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2912			dtrace_getupcstack(ustack, 3);
2913			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2914			mstate->dtms_ucaller = ustack[2];
2915			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2916		}
2917
2918		return (mstate->dtms_ucaller);
2919#endif
2920
2921	case DIF_VAR_PROBEPROV:
2922		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2923		return (dtrace_dif_varstr(
2924		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2925		    state, mstate));
2926
2927	case DIF_VAR_PROBEMOD:
2928		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2929		return (dtrace_dif_varstr(
2930		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2931		    state, mstate));
2932
2933	case DIF_VAR_PROBEFUNC:
2934		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2935		return (dtrace_dif_varstr(
2936		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2937		    state, mstate));
2938
2939	case DIF_VAR_PROBENAME:
2940		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2941		return (dtrace_dif_varstr(
2942		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2943		    state, mstate));
2944
2945	case DIF_VAR_PID:
2946		if (!dtrace_priv_proc(state))
2947			return (0);
2948
2949#if defined(sun)
2950		/*
2951		 * Note that we are assuming that an unanchored probe is
2952		 * always due to a high-level interrupt.  (And we're assuming
2953		 * that there is only a single high level interrupt.)
2954		 */
2955		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2956			return (pid0.pid_id);
2957
2958		/*
2959		 * It is always safe to dereference one's own t_procp pointer:
2960		 * it always points to a valid, allocated proc structure.
2961		 * Further, it is always safe to dereference the p_pidp member
2962		 * of one's own proc structure.  (These are truisms becuase
2963		 * threads and processes don't clean up their own state --
2964		 * they leave that task to whomever reaps them.)
2965		 */
2966		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2967#else
2968		return ((uint64_t)curproc->p_pid);
2969#endif
2970
2971	case DIF_VAR_PPID:
2972		if (!dtrace_priv_proc(state))
2973			return (0);
2974
2975#if defined(sun)
2976		/*
2977		 * See comment in DIF_VAR_PID.
2978		 */
2979		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2980			return (pid0.pid_id);
2981
2982		/*
2983		 * It is always safe to dereference one's own t_procp pointer:
2984		 * it always points to a valid, allocated proc structure.
2985		 * (This is true because threads don't clean up their own
2986		 * state -- they leave that task to whomever reaps them.)
2987		 */
2988		return ((uint64_t)curthread->t_procp->p_ppid);
2989#else
2990		return ((uint64_t)curproc->p_pptr->p_pid);
2991#endif
2992
2993	case DIF_VAR_TID:
2994#if defined(sun)
2995		/*
2996		 * See comment in DIF_VAR_PID.
2997		 */
2998		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2999			return (0);
3000#endif
3001
3002		return ((uint64_t)curthread->t_tid);
3003
3004	case DIF_VAR_EXECARGS: {
3005		struct pargs *p_args = curthread->td_proc->p_args;
3006
3007		return (dtrace_dif_varstrz(
3008		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3009	}
3010
3011	case DIF_VAR_EXECNAME:
3012#if defined(sun)
3013		if (!dtrace_priv_proc(state))
3014			return (0);
3015
3016		/*
3017		 * See comment in DIF_VAR_PID.
3018		 */
3019		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3020			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3021
3022		/*
3023		 * It is always safe to dereference one's own t_procp pointer:
3024		 * it always points to a valid, allocated proc structure.
3025		 * (This is true because threads don't clean up their own
3026		 * state -- they leave that task to whomever reaps them.)
3027		 */
3028		return (dtrace_dif_varstr(
3029		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3030		    state, mstate));
3031#else
3032		return (dtrace_dif_varstr(
3033		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3034#endif
3035
3036	case DIF_VAR_ZONENAME:
3037#if defined(sun)
3038		if (!dtrace_priv_proc(state))
3039			return (0);
3040
3041		/*
3042		 * See comment in DIF_VAR_PID.
3043		 */
3044		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3045			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3046
3047		/*
3048		 * It is always safe to dereference one's own t_procp pointer:
3049		 * it always points to a valid, allocated proc structure.
3050		 * (This is true because threads don't clean up their own
3051		 * state -- they leave that task to whomever reaps them.)
3052		 */
3053		return (dtrace_dif_varstr(
3054		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3055		    state, mstate));
3056#else
3057		return (0);
3058#endif
3059
3060	case DIF_VAR_UID:
3061		if (!dtrace_priv_proc(state))
3062			return (0);
3063
3064#if defined(sun)
3065		/*
3066		 * See comment in DIF_VAR_PID.
3067		 */
3068		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3069			return ((uint64_t)p0.p_cred->cr_uid);
3070#endif
3071
3072		/*
3073		 * It is always safe to dereference one's own t_procp pointer:
3074		 * it always points to a valid, allocated proc structure.
3075		 * (This is true because threads don't clean up their own
3076		 * state -- they leave that task to whomever reaps them.)
3077		 *
3078		 * Additionally, it is safe to dereference one's own process
3079		 * credential, since this is never NULL after process birth.
3080		 */
3081		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3082
3083	case DIF_VAR_GID:
3084		if (!dtrace_priv_proc(state))
3085			return (0);
3086
3087#if defined(sun)
3088		/*
3089		 * See comment in DIF_VAR_PID.
3090		 */
3091		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3092			return ((uint64_t)p0.p_cred->cr_gid);
3093#endif
3094
3095		/*
3096		 * It is always safe to dereference one's own t_procp pointer:
3097		 * it always points to a valid, allocated proc structure.
3098		 * (This is true because threads don't clean up their own
3099		 * state -- they leave that task to whomever reaps them.)
3100		 *
3101		 * Additionally, it is safe to dereference one's own process
3102		 * credential, since this is never NULL after process birth.
3103		 */
3104		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3105
3106	case DIF_VAR_ERRNO: {
3107#if defined(sun)
3108		klwp_t *lwp;
3109		if (!dtrace_priv_proc(state))
3110			return (0);
3111
3112		/*
3113		 * See comment in DIF_VAR_PID.
3114		 */
3115		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3116			return (0);
3117
3118		/*
3119		 * It is always safe to dereference one's own t_lwp pointer in
3120		 * the event that this pointer is non-NULL.  (This is true
3121		 * because threads and lwps don't clean up their own state --
3122		 * they leave that task to whomever reaps them.)
3123		 */
3124		if ((lwp = curthread->t_lwp) == NULL)
3125			return (0);
3126
3127		return ((uint64_t)lwp->lwp_errno);
3128#else
3129		return (curthread->td_errno);
3130#endif
3131	}
3132	default:
3133		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3134		return (0);
3135	}
3136}
3137
3138/*
3139 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3140 * Notice that we don't bother validating the proper number of arguments or
3141 * their types in the tuple stack.  This isn't needed because all argument
3142 * interpretation is safe because of our load safety -- the worst that can
3143 * happen is that a bogus program can obtain bogus results.
3144 */
3145static void
3146dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3147    dtrace_key_t *tupregs, int nargs,
3148    dtrace_mstate_t *mstate, dtrace_state_t *state)
3149{
3150	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3151	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3152	dtrace_vstate_t *vstate = &state->dts_vstate;
3153
3154#if defined(sun)
3155	union {
3156		mutex_impl_t mi;
3157		uint64_t mx;
3158	} m;
3159
3160	union {
3161		krwlock_t ri;
3162		uintptr_t rw;
3163	} r;
3164#else
3165	union {
3166		struct mtx *mi;
3167		uintptr_t mx;
3168	} m;
3169	union {
3170		struct sx *si;
3171		uintptr_t sx;
3172	} s;
3173#endif
3174
3175	switch (subr) {
3176	case DIF_SUBR_RAND:
3177		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3178		break;
3179
3180#if defined(sun)
3181	case DIF_SUBR_MUTEX_OWNED:
3182		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3183		    mstate, vstate)) {
3184			regs[rd] = 0;
3185			break;
3186		}
3187
3188		m.mx = dtrace_load64(tupregs[0].dttk_value);
3189		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3190			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3191		else
3192			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3193		break;
3194
3195	case DIF_SUBR_MUTEX_OWNER:
3196		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3197		    mstate, vstate)) {
3198			regs[rd] = 0;
3199			break;
3200		}
3201
3202		m.mx = dtrace_load64(tupregs[0].dttk_value);
3203		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3204		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3205			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3206		else
3207			regs[rd] = 0;
3208		break;
3209
3210	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3211		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3212		    mstate, vstate)) {
3213			regs[rd] = 0;
3214			break;
3215		}
3216
3217		m.mx = dtrace_load64(tupregs[0].dttk_value);
3218		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3219		break;
3220
3221	case DIF_SUBR_MUTEX_TYPE_SPIN:
3222		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3223		    mstate, vstate)) {
3224			regs[rd] = 0;
3225			break;
3226		}
3227
3228		m.mx = dtrace_load64(tupregs[0].dttk_value);
3229		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3230		break;
3231
3232	case DIF_SUBR_RW_READ_HELD: {
3233		uintptr_t tmp;
3234
3235		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3236		    mstate, vstate)) {
3237			regs[rd] = 0;
3238			break;
3239		}
3240
3241		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3242		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3243		break;
3244	}
3245
3246	case DIF_SUBR_RW_WRITE_HELD:
3247		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3248		    mstate, vstate)) {
3249			regs[rd] = 0;
3250			break;
3251		}
3252
3253		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3254		regs[rd] = _RW_WRITE_HELD(&r.ri);
3255		break;
3256
3257	case DIF_SUBR_RW_ISWRITER:
3258		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3259		    mstate, vstate)) {
3260			regs[rd] = 0;
3261			break;
3262		}
3263
3264		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3265		regs[rd] = _RW_ISWRITER(&r.ri);
3266		break;
3267
3268#else
3269	/*
3270         * XXX - The following code works because mutex, rwlocks, & sxlocks
3271         *       all have similar data structures in FreeBSD.  This may not be
3272         *	 good if someone changes one of the lock data structures.
3273	 * 	 Ideally, it would be nice if all these shared a common lock
3274	 * 	 object.
3275         */
3276	case DIF_SUBR_MUTEX_OWNED:
3277		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3278		m.mx = tupregs[0].dttk_value;
3279
3280#ifdef DOODAD
3281		if (LO_CLASSINDEX(&(m.mi->lock_object)) < 2) {
3282			regs[rd] = !(m.mi->mtx_lock & MTX_UNOWNED);
3283		} else {
3284			regs[rd] = !(m.mi->mtx_lock & SX_UNLOCKED);
3285		}
3286#endif
3287		break;
3288
3289	case DIF_SUBR_MUTEX_OWNER:
3290		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3291		m.mx = tupregs[0].dttk_value;
3292
3293		if (LO_CLASSINDEX(&(m.mi->lock_object)) < 2) {
3294			regs[rd] = m.mi->mtx_lock & ~MTX_FLAGMASK;
3295		} else {
3296			if (!(m.mi->mtx_lock & SX_LOCK_SHARED))
3297				regs[rd] = SX_OWNER(m.mi->mtx_lock);
3298			else
3299				regs[rd] = 0;
3300		}
3301		break;
3302
3303	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3304		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3305		m.mx = tupregs[0].dttk_value;
3306
3307		regs[rd] = (LO_CLASSINDEX(&(m.mi->lock_object)) != 0);
3308		break;
3309
3310	case DIF_SUBR_MUTEX_TYPE_SPIN:
3311		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3312		m.mx = tupregs[0].dttk_value;
3313
3314		regs[rd] = (LO_CLASSINDEX(&(m.mi->lock_object)) == 0);
3315		break;
3316
3317	case DIF_SUBR_RW_READ_HELD:
3318	case DIF_SUBR_SX_SHARED_HELD:
3319		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3320		s.sx = tupregs[0].dttk_value;
3321		regs[rd] = ((s.si->sx_lock & SX_LOCK_SHARED)  &&
3322			    (SX_OWNER(s.si->sx_lock) >> SX_SHARERS_SHIFT) != 0);
3323		break;
3324
3325	case DIF_SUBR_RW_WRITE_HELD:
3326	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3327		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3328		s.sx = tupregs[0].dttk_value;
3329		regs[rd] = (SX_OWNER(s.si->sx_lock) == (uintptr_t) curthread);
3330		break;
3331
3332	case DIF_SUBR_RW_ISWRITER:
3333	case DIF_SUBR_SX_ISEXCLUSIVE:
3334		/* XXX - need to use dtrace_canload() and dtrace_loadptr() */
3335		s.sx = tupregs[0].dttk_value;
3336		regs[rd] = ((s.si->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS) ||
3337		            !(s.si->sx_lock & SX_LOCK_SHARED));
3338		break;
3339#endif /* ! defined(sun) */
3340
3341	case DIF_SUBR_BCOPY: {
3342		/*
3343		 * We need to be sure that the destination is in the scratch
3344		 * region -- no other region is allowed.
3345		 */
3346		uintptr_t src = tupregs[0].dttk_value;
3347		uintptr_t dest = tupregs[1].dttk_value;
3348		size_t size = tupregs[2].dttk_value;
3349
3350		if (!dtrace_inscratch(dest, size, mstate)) {
3351			*flags |= CPU_DTRACE_BADADDR;
3352			*illval = regs[rd];
3353			break;
3354		}
3355
3356		if (!dtrace_canload(src, size, mstate, vstate)) {
3357			regs[rd] = 0;
3358			break;
3359		}
3360
3361		dtrace_bcopy((void *)src, (void *)dest, size);
3362		break;
3363	}
3364
3365	case DIF_SUBR_ALLOCA:
3366	case DIF_SUBR_COPYIN: {
3367		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3368		uint64_t size =
3369		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3370		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3371
3372		/*
3373		 * This action doesn't require any credential checks since
3374		 * probes will not activate in user contexts to which the
3375		 * enabling user does not have permissions.
3376		 */
3377
3378		/*
3379		 * Rounding up the user allocation size could have overflowed
3380		 * a large, bogus allocation (like -1ULL) to 0.
3381		 */
3382		if (scratch_size < size ||
3383		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3384			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3385			regs[rd] = 0;
3386			break;
3387		}
3388
3389		if (subr == DIF_SUBR_COPYIN) {
3390			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3391			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3392			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3393		}
3394
3395		mstate->dtms_scratch_ptr += scratch_size;
3396		regs[rd] = dest;
3397		break;
3398	}
3399
3400	case DIF_SUBR_COPYINTO: {
3401		uint64_t size = tupregs[1].dttk_value;
3402		uintptr_t dest = tupregs[2].dttk_value;
3403
3404		/*
3405		 * This action doesn't require any credential checks since
3406		 * probes will not activate in user contexts to which the
3407		 * enabling user does not have permissions.
3408		 */
3409		if (!dtrace_inscratch(dest, size, mstate)) {
3410			*flags |= CPU_DTRACE_BADADDR;
3411			*illval = regs[rd];
3412			break;
3413		}
3414
3415		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3416		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3417		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3418		break;
3419	}
3420
3421	case DIF_SUBR_COPYINSTR: {
3422		uintptr_t dest = mstate->dtms_scratch_ptr;
3423		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3424
3425		if (nargs > 1 && tupregs[1].dttk_value < size)
3426			size = tupregs[1].dttk_value + 1;
3427
3428		/*
3429		 * This action doesn't require any credential checks since
3430		 * probes will not activate in user contexts to which the
3431		 * enabling user does not have permissions.
3432		 */
3433		if (!DTRACE_INSCRATCH(mstate, size)) {
3434			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3435			regs[rd] = 0;
3436			break;
3437		}
3438
3439		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3440		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3441		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3442
3443		((char *)dest)[size - 1] = '\0';
3444		mstate->dtms_scratch_ptr += size;
3445		regs[rd] = dest;
3446		break;
3447	}
3448
3449#if defined(sun)
3450	case DIF_SUBR_MSGSIZE:
3451	case DIF_SUBR_MSGDSIZE: {
3452		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3453		uintptr_t wptr, rptr;
3454		size_t count = 0;
3455		int cont = 0;
3456
3457		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3458
3459			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3460			    vstate)) {
3461				regs[rd] = 0;
3462				break;
3463			}
3464
3465			wptr = dtrace_loadptr(baddr +
3466			    offsetof(mblk_t, b_wptr));
3467
3468			rptr = dtrace_loadptr(baddr +
3469			    offsetof(mblk_t, b_rptr));
3470
3471			if (wptr < rptr) {
3472				*flags |= CPU_DTRACE_BADADDR;
3473				*illval = tupregs[0].dttk_value;
3474				break;
3475			}
3476
3477			daddr = dtrace_loadptr(baddr +
3478			    offsetof(mblk_t, b_datap));
3479
3480			baddr = dtrace_loadptr(baddr +
3481			    offsetof(mblk_t, b_cont));
3482
3483			/*
3484			 * We want to prevent against denial-of-service here,
3485			 * so we're only going to search the list for
3486			 * dtrace_msgdsize_max mblks.
3487			 */
3488			if (cont++ > dtrace_msgdsize_max) {
3489				*flags |= CPU_DTRACE_ILLOP;
3490				break;
3491			}
3492
3493			if (subr == DIF_SUBR_MSGDSIZE) {
3494				if (dtrace_load8(daddr +
3495				    offsetof(dblk_t, db_type)) != M_DATA)
3496					continue;
3497			}
3498
3499			count += wptr - rptr;
3500		}
3501
3502		if (!(*flags & CPU_DTRACE_FAULT))
3503			regs[rd] = count;
3504
3505		break;
3506	}
3507#endif
3508
3509	case DIF_SUBR_PROGENYOF: {
3510		pid_t pid = tupregs[0].dttk_value;
3511		proc_t *p;
3512		int rval = 0;
3513
3514		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3515
3516		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3517#if defined(sun)
3518			if (p->p_pidp->pid_id == pid) {
3519#else
3520			if (p->p_pid == pid) {
3521#endif
3522				rval = 1;
3523				break;
3524			}
3525		}
3526
3527		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3528
3529		regs[rd] = rval;
3530		break;
3531	}
3532
3533	case DIF_SUBR_SPECULATION:
3534		regs[rd] = dtrace_speculation(state);
3535		break;
3536
3537	case DIF_SUBR_COPYOUT: {
3538		uintptr_t kaddr = tupregs[0].dttk_value;
3539		uintptr_t uaddr = tupregs[1].dttk_value;
3540		uint64_t size = tupregs[2].dttk_value;
3541
3542		if (!dtrace_destructive_disallow &&
3543		    dtrace_priv_proc_control(state) &&
3544		    !dtrace_istoxic(kaddr, size)) {
3545			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3546			dtrace_copyout(kaddr, uaddr, size, flags);
3547			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3548		}
3549		break;
3550	}
3551
3552	case DIF_SUBR_COPYOUTSTR: {
3553		uintptr_t kaddr = tupregs[0].dttk_value;
3554		uintptr_t uaddr = tupregs[1].dttk_value;
3555		uint64_t size = tupregs[2].dttk_value;
3556
3557		if (!dtrace_destructive_disallow &&
3558		    dtrace_priv_proc_control(state) &&
3559		    !dtrace_istoxic(kaddr, size)) {
3560			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3561			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3562			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3563		}
3564		break;
3565	}
3566
3567	case DIF_SUBR_STRLEN: {
3568		size_t sz;
3569		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3570		sz = dtrace_strlen((char *)addr,
3571		    state->dts_options[DTRACEOPT_STRSIZE]);
3572
3573		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3574			regs[rd] = 0;
3575			break;
3576		}
3577
3578		regs[rd] = sz;
3579
3580		break;
3581	}
3582
3583	case DIF_SUBR_STRCHR:
3584	case DIF_SUBR_STRRCHR: {
3585		/*
3586		 * We're going to iterate over the string looking for the
3587		 * specified character.  We will iterate until we have reached
3588		 * the string length or we have found the character.  If this
3589		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3590		 * of the specified character instead of the first.
3591		 */
3592		uintptr_t saddr = tupregs[0].dttk_value;
3593		uintptr_t addr = tupregs[0].dttk_value;
3594		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3595		char c, target = (char)tupregs[1].dttk_value;
3596
3597		for (regs[rd] = 0; addr < limit; addr++) {
3598			if ((c = dtrace_load8(addr)) == target) {
3599				regs[rd] = addr;
3600
3601				if (subr == DIF_SUBR_STRCHR)
3602					break;
3603			}
3604
3605			if (c == '\0')
3606				break;
3607		}
3608
3609		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3610			regs[rd] = 0;
3611			break;
3612		}
3613
3614		break;
3615	}
3616
3617	case DIF_SUBR_STRSTR:
3618	case DIF_SUBR_INDEX:
3619	case DIF_SUBR_RINDEX: {
3620		/*
3621		 * We're going to iterate over the string looking for the
3622		 * specified string.  We will iterate until we have reached
3623		 * the string length or we have found the string.  (Yes, this
3624		 * is done in the most naive way possible -- but considering
3625		 * that the string we're searching for is likely to be
3626		 * relatively short, the complexity of Rabin-Karp or similar
3627		 * hardly seems merited.)
3628		 */
3629		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3630		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3631		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3632		size_t len = dtrace_strlen(addr, size);
3633		size_t sublen = dtrace_strlen(substr, size);
3634		char *limit = addr + len, *orig = addr;
3635		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3636		int inc = 1;
3637
3638		regs[rd] = notfound;
3639
3640		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3641			regs[rd] = 0;
3642			break;
3643		}
3644
3645		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3646		    vstate)) {
3647			regs[rd] = 0;
3648			break;
3649		}
3650
3651		/*
3652		 * strstr() and index()/rindex() have similar semantics if
3653		 * both strings are the empty string: strstr() returns a
3654		 * pointer to the (empty) string, and index() and rindex()
3655		 * both return index 0 (regardless of any position argument).
3656		 */
3657		if (sublen == 0 && len == 0) {
3658			if (subr == DIF_SUBR_STRSTR)
3659				regs[rd] = (uintptr_t)addr;
3660			else
3661				regs[rd] = 0;
3662			break;
3663		}
3664
3665		if (subr != DIF_SUBR_STRSTR) {
3666			if (subr == DIF_SUBR_RINDEX) {
3667				limit = orig - 1;
3668				addr += len;
3669				inc = -1;
3670			}
3671
3672			/*
3673			 * Both index() and rindex() take an optional position
3674			 * argument that denotes the starting position.
3675			 */
3676			if (nargs == 3) {
3677				int64_t pos = (int64_t)tupregs[2].dttk_value;
3678
3679				/*
3680				 * If the position argument to index() is
3681				 * negative, Perl implicitly clamps it at
3682				 * zero.  This semantic is a little surprising
3683				 * given the special meaning of negative
3684				 * positions to similar Perl functions like
3685				 * substr(), but it appears to reflect a
3686				 * notion that index() can start from a
3687				 * negative index and increment its way up to
3688				 * the string.  Given this notion, Perl's
3689				 * rindex() is at least self-consistent in
3690				 * that it implicitly clamps positions greater
3691				 * than the string length to be the string
3692				 * length.  Where Perl completely loses
3693				 * coherence, however, is when the specified
3694				 * substring is the empty string ("").  In
3695				 * this case, even if the position is
3696				 * negative, rindex() returns 0 -- and even if
3697				 * the position is greater than the length,
3698				 * index() returns the string length.  These
3699				 * semantics violate the notion that index()
3700				 * should never return a value less than the
3701				 * specified position and that rindex() should
3702				 * never return a value greater than the
3703				 * specified position.  (One assumes that
3704				 * these semantics are artifacts of Perl's
3705				 * implementation and not the results of
3706				 * deliberate design -- it beggars belief that
3707				 * even Larry Wall could desire such oddness.)
3708				 * While in the abstract one would wish for
3709				 * consistent position semantics across
3710				 * substr(), index() and rindex() -- or at the
3711				 * very least self-consistent position
3712				 * semantics for index() and rindex() -- we
3713				 * instead opt to keep with the extant Perl
3714				 * semantics, in all their broken glory.  (Do
3715				 * we have more desire to maintain Perl's
3716				 * semantics than Perl does?  Probably.)
3717				 */
3718				if (subr == DIF_SUBR_RINDEX) {
3719					if (pos < 0) {
3720						if (sublen == 0)
3721							regs[rd] = 0;
3722						break;
3723					}
3724
3725					if (pos > len)
3726						pos = len;
3727				} else {
3728					if (pos < 0)
3729						pos = 0;
3730
3731					if (pos >= len) {
3732						if (sublen == 0)
3733							regs[rd] = len;
3734						break;
3735					}
3736				}
3737
3738				addr = orig + pos;
3739			}
3740		}
3741
3742		for (regs[rd] = notfound; addr != limit; addr += inc) {
3743			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3744				if (subr != DIF_SUBR_STRSTR) {
3745					/*
3746					 * As D index() and rindex() are
3747					 * modeled on Perl (and not on awk),
3748					 * we return a zero-based (and not a
3749					 * one-based) index.  (For you Perl
3750					 * weenies: no, we're not going to add
3751					 * $[ -- and shouldn't you be at a con
3752					 * or something?)
3753					 */
3754					regs[rd] = (uintptr_t)(addr - orig);
3755					break;
3756				}
3757
3758				ASSERT(subr == DIF_SUBR_STRSTR);
3759				regs[rd] = (uintptr_t)addr;
3760				break;
3761			}
3762		}
3763
3764		break;
3765	}
3766
3767	case DIF_SUBR_STRTOK: {
3768		uintptr_t addr = tupregs[0].dttk_value;
3769		uintptr_t tokaddr = tupregs[1].dttk_value;
3770		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3771		uintptr_t limit, toklimit = tokaddr + size;
3772		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3773		char *dest = (char *)mstate->dtms_scratch_ptr;
3774		int i;
3775
3776		/*
3777		 * Check both the token buffer and (later) the input buffer,
3778		 * since both could be non-scratch addresses.
3779		 */
3780		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3781			regs[rd] = 0;
3782			break;
3783		}
3784
3785		if (!DTRACE_INSCRATCH(mstate, size)) {
3786			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3787			regs[rd] = 0;
3788			break;
3789		}
3790
3791		if (addr == 0) {
3792			/*
3793			 * If the address specified is NULL, we use our saved
3794			 * strtok pointer from the mstate.  Note that this
3795			 * means that the saved strtok pointer is _only_
3796			 * valid within multiple enablings of the same probe --
3797			 * it behaves like an implicit clause-local variable.
3798			 */
3799			addr = mstate->dtms_strtok;
3800		} else {
3801			/*
3802			 * If the user-specified address is non-NULL we must
3803			 * access check it.  This is the only time we have
3804			 * a chance to do so, since this address may reside
3805			 * in the string table of this clause-- future calls
3806			 * (when we fetch addr from mstate->dtms_strtok)
3807			 * would fail this access check.
3808			 */
3809			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3810				regs[rd] = 0;
3811				break;
3812			}
3813		}
3814
3815		/*
3816		 * First, zero the token map, and then process the token
3817		 * string -- setting a bit in the map for every character
3818		 * found in the token string.
3819		 */
3820		for (i = 0; i < sizeof (tokmap); i++)
3821			tokmap[i] = 0;
3822
3823		for (; tokaddr < toklimit; tokaddr++) {
3824			if ((c = dtrace_load8(tokaddr)) == '\0')
3825				break;
3826
3827			ASSERT((c >> 3) < sizeof (tokmap));
3828			tokmap[c >> 3] |= (1 << (c & 0x7));
3829		}
3830
3831		for (limit = addr + size; addr < limit; addr++) {
3832			/*
3833			 * We're looking for a character that is _not_ contained
3834			 * in the token string.
3835			 */
3836			if ((c = dtrace_load8(addr)) == '\0')
3837				break;
3838
3839			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3840				break;
3841		}
3842
3843		if (c == '\0') {
3844			/*
3845			 * We reached the end of the string without finding
3846			 * any character that was not in the token string.
3847			 * We return NULL in this case, and we set the saved
3848			 * address to NULL as well.
3849			 */
3850			regs[rd] = 0;
3851			mstate->dtms_strtok = 0;
3852			break;
3853		}
3854
3855		/*
3856		 * From here on, we're copying into the destination string.
3857		 */
3858		for (i = 0; addr < limit && i < size - 1; addr++) {
3859			if ((c = dtrace_load8(addr)) == '\0')
3860				break;
3861
3862			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3863				break;
3864
3865			ASSERT(i < size);
3866			dest[i++] = c;
3867		}
3868
3869		ASSERT(i < size);
3870		dest[i] = '\0';
3871		regs[rd] = (uintptr_t)dest;
3872		mstate->dtms_scratch_ptr += size;
3873		mstate->dtms_strtok = addr;
3874		break;
3875	}
3876
3877	case DIF_SUBR_SUBSTR: {
3878		uintptr_t s = tupregs[0].dttk_value;
3879		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3880		char *d = (char *)mstate->dtms_scratch_ptr;
3881		int64_t index = (int64_t)tupregs[1].dttk_value;
3882		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3883		size_t len = dtrace_strlen((char *)s, size);
3884		int64_t i = 0;
3885
3886		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3887			regs[rd] = 0;
3888			break;
3889		}
3890
3891		if (!DTRACE_INSCRATCH(mstate, size)) {
3892			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3893			regs[rd] = 0;
3894			break;
3895		}
3896
3897		if (nargs <= 2)
3898			remaining = (int64_t)size;
3899
3900		if (index < 0) {
3901			index += len;
3902
3903			if (index < 0 && index + remaining > 0) {
3904				remaining += index;
3905				index = 0;
3906			}
3907		}
3908
3909		if (index >= len || index < 0) {
3910			remaining = 0;
3911		} else if (remaining < 0) {
3912			remaining += len - index;
3913		} else if (index + remaining > size) {
3914			remaining = size - index;
3915		}
3916
3917		for (i = 0; i < remaining; i++) {
3918			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3919				break;
3920		}
3921
3922		d[i] = '\0';
3923
3924		mstate->dtms_scratch_ptr += size;
3925		regs[rd] = (uintptr_t)d;
3926		break;
3927	}
3928
3929#if defined(sun)
3930	case DIF_SUBR_GETMAJOR:
3931#ifdef _LP64
3932		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3933#else
3934		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3935#endif
3936		break;
3937
3938	case DIF_SUBR_GETMINOR:
3939#ifdef _LP64
3940		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3941#else
3942		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3943#endif
3944		break;
3945
3946	case DIF_SUBR_DDI_PATHNAME: {
3947		/*
3948		 * This one is a galactic mess.  We are going to roughly
3949		 * emulate ddi_pathname(), but it's made more complicated
3950		 * by the fact that we (a) want to include the minor name and
3951		 * (b) must proceed iteratively instead of recursively.
3952		 */
3953		uintptr_t dest = mstate->dtms_scratch_ptr;
3954		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3955		char *start = (char *)dest, *end = start + size - 1;
3956		uintptr_t daddr = tupregs[0].dttk_value;
3957		int64_t minor = (int64_t)tupregs[1].dttk_value;
3958		char *s;
3959		int i, len, depth = 0;
3960
3961		/*
3962		 * Due to all the pointer jumping we do and context we must
3963		 * rely upon, we just mandate that the user must have kernel
3964		 * read privileges to use this routine.
3965		 */
3966		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3967			*flags |= CPU_DTRACE_KPRIV;
3968			*illval = daddr;
3969			regs[rd] = 0;
3970		}
3971
3972		if (!DTRACE_INSCRATCH(mstate, size)) {
3973			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3974			regs[rd] = 0;
3975			break;
3976		}
3977
3978		*end = '\0';
3979
3980		/*
3981		 * We want to have a name for the minor.  In order to do this,
3982		 * we need to walk the minor list from the devinfo.  We want
3983		 * to be sure that we don't infinitely walk a circular list,
3984		 * so we check for circularity by sending a scout pointer
3985		 * ahead two elements for every element that we iterate over;
3986		 * if the list is circular, these will ultimately point to the
3987		 * same element.  You may recognize this little trick as the
3988		 * answer to a stupid interview question -- one that always
3989		 * seems to be asked by those who had to have it laboriously
3990		 * explained to them, and who can't even concisely describe
3991		 * the conditions under which one would be forced to resort to
3992		 * this technique.  Needless to say, those conditions are
3993		 * found here -- and probably only here.  Is this the only use
3994		 * of this infamous trick in shipping, production code?  If it
3995		 * isn't, it probably should be...
3996		 */
3997		if (minor != -1) {
3998			uintptr_t maddr = dtrace_loadptr(daddr +
3999			    offsetof(struct dev_info, devi_minor));
4000
4001			uintptr_t next = offsetof(struct ddi_minor_data, next);
4002			uintptr_t name = offsetof(struct ddi_minor_data,
4003			    d_minor) + offsetof(struct ddi_minor, name);
4004			uintptr_t dev = offsetof(struct ddi_minor_data,
4005			    d_minor) + offsetof(struct ddi_minor, dev);
4006			uintptr_t scout;
4007
4008			if (maddr != NULL)
4009				scout = dtrace_loadptr(maddr + next);
4010
4011			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4012				uint64_t m;
4013#ifdef _LP64
4014				m = dtrace_load64(maddr + dev) & MAXMIN64;
4015#else
4016				m = dtrace_load32(maddr + dev) & MAXMIN;
4017#endif
4018				if (m != minor) {
4019					maddr = dtrace_loadptr(maddr + next);
4020
4021					if (scout == NULL)
4022						continue;
4023
4024					scout = dtrace_loadptr(scout + next);
4025
4026					if (scout == NULL)
4027						continue;
4028
4029					scout = dtrace_loadptr(scout + next);
4030
4031					if (scout == NULL)
4032						continue;
4033
4034					if (scout == maddr) {
4035						*flags |= CPU_DTRACE_ILLOP;
4036						break;
4037					}
4038
4039					continue;
4040				}
4041
4042				/*
4043				 * We have the minor data.  Now we need to
4044				 * copy the minor's name into the end of the
4045				 * pathname.
4046				 */
4047				s = (char *)dtrace_loadptr(maddr + name);
4048				len = dtrace_strlen(s, size);
4049
4050				if (*flags & CPU_DTRACE_FAULT)
4051					break;
4052
4053				if (len != 0) {
4054					if ((end -= (len + 1)) < start)
4055						break;
4056
4057					*end = ':';
4058				}
4059
4060				for (i = 1; i <= len; i++)
4061					end[i] = dtrace_load8((uintptr_t)s++);
4062				break;
4063			}
4064		}
4065
4066		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4067			ddi_node_state_t devi_state;
4068
4069			devi_state = dtrace_load32(daddr +
4070			    offsetof(struct dev_info, devi_node_state));
4071
4072			if (*flags & CPU_DTRACE_FAULT)
4073				break;
4074
4075			if (devi_state >= DS_INITIALIZED) {
4076				s = (char *)dtrace_loadptr(daddr +
4077				    offsetof(struct dev_info, devi_addr));
4078				len = dtrace_strlen(s, size);
4079
4080				if (*flags & CPU_DTRACE_FAULT)
4081					break;
4082
4083				if (len != 0) {
4084					if ((end -= (len + 1)) < start)
4085						break;
4086
4087					*end = '@';
4088				}
4089
4090				for (i = 1; i <= len; i++)
4091					end[i] = dtrace_load8((uintptr_t)s++);
4092			}
4093
4094			/*
4095			 * Now for the node name...
4096			 */
4097			s = (char *)dtrace_loadptr(daddr +
4098			    offsetof(struct dev_info, devi_node_name));
4099
4100			daddr = dtrace_loadptr(daddr +
4101			    offsetof(struct dev_info, devi_parent));
4102
4103			/*
4104			 * If our parent is NULL (that is, if we're the root
4105			 * node), we're going to use the special path
4106			 * "devices".
4107			 */
4108			if (daddr == 0)
4109				s = "devices";
4110
4111			len = dtrace_strlen(s, size);
4112			if (*flags & CPU_DTRACE_FAULT)
4113				break;
4114
4115			if ((end -= (len + 1)) < start)
4116				break;
4117
4118			for (i = 1; i <= len; i++)
4119				end[i] = dtrace_load8((uintptr_t)s++);
4120			*end = '/';
4121
4122			if (depth++ > dtrace_devdepth_max) {
4123				*flags |= CPU_DTRACE_ILLOP;
4124				break;
4125			}
4126		}
4127
4128		if (end < start)
4129			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4130
4131		if (daddr == 0) {
4132			regs[rd] = (uintptr_t)end;
4133			mstate->dtms_scratch_ptr += size;
4134		}
4135
4136		break;
4137	}
4138#endif
4139
4140	case DIF_SUBR_STRJOIN: {
4141		char *d = (char *)mstate->dtms_scratch_ptr;
4142		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4143		uintptr_t s1 = tupregs[0].dttk_value;
4144		uintptr_t s2 = tupregs[1].dttk_value;
4145		int i = 0;
4146
4147		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4148		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4149			regs[rd] = 0;
4150			break;
4151		}
4152
4153		if (!DTRACE_INSCRATCH(mstate, size)) {
4154			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4155			regs[rd] = 0;
4156			break;
4157		}
4158
4159		for (;;) {
4160			if (i >= size) {
4161				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4162				regs[rd] = 0;
4163				break;
4164			}
4165
4166			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4167				i--;
4168				break;
4169			}
4170		}
4171
4172		for (;;) {
4173			if (i >= size) {
4174				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4175				regs[rd] = 0;
4176				break;
4177			}
4178
4179			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4180				break;
4181		}
4182
4183		if (i < size) {
4184			mstate->dtms_scratch_ptr += i;
4185			regs[rd] = (uintptr_t)d;
4186		}
4187
4188		break;
4189	}
4190
4191	case DIF_SUBR_LLTOSTR: {
4192		int64_t i = (int64_t)tupregs[0].dttk_value;
4193		int64_t val = i < 0 ? i * -1 : i;
4194		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4195		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4196
4197		if (!DTRACE_INSCRATCH(mstate, size)) {
4198			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4199			regs[rd] = 0;
4200			break;
4201		}
4202
4203		for (*end-- = '\0'; val; val /= 10)
4204			*end-- = '0' + (val % 10);
4205
4206		if (i == 0)
4207			*end-- = '0';
4208
4209		if (i < 0)
4210			*end-- = '-';
4211
4212		regs[rd] = (uintptr_t)end + 1;
4213		mstate->dtms_scratch_ptr += size;
4214		break;
4215	}
4216
4217	case DIF_SUBR_HTONS:
4218	case DIF_SUBR_NTOHS:
4219#if BYTE_ORDER == BIG_ENDIAN
4220		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4221#else
4222		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4223#endif
4224		break;
4225
4226
4227	case DIF_SUBR_HTONL:
4228	case DIF_SUBR_NTOHL:
4229#if BYTE_ORDER == BIG_ENDIAN
4230		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4231#else
4232		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4233#endif
4234		break;
4235
4236
4237	case DIF_SUBR_HTONLL:
4238	case DIF_SUBR_NTOHLL:
4239#if BYTE_ORDER == BIG_ENDIAN
4240		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4241#else
4242		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4243#endif
4244		break;
4245
4246
4247	case DIF_SUBR_DIRNAME:
4248	case DIF_SUBR_BASENAME: {
4249		char *dest = (char *)mstate->dtms_scratch_ptr;
4250		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4251		uintptr_t src = tupregs[0].dttk_value;
4252		int i, j, len = dtrace_strlen((char *)src, size);
4253		int lastbase = -1, firstbase = -1, lastdir = -1;
4254		int start, end;
4255
4256		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4257			regs[rd] = 0;
4258			break;
4259		}
4260
4261		if (!DTRACE_INSCRATCH(mstate, size)) {
4262			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4263			regs[rd] = 0;
4264			break;
4265		}
4266
4267		/*
4268		 * The basename and dirname for a zero-length string is
4269		 * defined to be "."
4270		 */
4271		if (len == 0) {
4272			len = 1;
4273			src = (uintptr_t)".";
4274		}
4275
4276		/*
4277		 * Start from the back of the string, moving back toward the
4278		 * front until we see a character that isn't a slash.  That
4279		 * character is the last character in the basename.
4280		 */
4281		for (i = len - 1; i >= 0; i--) {
4282			if (dtrace_load8(src + i) != '/')
4283				break;
4284		}
4285
4286		if (i >= 0)
4287			lastbase = i;
4288
4289		/*
4290		 * Starting from the last character in the basename, move
4291		 * towards the front until we find a slash.  The character
4292		 * that we processed immediately before that is the first
4293		 * character in the basename.
4294		 */
4295		for (; i >= 0; i--) {
4296			if (dtrace_load8(src + i) == '/')
4297				break;
4298		}
4299
4300		if (i >= 0)
4301			firstbase = i + 1;
4302
4303		/*
4304		 * Now keep going until we find a non-slash character.  That
4305		 * character is the last character in the dirname.
4306		 */
4307		for (; i >= 0; i--) {
4308			if (dtrace_load8(src + i) != '/')
4309				break;
4310		}
4311
4312		if (i >= 0)
4313			lastdir = i;
4314
4315		ASSERT(!(lastbase == -1 && firstbase != -1));
4316		ASSERT(!(firstbase == -1 && lastdir != -1));
4317
4318		if (lastbase == -1) {
4319			/*
4320			 * We didn't find a non-slash character.  We know that
4321			 * the length is non-zero, so the whole string must be
4322			 * slashes.  In either the dirname or the basename
4323			 * case, we return '/'.
4324			 */
4325			ASSERT(firstbase == -1);
4326			firstbase = lastbase = lastdir = 0;
4327		}
4328
4329		if (firstbase == -1) {
4330			/*
4331			 * The entire string consists only of a basename
4332			 * component.  If we're looking for dirname, we need
4333			 * to change our string to be just "."; if we're
4334			 * looking for a basename, we'll just set the first
4335			 * character of the basename to be 0.
4336			 */
4337			if (subr == DIF_SUBR_DIRNAME) {
4338				ASSERT(lastdir == -1);
4339				src = (uintptr_t)".";
4340				lastdir = 0;
4341			} else {
4342				firstbase = 0;
4343			}
4344		}
4345
4346		if (subr == DIF_SUBR_DIRNAME) {
4347			if (lastdir == -1) {
4348				/*
4349				 * We know that we have a slash in the name --
4350				 * or lastdir would be set to 0, above.  And
4351				 * because lastdir is -1, we know that this
4352				 * slash must be the first character.  (That
4353				 * is, the full string must be of the form
4354				 * "/basename".)  In this case, the last
4355				 * character of the directory name is 0.
4356				 */
4357				lastdir = 0;
4358			}
4359
4360			start = 0;
4361			end = lastdir;
4362		} else {
4363			ASSERT(subr == DIF_SUBR_BASENAME);
4364			ASSERT(firstbase != -1 && lastbase != -1);
4365			start = firstbase;
4366			end = lastbase;
4367		}
4368
4369		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4370			dest[j] = dtrace_load8(src + i);
4371
4372		dest[j] = '\0';
4373		regs[rd] = (uintptr_t)dest;
4374		mstate->dtms_scratch_ptr += size;
4375		break;
4376	}
4377
4378	case DIF_SUBR_CLEANPATH: {
4379		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4380		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4381		uintptr_t src = tupregs[0].dttk_value;
4382		int i = 0, j = 0;
4383
4384		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4385			regs[rd] = 0;
4386			break;
4387		}
4388
4389		if (!DTRACE_INSCRATCH(mstate, size)) {
4390			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4391			regs[rd] = 0;
4392			break;
4393		}
4394
4395		/*
4396		 * Move forward, loading each character.
4397		 */
4398		do {
4399			c = dtrace_load8(src + i++);
4400next:
4401			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4402				break;
4403
4404			if (c != '/') {
4405				dest[j++] = c;
4406				continue;
4407			}
4408
4409			c = dtrace_load8(src + i++);
4410
4411			if (c == '/') {
4412				/*
4413				 * We have two slashes -- we can just advance
4414				 * to the next character.
4415				 */
4416				goto next;
4417			}
4418
4419			if (c != '.') {
4420				/*
4421				 * This is not "." and it's not ".." -- we can
4422				 * just store the "/" and this character and
4423				 * drive on.
4424				 */
4425				dest[j++] = '/';
4426				dest[j++] = c;
4427				continue;
4428			}
4429
4430			c = dtrace_load8(src + i++);
4431
4432			if (c == '/') {
4433				/*
4434				 * This is a "/./" component.  We're not going
4435				 * to store anything in the destination buffer;
4436				 * we're just going to go to the next component.
4437				 */
4438				goto next;
4439			}
4440
4441			if (c != '.') {
4442				/*
4443				 * This is not ".." -- we can just store the
4444				 * "/." and this character and continue
4445				 * processing.
4446				 */
4447				dest[j++] = '/';
4448				dest[j++] = '.';
4449				dest[j++] = c;
4450				continue;
4451			}
4452
4453			c = dtrace_load8(src + i++);
4454
4455			if (c != '/' && c != '\0') {
4456				/*
4457				 * This is not ".." -- it's "..[mumble]".
4458				 * We'll store the "/.." and this character
4459				 * and continue processing.
4460				 */
4461				dest[j++] = '/';
4462				dest[j++] = '.';
4463				dest[j++] = '.';
4464				dest[j++] = c;
4465				continue;
4466			}
4467
4468			/*
4469			 * This is "/../" or "/..\0".  We need to back up
4470			 * our destination pointer until we find a "/".
4471			 */
4472			i--;
4473			while (j != 0 && dest[--j] != '/')
4474				continue;
4475
4476			if (c == '\0')
4477				dest[++j] = '/';
4478		} while (c != '\0');
4479
4480		dest[j] = '\0';
4481		regs[rd] = (uintptr_t)dest;
4482		mstate->dtms_scratch_ptr += size;
4483		break;
4484	}
4485
4486	case DIF_SUBR_INET_NTOA:
4487	case DIF_SUBR_INET_NTOA6:
4488	case DIF_SUBR_INET_NTOP: {
4489		size_t size;
4490		int af, argi, i;
4491		char *base, *end;
4492
4493		if (subr == DIF_SUBR_INET_NTOP) {
4494			af = (int)tupregs[0].dttk_value;
4495			argi = 1;
4496		} else {
4497			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4498			argi = 0;
4499		}
4500
4501		if (af == AF_INET) {
4502			ipaddr_t ip4;
4503			uint8_t *ptr8, val;
4504
4505			/*
4506			 * Safely load the IPv4 address.
4507			 */
4508			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4509
4510			/*
4511			 * Check an IPv4 string will fit in scratch.
4512			 */
4513			size = INET_ADDRSTRLEN;
4514			if (!DTRACE_INSCRATCH(mstate, size)) {
4515				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4516				regs[rd] = 0;
4517				break;
4518			}
4519			base = (char *)mstate->dtms_scratch_ptr;
4520			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4521
4522			/*
4523			 * Stringify as a dotted decimal quad.
4524			 */
4525			*end-- = '\0';
4526			ptr8 = (uint8_t *)&ip4;
4527			for (i = 3; i >= 0; i--) {
4528				val = ptr8[i];
4529
4530				if (val == 0) {
4531					*end-- = '0';
4532				} else {
4533					for (; val; val /= 10) {
4534						*end-- = '0' + (val % 10);
4535					}
4536				}
4537
4538				if (i > 0)
4539					*end-- = '.';
4540			}
4541			ASSERT(end + 1 >= base);
4542
4543		} else if (af == AF_INET6) {
4544			struct in6_addr ip6;
4545			int firstzero, tryzero, numzero, v6end;
4546			uint16_t val;
4547			const char digits[] = "0123456789abcdef";
4548
4549			/*
4550			 * Stringify using RFC 1884 convention 2 - 16 bit
4551			 * hexadecimal values with a zero-run compression.
4552			 * Lower case hexadecimal digits are used.
4553			 * 	eg, fe80::214:4fff:fe0b:76c8.
4554			 * The IPv4 embedded form is returned for inet_ntop,
4555			 * just the IPv4 string is returned for inet_ntoa6.
4556			 */
4557
4558			/*
4559			 * Safely load the IPv6 address.
4560			 */
4561			dtrace_bcopy(
4562			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4563			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4564
4565			/*
4566			 * Check an IPv6 string will fit in scratch.
4567			 */
4568			size = INET6_ADDRSTRLEN;
4569			if (!DTRACE_INSCRATCH(mstate, size)) {
4570				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4571				regs[rd] = 0;
4572				break;
4573			}
4574			base = (char *)mstate->dtms_scratch_ptr;
4575			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4576			*end-- = '\0';
4577
4578			/*
4579			 * Find the longest run of 16 bit zero values
4580			 * for the single allowed zero compression - "::".
4581			 */
4582			firstzero = -1;
4583			tryzero = -1;
4584			numzero = 1;
4585			for (i = 0; i < sizeof (struct in6_addr); i++) {
4586#if defined(sun)
4587				if (ip6._S6_un._S6_u8[i] == 0 &&
4588#else
4589				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4590#endif
4591				    tryzero == -1 && i % 2 == 0) {
4592					tryzero = i;
4593					continue;
4594				}
4595
4596				if (tryzero != -1 &&
4597#if defined(sun)
4598				    (ip6._S6_un._S6_u8[i] != 0 ||
4599#else
4600				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4601#endif
4602				    i == sizeof (struct in6_addr) - 1)) {
4603
4604					if (i - tryzero <= numzero) {
4605						tryzero = -1;
4606						continue;
4607					}
4608
4609					firstzero = tryzero;
4610					numzero = i - i % 2 - tryzero;
4611					tryzero = -1;
4612
4613#if defined(sun)
4614					if (ip6._S6_un._S6_u8[i] == 0 &&
4615#else
4616					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4617#endif
4618					    i == sizeof (struct in6_addr) - 1)
4619						numzero += 2;
4620				}
4621			}
4622			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4623
4624			/*
4625			 * Check for an IPv4 embedded address.
4626			 */
4627			v6end = sizeof (struct in6_addr) - 2;
4628			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4629			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4630				for (i = sizeof (struct in6_addr) - 1;
4631				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4632					ASSERT(end >= base);
4633
4634#if defined(sun)
4635					val = ip6._S6_un._S6_u8[i];
4636#else
4637					val = ip6.__u6_addr.__u6_addr8[i];
4638#endif
4639
4640					if (val == 0) {
4641						*end-- = '0';
4642					} else {
4643						for (; val; val /= 10) {
4644							*end-- = '0' + val % 10;
4645						}
4646					}
4647
4648					if (i > DTRACE_V4MAPPED_OFFSET)
4649						*end-- = '.';
4650				}
4651
4652				if (subr == DIF_SUBR_INET_NTOA6)
4653					goto inetout;
4654
4655				/*
4656				 * Set v6end to skip the IPv4 address that
4657				 * we have already stringified.
4658				 */
4659				v6end = 10;
4660			}
4661
4662			/*
4663			 * Build the IPv6 string by working through the
4664			 * address in reverse.
4665			 */
4666			for (i = v6end; i >= 0; i -= 2) {
4667				ASSERT(end >= base);
4668
4669				if (i == firstzero + numzero - 2) {
4670					*end-- = ':';
4671					*end-- = ':';
4672					i -= numzero - 2;
4673					continue;
4674				}
4675
4676				if (i < 14 && i != firstzero - 2)
4677					*end-- = ':';
4678
4679#if defined(sun)
4680				val = (ip6._S6_un._S6_u8[i] << 8) +
4681				    ip6._S6_un._S6_u8[i + 1];
4682#else
4683				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4684				    ip6.__u6_addr.__u6_addr8[i + 1];
4685#endif
4686
4687				if (val == 0) {
4688					*end-- = '0';
4689				} else {
4690					for (; val; val /= 16) {
4691						*end-- = digits[val % 16];
4692					}
4693				}
4694			}
4695			ASSERT(end + 1 >= base);
4696
4697		} else {
4698			/*
4699			 * The user didn't use AH_INET or AH_INET6.
4700			 */
4701			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4702			regs[rd] = 0;
4703			break;
4704		}
4705
4706inetout:	regs[rd] = (uintptr_t)end + 1;
4707		mstate->dtms_scratch_ptr += size;
4708		break;
4709	}
4710
4711	case DIF_SUBR_MEMREF: {
4712		uintptr_t size = 2 * sizeof(uintptr_t);
4713		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4714		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4715
4716		/* address and length */
4717		memref[0] = tupregs[0].dttk_value;
4718		memref[1] = tupregs[1].dttk_value;
4719
4720		regs[rd] = (uintptr_t) memref;
4721		mstate->dtms_scratch_ptr += scratch_size;
4722		break;
4723	}
4724
4725	case DIF_SUBR_TYPEREF: {
4726		uintptr_t size = 4 * sizeof(uintptr_t);
4727		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4728		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4729
4730		/* address, num_elements, type_str, type_len */
4731		typeref[0] = tupregs[0].dttk_value;
4732		typeref[1] = tupregs[1].dttk_value;
4733		typeref[2] = tupregs[2].dttk_value;
4734		typeref[3] = tupregs[3].dttk_value;
4735
4736		regs[rd] = (uintptr_t) typeref;
4737		mstate->dtms_scratch_ptr += scratch_size;
4738		break;
4739	}
4740	}
4741}
4742
4743/*
4744 * Emulate the execution of DTrace IR instructions specified by the given
4745 * DIF object.  This function is deliberately void of assertions as all of
4746 * the necessary checks are handled by a call to dtrace_difo_validate().
4747 */
4748static uint64_t
4749dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4750    dtrace_vstate_t *vstate, dtrace_state_t *state)
4751{
4752	const dif_instr_t *text = difo->dtdo_buf;
4753	const uint_t textlen = difo->dtdo_len;
4754	const char *strtab = difo->dtdo_strtab;
4755	const uint64_t *inttab = difo->dtdo_inttab;
4756
4757	uint64_t rval = 0;
4758	dtrace_statvar_t *svar;
4759	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4760	dtrace_difv_t *v;
4761	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4762	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4763
4764	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4765	uint64_t regs[DIF_DIR_NREGS];
4766	uint64_t *tmp;
4767
4768	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4769	int64_t cc_r;
4770	uint_t pc = 0, id, opc = 0;
4771	uint8_t ttop = 0;
4772	dif_instr_t instr;
4773	uint_t r1, r2, rd;
4774
4775	/*
4776	 * We stash the current DIF object into the machine state: we need it
4777	 * for subsequent access checking.
4778	 */
4779	mstate->dtms_difo = difo;
4780
4781	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4782
4783	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4784		opc = pc;
4785
4786		instr = text[pc++];
4787		r1 = DIF_INSTR_R1(instr);
4788		r2 = DIF_INSTR_R2(instr);
4789		rd = DIF_INSTR_RD(instr);
4790
4791		switch (DIF_INSTR_OP(instr)) {
4792		case DIF_OP_OR:
4793			regs[rd] = regs[r1] | regs[r2];
4794			break;
4795		case DIF_OP_XOR:
4796			regs[rd] = regs[r1] ^ regs[r2];
4797			break;
4798		case DIF_OP_AND:
4799			regs[rd] = regs[r1] & regs[r2];
4800			break;
4801		case DIF_OP_SLL:
4802			regs[rd] = regs[r1] << regs[r2];
4803			break;
4804		case DIF_OP_SRL:
4805			regs[rd] = regs[r1] >> regs[r2];
4806			break;
4807		case DIF_OP_SUB:
4808			regs[rd] = regs[r1] - regs[r2];
4809			break;
4810		case DIF_OP_ADD:
4811			regs[rd] = regs[r1] + regs[r2];
4812			break;
4813		case DIF_OP_MUL:
4814			regs[rd] = regs[r1] * regs[r2];
4815			break;
4816		case DIF_OP_SDIV:
4817			if (regs[r2] == 0) {
4818				regs[rd] = 0;
4819				*flags |= CPU_DTRACE_DIVZERO;
4820			} else {
4821				regs[rd] = (int64_t)regs[r1] /
4822				    (int64_t)regs[r2];
4823			}
4824			break;
4825
4826		case DIF_OP_UDIV:
4827			if (regs[r2] == 0) {
4828				regs[rd] = 0;
4829				*flags |= CPU_DTRACE_DIVZERO;
4830			} else {
4831				regs[rd] = regs[r1] / regs[r2];
4832			}
4833			break;
4834
4835		case DIF_OP_SREM:
4836			if (regs[r2] == 0) {
4837				regs[rd] = 0;
4838				*flags |= CPU_DTRACE_DIVZERO;
4839			} else {
4840				regs[rd] = (int64_t)regs[r1] %
4841				    (int64_t)regs[r2];
4842			}
4843			break;
4844
4845		case DIF_OP_UREM:
4846			if (regs[r2] == 0) {
4847				regs[rd] = 0;
4848				*flags |= CPU_DTRACE_DIVZERO;
4849			} else {
4850				regs[rd] = regs[r1] % regs[r2];
4851			}
4852			break;
4853
4854		case DIF_OP_NOT:
4855			regs[rd] = ~regs[r1];
4856			break;
4857		case DIF_OP_MOV:
4858			regs[rd] = regs[r1];
4859			break;
4860		case DIF_OP_CMP:
4861			cc_r = regs[r1] - regs[r2];
4862			cc_n = cc_r < 0;
4863			cc_z = cc_r == 0;
4864			cc_v = 0;
4865			cc_c = regs[r1] < regs[r2];
4866			break;
4867		case DIF_OP_TST:
4868			cc_n = cc_v = cc_c = 0;
4869			cc_z = regs[r1] == 0;
4870			break;
4871		case DIF_OP_BA:
4872			pc = DIF_INSTR_LABEL(instr);
4873			break;
4874		case DIF_OP_BE:
4875			if (cc_z)
4876				pc = DIF_INSTR_LABEL(instr);
4877			break;
4878		case DIF_OP_BNE:
4879			if (cc_z == 0)
4880				pc = DIF_INSTR_LABEL(instr);
4881			break;
4882		case DIF_OP_BG:
4883			if ((cc_z | (cc_n ^ cc_v)) == 0)
4884				pc = DIF_INSTR_LABEL(instr);
4885			break;
4886		case DIF_OP_BGU:
4887			if ((cc_c | cc_z) == 0)
4888				pc = DIF_INSTR_LABEL(instr);
4889			break;
4890		case DIF_OP_BGE:
4891			if ((cc_n ^ cc_v) == 0)
4892				pc = DIF_INSTR_LABEL(instr);
4893			break;
4894		case DIF_OP_BGEU:
4895			if (cc_c == 0)
4896				pc = DIF_INSTR_LABEL(instr);
4897			break;
4898		case DIF_OP_BL:
4899			if (cc_n ^ cc_v)
4900				pc = DIF_INSTR_LABEL(instr);
4901			break;
4902		case DIF_OP_BLU:
4903			if (cc_c)
4904				pc = DIF_INSTR_LABEL(instr);
4905			break;
4906		case DIF_OP_BLE:
4907			if (cc_z | (cc_n ^ cc_v))
4908				pc = DIF_INSTR_LABEL(instr);
4909			break;
4910		case DIF_OP_BLEU:
4911			if (cc_c | cc_z)
4912				pc = DIF_INSTR_LABEL(instr);
4913			break;
4914		case DIF_OP_RLDSB:
4915			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4916				*flags |= CPU_DTRACE_KPRIV;
4917				*illval = regs[r1];
4918				break;
4919			}
4920			/*FALLTHROUGH*/
4921		case DIF_OP_LDSB:
4922			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4923			break;
4924		case DIF_OP_RLDSH:
4925			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4926				*flags |= CPU_DTRACE_KPRIV;
4927				*illval = regs[r1];
4928				break;
4929			}
4930			/*FALLTHROUGH*/
4931		case DIF_OP_LDSH:
4932			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4933			break;
4934		case DIF_OP_RLDSW:
4935			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4936				*flags |= CPU_DTRACE_KPRIV;
4937				*illval = regs[r1];
4938				break;
4939			}
4940			/*FALLTHROUGH*/
4941		case DIF_OP_LDSW:
4942			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4943			break;
4944		case DIF_OP_RLDUB:
4945			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4946				*flags |= CPU_DTRACE_KPRIV;
4947				*illval = regs[r1];
4948				break;
4949			}
4950			/*FALLTHROUGH*/
4951		case DIF_OP_LDUB:
4952			regs[rd] = dtrace_load8(regs[r1]);
4953			break;
4954		case DIF_OP_RLDUH:
4955			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4956				*flags |= CPU_DTRACE_KPRIV;
4957				*illval = regs[r1];
4958				break;
4959			}
4960			/*FALLTHROUGH*/
4961		case DIF_OP_LDUH:
4962			regs[rd] = dtrace_load16(regs[r1]);
4963			break;
4964		case DIF_OP_RLDUW:
4965			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4966				*flags |= CPU_DTRACE_KPRIV;
4967				*illval = regs[r1];
4968				break;
4969			}
4970			/*FALLTHROUGH*/
4971		case DIF_OP_LDUW:
4972			regs[rd] = dtrace_load32(regs[r1]);
4973			break;
4974		case DIF_OP_RLDX:
4975			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4976				*flags |= CPU_DTRACE_KPRIV;
4977				*illval = regs[r1];
4978				break;
4979			}
4980			/*FALLTHROUGH*/
4981		case DIF_OP_LDX:
4982			regs[rd] = dtrace_load64(regs[r1]);
4983			break;
4984		case DIF_OP_ULDSB:
4985			regs[rd] = (int8_t)
4986			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4987			break;
4988		case DIF_OP_ULDSH:
4989			regs[rd] = (int16_t)
4990			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4991			break;
4992		case DIF_OP_ULDSW:
4993			regs[rd] = (int32_t)
4994			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4995			break;
4996		case DIF_OP_ULDUB:
4997			regs[rd] =
4998			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4999			break;
5000		case DIF_OP_ULDUH:
5001			regs[rd] =
5002			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5003			break;
5004		case DIF_OP_ULDUW:
5005			regs[rd] =
5006			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5007			break;
5008		case DIF_OP_ULDX:
5009			regs[rd] =
5010			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5011			break;
5012		case DIF_OP_RET:
5013			rval = regs[rd];
5014			pc = textlen;
5015			break;
5016		case DIF_OP_NOP:
5017			break;
5018		case DIF_OP_SETX:
5019			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5020			break;
5021		case DIF_OP_SETS:
5022			regs[rd] = (uint64_t)(uintptr_t)
5023			    (strtab + DIF_INSTR_STRING(instr));
5024			break;
5025		case DIF_OP_SCMP: {
5026			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5027			uintptr_t s1 = regs[r1];
5028			uintptr_t s2 = regs[r2];
5029
5030			if (s1 != 0 &&
5031			    !dtrace_strcanload(s1, sz, mstate, vstate))
5032				break;
5033			if (s2 != 0 &&
5034			    !dtrace_strcanload(s2, sz, mstate, vstate))
5035				break;
5036
5037			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5038
5039			cc_n = cc_r < 0;
5040			cc_z = cc_r == 0;
5041			cc_v = cc_c = 0;
5042			break;
5043		}
5044		case DIF_OP_LDGA:
5045			regs[rd] = dtrace_dif_variable(mstate, state,
5046			    r1, regs[r2]);
5047			break;
5048		case DIF_OP_LDGS:
5049			id = DIF_INSTR_VAR(instr);
5050
5051			if (id >= DIF_VAR_OTHER_UBASE) {
5052				uintptr_t a;
5053
5054				id -= DIF_VAR_OTHER_UBASE;
5055				svar = vstate->dtvs_globals[id];
5056				ASSERT(svar != NULL);
5057				v = &svar->dtsv_var;
5058
5059				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5060					regs[rd] = svar->dtsv_data;
5061					break;
5062				}
5063
5064				a = (uintptr_t)svar->dtsv_data;
5065
5066				if (*(uint8_t *)a == UINT8_MAX) {
5067					/*
5068					 * If the 0th byte is set to UINT8_MAX
5069					 * then this is to be treated as a
5070					 * reference to a NULL variable.
5071					 */
5072					regs[rd] = 0;
5073				} else {
5074					regs[rd] = a + sizeof (uint64_t);
5075				}
5076
5077				break;
5078			}
5079
5080			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5081			break;
5082
5083		case DIF_OP_STGS:
5084			id = DIF_INSTR_VAR(instr);
5085
5086			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5087			id -= DIF_VAR_OTHER_UBASE;
5088
5089			svar = vstate->dtvs_globals[id];
5090			ASSERT(svar != NULL);
5091			v = &svar->dtsv_var;
5092
5093			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5094				uintptr_t a = (uintptr_t)svar->dtsv_data;
5095
5096				ASSERT(a != 0);
5097				ASSERT(svar->dtsv_size != 0);
5098
5099				if (regs[rd] == 0) {
5100					*(uint8_t *)a = UINT8_MAX;
5101					break;
5102				} else {
5103					*(uint8_t *)a = 0;
5104					a += sizeof (uint64_t);
5105				}
5106				if (!dtrace_vcanload(
5107				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5108				    mstate, vstate))
5109					break;
5110
5111				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5112				    (void *)a, &v->dtdv_type);
5113				break;
5114			}
5115
5116			svar->dtsv_data = regs[rd];
5117			break;
5118
5119		case DIF_OP_LDTA:
5120			/*
5121			 * There are no DTrace built-in thread-local arrays at
5122			 * present.  This opcode is saved for future work.
5123			 */
5124			*flags |= CPU_DTRACE_ILLOP;
5125			regs[rd] = 0;
5126			break;
5127
5128		case DIF_OP_LDLS:
5129			id = DIF_INSTR_VAR(instr);
5130
5131			if (id < DIF_VAR_OTHER_UBASE) {
5132				/*
5133				 * For now, this has no meaning.
5134				 */
5135				regs[rd] = 0;
5136				break;
5137			}
5138
5139			id -= DIF_VAR_OTHER_UBASE;
5140
5141			ASSERT(id < vstate->dtvs_nlocals);
5142			ASSERT(vstate->dtvs_locals != NULL);
5143
5144			svar = vstate->dtvs_locals[id];
5145			ASSERT(svar != NULL);
5146			v = &svar->dtsv_var;
5147
5148			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5149				uintptr_t a = (uintptr_t)svar->dtsv_data;
5150				size_t sz = v->dtdv_type.dtdt_size;
5151
5152				sz += sizeof (uint64_t);
5153				ASSERT(svar->dtsv_size == NCPU * sz);
5154				a += curcpu * sz;
5155
5156				if (*(uint8_t *)a == UINT8_MAX) {
5157					/*
5158					 * If the 0th byte is set to UINT8_MAX
5159					 * then this is to be treated as a
5160					 * reference to a NULL variable.
5161					 */
5162					regs[rd] = 0;
5163				} else {
5164					regs[rd] = a + sizeof (uint64_t);
5165				}
5166
5167				break;
5168			}
5169
5170			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5171			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5172			regs[rd] = tmp[curcpu];
5173			break;
5174
5175		case DIF_OP_STLS:
5176			id = DIF_INSTR_VAR(instr);
5177
5178			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5179			id -= DIF_VAR_OTHER_UBASE;
5180			ASSERT(id < vstate->dtvs_nlocals);
5181
5182			ASSERT(vstate->dtvs_locals != NULL);
5183			svar = vstate->dtvs_locals[id];
5184			ASSERT(svar != NULL);
5185			v = &svar->dtsv_var;
5186
5187			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5188				uintptr_t a = (uintptr_t)svar->dtsv_data;
5189				size_t sz = v->dtdv_type.dtdt_size;
5190
5191				sz += sizeof (uint64_t);
5192				ASSERT(svar->dtsv_size == NCPU * sz);
5193				a += curcpu * sz;
5194
5195				if (regs[rd] == 0) {
5196					*(uint8_t *)a = UINT8_MAX;
5197					break;
5198				} else {
5199					*(uint8_t *)a = 0;
5200					a += sizeof (uint64_t);
5201				}
5202
5203				if (!dtrace_vcanload(
5204				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5205				    mstate, vstate))
5206					break;
5207
5208				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5209				    (void *)a, &v->dtdv_type);
5210				break;
5211			}
5212
5213			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5214			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5215			tmp[curcpu] = regs[rd];
5216			break;
5217
5218		case DIF_OP_LDTS: {
5219			dtrace_dynvar_t *dvar;
5220			dtrace_key_t *key;
5221
5222			id = DIF_INSTR_VAR(instr);
5223			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5224			id -= DIF_VAR_OTHER_UBASE;
5225			v = &vstate->dtvs_tlocals[id];
5226
5227			key = &tupregs[DIF_DTR_NREGS];
5228			key[0].dttk_value = (uint64_t)id;
5229			key[0].dttk_size = 0;
5230			DTRACE_TLS_THRKEY(key[1].dttk_value);
5231			key[1].dttk_size = 0;
5232
5233			dvar = dtrace_dynvar(dstate, 2, key,
5234			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5235			    mstate, vstate);
5236
5237			if (dvar == NULL) {
5238				regs[rd] = 0;
5239				break;
5240			}
5241
5242			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5243				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5244			} else {
5245				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5246			}
5247
5248			break;
5249		}
5250
5251		case DIF_OP_STTS: {
5252			dtrace_dynvar_t *dvar;
5253			dtrace_key_t *key;
5254
5255			id = DIF_INSTR_VAR(instr);
5256			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5257			id -= DIF_VAR_OTHER_UBASE;
5258
5259			key = &tupregs[DIF_DTR_NREGS];
5260			key[0].dttk_value = (uint64_t)id;
5261			key[0].dttk_size = 0;
5262			DTRACE_TLS_THRKEY(key[1].dttk_value);
5263			key[1].dttk_size = 0;
5264			v = &vstate->dtvs_tlocals[id];
5265
5266			dvar = dtrace_dynvar(dstate, 2, key,
5267			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5268			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5269			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5270			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5271
5272			/*
5273			 * Given that we're storing to thread-local data,
5274			 * we need to flush our predicate cache.
5275			 */
5276			curthread->t_predcache = 0;
5277
5278			if (dvar == NULL)
5279				break;
5280
5281			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5282				if (!dtrace_vcanload(
5283				    (void *)(uintptr_t)regs[rd],
5284				    &v->dtdv_type, mstate, vstate))
5285					break;
5286
5287				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5288				    dvar->dtdv_data, &v->dtdv_type);
5289			} else {
5290				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5291			}
5292
5293			break;
5294		}
5295
5296		case DIF_OP_SRA:
5297			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5298			break;
5299
5300		case DIF_OP_CALL:
5301			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5302			    regs, tupregs, ttop, mstate, state);
5303			break;
5304
5305		case DIF_OP_PUSHTR:
5306			if (ttop == DIF_DTR_NREGS) {
5307				*flags |= CPU_DTRACE_TUPOFLOW;
5308				break;
5309			}
5310
5311			if (r1 == DIF_TYPE_STRING) {
5312				/*
5313				 * If this is a string type and the size is 0,
5314				 * we'll use the system-wide default string
5315				 * size.  Note that we are _not_ looking at
5316				 * the value of the DTRACEOPT_STRSIZE option;
5317				 * had this been set, we would expect to have
5318				 * a non-zero size value in the "pushtr".
5319				 */
5320				tupregs[ttop].dttk_size =
5321				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5322				    regs[r2] ? regs[r2] :
5323				    dtrace_strsize_default) + 1;
5324			} else {
5325				tupregs[ttop].dttk_size = regs[r2];
5326			}
5327
5328			tupregs[ttop++].dttk_value = regs[rd];
5329			break;
5330
5331		case DIF_OP_PUSHTV:
5332			if (ttop == DIF_DTR_NREGS) {
5333				*flags |= CPU_DTRACE_TUPOFLOW;
5334				break;
5335			}
5336
5337			tupregs[ttop].dttk_value = regs[rd];
5338			tupregs[ttop++].dttk_size = 0;
5339			break;
5340
5341		case DIF_OP_POPTS:
5342			if (ttop != 0)
5343				ttop--;
5344			break;
5345
5346		case DIF_OP_FLUSHTS:
5347			ttop = 0;
5348			break;
5349
5350		case DIF_OP_LDGAA:
5351		case DIF_OP_LDTAA: {
5352			dtrace_dynvar_t *dvar;
5353			dtrace_key_t *key = tupregs;
5354			uint_t nkeys = ttop;
5355
5356			id = DIF_INSTR_VAR(instr);
5357			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5358			id -= DIF_VAR_OTHER_UBASE;
5359
5360			key[nkeys].dttk_value = (uint64_t)id;
5361			key[nkeys++].dttk_size = 0;
5362
5363			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5364				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5365				key[nkeys++].dttk_size = 0;
5366				v = &vstate->dtvs_tlocals[id];
5367			} else {
5368				v = &vstate->dtvs_globals[id]->dtsv_var;
5369			}
5370
5371			dvar = dtrace_dynvar(dstate, nkeys, key,
5372			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5373			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5374			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5375
5376			if (dvar == NULL) {
5377				regs[rd] = 0;
5378				break;
5379			}
5380
5381			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5382				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5383			} else {
5384				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5385			}
5386
5387			break;
5388		}
5389
5390		case DIF_OP_STGAA:
5391		case DIF_OP_STTAA: {
5392			dtrace_dynvar_t *dvar;
5393			dtrace_key_t *key = tupregs;
5394			uint_t nkeys = ttop;
5395
5396			id = DIF_INSTR_VAR(instr);
5397			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5398			id -= DIF_VAR_OTHER_UBASE;
5399
5400			key[nkeys].dttk_value = (uint64_t)id;
5401			key[nkeys++].dttk_size = 0;
5402
5403			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5404				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5405				key[nkeys++].dttk_size = 0;
5406				v = &vstate->dtvs_tlocals[id];
5407			} else {
5408				v = &vstate->dtvs_globals[id]->dtsv_var;
5409			}
5410
5411			dvar = dtrace_dynvar(dstate, nkeys, key,
5412			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5413			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5414			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5415			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5416
5417			if (dvar == NULL)
5418				break;
5419
5420			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5421				if (!dtrace_vcanload(
5422				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5423				    mstate, vstate))
5424					break;
5425
5426				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5427				    dvar->dtdv_data, &v->dtdv_type);
5428			} else {
5429				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5430			}
5431
5432			break;
5433		}
5434
5435		case DIF_OP_ALLOCS: {
5436			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5437			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5438
5439			/*
5440			 * Rounding up the user allocation size could have
5441			 * overflowed large, bogus allocations (like -1ULL) to
5442			 * 0.
5443			 */
5444			if (size < regs[r1] ||
5445			    !DTRACE_INSCRATCH(mstate, size)) {
5446				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5447				regs[rd] = 0;
5448				break;
5449			}
5450
5451			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5452			mstate->dtms_scratch_ptr += size;
5453			regs[rd] = ptr;
5454			break;
5455		}
5456
5457		case DIF_OP_COPYS:
5458			if (!dtrace_canstore(regs[rd], regs[r2],
5459			    mstate, vstate)) {
5460				*flags |= CPU_DTRACE_BADADDR;
5461				*illval = regs[rd];
5462				break;
5463			}
5464
5465			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5466				break;
5467
5468			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5469			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5470			break;
5471
5472		case DIF_OP_STB:
5473			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5474				*flags |= CPU_DTRACE_BADADDR;
5475				*illval = regs[rd];
5476				break;
5477			}
5478			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5479			break;
5480
5481		case DIF_OP_STH:
5482			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5483				*flags |= CPU_DTRACE_BADADDR;
5484				*illval = regs[rd];
5485				break;
5486			}
5487			if (regs[rd] & 1) {
5488				*flags |= CPU_DTRACE_BADALIGN;
5489				*illval = regs[rd];
5490				break;
5491			}
5492			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5493			break;
5494
5495		case DIF_OP_STW:
5496			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5497				*flags |= CPU_DTRACE_BADADDR;
5498				*illval = regs[rd];
5499				break;
5500			}
5501			if (regs[rd] & 3) {
5502				*flags |= CPU_DTRACE_BADALIGN;
5503				*illval = regs[rd];
5504				break;
5505			}
5506			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5507			break;
5508
5509		case DIF_OP_STX:
5510			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5511				*flags |= CPU_DTRACE_BADADDR;
5512				*illval = regs[rd];
5513				break;
5514			}
5515			if (regs[rd] & 7) {
5516				*flags |= CPU_DTRACE_BADALIGN;
5517				*illval = regs[rd];
5518				break;
5519			}
5520			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5521			break;
5522		}
5523	}
5524
5525	if (!(*flags & CPU_DTRACE_FAULT))
5526		return (rval);
5527
5528	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5529	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5530
5531	return (0);
5532}
5533
5534static void
5535dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5536{
5537	dtrace_probe_t *probe = ecb->dte_probe;
5538	dtrace_provider_t *prov = probe->dtpr_provider;
5539	char c[DTRACE_FULLNAMELEN + 80], *str;
5540	char *msg = "dtrace: breakpoint action at probe ";
5541	char *ecbmsg = " (ecb ";
5542	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5543	uintptr_t val = (uintptr_t)ecb;
5544	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5545
5546	if (dtrace_destructive_disallow)
5547		return;
5548
5549	/*
5550	 * It's impossible to be taking action on the NULL probe.
5551	 */
5552	ASSERT(probe != NULL);
5553
5554	/*
5555	 * This is a poor man's (destitute man's?) sprintf():  we want to
5556	 * print the provider name, module name, function name and name of
5557	 * the probe, along with the hex address of the ECB with the breakpoint
5558	 * action -- all of which we must place in the character buffer by
5559	 * hand.
5560	 */
5561	while (*msg != '\0')
5562		c[i++] = *msg++;
5563
5564	for (str = prov->dtpv_name; *str != '\0'; str++)
5565		c[i++] = *str;
5566	c[i++] = ':';
5567
5568	for (str = probe->dtpr_mod; *str != '\0'; str++)
5569		c[i++] = *str;
5570	c[i++] = ':';
5571
5572	for (str = probe->dtpr_func; *str != '\0'; str++)
5573		c[i++] = *str;
5574	c[i++] = ':';
5575
5576	for (str = probe->dtpr_name; *str != '\0'; str++)
5577		c[i++] = *str;
5578
5579	while (*ecbmsg != '\0')
5580		c[i++] = *ecbmsg++;
5581
5582	while (shift >= 0) {
5583		mask = (uintptr_t)0xf << shift;
5584
5585		if (val >= ((uintptr_t)1 << shift))
5586			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5587		shift -= 4;
5588	}
5589
5590	c[i++] = ')';
5591	c[i] = '\0';
5592
5593#if defined(sun)
5594	debug_enter(c);
5595#else
5596	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5597#endif
5598}
5599
5600static void
5601dtrace_action_panic(dtrace_ecb_t *ecb)
5602{
5603	dtrace_probe_t *probe = ecb->dte_probe;
5604
5605	/*
5606	 * It's impossible to be taking action on the NULL probe.
5607	 */
5608	ASSERT(probe != NULL);
5609
5610	if (dtrace_destructive_disallow)
5611		return;
5612
5613	if (dtrace_panicked != NULL)
5614		return;
5615
5616	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5617		return;
5618
5619	/*
5620	 * We won the right to panic.  (We want to be sure that only one
5621	 * thread calls panic() from dtrace_probe(), and that panic() is
5622	 * called exactly once.)
5623	 */
5624	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5625	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5626	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5627}
5628
5629static void
5630dtrace_action_raise(uint64_t sig)
5631{
5632	if (dtrace_destructive_disallow)
5633		return;
5634
5635	if (sig >= NSIG) {
5636		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5637		return;
5638	}
5639
5640#if defined(sun)
5641	/*
5642	 * raise() has a queue depth of 1 -- we ignore all subsequent
5643	 * invocations of the raise() action.
5644	 */
5645	if (curthread->t_dtrace_sig == 0)
5646		curthread->t_dtrace_sig = (uint8_t)sig;
5647
5648	curthread->t_sig_check = 1;
5649	aston(curthread);
5650#else
5651	struct proc *p = curproc;
5652	PROC_LOCK(p);
5653	psignal(p, sig);
5654	PROC_UNLOCK(p);
5655#endif
5656}
5657
5658static void
5659dtrace_action_stop(void)
5660{
5661	if (dtrace_destructive_disallow)
5662		return;
5663
5664#if defined(sun)
5665	if (!curthread->t_dtrace_stop) {
5666		curthread->t_dtrace_stop = 1;
5667		curthread->t_sig_check = 1;
5668		aston(curthread);
5669	}
5670#else
5671	struct proc *p = curproc;
5672	PROC_LOCK(p);
5673	psignal(p, SIGSTOP);
5674	PROC_UNLOCK(p);
5675#endif
5676}
5677
5678static void
5679dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5680{
5681	hrtime_t now;
5682	volatile uint16_t *flags;
5683#if defined(sun)
5684	cpu_t *cpu = CPU;
5685#else
5686	cpu_t *cpu = &solaris_cpu[curcpu];
5687#endif
5688
5689	if (dtrace_destructive_disallow)
5690		return;
5691
5692	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5693
5694	now = dtrace_gethrtime();
5695
5696	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5697		/*
5698		 * We need to advance the mark to the current time.
5699		 */
5700		cpu->cpu_dtrace_chillmark = now;
5701		cpu->cpu_dtrace_chilled = 0;
5702	}
5703
5704	/*
5705	 * Now check to see if the requested chill time would take us over
5706	 * the maximum amount of time allowed in the chill interval.  (Or
5707	 * worse, if the calculation itself induces overflow.)
5708	 */
5709	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5710	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5711		*flags |= CPU_DTRACE_ILLOP;
5712		return;
5713	}
5714
5715	while (dtrace_gethrtime() - now < val)
5716		continue;
5717
5718	/*
5719	 * Normally, we assure that the value of the variable "timestamp" does
5720	 * not change within an ECB.  The presence of chill() represents an
5721	 * exception to this rule, however.
5722	 */
5723	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5724	cpu->cpu_dtrace_chilled += val;
5725}
5726
5727#if defined(sun)
5728static void
5729dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5730    uint64_t *buf, uint64_t arg)
5731{
5732	int nframes = DTRACE_USTACK_NFRAMES(arg);
5733	int strsize = DTRACE_USTACK_STRSIZE(arg);
5734	uint64_t *pcs = &buf[1], *fps;
5735	char *str = (char *)&pcs[nframes];
5736	int size, offs = 0, i, j;
5737	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5738	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5739	char *sym;
5740
5741	/*
5742	 * Should be taking a faster path if string space has not been
5743	 * allocated.
5744	 */
5745	ASSERT(strsize != 0);
5746
5747	/*
5748	 * We will first allocate some temporary space for the frame pointers.
5749	 */
5750	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5751	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5752	    (nframes * sizeof (uint64_t));
5753
5754	if (!DTRACE_INSCRATCH(mstate, size)) {
5755		/*
5756		 * Not enough room for our frame pointers -- need to indicate
5757		 * that we ran out of scratch space.
5758		 */
5759		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5760		return;
5761	}
5762
5763	mstate->dtms_scratch_ptr += size;
5764	saved = mstate->dtms_scratch_ptr;
5765
5766	/*
5767	 * Now get a stack with both program counters and frame pointers.
5768	 */
5769	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5770	dtrace_getufpstack(buf, fps, nframes + 1);
5771	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5772
5773	/*
5774	 * If that faulted, we're cooked.
5775	 */
5776	if (*flags & CPU_DTRACE_FAULT)
5777		goto out;
5778
5779	/*
5780	 * Now we want to walk up the stack, calling the USTACK helper.  For
5781	 * each iteration, we restore the scratch pointer.
5782	 */
5783	for (i = 0; i < nframes; i++) {
5784		mstate->dtms_scratch_ptr = saved;
5785
5786		if (offs >= strsize)
5787			break;
5788
5789		sym = (char *)(uintptr_t)dtrace_helper(
5790		    DTRACE_HELPER_ACTION_USTACK,
5791		    mstate, state, pcs[i], fps[i]);
5792
5793		/*
5794		 * If we faulted while running the helper, we're going to
5795		 * clear the fault and null out the corresponding string.
5796		 */
5797		if (*flags & CPU_DTRACE_FAULT) {
5798			*flags &= ~CPU_DTRACE_FAULT;
5799			str[offs++] = '\0';
5800			continue;
5801		}
5802
5803		if (sym == NULL) {
5804			str[offs++] = '\0';
5805			continue;
5806		}
5807
5808		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5809
5810		/*
5811		 * Now copy in the string that the helper returned to us.
5812		 */
5813		for (j = 0; offs + j < strsize; j++) {
5814			if ((str[offs + j] = sym[j]) == '\0')
5815				break;
5816		}
5817
5818		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5819
5820		offs += j + 1;
5821	}
5822
5823	if (offs >= strsize) {
5824		/*
5825		 * If we didn't have room for all of the strings, we don't
5826		 * abort processing -- this needn't be a fatal error -- but we
5827		 * still want to increment a counter (dts_stkstroverflows) to
5828		 * allow this condition to be warned about.  (If this is from
5829		 * a jstack() action, it is easily tuned via jstackstrsize.)
5830		 */
5831		dtrace_error(&state->dts_stkstroverflows);
5832	}
5833
5834	while (offs < strsize)
5835		str[offs++] = '\0';
5836
5837out:
5838	mstate->dtms_scratch_ptr = old;
5839}
5840#endif
5841
5842/*
5843 * If you're looking for the epicenter of DTrace, you just found it.  This
5844 * is the function called by the provider to fire a probe -- from which all
5845 * subsequent probe-context DTrace activity emanates.
5846 */
5847void
5848dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5849    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5850{
5851	processorid_t cpuid;
5852	dtrace_icookie_t cookie;
5853	dtrace_probe_t *probe;
5854	dtrace_mstate_t mstate;
5855	dtrace_ecb_t *ecb;
5856	dtrace_action_t *act;
5857	intptr_t offs;
5858	size_t size;
5859	int vtime, onintr;
5860	volatile uint16_t *flags;
5861	hrtime_t now;
5862
5863#if defined(sun)
5864	/*
5865	 * Kick out immediately if this CPU is still being born (in which case
5866	 * curthread will be set to -1) or the current thread can't allow
5867	 * probes in its current context.
5868	 */
5869	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5870		return;
5871#endif
5872
5873	cookie = dtrace_interrupt_disable();
5874	probe = dtrace_probes[id - 1];
5875	cpuid = curcpu;
5876	onintr = CPU_ON_INTR(CPU);
5877
5878	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5879	    probe->dtpr_predcache == curthread->t_predcache) {
5880		/*
5881		 * We have hit in the predicate cache; we know that
5882		 * this predicate would evaluate to be false.
5883		 */
5884		dtrace_interrupt_enable(cookie);
5885		return;
5886	}
5887
5888#if defined(sun)
5889	if (panic_quiesce) {
5890#else
5891	if (panicstr != NULL) {
5892#endif
5893		/*
5894		 * We don't trace anything if we're panicking.
5895		 */
5896		dtrace_interrupt_enable(cookie);
5897		return;
5898	}
5899
5900	now = dtrace_gethrtime();
5901	vtime = dtrace_vtime_references != 0;
5902
5903	if (vtime && curthread->t_dtrace_start)
5904		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5905
5906	mstate.dtms_difo = NULL;
5907	mstate.dtms_probe = probe;
5908	mstate.dtms_strtok = 0;
5909	mstate.dtms_arg[0] = arg0;
5910	mstate.dtms_arg[1] = arg1;
5911	mstate.dtms_arg[2] = arg2;
5912	mstate.dtms_arg[3] = arg3;
5913	mstate.dtms_arg[4] = arg4;
5914
5915	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5916
5917	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5918		dtrace_predicate_t *pred = ecb->dte_predicate;
5919		dtrace_state_t *state = ecb->dte_state;
5920		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5921		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5922		dtrace_vstate_t *vstate = &state->dts_vstate;
5923		dtrace_provider_t *prov = probe->dtpr_provider;
5924		int committed = 0;
5925		caddr_t tomax;
5926
5927		/*
5928		 * A little subtlety with the following (seemingly innocuous)
5929		 * declaration of the automatic 'val':  by looking at the
5930		 * code, you might think that it could be declared in the
5931		 * action processing loop, below.  (That is, it's only used in
5932		 * the action processing loop.)  However, it must be declared
5933		 * out of that scope because in the case of DIF expression
5934		 * arguments to aggregating actions, one iteration of the
5935		 * action loop will use the last iteration's value.
5936		 */
5937		uint64_t val = 0;
5938
5939		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5940		*flags &= ~CPU_DTRACE_ERROR;
5941
5942		if (prov == dtrace_provider) {
5943			/*
5944			 * If dtrace itself is the provider of this probe,
5945			 * we're only going to continue processing the ECB if
5946			 * arg0 (the dtrace_state_t) is equal to the ECB's
5947			 * creating state.  (This prevents disjoint consumers
5948			 * from seeing one another's metaprobes.)
5949			 */
5950			if (arg0 != (uint64_t)(uintptr_t)state)
5951				continue;
5952		}
5953
5954		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5955			/*
5956			 * We're not currently active.  If our provider isn't
5957			 * the dtrace pseudo provider, we're not interested.
5958			 */
5959			if (prov != dtrace_provider)
5960				continue;
5961
5962			/*
5963			 * Now we must further check if we are in the BEGIN
5964			 * probe.  If we are, we will only continue processing
5965			 * if we're still in WARMUP -- if one BEGIN enabling
5966			 * has invoked the exit() action, we don't want to
5967			 * evaluate subsequent BEGIN enablings.
5968			 */
5969			if (probe->dtpr_id == dtrace_probeid_begin &&
5970			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5971				ASSERT(state->dts_activity ==
5972				    DTRACE_ACTIVITY_DRAINING);
5973				continue;
5974			}
5975		}
5976
5977		if (ecb->dte_cond) {
5978			/*
5979			 * If the dte_cond bits indicate that this
5980			 * consumer is only allowed to see user-mode firings
5981			 * of this probe, call the provider's dtps_usermode()
5982			 * entry point to check that the probe was fired
5983			 * while in a user context. Skip this ECB if that's
5984			 * not the case.
5985			 */
5986			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5987			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5988			    probe->dtpr_id, probe->dtpr_arg) == 0)
5989				continue;
5990
5991#if defined(sun)
5992			/*
5993			 * This is more subtle than it looks. We have to be
5994			 * absolutely certain that CRED() isn't going to
5995			 * change out from under us so it's only legit to
5996			 * examine that structure if we're in constrained
5997			 * situations. Currently, the only times we'll this
5998			 * check is if a non-super-user has enabled the
5999			 * profile or syscall providers -- providers that
6000			 * allow visibility of all processes. For the
6001			 * profile case, the check above will ensure that
6002			 * we're examining a user context.
6003			 */
6004			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6005				cred_t *cr;
6006				cred_t *s_cr =
6007				    ecb->dte_state->dts_cred.dcr_cred;
6008				proc_t *proc;
6009
6010				ASSERT(s_cr != NULL);
6011
6012				if ((cr = CRED()) == NULL ||
6013				    s_cr->cr_uid != cr->cr_uid ||
6014				    s_cr->cr_uid != cr->cr_ruid ||
6015				    s_cr->cr_uid != cr->cr_suid ||
6016				    s_cr->cr_gid != cr->cr_gid ||
6017				    s_cr->cr_gid != cr->cr_rgid ||
6018				    s_cr->cr_gid != cr->cr_sgid ||
6019				    (proc = ttoproc(curthread)) == NULL ||
6020				    (proc->p_flag & SNOCD))
6021					continue;
6022			}
6023
6024			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6025				cred_t *cr;
6026				cred_t *s_cr =
6027				    ecb->dte_state->dts_cred.dcr_cred;
6028
6029				ASSERT(s_cr != NULL);
6030
6031				if ((cr = CRED()) == NULL ||
6032				    s_cr->cr_zone->zone_id !=
6033				    cr->cr_zone->zone_id)
6034					continue;
6035			}
6036#endif
6037		}
6038
6039		if (now - state->dts_alive > dtrace_deadman_timeout) {
6040			/*
6041			 * We seem to be dead.  Unless we (a) have kernel
6042			 * destructive permissions (b) have expicitly enabled
6043			 * destructive actions and (c) destructive actions have
6044			 * not been disabled, we're going to transition into
6045			 * the KILLED state, from which no further processing
6046			 * on this state will be performed.
6047			 */
6048			if (!dtrace_priv_kernel_destructive(state) ||
6049			    !state->dts_cred.dcr_destructive ||
6050			    dtrace_destructive_disallow) {
6051				void *activity = &state->dts_activity;
6052				dtrace_activity_t current;
6053
6054				do {
6055					current = state->dts_activity;
6056				} while (dtrace_cas32(activity, current,
6057				    DTRACE_ACTIVITY_KILLED) != current);
6058
6059				continue;
6060			}
6061		}
6062
6063		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6064		    ecb->dte_alignment, state, &mstate)) < 0)
6065			continue;
6066
6067		tomax = buf->dtb_tomax;
6068		ASSERT(tomax != NULL);
6069
6070		if (ecb->dte_size != 0)
6071			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6072
6073		mstate.dtms_epid = ecb->dte_epid;
6074		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6075
6076		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6077			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6078		else
6079			mstate.dtms_access = 0;
6080
6081		if (pred != NULL) {
6082			dtrace_difo_t *dp = pred->dtp_difo;
6083			int rval;
6084
6085			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6086
6087			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6088				dtrace_cacheid_t cid = probe->dtpr_predcache;
6089
6090				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6091					/*
6092					 * Update the predicate cache...
6093					 */
6094					ASSERT(cid == pred->dtp_cacheid);
6095					curthread->t_predcache = cid;
6096				}
6097
6098				continue;
6099			}
6100		}
6101
6102		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6103		    act != NULL; act = act->dta_next) {
6104			size_t valoffs;
6105			dtrace_difo_t *dp;
6106			dtrace_recdesc_t *rec = &act->dta_rec;
6107
6108			size = rec->dtrd_size;
6109			valoffs = offs + rec->dtrd_offset;
6110
6111			if (DTRACEACT_ISAGG(act->dta_kind)) {
6112				uint64_t v = 0xbad;
6113				dtrace_aggregation_t *agg;
6114
6115				agg = (dtrace_aggregation_t *)act;
6116
6117				if ((dp = act->dta_difo) != NULL)
6118					v = dtrace_dif_emulate(dp,
6119					    &mstate, vstate, state);
6120
6121				if (*flags & CPU_DTRACE_ERROR)
6122					continue;
6123
6124				/*
6125				 * Note that we always pass the expression
6126				 * value from the previous iteration of the
6127				 * action loop.  This value will only be used
6128				 * if there is an expression argument to the
6129				 * aggregating action, denoted by the
6130				 * dtag_hasarg field.
6131				 */
6132				dtrace_aggregate(agg, buf,
6133				    offs, aggbuf, v, val);
6134				continue;
6135			}
6136
6137			switch (act->dta_kind) {
6138			case DTRACEACT_STOP:
6139				if (dtrace_priv_proc_destructive(state))
6140					dtrace_action_stop();
6141				continue;
6142
6143			case DTRACEACT_BREAKPOINT:
6144				if (dtrace_priv_kernel_destructive(state))
6145					dtrace_action_breakpoint(ecb);
6146				continue;
6147
6148			case DTRACEACT_PANIC:
6149				if (dtrace_priv_kernel_destructive(state))
6150					dtrace_action_panic(ecb);
6151				continue;
6152
6153			case DTRACEACT_STACK:
6154				if (!dtrace_priv_kernel(state))
6155					continue;
6156
6157				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6158				    size / sizeof (pc_t), probe->dtpr_aframes,
6159				    DTRACE_ANCHORED(probe) ? NULL :
6160				    (uint32_t *)arg0);
6161				continue;
6162
6163#if defined(sun)
6164			case DTRACEACT_JSTACK:
6165			case DTRACEACT_USTACK:
6166				if (!dtrace_priv_proc(state))
6167					continue;
6168
6169				/*
6170				 * See comment in DIF_VAR_PID.
6171				 */
6172				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6173				    CPU_ON_INTR(CPU)) {
6174					int depth = DTRACE_USTACK_NFRAMES(
6175					    rec->dtrd_arg) + 1;
6176
6177					dtrace_bzero((void *)(tomax + valoffs),
6178					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6179					    + depth * sizeof (uint64_t));
6180
6181					continue;
6182				}
6183
6184				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6185				    curproc->p_dtrace_helpers != NULL) {
6186					/*
6187					 * This is the slow path -- we have
6188					 * allocated string space, and we're
6189					 * getting the stack of a process that
6190					 * has helpers.  Call into a separate
6191					 * routine to perform this processing.
6192					 */
6193					dtrace_action_ustack(&mstate, state,
6194					    (uint64_t *)(tomax + valoffs),
6195					    rec->dtrd_arg);
6196					continue;
6197				}
6198
6199				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6200				dtrace_getupcstack((uint64_t *)
6201				    (tomax + valoffs),
6202				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6203				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6204				continue;
6205#endif
6206
6207			default:
6208				break;
6209			}
6210
6211			dp = act->dta_difo;
6212			ASSERT(dp != NULL);
6213
6214			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6215
6216			if (*flags & CPU_DTRACE_ERROR)
6217				continue;
6218
6219			switch (act->dta_kind) {
6220			case DTRACEACT_SPECULATE:
6221				ASSERT(buf == &state->dts_buffer[cpuid]);
6222				buf = dtrace_speculation_buffer(state,
6223				    cpuid, val);
6224
6225				if (buf == NULL) {
6226					*flags |= CPU_DTRACE_DROP;
6227					continue;
6228				}
6229
6230				offs = dtrace_buffer_reserve(buf,
6231				    ecb->dte_needed, ecb->dte_alignment,
6232				    state, NULL);
6233
6234				if (offs < 0) {
6235					*flags |= CPU_DTRACE_DROP;
6236					continue;
6237				}
6238
6239				tomax = buf->dtb_tomax;
6240				ASSERT(tomax != NULL);
6241
6242				if (ecb->dte_size != 0)
6243					DTRACE_STORE(uint32_t, tomax, offs,
6244					    ecb->dte_epid);
6245				continue;
6246
6247			case DTRACEACT_PRINTM: {
6248				/* The DIF returns a 'memref'. */
6249				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6250
6251				/* Get the size from the memref. */
6252				size = memref[1];
6253
6254				/*
6255				 * Check if the size exceeds the allocated
6256				 * buffer size.
6257				 */
6258				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6259					/* Flag a drop! */
6260					*flags |= CPU_DTRACE_DROP;
6261					continue;
6262				}
6263
6264				/* Store the size in the buffer first. */
6265				DTRACE_STORE(uintptr_t, tomax,
6266				    valoffs, size);
6267
6268				/*
6269				 * Offset the buffer address to the start
6270				 * of the data.
6271				 */
6272				valoffs += sizeof(uintptr_t);
6273
6274				/*
6275				 * Reset to the memory address rather than
6276				 * the memref array, then let the BYREF
6277				 * code below do the work to store the
6278				 * memory data in the buffer.
6279				 */
6280				val = memref[0];
6281				break;
6282			}
6283
6284			case DTRACEACT_PRINTT: {
6285				/* The DIF returns a 'typeref'. */
6286				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6287				char c = '\0' + 1;
6288				size_t s;
6289
6290				/*
6291				 * Get the type string length and round it
6292				 * up so that the data that follows is
6293				 * aligned for easy access.
6294				 */
6295				size_t typs = strlen((char *) typeref[2]) + 1;
6296				typs = roundup(typs,  sizeof(uintptr_t));
6297
6298				/*
6299				 *Get the size from the typeref using the
6300				 * number of elements and the type size.
6301				 */
6302				size = typeref[1] * typeref[3];
6303
6304				/*
6305				 * Check if the size exceeds the allocated
6306				 * buffer size.
6307				 */
6308				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6309					/* Flag a drop! */
6310					*flags |= CPU_DTRACE_DROP;
6311
6312				}
6313
6314				/* Store the size in the buffer first. */
6315				DTRACE_STORE(uintptr_t, tomax,
6316				    valoffs, size);
6317				valoffs += sizeof(uintptr_t);
6318
6319				/* Store the type size in the buffer. */
6320				DTRACE_STORE(uintptr_t, tomax,
6321				    valoffs, typeref[3]);
6322				valoffs += sizeof(uintptr_t);
6323
6324				val = typeref[2];
6325
6326				for (s = 0; s < typs; s++) {
6327					if (c != '\0')
6328						c = dtrace_load8(val++);
6329
6330					DTRACE_STORE(uint8_t, tomax,
6331					    valoffs++, c);
6332				}
6333
6334				/*
6335				 * Reset to the memory address rather than
6336				 * the typeref array, then let the BYREF
6337				 * code below do the work to store the
6338				 * memory data in the buffer.
6339				 */
6340				val = typeref[0];
6341				break;
6342			}
6343
6344			case DTRACEACT_CHILL:
6345				if (dtrace_priv_kernel_destructive(state))
6346					dtrace_action_chill(&mstate, val);
6347				continue;
6348
6349			case DTRACEACT_RAISE:
6350				if (dtrace_priv_proc_destructive(state))
6351					dtrace_action_raise(val);
6352				continue;
6353
6354			case DTRACEACT_COMMIT:
6355				ASSERT(!committed);
6356
6357				/*
6358				 * We need to commit our buffer state.
6359				 */
6360				if (ecb->dte_size)
6361					buf->dtb_offset = offs + ecb->dte_size;
6362				buf = &state->dts_buffer[cpuid];
6363				dtrace_speculation_commit(state, cpuid, val);
6364				committed = 1;
6365				continue;
6366
6367			case DTRACEACT_DISCARD:
6368				dtrace_speculation_discard(state, cpuid, val);
6369				continue;
6370
6371			case DTRACEACT_DIFEXPR:
6372			case DTRACEACT_LIBACT:
6373			case DTRACEACT_PRINTF:
6374			case DTRACEACT_PRINTA:
6375			case DTRACEACT_SYSTEM:
6376			case DTRACEACT_FREOPEN:
6377				break;
6378
6379			case DTRACEACT_SYM:
6380			case DTRACEACT_MOD:
6381				if (!dtrace_priv_kernel(state))
6382					continue;
6383				break;
6384
6385			case DTRACEACT_USYM:
6386			case DTRACEACT_UMOD:
6387			case DTRACEACT_UADDR: {
6388#if defined(sun)
6389				struct pid *pid = curthread->t_procp->p_pidp;
6390#endif
6391
6392				if (!dtrace_priv_proc(state))
6393					continue;
6394
6395				DTRACE_STORE(uint64_t, tomax,
6396#if defined(sun)
6397				    valoffs, (uint64_t)pid->pid_id);
6398#else
6399				    valoffs, (uint64_t) curproc->p_pid);
6400#endif
6401				DTRACE_STORE(uint64_t, tomax,
6402				    valoffs + sizeof (uint64_t), val);
6403
6404				continue;
6405			}
6406
6407			case DTRACEACT_EXIT: {
6408				/*
6409				 * For the exit action, we are going to attempt
6410				 * to atomically set our activity to be
6411				 * draining.  If this fails (either because
6412				 * another CPU has beat us to the exit action,
6413				 * or because our current activity is something
6414				 * other than ACTIVE or WARMUP), we will
6415				 * continue.  This assures that the exit action
6416				 * can be successfully recorded at most once
6417				 * when we're in the ACTIVE state.  If we're
6418				 * encountering the exit() action while in
6419				 * COOLDOWN, however, we want to honor the new
6420				 * status code.  (We know that we're the only
6421				 * thread in COOLDOWN, so there is no race.)
6422				 */
6423				void *activity = &state->dts_activity;
6424				dtrace_activity_t current = state->dts_activity;
6425
6426				if (current == DTRACE_ACTIVITY_COOLDOWN)
6427					break;
6428
6429				if (current != DTRACE_ACTIVITY_WARMUP)
6430					current = DTRACE_ACTIVITY_ACTIVE;
6431
6432				if (dtrace_cas32(activity, current,
6433				    DTRACE_ACTIVITY_DRAINING) != current) {
6434					*flags |= CPU_DTRACE_DROP;
6435					continue;
6436				}
6437
6438				break;
6439			}
6440
6441			default:
6442				ASSERT(0);
6443			}
6444
6445			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6446				uintptr_t end = valoffs + size;
6447
6448				if (!dtrace_vcanload((void *)(uintptr_t)val,
6449				    &dp->dtdo_rtype, &mstate, vstate))
6450					continue;
6451
6452				/*
6453				 * If this is a string, we're going to only
6454				 * load until we find the zero byte -- after
6455				 * which we'll store zero bytes.
6456				 */
6457				if (dp->dtdo_rtype.dtdt_kind ==
6458				    DIF_TYPE_STRING) {
6459					char c = '\0' + 1;
6460					int intuple = act->dta_intuple;
6461					size_t s;
6462
6463					for (s = 0; s < size; s++) {
6464						if (c != '\0')
6465							c = dtrace_load8(val++);
6466
6467						DTRACE_STORE(uint8_t, tomax,
6468						    valoffs++, c);
6469
6470						if (c == '\0' && intuple)
6471							break;
6472					}
6473
6474					continue;
6475				}
6476
6477				while (valoffs < end) {
6478					DTRACE_STORE(uint8_t, tomax, valoffs++,
6479					    dtrace_load8(val++));
6480				}
6481
6482				continue;
6483			}
6484
6485			switch (size) {
6486			case 0:
6487				break;
6488
6489			case sizeof (uint8_t):
6490				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6491				break;
6492			case sizeof (uint16_t):
6493				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6494				break;
6495			case sizeof (uint32_t):
6496				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6497				break;
6498			case sizeof (uint64_t):
6499				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6500				break;
6501			default:
6502				/*
6503				 * Any other size should have been returned by
6504				 * reference, not by value.
6505				 */
6506				ASSERT(0);
6507				break;
6508			}
6509		}
6510
6511		if (*flags & CPU_DTRACE_DROP)
6512			continue;
6513
6514		if (*flags & CPU_DTRACE_FAULT) {
6515			int ndx;
6516			dtrace_action_t *err;
6517
6518			buf->dtb_errors++;
6519
6520			if (probe->dtpr_id == dtrace_probeid_error) {
6521				/*
6522				 * There's nothing we can do -- we had an
6523				 * error on the error probe.  We bump an
6524				 * error counter to at least indicate that
6525				 * this condition happened.
6526				 */
6527				dtrace_error(&state->dts_dblerrors);
6528				continue;
6529			}
6530
6531			if (vtime) {
6532				/*
6533				 * Before recursing on dtrace_probe(), we
6534				 * need to explicitly clear out our start
6535				 * time to prevent it from being accumulated
6536				 * into t_dtrace_vtime.
6537				 */
6538				curthread->t_dtrace_start = 0;
6539			}
6540
6541			/*
6542			 * Iterate over the actions to figure out which action
6543			 * we were processing when we experienced the error.
6544			 * Note that act points _past_ the faulting action; if
6545			 * act is ecb->dte_action, the fault was in the
6546			 * predicate, if it's ecb->dte_action->dta_next it's
6547			 * in action #1, and so on.
6548			 */
6549			for (err = ecb->dte_action, ndx = 0;
6550			    err != act; err = err->dta_next, ndx++)
6551				continue;
6552
6553			dtrace_probe_error(state, ecb->dte_epid, ndx,
6554			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6555			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6556			    cpu_core[cpuid].cpuc_dtrace_illval);
6557
6558			continue;
6559		}
6560
6561		if (!committed)
6562			buf->dtb_offset = offs + ecb->dte_size;
6563	}
6564
6565	if (vtime)
6566		curthread->t_dtrace_start = dtrace_gethrtime();
6567
6568	dtrace_interrupt_enable(cookie);
6569}
6570
6571/*
6572 * DTrace Probe Hashing Functions
6573 *
6574 * The functions in this section (and indeed, the functions in remaining
6575 * sections) are not _called_ from probe context.  (Any exceptions to this are
6576 * marked with a "Note:".)  Rather, they are called from elsewhere in the
6577 * DTrace framework to look-up probes in, add probes to and remove probes from
6578 * the DTrace probe hashes.  (Each probe is hashed by each element of the
6579 * probe tuple -- allowing for fast lookups, regardless of what was
6580 * specified.)
6581 */
6582static uint_t
6583dtrace_hash_str(const char *p)
6584{
6585	unsigned int g;
6586	uint_t hval = 0;
6587
6588	while (*p) {
6589		hval = (hval << 4) + *p++;
6590		if ((g = (hval & 0xf0000000)) != 0)
6591			hval ^= g >> 24;
6592		hval &= ~g;
6593	}
6594	return (hval);
6595}
6596
6597static dtrace_hash_t *
6598dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6599{
6600	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6601
6602	hash->dth_stroffs = stroffs;
6603	hash->dth_nextoffs = nextoffs;
6604	hash->dth_prevoffs = prevoffs;
6605
6606	hash->dth_size = 1;
6607	hash->dth_mask = hash->dth_size - 1;
6608
6609	hash->dth_tab = kmem_zalloc(hash->dth_size *
6610	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6611
6612	return (hash);
6613}
6614
6615static void
6616dtrace_hash_destroy(dtrace_hash_t *hash)
6617{
6618#ifdef DEBUG
6619	int i;
6620
6621	for (i = 0; i < hash->dth_size; i++)
6622		ASSERT(hash->dth_tab[i] == NULL);
6623#endif
6624
6625	kmem_free(hash->dth_tab,
6626	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6627	kmem_free(hash, sizeof (dtrace_hash_t));
6628}
6629
6630static void
6631dtrace_hash_resize(dtrace_hash_t *hash)
6632{
6633	int size = hash->dth_size, i, ndx;
6634	int new_size = hash->dth_size << 1;
6635	int new_mask = new_size - 1;
6636	dtrace_hashbucket_t **new_tab, *bucket, *next;
6637
6638	ASSERT((new_size & new_mask) == 0);
6639
6640	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6641
6642	for (i = 0; i < size; i++) {
6643		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6644			dtrace_probe_t *probe = bucket->dthb_chain;
6645
6646			ASSERT(probe != NULL);
6647			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6648
6649			next = bucket->dthb_next;
6650			bucket->dthb_next = new_tab[ndx];
6651			new_tab[ndx] = bucket;
6652		}
6653	}
6654
6655	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6656	hash->dth_tab = new_tab;
6657	hash->dth_size = new_size;
6658	hash->dth_mask = new_mask;
6659}
6660
6661static void
6662dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6663{
6664	int hashval = DTRACE_HASHSTR(hash, new);
6665	int ndx = hashval & hash->dth_mask;
6666	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6667	dtrace_probe_t **nextp, **prevp;
6668
6669	for (; bucket != NULL; bucket = bucket->dthb_next) {
6670		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6671			goto add;
6672	}
6673
6674	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6675		dtrace_hash_resize(hash);
6676		dtrace_hash_add(hash, new);
6677		return;
6678	}
6679
6680	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6681	bucket->dthb_next = hash->dth_tab[ndx];
6682	hash->dth_tab[ndx] = bucket;
6683	hash->dth_nbuckets++;
6684
6685add:
6686	nextp = DTRACE_HASHNEXT(hash, new);
6687	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6688	*nextp = bucket->dthb_chain;
6689
6690	if (bucket->dthb_chain != NULL) {
6691		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6692		ASSERT(*prevp == NULL);
6693		*prevp = new;
6694	}
6695
6696	bucket->dthb_chain = new;
6697	bucket->dthb_len++;
6698}
6699
6700static dtrace_probe_t *
6701dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6702{
6703	int hashval = DTRACE_HASHSTR(hash, template);
6704	int ndx = hashval & hash->dth_mask;
6705	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6706
6707	for (; bucket != NULL; bucket = bucket->dthb_next) {
6708		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6709			return (bucket->dthb_chain);
6710	}
6711
6712	return (NULL);
6713}
6714
6715static int
6716dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6717{
6718	int hashval = DTRACE_HASHSTR(hash, template);
6719	int ndx = hashval & hash->dth_mask;
6720	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6721
6722	for (; bucket != NULL; bucket = bucket->dthb_next) {
6723		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6724			return (bucket->dthb_len);
6725	}
6726
6727	return (0);
6728}
6729
6730static void
6731dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6732{
6733	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6734	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6735
6736	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6737	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6738
6739	/*
6740	 * Find the bucket that we're removing this probe from.
6741	 */
6742	for (; bucket != NULL; bucket = bucket->dthb_next) {
6743		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6744			break;
6745	}
6746
6747	ASSERT(bucket != NULL);
6748
6749	if (*prevp == NULL) {
6750		if (*nextp == NULL) {
6751			/*
6752			 * The removed probe was the only probe on this
6753			 * bucket; we need to remove the bucket.
6754			 */
6755			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6756
6757			ASSERT(bucket->dthb_chain == probe);
6758			ASSERT(b != NULL);
6759
6760			if (b == bucket) {
6761				hash->dth_tab[ndx] = bucket->dthb_next;
6762			} else {
6763				while (b->dthb_next != bucket)
6764					b = b->dthb_next;
6765				b->dthb_next = bucket->dthb_next;
6766			}
6767
6768			ASSERT(hash->dth_nbuckets > 0);
6769			hash->dth_nbuckets--;
6770			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6771			return;
6772		}
6773
6774		bucket->dthb_chain = *nextp;
6775	} else {
6776		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6777	}
6778
6779	if (*nextp != NULL)
6780		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6781}
6782
6783/*
6784 * DTrace Utility Functions
6785 *
6786 * These are random utility functions that are _not_ called from probe context.
6787 */
6788static int
6789dtrace_badattr(const dtrace_attribute_t *a)
6790{
6791	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6792	    a->dtat_data > DTRACE_STABILITY_MAX ||
6793	    a->dtat_class > DTRACE_CLASS_MAX);
6794}
6795
6796/*
6797 * Return a duplicate copy of a string.  If the specified string is NULL,
6798 * this function returns a zero-length string.
6799 */
6800static char *
6801dtrace_strdup(const char *str)
6802{
6803	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6804
6805	if (str != NULL)
6806		(void) strcpy(new, str);
6807
6808	return (new);
6809}
6810
6811#define	DTRACE_ISALPHA(c)	\
6812	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6813
6814static int
6815dtrace_badname(const char *s)
6816{
6817	char c;
6818
6819	if (s == NULL || (c = *s++) == '\0')
6820		return (0);
6821
6822	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6823		return (1);
6824
6825	while ((c = *s++) != '\0') {
6826		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6827		    c != '-' && c != '_' && c != '.' && c != '`')
6828			return (1);
6829	}
6830
6831	return (0);
6832}
6833
6834static void
6835dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6836{
6837	uint32_t priv;
6838
6839#if defined(sun)
6840	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6841		/*
6842		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6843		 */
6844		priv = DTRACE_PRIV_ALL;
6845	} else {
6846		*uidp = crgetuid(cr);
6847		*zoneidp = crgetzoneid(cr);
6848
6849		priv = 0;
6850		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6851			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6852		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6853			priv |= DTRACE_PRIV_USER;
6854		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6855			priv |= DTRACE_PRIV_PROC;
6856		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6857			priv |= DTRACE_PRIV_OWNER;
6858		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6859			priv |= DTRACE_PRIV_ZONEOWNER;
6860	}
6861#else
6862	priv = DTRACE_PRIV_ALL;
6863#endif
6864
6865	*privp = priv;
6866}
6867
6868#ifdef DTRACE_ERRDEBUG
6869static void
6870dtrace_errdebug(const char *str)
6871{
6872	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6873	int occupied = 0;
6874
6875	mutex_enter(&dtrace_errlock);
6876	dtrace_errlast = str;
6877	dtrace_errthread = curthread;
6878
6879	while (occupied++ < DTRACE_ERRHASHSZ) {
6880		if (dtrace_errhash[hval].dter_msg == str) {
6881			dtrace_errhash[hval].dter_count++;
6882			goto out;
6883		}
6884
6885		if (dtrace_errhash[hval].dter_msg != NULL) {
6886			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6887			continue;
6888		}
6889
6890		dtrace_errhash[hval].dter_msg = str;
6891		dtrace_errhash[hval].dter_count = 1;
6892		goto out;
6893	}
6894
6895	panic("dtrace: undersized error hash");
6896out:
6897	mutex_exit(&dtrace_errlock);
6898}
6899#endif
6900
6901/*
6902 * DTrace Matching Functions
6903 *
6904 * These functions are used to match groups of probes, given some elements of
6905 * a probe tuple, or some globbed expressions for elements of a probe tuple.
6906 */
6907static int
6908dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6909    zoneid_t zoneid)
6910{
6911	if (priv != DTRACE_PRIV_ALL) {
6912		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6913		uint32_t match = priv & ppriv;
6914
6915		/*
6916		 * No PRIV_DTRACE_* privileges...
6917		 */
6918		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6919		    DTRACE_PRIV_KERNEL)) == 0)
6920			return (0);
6921
6922		/*
6923		 * No matching bits, but there were bits to match...
6924		 */
6925		if (match == 0 && ppriv != 0)
6926			return (0);
6927
6928		/*
6929		 * Need to have permissions to the process, but don't...
6930		 */
6931		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6932		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6933			return (0);
6934		}
6935
6936		/*
6937		 * Need to be in the same zone unless we possess the
6938		 * privilege to examine all zones.
6939		 */
6940		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6941		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6942			return (0);
6943		}
6944	}
6945
6946	return (1);
6947}
6948
6949/*
6950 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6951 * consists of input pattern strings and an ops-vector to evaluate them.
6952 * This function returns >0 for match, 0 for no match, and <0 for error.
6953 */
6954static int
6955dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6956    uint32_t priv, uid_t uid, zoneid_t zoneid)
6957{
6958	dtrace_provider_t *pvp = prp->dtpr_provider;
6959	int rv;
6960
6961	if (pvp->dtpv_defunct)
6962		return (0);
6963
6964	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6965		return (rv);
6966
6967	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6968		return (rv);
6969
6970	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6971		return (rv);
6972
6973	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6974		return (rv);
6975
6976	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6977		return (0);
6978
6979	return (rv);
6980}
6981
6982/*
6983 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6984 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6985 * libc's version, the kernel version only applies to 8-bit ASCII strings.
6986 * In addition, all of the recursion cases except for '*' matching have been
6987 * unwound.  For '*', we still implement recursive evaluation, but a depth
6988 * counter is maintained and matching is aborted if we recurse too deep.
6989 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6990 */
6991static int
6992dtrace_match_glob(const char *s, const char *p, int depth)
6993{
6994	const char *olds;
6995	char s1, c;
6996	int gs;
6997
6998	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6999		return (-1);
7000
7001	if (s == NULL)
7002		s = ""; /* treat NULL as empty string */
7003
7004top:
7005	olds = s;
7006	s1 = *s++;
7007
7008	if (p == NULL)
7009		return (0);
7010
7011	if ((c = *p++) == '\0')
7012		return (s1 == '\0');
7013
7014	switch (c) {
7015	case '[': {
7016		int ok = 0, notflag = 0;
7017		char lc = '\0';
7018
7019		if (s1 == '\0')
7020			return (0);
7021
7022		if (*p == '!') {
7023			notflag = 1;
7024			p++;
7025		}
7026
7027		if ((c = *p++) == '\0')
7028			return (0);
7029
7030		do {
7031			if (c == '-' && lc != '\0' && *p != ']') {
7032				if ((c = *p++) == '\0')
7033					return (0);
7034				if (c == '\\' && (c = *p++) == '\0')
7035					return (0);
7036
7037				if (notflag) {
7038					if (s1 < lc || s1 > c)
7039						ok++;
7040					else
7041						return (0);
7042				} else if (lc <= s1 && s1 <= c)
7043					ok++;
7044
7045			} else if (c == '\\' && (c = *p++) == '\0')
7046				return (0);
7047
7048			lc = c; /* save left-hand 'c' for next iteration */
7049
7050			if (notflag) {
7051				if (s1 != c)
7052					ok++;
7053				else
7054					return (0);
7055			} else if (s1 == c)
7056				ok++;
7057
7058			if ((c = *p++) == '\0')
7059				return (0);
7060
7061		} while (c != ']');
7062
7063		if (ok)
7064			goto top;
7065
7066		return (0);
7067	}
7068
7069	case '\\':
7070		if ((c = *p++) == '\0')
7071			return (0);
7072		/*FALLTHRU*/
7073
7074	default:
7075		if (c != s1)
7076			return (0);
7077		/*FALLTHRU*/
7078
7079	case '?':
7080		if (s1 != '\0')
7081			goto top;
7082		return (0);
7083
7084	case '*':
7085		while (*p == '*')
7086			p++; /* consecutive *'s are identical to a single one */
7087
7088		if (*p == '\0')
7089			return (1);
7090
7091		for (s = olds; *s != '\0'; s++) {
7092			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7093				return (gs);
7094		}
7095
7096		return (0);
7097	}
7098}
7099
7100/*ARGSUSED*/
7101static int
7102dtrace_match_string(const char *s, const char *p, int depth)
7103{
7104	return (s != NULL && strcmp(s, p) == 0);
7105}
7106
7107/*ARGSUSED*/
7108static int
7109dtrace_match_nul(const char *s, const char *p, int depth)
7110{
7111	return (1); /* always match the empty pattern */
7112}
7113
7114/*ARGSUSED*/
7115static int
7116dtrace_match_nonzero(const char *s, const char *p, int depth)
7117{
7118	return (s != NULL && s[0] != '\0');
7119}
7120
7121static int
7122dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7123    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7124{
7125	dtrace_probe_t template, *probe;
7126	dtrace_hash_t *hash = NULL;
7127	int len, best = INT_MAX, nmatched = 0;
7128	dtrace_id_t i;
7129
7130	ASSERT(MUTEX_HELD(&dtrace_lock));
7131
7132	/*
7133	 * If the probe ID is specified in the key, just lookup by ID and
7134	 * invoke the match callback once if a matching probe is found.
7135	 */
7136	if (pkp->dtpk_id != DTRACE_IDNONE) {
7137		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7138		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7139			(void) (*matched)(probe, arg);
7140			nmatched++;
7141		}
7142		return (nmatched);
7143	}
7144
7145	template.dtpr_mod = (char *)pkp->dtpk_mod;
7146	template.dtpr_func = (char *)pkp->dtpk_func;
7147	template.dtpr_name = (char *)pkp->dtpk_name;
7148
7149	/*
7150	 * We want to find the most distinct of the module name, function
7151	 * name, and name.  So for each one that is not a glob pattern or
7152	 * empty string, we perform a lookup in the corresponding hash and
7153	 * use the hash table with the fewest collisions to do our search.
7154	 */
7155	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7156	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7157		best = len;
7158		hash = dtrace_bymod;
7159	}
7160
7161	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7162	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7163		best = len;
7164		hash = dtrace_byfunc;
7165	}
7166
7167	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7168	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7169		best = len;
7170		hash = dtrace_byname;
7171	}
7172
7173	/*
7174	 * If we did not select a hash table, iterate over every probe and
7175	 * invoke our callback for each one that matches our input probe key.
7176	 */
7177	if (hash == NULL) {
7178		for (i = 0; i < dtrace_nprobes; i++) {
7179			if ((probe = dtrace_probes[i]) == NULL ||
7180			    dtrace_match_probe(probe, pkp, priv, uid,
7181			    zoneid) <= 0)
7182				continue;
7183
7184			nmatched++;
7185
7186			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7187				break;
7188		}
7189
7190		return (nmatched);
7191	}
7192
7193	/*
7194	 * If we selected a hash table, iterate over each probe of the same key
7195	 * name and invoke the callback for every probe that matches the other
7196	 * attributes of our input probe key.
7197	 */
7198	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7199	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7200
7201		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7202			continue;
7203
7204		nmatched++;
7205
7206		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7207			break;
7208	}
7209
7210	return (nmatched);
7211}
7212
7213/*
7214 * Return the function pointer dtrace_probecmp() should use to compare the
7215 * specified pattern with a string.  For NULL or empty patterns, we select
7216 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7217 * For non-empty non-glob strings, we use dtrace_match_string().
7218 */
7219static dtrace_probekey_f *
7220dtrace_probekey_func(const char *p)
7221{
7222	char c;
7223
7224	if (p == NULL || *p == '\0')
7225		return (&dtrace_match_nul);
7226
7227	while ((c = *p++) != '\0') {
7228		if (c == '[' || c == '?' || c == '*' || c == '\\')
7229			return (&dtrace_match_glob);
7230	}
7231
7232	return (&dtrace_match_string);
7233}
7234
7235/*
7236 * Build a probe comparison key for use with dtrace_match_probe() from the
7237 * given probe description.  By convention, a null key only matches anchored
7238 * probes: if each field is the empty string, reset dtpk_fmatch to
7239 * dtrace_match_nonzero().
7240 */
7241static void
7242dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7243{
7244	pkp->dtpk_prov = pdp->dtpd_provider;
7245	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7246
7247	pkp->dtpk_mod = pdp->dtpd_mod;
7248	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7249
7250	pkp->dtpk_func = pdp->dtpd_func;
7251	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7252
7253	pkp->dtpk_name = pdp->dtpd_name;
7254	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7255
7256	pkp->dtpk_id = pdp->dtpd_id;
7257
7258	if (pkp->dtpk_id == DTRACE_IDNONE &&
7259	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7260	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7261	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7262	    pkp->dtpk_nmatch == &dtrace_match_nul)
7263		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7264}
7265
7266/*
7267 * DTrace Provider-to-Framework API Functions
7268 *
7269 * These functions implement much of the Provider-to-Framework API, as
7270 * described in <sys/dtrace.h>.  The parts of the API not in this section are
7271 * the functions in the API for probe management (found below), and
7272 * dtrace_probe() itself (found above).
7273 */
7274
7275/*
7276 * Register the calling provider with the DTrace framework.  This should
7277 * generally be called by DTrace providers in their attach(9E) entry point.
7278 */
7279int
7280dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7281    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7282{
7283	dtrace_provider_t *provider;
7284
7285	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7286		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7287		    "arguments", name ? name : "<NULL>");
7288		return (EINVAL);
7289	}
7290
7291	if (name[0] == '\0' || dtrace_badname(name)) {
7292		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7293		    "provider name", name);
7294		return (EINVAL);
7295	}
7296
7297	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7298	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7299	    pops->dtps_destroy == NULL ||
7300	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7301		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7302		    "provider ops", name);
7303		return (EINVAL);
7304	}
7305
7306	if (dtrace_badattr(&pap->dtpa_provider) ||
7307	    dtrace_badattr(&pap->dtpa_mod) ||
7308	    dtrace_badattr(&pap->dtpa_func) ||
7309	    dtrace_badattr(&pap->dtpa_name) ||
7310	    dtrace_badattr(&pap->dtpa_args)) {
7311		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7312		    "provider attributes", name);
7313		return (EINVAL);
7314	}
7315
7316	if (priv & ~DTRACE_PRIV_ALL) {
7317		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7318		    "privilege attributes", name);
7319		return (EINVAL);
7320	}
7321
7322	if ((priv & DTRACE_PRIV_KERNEL) &&
7323	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7324	    pops->dtps_usermode == NULL) {
7325		cmn_err(CE_WARN, "failed to register provider '%s': need "
7326		    "dtps_usermode() op for given privilege attributes", name);
7327		return (EINVAL);
7328	}
7329
7330	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7331	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7332	(void) strcpy(provider->dtpv_name, name);
7333
7334	provider->dtpv_attr = *pap;
7335	provider->dtpv_priv.dtpp_flags = priv;
7336	if (cr != NULL) {
7337		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7338		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7339	}
7340	provider->dtpv_pops = *pops;
7341
7342	if (pops->dtps_provide == NULL) {
7343		ASSERT(pops->dtps_provide_module != NULL);
7344		provider->dtpv_pops.dtps_provide =
7345		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7346	}
7347
7348	if (pops->dtps_provide_module == NULL) {
7349		ASSERT(pops->dtps_provide != NULL);
7350		provider->dtpv_pops.dtps_provide_module =
7351		    (void (*)(void *, modctl_t *))dtrace_nullop;
7352	}
7353
7354	if (pops->dtps_suspend == NULL) {
7355		ASSERT(pops->dtps_resume == NULL);
7356		provider->dtpv_pops.dtps_suspend =
7357		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7358		provider->dtpv_pops.dtps_resume =
7359		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7360	}
7361
7362	provider->dtpv_arg = arg;
7363	*idp = (dtrace_provider_id_t)provider;
7364
7365	if (pops == &dtrace_provider_ops) {
7366		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7367		ASSERT(MUTEX_HELD(&dtrace_lock));
7368		ASSERT(dtrace_anon.dta_enabling == NULL);
7369
7370		/*
7371		 * We make sure that the DTrace provider is at the head of
7372		 * the provider chain.
7373		 */
7374		provider->dtpv_next = dtrace_provider;
7375		dtrace_provider = provider;
7376		return (0);
7377	}
7378
7379	mutex_enter(&dtrace_provider_lock);
7380	mutex_enter(&dtrace_lock);
7381
7382	/*
7383	 * If there is at least one provider registered, we'll add this
7384	 * provider after the first provider.
7385	 */
7386	if (dtrace_provider != NULL) {
7387		provider->dtpv_next = dtrace_provider->dtpv_next;
7388		dtrace_provider->dtpv_next = provider;
7389	} else {
7390		dtrace_provider = provider;
7391	}
7392
7393	if (dtrace_retained != NULL) {
7394		dtrace_enabling_provide(provider);
7395
7396		/*
7397		 * Now we need to call dtrace_enabling_matchall() -- which
7398		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7399		 * to drop all of our locks before calling into it...
7400		 */
7401		mutex_exit(&dtrace_lock);
7402		mutex_exit(&dtrace_provider_lock);
7403		dtrace_enabling_matchall();
7404
7405		return (0);
7406	}
7407
7408	mutex_exit(&dtrace_lock);
7409	mutex_exit(&dtrace_provider_lock);
7410
7411	return (0);
7412}
7413
7414/*
7415 * Unregister the specified provider from the DTrace framework.  This should
7416 * generally be called by DTrace providers in their detach(9E) entry point.
7417 */
7418int
7419dtrace_unregister(dtrace_provider_id_t id)
7420{
7421	dtrace_provider_t *old = (dtrace_provider_t *)id;
7422	dtrace_provider_t *prev = NULL;
7423	int i, self = 0;
7424	dtrace_probe_t *probe, *first = NULL;
7425
7426	if (old->dtpv_pops.dtps_enable ==
7427	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7428		/*
7429		 * If DTrace itself is the provider, we're called with locks
7430		 * already held.
7431		 */
7432		ASSERT(old == dtrace_provider);
7433#if defined(sun)
7434		ASSERT(dtrace_devi != NULL);
7435#endif
7436		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7437		ASSERT(MUTEX_HELD(&dtrace_lock));
7438		self = 1;
7439
7440		if (dtrace_provider->dtpv_next != NULL) {
7441			/*
7442			 * There's another provider here; return failure.
7443			 */
7444			return (EBUSY);
7445		}
7446	} else {
7447		mutex_enter(&dtrace_provider_lock);
7448		mutex_enter(&mod_lock);
7449		mutex_enter(&dtrace_lock);
7450	}
7451
7452	/*
7453	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7454	 * probes, we refuse to let providers slither away, unless this
7455	 * provider has already been explicitly invalidated.
7456	 */
7457	if (!old->dtpv_defunct &&
7458	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7459	    dtrace_anon.dta_state->dts_necbs > 0))) {
7460		if (!self) {
7461			mutex_exit(&dtrace_lock);
7462			mutex_exit(&mod_lock);
7463			mutex_exit(&dtrace_provider_lock);
7464		}
7465		return (EBUSY);
7466	}
7467
7468	/*
7469	 * Attempt to destroy the probes associated with this provider.
7470	 */
7471	for (i = 0; i < dtrace_nprobes; i++) {
7472		if ((probe = dtrace_probes[i]) == NULL)
7473			continue;
7474
7475		if (probe->dtpr_provider != old)
7476			continue;
7477
7478		if (probe->dtpr_ecb == NULL)
7479			continue;
7480
7481		/*
7482		 * We have at least one ECB; we can't remove this provider.
7483		 */
7484		if (!self) {
7485			mutex_exit(&dtrace_lock);
7486			mutex_exit(&mod_lock);
7487			mutex_exit(&dtrace_provider_lock);
7488		}
7489		return (EBUSY);
7490	}
7491
7492	/*
7493	 * All of the probes for this provider are disabled; we can safely
7494	 * remove all of them from their hash chains and from the probe array.
7495	 */
7496	for (i = 0; i < dtrace_nprobes; i++) {
7497		if ((probe = dtrace_probes[i]) == NULL)
7498			continue;
7499
7500		if (probe->dtpr_provider != old)
7501			continue;
7502
7503		dtrace_probes[i] = NULL;
7504
7505		dtrace_hash_remove(dtrace_bymod, probe);
7506		dtrace_hash_remove(dtrace_byfunc, probe);
7507		dtrace_hash_remove(dtrace_byname, probe);
7508
7509		if (first == NULL) {
7510			first = probe;
7511			probe->dtpr_nextmod = NULL;
7512		} else {
7513			probe->dtpr_nextmod = first;
7514			first = probe;
7515		}
7516	}
7517
7518	/*
7519	 * The provider's probes have been removed from the hash chains and
7520	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7521	 * everyone has cleared out from any probe array processing.
7522	 */
7523	dtrace_sync();
7524
7525	for (probe = first; probe != NULL; probe = first) {
7526		first = probe->dtpr_nextmod;
7527
7528		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7529		    probe->dtpr_arg);
7530		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7531		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7532		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7533#if defined(sun)
7534		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7535#else
7536		free_unr(dtrace_arena, probe->dtpr_id);
7537#endif
7538		kmem_free(probe, sizeof (dtrace_probe_t));
7539	}
7540
7541	if ((prev = dtrace_provider) == old) {
7542#if defined(sun)
7543		ASSERT(self || dtrace_devi == NULL);
7544		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7545#endif
7546		dtrace_provider = old->dtpv_next;
7547	} else {
7548		while (prev != NULL && prev->dtpv_next != old)
7549			prev = prev->dtpv_next;
7550
7551		if (prev == NULL) {
7552			panic("attempt to unregister non-existent "
7553			    "dtrace provider %p\n", (void *)id);
7554		}
7555
7556		prev->dtpv_next = old->dtpv_next;
7557	}
7558
7559	if (!self) {
7560		mutex_exit(&dtrace_lock);
7561		mutex_exit(&mod_lock);
7562		mutex_exit(&dtrace_provider_lock);
7563	}
7564
7565	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7566	kmem_free(old, sizeof (dtrace_provider_t));
7567
7568	return (0);
7569}
7570
7571/*
7572 * Invalidate the specified provider.  All subsequent probe lookups for the
7573 * specified provider will fail, but its probes will not be removed.
7574 */
7575void
7576dtrace_invalidate(dtrace_provider_id_t id)
7577{
7578	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7579
7580	ASSERT(pvp->dtpv_pops.dtps_enable !=
7581	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7582
7583	mutex_enter(&dtrace_provider_lock);
7584	mutex_enter(&dtrace_lock);
7585
7586	pvp->dtpv_defunct = 1;
7587
7588	mutex_exit(&dtrace_lock);
7589	mutex_exit(&dtrace_provider_lock);
7590}
7591
7592/*
7593 * Indicate whether or not DTrace has attached.
7594 */
7595int
7596dtrace_attached(void)
7597{
7598	/*
7599	 * dtrace_provider will be non-NULL iff the DTrace driver has
7600	 * attached.  (It's non-NULL because DTrace is always itself a
7601	 * provider.)
7602	 */
7603	return (dtrace_provider != NULL);
7604}
7605
7606/*
7607 * Remove all the unenabled probes for the given provider.  This function is
7608 * not unlike dtrace_unregister(), except that it doesn't remove the provider
7609 * -- just as many of its associated probes as it can.
7610 */
7611int
7612dtrace_condense(dtrace_provider_id_t id)
7613{
7614	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7615	int i;
7616	dtrace_probe_t *probe;
7617
7618	/*
7619	 * Make sure this isn't the dtrace provider itself.
7620	 */
7621	ASSERT(prov->dtpv_pops.dtps_enable !=
7622	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7623
7624	mutex_enter(&dtrace_provider_lock);
7625	mutex_enter(&dtrace_lock);
7626
7627	/*
7628	 * Attempt to destroy the probes associated with this provider.
7629	 */
7630	for (i = 0; i < dtrace_nprobes; i++) {
7631		if ((probe = dtrace_probes[i]) == NULL)
7632			continue;
7633
7634		if (probe->dtpr_provider != prov)
7635			continue;
7636
7637		if (probe->dtpr_ecb != NULL)
7638			continue;
7639
7640		dtrace_probes[i] = NULL;
7641
7642		dtrace_hash_remove(dtrace_bymod, probe);
7643		dtrace_hash_remove(dtrace_byfunc, probe);
7644		dtrace_hash_remove(dtrace_byname, probe);
7645
7646		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7647		    probe->dtpr_arg);
7648		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7649		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7650		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7651		kmem_free(probe, sizeof (dtrace_probe_t));
7652#if defined(sun)
7653		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7654#else
7655		free_unr(dtrace_arena, i + 1);
7656#endif
7657	}
7658
7659	mutex_exit(&dtrace_lock);
7660	mutex_exit(&dtrace_provider_lock);
7661
7662	return (0);
7663}
7664
7665/*
7666 * DTrace Probe Management Functions
7667 *
7668 * The functions in this section perform the DTrace probe management,
7669 * including functions to create probes, look-up probes, and call into the
7670 * providers to request that probes be provided.  Some of these functions are
7671 * in the Provider-to-Framework API; these functions can be identified by the
7672 * fact that they are not declared "static".
7673 */
7674
7675/*
7676 * Create a probe with the specified module name, function name, and name.
7677 */
7678dtrace_id_t
7679dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7680    const char *func, const char *name, int aframes, void *arg)
7681{
7682	dtrace_probe_t *probe, **probes;
7683	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7684	dtrace_id_t id;
7685
7686	if (provider == dtrace_provider) {
7687		ASSERT(MUTEX_HELD(&dtrace_lock));
7688	} else {
7689		mutex_enter(&dtrace_lock);
7690	}
7691
7692#if defined(sun)
7693	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7694	    VM_BESTFIT | VM_SLEEP);
7695#else
7696	id = alloc_unr(dtrace_arena);
7697#endif
7698	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7699
7700	probe->dtpr_id = id;
7701	probe->dtpr_gen = dtrace_probegen++;
7702	probe->dtpr_mod = dtrace_strdup(mod);
7703	probe->dtpr_func = dtrace_strdup(func);
7704	probe->dtpr_name = dtrace_strdup(name);
7705	probe->dtpr_arg = arg;
7706	probe->dtpr_aframes = aframes;
7707	probe->dtpr_provider = provider;
7708
7709	dtrace_hash_add(dtrace_bymod, probe);
7710	dtrace_hash_add(dtrace_byfunc, probe);
7711	dtrace_hash_add(dtrace_byname, probe);
7712
7713	if (id - 1 >= dtrace_nprobes) {
7714		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7715		size_t nsize = osize << 1;
7716
7717		if (nsize == 0) {
7718			ASSERT(osize == 0);
7719			ASSERT(dtrace_probes == NULL);
7720			nsize = sizeof (dtrace_probe_t *);
7721		}
7722
7723		probes = kmem_zalloc(nsize, KM_SLEEP);
7724
7725		if (dtrace_probes == NULL) {
7726			ASSERT(osize == 0);
7727			dtrace_probes = probes;
7728			dtrace_nprobes = 1;
7729		} else {
7730			dtrace_probe_t **oprobes = dtrace_probes;
7731
7732			bcopy(oprobes, probes, osize);
7733			dtrace_membar_producer();
7734			dtrace_probes = probes;
7735
7736			dtrace_sync();
7737
7738			/*
7739			 * All CPUs are now seeing the new probes array; we can
7740			 * safely free the old array.
7741			 */
7742			kmem_free(oprobes, osize);
7743			dtrace_nprobes <<= 1;
7744		}
7745
7746		ASSERT(id - 1 < dtrace_nprobes);
7747	}
7748
7749	ASSERT(dtrace_probes[id - 1] == NULL);
7750	dtrace_probes[id - 1] = probe;
7751
7752	if (provider != dtrace_provider)
7753		mutex_exit(&dtrace_lock);
7754
7755	return (id);
7756}
7757
7758static dtrace_probe_t *
7759dtrace_probe_lookup_id(dtrace_id_t id)
7760{
7761	ASSERT(MUTEX_HELD(&dtrace_lock));
7762
7763	if (id == 0 || id > dtrace_nprobes)
7764		return (NULL);
7765
7766	return (dtrace_probes[id - 1]);
7767}
7768
7769static int
7770dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7771{
7772	*((dtrace_id_t *)arg) = probe->dtpr_id;
7773
7774	return (DTRACE_MATCH_DONE);
7775}
7776
7777/*
7778 * Look up a probe based on provider and one or more of module name, function
7779 * name and probe name.
7780 */
7781dtrace_id_t
7782dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7783    char *func, char *name)
7784{
7785	dtrace_probekey_t pkey;
7786	dtrace_id_t id;
7787	int match;
7788
7789	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7790	pkey.dtpk_pmatch = &dtrace_match_string;
7791	pkey.dtpk_mod = mod;
7792	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7793	pkey.dtpk_func = func;
7794	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7795	pkey.dtpk_name = name;
7796	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7797	pkey.dtpk_id = DTRACE_IDNONE;
7798
7799	mutex_enter(&dtrace_lock);
7800	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7801	    dtrace_probe_lookup_match, &id);
7802	mutex_exit(&dtrace_lock);
7803
7804	ASSERT(match == 1 || match == 0);
7805	return (match ? id : 0);
7806}
7807
7808/*
7809 * Returns the probe argument associated with the specified probe.
7810 */
7811void *
7812dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7813{
7814	dtrace_probe_t *probe;
7815	void *rval = NULL;
7816
7817	mutex_enter(&dtrace_lock);
7818
7819	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7820	    probe->dtpr_provider == (dtrace_provider_t *)id)
7821		rval = probe->dtpr_arg;
7822
7823	mutex_exit(&dtrace_lock);
7824
7825	return (rval);
7826}
7827
7828/*
7829 * Copy a probe into a probe description.
7830 */
7831static void
7832dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7833{
7834	bzero(pdp, sizeof (dtrace_probedesc_t));
7835	pdp->dtpd_id = prp->dtpr_id;
7836
7837	(void) strncpy(pdp->dtpd_provider,
7838	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7839
7840	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7841	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7842	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7843}
7844
7845#if !defined(sun)
7846static int
7847dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7848{
7849	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7850
7851	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7852
7853	return(0);
7854}
7855#endif
7856
7857
7858/*
7859 * Called to indicate that a probe -- or probes -- should be provided by a
7860 * specfied provider.  If the specified description is NULL, the provider will
7861 * be told to provide all of its probes.  (This is done whenever a new
7862 * consumer comes along, or whenever a retained enabling is to be matched.) If
7863 * the specified description is non-NULL, the provider is given the
7864 * opportunity to dynamically provide the specified probe, allowing providers
7865 * to support the creation of probes on-the-fly.  (So-called _autocreated_
7866 * probes.)  If the provider is NULL, the operations will be applied to all
7867 * providers; if the provider is non-NULL the operations will only be applied
7868 * to the specified provider.  The dtrace_provider_lock must be held, and the
7869 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7870 * will need to grab the dtrace_lock when it reenters the framework through
7871 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7872 */
7873static void
7874dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7875{
7876#if defined(sun)
7877	modctl_t *ctl;
7878#endif
7879	int all = 0;
7880
7881	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7882
7883	if (prv == NULL) {
7884		all = 1;
7885		prv = dtrace_provider;
7886	}
7887
7888	do {
7889		/*
7890		 * First, call the blanket provide operation.
7891		 */
7892		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7893
7894		/*
7895		 * Now call the per-module provide operation.  We will grab
7896		 * mod_lock to prevent the list from being modified.  Note
7897		 * that this also prevents the mod_busy bits from changing.
7898		 * (mod_busy can only be changed with mod_lock held.)
7899		 */
7900		mutex_enter(&mod_lock);
7901
7902#if defined(sun)
7903		ctl = &modules;
7904		do {
7905			if (ctl->mod_busy || ctl->mod_mp == NULL)
7906				continue;
7907
7908			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7909
7910		} while ((ctl = ctl->mod_next) != &modules);
7911#else
7912		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
7913#endif
7914
7915		mutex_exit(&mod_lock);
7916	} while (all && (prv = prv->dtpv_next) != NULL);
7917}
7918
7919#if defined(sun)
7920/*
7921 * Iterate over each probe, and call the Framework-to-Provider API function
7922 * denoted by offs.
7923 */
7924static void
7925dtrace_probe_foreach(uintptr_t offs)
7926{
7927	dtrace_provider_t *prov;
7928	void (*func)(void *, dtrace_id_t, void *);
7929	dtrace_probe_t *probe;
7930	dtrace_icookie_t cookie;
7931	int i;
7932
7933	/*
7934	 * We disable interrupts to walk through the probe array.  This is
7935	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7936	 * won't see stale data.
7937	 */
7938	cookie = dtrace_interrupt_disable();
7939
7940	for (i = 0; i < dtrace_nprobes; i++) {
7941		if ((probe = dtrace_probes[i]) == NULL)
7942			continue;
7943
7944		if (probe->dtpr_ecb == NULL) {
7945			/*
7946			 * This probe isn't enabled -- don't call the function.
7947			 */
7948			continue;
7949		}
7950
7951		prov = probe->dtpr_provider;
7952		func = *((void(**)(void *, dtrace_id_t, void *))
7953		    ((uintptr_t)&prov->dtpv_pops + offs));
7954
7955		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7956	}
7957
7958	dtrace_interrupt_enable(cookie);
7959}
7960#endif
7961
7962static int
7963dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7964{
7965	dtrace_probekey_t pkey;
7966	uint32_t priv;
7967	uid_t uid;
7968	zoneid_t zoneid;
7969
7970	ASSERT(MUTEX_HELD(&dtrace_lock));
7971	dtrace_ecb_create_cache = NULL;
7972
7973	if (desc == NULL) {
7974		/*
7975		 * If we're passed a NULL description, we're being asked to
7976		 * create an ECB with a NULL probe.
7977		 */
7978		(void) dtrace_ecb_create_enable(NULL, enab);
7979		return (0);
7980	}
7981
7982	dtrace_probekey(desc, &pkey);
7983	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7984	    &priv, &uid, &zoneid);
7985
7986	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7987	    enab));
7988}
7989
7990/*
7991 * DTrace Helper Provider Functions
7992 */
7993static void
7994dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7995{
7996	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7997	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7998	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7999}
8000
8001static void
8002dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8003    const dof_provider_t *dofprov, char *strtab)
8004{
8005	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8006	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8007	    dofprov->dofpv_provattr);
8008	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8009	    dofprov->dofpv_modattr);
8010	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8011	    dofprov->dofpv_funcattr);
8012	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8013	    dofprov->dofpv_nameattr);
8014	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8015	    dofprov->dofpv_argsattr);
8016}
8017
8018static void
8019dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8020{
8021	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8022	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8023	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8024	dof_provider_t *provider;
8025	dof_probe_t *probe;
8026	uint32_t *off, *enoff;
8027	uint8_t *arg;
8028	char *strtab;
8029	uint_t i, nprobes;
8030	dtrace_helper_provdesc_t dhpv;
8031	dtrace_helper_probedesc_t dhpb;
8032	dtrace_meta_t *meta = dtrace_meta_pid;
8033	dtrace_mops_t *mops = &meta->dtm_mops;
8034	void *parg;
8035
8036	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8037	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8038	    provider->dofpv_strtab * dof->dofh_secsize);
8039	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8040	    provider->dofpv_probes * dof->dofh_secsize);
8041	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8042	    provider->dofpv_prargs * dof->dofh_secsize);
8043	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8044	    provider->dofpv_proffs * dof->dofh_secsize);
8045
8046	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8047	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8048	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8049	enoff = NULL;
8050
8051	/*
8052	 * See dtrace_helper_provider_validate().
8053	 */
8054	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8055	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8056		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8057		    provider->dofpv_prenoffs * dof->dofh_secsize);
8058		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8059	}
8060
8061	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8062
8063	/*
8064	 * Create the provider.
8065	 */
8066	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8067
8068	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8069		return;
8070
8071	meta->dtm_count++;
8072
8073	/*
8074	 * Create the probes.
8075	 */
8076	for (i = 0; i < nprobes; i++) {
8077		probe = (dof_probe_t *)(uintptr_t)(daddr +
8078		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8079
8080		dhpb.dthpb_mod = dhp->dofhp_mod;
8081		dhpb.dthpb_func = strtab + probe->dofpr_func;
8082		dhpb.dthpb_name = strtab + probe->dofpr_name;
8083		dhpb.dthpb_base = probe->dofpr_addr;
8084		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8085		dhpb.dthpb_noffs = probe->dofpr_noffs;
8086		if (enoff != NULL) {
8087			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8088			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8089		} else {
8090			dhpb.dthpb_enoffs = NULL;
8091			dhpb.dthpb_nenoffs = 0;
8092		}
8093		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8094		dhpb.dthpb_nargc = probe->dofpr_nargc;
8095		dhpb.dthpb_xargc = probe->dofpr_xargc;
8096		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8097		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8098
8099		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8100	}
8101}
8102
8103static void
8104dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8105{
8106	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8107	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8108	int i;
8109
8110	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8111
8112	for (i = 0; i < dof->dofh_secnum; i++) {
8113		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8114		    dof->dofh_secoff + i * dof->dofh_secsize);
8115
8116		if (sec->dofs_type != DOF_SECT_PROVIDER)
8117			continue;
8118
8119		dtrace_helper_provide_one(dhp, sec, pid);
8120	}
8121
8122	/*
8123	 * We may have just created probes, so we must now rematch against
8124	 * any retained enablings.  Note that this call will acquire both
8125	 * cpu_lock and dtrace_lock; the fact that we are holding
8126	 * dtrace_meta_lock now is what defines the ordering with respect to
8127	 * these three locks.
8128	 */
8129	dtrace_enabling_matchall();
8130}
8131
8132#if defined(sun)
8133static void
8134dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8135{
8136	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8137	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8138	dof_sec_t *str_sec;
8139	dof_provider_t *provider;
8140	char *strtab;
8141	dtrace_helper_provdesc_t dhpv;
8142	dtrace_meta_t *meta = dtrace_meta_pid;
8143	dtrace_mops_t *mops = &meta->dtm_mops;
8144
8145	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8146	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8147	    provider->dofpv_strtab * dof->dofh_secsize);
8148
8149	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8150
8151	/*
8152	 * Create the provider.
8153	 */
8154	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8155
8156	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8157
8158	meta->dtm_count--;
8159}
8160
8161static void
8162dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8163{
8164	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8165	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8166	int i;
8167
8168	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8169
8170	for (i = 0; i < dof->dofh_secnum; i++) {
8171		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8172		    dof->dofh_secoff + i * dof->dofh_secsize);
8173
8174		if (sec->dofs_type != DOF_SECT_PROVIDER)
8175			continue;
8176
8177		dtrace_helper_provider_remove_one(dhp, sec, pid);
8178	}
8179}
8180#endif
8181
8182/*
8183 * DTrace Meta Provider-to-Framework API Functions
8184 *
8185 * These functions implement the Meta Provider-to-Framework API, as described
8186 * in <sys/dtrace.h>.
8187 */
8188int
8189dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8190    dtrace_meta_provider_id_t *idp)
8191{
8192	dtrace_meta_t *meta;
8193	dtrace_helpers_t *help, *next;
8194	int i;
8195
8196	*idp = DTRACE_METAPROVNONE;
8197
8198	/*
8199	 * We strictly don't need the name, but we hold onto it for
8200	 * debuggability. All hail error queues!
8201	 */
8202	if (name == NULL) {
8203		cmn_err(CE_WARN, "failed to register meta-provider: "
8204		    "invalid name");
8205		return (EINVAL);
8206	}
8207
8208	if (mops == NULL ||
8209	    mops->dtms_create_probe == NULL ||
8210	    mops->dtms_provide_pid == NULL ||
8211	    mops->dtms_remove_pid == NULL) {
8212		cmn_err(CE_WARN, "failed to register meta-register %s: "
8213		    "invalid ops", name);
8214		return (EINVAL);
8215	}
8216
8217	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8218	meta->dtm_mops = *mops;
8219	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8220	(void) strcpy(meta->dtm_name, name);
8221	meta->dtm_arg = arg;
8222
8223	mutex_enter(&dtrace_meta_lock);
8224	mutex_enter(&dtrace_lock);
8225
8226	if (dtrace_meta_pid != NULL) {
8227		mutex_exit(&dtrace_lock);
8228		mutex_exit(&dtrace_meta_lock);
8229		cmn_err(CE_WARN, "failed to register meta-register %s: "
8230		    "user-land meta-provider exists", name);
8231		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8232		kmem_free(meta, sizeof (dtrace_meta_t));
8233		return (EINVAL);
8234	}
8235
8236	dtrace_meta_pid = meta;
8237	*idp = (dtrace_meta_provider_id_t)meta;
8238
8239	/*
8240	 * If there are providers and probes ready to go, pass them
8241	 * off to the new meta provider now.
8242	 */
8243
8244	help = dtrace_deferred_pid;
8245	dtrace_deferred_pid = NULL;
8246
8247	mutex_exit(&dtrace_lock);
8248
8249	while (help != NULL) {
8250		for (i = 0; i < help->dthps_nprovs; i++) {
8251			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8252			    help->dthps_pid);
8253		}
8254
8255		next = help->dthps_next;
8256		help->dthps_next = NULL;
8257		help->dthps_prev = NULL;
8258		help->dthps_deferred = 0;
8259		help = next;
8260	}
8261
8262	mutex_exit(&dtrace_meta_lock);
8263
8264	return (0);
8265}
8266
8267int
8268dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8269{
8270	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8271
8272	mutex_enter(&dtrace_meta_lock);
8273	mutex_enter(&dtrace_lock);
8274
8275	if (old == dtrace_meta_pid) {
8276		pp = &dtrace_meta_pid;
8277	} else {
8278		panic("attempt to unregister non-existent "
8279		    "dtrace meta-provider %p\n", (void *)old);
8280	}
8281
8282	if (old->dtm_count != 0) {
8283		mutex_exit(&dtrace_lock);
8284		mutex_exit(&dtrace_meta_lock);
8285		return (EBUSY);
8286	}
8287
8288	*pp = NULL;
8289
8290	mutex_exit(&dtrace_lock);
8291	mutex_exit(&dtrace_meta_lock);
8292
8293	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8294	kmem_free(old, sizeof (dtrace_meta_t));
8295
8296	return (0);
8297}
8298
8299
8300/*
8301 * DTrace DIF Object Functions
8302 */
8303static int
8304dtrace_difo_err(uint_t pc, const char *format, ...)
8305{
8306	if (dtrace_err_verbose) {
8307		va_list alist;
8308
8309		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8310		va_start(alist, format);
8311		(void) vuprintf(format, alist);
8312		va_end(alist);
8313	}
8314
8315#ifdef DTRACE_ERRDEBUG
8316	dtrace_errdebug(format);
8317#endif
8318	return (1);
8319}
8320
8321/*
8322 * Validate a DTrace DIF object by checking the IR instructions.  The following
8323 * rules are currently enforced by dtrace_difo_validate():
8324 *
8325 * 1. Each instruction must have a valid opcode
8326 * 2. Each register, string, variable, or subroutine reference must be valid
8327 * 3. No instruction can modify register %r0 (must be zero)
8328 * 4. All instruction reserved bits must be set to zero
8329 * 5. The last instruction must be a "ret" instruction
8330 * 6. All branch targets must reference a valid instruction _after_ the branch
8331 */
8332static int
8333dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8334    cred_t *cr)
8335{
8336	int err = 0, i;
8337	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8338	int kcheckload;
8339	uint_t pc;
8340
8341	kcheckload = cr == NULL ||
8342	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8343
8344	dp->dtdo_destructive = 0;
8345
8346	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8347		dif_instr_t instr = dp->dtdo_buf[pc];
8348
8349		uint_t r1 = DIF_INSTR_R1(instr);
8350		uint_t r2 = DIF_INSTR_R2(instr);
8351		uint_t rd = DIF_INSTR_RD(instr);
8352		uint_t rs = DIF_INSTR_RS(instr);
8353		uint_t label = DIF_INSTR_LABEL(instr);
8354		uint_t v = DIF_INSTR_VAR(instr);
8355		uint_t subr = DIF_INSTR_SUBR(instr);
8356		uint_t type = DIF_INSTR_TYPE(instr);
8357		uint_t op = DIF_INSTR_OP(instr);
8358
8359		switch (op) {
8360		case DIF_OP_OR:
8361		case DIF_OP_XOR:
8362		case DIF_OP_AND:
8363		case DIF_OP_SLL:
8364		case DIF_OP_SRL:
8365		case DIF_OP_SRA:
8366		case DIF_OP_SUB:
8367		case DIF_OP_ADD:
8368		case DIF_OP_MUL:
8369		case DIF_OP_SDIV:
8370		case DIF_OP_UDIV:
8371		case DIF_OP_SREM:
8372		case DIF_OP_UREM:
8373		case DIF_OP_COPYS:
8374			if (r1 >= nregs)
8375				err += efunc(pc, "invalid register %u\n", r1);
8376			if (r2 >= nregs)
8377				err += efunc(pc, "invalid register %u\n", r2);
8378			if (rd >= nregs)
8379				err += efunc(pc, "invalid register %u\n", rd);
8380			if (rd == 0)
8381				err += efunc(pc, "cannot write to %r0\n");
8382			break;
8383		case DIF_OP_NOT:
8384		case DIF_OP_MOV:
8385		case DIF_OP_ALLOCS:
8386			if (r1 >= nregs)
8387				err += efunc(pc, "invalid register %u\n", r1);
8388			if (r2 != 0)
8389				err += efunc(pc, "non-zero reserved bits\n");
8390			if (rd >= nregs)
8391				err += efunc(pc, "invalid register %u\n", rd);
8392			if (rd == 0)
8393				err += efunc(pc, "cannot write to %r0\n");
8394			break;
8395		case DIF_OP_LDSB:
8396		case DIF_OP_LDSH:
8397		case DIF_OP_LDSW:
8398		case DIF_OP_LDUB:
8399		case DIF_OP_LDUH:
8400		case DIF_OP_LDUW:
8401		case DIF_OP_LDX:
8402			if (r1 >= nregs)
8403				err += efunc(pc, "invalid register %u\n", r1);
8404			if (r2 != 0)
8405				err += efunc(pc, "non-zero reserved bits\n");
8406			if (rd >= nregs)
8407				err += efunc(pc, "invalid register %u\n", rd);
8408			if (rd == 0)
8409				err += efunc(pc, "cannot write to %r0\n");
8410			if (kcheckload)
8411				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8412				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8413			break;
8414		case DIF_OP_RLDSB:
8415		case DIF_OP_RLDSH:
8416		case DIF_OP_RLDSW:
8417		case DIF_OP_RLDUB:
8418		case DIF_OP_RLDUH:
8419		case DIF_OP_RLDUW:
8420		case DIF_OP_RLDX:
8421			if (r1 >= nregs)
8422				err += efunc(pc, "invalid register %u\n", r1);
8423			if (r2 != 0)
8424				err += efunc(pc, "non-zero reserved bits\n");
8425			if (rd >= nregs)
8426				err += efunc(pc, "invalid register %u\n", rd);
8427			if (rd == 0)
8428				err += efunc(pc, "cannot write to %r0\n");
8429			break;
8430		case DIF_OP_ULDSB:
8431		case DIF_OP_ULDSH:
8432		case DIF_OP_ULDSW:
8433		case DIF_OP_ULDUB:
8434		case DIF_OP_ULDUH:
8435		case DIF_OP_ULDUW:
8436		case DIF_OP_ULDX:
8437			if (r1 >= nregs)
8438				err += efunc(pc, "invalid register %u\n", r1);
8439			if (r2 != 0)
8440				err += efunc(pc, "non-zero reserved bits\n");
8441			if (rd >= nregs)
8442				err += efunc(pc, "invalid register %u\n", rd);
8443			if (rd == 0)
8444				err += efunc(pc, "cannot write to %r0\n");
8445			break;
8446		case DIF_OP_STB:
8447		case DIF_OP_STH:
8448		case DIF_OP_STW:
8449		case DIF_OP_STX:
8450			if (r1 >= nregs)
8451				err += efunc(pc, "invalid register %u\n", r1);
8452			if (r2 != 0)
8453				err += efunc(pc, "non-zero reserved bits\n");
8454			if (rd >= nregs)
8455				err += efunc(pc, "invalid register %u\n", rd);
8456			if (rd == 0)
8457				err += efunc(pc, "cannot write to 0 address\n");
8458			break;
8459		case DIF_OP_CMP:
8460		case DIF_OP_SCMP:
8461			if (r1 >= nregs)
8462				err += efunc(pc, "invalid register %u\n", r1);
8463			if (r2 >= nregs)
8464				err += efunc(pc, "invalid register %u\n", r2);
8465			if (rd != 0)
8466				err += efunc(pc, "non-zero reserved bits\n");
8467			break;
8468		case DIF_OP_TST:
8469			if (r1 >= nregs)
8470				err += efunc(pc, "invalid register %u\n", r1);
8471			if (r2 != 0 || rd != 0)
8472				err += efunc(pc, "non-zero reserved bits\n");
8473			break;
8474		case DIF_OP_BA:
8475		case DIF_OP_BE:
8476		case DIF_OP_BNE:
8477		case DIF_OP_BG:
8478		case DIF_OP_BGU:
8479		case DIF_OP_BGE:
8480		case DIF_OP_BGEU:
8481		case DIF_OP_BL:
8482		case DIF_OP_BLU:
8483		case DIF_OP_BLE:
8484		case DIF_OP_BLEU:
8485			if (label >= dp->dtdo_len) {
8486				err += efunc(pc, "invalid branch target %u\n",
8487				    label);
8488			}
8489			if (label <= pc) {
8490				err += efunc(pc, "backward branch to %u\n",
8491				    label);
8492			}
8493			break;
8494		case DIF_OP_RET:
8495			if (r1 != 0 || r2 != 0)
8496				err += efunc(pc, "non-zero reserved bits\n");
8497			if (rd >= nregs)
8498				err += efunc(pc, "invalid register %u\n", rd);
8499			break;
8500		case DIF_OP_NOP:
8501		case DIF_OP_POPTS:
8502		case DIF_OP_FLUSHTS:
8503			if (r1 != 0 || r2 != 0 || rd != 0)
8504				err += efunc(pc, "non-zero reserved bits\n");
8505			break;
8506		case DIF_OP_SETX:
8507			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8508				err += efunc(pc, "invalid integer ref %u\n",
8509				    DIF_INSTR_INTEGER(instr));
8510			}
8511			if (rd >= nregs)
8512				err += efunc(pc, "invalid register %u\n", rd);
8513			if (rd == 0)
8514				err += efunc(pc, "cannot write to %r0\n");
8515			break;
8516		case DIF_OP_SETS:
8517			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8518				err += efunc(pc, "invalid string ref %u\n",
8519				    DIF_INSTR_STRING(instr));
8520			}
8521			if (rd >= nregs)
8522				err += efunc(pc, "invalid register %u\n", rd);
8523			if (rd == 0)
8524				err += efunc(pc, "cannot write to %r0\n");
8525			break;
8526		case DIF_OP_LDGA:
8527		case DIF_OP_LDTA:
8528			if (r1 > DIF_VAR_ARRAY_MAX)
8529				err += efunc(pc, "invalid array %u\n", r1);
8530			if (r2 >= nregs)
8531				err += efunc(pc, "invalid register %u\n", r2);
8532			if (rd >= nregs)
8533				err += efunc(pc, "invalid register %u\n", rd);
8534			if (rd == 0)
8535				err += efunc(pc, "cannot write to %r0\n");
8536			break;
8537		case DIF_OP_LDGS:
8538		case DIF_OP_LDTS:
8539		case DIF_OP_LDLS:
8540		case DIF_OP_LDGAA:
8541		case DIF_OP_LDTAA:
8542			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8543				err += efunc(pc, "invalid variable %u\n", v);
8544			if (rd >= nregs)
8545				err += efunc(pc, "invalid register %u\n", rd);
8546			if (rd == 0)
8547				err += efunc(pc, "cannot write to %r0\n");
8548			break;
8549		case DIF_OP_STGS:
8550		case DIF_OP_STTS:
8551		case DIF_OP_STLS:
8552		case DIF_OP_STGAA:
8553		case DIF_OP_STTAA:
8554			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8555				err += efunc(pc, "invalid variable %u\n", v);
8556			if (rs >= nregs)
8557				err += efunc(pc, "invalid register %u\n", rd);
8558			break;
8559		case DIF_OP_CALL:
8560			if (subr > DIF_SUBR_MAX)
8561				err += efunc(pc, "invalid subr %u\n", subr);
8562			if (rd >= nregs)
8563				err += efunc(pc, "invalid register %u\n", rd);
8564			if (rd == 0)
8565				err += efunc(pc, "cannot write to %r0\n");
8566
8567			if (subr == DIF_SUBR_COPYOUT ||
8568			    subr == DIF_SUBR_COPYOUTSTR) {
8569				dp->dtdo_destructive = 1;
8570			}
8571			break;
8572		case DIF_OP_PUSHTR:
8573			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8574				err += efunc(pc, "invalid ref type %u\n", type);
8575			if (r2 >= nregs)
8576				err += efunc(pc, "invalid register %u\n", r2);
8577			if (rs >= nregs)
8578				err += efunc(pc, "invalid register %u\n", rs);
8579			break;
8580		case DIF_OP_PUSHTV:
8581			if (type != DIF_TYPE_CTF)
8582				err += efunc(pc, "invalid val type %u\n", type);
8583			if (r2 >= nregs)
8584				err += efunc(pc, "invalid register %u\n", r2);
8585			if (rs >= nregs)
8586				err += efunc(pc, "invalid register %u\n", rs);
8587			break;
8588		default:
8589			err += efunc(pc, "invalid opcode %u\n",
8590			    DIF_INSTR_OP(instr));
8591		}
8592	}
8593
8594	if (dp->dtdo_len != 0 &&
8595	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8596		err += efunc(dp->dtdo_len - 1,
8597		    "expected 'ret' as last DIF instruction\n");
8598	}
8599
8600	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8601		/*
8602		 * If we're not returning by reference, the size must be either
8603		 * 0 or the size of one of the base types.
8604		 */
8605		switch (dp->dtdo_rtype.dtdt_size) {
8606		case 0:
8607		case sizeof (uint8_t):
8608		case sizeof (uint16_t):
8609		case sizeof (uint32_t):
8610		case sizeof (uint64_t):
8611			break;
8612
8613		default:
8614			err += efunc(dp->dtdo_len - 1, "bad return size");
8615		}
8616	}
8617
8618	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8619		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8620		dtrace_diftype_t *vt, *et;
8621		uint_t id, ndx;
8622
8623		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8624		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8625		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8626			err += efunc(i, "unrecognized variable scope %d\n",
8627			    v->dtdv_scope);
8628			break;
8629		}
8630
8631		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8632		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8633			err += efunc(i, "unrecognized variable type %d\n",
8634			    v->dtdv_kind);
8635			break;
8636		}
8637
8638		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8639			err += efunc(i, "%d exceeds variable id limit\n", id);
8640			break;
8641		}
8642
8643		if (id < DIF_VAR_OTHER_UBASE)
8644			continue;
8645
8646		/*
8647		 * For user-defined variables, we need to check that this
8648		 * definition is identical to any previous definition that we
8649		 * encountered.
8650		 */
8651		ndx = id - DIF_VAR_OTHER_UBASE;
8652
8653		switch (v->dtdv_scope) {
8654		case DIFV_SCOPE_GLOBAL:
8655			if (ndx < vstate->dtvs_nglobals) {
8656				dtrace_statvar_t *svar;
8657
8658				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8659					existing = &svar->dtsv_var;
8660			}
8661
8662			break;
8663
8664		case DIFV_SCOPE_THREAD:
8665			if (ndx < vstate->dtvs_ntlocals)
8666				existing = &vstate->dtvs_tlocals[ndx];
8667			break;
8668
8669		case DIFV_SCOPE_LOCAL:
8670			if (ndx < vstate->dtvs_nlocals) {
8671				dtrace_statvar_t *svar;
8672
8673				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8674					existing = &svar->dtsv_var;
8675			}
8676
8677			break;
8678		}
8679
8680		vt = &v->dtdv_type;
8681
8682		if (vt->dtdt_flags & DIF_TF_BYREF) {
8683			if (vt->dtdt_size == 0) {
8684				err += efunc(i, "zero-sized variable\n");
8685				break;
8686			}
8687
8688			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8689			    vt->dtdt_size > dtrace_global_maxsize) {
8690				err += efunc(i, "oversized by-ref global\n");
8691				break;
8692			}
8693		}
8694
8695		if (existing == NULL || existing->dtdv_id == 0)
8696			continue;
8697
8698		ASSERT(existing->dtdv_id == v->dtdv_id);
8699		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8700
8701		if (existing->dtdv_kind != v->dtdv_kind)
8702			err += efunc(i, "%d changed variable kind\n", id);
8703
8704		et = &existing->dtdv_type;
8705
8706		if (vt->dtdt_flags != et->dtdt_flags) {
8707			err += efunc(i, "%d changed variable type flags\n", id);
8708			break;
8709		}
8710
8711		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8712			err += efunc(i, "%d changed variable type size\n", id);
8713			break;
8714		}
8715	}
8716
8717	return (err);
8718}
8719
8720#if defined(sun)
8721/*
8722 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8723 * are much more constrained than normal DIFOs.  Specifically, they may
8724 * not:
8725 *
8726 * 1. Make calls to subroutines other than copyin(), copyinstr() or
8727 *    miscellaneous string routines
8728 * 2. Access DTrace variables other than the args[] array, and the
8729 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8730 * 3. Have thread-local variables.
8731 * 4. Have dynamic variables.
8732 */
8733static int
8734dtrace_difo_validate_helper(dtrace_difo_t *dp)
8735{
8736	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8737	int err = 0;
8738	uint_t pc;
8739
8740	for (pc = 0; pc < dp->dtdo_len; pc++) {
8741		dif_instr_t instr = dp->dtdo_buf[pc];
8742
8743		uint_t v = DIF_INSTR_VAR(instr);
8744		uint_t subr = DIF_INSTR_SUBR(instr);
8745		uint_t op = DIF_INSTR_OP(instr);
8746
8747		switch (op) {
8748		case DIF_OP_OR:
8749		case DIF_OP_XOR:
8750		case DIF_OP_AND:
8751		case DIF_OP_SLL:
8752		case DIF_OP_SRL:
8753		case DIF_OP_SRA:
8754		case DIF_OP_SUB:
8755		case DIF_OP_ADD:
8756		case DIF_OP_MUL:
8757		case DIF_OP_SDIV:
8758		case DIF_OP_UDIV:
8759		case DIF_OP_SREM:
8760		case DIF_OP_UREM:
8761		case DIF_OP_COPYS:
8762		case DIF_OP_NOT:
8763		case DIF_OP_MOV:
8764		case DIF_OP_RLDSB:
8765		case DIF_OP_RLDSH:
8766		case DIF_OP_RLDSW:
8767		case DIF_OP_RLDUB:
8768		case DIF_OP_RLDUH:
8769		case DIF_OP_RLDUW:
8770		case DIF_OP_RLDX:
8771		case DIF_OP_ULDSB:
8772		case DIF_OP_ULDSH:
8773		case DIF_OP_ULDSW:
8774		case DIF_OP_ULDUB:
8775		case DIF_OP_ULDUH:
8776		case DIF_OP_ULDUW:
8777		case DIF_OP_ULDX:
8778		case DIF_OP_STB:
8779		case DIF_OP_STH:
8780		case DIF_OP_STW:
8781		case DIF_OP_STX:
8782		case DIF_OP_ALLOCS:
8783		case DIF_OP_CMP:
8784		case DIF_OP_SCMP:
8785		case DIF_OP_TST:
8786		case DIF_OP_BA:
8787		case DIF_OP_BE:
8788		case DIF_OP_BNE:
8789		case DIF_OP_BG:
8790		case DIF_OP_BGU:
8791		case DIF_OP_BGE:
8792		case DIF_OP_BGEU:
8793		case DIF_OP_BL:
8794		case DIF_OP_BLU:
8795		case DIF_OP_BLE:
8796		case DIF_OP_BLEU:
8797		case DIF_OP_RET:
8798		case DIF_OP_NOP:
8799		case DIF_OP_POPTS:
8800		case DIF_OP_FLUSHTS:
8801		case DIF_OP_SETX:
8802		case DIF_OP_SETS:
8803		case DIF_OP_LDGA:
8804		case DIF_OP_LDLS:
8805		case DIF_OP_STGS:
8806		case DIF_OP_STLS:
8807		case DIF_OP_PUSHTR:
8808		case DIF_OP_PUSHTV:
8809			break;
8810
8811		case DIF_OP_LDGS:
8812			if (v >= DIF_VAR_OTHER_UBASE)
8813				break;
8814
8815			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8816				break;
8817
8818			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8819			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8820			    v == DIF_VAR_EXECARGS ||
8821			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8822			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8823				break;
8824
8825			err += efunc(pc, "illegal variable %u\n", v);
8826			break;
8827
8828		case DIF_OP_LDTA:
8829		case DIF_OP_LDTS:
8830		case DIF_OP_LDGAA:
8831		case DIF_OP_LDTAA:
8832			err += efunc(pc, "illegal dynamic variable load\n");
8833			break;
8834
8835		case DIF_OP_STTS:
8836		case DIF_OP_STGAA:
8837		case DIF_OP_STTAA:
8838			err += efunc(pc, "illegal dynamic variable store\n");
8839			break;
8840
8841		case DIF_OP_CALL:
8842			if (subr == DIF_SUBR_ALLOCA ||
8843			    subr == DIF_SUBR_BCOPY ||
8844			    subr == DIF_SUBR_COPYIN ||
8845			    subr == DIF_SUBR_COPYINTO ||
8846			    subr == DIF_SUBR_COPYINSTR ||
8847			    subr == DIF_SUBR_INDEX ||
8848			    subr == DIF_SUBR_INET_NTOA ||
8849			    subr == DIF_SUBR_INET_NTOA6 ||
8850			    subr == DIF_SUBR_INET_NTOP ||
8851			    subr == DIF_SUBR_LLTOSTR ||
8852			    subr == DIF_SUBR_RINDEX ||
8853			    subr == DIF_SUBR_STRCHR ||
8854			    subr == DIF_SUBR_STRJOIN ||
8855			    subr == DIF_SUBR_STRRCHR ||
8856			    subr == DIF_SUBR_STRSTR ||
8857			    subr == DIF_SUBR_HTONS ||
8858			    subr == DIF_SUBR_HTONL ||
8859			    subr == DIF_SUBR_HTONLL ||
8860			    subr == DIF_SUBR_NTOHS ||
8861			    subr == DIF_SUBR_NTOHL ||
8862			    subr == DIF_SUBR_NTOHLL ||
8863			    subr == DIF_SUBR_MEMREF ||
8864			    subr == DIF_SUBR_TYPEREF)
8865				break;
8866
8867			err += efunc(pc, "invalid subr %u\n", subr);
8868			break;
8869
8870		default:
8871			err += efunc(pc, "invalid opcode %u\n",
8872			    DIF_INSTR_OP(instr));
8873		}
8874	}
8875
8876	return (err);
8877}
8878#endif
8879
8880/*
8881 * Returns 1 if the expression in the DIF object can be cached on a per-thread
8882 * basis; 0 if not.
8883 */
8884static int
8885dtrace_difo_cacheable(dtrace_difo_t *dp)
8886{
8887	int i;
8888
8889	if (dp == NULL)
8890		return (0);
8891
8892	for (i = 0; i < dp->dtdo_varlen; i++) {
8893		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8894
8895		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8896			continue;
8897
8898		switch (v->dtdv_id) {
8899		case DIF_VAR_CURTHREAD:
8900		case DIF_VAR_PID:
8901		case DIF_VAR_TID:
8902		case DIF_VAR_EXECARGS:
8903		case DIF_VAR_EXECNAME:
8904		case DIF_VAR_ZONENAME:
8905			break;
8906
8907		default:
8908			return (0);
8909		}
8910	}
8911
8912	/*
8913	 * This DIF object may be cacheable.  Now we need to look for any
8914	 * array loading instructions, any memory loading instructions, or
8915	 * any stores to thread-local variables.
8916	 */
8917	for (i = 0; i < dp->dtdo_len; i++) {
8918		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8919
8920		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8921		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8922		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8923		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8924			return (0);
8925	}
8926
8927	return (1);
8928}
8929
8930static void
8931dtrace_difo_hold(dtrace_difo_t *dp)
8932{
8933	int i;
8934
8935	ASSERT(MUTEX_HELD(&dtrace_lock));
8936
8937	dp->dtdo_refcnt++;
8938	ASSERT(dp->dtdo_refcnt != 0);
8939
8940	/*
8941	 * We need to check this DIF object for references to the variable
8942	 * DIF_VAR_VTIMESTAMP.
8943	 */
8944	for (i = 0; i < dp->dtdo_varlen; i++) {
8945		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8946
8947		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8948			continue;
8949
8950		if (dtrace_vtime_references++ == 0)
8951			dtrace_vtime_enable();
8952	}
8953}
8954
8955/*
8956 * This routine calculates the dynamic variable chunksize for a given DIF
8957 * object.  The calculation is not fool-proof, and can probably be tricked by
8958 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8959 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8960 * if a dynamic variable size exceeds the chunksize.
8961 */
8962static void
8963dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8964{
8965	uint64_t sval = 0;
8966	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8967	const dif_instr_t *text = dp->dtdo_buf;
8968	uint_t pc, srd = 0;
8969	uint_t ttop = 0;
8970	size_t size, ksize;
8971	uint_t id, i;
8972
8973	for (pc = 0; pc < dp->dtdo_len; pc++) {
8974		dif_instr_t instr = text[pc];
8975		uint_t op = DIF_INSTR_OP(instr);
8976		uint_t rd = DIF_INSTR_RD(instr);
8977		uint_t r1 = DIF_INSTR_R1(instr);
8978		uint_t nkeys = 0;
8979		uchar_t scope = 0;
8980
8981		dtrace_key_t *key = tupregs;
8982
8983		switch (op) {
8984		case DIF_OP_SETX:
8985			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8986			srd = rd;
8987			continue;
8988
8989		case DIF_OP_STTS:
8990			key = &tupregs[DIF_DTR_NREGS];
8991			key[0].dttk_size = 0;
8992			key[1].dttk_size = 0;
8993			nkeys = 2;
8994			scope = DIFV_SCOPE_THREAD;
8995			break;
8996
8997		case DIF_OP_STGAA:
8998		case DIF_OP_STTAA:
8999			nkeys = ttop;
9000
9001			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9002				key[nkeys++].dttk_size = 0;
9003
9004			key[nkeys++].dttk_size = 0;
9005
9006			if (op == DIF_OP_STTAA) {
9007				scope = DIFV_SCOPE_THREAD;
9008			} else {
9009				scope = DIFV_SCOPE_GLOBAL;
9010			}
9011
9012			break;
9013
9014		case DIF_OP_PUSHTR:
9015			if (ttop == DIF_DTR_NREGS)
9016				return;
9017
9018			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9019				/*
9020				 * If the register for the size of the "pushtr"
9021				 * is %r0 (or the value is 0) and the type is
9022				 * a string, we'll use the system-wide default
9023				 * string size.
9024				 */
9025				tupregs[ttop++].dttk_size =
9026				    dtrace_strsize_default;
9027			} else {
9028				if (srd == 0)
9029					return;
9030
9031				tupregs[ttop++].dttk_size = sval;
9032			}
9033
9034			break;
9035
9036		case DIF_OP_PUSHTV:
9037			if (ttop == DIF_DTR_NREGS)
9038				return;
9039
9040			tupregs[ttop++].dttk_size = 0;
9041			break;
9042
9043		case DIF_OP_FLUSHTS:
9044			ttop = 0;
9045			break;
9046
9047		case DIF_OP_POPTS:
9048			if (ttop != 0)
9049				ttop--;
9050			break;
9051		}
9052
9053		sval = 0;
9054		srd = 0;
9055
9056		if (nkeys == 0)
9057			continue;
9058
9059		/*
9060		 * We have a dynamic variable allocation; calculate its size.
9061		 */
9062		for (ksize = 0, i = 0; i < nkeys; i++)
9063			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9064
9065		size = sizeof (dtrace_dynvar_t);
9066		size += sizeof (dtrace_key_t) * (nkeys - 1);
9067		size += ksize;
9068
9069		/*
9070		 * Now we need to determine the size of the stored data.
9071		 */
9072		id = DIF_INSTR_VAR(instr);
9073
9074		for (i = 0; i < dp->dtdo_varlen; i++) {
9075			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9076
9077			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9078				size += v->dtdv_type.dtdt_size;
9079				break;
9080			}
9081		}
9082
9083		if (i == dp->dtdo_varlen)
9084			return;
9085
9086		/*
9087		 * We have the size.  If this is larger than the chunk size
9088		 * for our dynamic variable state, reset the chunk size.
9089		 */
9090		size = P2ROUNDUP(size, sizeof (uint64_t));
9091
9092		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9093			vstate->dtvs_dynvars.dtds_chunksize = size;
9094	}
9095}
9096
9097static void
9098dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9099{
9100	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9101	uint_t id;
9102
9103	ASSERT(MUTEX_HELD(&dtrace_lock));
9104	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9105
9106	for (i = 0; i < dp->dtdo_varlen; i++) {
9107		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9108		dtrace_statvar_t *svar, ***svarp = NULL;
9109		size_t dsize = 0;
9110		uint8_t scope = v->dtdv_scope;
9111		int *np = NULL;
9112
9113		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9114			continue;
9115
9116		id -= DIF_VAR_OTHER_UBASE;
9117
9118		switch (scope) {
9119		case DIFV_SCOPE_THREAD:
9120			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9121				dtrace_difv_t *tlocals;
9122
9123				if ((ntlocals = (otlocals << 1)) == 0)
9124					ntlocals = 1;
9125
9126				osz = otlocals * sizeof (dtrace_difv_t);
9127				nsz = ntlocals * sizeof (dtrace_difv_t);
9128
9129				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9130
9131				if (osz != 0) {
9132					bcopy(vstate->dtvs_tlocals,
9133					    tlocals, osz);
9134					kmem_free(vstate->dtvs_tlocals, osz);
9135				}
9136
9137				vstate->dtvs_tlocals = tlocals;
9138				vstate->dtvs_ntlocals = ntlocals;
9139			}
9140
9141			vstate->dtvs_tlocals[id] = *v;
9142			continue;
9143
9144		case DIFV_SCOPE_LOCAL:
9145			np = &vstate->dtvs_nlocals;
9146			svarp = &vstate->dtvs_locals;
9147
9148			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9149				dsize = NCPU * (v->dtdv_type.dtdt_size +
9150				    sizeof (uint64_t));
9151			else
9152				dsize = NCPU * sizeof (uint64_t);
9153
9154			break;
9155
9156		case DIFV_SCOPE_GLOBAL:
9157			np = &vstate->dtvs_nglobals;
9158			svarp = &vstate->dtvs_globals;
9159
9160			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9161				dsize = v->dtdv_type.dtdt_size +
9162				    sizeof (uint64_t);
9163
9164			break;
9165
9166		default:
9167			ASSERT(0);
9168		}
9169
9170		while (id >= (oldsvars = *np)) {
9171			dtrace_statvar_t **statics;
9172			int newsvars, oldsize, newsize;
9173
9174			if ((newsvars = (oldsvars << 1)) == 0)
9175				newsvars = 1;
9176
9177			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9178			newsize = newsvars * sizeof (dtrace_statvar_t *);
9179
9180			statics = kmem_zalloc(newsize, KM_SLEEP);
9181
9182			if (oldsize != 0) {
9183				bcopy(*svarp, statics, oldsize);
9184				kmem_free(*svarp, oldsize);
9185			}
9186
9187			*svarp = statics;
9188			*np = newsvars;
9189		}
9190
9191		if ((svar = (*svarp)[id]) == NULL) {
9192			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9193			svar->dtsv_var = *v;
9194
9195			if ((svar->dtsv_size = dsize) != 0) {
9196				svar->dtsv_data = (uint64_t)(uintptr_t)
9197				    kmem_zalloc(dsize, KM_SLEEP);
9198			}
9199
9200			(*svarp)[id] = svar;
9201		}
9202
9203		svar->dtsv_refcnt++;
9204	}
9205
9206	dtrace_difo_chunksize(dp, vstate);
9207	dtrace_difo_hold(dp);
9208}
9209
9210#if defined(sun)
9211static dtrace_difo_t *
9212dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9213{
9214	dtrace_difo_t *new;
9215	size_t sz;
9216
9217	ASSERT(dp->dtdo_buf != NULL);
9218	ASSERT(dp->dtdo_refcnt != 0);
9219
9220	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9221
9222	ASSERT(dp->dtdo_buf != NULL);
9223	sz = dp->dtdo_len * sizeof (dif_instr_t);
9224	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9225	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9226	new->dtdo_len = dp->dtdo_len;
9227
9228	if (dp->dtdo_strtab != NULL) {
9229		ASSERT(dp->dtdo_strlen != 0);
9230		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9231		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9232		new->dtdo_strlen = dp->dtdo_strlen;
9233	}
9234
9235	if (dp->dtdo_inttab != NULL) {
9236		ASSERT(dp->dtdo_intlen != 0);
9237		sz = dp->dtdo_intlen * sizeof (uint64_t);
9238		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9239		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9240		new->dtdo_intlen = dp->dtdo_intlen;
9241	}
9242
9243	if (dp->dtdo_vartab != NULL) {
9244		ASSERT(dp->dtdo_varlen != 0);
9245		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9246		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9247		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9248		new->dtdo_varlen = dp->dtdo_varlen;
9249	}
9250
9251	dtrace_difo_init(new, vstate);
9252	return (new);
9253}
9254#endif
9255
9256static void
9257dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9258{
9259	int i;
9260
9261	ASSERT(dp->dtdo_refcnt == 0);
9262
9263	for (i = 0; i < dp->dtdo_varlen; i++) {
9264		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9265		dtrace_statvar_t *svar, **svarp = NULL;
9266		uint_t id;
9267		uint8_t scope = v->dtdv_scope;
9268		int *np = NULL;
9269
9270		switch (scope) {
9271		case DIFV_SCOPE_THREAD:
9272			continue;
9273
9274		case DIFV_SCOPE_LOCAL:
9275			np = &vstate->dtvs_nlocals;
9276			svarp = vstate->dtvs_locals;
9277			break;
9278
9279		case DIFV_SCOPE_GLOBAL:
9280			np = &vstate->dtvs_nglobals;
9281			svarp = vstate->dtvs_globals;
9282			break;
9283
9284		default:
9285			ASSERT(0);
9286		}
9287
9288		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9289			continue;
9290
9291		id -= DIF_VAR_OTHER_UBASE;
9292		ASSERT(id < *np);
9293
9294		svar = svarp[id];
9295		ASSERT(svar != NULL);
9296		ASSERT(svar->dtsv_refcnt > 0);
9297
9298		if (--svar->dtsv_refcnt > 0)
9299			continue;
9300
9301		if (svar->dtsv_size != 0) {
9302			ASSERT(svar->dtsv_data != 0);
9303			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9304			    svar->dtsv_size);
9305		}
9306
9307		kmem_free(svar, sizeof (dtrace_statvar_t));
9308		svarp[id] = NULL;
9309	}
9310
9311	if (dp->dtdo_buf != NULL)
9312		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9313	if (dp->dtdo_inttab != NULL)
9314		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9315	if (dp->dtdo_strtab != NULL)
9316		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9317	if (dp->dtdo_vartab != NULL)
9318		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9319
9320	kmem_free(dp, sizeof (dtrace_difo_t));
9321}
9322
9323static void
9324dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9325{
9326	int i;
9327
9328	ASSERT(MUTEX_HELD(&dtrace_lock));
9329	ASSERT(dp->dtdo_refcnt != 0);
9330
9331	for (i = 0; i < dp->dtdo_varlen; i++) {
9332		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9333
9334		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9335			continue;
9336
9337		ASSERT(dtrace_vtime_references > 0);
9338		if (--dtrace_vtime_references == 0)
9339			dtrace_vtime_disable();
9340	}
9341
9342	if (--dp->dtdo_refcnt == 0)
9343		dtrace_difo_destroy(dp, vstate);
9344}
9345
9346/*
9347 * DTrace Format Functions
9348 */
9349static uint16_t
9350dtrace_format_add(dtrace_state_t *state, char *str)
9351{
9352	char *fmt, **new;
9353	uint16_t ndx, len = strlen(str) + 1;
9354
9355	fmt = kmem_zalloc(len, KM_SLEEP);
9356	bcopy(str, fmt, len);
9357
9358	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9359		if (state->dts_formats[ndx] == NULL) {
9360			state->dts_formats[ndx] = fmt;
9361			return (ndx + 1);
9362		}
9363	}
9364
9365	if (state->dts_nformats == USHRT_MAX) {
9366		/*
9367		 * This is only likely if a denial-of-service attack is being
9368		 * attempted.  As such, it's okay to fail silently here.
9369		 */
9370		kmem_free(fmt, len);
9371		return (0);
9372	}
9373
9374	/*
9375	 * For simplicity, we always resize the formats array to be exactly the
9376	 * number of formats.
9377	 */
9378	ndx = state->dts_nformats++;
9379	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9380
9381	if (state->dts_formats != NULL) {
9382		ASSERT(ndx != 0);
9383		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9384		kmem_free(state->dts_formats, ndx * sizeof (char *));
9385	}
9386
9387	state->dts_formats = new;
9388	state->dts_formats[ndx] = fmt;
9389
9390	return (ndx + 1);
9391}
9392
9393static void
9394dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9395{
9396	char *fmt;
9397
9398	ASSERT(state->dts_formats != NULL);
9399	ASSERT(format <= state->dts_nformats);
9400	ASSERT(state->dts_formats[format - 1] != NULL);
9401
9402	fmt = state->dts_formats[format - 1];
9403	kmem_free(fmt, strlen(fmt) + 1);
9404	state->dts_formats[format - 1] = NULL;
9405}
9406
9407static void
9408dtrace_format_destroy(dtrace_state_t *state)
9409{
9410	int i;
9411
9412	if (state->dts_nformats == 0) {
9413		ASSERT(state->dts_formats == NULL);
9414		return;
9415	}
9416
9417	ASSERT(state->dts_formats != NULL);
9418
9419	for (i = 0; i < state->dts_nformats; i++) {
9420		char *fmt = state->dts_formats[i];
9421
9422		if (fmt == NULL)
9423			continue;
9424
9425		kmem_free(fmt, strlen(fmt) + 1);
9426	}
9427
9428	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9429	state->dts_nformats = 0;
9430	state->dts_formats = NULL;
9431}
9432
9433/*
9434 * DTrace Predicate Functions
9435 */
9436static dtrace_predicate_t *
9437dtrace_predicate_create(dtrace_difo_t *dp)
9438{
9439	dtrace_predicate_t *pred;
9440
9441	ASSERT(MUTEX_HELD(&dtrace_lock));
9442	ASSERT(dp->dtdo_refcnt != 0);
9443
9444	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9445	pred->dtp_difo = dp;
9446	pred->dtp_refcnt = 1;
9447
9448	if (!dtrace_difo_cacheable(dp))
9449		return (pred);
9450
9451	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9452		/*
9453		 * This is only theoretically possible -- we have had 2^32
9454		 * cacheable predicates on this machine.  We cannot allow any
9455		 * more predicates to become cacheable:  as unlikely as it is,
9456		 * there may be a thread caching a (now stale) predicate cache
9457		 * ID. (N.B.: the temptation is being successfully resisted to
9458		 * have this cmn_err() "Holy shit -- we executed this code!")
9459		 */
9460		return (pred);
9461	}
9462
9463	pred->dtp_cacheid = dtrace_predcache_id++;
9464
9465	return (pred);
9466}
9467
9468static void
9469dtrace_predicate_hold(dtrace_predicate_t *pred)
9470{
9471	ASSERT(MUTEX_HELD(&dtrace_lock));
9472	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9473	ASSERT(pred->dtp_refcnt > 0);
9474
9475	pred->dtp_refcnt++;
9476}
9477
9478static void
9479dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9480{
9481	dtrace_difo_t *dp = pred->dtp_difo;
9482
9483	ASSERT(MUTEX_HELD(&dtrace_lock));
9484	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9485	ASSERT(pred->dtp_refcnt > 0);
9486
9487	if (--pred->dtp_refcnt == 0) {
9488		dtrace_difo_release(pred->dtp_difo, vstate);
9489		kmem_free(pred, sizeof (dtrace_predicate_t));
9490	}
9491}
9492
9493/*
9494 * DTrace Action Description Functions
9495 */
9496static dtrace_actdesc_t *
9497dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9498    uint64_t uarg, uint64_t arg)
9499{
9500	dtrace_actdesc_t *act;
9501
9502#if defined(sun)
9503	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9504	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9505#endif
9506
9507	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9508	act->dtad_kind = kind;
9509	act->dtad_ntuple = ntuple;
9510	act->dtad_uarg = uarg;
9511	act->dtad_arg = arg;
9512	act->dtad_refcnt = 1;
9513
9514	return (act);
9515}
9516
9517static void
9518dtrace_actdesc_hold(dtrace_actdesc_t *act)
9519{
9520	ASSERT(act->dtad_refcnt >= 1);
9521	act->dtad_refcnt++;
9522}
9523
9524static void
9525dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9526{
9527	dtrace_actkind_t kind = act->dtad_kind;
9528	dtrace_difo_t *dp;
9529
9530	ASSERT(act->dtad_refcnt >= 1);
9531
9532	if (--act->dtad_refcnt != 0)
9533		return;
9534
9535	if ((dp = act->dtad_difo) != NULL)
9536		dtrace_difo_release(dp, vstate);
9537
9538	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9539		char *str = (char *)(uintptr_t)act->dtad_arg;
9540
9541#if defined(sun)
9542		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9543		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9544#endif
9545
9546		if (str != NULL)
9547			kmem_free(str, strlen(str) + 1);
9548	}
9549
9550	kmem_free(act, sizeof (dtrace_actdesc_t));
9551}
9552
9553/*
9554 * DTrace ECB Functions
9555 */
9556static dtrace_ecb_t *
9557dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9558{
9559	dtrace_ecb_t *ecb;
9560	dtrace_epid_t epid;
9561
9562	ASSERT(MUTEX_HELD(&dtrace_lock));
9563
9564	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9565	ecb->dte_predicate = NULL;
9566	ecb->dte_probe = probe;
9567
9568	/*
9569	 * The default size is the size of the default action: recording
9570	 * the epid.
9571	 */
9572	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9573	ecb->dte_alignment = sizeof (dtrace_epid_t);
9574
9575	epid = state->dts_epid++;
9576
9577	if (epid - 1 >= state->dts_necbs) {
9578		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9579		int necbs = state->dts_necbs << 1;
9580
9581		ASSERT(epid == state->dts_necbs + 1);
9582
9583		if (necbs == 0) {
9584			ASSERT(oecbs == NULL);
9585			necbs = 1;
9586		}
9587
9588		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9589
9590		if (oecbs != NULL)
9591			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9592
9593		dtrace_membar_producer();
9594		state->dts_ecbs = ecbs;
9595
9596		if (oecbs != NULL) {
9597			/*
9598			 * If this state is active, we must dtrace_sync()
9599			 * before we can free the old dts_ecbs array:  we're
9600			 * coming in hot, and there may be active ring
9601			 * buffer processing (which indexes into the dts_ecbs
9602			 * array) on another CPU.
9603			 */
9604			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9605				dtrace_sync();
9606
9607			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9608		}
9609
9610		dtrace_membar_producer();
9611		state->dts_necbs = necbs;
9612	}
9613
9614	ecb->dte_state = state;
9615
9616	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9617	dtrace_membar_producer();
9618	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9619
9620	return (ecb);
9621}
9622
9623static void
9624dtrace_ecb_enable(dtrace_ecb_t *ecb)
9625{
9626	dtrace_probe_t *probe = ecb->dte_probe;
9627
9628	ASSERT(MUTEX_HELD(&cpu_lock));
9629	ASSERT(MUTEX_HELD(&dtrace_lock));
9630	ASSERT(ecb->dte_next == NULL);
9631
9632	if (probe == NULL) {
9633		/*
9634		 * This is the NULL probe -- there's nothing to do.
9635		 */
9636		return;
9637	}
9638
9639	if (probe->dtpr_ecb == NULL) {
9640		dtrace_provider_t *prov = probe->dtpr_provider;
9641
9642		/*
9643		 * We're the first ECB on this probe.
9644		 */
9645		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9646
9647		if (ecb->dte_predicate != NULL)
9648			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9649
9650		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9651		    probe->dtpr_id, probe->dtpr_arg);
9652	} else {
9653		/*
9654		 * This probe is already active.  Swing the last pointer to
9655		 * point to the new ECB, and issue a dtrace_sync() to assure
9656		 * that all CPUs have seen the change.
9657		 */
9658		ASSERT(probe->dtpr_ecb_last != NULL);
9659		probe->dtpr_ecb_last->dte_next = ecb;
9660		probe->dtpr_ecb_last = ecb;
9661		probe->dtpr_predcache = 0;
9662
9663		dtrace_sync();
9664	}
9665}
9666
9667static void
9668dtrace_ecb_resize(dtrace_ecb_t *ecb)
9669{
9670	uint32_t maxalign = sizeof (dtrace_epid_t);
9671	uint32_t align = sizeof (uint8_t), offs, diff;
9672	dtrace_action_t *act;
9673	int wastuple = 0;
9674	uint32_t aggbase = UINT32_MAX;
9675	dtrace_state_t *state = ecb->dte_state;
9676
9677	/*
9678	 * If we record anything, we always record the epid.  (And we always
9679	 * record it first.)
9680	 */
9681	offs = sizeof (dtrace_epid_t);
9682	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9683
9684	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9685		dtrace_recdesc_t *rec = &act->dta_rec;
9686
9687		if ((align = rec->dtrd_alignment) > maxalign)
9688			maxalign = align;
9689
9690		if (!wastuple && act->dta_intuple) {
9691			/*
9692			 * This is the first record in a tuple.  Align the
9693			 * offset to be at offset 4 in an 8-byte aligned
9694			 * block.
9695			 */
9696			diff = offs + sizeof (dtrace_aggid_t);
9697
9698			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9699				offs += sizeof (uint64_t) - diff;
9700
9701			aggbase = offs - sizeof (dtrace_aggid_t);
9702			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9703		}
9704
9705		/*LINTED*/
9706		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9707			/*
9708			 * The current offset is not properly aligned; align it.
9709			 */
9710			offs += align - diff;
9711		}
9712
9713		rec->dtrd_offset = offs;
9714
9715		if (offs + rec->dtrd_size > ecb->dte_needed) {
9716			ecb->dte_needed = offs + rec->dtrd_size;
9717
9718			if (ecb->dte_needed > state->dts_needed)
9719				state->dts_needed = ecb->dte_needed;
9720		}
9721
9722		if (DTRACEACT_ISAGG(act->dta_kind)) {
9723			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9724			dtrace_action_t *first = agg->dtag_first, *prev;
9725
9726			ASSERT(rec->dtrd_size != 0 && first != NULL);
9727			ASSERT(wastuple);
9728			ASSERT(aggbase != UINT32_MAX);
9729
9730			agg->dtag_base = aggbase;
9731
9732			while ((prev = first->dta_prev) != NULL &&
9733			    DTRACEACT_ISAGG(prev->dta_kind)) {
9734				agg = (dtrace_aggregation_t *)prev;
9735				first = agg->dtag_first;
9736			}
9737
9738			if (prev != NULL) {
9739				offs = prev->dta_rec.dtrd_offset +
9740				    prev->dta_rec.dtrd_size;
9741			} else {
9742				offs = sizeof (dtrace_epid_t);
9743			}
9744			wastuple = 0;
9745		} else {
9746			if (!act->dta_intuple)
9747				ecb->dte_size = offs + rec->dtrd_size;
9748
9749			offs += rec->dtrd_size;
9750		}
9751
9752		wastuple = act->dta_intuple;
9753	}
9754
9755	if ((act = ecb->dte_action) != NULL &&
9756	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9757	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9758		/*
9759		 * If the size is still sizeof (dtrace_epid_t), then all
9760		 * actions store no data; set the size to 0.
9761		 */
9762		ecb->dte_alignment = maxalign;
9763		ecb->dte_size = 0;
9764
9765		/*
9766		 * If the needed space is still sizeof (dtrace_epid_t), then
9767		 * all actions need no additional space; set the needed
9768		 * size to 0.
9769		 */
9770		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9771			ecb->dte_needed = 0;
9772
9773		return;
9774	}
9775
9776	/*
9777	 * Set our alignment, and make sure that the dte_size and dte_needed
9778	 * are aligned to the size of an EPID.
9779	 */
9780	ecb->dte_alignment = maxalign;
9781	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9782	    ~(sizeof (dtrace_epid_t) - 1);
9783	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9784	    ~(sizeof (dtrace_epid_t) - 1);
9785	ASSERT(ecb->dte_size <= ecb->dte_needed);
9786}
9787
9788static dtrace_action_t *
9789dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9790{
9791	dtrace_aggregation_t *agg;
9792	size_t size = sizeof (uint64_t);
9793	int ntuple = desc->dtad_ntuple;
9794	dtrace_action_t *act;
9795	dtrace_recdesc_t *frec;
9796	dtrace_aggid_t aggid;
9797	dtrace_state_t *state = ecb->dte_state;
9798
9799	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9800	agg->dtag_ecb = ecb;
9801
9802	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9803
9804	switch (desc->dtad_kind) {
9805	case DTRACEAGG_MIN:
9806		agg->dtag_initial = INT64_MAX;
9807		agg->dtag_aggregate = dtrace_aggregate_min;
9808		break;
9809
9810	case DTRACEAGG_MAX:
9811		agg->dtag_initial = INT64_MIN;
9812		agg->dtag_aggregate = dtrace_aggregate_max;
9813		break;
9814
9815	case DTRACEAGG_COUNT:
9816		agg->dtag_aggregate = dtrace_aggregate_count;
9817		break;
9818
9819	case DTRACEAGG_QUANTIZE:
9820		agg->dtag_aggregate = dtrace_aggregate_quantize;
9821		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9822		    sizeof (uint64_t);
9823		break;
9824
9825	case DTRACEAGG_LQUANTIZE: {
9826		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9827		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9828
9829		agg->dtag_initial = desc->dtad_arg;
9830		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9831
9832		if (step == 0 || levels == 0)
9833			goto err;
9834
9835		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9836		break;
9837	}
9838
9839	case DTRACEAGG_AVG:
9840		agg->dtag_aggregate = dtrace_aggregate_avg;
9841		size = sizeof (uint64_t) * 2;
9842		break;
9843
9844	case DTRACEAGG_STDDEV:
9845		agg->dtag_aggregate = dtrace_aggregate_stddev;
9846		size = sizeof (uint64_t) * 4;
9847		break;
9848
9849	case DTRACEAGG_SUM:
9850		agg->dtag_aggregate = dtrace_aggregate_sum;
9851		break;
9852
9853	default:
9854		goto err;
9855	}
9856
9857	agg->dtag_action.dta_rec.dtrd_size = size;
9858
9859	if (ntuple == 0)
9860		goto err;
9861
9862	/*
9863	 * We must make sure that we have enough actions for the n-tuple.
9864	 */
9865	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9866		if (DTRACEACT_ISAGG(act->dta_kind))
9867			break;
9868
9869		if (--ntuple == 0) {
9870			/*
9871			 * This is the action with which our n-tuple begins.
9872			 */
9873			agg->dtag_first = act;
9874			goto success;
9875		}
9876	}
9877
9878	/*
9879	 * This n-tuple is short by ntuple elements.  Return failure.
9880	 */
9881	ASSERT(ntuple != 0);
9882err:
9883	kmem_free(agg, sizeof (dtrace_aggregation_t));
9884	return (NULL);
9885
9886success:
9887	/*
9888	 * If the last action in the tuple has a size of zero, it's actually
9889	 * an expression argument for the aggregating action.
9890	 */
9891	ASSERT(ecb->dte_action_last != NULL);
9892	act = ecb->dte_action_last;
9893
9894	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9895		ASSERT(act->dta_difo != NULL);
9896
9897		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9898			agg->dtag_hasarg = 1;
9899	}
9900
9901	/*
9902	 * We need to allocate an id for this aggregation.
9903	 */
9904#if defined(sun)
9905	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9906	    VM_BESTFIT | VM_SLEEP);
9907#else
9908	aggid = alloc_unr(state->dts_aggid_arena);
9909#endif
9910
9911	if (aggid - 1 >= state->dts_naggregations) {
9912		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9913		dtrace_aggregation_t **aggs;
9914		int naggs = state->dts_naggregations << 1;
9915		int onaggs = state->dts_naggregations;
9916
9917		ASSERT(aggid == state->dts_naggregations + 1);
9918
9919		if (naggs == 0) {
9920			ASSERT(oaggs == NULL);
9921			naggs = 1;
9922		}
9923
9924		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9925
9926		if (oaggs != NULL) {
9927			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9928			kmem_free(oaggs, onaggs * sizeof (*aggs));
9929		}
9930
9931		state->dts_aggregations = aggs;
9932		state->dts_naggregations = naggs;
9933	}
9934
9935	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9936	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9937
9938	frec = &agg->dtag_first->dta_rec;
9939	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9940		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9941
9942	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9943		ASSERT(!act->dta_intuple);
9944		act->dta_intuple = 1;
9945	}
9946
9947	return (&agg->dtag_action);
9948}
9949
9950static void
9951dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9952{
9953	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9954	dtrace_state_t *state = ecb->dte_state;
9955	dtrace_aggid_t aggid = agg->dtag_id;
9956
9957	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9958#if defined(sun)
9959	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9960#else
9961	free_unr(state->dts_aggid_arena, aggid);
9962#endif
9963
9964	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9965	state->dts_aggregations[aggid - 1] = NULL;
9966
9967	kmem_free(agg, sizeof (dtrace_aggregation_t));
9968}
9969
9970static int
9971dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9972{
9973	dtrace_action_t *action, *last;
9974	dtrace_difo_t *dp = desc->dtad_difo;
9975	uint32_t size = 0, align = sizeof (uint8_t), mask;
9976	uint16_t format = 0;
9977	dtrace_recdesc_t *rec;
9978	dtrace_state_t *state = ecb->dte_state;
9979	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
9980	uint64_t arg = desc->dtad_arg;
9981
9982	ASSERT(MUTEX_HELD(&dtrace_lock));
9983	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9984
9985	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9986		/*
9987		 * If this is an aggregating action, there must be neither
9988		 * a speculate nor a commit on the action chain.
9989		 */
9990		dtrace_action_t *act;
9991
9992		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9993			if (act->dta_kind == DTRACEACT_COMMIT)
9994				return (EINVAL);
9995
9996			if (act->dta_kind == DTRACEACT_SPECULATE)
9997				return (EINVAL);
9998		}
9999
10000		action = dtrace_ecb_aggregation_create(ecb, desc);
10001
10002		if (action == NULL)
10003			return (EINVAL);
10004	} else {
10005		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10006		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10007		    dp != NULL && dp->dtdo_destructive)) {
10008			state->dts_destructive = 1;
10009		}
10010
10011		switch (desc->dtad_kind) {
10012		case DTRACEACT_PRINTF:
10013		case DTRACEACT_PRINTA:
10014		case DTRACEACT_SYSTEM:
10015		case DTRACEACT_FREOPEN:
10016			/*
10017			 * We know that our arg is a string -- turn it into a
10018			 * format.
10019			 */
10020			if (arg == 0) {
10021				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10022				format = 0;
10023			} else {
10024				ASSERT(arg != 0);
10025#if defined(sun)
10026				ASSERT(arg > KERNELBASE);
10027#endif
10028				format = dtrace_format_add(state,
10029				    (char *)(uintptr_t)arg);
10030			}
10031
10032			/*FALLTHROUGH*/
10033		case DTRACEACT_LIBACT:
10034		case DTRACEACT_DIFEXPR:
10035			if (dp == NULL)
10036				return (EINVAL);
10037
10038			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10039				break;
10040
10041			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10042				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10043					return (EINVAL);
10044
10045				size = opt[DTRACEOPT_STRSIZE];
10046			}
10047
10048			break;
10049
10050		case DTRACEACT_STACK:
10051			if ((nframes = arg) == 0) {
10052				nframes = opt[DTRACEOPT_STACKFRAMES];
10053				ASSERT(nframes > 0);
10054				arg = nframes;
10055			}
10056
10057			size = nframes * sizeof (pc_t);
10058			break;
10059
10060		case DTRACEACT_JSTACK:
10061			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10062				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10063
10064			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10065				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10066
10067			arg = DTRACE_USTACK_ARG(nframes, strsize);
10068
10069			/*FALLTHROUGH*/
10070		case DTRACEACT_USTACK:
10071			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10072			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10073				strsize = DTRACE_USTACK_STRSIZE(arg);
10074				nframes = opt[DTRACEOPT_USTACKFRAMES];
10075				ASSERT(nframes > 0);
10076				arg = DTRACE_USTACK_ARG(nframes, strsize);
10077			}
10078
10079			/*
10080			 * Save a slot for the pid.
10081			 */
10082			size = (nframes + 1) * sizeof (uint64_t);
10083			size += DTRACE_USTACK_STRSIZE(arg);
10084			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10085
10086			break;
10087
10088		case DTRACEACT_SYM:
10089		case DTRACEACT_MOD:
10090			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10091			    sizeof (uint64_t)) ||
10092			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10093				return (EINVAL);
10094			break;
10095
10096		case DTRACEACT_USYM:
10097		case DTRACEACT_UMOD:
10098		case DTRACEACT_UADDR:
10099			if (dp == NULL ||
10100			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10101			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10102				return (EINVAL);
10103
10104			/*
10105			 * We have a slot for the pid, plus a slot for the
10106			 * argument.  To keep things simple (aligned with
10107			 * bitness-neutral sizing), we store each as a 64-bit
10108			 * quantity.
10109			 */
10110			size = 2 * sizeof (uint64_t);
10111			break;
10112
10113		case DTRACEACT_STOP:
10114		case DTRACEACT_BREAKPOINT:
10115		case DTRACEACT_PANIC:
10116			break;
10117
10118		case DTRACEACT_CHILL:
10119		case DTRACEACT_DISCARD:
10120		case DTRACEACT_RAISE:
10121			if (dp == NULL)
10122				return (EINVAL);
10123			break;
10124
10125		case DTRACEACT_EXIT:
10126			if (dp == NULL ||
10127			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10128			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10129				return (EINVAL);
10130			break;
10131
10132		case DTRACEACT_SPECULATE:
10133			if (ecb->dte_size > sizeof (dtrace_epid_t))
10134				return (EINVAL);
10135
10136			if (dp == NULL)
10137				return (EINVAL);
10138
10139			state->dts_speculates = 1;
10140			break;
10141
10142		case DTRACEACT_PRINTM:
10143		    	size = dp->dtdo_rtype.dtdt_size;
10144			break;
10145
10146		case DTRACEACT_PRINTT:
10147		    	size = dp->dtdo_rtype.dtdt_size;
10148			break;
10149
10150		case DTRACEACT_COMMIT: {
10151			dtrace_action_t *act = ecb->dte_action;
10152
10153			for (; act != NULL; act = act->dta_next) {
10154				if (act->dta_kind == DTRACEACT_COMMIT)
10155					return (EINVAL);
10156			}
10157
10158			if (dp == NULL)
10159				return (EINVAL);
10160			break;
10161		}
10162
10163		default:
10164			return (EINVAL);
10165		}
10166
10167		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10168			/*
10169			 * If this is a data-storing action or a speculate,
10170			 * we must be sure that there isn't a commit on the
10171			 * action chain.
10172			 */
10173			dtrace_action_t *act = ecb->dte_action;
10174
10175			for (; act != NULL; act = act->dta_next) {
10176				if (act->dta_kind == DTRACEACT_COMMIT)
10177					return (EINVAL);
10178			}
10179		}
10180
10181		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10182		action->dta_rec.dtrd_size = size;
10183	}
10184
10185	action->dta_refcnt = 1;
10186	rec = &action->dta_rec;
10187	size = rec->dtrd_size;
10188
10189	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10190		if (!(size & mask)) {
10191			align = mask + 1;
10192			break;
10193		}
10194	}
10195
10196	action->dta_kind = desc->dtad_kind;
10197
10198	if ((action->dta_difo = dp) != NULL)
10199		dtrace_difo_hold(dp);
10200
10201	rec->dtrd_action = action->dta_kind;
10202	rec->dtrd_arg = arg;
10203	rec->dtrd_uarg = desc->dtad_uarg;
10204	rec->dtrd_alignment = (uint16_t)align;
10205	rec->dtrd_format = format;
10206
10207	if ((last = ecb->dte_action_last) != NULL) {
10208		ASSERT(ecb->dte_action != NULL);
10209		action->dta_prev = last;
10210		last->dta_next = action;
10211	} else {
10212		ASSERT(ecb->dte_action == NULL);
10213		ecb->dte_action = action;
10214	}
10215
10216	ecb->dte_action_last = action;
10217
10218	return (0);
10219}
10220
10221static void
10222dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10223{
10224	dtrace_action_t *act = ecb->dte_action, *next;
10225	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10226	dtrace_difo_t *dp;
10227	uint16_t format;
10228
10229	if (act != NULL && act->dta_refcnt > 1) {
10230		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10231		act->dta_refcnt--;
10232	} else {
10233		for (; act != NULL; act = next) {
10234			next = act->dta_next;
10235			ASSERT(next != NULL || act == ecb->dte_action_last);
10236			ASSERT(act->dta_refcnt == 1);
10237
10238			if ((format = act->dta_rec.dtrd_format) != 0)
10239				dtrace_format_remove(ecb->dte_state, format);
10240
10241			if ((dp = act->dta_difo) != NULL)
10242				dtrace_difo_release(dp, vstate);
10243
10244			if (DTRACEACT_ISAGG(act->dta_kind)) {
10245				dtrace_ecb_aggregation_destroy(ecb, act);
10246			} else {
10247				kmem_free(act, sizeof (dtrace_action_t));
10248			}
10249		}
10250	}
10251
10252	ecb->dte_action = NULL;
10253	ecb->dte_action_last = NULL;
10254	ecb->dte_size = sizeof (dtrace_epid_t);
10255}
10256
10257static void
10258dtrace_ecb_disable(dtrace_ecb_t *ecb)
10259{
10260	/*
10261	 * We disable the ECB by removing it from its probe.
10262	 */
10263	dtrace_ecb_t *pecb, *prev = NULL;
10264	dtrace_probe_t *probe = ecb->dte_probe;
10265
10266	ASSERT(MUTEX_HELD(&dtrace_lock));
10267
10268	if (probe == NULL) {
10269		/*
10270		 * This is the NULL probe; there is nothing to disable.
10271		 */
10272		return;
10273	}
10274
10275	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10276		if (pecb == ecb)
10277			break;
10278		prev = pecb;
10279	}
10280
10281	ASSERT(pecb != NULL);
10282
10283	if (prev == NULL) {
10284		probe->dtpr_ecb = ecb->dte_next;
10285	} else {
10286		prev->dte_next = ecb->dte_next;
10287	}
10288
10289	if (ecb == probe->dtpr_ecb_last) {
10290		ASSERT(ecb->dte_next == NULL);
10291		probe->dtpr_ecb_last = prev;
10292	}
10293
10294	/*
10295	 * The ECB has been disconnected from the probe; now sync to assure
10296	 * that all CPUs have seen the change before returning.
10297	 */
10298	dtrace_sync();
10299
10300	if (probe->dtpr_ecb == NULL) {
10301		/*
10302		 * That was the last ECB on the probe; clear the predicate
10303		 * cache ID for the probe, disable it and sync one more time
10304		 * to assure that we'll never hit it again.
10305		 */
10306		dtrace_provider_t *prov = probe->dtpr_provider;
10307
10308		ASSERT(ecb->dte_next == NULL);
10309		ASSERT(probe->dtpr_ecb_last == NULL);
10310		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10311		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10312		    probe->dtpr_id, probe->dtpr_arg);
10313		dtrace_sync();
10314	} else {
10315		/*
10316		 * There is at least one ECB remaining on the probe.  If there
10317		 * is _exactly_ one, set the probe's predicate cache ID to be
10318		 * the predicate cache ID of the remaining ECB.
10319		 */
10320		ASSERT(probe->dtpr_ecb_last != NULL);
10321		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10322
10323		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10324			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10325
10326			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10327
10328			if (p != NULL)
10329				probe->dtpr_predcache = p->dtp_cacheid;
10330		}
10331
10332		ecb->dte_next = NULL;
10333	}
10334}
10335
10336static void
10337dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10338{
10339	dtrace_state_t *state = ecb->dte_state;
10340	dtrace_vstate_t *vstate = &state->dts_vstate;
10341	dtrace_predicate_t *pred;
10342	dtrace_epid_t epid = ecb->dte_epid;
10343
10344	ASSERT(MUTEX_HELD(&dtrace_lock));
10345	ASSERT(ecb->dte_next == NULL);
10346	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10347
10348	if ((pred = ecb->dte_predicate) != NULL)
10349		dtrace_predicate_release(pred, vstate);
10350
10351	dtrace_ecb_action_remove(ecb);
10352
10353	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10354	state->dts_ecbs[epid - 1] = NULL;
10355
10356	kmem_free(ecb, sizeof (dtrace_ecb_t));
10357}
10358
10359static dtrace_ecb_t *
10360dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10361    dtrace_enabling_t *enab)
10362{
10363	dtrace_ecb_t *ecb;
10364	dtrace_predicate_t *pred;
10365	dtrace_actdesc_t *act;
10366	dtrace_provider_t *prov;
10367	dtrace_ecbdesc_t *desc = enab->dten_current;
10368
10369	ASSERT(MUTEX_HELD(&dtrace_lock));
10370	ASSERT(state != NULL);
10371
10372	ecb = dtrace_ecb_add(state, probe);
10373	ecb->dte_uarg = desc->dted_uarg;
10374
10375	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10376		dtrace_predicate_hold(pred);
10377		ecb->dte_predicate = pred;
10378	}
10379
10380	if (probe != NULL) {
10381		/*
10382		 * If the provider shows more leg than the consumer is old
10383		 * enough to see, we need to enable the appropriate implicit
10384		 * predicate bits to prevent the ecb from activating at
10385		 * revealing times.
10386		 *
10387		 * Providers specifying DTRACE_PRIV_USER at register time
10388		 * are stating that they need the /proc-style privilege
10389		 * model to be enforced, and this is what DTRACE_COND_OWNER
10390		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10391		 */
10392		prov = probe->dtpr_provider;
10393		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10394		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10395			ecb->dte_cond |= DTRACE_COND_OWNER;
10396
10397		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10398		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10399			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10400
10401		/*
10402		 * If the provider shows us kernel innards and the user
10403		 * is lacking sufficient privilege, enable the
10404		 * DTRACE_COND_USERMODE implicit predicate.
10405		 */
10406		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10407		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10408			ecb->dte_cond |= DTRACE_COND_USERMODE;
10409	}
10410
10411	if (dtrace_ecb_create_cache != NULL) {
10412		/*
10413		 * If we have a cached ecb, we'll use its action list instead
10414		 * of creating our own (saving both time and space).
10415		 */
10416		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10417		dtrace_action_t *act = cached->dte_action;
10418
10419		if (act != NULL) {
10420			ASSERT(act->dta_refcnt > 0);
10421			act->dta_refcnt++;
10422			ecb->dte_action = act;
10423			ecb->dte_action_last = cached->dte_action_last;
10424			ecb->dte_needed = cached->dte_needed;
10425			ecb->dte_size = cached->dte_size;
10426			ecb->dte_alignment = cached->dte_alignment;
10427		}
10428
10429		return (ecb);
10430	}
10431
10432	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10433		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10434			dtrace_ecb_destroy(ecb);
10435			return (NULL);
10436		}
10437	}
10438
10439	dtrace_ecb_resize(ecb);
10440
10441	return (dtrace_ecb_create_cache = ecb);
10442}
10443
10444static int
10445dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10446{
10447	dtrace_ecb_t *ecb;
10448	dtrace_enabling_t *enab = arg;
10449	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10450
10451	ASSERT(state != NULL);
10452
10453	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10454		/*
10455		 * This probe was created in a generation for which this
10456		 * enabling has previously created ECBs; we don't want to
10457		 * enable it again, so just kick out.
10458		 */
10459		return (DTRACE_MATCH_NEXT);
10460	}
10461
10462	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10463		return (DTRACE_MATCH_DONE);
10464
10465	dtrace_ecb_enable(ecb);
10466	return (DTRACE_MATCH_NEXT);
10467}
10468
10469static dtrace_ecb_t *
10470dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10471{
10472	dtrace_ecb_t *ecb;
10473
10474	ASSERT(MUTEX_HELD(&dtrace_lock));
10475
10476	if (id == 0 || id > state->dts_necbs)
10477		return (NULL);
10478
10479	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10480	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10481
10482	return (state->dts_ecbs[id - 1]);
10483}
10484
10485static dtrace_aggregation_t *
10486dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10487{
10488	dtrace_aggregation_t *agg;
10489
10490	ASSERT(MUTEX_HELD(&dtrace_lock));
10491
10492	if (id == 0 || id > state->dts_naggregations)
10493		return (NULL);
10494
10495	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10496	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10497	    agg->dtag_id == id);
10498
10499	return (state->dts_aggregations[id - 1]);
10500}
10501
10502/*
10503 * DTrace Buffer Functions
10504 *
10505 * The following functions manipulate DTrace buffers.  Most of these functions
10506 * are called in the context of establishing or processing consumer state;
10507 * exceptions are explicitly noted.
10508 */
10509
10510/*
10511 * Note:  called from cross call context.  This function switches the two
10512 * buffers on a given CPU.  The atomicity of this operation is assured by
10513 * disabling interrupts while the actual switch takes place; the disabling of
10514 * interrupts serializes the execution with any execution of dtrace_probe() on
10515 * the same CPU.
10516 */
10517static void
10518dtrace_buffer_switch(dtrace_buffer_t *buf)
10519{
10520	caddr_t tomax = buf->dtb_tomax;
10521	caddr_t xamot = buf->dtb_xamot;
10522	dtrace_icookie_t cookie;
10523
10524	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10525	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10526
10527	cookie = dtrace_interrupt_disable();
10528	buf->dtb_tomax = xamot;
10529	buf->dtb_xamot = tomax;
10530	buf->dtb_xamot_drops = buf->dtb_drops;
10531	buf->dtb_xamot_offset = buf->dtb_offset;
10532	buf->dtb_xamot_errors = buf->dtb_errors;
10533	buf->dtb_xamot_flags = buf->dtb_flags;
10534	buf->dtb_offset = 0;
10535	buf->dtb_drops = 0;
10536	buf->dtb_errors = 0;
10537	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10538	dtrace_interrupt_enable(cookie);
10539}
10540
10541/*
10542 * Note:  called from cross call context.  This function activates a buffer
10543 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10544 * is guaranteed by the disabling of interrupts.
10545 */
10546static void
10547dtrace_buffer_activate(dtrace_state_t *state)
10548{
10549	dtrace_buffer_t *buf;
10550	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10551
10552	buf = &state->dts_buffer[curcpu];
10553
10554	if (buf->dtb_tomax != NULL) {
10555		/*
10556		 * We might like to assert that the buffer is marked inactive,
10557		 * but this isn't necessarily true:  the buffer for the CPU
10558		 * that processes the BEGIN probe has its buffer activated
10559		 * manually.  In this case, we take the (harmless) action
10560		 * re-clearing the bit INACTIVE bit.
10561		 */
10562		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10563	}
10564
10565	dtrace_interrupt_enable(cookie);
10566}
10567
10568static int
10569dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10570    processorid_t cpu)
10571{
10572#if defined(sun)
10573	cpu_t *cp;
10574#else
10575	struct pcpu *cp;
10576#endif
10577	dtrace_buffer_t *buf;
10578
10579#if defined(sun)
10580	ASSERT(MUTEX_HELD(&cpu_lock));
10581	ASSERT(MUTEX_HELD(&dtrace_lock));
10582
10583	if (size > dtrace_nonroot_maxsize &&
10584	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10585		return (EFBIG);
10586
10587	cp = cpu_list;
10588
10589	do {
10590		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10591			continue;
10592
10593		buf = &bufs[cp->cpu_id];
10594
10595		/*
10596		 * If there is already a buffer allocated for this CPU, it
10597		 * is only possible that this is a DR event.  In this case,
10598		 * the buffer size must match our specified size.
10599		 */
10600		if (buf->dtb_tomax != NULL) {
10601			ASSERT(buf->dtb_size == size);
10602			continue;
10603		}
10604
10605		ASSERT(buf->dtb_xamot == NULL);
10606
10607		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10608			goto err;
10609
10610		buf->dtb_size = size;
10611		buf->dtb_flags = flags;
10612		buf->dtb_offset = 0;
10613		buf->dtb_drops = 0;
10614
10615		if (flags & DTRACEBUF_NOSWITCH)
10616			continue;
10617
10618		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10619			goto err;
10620	} while ((cp = cp->cpu_next) != cpu_list);
10621
10622	return (0);
10623
10624err:
10625	cp = cpu_list;
10626
10627	do {
10628		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10629			continue;
10630
10631		buf = &bufs[cp->cpu_id];
10632
10633		if (buf->dtb_xamot != NULL) {
10634			ASSERT(buf->dtb_tomax != NULL);
10635			ASSERT(buf->dtb_size == size);
10636			kmem_free(buf->dtb_xamot, size);
10637		}
10638
10639		if (buf->dtb_tomax != NULL) {
10640			ASSERT(buf->dtb_size == size);
10641			kmem_free(buf->dtb_tomax, size);
10642		}
10643
10644		buf->dtb_tomax = NULL;
10645		buf->dtb_xamot = NULL;
10646		buf->dtb_size = 0;
10647	} while ((cp = cp->cpu_next) != cpu_list);
10648
10649	return (ENOMEM);
10650#else
10651	int i;
10652
10653#if defined(__amd64__)
10654	/*
10655	 * FreeBSD isn't good at limiting the amount of memory we
10656	 * ask to malloc, so let's place a limit here before trying
10657	 * to do something that might well end in tears at bedtime.
10658	 */
10659	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10660		return(ENOMEM);
10661#endif
10662
10663	ASSERT(MUTEX_HELD(&dtrace_lock));
10664	for (i = 0; i <= mp_maxid; i++) {
10665		if ((cp = pcpu_find(i)) == NULL)
10666			continue;
10667
10668		if (cpu != DTRACE_CPUALL && cpu != i)
10669			continue;
10670
10671		buf = &bufs[i];
10672
10673		/*
10674		 * If there is already a buffer allocated for this CPU, it
10675		 * is only possible that this is a DR event.  In this case,
10676		 * the buffer size must match our specified size.
10677		 */
10678		if (buf->dtb_tomax != NULL) {
10679			ASSERT(buf->dtb_size == size);
10680			continue;
10681		}
10682
10683		ASSERT(buf->dtb_xamot == NULL);
10684
10685		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10686			goto err;
10687
10688		buf->dtb_size = size;
10689		buf->dtb_flags = flags;
10690		buf->dtb_offset = 0;
10691		buf->dtb_drops = 0;
10692
10693		if (flags & DTRACEBUF_NOSWITCH)
10694			continue;
10695
10696		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10697			goto err;
10698	}
10699
10700	return (0);
10701
10702err:
10703	/*
10704	 * Error allocating memory, so free the buffers that were
10705	 * allocated before the failed allocation.
10706	 */
10707	for (i = 0; i <= mp_maxid; i++) {
10708		if ((cp = pcpu_find(i)) == NULL)
10709			continue;
10710
10711		if (cpu != DTRACE_CPUALL && cpu != i)
10712			continue;
10713
10714		buf = &bufs[i];
10715
10716		if (buf->dtb_xamot != NULL) {
10717			ASSERT(buf->dtb_tomax != NULL);
10718			ASSERT(buf->dtb_size == size);
10719			kmem_free(buf->dtb_xamot, size);
10720		}
10721
10722		if (buf->dtb_tomax != NULL) {
10723			ASSERT(buf->dtb_size == size);
10724			kmem_free(buf->dtb_tomax, size);
10725		}
10726
10727		buf->dtb_tomax = NULL;
10728		buf->dtb_xamot = NULL;
10729		buf->dtb_size = 0;
10730
10731	}
10732
10733	return (ENOMEM);
10734#endif
10735}
10736
10737/*
10738 * Note:  called from probe context.  This function just increments the drop
10739 * count on a buffer.  It has been made a function to allow for the
10740 * possibility of understanding the source of mysterious drop counts.  (A
10741 * problem for which one may be particularly disappointed that DTrace cannot
10742 * be used to understand DTrace.)
10743 */
10744static void
10745dtrace_buffer_drop(dtrace_buffer_t *buf)
10746{
10747	buf->dtb_drops++;
10748}
10749
10750/*
10751 * Note:  called from probe context.  This function is called to reserve space
10752 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10753 * mstate.  Returns the new offset in the buffer, or a negative value if an
10754 * error has occurred.
10755 */
10756static intptr_t
10757dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10758    dtrace_state_t *state, dtrace_mstate_t *mstate)
10759{
10760	intptr_t offs = buf->dtb_offset, soffs;
10761	intptr_t woffs;
10762	caddr_t tomax;
10763	size_t total;
10764
10765	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10766		return (-1);
10767
10768	if ((tomax = buf->dtb_tomax) == NULL) {
10769		dtrace_buffer_drop(buf);
10770		return (-1);
10771	}
10772
10773	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10774		while (offs & (align - 1)) {
10775			/*
10776			 * Assert that our alignment is off by a number which
10777			 * is itself sizeof (uint32_t) aligned.
10778			 */
10779			ASSERT(!((align - (offs & (align - 1))) &
10780			    (sizeof (uint32_t) - 1)));
10781			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10782			offs += sizeof (uint32_t);
10783		}
10784
10785		if ((soffs = offs + needed) > buf->dtb_size) {
10786			dtrace_buffer_drop(buf);
10787			return (-1);
10788		}
10789
10790		if (mstate == NULL)
10791			return (offs);
10792
10793		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10794		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10795		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10796
10797		return (offs);
10798	}
10799
10800	if (buf->dtb_flags & DTRACEBUF_FILL) {
10801		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10802		    (buf->dtb_flags & DTRACEBUF_FULL))
10803			return (-1);
10804		goto out;
10805	}
10806
10807	total = needed + (offs & (align - 1));
10808
10809	/*
10810	 * For a ring buffer, life is quite a bit more complicated.  Before
10811	 * we can store any padding, we need to adjust our wrapping offset.
10812	 * (If we've never before wrapped or we're not about to, no adjustment
10813	 * is required.)
10814	 */
10815	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10816	    offs + total > buf->dtb_size) {
10817		woffs = buf->dtb_xamot_offset;
10818
10819		if (offs + total > buf->dtb_size) {
10820			/*
10821			 * We can't fit in the end of the buffer.  First, a
10822			 * sanity check that we can fit in the buffer at all.
10823			 */
10824			if (total > buf->dtb_size) {
10825				dtrace_buffer_drop(buf);
10826				return (-1);
10827			}
10828
10829			/*
10830			 * We're going to be storing at the top of the buffer,
10831			 * so now we need to deal with the wrapped offset.  We
10832			 * only reset our wrapped offset to 0 if it is
10833			 * currently greater than the current offset.  If it
10834			 * is less than the current offset, it is because a
10835			 * previous allocation induced a wrap -- but the
10836			 * allocation didn't subsequently take the space due
10837			 * to an error or false predicate evaluation.  In this
10838			 * case, we'll just leave the wrapped offset alone: if
10839			 * the wrapped offset hasn't been advanced far enough
10840			 * for this allocation, it will be adjusted in the
10841			 * lower loop.
10842			 */
10843			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10844				if (woffs >= offs)
10845					woffs = 0;
10846			} else {
10847				woffs = 0;
10848			}
10849
10850			/*
10851			 * Now we know that we're going to be storing to the
10852			 * top of the buffer and that there is room for us
10853			 * there.  We need to clear the buffer from the current
10854			 * offset to the end (there may be old gunk there).
10855			 */
10856			while (offs < buf->dtb_size)
10857				tomax[offs++] = 0;
10858
10859			/*
10860			 * We need to set our offset to zero.  And because we
10861			 * are wrapping, we need to set the bit indicating as
10862			 * much.  We can also adjust our needed space back
10863			 * down to the space required by the ECB -- we know
10864			 * that the top of the buffer is aligned.
10865			 */
10866			offs = 0;
10867			total = needed;
10868			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10869		} else {
10870			/*
10871			 * There is room for us in the buffer, so we simply
10872			 * need to check the wrapped offset.
10873			 */
10874			if (woffs < offs) {
10875				/*
10876				 * The wrapped offset is less than the offset.
10877				 * This can happen if we allocated buffer space
10878				 * that induced a wrap, but then we didn't
10879				 * subsequently take the space due to an error
10880				 * or false predicate evaluation.  This is
10881				 * okay; we know that _this_ allocation isn't
10882				 * going to induce a wrap.  We still can't
10883				 * reset the wrapped offset to be zero,
10884				 * however: the space may have been trashed in
10885				 * the previous failed probe attempt.  But at
10886				 * least the wrapped offset doesn't need to
10887				 * be adjusted at all...
10888				 */
10889				goto out;
10890			}
10891		}
10892
10893		while (offs + total > woffs) {
10894			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10895			size_t size;
10896
10897			if (epid == DTRACE_EPIDNONE) {
10898				size = sizeof (uint32_t);
10899			} else {
10900				ASSERT(epid <= state->dts_necbs);
10901				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10902
10903				size = state->dts_ecbs[epid - 1]->dte_size;
10904			}
10905
10906			ASSERT(woffs + size <= buf->dtb_size);
10907			ASSERT(size != 0);
10908
10909			if (woffs + size == buf->dtb_size) {
10910				/*
10911				 * We've reached the end of the buffer; we want
10912				 * to set the wrapped offset to 0 and break
10913				 * out.  However, if the offs is 0, then we're
10914				 * in a strange edge-condition:  the amount of
10915				 * space that we want to reserve plus the size
10916				 * of the record that we're overwriting is
10917				 * greater than the size of the buffer.  This
10918				 * is problematic because if we reserve the
10919				 * space but subsequently don't consume it (due
10920				 * to a failed predicate or error) the wrapped
10921				 * offset will be 0 -- yet the EPID at offset 0
10922				 * will not be committed.  This situation is
10923				 * relatively easy to deal with:  if we're in
10924				 * this case, the buffer is indistinguishable
10925				 * from one that hasn't wrapped; we need only
10926				 * finish the job by clearing the wrapped bit,
10927				 * explicitly setting the offset to be 0, and
10928				 * zero'ing out the old data in the buffer.
10929				 */
10930				if (offs == 0) {
10931					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10932					buf->dtb_offset = 0;
10933					woffs = total;
10934
10935					while (woffs < buf->dtb_size)
10936						tomax[woffs++] = 0;
10937				}
10938
10939				woffs = 0;
10940				break;
10941			}
10942
10943			woffs += size;
10944		}
10945
10946		/*
10947		 * We have a wrapped offset.  It may be that the wrapped offset
10948		 * has become zero -- that's okay.
10949		 */
10950		buf->dtb_xamot_offset = woffs;
10951	}
10952
10953out:
10954	/*
10955	 * Now we can plow the buffer with any necessary padding.
10956	 */
10957	while (offs & (align - 1)) {
10958		/*
10959		 * Assert that our alignment is off by a number which
10960		 * is itself sizeof (uint32_t) aligned.
10961		 */
10962		ASSERT(!((align - (offs & (align - 1))) &
10963		    (sizeof (uint32_t) - 1)));
10964		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10965		offs += sizeof (uint32_t);
10966	}
10967
10968	if (buf->dtb_flags & DTRACEBUF_FILL) {
10969		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10970			buf->dtb_flags |= DTRACEBUF_FULL;
10971			return (-1);
10972		}
10973	}
10974
10975	if (mstate == NULL)
10976		return (offs);
10977
10978	/*
10979	 * For ring buffers and fill buffers, the scratch space is always
10980	 * the inactive buffer.
10981	 */
10982	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10983	mstate->dtms_scratch_size = buf->dtb_size;
10984	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10985
10986	return (offs);
10987}
10988
10989static void
10990dtrace_buffer_polish(dtrace_buffer_t *buf)
10991{
10992	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10993	ASSERT(MUTEX_HELD(&dtrace_lock));
10994
10995	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10996		return;
10997
10998	/*
10999	 * We need to polish the ring buffer.  There are three cases:
11000	 *
11001	 * - The first (and presumably most common) is that there is no gap
11002	 *   between the buffer offset and the wrapped offset.  In this case,
11003	 *   there is nothing in the buffer that isn't valid data; we can
11004	 *   mark the buffer as polished and return.
11005	 *
11006	 * - The second (less common than the first but still more common
11007	 *   than the third) is that there is a gap between the buffer offset
11008	 *   and the wrapped offset, and the wrapped offset is larger than the
11009	 *   buffer offset.  This can happen because of an alignment issue, or
11010	 *   can happen because of a call to dtrace_buffer_reserve() that
11011	 *   didn't subsequently consume the buffer space.  In this case,
11012	 *   we need to zero the data from the buffer offset to the wrapped
11013	 *   offset.
11014	 *
11015	 * - The third (and least common) is that there is a gap between the
11016	 *   buffer offset and the wrapped offset, but the wrapped offset is
11017	 *   _less_ than the buffer offset.  This can only happen because a
11018	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11019	 *   was not subsequently consumed.  In this case, we need to zero the
11020	 *   space from the offset to the end of the buffer _and_ from the
11021	 *   top of the buffer to the wrapped offset.
11022	 */
11023	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11024		bzero(buf->dtb_tomax + buf->dtb_offset,
11025		    buf->dtb_xamot_offset - buf->dtb_offset);
11026	}
11027
11028	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11029		bzero(buf->dtb_tomax + buf->dtb_offset,
11030		    buf->dtb_size - buf->dtb_offset);
11031		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11032	}
11033}
11034
11035static void
11036dtrace_buffer_free(dtrace_buffer_t *bufs)
11037{
11038	int i;
11039
11040	for (i = 0; i < NCPU; i++) {
11041		dtrace_buffer_t *buf = &bufs[i];
11042
11043		if (buf->dtb_tomax == NULL) {
11044			ASSERT(buf->dtb_xamot == NULL);
11045			ASSERT(buf->dtb_size == 0);
11046			continue;
11047		}
11048
11049		if (buf->dtb_xamot != NULL) {
11050			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11051			kmem_free(buf->dtb_xamot, buf->dtb_size);
11052		}
11053
11054		kmem_free(buf->dtb_tomax, buf->dtb_size);
11055		buf->dtb_size = 0;
11056		buf->dtb_tomax = NULL;
11057		buf->dtb_xamot = NULL;
11058	}
11059}
11060
11061/*
11062 * DTrace Enabling Functions
11063 */
11064static dtrace_enabling_t *
11065dtrace_enabling_create(dtrace_vstate_t *vstate)
11066{
11067	dtrace_enabling_t *enab;
11068
11069	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11070	enab->dten_vstate = vstate;
11071
11072	return (enab);
11073}
11074
11075static void
11076dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11077{
11078	dtrace_ecbdesc_t **ndesc;
11079	size_t osize, nsize;
11080
11081	/*
11082	 * We can't add to enablings after we've enabled them, or after we've
11083	 * retained them.
11084	 */
11085	ASSERT(enab->dten_probegen == 0);
11086	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11087
11088	if (enab->dten_ndesc < enab->dten_maxdesc) {
11089		enab->dten_desc[enab->dten_ndesc++] = ecb;
11090		return;
11091	}
11092
11093	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11094
11095	if (enab->dten_maxdesc == 0) {
11096		enab->dten_maxdesc = 1;
11097	} else {
11098		enab->dten_maxdesc <<= 1;
11099	}
11100
11101	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11102
11103	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11104	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11105	bcopy(enab->dten_desc, ndesc, osize);
11106	if (enab->dten_desc != NULL)
11107		kmem_free(enab->dten_desc, osize);
11108
11109	enab->dten_desc = ndesc;
11110	enab->dten_desc[enab->dten_ndesc++] = ecb;
11111}
11112
11113static void
11114dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11115    dtrace_probedesc_t *pd)
11116{
11117	dtrace_ecbdesc_t *new;
11118	dtrace_predicate_t *pred;
11119	dtrace_actdesc_t *act;
11120
11121	/*
11122	 * We're going to create a new ECB description that matches the
11123	 * specified ECB in every way, but has the specified probe description.
11124	 */
11125	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11126
11127	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11128		dtrace_predicate_hold(pred);
11129
11130	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11131		dtrace_actdesc_hold(act);
11132
11133	new->dted_action = ecb->dted_action;
11134	new->dted_pred = ecb->dted_pred;
11135	new->dted_probe = *pd;
11136	new->dted_uarg = ecb->dted_uarg;
11137
11138	dtrace_enabling_add(enab, new);
11139}
11140
11141static void
11142dtrace_enabling_dump(dtrace_enabling_t *enab)
11143{
11144	int i;
11145
11146	for (i = 0; i < enab->dten_ndesc; i++) {
11147		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11148
11149		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11150		    desc->dtpd_provider, desc->dtpd_mod,
11151		    desc->dtpd_func, desc->dtpd_name);
11152	}
11153}
11154
11155static void
11156dtrace_enabling_destroy(dtrace_enabling_t *enab)
11157{
11158	int i;
11159	dtrace_ecbdesc_t *ep;
11160	dtrace_vstate_t *vstate = enab->dten_vstate;
11161
11162	ASSERT(MUTEX_HELD(&dtrace_lock));
11163
11164	for (i = 0; i < enab->dten_ndesc; i++) {
11165		dtrace_actdesc_t *act, *next;
11166		dtrace_predicate_t *pred;
11167
11168		ep = enab->dten_desc[i];
11169
11170		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11171			dtrace_predicate_release(pred, vstate);
11172
11173		for (act = ep->dted_action; act != NULL; act = next) {
11174			next = act->dtad_next;
11175			dtrace_actdesc_release(act, vstate);
11176		}
11177
11178		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11179	}
11180
11181	if (enab->dten_desc != NULL)
11182		kmem_free(enab->dten_desc,
11183		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11184
11185	/*
11186	 * If this was a retained enabling, decrement the dts_nretained count
11187	 * and take it off of the dtrace_retained list.
11188	 */
11189	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11190	    dtrace_retained == enab) {
11191		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11192		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11193		enab->dten_vstate->dtvs_state->dts_nretained--;
11194	}
11195
11196	if (enab->dten_prev == NULL) {
11197		if (dtrace_retained == enab) {
11198			dtrace_retained = enab->dten_next;
11199
11200			if (dtrace_retained != NULL)
11201				dtrace_retained->dten_prev = NULL;
11202		}
11203	} else {
11204		ASSERT(enab != dtrace_retained);
11205		ASSERT(dtrace_retained != NULL);
11206		enab->dten_prev->dten_next = enab->dten_next;
11207	}
11208
11209	if (enab->dten_next != NULL) {
11210		ASSERT(dtrace_retained != NULL);
11211		enab->dten_next->dten_prev = enab->dten_prev;
11212	}
11213
11214	kmem_free(enab, sizeof (dtrace_enabling_t));
11215}
11216
11217static int
11218dtrace_enabling_retain(dtrace_enabling_t *enab)
11219{
11220	dtrace_state_t *state;
11221
11222	ASSERT(MUTEX_HELD(&dtrace_lock));
11223	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11224	ASSERT(enab->dten_vstate != NULL);
11225
11226	state = enab->dten_vstate->dtvs_state;
11227	ASSERT(state != NULL);
11228
11229	/*
11230	 * We only allow each state to retain dtrace_retain_max enablings.
11231	 */
11232	if (state->dts_nretained >= dtrace_retain_max)
11233		return (ENOSPC);
11234
11235	state->dts_nretained++;
11236
11237	if (dtrace_retained == NULL) {
11238		dtrace_retained = enab;
11239		return (0);
11240	}
11241
11242	enab->dten_next = dtrace_retained;
11243	dtrace_retained->dten_prev = enab;
11244	dtrace_retained = enab;
11245
11246	return (0);
11247}
11248
11249static int
11250dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11251    dtrace_probedesc_t *create)
11252{
11253	dtrace_enabling_t *new, *enab;
11254	int found = 0, err = ENOENT;
11255
11256	ASSERT(MUTEX_HELD(&dtrace_lock));
11257	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11258	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11259	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11260	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11261
11262	new = dtrace_enabling_create(&state->dts_vstate);
11263
11264	/*
11265	 * Iterate over all retained enablings, looking for enablings that
11266	 * match the specified state.
11267	 */
11268	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11269		int i;
11270
11271		/*
11272		 * dtvs_state can only be NULL for helper enablings -- and
11273		 * helper enablings can't be retained.
11274		 */
11275		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11276
11277		if (enab->dten_vstate->dtvs_state != state)
11278			continue;
11279
11280		/*
11281		 * Now iterate over each probe description; we're looking for
11282		 * an exact match to the specified probe description.
11283		 */
11284		for (i = 0; i < enab->dten_ndesc; i++) {
11285			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11286			dtrace_probedesc_t *pd = &ep->dted_probe;
11287
11288			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11289				continue;
11290
11291			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11292				continue;
11293
11294			if (strcmp(pd->dtpd_func, match->dtpd_func))
11295				continue;
11296
11297			if (strcmp(pd->dtpd_name, match->dtpd_name))
11298				continue;
11299
11300			/*
11301			 * We have a winning probe!  Add it to our growing
11302			 * enabling.
11303			 */
11304			found = 1;
11305			dtrace_enabling_addlike(new, ep, create);
11306		}
11307	}
11308
11309	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11310		dtrace_enabling_destroy(new);
11311		return (err);
11312	}
11313
11314	return (0);
11315}
11316
11317static void
11318dtrace_enabling_retract(dtrace_state_t *state)
11319{
11320	dtrace_enabling_t *enab, *next;
11321
11322	ASSERT(MUTEX_HELD(&dtrace_lock));
11323
11324	/*
11325	 * Iterate over all retained enablings, destroy the enablings retained
11326	 * for the specified state.
11327	 */
11328	for (enab = dtrace_retained; enab != NULL; enab = next) {
11329		next = enab->dten_next;
11330
11331		/*
11332		 * dtvs_state can only be NULL for helper enablings -- and
11333		 * helper enablings can't be retained.
11334		 */
11335		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11336
11337		if (enab->dten_vstate->dtvs_state == state) {
11338			ASSERT(state->dts_nretained > 0);
11339			dtrace_enabling_destroy(enab);
11340		}
11341	}
11342
11343	ASSERT(state->dts_nretained == 0);
11344}
11345
11346static int
11347dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11348{
11349	int i = 0;
11350	int matched = 0;
11351
11352	ASSERT(MUTEX_HELD(&cpu_lock));
11353	ASSERT(MUTEX_HELD(&dtrace_lock));
11354
11355	for (i = 0; i < enab->dten_ndesc; i++) {
11356		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11357
11358		enab->dten_current = ep;
11359		enab->dten_error = 0;
11360
11361		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11362
11363		if (enab->dten_error != 0) {
11364			/*
11365			 * If we get an error half-way through enabling the
11366			 * probes, we kick out -- perhaps with some number of
11367			 * them enabled.  Leaving enabled probes enabled may
11368			 * be slightly confusing for user-level, but we expect
11369			 * that no one will attempt to actually drive on in
11370			 * the face of such errors.  If this is an anonymous
11371			 * enabling (indicated with a NULL nmatched pointer),
11372			 * we cmn_err() a message.  We aren't expecting to
11373			 * get such an error -- such as it can exist at all,
11374			 * it would be a result of corrupted DOF in the driver
11375			 * properties.
11376			 */
11377			if (nmatched == NULL) {
11378				cmn_err(CE_WARN, "dtrace_enabling_match() "
11379				    "error on %p: %d", (void *)ep,
11380				    enab->dten_error);
11381			}
11382
11383			return (enab->dten_error);
11384		}
11385	}
11386
11387	enab->dten_probegen = dtrace_probegen;
11388	if (nmatched != NULL)
11389		*nmatched = matched;
11390
11391	return (0);
11392}
11393
11394static void
11395dtrace_enabling_matchall(void)
11396{
11397	dtrace_enabling_t *enab;
11398
11399	mutex_enter(&cpu_lock);
11400	mutex_enter(&dtrace_lock);
11401
11402	/*
11403	 * Because we can be called after dtrace_detach() has been called, we
11404	 * cannot assert that there are retained enablings.  We can safely
11405	 * load from dtrace_retained, however:  the taskq_destroy() at the
11406	 * end of dtrace_detach() will block pending our completion.
11407	 */
11408	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
11409		(void) dtrace_enabling_match(enab, NULL);
11410
11411	mutex_exit(&dtrace_lock);
11412	mutex_exit(&cpu_lock);
11413}
11414
11415/*
11416 * If an enabling is to be enabled without having matched probes (that is, if
11417 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11418 * enabling must be _primed_ by creating an ECB for every ECB description.
11419 * This must be done to assure that we know the number of speculations, the
11420 * number of aggregations, the minimum buffer size needed, etc. before we
11421 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11422 * enabling any probes, we create ECBs for every ECB decription, but with a
11423 * NULL probe -- which is exactly what this function does.
11424 */
11425static void
11426dtrace_enabling_prime(dtrace_state_t *state)
11427{
11428	dtrace_enabling_t *enab;
11429	int i;
11430
11431	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11432		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11433
11434		if (enab->dten_vstate->dtvs_state != state)
11435			continue;
11436
11437		/*
11438		 * We don't want to prime an enabling more than once, lest
11439		 * we allow a malicious user to induce resource exhaustion.
11440		 * (The ECBs that result from priming an enabling aren't
11441		 * leaked -- but they also aren't deallocated until the
11442		 * consumer state is destroyed.)
11443		 */
11444		if (enab->dten_primed)
11445			continue;
11446
11447		for (i = 0; i < enab->dten_ndesc; i++) {
11448			enab->dten_current = enab->dten_desc[i];
11449			(void) dtrace_probe_enable(NULL, enab);
11450		}
11451
11452		enab->dten_primed = 1;
11453	}
11454}
11455
11456/*
11457 * Called to indicate that probes should be provided due to retained
11458 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11459 * must take an initial lap through the enabling calling the dtps_provide()
11460 * entry point explicitly to allow for autocreated probes.
11461 */
11462static void
11463dtrace_enabling_provide(dtrace_provider_t *prv)
11464{
11465	int i, all = 0;
11466	dtrace_probedesc_t desc;
11467
11468	ASSERT(MUTEX_HELD(&dtrace_lock));
11469	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11470
11471	if (prv == NULL) {
11472		all = 1;
11473		prv = dtrace_provider;
11474	}
11475
11476	do {
11477		dtrace_enabling_t *enab = dtrace_retained;
11478		void *parg = prv->dtpv_arg;
11479
11480		for (; enab != NULL; enab = enab->dten_next) {
11481			for (i = 0; i < enab->dten_ndesc; i++) {
11482				desc = enab->dten_desc[i]->dted_probe;
11483				mutex_exit(&dtrace_lock);
11484				prv->dtpv_pops.dtps_provide(parg, &desc);
11485				mutex_enter(&dtrace_lock);
11486			}
11487		}
11488	} while (all && (prv = prv->dtpv_next) != NULL);
11489
11490	mutex_exit(&dtrace_lock);
11491	dtrace_probe_provide(NULL, all ? NULL : prv);
11492	mutex_enter(&dtrace_lock);
11493}
11494
11495/*
11496 * DTrace DOF Functions
11497 */
11498/*ARGSUSED*/
11499static void
11500dtrace_dof_error(dof_hdr_t *dof, const char *str)
11501{
11502	if (dtrace_err_verbose)
11503		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11504
11505#ifdef DTRACE_ERRDEBUG
11506	dtrace_errdebug(str);
11507#endif
11508}
11509
11510/*
11511 * Create DOF out of a currently enabled state.  Right now, we only create
11512 * DOF containing the run-time options -- but this could be expanded to create
11513 * complete DOF representing the enabled state.
11514 */
11515static dof_hdr_t *
11516dtrace_dof_create(dtrace_state_t *state)
11517{
11518	dof_hdr_t *dof;
11519	dof_sec_t *sec;
11520	dof_optdesc_t *opt;
11521	int i, len = sizeof (dof_hdr_t) +
11522	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11523	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11524
11525	ASSERT(MUTEX_HELD(&dtrace_lock));
11526
11527	dof = kmem_zalloc(len, KM_SLEEP);
11528	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11529	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11530	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11531	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11532
11533	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11534	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11535	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11536	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11537	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11538	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11539
11540	dof->dofh_flags = 0;
11541	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11542	dof->dofh_secsize = sizeof (dof_sec_t);
11543	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11544	dof->dofh_secoff = sizeof (dof_hdr_t);
11545	dof->dofh_loadsz = len;
11546	dof->dofh_filesz = len;
11547	dof->dofh_pad = 0;
11548
11549	/*
11550	 * Fill in the option section header...
11551	 */
11552	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11553	sec->dofs_type = DOF_SECT_OPTDESC;
11554	sec->dofs_align = sizeof (uint64_t);
11555	sec->dofs_flags = DOF_SECF_LOAD;
11556	sec->dofs_entsize = sizeof (dof_optdesc_t);
11557
11558	opt = (dof_optdesc_t *)((uintptr_t)sec +
11559	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11560
11561	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11562	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11563
11564	for (i = 0; i < DTRACEOPT_MAX; i++) {
11565		opt[i].dofo_option = i;
11566		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11567		opt[i].dofo_value = state->dts_options[i];
11568	}
11569
11570	return (dof);
11571}
11572
11573static dof_hdr_t *
11574dtrace_dof_copyin(uintptr_t uarg, int *errp)
11575{
11576	dof_hdr_t hdr, *dof;
11577
11578	ASSERT(!MUTEX_HELD(&dtrace_lock));
11579
11580	/*
11581	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11582	 */
11583	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11584		dtrace_dof_error(NULL, "failed to copyin DOF header");
11585		*errp = EFAULT;
11586		return (NULL);
11587	}
11588
11589	/*
11590	 * Now we'll allocate the entire DOF and copy it in -- provided
11591	 * that the length isn't outrageous.
11592	 */
11593	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11594		dtrace_dof_error(&hdr, "load size exceeds maximum");
11595		*errp = E2BIG;
11596		return (NULL);
11597	}
11598
11599	if (hdr.dofh_loadsz < sizeof (hdr)) {
11600		dtrace_dof_error(&hdr, "invalid load size");
11601		*errp = EINVAL;
11602		return (NULL);
11603	}
11604
11605	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11606
11607	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11608		kmem_free(dof, hdr.dofh_loadsz);
11609		*errp = EFAULT;
11610		return (NULL);
11611	}
11612
11613	return (dof);
11614}
11615
11616#if !defined(sun)
11617static __inline uchar_t
11618dtrace_dof_char(char c) {
11619	switch (c) {
11620	case '0':
11621	case '1':
11622	case '2':
11623	case '3':
11624	case '4':
11625	case '5':
11626	case '6':
11627	case '7':
11628	case '8':
11629	case '9':
11630		return (c - '0');
11631	case 'A':
11632	case 'B':
11633	case 'C':
11634	case 'D':
11635	case 'E':
11636	case 'F':
11637		return (c - 'A' + 10);
11638	case 'a':
11639	case 'b':
11640	case 'c':
11641	case 'd':
11642	case 'e':
11643	case 'f':
11644		return (c - 'a' + 10);
11645	}
11646	/* Should not reach here. */
11647	return (0);
11648}
11649#endif
11650
11651static dof_hdr_t *
11652dtrace_dof_property(const char *name)
11653{
11654	uchar_t *buf;
11655	uint64_t loadsz;
11656	unsigned int len, i;
11657	dof_hdr_t *dof;
11658
11659#if defined(sun)
11660	/*
11661	 * Unfortunately, array of values in .conf files are always (and
11662	 * only) interpreted to be integer arrays.  We must read our DOF
11663	 * as an integer array, and then squeeze it into a byte array.
11664	 */
11665	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11666	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11667		return (NULL);
11668
11669	for (i = 0; i < len; i++)
11670		buf[i] = (uchar_t)(((int *)buf)[i]);
11671
11672	if (len < sizeof (dof_hdr_t)) {
11673		ddi_prop_free(buf);
11674		dtrace_dof_error(NULL, "truncated header");
11675		return (NULL);
11676	}
11677
11678	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11679		ddi_prop_free(buf);
11680		dtrace_dof_error(NULL, "truncated DOF");
11681		return (NULL);
11682	}
11683
11684	if (loadsz >= dtrace_dof_maxsize) {
11685		ddi_prop_free(buf);
11686		dtrace_dof_error(NULL, "oversized DOF");
11687		return (NULL);
11688	}
11689
11690	dof = kmem_alloc(loadsz, KM_SLEEP);
11691	bcopy(buf, dof, loadsz);
11692	ddi_prop_free(buf);
11693#else
11694	char *p;
11695	char *p_env;
11696
11697	if ((p_env = getenv(name)) == NULL)
11698		return (NULL);
11699
11700	len = strlen(p_env) / 2;
11701
11702	buf = kmem_alloc(len, KM_SLEEP);
11703
11704	dof = (dof_hdr_t *) buf;
11705
11706	p = p_env;
11707
11708	for (i = 0; i < len; i++) {
11709		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11710		     dtrace_dof_char(p[1]);
11711		p += 2;
11712	}
11713
11714	freeenv(p_env);
11715
11716	if (len < sizeof (dof_hdr_t)) {
11717		kmem_free(buf, 0);
11718		dtrace_dof_error(NULL, "truncated header");
11719		return (NULL);
11720	}
11721
11722	if (len < (loadsz = dof->dofh_loadsz)) {
11723		kmem_free(buf, 0);
11724		dtrace_dof_error(NULL, "truncated DOF");
11725		return (NULL);
11726	}
11727
11728	if (loadsz >= dtrace_dof_maxsize) {
11729		kmem_free(buf, 0);
11730		dtrace_dof_error(NULL, "oversized DOF");
11731		return (NULL);
11732	}
11733#endif
11734
11735	return (dof);
11736}
11737
11738static void
11739dtrace_dof_destroy(dof_hdr_t *dof)
11740{
11741	kmem_free(dof, dof->dofh_loadsz);
11742}
11743
11744/*
11745 * Return the dof_sec_t pointer corresponding to a given section index.  If the
11746 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11747 * a type other than DOF_SECT_NONE is specified, the header is checked against
11748 * this type and NULL is returned if the types do not match.
11749 */
11750static dof_sec_t *
11751dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11752{
11753	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11754	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11755
11756	if (i >= dof->dofh_secnum) {
11757		dtrace_dof_error(dof, "referenced section index is invalid");
11758		return (NULL);
11759	}
11760
11761	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11762		dtrace_dof_error(dof, "referenced section is not loadable");
11763		return (NULL);
11764	}
11765
11766	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11767		dtrace_dof_error(dof, "referenced section is the wrong type");
11768		return (NULL);
11769	}
11770
11771	return (sec);
11772}
11773
11774static dtrace_probedesc_t *
11775dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11776{
11777	dof_probedesc_t *probe;
11778	dof_sec_t *strtab;
11779	uintptr_t daddr = (uintptr_t)dof;
11780	uintptr_t str;
11781	size_t size;
11782
11783	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11784		dtrace_dof_error(dof, "invalid probe section");
11785		return (NULL);
11786	}
11787
11788	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11789		dtrace_dof_error(dof, "bad alignment in probe description");
11790		return (NULL);
11791	}
11792
11793	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11794		dtrace_dof_error(dof, "truncated probe description");
11795		return (NULL);
11796	}
11797
11798	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11799	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11800
11801	if (strtab == NULL)
11802		return (NULL);
11803
11804	str = daddr + strtab->dofs_offset;
11805	size = strtab->dofs_size;
11806
11807	if (probe->dofp_provider >= strtab->dofs_size) {
11808		dtrace_dof_error(dof, "corrupt probe provider");
11809		return (NULL);
11810	}
11811
11812	(void) strncpy(desc->dtpd_provider,
11813	    (char *)(str + probe->dofp_provider),
11814	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11815
11816	if (probe->dofp_mod >= strtab->dofs_size) {
11817		dtrace_dof_error(dof, "corrupt probe module");
11818		return (NULL);
11819	}
11820
11821	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11822	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11823
11824	if (probe->dofp_func >= strtab->dofs_size) {
11825		dtrace_dof_error(dof, "corrupt probe function");
11826		return (NULL);
11827	}
11828
11829	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11830	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11831
11832	if (probe->dofp_name >= strtab->dofs_size) {
11833		dtrace_dof_error(dof, "corrupt probe name");
11834		return (NULL);
11835	}
11836
11837	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11838	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11839
11840	return (desc);
11841}
11842
11843static dtrace_difo_t *
11844dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11845    cred_t *cr)
11846{
11847	dtrace_difo_t *dp;
11848	size_t ttl = 0;
11849	dof_difohdr_t *dofd;
11850	uintptr_t daddr = (uintptr_t)dof;
11851	size_t max = dtrace_difo_maxsize;
11852	int i, l, n;
11853
11854	static const struct {
11855		int section;
11856		int bufoffs;
11857		int lenoffs;
11858		int entsize;
11859		int align;
11860		const char *msg;
11861	} difo[] = {
11862		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11863		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11864		sizeof (dif_instr_t), "multiple DIF sections" },
11865
11866		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11867		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11868		sizeof (uint64_t), "multiple integer tables" },
11869
11870		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11871		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11872		sizeof (char), "multiple string tables" },
11873
11874		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11875		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11876		sizeof (uint_t), "multiple variable tables" },
11877
11878		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11879	};
11880
11881	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11882		dtrace_dof_error(dof, "invalid DIFO header section");
11883		return (NULL);
11884	}
11885
11886	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11887		dtrace_dof_error(dof, "bad alignment in DIFO header");
11888		return (NULL);
11889	}
11890
11891	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11892	    sec->dofs_size % sizeof (dof_secidx_t)) {
11893		dtrace_dof_error(dof, "bad size in DIFO header");
11894		return (NULL);
11895	}
11896
11897	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11898	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11899
11900	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11901	dp->dtdo_rtype = dofd->dofd_rtype;
11902
11903	for (l = 0; l < n; l++) {
11904		dof_sec_t *subsec;
11905		void **bufp;
11906		uint32_t *lenp;
11907
11908		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11909		    dofd->dofd_links[l])) == NULL)
11910			goto err; /* invalid section link */
11911
11912		if (ttl + subsec->dofs_size > max) {
11913			dtrace_dof_error(dof, "exceeds maximum size");
11914			goto err;
11915		}
11916
11917		ttl += subsec->dofs_size;
11918
11919		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11920			if (subsec->dofs_type != difo[i].section)
11921				continue;
11922
11923			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11924				dtrace_dof_error(dof, "section not loaded");
11925				goto err;
11926			}
11927
11928			if (subsec->dofs_align != difo[i].align) {
11929				dtrace_dof_error(dof, "bad alignment");
11930				goto err;
11931			}
11932
11933			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11934			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11935
11936			if (*bufp != NULL) {
11937				dtrace_dof_error(dof, difo[i].msg);
11938				goto err;
11939			}
11940
11941			if (difo[i].entsize != subsec->dofs_entsize) {
11942				dtrace_dof_error(dof, "entry size mismatch");
11943				goto err;
11944			}
11945
11946			if (subsec->dofs_entsize != 0 &&
11947			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11948				dtrace_dof_error(dof, "corrupt entry size");
11949				goto err;
11950			}
11951
11952			*lenp = subsec->dofs_size;
11953			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11954			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11955			    *bufp, subsec->dofs_size);
11956
11957			if (subsec->dofs_entsize != 0)
11958				*lenp /= subsec->dofs_entsize;
11959
11960			break;
11961		}
11962
11963		/*
11964		 * If we encounter a loadable DIFO sub-section that is not
11965		 * known to us, assume this is a broken program and fail.
11966		 */
11967		if (difo[i].section == DOF_SECT_NONE &&
11968		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11969			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11970			goto err;
11971		}
11972	}
11973
11974	if (dp->dtdo_buf == NULL) {
11975		/*
11976		 * We can't have a DIF object without DIF text.
11977		 */
11978		dtrace_dof_error(dof, "missing DIF text");
11979		goto err;
11980	}
11981
11982	/*
11983	 * Before we validate the DIF object, run through the variable table
11984	 * looking for the strings -- if any of their size are under, we'll set
11985	 * their size to be the system-wide default string size.  Note that
11986	 * this should _not_ happen if the "strsize" option has been set --
11987	 * in this case, the compiler should have set the size to reflect the
11988	 * setting of the option.
11989	 */
11990	for (i = 0; i < dp->dtdo_varlen; i++) {
11991		dtrace_difv_t *v = &dp->dtdo_vartab[i];
11992		dtrace_diftype_t *t = &v->dtdv_type;
11993
11994		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11995			continue;
11996
11997		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11998			t->dtdt_size = dtrace_strsize_default;
11999	}
12000
12001	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12002		goto err;
12003
12004	dtrace_difo_init(dp, vstate);
12005	return (dp);
12006
12007err:
12008	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12009	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12010	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12011	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12012
12013	kmem_free(dp, sizeof (dtrace_difo_t));
12014	return (NULL);
12015}
12016
12017static dtrace_predicate_t *
12018dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12019    cred_t *cr)
12020{
12021	dtrace_difo_t *dp;
12022
12023	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12024		return (NULL);
12025
12026	return (dtrace_predicate_create(dp));
12027}
12028
12029static dtrace_actdesc_t *
12030dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12031    cred_t *cr)
12032{
12033	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12034	dof_actdesc_t *desc;
12035	dof_sec_t *difosec;
12036	size_t offs;
12037	uintptr_t daddr = (uintptr_t)dof;
12038	uint64_t arg;
12039	dtrace_actkind_t kind;
12040
12041	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12042		dtrace_dof_error(dof, "invalid action section");
12043		return (NULL);
12044	}
12045
12046	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12047		dtrace_dof_error(dof, "truncated action description");
12048		return (NULL);
12049	}
12050
12051	if (sec->dofs_align != sizeof (uint64_t)) {
12052		dtrace_dof_error(dof, "bad alignment in action description");
12053		return (NULL);
12054	}
12055
12056	if (sec->dofs_size < sec->dofs_entsize) {
12057		dtrace_dof_error(dof, "section entry size exceeds total size");
12058		return (NULL);
12059	}
12060
12061	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12062		dtrace_dof_error(dof, "bad entry size in action description");
12063		return (NULL);
12064	}
12065
12066	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12067		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12068		return (NULL);
12069	}
12070
12071	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12072		desc = (dof_actdesc_t *)(daddr +
12073		    (uintptr_t)sec->dofs_offset + offs);
12074		kind = (dtrace_actkind_t)desc->dofa_kind;
12075
12076		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12077		    (kind != DTRACEACT_PRINTA ||
12078		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12079			dof_sec_t *strtab;
12080			char *str, *fmt;
12081			uint64_t i;
12082
12083			/*
12084			 * printf()-like actions must have a format string.
12085			 */
12086			if ((strtab = dtrace_dof_sect(dof,
12087			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12088				goto err;
12089
12090			str = (char *)((uintptr_t)dof +
12091			    (uintptr_t)strtab->dofs_offset);
12092
12093			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12094				if (str[i] == '\0')
12095					break;
12096			}
12097
12098			if (i >= strtab->dofs_size) {
12099				dtrace_dof_error(dof, "bogus format string");
12100				goto err;
12101			}
12102
12103			if (i == desc->dofa_arg) {
12104				dtrace_dof_error(dof, "empty format string");
12105				goto err;
12106			}
12107
12108			i -= desc->dofa_arg;
12109			fmt = kmem_alloc(i + 1, KM_SLEEP);
12110			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12111			arg = (uint64_t)(uintptr_t)fmt;
12112		} else {
12113			if (kind == DTRACEACT_PRINTA) {
12114				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12115				arg = 0;
12116			} else {
12117				arg = desc->dofa_arg;
12118			}
12119		}
12120
12121		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12122		    desc->dofa_uarg, arg);
12123
12124		if (last != NULL) {
12125			last->dtad_next = act;
12126		} else {
12127			first = act;
12128		}
12129
12130		last = act;
12131
12132		if (desc->dofa_difo == DOF_SECIDX_NONE)
12133			continue;
12134
12135		if ((difosec = dtrace_dof_sect(dof,
12136		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12137			goto err;
12138
12139		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12140
12141		if (act->dtad_difo == NULL)
12142			goto err;
12143	}
12144
12145	ASSERT(first != NULL);
12146	return (first);
12147
12148err:
12149	for (act = first; act != NULL; act = next) {
12150		next = act->dtad_next;
12151		dtrace_actdesc_release(act, vstate);
12152	}
12153
12154	return (NULL);
12155}
12156
12157static dtrace_ecbdesc_t *
12158dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12159    cred_t *cr)
12160{
12161	dtrace_ecbdesc_t *ep;
12162	dof_ecbdesc_t *ecb;
12163	dtrace_probedesc_t *desc;
12164	dtrace_predicate_t *pred = NULL;
12165
12166	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12167		dtrace_dof_error(dof, "truncated ECB description");
12168		return (NULL);
12169	}
12170
12171	if (sec->dofs_align != sizeof (uint64_t)) {
12172		dtrace_dof_error(dof, "bad alignment in ECB description");
12173		return (NULL);
12174	}
12175
12176	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12177	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12178
12179	if (sec == NULL)
12180		return (NULL);
12181
12182	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12183	ep->dted_uarg = ecb->dofe_uarg;
12184	desc = &ep->dted_probe;
12185
12186	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12187		goto err;
12188
12189	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12190		if ((sec = dtrace_dof_sect(dof,
12191		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12192			goto err;
12193
12194		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12195			goto err;
12196
12197		ep->dted_pred.dtpdd_predicate = pred;
12198	}
12199
12200	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12201		if ((sec = dtrace_dof_sect(dof,
12202		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12203			goto err;
12204
12205		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12206
12207		if (ep->dted_action == NULL)
12208			goto err;
12209	}
12210
12211	return (ep);
12212
12213err:
12214	if (pred != NULL)
12215		dtrace_predicate_release(pred, vstate);
12216	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12217	return (NULL);
12218}
12219
12220/*
12221 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12222 * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12223 * site of any user SETX relocations to account for load object base address.
12224 * In the future, if we need other relocations, this function can be extended.
12225 */
12226static int
12227dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12228{
12229	uintptr_t daddr = (uintptr_t)dof;
12230	dof_relohdr_t *dofr =
12231	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12232	dof_sec_t *ss, *rs, *ts;
12233	dof_relodesc_t *r;
12234	uint_t i, n;
12235
12236	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12237	    sec->dofs_align != sizeof (dof_secidx_t)) {
12238		dtrace_dof_error(dof, "invalid relocation header");
12239		return (-1);
12240	}
12241
12242	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12243	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12244	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12245
12246	if (ss == NULL || rs == NULL || ts == NULL)
12247		return (-1); /* dtrace_dof_error() has been called already */
12248
12249	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12250	    rs->dofs_align != sizeof (uint64_t)) {
12251		dtrace_dof_error(dof, "invalid relocation section");
12252		return (-1);
12253	}
12254
12255	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12256	n = rs->dofs_size / rs->dofs_entsize;
12257
12258	for (i = 0; i < n; i++) {
12259		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12260
12261		switch (r->dofr_type) {
12262		case DOF_RELO_NONE:
12263			break;
12264		case DOF_RELO_SETX:
12265			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12266			    sizeof (uint64_t) > ts->dofs_size) {
12267				dtrace_dof_error(dof, "bad relocation offset");
12268				return (-1);
12269			}
12270
12271			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12272				dtrace_dof_error(dof, "misaligned setx relo");
12273				return (-1);
12274			}
12275
12276			*(uint64_t *)taddr += ubase;
12277			break;
12278		default:
12279			dtrace_dof_error(dof, "invalid relocation type");
12280			return (-1);
12281		}
12282
12283		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12284	}
12285
12286	return (0);
12287}
12288
12289/*
12290 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12291 * header:  it should be at the front of a memory region that is at least
12292 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12293 * size.  It need not be validated in any other way.
12294 */
12295static int
12296dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12297    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12298{
12299	uint64_t len = dof->dofh_loadsz, seclen;
12300	uintptr_t daddr = (uintptr_t)dof;
12301	dtrace_ecbdesc_t *ep;
12302	dtrace_enabling_t *enab;
12303	uint_t i;
12304
12305	ASSERT(MUTEX_HELD(&dtrace_lock));
12306	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12307
12308	/*
12309	 * Check the DOF header identification bytes.  In addition to checking
12310	 * valid settings, we also verify that unused bits/bytes are zeroed so
12311	 * we can use them later without fear of regressing existing binaries.
12312	 */
12313	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12314	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12315		dtrace_dof_error(dof, "DOF magic string mismatch");
12316		return (-1);
12317	}
12318
12319	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12320	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12321		dtrace_dof_error(dof, "DOF has invalid data model");
12322		return (-1);
12323	}
12324
12325	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12326		dtrace_dof_error(dof, "DOF encoding mismatch");
12327		return (-1);
12328	}
12329
12330	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12331	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12332		dtrace_dof_error(dof, "DOF version mismatch");
12333		return (-1);
12334	}
12335
12336	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12337		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12338		return (-1);
12339	}
12340
12341	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12342		dtrace_dof_error(dof, "DOF uses too many integer registers");
12343		return (-1);
12344	}
12345
12346	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12347		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12348		return (-1);
12349	}
12350
12351	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12352		if (dof->dofh_ident[i] != 0) {
12353			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12354			return (-1);
12355		}
12356	}
12357
12358	if (dof->dofh_flags & ~DOF_FL_VALID) {
12359		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12360		return (-1);
12361	}
12362
12363	if (dof->dofh_secsize == 0) {
12364		dtrace_dof_error(dof, "zero section header size");
12365		return (-1);
12366	}
12367
12368	/*
12369	 * Check that the section headers don't exceed the amount of DOF
12370	 * data.  Note that we cast the section size and number of sections
12371	 * to uint64_t's to prevent possible overflow in the multiplication.
12372	 */
12373	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12374
12375	if (dof->dofh_secoff > len || seclen > len ||
12376	    dof->dofh_secoff + seclen > len) {
12377		dtrace_dof_error(dof, "truncated section headers");
12378		return (-1);
12379	}
12380
12381	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12382		dtrace_dof_error(dof, "misaligned section headers");
12383		return (-1);
12384	}
12385
12386	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12387		dtrace_dof_error(dof, "misaligned section size");
12388		return (-1);
12389	}
12390
12391	/*
12392	 * Take an initial pass through the section headers to be sure that
12393	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12394	 * set, do not permit sections relating to providers, probes, or args.
12395	 */
12396	for (i = 0; i < dof->dofh_secnum; i++) {
12397		dof_sec_t *sec = (dof_sec_t *)(daddr +
12398		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12399
12400		if (noprobes) {
12401			switch (sec->dofs_type) {
12402			case DOF_SECT_PROVIDER:
12403			case DOF_SECT_PROBES:
12404			case DOF_SECT_PRARGS:
12405			case DOF_SECT_PROFFS:
12406				dtrace_dof_error(dof, "illegal sections "
12407				    "for enabling");
12408				return (-1);
12409			}
12410		}
12411
12412		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12413			continue; /* just ignore non-loadable sections */
12414
12415		if (sec->dofs_align & (sec->dofs_align - 1)) {
12416			dtrace_dof_error(dof, "bad section alignment");
12417			return (-1);
12418		}
12419
12420		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12421			dtrace_dof_error(dof, "misaligned section");
12422			return (-1);
12423		}
12424
12425		if (sec->dofs_offset > len || sec->dofs_size > len ||
12426		    sec->dofs_offset + sec->dofs_size > len) {
12427			dtrace_dof_error(dof, "corrupt section header");
12428			return (-1);
12429		}
12430
12431		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12432		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12433			dtrace_dof_error(dof, "non-terminating string table");
12434			return (-1);
12435		}
12436	}
12437
12438	/*
12439	 * Take a second pass through the sections and locate and perform any
12440	 * relocations that are present.  We do this after the first pass to
12441	 * be sure that all sections have had their headers validated.
12442	 */
12443	for (i = 0; i < dof->dofh_secnum; i++) {
12444		dof_sec_t *sec = (dof_sec_t *)(daddr +
12445		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12446
12447		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12448			continue; /* skip sections that are not loadable */
12449
12450		switch (sec->dofs_type) {
12451		case DOF_SECT_URELHDR:
12452			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12453				return (-1);
12454			break;
12455		}
12456	}
12457
12458	if ((enab = *enabp) == NULL)
12459		enab = *enabp = dtrace_enabling_create(vstate);
12460
12461	for (i = 0; i < dof->dofh_secnum; i++) {
12462		dof_sec_t *sec = (dof_sec_t *)(daddr +
12463		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12464
12465		if (sec->dofs_type != DOF_SECT_ECBDESC)
12466			continue;
12467
12468		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12469			dtrace_enabling_destroy(enab);
12470			*enabp = NULL;
12471			return (-1);
12472		}
12473
12474		dtrace_enabling_add(enab, ep);
12475	}
12476
12477	return (0);
12478}
12479
12480/*
12481 * Process DOF for any options.  This routine assumes that the DOF has been
12482 * at least processed by dtrace_dof_slurp().
12483 */
12484static int
12485dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12486{
12487	int i, rval;
12488	uint32_t entsize;
12489	size_t offs;
12490	dof_optdesc_t *desc;
12491
12492	for (i = 0; i < dof->dofh_secnum; i++) {
12493		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12494		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12495
12496		if (sec->dofs_type != DOF_SECT_OPTDESC)
12497			continue;
12498
12499		if (sec->dofs_align != sizeof (uint64_t)) {
12500			dtrace_dof_error(dof, "bad alignment in "
12501			    "option description");
12502			return (EINVAL);
12503		}
12504
12505		if ((entsize = sec->dofs_entsize) == 0) {
12506			dtrace_dof_error(dof, "zeroed option entry size");
12507			return (EINVAL);
12508		}
12509
12510		if (entsize < sizeof (dof_optdesc_t)) {
12511			dtrace_dof_error(dof, "bad option entry size");
12512			return (EINVAL);
12513		}
12514
12515		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12516			desc = (dof_optdesc_t *)((uintptr_t)dof +
12517			    (uintptr_t)sec->dofs_offset + offs);
12518
12519			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12520				dtrace_dof_error(dof, "non-zero option string");
12521				return (EINVAL);
12522			}
12523
12524			if (desc->dofo_value == DTRACEOPT_UNSET) {
12525				dtrace_dof_error(dof, "unset option");
12526				return (EINVAL);
12527			}
12528
12529			if ((rval = dtrace_state_option(state,
12530			    desc->dofo_option, desc->dofo_value)) != 0) {
12531				dtrace_dof_error(dof, "rejected option");
12532				return (rval);
12533			}
12534		}
12535	}
12536
12537	return (0);
12538}
12539
12540/*
12541 * DTrace Consumer State Functions
12542 */
12543static int
12544dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12545{
12546	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12547	void *base;
12548	uintptr_t limit;
12549	dtrace_dynvar_t *dvar, *next, *start;
12550	int i;
12551
12552	ASSERT(MUTEX_HELD(&dtrace_lock));
12553	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12554
12555	bzero(dstate, sizeof (dtrace_dstate_t));
12556
12557	if ((dstate->dtds_chunksize = chunksize) == 0)
12558		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12559
12560	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12561		size = min;
12562
12563	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12564		return (ENOMEM);
12565
12566	dstate->dtds_size = size;
12567	dstate->dtds_base = base;
12568	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12569	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12570
12571	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12572
12573	if (hashsize != 1 && (hashsize & 1))
12574		hashsize--;
12575
12576	dstate->dtds_hashsize = hashsize;
12577	dstate->dtds_hash = dstate->dtds_base;
12578
12579	/*
12580	 * Set all of our hash buckets to point to the single sink, and (if
12581	 * it hasn't already been set), set the sink's hash value to be the
12582	 * sink sentinel value.  The sink is needed for dynamic variable
12583	 * lookups to know that they have iterated over an entire, valid hash
12584	 * chain.
12585	 */
12586	for (i = 0; i < hashsize; i++)
12587		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12588
12589	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12590		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12591
12592	/*
12593	 * Determine number of active CPUs.  Divide free list evenly among
12594	 * active CPUs.
12595	 */
12596	start = (dtrace_dynvar_t *)
12597	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12598	limit = (uintptr_t)base + size;
12599
12600	maxper = (limit - (uintptr_t)start) / NCPU;
12601	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12602
12603	for (i = 0; i < NCPU; i++) {
12604#if !defined(sun)
12605		if (CPU_ABSENT(i))
12606			continue;
12607#endif
12608		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12609
12610		/*
12611		 * If we don't even have enough chunks to make it once through
12612		 * NCPUs, we're just going to allocate everything to the first
12613		 * CPU.  And if we're on the last CPU, we're going to allocate
12614		 * whatever is left over.  In either case, we set the limit to
12615		 * be the limit of the dynamic variable space.
12616		 */
12617		if (maxper == 0 || i == NCPU - 1) {
12618			limit = (uintptr_t)base + size;
12619			start = NULL;
12620		} else {
12621			limit = (uintptr_t)start + maxper;
12622			start = (dtrace_dynvar_t *)limit;
12623		}
12624
12625		ASSERT(limit <= (uintptr_t)base + size);
12626
12627		for (;;) {
12628			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12629			    dstate->dtds_chunksize);
12630
12631			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12632				break;
12633
12634			dvar->dtdv_next = next;
12635			dvar = next;
12636		}
12637
12638		if (maxper == 0)
12639			break;
12640	}
12641
12642	return (0);
12643}
12644
12645static void
12646dtrace_dstate_fini(dtrace_dstate_t *dstate)
12647{
12648	ASSERT(MUTEX_HELD(&cpu_lock));
12649
12650	if (dstate->dtds_base == NULL)
12651		return;
12652
12653	kmem_free(dstate->dtds_base, dstate->dtds_size);
12654	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12655}
12656
12657static void
12658dtrace_vstate_fini(dtrace_vstate_t *vstate)
12659{
12660	/*
12661	 * Logical XOR, where are you?
12662	 */
12663	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12664
12665	if (vstate->dtvs_nglobals > 0) {
12666		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12667		    sizeof (dtrace_statvar_t *));
12668	}
12669
12670	if (vstate->dtvs_ntlocals > 0) {
12671		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12672		    sizeof (dtrace_difv_t));
12673	}
12674
12675	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12676
12677	if (vstate->dtvs_nlocals > 0) {
12678		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12679		    sizeof (dtrace_statvar_t *));
12680	}
12681}
12682
12683static void
12684dtrace_state_clean(dtrace_state_t *state)
12685{
12686	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12687		return;
12688
12689	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12690	dtrace_speculation_clean(state);
12691}
12692
12693static void
12694dtrace_state_deadman(dtrace_state_t *state)
12695{
12696	hrtime_t now;
12697
12698	dtrace_sync();
12699
12700#if !defined(sun)
12701	dtrace_debug_output();
12702#endif
12703
12704	now = dtrace_gethrtime();
12705
12706	if (state != dtrace_anon.dta_state &&
12707	    now - state->dts_laststatus >= dtrace_deadman_user)
12708		return;
12709
12710	/*
12711	 * We must be sure that dts_alive never appears to be less than the
12712	 * value upon entry to dtrace_state_deadman(), and because we lack a
12713	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12714	 * store INT64_MAX to it, followed by a memory barrier, followed by
12715	 * the new value.  This assures that dts_alive never appears to be
12716	 * less than its true value, regardless of the order in which the
12717	 * stores to the underlying storage are issued.
12718	 */
12719	state->dts_alive = INT64_MAX;
12720	dtrace_membar_producer();
12721	state->dts_alive = now;
12722}
12723
12724static dtrace_state_t *
12725#if defined(sun)
12726dtrace_state_create(dev_t *devp, cred_t *cr)
12727#else
12728dtrace_state_create(struct cdev *dev)
12729#endif
12730{
12731#if defined(sun)
12732	minor_t minor;
12733	major_t major;
12734#else
12735	cred_t *cr = NULL;
12736	int m = 0;
12737#endif
12738	char c[30];
12739	dtrace_state_t *state;
12740	dtrace_optval_t *opt;
12741	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12742
12743	ASSERT(MUTEX_HELD(&dtrace_lock));
12744	ASSERT(MUTEX_HELD(&cpu_lock));
12745
12746#if defined(sun)
12747	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12748	    VM_BESTFIT | VM_SLEEP);
12749
12750	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12751		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12752		return (NULL);
12753	}
12754
12755	state = ddi_get_soft_state(dtrace_softstate, minor);
12756#else
12757	if (dev != NULL) {
12758		cr = dev->si_cred;
12759		m = minor(dev);
12760		}
12761
12762	/* Allocate memory for the state. */
12763	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12764#endif
12765
12766	state->dts_epid = DTRACE_EPIDNONE + 1;
12767
12768	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12769#if defined(sun)
12770	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12771	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12772
12773	if (devp != NULL) {
12774		major = getemajor(*devp);
12775	} else {
12776		major = ddi_driver_major(dtrace_devi);
12777	}
12778
12779	state->dts_dev = makedevice(major, minor);
12780
12781	if (devp != NULL)
12782		*devp = state->dts_dev;
12783#else
12784	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12785	state->dts_dev = dev;
12786#endif
12787
12788	/*
12789	 * We allocate NCPU buffers.  On the one hand, this can be quite
12790	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12791	 * other hand, it saves an additional memory reference in the probe
12792	 * path.
12793	 */
12794	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12795	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12796	state->dts_cleaner = CYCLIC_NONE;
12797	state->dts_deadman = CYCLIC_NONE;
12798	state->dts_vstate.dtvs_state = state;
12799
12800	for (i = 0; i < DTRACEOPT_MAX; i++)
12801		state->dts_options[i] = DTRACEOPT_UNSET;
12802
12803	/*
12804	 * Set the default options.
12805	 */
12806	opt = state->dts_options;
12807	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12808	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12809	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12810	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12811	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12812	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12813	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12814	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12815	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12816	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12817	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12818	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12819	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12820	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12821
12822	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12823
12824	/*
12825	 * Depending on the user credentials, we set flag bits which alter probe
12826	 * visibility or the amount of destructiveness allowed.  In the case of
12827	 * actual anonymous tracing, or the possession of all privileges, all of
12828	 * the normal checks are bypassed.
12829	 */
12830	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12831		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12832		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12833	} else {
12834		/*
12835		 * Set up the credentials for this instantiation.  We take a
12836		 * hold on the credential to prevent it from disappearing on
12837		 * us; this in turn prevents the zone_t referenced by this
12838		 * credential from disappearing.  This means that we can
12839		 * examine the credential and the zone from probe context.
12840		 */
12841		crhold(cr);
12842		state->dts_cred.dcr_cred = cr;
12843
12844		/*
12845		 * CRA_PROC means "we have *some* privilege for dtrace" and
12846		 * unlocks the use of variables like pid, zonename, etc.
12847		 */
12848		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12849		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12850			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12851		}
12852
12853		/*
12854		 * dtrace_user allows use of syscall and profile providers.
12855		 * If the user also has proc_owner and/or proc_zone, we
12856		 * extend the scope to include additional visibility and
12857		 * destructive power.
12858		 */
12859		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12860			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12861				state->dts_cred.dcr_visible |=
12862				    DTRACE_CRV_ALLPROC;
12863
12864				state->dts_cred.dcr_action |=
12865				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12866			}
12867
12868			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12869				state->dts_cred.dcr_visible |=
12870				    DTRACE_CRV_ALLZONE;
12871
12872				state->dts_cred.dcr_action |=
12873				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12874			}
12875
12876			/*
12877			 * If we have all privs in whatever zone this is,
12878			 * we can do destructive things to processes which
12879			 * have altered credentials.
12880			 */
12881#if defined(sun)
12882			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12883			    cr->cr_zone->zone_privset)) {
12884				state->dts_cred.dcr_action |=
12885				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12886			}
12887#endif
12888		}
12889
12890		/*
12891		 * Holding the dtrace_kernel privilege also implies that
12892		 * the user has the dtrace_user privilege from a visibility
12893		 * perspective.  But without further privileges, some
12894		 * destructive actions are not available.
12895		 */
12896		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12897			/*
12898			 * Make all probes in all zones visible.  However,
12899			 * this doesn't mean that all actions become available
12900			 * to all zones.
12901			 */
12902			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12903			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12904
12905			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12906			    DTRACE_CRA_PROC;
12907			/*
12908			 * Holding proc_owner means that destructive actions
12909			 * for *this* zone are allowed.
12910			 */
12911			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12912				state->dts_cred.dcr_action |=
12913				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12914
12915			/*
12916			 * Holding proc_zone means that destructive actions
12917			 * for this user/group ID in all zones is allowed.
12918			 */
12919			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12920				state->dts_cred.dcr_action |=
12921				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12922
12923#if defined(sun)
12924			/*
12925			 * If we have all privs in whatever zone this is,
12926			 * we can do destructive things to processes which
12927			 * have altered credentials.
12928			 */
12929			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12930			    cr->cr_zone->zone_privset)) {
12931				state->dts_cred.dcr_action |=
12932				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12933			}
12934#endif
12935		}
12936
12937		/*
12938		 * Holding the dtrace_proc privilege gives control over fasttrap
12939		 * and pid providers.  We need to grant wider destructive
12940		 * privileges in the event that the user has proc_owner and/or
12941		 * proc_zone.
12942		 */
12943		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12944			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12945				state->dts_cred.dcr_action |=
12946				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12947
12948			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12949				state->dts_cred.dcr_action |=
12950				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12951		}
12952	}
12953
12954	return (state);
12955}
12956
12957static int
12958dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12959{
12960	dtrace_optval_t *opt = state->dts_options, size;
12961	processorid_t cpu = 0;;
12962	int flags = 0, rval;
12963
12964	ASSERT(MUTEX_HELD(&dtrace_lock));
12965	ASSERT(MUTEX_HELD(&cpu_lock));
12966	ASSERT(which < DTRACEOPT_MAX);
12967	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12968	    (state == dtrace_anon.dta_state &&
12969	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12970
12971	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12972		return (0);
12973
12974	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12975		cpu = opt[DTRACEOPT_CPU];
12976
12977	if (which == DTRACEOPT_SPECSIZE)
12978		flags |= DTRACEBUF_NOSWITCH;
12979
12980	if (which == DTRACEOPT_BUFSIZE) {
12981		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12982			flags |= DTRACEBUF_RING;
12983
12984		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12985			flags |= DTRACEBUF_FILL;
12986
12987		if (state != dtrace_anon.dta_state ||
12988		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12989			flags |= DTRACEBUF_INACTIVE;
12990	}
12991
12992	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
12993		/*
12994		 * The size must be 8-byte aligned.  If the size is not 8-byte
12995		 * aligned, drop it down by the difference.
12996		 */
12997		if (size & (sizeof (uint64_t) - 1))
12998			size -= size & (sizeof (uint64_t) - 1);
12999
13000		if (size < state->dts_reserve) {
13001			/*
13002			 * Buffers always must be large enough to accommodate
13003			 * their prereserved space.  We return E2BIG instead
13004			 * of ENOMEM in this case to allow for user-level
13005			 * software to differentiate the cases.
13006			 */
13007			return (E2BIG);
13008		}
13009
13010		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13011
13012		if (rval != ENOMEM) {
13013			opt[which] = size;
13014			return (rval);
13015		}
13016
13017		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13018			return (rval);
13019	}
13020
13021	return (ENOMEM);
13022}
13023
13024static int
13025dtrace_state_buffers(dtrace_state_t *state)
13026{
13027	dtrace_speculation_t *spec = state->dts_speculations;
13028	int rval, i;
13029
13030	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13031	    DTRACEOPT_BUFSIZE)) != 0)
13032		return (rval);
13033
13034	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13035	    DTRACEOPT_AGGSIZE)) != 0)
13036		return (rval);
13037
13038	for (i = 0; i < state->dts_nspeculations; i++) {
13039		if ((rval = dtrace_state_buffer(state,
13040		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13041			return (rval);
13042	}
13043
13044	return (0);
13045}
13046
13047static void
13048dtrace_state_prereserve(dtrace_state_t *state)
13049{
13050	dtrace_ecb_t *ecb;
13051	dtrace_probe_t *probe;
13052
13053	state->dts_reserve = 0;
13054
13055	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13056		return;
13057
13058	/*
13059	 * If our buffer policy is a "fill" buffer policy, we need to set the
13060	 * prereserved space to be the space required by the END probes.
13061	 */
13062	probe = dtrace_probes[dtrace_probeid_end - 1];
13063	ASSERT(probe != NULL);
13064
13065	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13066		if (ecb->dte_state != state)
13067			continue;
13068
13069		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13070	}
13071}
13072
13073static int
13074dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13075{
13076	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13077	dtrace_speculation_t *spec;
13078	dtrace_buffer_t *buf;
13079	cyc_handler_t hdlr;
13080	cyc_time_t when;
13081	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13082	dtrace_icookie_t cookie;
13083
13084	mutex_enter(&cpu_lock);
13085	mutex_enter(&dtrace_lock);
13086
13087	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13088		rval = EBUSY;
13089		goto out;
13090	}
13091
13092	/*
13093	 * Before we can perform any checks, we must prime all of the
13094	 * retained enablings that correspond to this state.
13095	 */
13096	dtrace_enabling_prime(state);
13097
13098	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13099		rval = EACCES;
13100		goto out;
13101	}
13102
13103	dtrace_state_prereserve(state);
13104
13105	/*
13106	 * Now we want to do is try to allocate our speculations.
13107	 * We do not automatically resize the number of speculations; if
13108	 * this fails, we will fail the operation.
13109	 */
13110	nspec = opt[DTRACEOPT_NSPEC];
13111	ASSERT(nspec != DTRACEOPT_UNSET);
13112
13113	if (nspec > INT_MAX) {
13114		rval = ENOMEM;
13115		goto out;
13116	}
13117
13118	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13119
13120	if (spec == NULL) {
13121		rval = ENOMEM;
13122		goto out;
13123	}
13124
13125	state->dts_speculations = spec;
13126	state->dts_nspeculations = (int)nspec;
13127
13128	for (i = 0; i < nspec; i++) {
13129		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13130			rval = ENOMEM;
13131			goto err;
13132		}
13133
13134		spec[i].dtsp_buffer = buf;
13135	}
13136
13137	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13138		if (dtrace_anon.dta_state == NULL) {
13139			rval = ENOENT;
13140			goto out;
13141		}
13142
13143		if (state->dts_necbs != 0) {
13144			rval = EALREADY;
13145			goto out;
13146		}
13147
13148		state->dts_anon = dtrace_anon_grab();
13149		ASSERT(state->dts_anon != NULL);
13150		state = state->dts_anon;
13151
13152		/*
13153		 * We want "grabanon" to be set in the grabbed state, so we'll
13154		 * copy that option value from the grabbing state into the
13155		 * grabbed state.
13156		 */
13157		state->dts_options[DTRACEOPT_GRABANON] =
13158		    opt[DTRACEOPT_GRABANON];
13159
13160		*cpu = dtrace_anon.dta_beganon;
13161
13162		/*
13163		 * If the anonymous state is active (as it almost certainly
13164		 * is if the anonymous enabling ultimately matched anything),
13165		 * we don't allow any further option processing -- but we
13166		 * don't return failure.
13167		 */
13168		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13169			goto out;
13170	}
13171
13172	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13173	    opt[DTRACEOPT_AGGSIZE] != 0) {
13174		if (state->dts_aggregations == NULL) {
13175			/*
13176			 * We're not going to create an aggregation buffer
13177			 * because we don't have any ECBs that contain
13178			 * aggregations -- set this option to 0.
13179			 */
13180			opt[DTRACEOPT_AGGSIZE] = 0;
13181		} else {
13182			/*
13183			 * If we have an aggregation buffer, we must also have
13184			 * a buffer to use as scratch.
13185			 */
13186			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13187			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13188				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13189			}
13190		}
13191	}
13192
13193	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13194	    opt[DTRACEOPT_SPECSIZE] != 0) {
13195		if (!state->dts_speculates) {
13196			/*
13197			 * We're not going to create speculation buffers
13198			 * because we don't have any ECBs that actually
13199			 * speculate -- set the speculation size to 0.
13200			 */
13201			opt[DTRACEOPT_SPECSIZE] = 0;
13202		}
13203	}
13204
13205	/*
13206	 * The bare minimum size for any buffer that we're actually going to
13207	 * do anything to is sizeof (uint64_t).
13208	 */
13209	sz = sizeof (uint64_t);
13210
13211	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13212	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13213	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13214		/*
13215		 * A buffer size has been explicitly set to 0 (or to a size
13216		 * that will be adjusted to 0) and we need the space -- we
13217		 * need to return failure.  We return ENOSPC to differentiate
13218		 * it from failing to allocate a buffer due to failure to meet
13219		 * the reserve (for which we return E2BIG).
13220		 */
13221		rval = ENOSPC;
13222		goto out;
13223	}
13224
13225	if ((rval = dtrace_state_buffers(state)) != 0)
13226		goto err;
13227
13228	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13229		sz = dtrace_dstate_defsize;
13230
13231	do {
13232		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13233
13234		if (rval == 0)
13235			break;
13236
13237		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13238			goto err;
13239	} while (sz >>= 1);
13240
13241	opt[DTRACEOPT_DYNVARSIZE] = sz;
13242
13243	if (rval != 0)
13244		goto err;
13245
13246	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13247		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13248
13249	if (opt[DTRACEOPT_CLEANRATE] == 0)
13250		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13251
13252	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13253		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13254
13255	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13256		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13257
13258	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13259	hdlr.cyh_arg = state;
13260#if defined(sun)
13261	hdlr.cyh_level = CY_LOW_LEVEL;
13262#endif
13263
13264	when.cyt_when = 0;
13265	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13266
13267	state->dts_cleaner = cyclic_add(&hdlr, &when);
13268
13269	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13270	hdlr.cyh_arg = state;
13271#if defined(sun)
13272	hdlr.cyh_level = CY_LOW_LEVEL;
13273#endif
13274
13275	when.cyt_when = 0;
13276	when.cyt_interval = dtrace_deadman_interval;
13277
13278	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13279	state->dts_deadman = cyclic_add(&hdlr, &when);
13280
13281	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13282
13283	/*
13284	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13285	 * interrupts here both to record the CPU on which we fired the BEGIN
13286	 * probe (the data from this CPU will be processed first at user
13287	 * level) and to manually activate the buffer for this CPU.
13288	 */
13289	cookie = dtrace_interrupt_disable();
13290	*cpu = curcpu;
13291	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13292	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13293
13294	dtrace_probe(dtrace_probeid_begin,
13295	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13296	dtrace_interrupt_enable(cookie);
13297	/*
13298	 * We may have had an exit action from a BEGIN probe; only change our
13299	 * state to ACTIVE if we're still in WARMUP.
13300	 */
13301	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13302	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13303
13304	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13305		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13306
13307	/*
13308	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13309	 * want each CPU to transition its principal buffer out of the
13310	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13311	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13312	 * atomically transition from processing none of a state's ECBs to
13313	 * processing all of them.
13314	 */
13315	dtrace_xcall(DTRACE_CPUALL,
13316	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13317	goto out;
13318
13319err:
13320	dtrace_buffer_free(state->dts_buffer);
13321	dtrace_buffer_free(state->dts_aggbuffer);
13322
13323	if ((nspec = state->dts_nspeculations) == 0) {
13324		ASSERT(state->dts_speculations == NULL);
13325		goto out;
13326	}
13327
13328	spec = state->dts_speculations;
13329	ASSERT(spec != NULL);
13330
13331	for (i = 0; i < state->dts_nspeculations; i++) {
13332		if ((buf = spec[i].dtsp_buffer) == NULL)
13333			break;
13334
13335		dtrace_buffer_free(buf);
13336		kmem_free(buf, bufsize);
13337	}
13338
13339	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13340	state->dts_nspeculations = 0;
13341	state->dts_speculations = NULL;
13342
13343out:
13344	mutex_exit(&dtrace_lock);
13345	mutex_exit(&cpu_lock);
13346
13347	return (rval);
13348}
13349
13350static int
13351dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13352{
13353	dtrace_icookie_t cookie;
13354
13355	ASSERT(MUTEX_HELD(&dtrace_lock));
13356
13357	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13358	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13359		return (EINVAL);
13360
13361	/*
13362	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13363	 * to be sure that every CPU has seen it.  See below for the details
13364	 * on why this is done.
13365	 */
13366	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13367	dtrace_sync();
13368
13369	/*
13370	 * By this point, it is impossible for any CPU to be still processing
13371	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13372	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13373	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13374	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13375	 * iff we're in the END probe.
13376	 */
13377	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13378	dtrace_sync();
13379	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13380
13381	/*
13382	 * Finally, we can release the reserve and call the END probe.  We
13383	 * disable interrupts across calling the END probe to allow us to
13384	 * return the CPU on which we actually called the END probe.  This
13385	 * allows user-land to be sure that this CPU's principal buffer is
13386	 * processed last.
13387	 */
13388	state->dts_reserve = 0;
13389
13390	cookie = dtrace_interrupt_disable();
13391	*cpu = curcpu;
13392	dtrace_probe(dtrace_probeid_end,
13393	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13394	dtrace_interrupt_enable(cookie);
13395
13396	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13397	dtrace_sync();
13398
13399	return (0);
13400}
13401
13402static int
13403dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13404    dtrace_optval_t val)
13405{
13406	ASSERT(MUTEX_HELD(&dtrace_lock));
13407
13408	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13409		return (EBUSY);
13410
13411	if (option >= DTRACEOPT_MAX)
13412		return (EINVAL);
13413
13414	if (option != DTRACEOPT_CPU && val < 0)
13415		return (EINVAL);
13416
13417	switch (option) {
13418	case DTRACEOPT_DESTRUCTIVE:
13419		if (dtrace_destructive_disallow)
13420			return (EACCES);
13421
13422		state->dts_cred.dcr_destructive = 1;
13423		break;
13424
13425	case DTRACEOPT_BUFSIZE:
13426	case DTRACEOPT_DYNVARSIZE:
13427	case DTRACEOPT_AGGSIZE:
13428	case DTRACEOPT_SPECSIZE:
13429	case DTRACEOPT_STRSIZE:
13430		if (val < 0)
13431			return (EINVAL);
13432
13433		if (val >= LONG_MAX) {
13434			/*
13435			 * If this is an otherwise negative value, set it to
13436			 * the highest multiple of 128m less than LONG_MAX.
13437			 * Technically, we're adjusting the size without
13438			 * regard to the buffer resizing policy, but in fact,
13439			 * this has no effect -- if we set the buffer size to
13440			 * ~LONG_MAX and the buffer policy is ultimately set to
13441			 * be "manual", the buffer allocation is guaranteed to
13442			 * fail, if only because the allocation requires two
13443			 * buffers.  (We set the the size to the highest
13444			 * multiple of 128m because it ensures that the size
13445			 * will remain a multiple of a megabyte when
13446			 * repeatedly halved -- all the way down to 15m.)
13447			 */
13448			val = LONG_MAX - (1 << 27) + 1;
13449		}
13450	}
13451
13452	state->dts_options[option] = val;
13453
13454	return (0);
13455}
13456
13457static void
13458dtrace_state_destroy(dtrace_state_t *state)
13459{
13460	dtrace_ecb_t *ecb;
13461	dtrace_vstate_t *vstate = &state->dts_vstate;
13462#if defined(sun)
13463	minor_t minor = getminor(state->dts_dev);
13464#endif
13465	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13466	dtrace_speculation_t *spec = state->dts_speculations;
13467	int nspec = state->dts_nspeculations;
13468	uint32_t match;
13469
13470	ASSERT(MUTEX_HELD(&dtrace_lock));
13471	ASSERT(MUTEX_HELD(&cpu_lock));
13472
13473	/*
13474	 * First, retract any retained enablings for this state.
13475	 */
13476	dtrace_enabling_retract(state);
13477	ASSERT(state->dts_nretained == 0);
13478
13479	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13480	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13481		/*
13482		 * We have managed to come into dtrace_state_destroy() on a
13483		 * hot enabling -- almost certainly because of a disorderly
13484		 * shutdown of a consumer.  (That is, a consumer that is
13485		 * exiting without having called dtrace_stop().) In this case,
13486		 * we're going to set our activity to be KILLED, and then
13487		 * issue a sync to be sure that everyone is out of probe
13488		 * context before we start blowing away ECBs.
13489		 */
13490		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13491		dtrace_sync();
13492	}
13493
13494	/*
13495	 * Release the credential hold we took in dtrace_state_create().
13496	 */
13497	if (state->dts_cred.dcr_cred != NULL)
13498		crfree(state->dts_cred.dcr_cred);
13499
13500	/*
13501	 * Now we can safely disable and destroy any enabled probes.  Because
13502	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13503	 * (especially if they're all enabled), we take two passes through the
13504	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13505	 * in the second we disable whatever is left over.
13506	 */
13507	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13508		for (i = 0; i < state->dts_necbs; i++) {
13509			if ((ecb = state->dts_ecbs[i]) == NULL)
13510				continue;
13511
13512			if (match && ecb->dte_probe != NULL) {
13513				dtrace_probe_t *probe = ecb->dte_probe;
13514				dtrace_provider_t *prov = probe->dtpr_provider;
13515
13516				if (!(prov->dtpv_priv.dtpp_flags & match))
13517					continue;
13518			}
13519
13520			dtrace_ecb_disable(ecb);
13521			dtrace_ecb_destroy(ecb);
13522		}
13523
13524		if (!match)
13525			break;
13526	}
13527
13528	/*
13529	 * Before we free the buffers, perform one more sync to assure that
13530	 * every CPU is out of probe context.
13531	 */
13532	dtrace_sync();
13533
13534	dtrace_buffer_free(state->dts_buffer);
13535	dtrace_buffer_free(state->dts_aggbuffer);
13536
13537	for (i = 0; i < nspec; i++)
13538		dtrace_buffer_free(spec[i].dtsp_buffer);
13539
13540	if (state->dts_cleaner != CYCLIC_NONE)
13541		cyclic_remove(state->dts_cleaner);
13542
13543	if (state->dts_deadman != CYCLIC_NONE)
13544		cyclic_remove(state->dts_deadman);
13545
13546	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13547	dtrace_vstate_fini(vstate);
13548	if (state->dts_ecbs != NULL)
13549		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13550
13551	if (state->dts_aggregations != NULL) {
13552#ifdef DEBUG
13553		for (i = 0; i < state->dts_naggregations; i++)
13554			ASSERT(state->dts_aggregations[i] == NULL);
13555#endif
13556		ASSERT(state->dts_naggregations > 0);
13557		kmem_free(state->dts_aggregations,
13558		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13559	}
13560
13561	kmem_free(state->dts_buffer, bufsize);
13562	kmem_free(state->dts_aggbuffer, bufsize);
13563
13564	for (i = 0; i < nspec; i++)
13565		kmem_free(spec[i].dtsp_buffer, bufsize);
13566
13567	if (spec != NULL)
13568		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13569
13570	dtrace_format_destroy(state);
13571
13572	if (state->dts_aggid_arena != NULL) {
13573#if defined(sun)
13574		vmem_destroy(state->dts_aggid_arena);
13575#else
13576		delete_unrhdr(state->dts_aggid_arena);
13577#endif
13578		state->dts_aggid_arena = NULL;
13579	}
13580#if defined(sun)
13581	ddi_soft_state_free(dtrace_softstate, minor);
13582	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13583#endif
13584}
13585
13586/*
13587 * DTrace Anonymous Enabling Functions
13588 */
13589static dtrace_state_t *
13590dtrace_anon_grab(void)
13591{
13592	dtrace_state_t *state;
13593
13594	ASSERT(MUTEX_HELD(&dtrace_lock));
13595
13596	if ((state = dtrace_anon.dta_state) == NULL) {
13597		ASSERT(dtrace_anon.dta_enabling == NULL);
13598		return (NULL);
13599	}
13600
13601	ASSERT(dtrace_anon.dta_enabling != NULL);
13602	ASSERT(dtrace_retained != NULL);
13603
13604	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13605	dtrace_anon.dta_enabling = NULL;
13606	dtrace_anon.dta_state = NULL;
13607
13608	return (state);
13609}
13610
13611static void
13612dtrace_anon_property(void)
13613{
13614	int i, rv;
13615	dtrace_state_t *state;
13616	dof_hdr_t *dof;
13617	char c[32];		/* enough for "dof-data-" + digits */
13618
13619	ASSERT(MUTEX_HELD(&dtrace_lock));
13620	ASSERT(MUTEX_HELD(&cpu_lock));
13621
13622	for (i = 0; ; i++) {
13623		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13624
13625		dtrace_err_verbose = 1;
13626
13627		if ((dof = dtrace_dof_property(c)) == NULL) {
13628			dtrace_err_verbose = 0;
13629			break;
13630		}
13631
13632#if defined(sun)
13633		/*
13634		 * We want to create anonymous state, so we need to transition
13635		 * the kernel debugger to indicate that DTrace is active.  If
13636		 * this fails (e.g. because the debugger has modified text in
13637		 * some way), we won't continue with the processing.
13638		 */
13639		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13640			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13641			    "enabling ignored.");
13642			dtrace_dof_destroy(dof);
13643			break;
13644		}
13645#endif
13646
13647		/*
13648		 * If we haven't allocated an anonymous state, we'll do so now.
13649		 */
13650		if ((state = dtrace_anon.dta_state) == NULL) {
13651#if defined(sun)
13652			state = dtrace_state_create(NULL, NULL);
13653#else
13654			state = dtrace_state_create(NULL);
13655#endif
13656			dtrace_anon.dta_state = state;
13657
13658			if (state == NULL) {
13659				/*
13660				 * This basically shouldn't happen:  the only
13661				 * failure mode from dtrace_state_create() is a
13662				 * failure of ddi_soft_state_zalloc() that
13663				 * itself should never happen.  Still, the
13664				 * interface allows for a failure mode, and
13665				 * we want to fail as gracefully as possible:
13666				 * we'll emit an error message and cease
13667				 * processing anonymous state in this case.
13668				 */
13669				cmn_err(CE_WARN, "failed to create "
13670				    "anonymous state");
13671				dtrace_dof_destroy(dof);
13672				break;
13673			}
13674		}
13675
13676		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13677		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13678
13679		if (rv == 0)
13680			rv = dtrace_dof_options(dof, state);
13681
13682		dtrace_err_verbose = 0;
13683		dtrace_dof_destroy(dof);
13684
13685		if (rv != 0) {
13686			/*
13687			 * This is malformed DOF; chuck any anonymous state
13688			 * that we created.
13689			 */
13690			ASSERT(dtrace_anon.dta_enabling == NULL);
13691			dtrace_state_destroy(state);
13692			dtrace_anon.dta_state = NULL;
13693			break;
13694		}
13695
13696		ASSERT(dtrace_anon.dta_enabling != NULL);
13697	}
13698
13699	if (dtrace_anon.dta_enabling != NULL) {
13700		int rval;
13701
13702		/*
13703		 * dtrace_enabling_retain() can only fail because we are
13704		 * trying to retain more enablings than are allowed -- but
13705		 * we only have one anonymous enabling, and we are guaranteed
13706		 * to be allowed at least one retained enabling; we assert
13707		 * that dtrace_enabling_retain() returns success.
13708		 */
13709		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13710		ASSERT(rval == 0);
13711
13712		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13713	}
13714}
13715
13716#if defined(sun)
13717/*
13718 * DTrace Helper Functions
13719 */
13720static void
13721dtrace_helper_trace(dtrace_helper_action_t *helper,
13722    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13723{
13724	uint32_t size, next, nnext, i;
13725	dtrace_helptrace_t *ent;
13726	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13727
13728	if (!dtrace_helptrace_enabled)
13729		return;
13730
13731	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13732
13733	/*
13734	 * What would a tracing framework be without its own tracing
13735	 * framework?  (Well, a hell of a lot simpler, for starters...)
13736	 */
13737	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13738	    sizeof (uint64_t) - sizeof (uint64_t);
13739
13740	/*
13741	 * Iterate until we can allocate a slot in the trace buffer.
13742	 */
13743	do {
13744		next = dtrace_helptrace_next;
13745
13746		if (next + size < dtrace_helptrace_bufsize) {
13747			nnext = next + size;
13748		} else {
13749			nnext = size;
13750		}
13751	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13752
13753	/*
13754	 * We have our slot; fill it in.
13755	 */
13756	if (nnext == size)
13757		next = 0;
13758
13759	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13760	ent->dtht_helper = helper;
13761	ent->dtht_where = where;
13762	ent->dtht_nlocals = vstate->dtvs_nlocals;
13763
13764	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13765	    mstate->dtms_fltoffs : -1;
13766	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13767	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13768
13769	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13770		dtrace_statvar_t *svar;
13771
13772		if ((svar = vstate->dtvs_locals[i]) == NULL)
13773			continue;
13774
13775		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13776		ent->dtht_locals[i] =
13777		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13778	}
13779}
13780#endif
13781
13782#if defined(sun)
13783static uint64_t
13784dtrace_helper(int which, dtrace_mstate_t *mstate,
13785    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13786{
13787	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13788	uint64_t sarg0 = mstate->dtms_arg[0];
13789	uint64_t sarg1 = mstate->dtms_arg[1];
13790	uint64_t rval;
13791	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13792	dtrace_helper_action_t *helper;
13793	dtrace_vstate_t *vstate;
13794	dtrace_difo_t *pred;
13795	int i, trace = dtrace_helptrace_enabled;
13796
13797	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13798
13799	if (helpers == NULL)
13800		return (0);
13801
13802	if ((helper = helpers->dthps_actions[which]) == NULL)
13803		return (0);
13804
13805	vstate = &helpers->dthps_vstate;
13806	mstate->dtms_arg[0] = arg0;
13807	mstate->dtms_arg[1] = arg1;
13808
13809	/*
13810	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13811	 * we'll call the corresponding actions.  Note that the below calls
13812	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13813	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13814	 * the stored DIF offset with its own (which is the desired behavior).
13815	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13816	 * from machine state; this is okay, too.
13817	 */
13818	for (; helper != NULL; helper = helper->dtha_next) {
13819		if ((pred = helper->dtha_predicate) != NULL) {
13820			if (trace)
13821				dtrace_helper_trace(helper, mstate, vstate, 0);
13822
13823			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13824				goto next;
13825
13826			if (*flags & CPU_DTRACE_FAULT)
13827				goto err;
13828		}
13829
13830		for (i = 0; i < helper->dtha_nactions; i++) {
13831			if (trace)
13832				dtrace_helper_trace(helper,
13833				    mstate, vstate, i + 1);
13834
13835			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13836			    mstate, vstate, state);
13837
13838			if (*flags & CPU_DTRACE_FAULT)
13839				goto err;
13840		}
13841
13842next:
13843		if (trace)
13844			dtrace_helper_trace(helper, mstate, vstate,
13845			    DTRACE_HELPTRACE_NEXT);
13846	}
13847
13848	if (trace)
13849		dtrace_helper_trace(helper, mstate, vstate,
13850		    DTRACE_HELPTRACE_DONE);
13851
13852	/*
13853	 * Restore the arg0 that we saved upon entry.
13854	 */
13855	mstate->dtms_arg[0] = sarg0;
13856	mstate->dtms_arg[1] = sarg1;
13857
13858	return (rval);
13859
13860err:
13861	if (trace)
13862		dtrace_helper_trace(helper, mstate, vstate,
13863		    DTRACE_HELPTRACE_ERR);
13864
13865	/*
13866	 * Restore the arg0 that we saved upon entry.
13867	 */
13868	mstate->dtms_arg[0] = sarg0;
13869	mstate->dtms_arg[1] = sarg1;
13870
13871	return (0);
13872}
13873
13874static void
13875dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13876    dtrace_vstate_t *vstate)
13877{
13878	int i;
13879
13880	if (helper->dtha_predicate != NULL)
13881		dtrace_difo_release(helper->dtha_predicate, vstate);
13882
13883	for (i = 0; i < helper->dtha_nactions; i++) {
13884		ASSERT(helper->dtha_actions[i] != NULL);
13885		dtrace_difo_release(helper->dtha_actions[i], vstate);
13886	}
13887
13888	kmem_free(helper->dtha_actions,
13889	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13890	kmem_free(helper, sizeof (dtrace_helper_action_t));
13891}
13892
13893static int
13894dtrace_helper_destroygen(int gen)
13895{
13896	proc_t *p = curproc;
13897	dtrace_helpers_t *help = p->p_dtrace_helpers;
13898	dtrace_vstate_t *vstate;
13899	int i;
13900
13901	ASSERT(MUTEX_HELD(&dtrace_lock));
13902
13903	if (help == NULL || gen > help->dthps_generation)
13904		return (EINVAL);
13905
13906	vstate = &help->dthps_vstate;
13907
13908	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13909		dtrace_helper_action_t *last = NULL, *h, *next;
13910
13911		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13912			next = h->dtha_next;
13913
13914			if (h->dtha_generation == gen) {
13915				if (last != NULL) {
13916					last->dtha_next = next;
13917				} else {
13918					help->dthps_actions[i] = next;
13919				}
13920
13921				dtrace_helper_action_destroy(h, vstate);
13922			} else {
13923				last = h;
13924			}
13925		}
13926	}
13927
13928	/*
13929	 * Interate until we've cleared out all helper providers with the
13930	 * given generation number.
13931	 */
13932	for (;;) {
13933		dtrace_helper_provider_t *prov;
13934
13935		/*
13936		 * Look for a helper provider with the right generation. We
13937		 * have to start back at the beginning of the list each time
13938		 * because we drop dtrace_lock. It's unlikely that we'll make
13939		 * more than two passes.
13940		 */
13941		for (i = 0; i < help->dthps_nprovs; i++) {
13942			prov = help->dthps_provs[i];
13943
13944			if (prov->dthp_generation == gen)
13945				break;
13946		}
13947
13948		/*
13949		 * If there were no matches, we're done.
13950		 */
13951		if (i == help->dthps_nprovs)
13952			break;
13953
13954		/*
13955		 * Move the last helper provider into this slot.
13956		 */
13957		help->dthps_nprovs--;
13958		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13959		help->dthps_provs[help->dthps_nprovs] = NULL;
13960
13961		mutex_exit(&dtrace_lock);
13962
13963		/*
13964		 * If we have a meta provider, remove this helper provider.
13965		 */
13966		mutex_enter(&dtrace_meta_lock);
13967		if (dtrace_meta_pid != NULL) {
13968			ASSERT(dtrace_deferred_pid == NULL);
13969			dtrace_helper_provider_remove(&prov->dthp_prov,
13970			    p->p_pid);
13971		}
13972		mutex_exit(&dtrace_meta_lock);
13973
13974		dtrace_helper_provider_destroy(prov);
13975
13976		mutex_enter(&dtrace_lock);
13977	}
13978
13979	return (0);
13980}
13981#endif
13982
13983#if defined(sun)
13984static int
13985dtrace_helper_validate(dtrace_helper_action_t *helper)
13986{
13987	int err = 0, i;
13988	dtrace_difo_t *dp;
13989
13990	if ((dp = helper->dtha_predicate) != NULL)
13991		err += dtrace_difo_validate_helper(dp);
13992
13993	for (i = 0; i < helper->dtha_nactions; i++)
13994		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13995
13996	return (err == 0);
13997}
13998#endif
13999
14000#if defined(sun)
14001static int
14002dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14003{
14004	dtrace_helpers_t *help;
14005	dtrace_helper_action_t *helper, *last;
14006	dtrace_actdesc_t *act;
14007	dtrace_vstate_t *vstate;
14008	dtrace_predicate_t *pred;
14009	int count = 0, nactions = 0, i;
14010
14011	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14012		return (EINVAL);
14013
14014	help = curproc->p_dtrace_helpers;
14015	last = help->dthps_actions[which];
14016	vstate = &help->dthps_vstate;
14017
14018	for (count = 0; last != NULL; last = last->dtha_next) {
14019		count++;
14020		if (last->dtha_next == NULL)
14021			break;
14022	}
14023
14024	/*
14025	 * If we already have dtrace_helper_actions_max helper actions for this
14026	 * helper action type, we'll refuse to add a new one.
14027	 */
14028	if (count >= dtrace_helper_actions_max)
14029		return (ENOSPC);
14030
14031	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14032	helper->dtha_generation = help->dthps_generation;
14033
14034	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14035		ASSERT(pred->dtp_difo != NULL);
14036		dtrace_difo_hold(pred->dtp_difo);
14037		helper->dtha_predicate = pred->dtp_difo;
14038	}
14039
14040	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14041		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14042			goto err;
14043
14044		if (act->dtad_difo == NULL)
14045			goto err;
14046
14047		nactions++;
14048	}
14049
14050	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14051	    (helper->dtha_nactions = nactions), KM_SLEEP);
14052
14053	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14054		dtrace_difo_hold(act->dtad_difo);
14055		helper->dtha_actions[i++] = act->dtad_difo;
14056	}
14057
14058	if (!dtrace_helper_validate(helper))
14059		goto err;
14060
14061	if (last == NULL) {
14062		help->dthps_actions[which] = helper;
14063	} else {
14064		last->dtha_next = helper;
14065	}
14066
14067	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14068		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14069		dtrace_helptrace_next = 0;
14070	}
14071
14072	return (0);
14073err:
14074	dtrace_helper_action_destroy(helper, vstate);
14075	return (EINVAL);
14076}
14077
14078static void
14079dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14080    dof_helper_t *dofhp)
14081{
14082	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14083
14084	mutex_enter(&dtrace_meta_lock);
14085	mutex_enter(&dtrace_lock);
14086
14087	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14088		/*
14089		 * If the dtrace module is loaded but not attached, or if
14090		 * there aren't isn't a meta provider registered to deal with
14091		 * these provider descriptions, we need to postpone creating
14092		 * the actual providers until later.
14093		 */
14094
14095		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14096		    dtrace_deferred_pid != help) {
14097			help->dthps_deferred = 1;
14098			help->dthps_pid = p->p_pid;
14099			help->dthps_next = dtrace_deferred_pid;
14100			help->dthps_prev = NULL;
14101			if (dtrace_deferred_pid != NULL)
14102				dtrace_deferred_pid->dthps_prev = help;
14103			dtrace_deferred_pid = help;
14104		}
14105
14106		mutex_exit(&dtrace_lock);
14107
14108	} else if (dofhp != NULL) {
14109		/*
14110		 * If the dtrace module is loaded and we have a particular
14111		 * helper provider description, pass that off to the
14112		 * meta provider.
14113		 */
14114
14115		mutex_exit(&dtrace_lock);
14116
14117		dtrace_helper_provide(dofhp, p->p_pid);
14118
14119	} else {
14120		/*
14121		 * Otherwise, just pass all the helper provider descriptions
14122		 * off to the meta provider.
14123		 */
14124
14125		int i;
14126		mutex_exit(&dtrace_lock);
14127
14128		for (i = 0; i < help->dthps_nprovs; i++) {
14129			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14130			    p->p_pid);
14131		}
14132	}
14133
14134	mutex_exit(&dtrace_meta_lock);
14135}
14136
14137static int
14138dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14139{
14140	dtrace_helpers_t *help;
14141	dtrace_helper_provider_t *hprov, **tmp_provs;
14142	uint_t tmp_maxprovs, i;
14143
14144	ASSERT(MUTEX_HELD(&dtrace_lock));
14145
14146	help = curproc->p_dtrace_helpers;
14147	ASSERT(help != NULL);
14148
14149	/*
14150	 * If we already have dtrace_helper_providers_max helper providers,
14151	 * we're refuse to add a new one.
14152	 */
14153	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14154		return (ENOSPC);
14155
14156	/*
14157	 * Check to make sure this isn't a duplicate.
14158	 */
14159	for (i = 0; i < help->dthps_nprovs; i++) {
14160		if (dofhp->dofhp_addr ==
14161		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14162			return (EALREADY);
14163	}
14164
14165	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14166	hprov->dthp_prov = *dofhp;
14167	hprov->dthp_ref = 1;
14168	hprov->dthp_generation = gen;
14169
14170	/*
14171	 * Allocate a bigger table for helper providers if it's already full.
14172	 */
14173	if (help->dthps_maxprovs == help->dthps_nprovs) {
14174		tmp_maxprovs = help->dthps_maxprovs;
14175		tmp_provs = help->dthps_provs;
14176
14177		if (help->dthps_maxprovs == 0)
14178			help->dthps_maxprovs = 2;
14179		else
14180			help->dthps_maxprovs *= 2;
14181		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14182			help->dthps_maxprovs = dtrace_helper_providers_max;
14183
14184		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14185
14186		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14187		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14188
14189		if (tmp_provs != NULL) {
14190			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14191			    sizeof (dtrace_helper_provider_t *));
14192			kmem_free(tmp_provs, tmp_maxprovs *
14193			    sizeof (dtrace_helper_provider_t *));
14194		}
14195	}
14196
14197	help->dthps_provs[help->dthps_nprovs] = hprov;
14198	help->dthps_nprovs++;
14199
14200	return (0);
14201}
14202
14203static void
14204dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14205{
14206	mutex_enter(&dtrace_lock);
14207
14208	if (--hprov->dthp_ref == 0) {
14209		dof_hdr_t *dof;
14210		mutex_exit(&dtrace_lock);
14211		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14212		dtrace_dof_destroy(dof);
14213		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14214	} else {
14215		mutex_exit(&dtrace_lock);
14216	}
14217}
14218
14219static int
14220dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14221{
14222	uintptr_t daddr = (uintptr_t)dof;
14223	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14224	dof_provider_t *provider;
14225	dof_probe_t *probe;
14226	uint8_t *arg;
14227	char *strtab, *typestr;
14228	dof_stridx_t typeidx;
14229	size_t typesz;
14230	uint_t nprobes, j, k;
14231
14232	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14233
14234	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14235		dtrace_dof_error(dof, "misaligned section offset");
14236		return (-1);
14237	}
14238
14239	/*
14240	 * The section needs to be large enough to contain the DOF provider
14241	 * structure appropriate for the given version.
14242	 */
14243	if (sec->dofs_size <
14244	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14245	    offsetof(dof_provider_t, dofpv_prenoffs) :
14246	    sizeof (dof_provider_t))) {
14247		dtrace_dof_error(dof, "provider section too small");
14248		return (-1);
14249	}
14250
14251	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14252	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14253	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14254	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14255	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14256
14257	if (str_sec == NULL || prb_sec == NULL ||
14258	    arg_sec == NULL || off_sec == NULL)
14259		return (-1);
14260
14261	enoff_sec = NULL;
14262
14263	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14264	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14265	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14266	    provider->dofpv_prenoffs)) == NULL)
14267		return (-1);
14268
14269	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14270
14271	if (provider->dofpv_name >= str_sec->dofs_size ||
14272	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14273		dtrace_dof_error(dof, "invalid provider name");
14274		return (-1);
14275	}
14276
14277	if (prb_sec->dofs_entsize == 0 ||
14278	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14279		dtrace_dof_error(dof, "invalid entry size");
14280		return (-1);
14281	}
14282
14283	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14284		dtrace_dof_error(dof, "misaligned entry size");
14285		return (-1);
14286	}
14287
14288	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14289		dtrace_dof_error(dof, "invalid entry size");
14290		return (-1);
14291	}
14292
14293	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14294		dtrace_dof_error(dof, "misaligned section offset");
14295		return (-1);
14296	}
14297
14298	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14299		dtrace_dof_error(dof, "invalid entry size");
14300		return (-1);
14301	}
14302
14303	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14304
14305	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14306
14307	/*
14308	 * Take a pass through the probes to check for errors.
14309	 */
14310	for (j = 0; j < nprobes; j++) {
14311		probe = (dof_probe_t *)(uintptr_t)(daddr +
14312		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14313
14314		if (probe->dofpr_func >= str_sec->dofs_size) {
14315			dtrace_dof_error(dof, "invalid function name");
14316			return (-1);
14317		}
14318
14319		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14320			dtrace_dof_error(dof, "function name too long");
14321			return (-1);
14322		}
14323
14324		if (probe->dofpr_name >= str_sec->dofs_size ||
14325		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14326			dtrace_dof_error(dof, "invalid probe name");
14327			return (-1);
14328		}
14329
14330		/*
14331		 * The offset count must not wrap the index, and the offsets
14332		 * must also not overflow the section's data.
14333		 */
14334		if (probe->dofpr_offidx + probe->dofpr_noffs <
14335		    probe->dofpr_offidx ||
14336		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14337		    off_sec->dofs_entsize > off_sec->dofs_size) {
14338			dtrace_dof_error(dof, "invalid probe offset");
14339			return (-1);
14340		}
14341
14342		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14343			/*
14344			 * If there's no is-enabled offset section, make sure
14345			 * there aren't any is-enabled offsets. Otherwise
14346			 * perform the same checks as for probe offsets
14347			 * (immediately above).
14348			 */
14349			if (enoff_sec == NULL) {
14350				if (probe->dofpr_enoffidx != 0 ||
14351				    probe->dofpr_nenoffs != 0) {
14352					dtrace_dof_error(dof, "is-enabled "
14353					    "offsets with null section");
14354					return (-1);
14355				}
14356			} else if (probe->dofpr_enoffidx +
14357			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14358			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14359			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14360				dtrace_dof_error(dof, "invalid is-enabled "
14361				    "offset");
14362				return (-1);
14363			}
14364
14365			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14366				dtrace_dof_error(dof, "zero probe and "
14367				    "is-enabled offsets");
14368				return (-1);
14369			}
14370		} else if (probe->dofpr_noffs == 0) {
14371			dtrace_dof_error(dof, "zero probe offsets");
14372			return (-1);
14373		}
14374
14375		if (probe->dofpr_argidx + probe->dofpr_xargc <
14376		    probe->dofpr_argidx ||
14377		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14378		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14379			dtrace_dof_error(dof, "invalid args");
14380			return (-1);
14381		}
14382
14383		typeidx = probe->dofpr_nargv;
14384		typestr = strtab + probe->dofpr_nargv;
14385		for (k = 0; k < probe->dofpr_nargc; k++) {
14386			if (typeidx >= str_sec->dofs_size) {
14387				dtrace_dof_error(dof, "bad "
14388				    "native argument type");
14389				return (-1);
14390			}
14391
14392			typesz = strlen(typestr) + 1;
14393			if (typesz > DTRACE_ARGTYPELEN) {
14394				dtrace_dof_error(dof, "native "
14395				    "argument type too long");
14396				return (-1);
14397			}
14398			typeidx += typesz;
14399			typestr += typesz;
14400		}
14401
14402		typeidx = probe->dofpr_xargv;
14403		typestr = strtab + probe->dofpr_xargv;
14404		for (k = 0; k < probe->dofpr_xargc; k++) {
14405			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14406				dtrace_dof_error(dof, "bad "
14407				    "native argument index");
14408				return (-1);
14409			}
14410
14411			if (typeidx >= str_sec->dofs_size) {
14412				dtrace_dof_error(dof, "bad "
14413				    "translated argument type");
14414				return (-1);
14415			}
14416
14417			typesz = strlen(typestr) + 1;
14418			if (typesz > DTRACE_ARGTYPELEN) {
14419				dtrace_dof_error(dof, "translated argument "
14420				    "type too long");
14421				return (-1);
14422			}
14423
14424			typeidx += typesz;
14425			typestr += typesz;
14426		}
14427	}
14428
14429	return (0);
14430}
14431
14432static int
14433dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14434{
14435	dtrace_helpers_t *help;
14436	dtrace_vstate_t *vstate;
14437	dtrace_enabling_t *enab = NULL;
14438	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14439	uintptr_t daddr = (uintptr_t)dof;
14440
14441	ASSERT(MUTEX_HELD(&dtrace_lock));
14442
14443	if ((help = curproc->p_dtrace_helpers) == NULL)
14444		help = dtrace_helpers_create(curproc);
14445
14446	vstate = &help->dthps_vstate;
14447
14448	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14449	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14450		dtrace_dof_destroy(dof);
14451		return (rv);
14452	}
14453
14454	/*
14455	 * Look for helper providers and validate their descriptions.
14456	 */
14457	if (dhp != NULL) {
14458		for (i = 0; i < dof->dofh_secnum; i++) {
14459			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14460			    dof->dofh_secoff + i * dof->dofh_secsize);
14461
14462			if (sec->dofs_type != DOF_SECT_PROVIDER)
14463				continue;
14464
14465			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14466				dtrace_enabling_destroy(enab);
14467				dtrace_dof_destroy(dof);
14468				return (-1);
14469			}
14470
14471			nprovs++;
14472		}
14473	}
14474
14475	/*
14476	 * Now we need to walk through the ECB descriptions in the enabling.
14477	 */
14478	for (i = 0; i < enab->dten_ndesc; i++) {
14479		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14480		dtrace_probedesc_t *desc = &ep->dted_probe;
14481
14482		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14483			continue;
14484
14485		if (strcmp(desc->dtpd_mod, "helper") != 0)
14486			continue;
14487
14488		if (strcmp(desc->dtpd_func, "ustack") != 0)
14489			continue;
14490
14491		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14492		    ep)) != 0) {
14493			/*
14494			 * Adding this helper action failed -- we are now going
14495			 * to rip out the entire generation and return failure.
14496			 */
14497			(void) dtrace_helper_destroygen(help->dthps_generation);
14498			dtrace_enabling_destroy(enab);
14499			dtrace_dof_destroy(dof);
14500			return (-1);
14501		}
14502
14503		nhelpers++;
14504	}
14505
14506	if (nhelpers < enab->dten_ndesc)
14507		dtrace_dof_error(dof, "unmatched helpers");
14508
14509	gen = help->dthps_generation++;
14510	dtrace_enabling_destroy(enab);
14511
14512	if (dhp != NULL && nprovs > 0) {
14513		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14514		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14515			mutex_exit(&dtrace_lock);
14516			dtrace_helper_provider_register(curproc, help, dhp);
14517			mutex_enter(&dtrace_lock);
14518
14519			destroy = 0;
14520		}
14521	}
14522
14523	if (destroy)
14524		dtrace_dof_destroy(dof);
14525
14526	return (gen);
14527}
14528
14529static dtrace_helpers_t *
14530dtrace_helpers_create(proc_t *p)
14531{
14532	dtrace_helpers_t *help;
14533
14534	ASSERT(MUTEX_HELD(&dtrace_lock));
14535	ASSERT(p->p_dtrace_helpers == NULL);
14536
14537	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14538	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14539	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14540
14541	p->p_dtrace_helpers = help;
14542	dtrace_helpers++;
14543
14544	return (help);
14545}
14546
14547static void
14548dtrace_helpers_destroy(void)
14549{
14550	dtrace_helpers_t *help;
14551	dtrace_vstate_t *vstate;
14552	proc_t *p = curproc;
14553	int i;
14554
14555	mutex_enter(&dtrace_lock);
14556
14557	ASSERT(p->p_dtrace_helpers != NULL);
14558	ASSERT(dtrace_helpers > 0);
14559
14560	help = p->p_dtrace_helpers;
14561	vstate = &help->dthps_vstate;
14562
14563	/*
14564	 * We're now going to lose the help from this process.
14565	 */
14566	p->p_dtrace_helpers = NULL;
14567	dtrace_sync();
14568
14569	/*
14570	 * Destory the helper actions.
14571	 */
14572	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14573		dtrace_helper_action_t *h, *next;
14574
14575		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14576			next = h->dtha_next;
14577			dtrace_helper_action_destroy(h, vstate);
14578			h = next;
14579		}
14580	}
14581
14582	mutex_exit(&dtrace_lock);
14583
14584	/*
14585	 * Destroy the helper providers.
14586	 */
14587	if (help->dthps_maxprovs > 0) {
14588		mutex_enter(&dtrace_meta_lock);
14589		if (dtrace_meta_pid != NULL) {
14590			ASSERT(dtrace_deferred_pid == NULL);
14591
14592			for (i = 0; i < help->dthps_nprovs; i++) {
14593				dtrace_helper_provider_remove(
14594				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14595			}
14596		} else {
14597			mutex_enter(&dtrace_lock);
14598			ASSERT(help->dthps_deferred == 0 ||
14599			    help->dthps_next != NULL ||
14600			    help->dthps_prev != NULL ||
14601			    help == dtrace_deferred_pid);
14602
14603			/*
14604			 * Remove the helper from the deferred list.
14605			 */
14606			if (help->dthps_next != NULL)
14607				help->dthps_next->dthps_prev = help->dthps_prev;
14608			if (help->dthps_prev != NULL)
14609				help->dthps_prev->dthps_next = help->dthps_next;
14610			if (dtrace_deferred_pid == help) {
14611				dtrace_deferred_pid = help->dthps_next;
14612				ASSERT(help->dthps_prev == NULL);
14613			}
14614
14615			mutex_exit(&dtrace_lock);
14616		}
14617
14618		mutex_exit(&dtrace_meta_lock);
14619
14620		for (i = 0; i < help->dthps_nprovs; i++) {
14621			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14622		}
14623
14624		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14625		    sizeof (dtrace_helper_provider_t *));
14626	}
14627
14628	mutex_enter(&dtrace_lock);
14629
14630	dtrace_vstate_fini(&help->dthps_vstate);
14631	kmem_free(help->dthps_actions,
14632	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14633	kmem_free(help, sizeof (dtrace_helpers_t));
14634
14635	--dtrace_helpers;
14636	mutex_exit(&dtrace_lock);
14637}
14638
14639static void
14640dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14641{
14642	dtrace_helpers_t *help, *newhelp;
14643	dtrace_helper_action_t *helper, *new, *last;
14644	dtrace_difo_t *dp;
14645	dtrace_vstate_t *vstate;
14646	int i, j, sz, hasprovs = 0;
14647
14648	mutex_enter(&dtrace_lock);
14649	ASSERT(from->p_dtrace_helpers != NULL);
14650	ASSERT(dtrace_helpers > 0);
14651
14652	help = from->p_dtrace_helpers;
14653	newhelp = dtrace_helpers_create(to);
14654	ASSERT(to->p_dtrace_helpers != NULL);
14655
14656	newhelp->dthps_generation = help->dthps_generation;
14657	vstate = &newhelp->dthps_vstate;
14658
14659	/*
14660	 * Duplicate the helper actions.
14661	 */
14662	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14663		if ((helper = help->dthps_actions[i]) == NULL)
14664			continue;
14665
14666		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14667			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14668			    KM_SLEEP);
14669			new->dtha_generation = helper->dtha_generation;
14670
14671			if ((dp = helper->dtha_predicate) != NULL) {
14672				dp = dtrace_difo_duplicate(dp, vstate);
14673				new->dtha_predicate = dp;
14674			}
14675
14676			new->dtha_nactions = helper->dtha_nactions;
14677			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14678			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14679
14680			for (j = 0; j < new->dtha_nactions; j++) {
14681				dtrace_difo_t *dp = helper->dtha_actions[j];
14682
14683				ASSERT(dp != NULL);
14684				dp = dtrace_difo_duplicate(dp, vstate);
14685				new->dtha_actions[j] = dp;
14686			}
14687
14688			if (last != NULL) {
14689				last->dtha_next = new;
14690			} else {
14691				newhelp->dthps_actions[i] = new;
14692			}
14693
14694			last = new;
14695		}
14696	}
14697
14698	/*
14699	 * Duplicate the helper providers and register them with the
14700	 * DTrace framework.
14701	 */
14702	if (help->dthps_nprovs > 0) {
14703		newhelp->dthps_nprovs = help->dthps_nprovs;
14704		newhelp->dthps_maxprovs = help->dthps_nprovs;
14705		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14706		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14707		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14708			newhelp->dthps_provs[i] = help->dthps_provs[i];
14709			newhelp->dthps_provs[i]->dthp_ref++;
14710		}
14711
14712		hasprovs = 1;
14713	}
14714
14715	mutex_exit(&dtrace_lock);
14716
14717	if (hasprovs)
14718		dtrace_helper_provider_register(to, newhelp, NULL);
14719}
14720#endif
14721
14722#if defined(sun)
14723/*
14724 * DTrace Hook Functions
14725 */
14726static void
14727dtrace_module_loaded(modctl_t *ctl)
14728{
14729	dtrace_provider_t *prv;
14730
14731	mutex_enter(&dtrace_provider_lock);
14732	mutex_enter(&mod_lock);
14733
14734	ASSERT(ctl->mod_busy);
14735
14736	/*
14737	 * We're going to call each providers per-module provide operation
14738	 * specifying only this module.
14739	 */
14740	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14741		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14742
14743	mutex_exit(&mod_lock);
14744	mutex_exit(&dtrace_provider_lock);
14745
14746	/*
14747	 * If we have any retained enablings, we need to match against them.
14748	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14749	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14750	 * module.  (In particular, this happens when loading scheduling
14751	 * classes.)  So if we have any retained enablings, we need to dispatch
14752	 * our task queue to do the match for us.
14753	 */
14754	mutex_enter(&dtrace_lock);
14755
14756	if (dtrace_retained == NULL) {
14757		mutex_exit(&dtrace_lock);
14758		return;
14759	}
14760
14761	(void) taskq_dispatch(dtrace_taskq,
14762	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14763
14764	mutex_exit(&dtrace_lock);
14765
14766	/*
14767	 * And now, for a little heuristic sleaze:  in general, we want to
14768	 * match modules as soon as they load.  However, we cannot guarantee
14769	 * this, because it would lead us to the lock ordering violation
14770	 * outlined above.  The common case, of course, is that cpu_lock is
14771	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14772	 * long enough for the task queue to do its work.  If it's not, it's
14773	 * not a serious problem -- it just means that the module that we
14774	 * just loaded may not be immediately instrumentable.
14775	 */
14776	delay(1);
14777}
14778
14779static void
14780dtrace_module_unloaded(modctl_t *ctl)
14781{
14782	dtrace_probe_t template, *probe, *first, *next;
14783	dtrace_provider_t *prov;
14784
14785	template.dtpr_mod = ctl->mod_modname;
14786
14787	mutex_enter(&dtrace_provider_lock);
14788	mutex_enter(&mod_lock);
14789	mutex_enter(&dtrace_lock);
14790
14791	if (dtrace_bymod == NULL) {
14792		/*
14793		 * The DTrace module is loaded (obviously) but not attached;
14794		 * we don't have any work to do.
14795		 */
14796		mutex_exit(&dtrace_provider_lock);
14797		mutex_exit(&mod_lock);
14798		mutex_exit(&dtrace_lock);
14799		return;
14800	}
14801
14802	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14803	    probe != NULL; probe = probe->dtpr_nextmod) {
14804		if (probe->dtpr_ecb != NULL) {
14805			mutex_exit(&dtrace_provider_lock);
14806			mutex_exit(&mod_lock);
14807			mutex_exit(&dtrace_lock);
14808
14809			/*
14810			 * This shouldn't _actually_ be possible -- we're
14811			 * unloading a module that has an enabled probe in it.
14812			 * (It's normally up to the provider to make sure that
14813			 * this can't happen.)  However, because dtps_enable()
14814			 * doesn't have a failure mode, there can be an
14815			 * enable/unload race.  Upshot:  we don't want to
14816			 * assert, but we're not going to disable the
14817			 * probe, either.
14818			 */
14819			if (dtrace_err_verbose) {
14820				cmn_err(CE_WARN, "unloaded module '%s' had "
14821				    "enabled probes", ctl->mod_modname);
14822			}
14823
14824			return;
14825		}
14826	}
14827
14828	probe = first;
14829
14830	for (first = NULL; probe != NULL; probe = next) {
14831		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14832
14833		dtrace_probes[probe->dtpr_id - 1] = NULL;
14834
14835		next = probe->dtpr_nextmod;
14836		dtrace_hash_remove(dtrace_bymod, probe);
14837		dtrace_hash_remove(dtrace_byfunc, probe);
14838		dtrace_hash_remove(dtrace_byname, probe);
14839
14840		if (first == NULL) {
14841			first = probe;
14842			probe->dtpr_nextmod = NULL;
14843		} else {
14844			probe->dtpr_nextmod = first;
14845			first = probe;
14846		}
14847	}
14848
14849	/*
14850	 * We've removed all of the module's probes from the hash chains and
14851	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14852	 * everyone has cleared out from any probe array processing.
14853	 */
14854	dtrace_sync();
14855
14856	for (probe = first; probe != NULL; probe = first) {
14857		first = probe->dtpr_nextmod;
14858		prov = probe->dtpr_provider;
14859		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14860		    probe->dtpr_arg);
14861		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14862		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14863		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14864		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14865		kmem_free(probe, sizeof (dtrace_probe_t));
14866	}
14867
14868	mutex_exit(&dtrace_lock);
14869	mutex_exit(&mod_lock);
14870	mutex_exit(&dtrace_provider_lock);
14871}
14872
14873static void
14874dtrace_suspend(void)
14875{
14876	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14877}
14878
14879static void
14880dtrace_resume(void)
14881{
14882	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14883}
14884#endif
14885
14886static int
14887dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14888{
14889	ASSERT(MUTEX_HELD(&cpu_lock));
14890	mutex_enter(&dtrace_lock);
14891
14892	switch (what) {
14893	case CPU_CONFIG: {
14894		dtrace_state_t *state;
14895		dtrace_optval_t *opt, rs, c;
14896
14897		/*
14898		 * For now, we only allocate a new buffer for anonymous state.
14899		 */
14900		if ((state = dtrace_anon.dta_state) == NULL)
14901			break;
14902
14903		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14904			break;
14905
14906		opt = state->dts_options;
14907		c = opt[DTRACEOPT_CPU];
14908
14909		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14910			break;
14911
14912		/*
14913		 * Regardless of what the actual policy is, we're going to
14914		 * temporarily set our resize policy to be manual.  We're
14915		 * also going to temporarily set our CPU option to denote
14916		 * the newly configured CPU.
14917		 */
14918		rs = opt[DTRACEOPT_BUFRESIZE];
14919		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14920		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14921
14922		(void) dtrace_state_buffers(state);
14923
14924		opt[DTRACEOPT_BUFRESIZE] = rs;
14925		opt[DTRACEOPT_CPU] = c;
14926
14927		break;
14928	}
14929
14930	case CPU_UNCONFIG:
14931		/*
14932		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
14933		 * buffer will be freed when the consumer exits.)
14934		 */
14935		break;
14936
14937	default:
14938		break;
14939	}
14940
14941	mutex_exit(&dtrace_lock);
14942	return (0);
14943}
14944
14945#if defined(sun)
14946static void
14947dtrace_cpu_setup_initial(processorid_t cpu)
14948{
14949	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14950}
14951#endif
14952
14953static void
14954dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14955{
14956	if (dtrace_toxranges >= dtrace_toxranges_max) {
14957		int osize, nsize;
14958		dtrace_toxrange_t *range;
14959
14960		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14961
14962		if (osize == 0) {
14963			ASSERT(dtrace_toxrange == NULL);
14964			ASSERT(dtrace_toxranges_max == 0);
14965			dtrace_toxranges_max = 1;
14966		} else {
14967			dtrace_toxranges_max <<= 1;
14968		}
14969
14970		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14971		range = kmem_zalloc(nsize, KM_SLEEP);
14972
14973		if (dtrace_toxrange != NULL) {
14974			ASSERT(osize != 0);
14975			bcopy(dtrace_toxrange, range, osize);
14976			kmem_free(dtrace_toxrange, osize);
14977		}
14978
14979		dtrace_toxrange = range;
14980	}
14981
14982	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
14983	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
14984
14985	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14986	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14987	dtrace_toxranges++;
14988}
14989
14990/*
14991 * DTrace Driver Cookbook Functions
14992 */
14993#if defined(sun)
14994/*ARGSUSED*/
14995static int
14996dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14997{
14998	dtrace_provider_id_t id;
14999	dtrace_state_t *state = NULL;
15000	dtrace_enabling_t *enab;
15001
15002	mutex_enter(&cpu_lock);
15003	mutex_enter(&dtrace_provider_lock);
15004	mutex_enter(&dtrace_lock);
15005
15006	if (ddi_soft_state_init(&dtrace_softstate,
15007	    sizeof (dtrace_state_t), 0) != 0) {
15008		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15009		mutex_exit(&cpu_lock);
15010		mutex_exit(&dtrace_provider_lock);
15011		mutex_exit(&dtrace_lock);
15012		return (DDI_FAILURE);
15013	}
15014
15015	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15016	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15017	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15018	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15019		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15020		ddi_remove_minor_node(devi, NULL);
15021		ddi_soft_state_fini(&dtrace_softstate);
15022		mutex_exit(&cpu_lock);
15023		mutex_exit(&dtrace_provider_lock);
15024		mutex_exit(&dtrace_lock);
15025		return (DDI_FAILURE);
15026	}
15027
15028	ddi_report_dev(devi);
15029	dtrace_devi = devi;
15030
15031	dtrace_modload = dtrace_module_loaded;
15032	dtrace_modunload = dtrace_module_unloaded;
15033	dtrace_cpu_init = dtrace_cpu_setup_initial;
15034	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15035	dtrace_helpers_fork = dtrace_helpers_duplicate;
15036	dtrace_cpustart_init = dtrace_suspend;
15037	dtrace_cpustart_fini = dtrace_resume;
15038	dtrace_debugger_init = dtrace_suspend;
15039	dtrace_debugger_fini = dtrace_resume;
15040
15041	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15042
15043	ASSERT(MUTEX_HELD(&cpu_lock));
15044
15045	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15046	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15047	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15048	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15049	    VM_SLEEP | VMC_IDENTIFIER);
15050	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15051	    1, INT_MAX, 0);
15052
15053	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15054	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15055	    NULL, NULL, NULL, NULL, NULL, 0);
15056
15057	ASSERT(MUTEX_HELD(&cpu_lock));
15058	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15059	    offsetof(dtrace_probe_t, dtpr_nextmod),
15060	    offsetof(dtrace_probe_t, dtpr_prevmod));
15061
15062	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15063	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15064	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15065
15066	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15067	    offsetof(dtrace_probe_t, dtpr_nextname),
15068	    offsetof(dtrace_probe_t, dtpr_prevname));
15069
15070	if (dtrace_retain_max < 1) {
15071		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15072		    "setting to 1", dtrace_retain_max);
15073		dtrace_retain_max = 1;
15074	}
15075
15076	/*
15077	 * Now discover our toxic ranges.
15078	 */
15079	dtrace_toxic_ranges(dtrace_toxrange_add);
15080
15081	/*
15082	 * Before we register ourselves as a provider to our own framework,
15083	 * we would like to assert that dtrace_provider is NULL -- but that's
15084	 * not true if we were loaded as a dependency of a DTrace provider.
15085	 * Once we've registered, we can assert that dtrace_provider is our
15086	 * pseudo provider.
15087	 */
15088	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15089	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15090
15091	ASSERT(dtrace_provider != NULL);
15092	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15093
15094	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15095	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15096	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15097	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15098	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15099	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15100
15101	dtrace_anon_property();
15102	mutex_exit(&cpu_lock);
15103
15104	/*
15105	 * If DTrace helper tracing is enabled, we need to allocate the
15106	 * trace buffer and initialize the values.
15107	 */
15108	if (dtrace_helptrace_enabled) {
15109		ASSERT(dtrace_helptrace_buffer == NULL);
15110		dtrace_helptrace_buffer =
15111		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15112		dtrace_helptrace_next = 0;
15113	}
15114
15115	/*
15116	 * If there are already providers, we must ask them to provide their
15117	 * probes, and then match any anonymous enabling against them.  Note
15118	 * that there should be no other retained enablings at this time:
15119	 * the only retained enablings at this time should be the anonymous
15120	 * enabling.
15121	 */
15122	if (dtrace_anon.dta_enabling != NULL) {
15123		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15124
15125		dtrace_enabling_provide(NULL);
15126		state = dtrace_anon.dta_state;
15127
15128		/*
15129		 * We couldn't hold cpu_lock across the above call to
15130		 * dtrace_enabling_provide(), but we must hold it to actually
15131		 * enable the probes.  We have to drop all of our locks, pick
15132		 * up cpu_lock, and regain our locks before matching the
15133		 * retained anonymous enabling.
15134		 */
15135		mutex_exit(&dtrace_lock);
15136		mutex_exit(&dtrace_provider_lock);
15137
15138		mutex_enter(&cpu_lock);
15139		mutex_enter(&dtrace_provider_lock);
15140		mutex_enter(&dtrace_lock);
15141
15142		if ((enab = dtrace_anon.dta_enabling) != NULL)
15143			(void) dtrace_enabling_match(enab, NULL);
15144
15145		mutex_exit(&cpu_lock);
15146	}
15147
15148	mutex_exit(&dtrace_lock);
15149	mutex_exit(&dtrace_provider_lock);
15150
15151	if (state != NULL) {
15152		/*
15153		 * If we created any anonymous state, set it going now.
15154		 */
15155		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15156	}
15157
15158	return (DDI_SUCCESS);
15159}
15160#endif
15161
15162/*ARGSUSED*/
15163static int
15164#if defined(sun)
15165dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15166#else
15167dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15168#endif
15169{
15170	dtrace_state_t *state;
15171	uint32_t priv;
15172	uid_t uid;
15173	zoneid_t zoneid;
15174
15175#if defined(sun)
15176	if (getminor(*devp) == DTRACEMNRN_HELPER)
15177		return (0);
15178
15179	/*
15180	 * If this wasn't an open with the "helper" minor, then it must be
15181	 * the "dtrace" minor.
15182	 */
15183	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15184#else
15185	cred_t *cred_p = NULL;
15186
15187	/*
15188	 * The first minor device is the one that is cloned so there is
15189	 * nothing more to do here.
15190	 */
15191	if (minor(dev) == 0)
15192		return 0;
15193
15194	/*
15195	 * Devices are cloned, so if the DTrace state has already
15196	 * been allocated, that means this device belongs to a
15197	 * different client. Each client should open '/dev/dtrace'
15198	 * to get a cloned device.
15199	 */
15200	if (dev->si_drv1 != NULL)
15201		return (EBUSY);
15202
15203	cred_p = dev->si_cred;
15204#endif
15205
15206	/*
15207	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15208	 * caller lacks sufficient permission to do anything with DTrace.
15209	 */
15210	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15211	if (priv == DTRACE_PRIV_NONE) {
15212#if !defined(sun)
15213		/* Destroy the cloned device. */
15214                destroy_dev(dev);
15215#endif
15216
15217		return (EACCES);
15218	}
15219
15220	/*
15221	 * Ask all providers to provide all their probes.
15222	 */
15223	mutex_enter(&dtrace_provider_lock);
15224	dtrace_probe_provide(NULL, NULL);
15225	mutex_exit(&dtrace_provider_lock);
15226
15227	mutex_enter(&cpu_lock);
15228	mutex_enter(&dtrace_lock);
15229	dtrace_opens++;
15230	dtrace_membar_producer();
15231
15232#if defined(sun)
15233	/*
15234	 * If the kernel debugger is active (that is, if the kernel debugger
15235	 * modified text in some way), we won't allow the open.
15236	 */
15237	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15238		dtrace_opens--;
15239		mutex_exit(&cpu_lock);
15240		mutex_exit(&dtrace_lock);
15241		return (EBUSY);
15242	}
15243
15244	state = dtrace_state_create(devp, cred_p);
15245#else
15246	state = dtrace_state_create(dev);
15247	dev->si_drv1 = state;
15248#endif
15249
15250	mutex_exit(&cpu_lock);
15251
15252	if (state == NULL) {
15253#if defined(sun)
15254		if (--dtrace_opens == 0)
15255			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15256#else
15257		--dtrace_opens;
15258#endif
15259		mutex_exit(&dtrace_lock);
15260#if !defined(sun)
15261		/* Destroy the cloned device. */
15262                destroy_dev(dev);
15263#endif
15264		return (EAGAIN);
15265	}
15266
15267	mutex_exit(&dtrace_lock);
15268
15269	return (0);
15270}
15271
15272/*ARGSUSED*/
15273static int
15274#if defined(sun)
15275dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15276#else
15277dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15278#endif
15279{
15280#if defined(sun)
15281	minor_t minor = getminor(dev);
15282	dtrace_state_t *state;
15283
15284	if (minor == DTRACEMNRN_HELPER)
15285		return (0);
15286
15287	state = ddi_get_soft_state(dtrace_softstate, minor);
15288#else
15289	dtrace_state_t *state = dev->si_drv1;
15290
15291	/* Check if this is not a cloned device. */
15292	if (minor(dev) == 0)
15293		return (0);
15294
15295#endif
15296
15297	mutex_enter(&cpu_lock);
15298	mutex_enter(&dtrace_lock);
15299
15300	if (state != NULL) {
15301		if (state->dts_anon) {
15302			/*
15303			 * There is anonymous state. Destroy that first.
15304			 */
15305			ASSERT(dtrace_anon.dta_state == NULL);
15306			dtrace_state_destroy(state->dts_anon);
15307		}
15308
15309		dtrace_state_destroy(state);
15310
15311#if !defined(sun)
15312		kmem_free(state, 0);
15313		dev->si_drv1 = NULL;
15314#endif
15315	}
15316
15317	ASSERT(dtrace_opens > 0);
15318#if defined(sun)
15319	if (--dtrace_opens == 0)
15320		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15321#else
15322	--dtrace_opens;
15323#endif
15324
15325	mutex_exit(&dtrace_lock);
15326	mutex_exit(&cpu_lock);
15327
15328	/* Schedule this cloned device to be destroyed. */
15329	destroy_dev_sched(dev);
15330
15331	return (0);
15332}
15333
15334#if defined(sun)
15335/*ARGSUSED*/
15336static int
15337dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15338{
15339	int rval;
15340	dof_helper_t help, *dhp = NULL;
15341
15342	switch (cmd) {
15343	case DTRACEHIOC_ADDDOF:
15344		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15345			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15346			return (EFAULT);
15347		}
15348
15349		dhp = &help;
15350		arg = (intptr_t)help.dofhp_dof;
15351		/*FALLTHROUGH*/
15352
15353	case DTRACEHIOC_ADD: {
15354		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15355
15356		if (dof == NULL)
15357			return (rval);
15358
15359		mutex_enter(&dtrace_lock);
15360
15361		/*
15362		 * dtrace_helper_slurp() takes responsibility for the dof --
15363		 * it may free it now or it may save it and free it later.
15364		 */
15365		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15366			*rv = rval;
15367			rval = 0;
15368		} else {
15369			rval = EINVAL;
15370		}
15371
15372		mutex_exit(&dtrace_lock);
15373		return (rval);
15374	}
15375
15376	case DTRACEHIOC_REMOVE: {
15377		mutex_enter(&dtrace_lock);
15378		rval = dtrace_helper_destroygen(arg);
15379		mutex_exit(&dtrace_lock);
15380
15381		return (rval);
15382	}
15383
15384	default:
15385		break;
15386	}
15387
15388	return (ENOTTY);
15389}
15390
15391/*ARGSUSED*/
15392static int
15393dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15394{
15395	minor_t minor = getminor(dev);
15396	dtrace_state_t *state;
15397	int rval;
15398
15399	if (minor == DTRACEMNRN_HELPER)
15400		return (dtrace_ioctl_helper(cmd, arg, rv));
15401
15402	state = ddi_get_soft_state(dtrace_softstate, minor);
15403
15404	if (state->dts_anon) {
15405		ASSERT(dtrace_anon.dta_state == NULL);
15406		state = state->dts_anon;
15407	}
15408
15409	switch (cmd) {
15410	case DTRACEIOC_PROVIDER: {
15411		dtrace_providerdesc_t pvd;
15412		dtrace_provider_t *pvp;
15413
15414		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15415			return (EFAULT);
15416
15417		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15418		mutex_enter(&dtrace_provider_lock);
15419
15420		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15421			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15422				break;
15423		}
15424
15425		mutex_exit(&dtrace_provider_lock);
15426
15427		if (pvp == NULL)
15428			return (ESRCH);
15429
15430		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15431		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15432
15433		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15434			return (EFAULT);
15435
15436		return (0);
15437	}
15438
15439	case DTRACEIOC_EPROBE: {
15440		dtrace_eprobedesc_t epdesc;
15441		dtrace_ecb_t *ecb;
15442		dtrace_action_t *act;
15443		void *buf;
15444		size_t size;
15445		uintptr_t dest;
15446		int nrecs;
15447
15448		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15449			return (EFAULT);
15450
15451		mutex_enter(&dtrace_lock);
15452
15453		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15454			mutex_exit(&dtrace_lock);
15455			return (EINVAL);
15456		}
15457
15458		if (ecb->dte_probe == NULL) {
15459			mutex_exit(&dtrace_lock);
15460			return (EINVAL);
15461		}
15462
15463		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15464		epdesc.dtepd_uarg = ecb->dte_uarg;
15465		epdesc.dtepd_size = ecb->dte_size;
15466
15467		nrecs = epdesc.dtepd_nrecs;
15468		epdesc.dtepd_nrecs = 0;
15469		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15470			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15471				continue;
15472
15473			epdesc.dtepd_nrecs++;
15474		}
15475
15476		/*
15477		 * Now that we have the size, we need to allocate a temporary
15478		 * buffer in which to store the complete description.  We need
15479		 * the temporary buffer to be able to drop dtrace_lock()
15480		 * across the copyout(), below.
15481		 */
15482		size = sizeof (dtrace_eprobedesc_t) +
15483		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15484
15485		buf = kmem_alloc(size, KM_SLEEP);
15486		dest = (uintptr_t)buf;
15487
15488		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15489		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15490
15491		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15492			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15493				continue;
15494
15495			if (nrecs-- == 0)
15496				break;
15497
15498			bcopy(&act->dta_rec, (void *)dest,
15499			    sizeof (dtrace_recdesc_t));
15500			dest += sizeof (dtrace_recdesc_t);
15501		}
15502
15503		mutex_exit(&dtrace_lock);
15504
15505		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15506			kmem_free(buf, size);
15507			return (EFAULT);
15508		}
15509
15510		kmem_free(buf, size);
15511		return (0);
15512	}
15513
15514	case DTRACEIOC_AGGDESC: {
15515		dtrace_aggdesc_t aggdesc;
15516		dtrace_action_t *act;
15517		dtrace_aggregation_t *agg;
15518		int nrecs;
15519		uint32_t offs;
15520		dtrace_recdesc_t *lrec;
15521		void *buf;
15522		size_t size;
15523		uintptr_t dest;
15524
15525		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15526			return (EFAULT);
15527
15528		mutex_enter(&dtrace_lock);
15529
15530		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15531			mutex_exit(&dtrace_lock);
15532			return (EINVAL);
15533		}
15534
15535		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15536
15537		nrecs = aggdesc.dtagd_nrecs;
15538		aggdesc.dtagd_nrecs = 0;
15539
15540		offs = agg->dtag_base;
15541		lrec = &agg->dtag_action.dta_rec;
15542		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15543
15544		for (act = agg->dtag_first; ; act = act->dta_next) {
15545			ASSERT(act->dta_intuple ||
15546			    DTRACEACT_ISAGG(act->dta_kind));
15547
15548			/*
15549			 * If this action has a record size of zero, it
15550			 * denotes an argument to the aggregating action.
15551			 * Because the presence of this record doesn't (or
15552			 * shouldn't) affect the way the data is interpreted,
15553			 * we don't copy it out to save user-level the
15554			 * confusion of dealing with a zero-length record.
15555			 */
15556			if (act->dta_rec.dtrd_size == 0) {
15557				ASSERT(agg->dtag_hasarg);
15558				continue;
15559			}
15560
15561			aggdesc.dtagd_nrecs++;
15562
15563			if (act == &agg->dtag_action)
15564				break;
15565		}
15566
15567		/*
15568		 * Now that we have the size, we need to allocate a temporary
15569		 * buffer in which to store the complete description.  We need
15570		 * the temporary buffer to be able to drop dtrace_lock()
15571		 * across the copyout(), below.
15572		 */
15573		size = sizeof (dtrace_aggdesc_t) +
15574		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15575
15576		buf = kmem_alloc(size, KM_SLEEP);
15577		dest = (uintptr_t)buf;
15578
15579		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15580		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15581
15582		for (act = agg->dtag_first; ; act = act->dta_next) {
15583			dtrace_recdesc_t rec = act->dta_rec;
15584
15585			/*
15586			 * See the comment in the above loop for why we pass
15587			 * over zero-length records.
15588			 */
15589			if (rec.dtrd_size == 0) {
15590				ASSERT(agg->dtag_hasarg);
15591				continue;
15592			}
15593
15594			if (nrecs-- == 0)
15595				break;
15596
15597			rec.dtrd_offset -= offs;
15598			bcopy(&rec, (void *)dest, sizeof (rec));
15599			dest += sizeof (dtrace_recdesc_t);
15600
15601			if (act == &agg->dtag_action)
15602				break;
15603		}
15604
15605		mutex_exit(&dtrace_lock);
15606
15607		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15608			kmem_free(buf, size);
15609			return (EFAULT);
15610		}
15611
15612		kmem_free(buf, size);
15613		return (0);
15614	}
15615
15616	case DTRACEIOC_ENABLE: {
15617		dof_hdr_t *dof;
15618		dtrace_enabling_t *enab = NULL;
15619		dtrace_vstate_t *vstate;
15620		int err = 0;
15621
15622		*rv = 0;
15623
15624		/*
15625		 * If a NULL argument has been passed, we take this as our
15626		 * cue to reevaluate our enablings.
15627		 */
15628		if (arg == NULL) {
15629			dtrace_enabling_matchall();
15630
15631			return (0);
15632		}
15633
15634		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15635			return (rval);
15636
15637		mutex_enter(&cpu_lock);
15638		mutex_enter(&dtrace_lock);
15639		vstate = &state->dts_vstate;
15640
15641		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15642			mutex_exit(&dtrace_lock);
15643			mutex_exit(&cpu_lock);
15644			dtrace_dof_destroy(dof);
15645			return (EBUSY);
15646		}
15647
15648		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15649			mutex_exit(&dtrace_lock);
15650			mutex_exit(&cpu_lock);
15651			dtrace_dof_destroy(dof);
15652			return (EINVAL);
15653		}
15654
15655		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15656			dtrace_enabling_destroy(enab);
15657			mutex_exit(&dtrace_lock);
15658			mutex_exit(&cpu_lock);
15659			dtrace_dof_destroy(dof);
15660			return (rval);
15661		}
15662
15663		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15664			err = dtrace_enabling_retain(enab);
15665		} else {
15666			dtrace_enabling_destroy(enab);
15667		}
15668
15669		mutex_exit(&cpu_lock);
15670		mutex_exit(&dtrace_lock);
15671		dtrace_dof_destroy(dof);
15672
15673		return (err);
15674	}
15675
15676	case DTRACEIOC_REPLICATE: {
15677		dtrace_repldesc_t desc;
15678		dtrace_probedesc_t *match = &desc.dtrpd_match;
15679		dtrace_probedesc_t *create = &desc.dtrpd_create;
15680		int err;
15681
15682		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15683			return (EFAULT);
15684
15685		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15686		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15687		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15688		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15689
15690		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15691		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15692		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15693		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15694
15695		mutex_enter(&dtrace_lock);
15696		err = dtrace_enabling_replicate(state, match, create);
15697		mutex_exit(&dtrace_lock);
15698
15699		return (err);
15700	}
15701
15702	case DTRACEIOC_PROBEMATCH:
15703	case DTRACEIOC_PROBES: {
15704		dtrace_probe_t *probe = NULL;
15705		dtrace_probedesc_t desc;
15706		dtrace_probekey_t pkey;
15707		dtrace_id_t i;
15708		int m = 0;
15709		uint32_t priv;
15710		uid_t uid;
15711		zoneid_t zoneid;
15712
15713		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15714			return (EFAULT);
15715
15716		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15717		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15718		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15719		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15720
15721		/*
15722		 * Before we attempt to match this probe, we want to give
15723		 * all providers the opportunity to provide it.
15724		 */
15725		if (desc.dtpd_id == DTRACE_IDNONE) {
15726			mutex_enter(&dtrace_provider_lock);
15727			dtrace_probe_provide(&desc, NULL);
15728			mutex_exit(&dtrace_provider_lock);
15729			desc.dtpd_id++;
15730		}
15731
15732		if (cmd == DTRACEIOC_PROBEMATCH)  {
15733			dtrace_probekey(&desc, &pkey);
15734			pkey.dtpk_id = DTRACE_IDNONE;
15735		}
15736
15737		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15738
15739		mutex_enter(&dtrace_lock);
15740
15741		if (cmd == DTRACEIOC_PROBEMATCH) {
15742			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15743				if ((probe = dtrace_probes[i - 1]) != NULL &&
15744				    (m = dtrace_match_probe(probe, &pkey,
15745				    priv, uid, zoneid)) != 0)
15746					break;
15747			}
15748
15749			if (m < 0) {
15750				mutex_exit(&dtrace_lock);
15751				return (EINVAL);
15752			}
15753
15754		} else {
15755			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15756				if ((probe = dtrace_probes[i - 1]) != NULL &&
15757				    dtrace_match_priv(probe, priv, uid, zoneid))
15758					break;
15759			}
15760		}
15761
15762		if (probe == NULL) {
15763			mutex_exit(&dtrace_lock);
15764			return (ESRCH);
15765		}
15766
15767		dtrace_probe_description(probe, &desc);
15768		mutex_exit(&dtrace_lock);
15769
15770		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15771			return (EFAULT);
15772
15773		return (0);
15774	}
15775
15776	case DTRACEIOC_PROBEARG: {
15777		dtrace_argdesc_t desc;
15778		dtrace_probe_t *probe;
15779		dtrace_provider_t *prov;
15780
15781		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15782			return (EFAULT);
15783
15784		if (desc.dtargd_id == DTRACE_IDNONE)
15785			return (EINVAL);
15786
15787		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15788			return (EINVAL);
15789
15790		mutex_enter(&dtrace_provider_lock);
15791		mutex_enter(&mod_lock);
15792		mutex_enter(&dtrace_lock);
15793
15794		if (desc.dtargd_id > dtrace_nprobes) {
15795			mutex_exit(&dtrace_lock);
15796			mutex_exit(&mod_lock);
15797			mutex_exit(&dtrace_provider_lock);
15798			return (EINVAL);
15799		}
15800
15801		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15802			mutex_exit(&dtrace_lock);
15803			mutex_exit(&mod_lock);
15804			mutex_exit(&dtrace_provider_lock);
15805			return (EINVAL);
15806		}
15807
15808		mutex_exit(&dtrace_lock);
15809
15810		prov = probe->dtpr_provider;
15811
15812		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15813			/*
15814			 * There isn't any typed information for this probe.
15815			 * Set the argument number to DTRACE_ARGNONE.
15816			 */
15817			desc.dtargd_ndx = DTRACE_ARGNONE;
15818		} else {
15819			desc.dtargd_native[0] = '\0';
15820			desc.dtargd_xlate[0] = '\0';
15821			desc.dtargd_mapping = desc.dtargd_ndx;
15822
15823			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15824			    probe->dtpr_id, probe->dtpr_arg, &desc);
15825		}
15826
15827		mutex_exit(&mod_lock);
15828		mutex_exit(&dtrace_provider_lock);
15829
15830		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15831			return (EFAULT);
15832
15833		return (0);
15834	}
15835
15836	case DTRACEIOC_GO: {
15837		processorid_t cpuid;
15838		rval = dtrace_state_go(state, &cpuid);
15839
15840		if (rval != 0)
15841			return (rval);
15842
15843		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15844			return (EFAULT);
15845
15846		return (0);
15847	}
15848
15849	case DTRACEIOC_STOP: {
15850		processorid_t cpuid;
15851
15852		mutex_enter(&dtrace_lock);
15853		rval = dtrace_state_stop(state, &cpuid);
15854		mutex_exit(&dtrace_lock);
15855
15856		if (rval != 0)
15857			return (rval);
15858
15859		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15860			return (EFAULT);
15861
15862		return (0);
15863	}
15864
15865	case DTRACEIOC_DOFGET: {
15866		dof_hdr_t hdr, *dof;
15867		uint64_t len;
15868
15869		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15870			return (EFAULT);
15871
15872		mutex_enter(&dtrace_lock);
15873		dof = dtrace_dof_create(state);
15874		mutex_exit(&dtrace_lock);
15875
15876		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15877		rval = copyout(dof, (void *)arg, len);
15878		dtrace_dof_destroy(dof);
15879
15880		return (rval == 0 ? 0 : EFAULT);
15881	}
15882
15883	case DTRACEIOC_AGGSNAP:
15884	case DTRACEIOC_BUFSNAP: {
15885		dtrace_bufdesc_t desc;
15886		caddr_t cached;
15887		dtrace_buffer_t *buf;
15888
15889		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15890			return (EFAULT);
15891
15892		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15893			return (EINVAL);
15894
15895		mutex_enter(&dtrace_lock);
15896
15897		if (cmd == DTRACEIOC_BUFSNAP) {
15898			buf = &state->dts_buffer[desc.dtbd_cpu];
15899		} else {
15900			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15901		}
15902
15903		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15904			size_t sz = buf->dtb_offset;
15905
15906			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15907				mutex_exit(&dtrace_lock);
15908				return (EBUSY);
15909			}
15910
15911			/*
15912			 * If this buffer has already been consumed, we're
15913			 * going to indicate that there's nothing left here
15914			 * to consume.
15915			 */
15916			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15917				mutex_exit(&dtrace_lock);
15918
15919				desc.dtbd_size = 0;
15920				desc.dtbd_drops = 0;
15921				desc.dtbd_errors = 0;
15922				desc.dtbd_oldest = 0;
15923				sz = sizeof (desc);
15924
15925				if (copyout(&desc, (void *)arg, sz) != 0)
15926					return (EFAULT);
15927
15928				return (0);
15929			}
15930
15931			/*
15932			 * If this is a ring buffer that has wrapped, we want
15933			 * to copy the whole thing out.
15934			 */
15935			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15936				dtrace_buffer_polish(buf);
15937				sz = buf->dtb_size;
15938			}
15939
15940			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15941				mutex_exit(&dtrace_lock);
15942				return (EFAULT);
15943			}
15944
15945			desc.dtbd_size = sz;
15946			desc.dtbd_drops = buf->dtb_drops;
15947			desc.dtbd_errors = buf->dtb_errors;
15948			desc.dtbd_oldest = buf->dtb_xamot_offset;
15949
15950			mutex_exit(&dtrace_lock);
15951
15952			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15953				return (EFAULT);
15954
15955			buf->dtb_flags |= DTRACEBUF_CONSUMED;
15956
15957			return (0);
15958		}
15959
15960		if (buf->dtb_tomax == NULL) {
15961			ASSERT(buf->dtb_xamot == NULL);
15962			mutex_exit(&dtrace_lock);
15963			return (ENOENT);
15964		}
15965
15966		cached = buf->dtb_tomax;
15967		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15968
15969		dtrace_xcall(desc.dtbd_cpu,
15970		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
15971
15972		state->dts_errors += buf->dtb_xamot_errors;
15973
15974		/*
15975		 * If the buffers did not actually switch, then the cross call
15976		 * did not take place -- presumably because the given CPU is
15977		 * not in the ready set.  If this is the case, we'll return
15978		 * ENOENT.
15979		 */
15980		if (buf->dtb_tomax == cached) {
15981			ASSERT(buf->dtb_xamot != cached);
15982			mutex_exit(&dtrace_lock);
15983			return (ENOENT);
15984		}
15985
15986		ASSERT(cached == buf->dtb_xamot);
15987
15988		/*
15989		 * We have our snapshot; now copy it out.
15990		 */
15991		if (copyout(buf->dtb_xamot, desc.dtbd_data,
15992		    buf->dtb_xamot_offset) != 0) {
15993			mutex_exit(&dtrace_lock);
15994			return (EFAULT);
15995		}
15996
15997		desc.dtbd_size = buf->dtb_xamot_offset;
15998		desc.dtbd_drops = buf->dtb_xamot_drops;
15999		desc.dtbd_errors = buf->dtb_xamot_errors;
16000		desc.dtbd_oldest = 0;
16001
16002		mutex_exit(&dtrace_lock);
16003
16004		/*
16005		 * Finally, copy out the buffer description.
16006		 */
16007		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16008			return (EFAULT);
16009
16010		return (0);
16011	}
16012
16013	case DTRACEIOC_CONF: {
16014		dtrace_conf_t conf;
16015
16016		bzero(&conf, sizeof (conf));
16017		conf.dtc_difversion = DIF_VERSION;
16018		conf.dtc_difintregs = DIF_DIR_NREGS;
16019		conf.dtc_diftupregs = DIF_DTR_NREGS;
16020		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16021
16022		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16023			return (EFAULT);
16024
16025		return (0);
16026	}
16027
16028	case DTRACEIOC_STATUS: {
16029		dtrace_status_t stat;
16030		dtrace_dstate_t *dstate;
16031		int i, j;
16032		uint64_t nerrs;
16033
16034		/*
16035		 * See the comment in dtrace_state_deadman() for the reason
16036		 * for setting dts_laststatus to INT64_MAX before setting
16037		 * it to the correct value.
16038		 */
16039		state->dts_laststatus = INT64_MAX;
16040		dtrace_membar_producer();
16041		state->dts_laststatus = dtrace_gethrtime();
16042
16043		bzero(&stat, sizeof (stat));
16044
16045		mutex_enter(&dtrace_lock);
16046
16047		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16048			mutex_exit(&dtrace_lock);
16049			return (ENOENT);
16050		}
16051
16052		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16053			stat.dtst_exiting = 1;
16054
16055		nerrs = state->dts_errors;
16056		dstate = &state->dts_vstate.dtvs_dynvars;
16057
16058		for (i = 0; i < NCPU; i++) {
16059			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16060
16061			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16062			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16063			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16064
16065			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16066				stat.dtst_filled++;
16067
16068			nerrs += state->dts_buffer[i].dtb_errors;
16069
16070			for (j = 0; j < state->dts_nspeculations; j++) {
16071				dtrace_speculation_t *spec;
16072				dtrace_buffer_t *buf;
16073
16074				spec = &state->dts_speculations[j];
16075				buf = &spec->dtsp_buffer[i];
16076				stat.dtst_specdrops += buf->dtb_xamot_drops;
16077			}
16078		}
16079
16080		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16081		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16082		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16083		stat.dtst_dblerrors = state->dts_dblerrors;
16084		stat.dtst_killed =
16085		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16086		stat.dtst_errors = nerrs;
16087
16088		mutex_exit(&dtrace_lock);
16089
16090		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16091			return (EFAULT);
16092
16093		return (0);
16094	}
16095
16096	case DTRACEIOC_FORMAT: {
16097		dtrace_fmtdesc_t fmt;
16098		char *str;
16099		int len;
16100
16101		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16102			return (EFAULT);
16103
16104		mutex_enter(&dtrace_lock);
16105
16106		if (fmt.dtfd_format == 0 ||
16107		    fmt.dtfd_format > state->dts_nformats) {
16108			mutex_exit(&dtrace_lock);
16109			return (EINVAL);
16110		}
16111
16112		/*
16113		 * Format strings are allocated contiguously and they are
16114		 * never freed; if a format index is less than the number
16115		 * of formats, we can assert that the format map is non-NULL
16116		 * and that the format for the specified index is non-NULL.
16117		 */
16118		ASSERT(state->dts_formats != NULL);
16119		str = state->dts_formats[fmt.dtfd_format - 1];
16120		ASSERT(str != NULL);
16121
16122		len = strlen(str) + 1;
16123
16124		if (len > fmt.dtfd_length) {
16125			fmt.dtfd_length = len;
16126
16127			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16128				mutex_exit(&dtrace_lock);
16129				return (EINVAL);
16130			}
16131		} else {
16132			if (copyout(str, fmt.dtfd_string, len) != 0) {
16133				mutex_exit(&dtrace_lock);
16134				return (EINVAL);
16135			}
16136		}
16137
16138		mutex_exit(&dtrace_lock);
16139		return (0);
16140	}
16141
16142	default:
16143		break;
16144	}
16145
16146	return (ENOTTY);
16147}
16148
16149/*ARGSUSED*/
16150static int
16151dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16152{
16153	dtrace_state_t *state;
16154
16155	switch (cmd) {
16156	case DDI_DETACH:
16157		break;
16158
16159	case DDI_SUSPEND:
16160		return (DDI_SUCCESS);
16161
16162	default:
16163		return (DDI_FAILURE);
16164	}
16165
16166	mutex_enter(&cpu_lock);
16167	mutex_enter(&dtrace_provider_lock);
16168	mutex_enter(&dtrace_lock);
16169
16170	ASSERT(dtrace_opens == 0);
16171
16172	if (dtrace_helpers > 0) {
16173		mutex_exit(&dtrace_provider_lock);
16174		mutex_exit(&dtrace_lock);
16175		mutex_exit(&cpu_lock);
16176		return (DDI_FAILURE);
16177	}
16178
16179	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16180		mutex_exit(&dtrace_provider_lock);
16181		mutex_exit(&dtrace_lock);
16182		mutex_exit(&cpu_lock);
16183		return (DDI_FAILURE);
16184	}
16185
16186	dtrace_provider = NULL;
16187
16188	if ((state = dtrace_anon_grab()) != NULL) {
16189		/*
16190		 * If there were ECBs on this state, the provider should
16191		 * have not been allowed to detach; assert that there is
16192		 * none.
16193		 */
16194		ASSERT(state->dts_necbs == 0);
16195		dtrace_state_destroy(state);
16196
16197		/*
16198		 * If we're being detached with anonymous state, we need to
16199		 * indicate to the kernel debugger that DTrace is now inactive.
16200		 */
16201		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16202	}
16203
16204	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16205	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16206	dtrace_cpu_init = NULL;
16207	dtrace_helpers_cleanup = NULL;
16208	dtrace_helpers_fork = NULL;
16209	dtrace_cpustart_init = NULL;
16210	dtrace_cpustart_fini = NULL;
16211	dtrace_debugger_init = NULL;
16212	dtrace_debugger_fini = NULL;
16213	dtrace_modload = NULL;
16214	dtrace_modunload = NULL;
16215
16216	mutex_exit(&cpu_lock);
16217
16218	if (dtrace_helptrace_enabled) {
16219		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16220		dtrace_helptrace_buffer = NULL;
16221	}
16222
16223	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16224	dtrace_probes = NULL;
16225	dtrace_nprobes = 0;
16226
16227	dtrace_hash_destroy(dtrace_bymod);
16228	dtrace_hash_destroy(dtrace_byfunc);
16229	dtrace_hash_destroy(dtrace_byname);
16230	dtrace_bymod = NULL;
16231	dtrace_byfunc = NULL;
16232	dtrace_byname = NULL;
16233
16234	kmem_cache_destroy(dtrace_state_cache);
16235	vmem_destroy(dtrace_minor);
16236	vmem_destroy(dtrace_arena);
16237
16238	if (dtrace_toxrange != NULL) {
16239		kmem_free(dtrace_toxrange,
16240		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16241		dtrace_toxrange = NULL;
16242		dtrace_toxranges = 0;
16243		dtrace_toxranges_max = 0;
16244	}
16245
16246	ddi_remove_minor_node(dtrace_devi, NULL);
16247	dtrace_devi = NULL;
16248
16249	ddi_soft_state_fini(&dtrace_softstate);
16250
16251	ASSERT(dtrace_vtime_references == 0);
16252	ASSERT(dtrace_opens == 0);
16253	ASSERT(dtrace_retained == NULL);
16254
16255	mutex_exit(&dtrace_lock);
16256	mutex_exit(&dtrace_provider_lock);
16257
16258	/*
16259	 * We don't destroy the task queue until after we have dropped our
16260	 * locks (taskq_destroy() may block on running tasks).  To prevent
16261	 * attempting to do work after we have effectively detached but before
16262	 * the task queue has been destroyed, all tasks dispatched via the
16263	 * task queue must check that DTrace is still attached before
16264	 * performing any operation.
16265	 */
16266	taskq_destroy(dtrace_taskq);
16267	dtrace_taskq = NULL;
16268
16269	return (DDI_SUCCESS);
16270}
16271#endif
16272
16273#if defined(sun)
16274/*ARGSUSED*/
16275static int
16276dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16277{
16278	int error;
16279
16280	switch (infocmd) {
16281	case DDI_INFO_DEVT2DEVINFO:
16282		*result = (void *)dtrace_devi;
16283		error = DDI_SUCCESS;
16284		break;
16285	case DDI_INFO_DEVT2INSTANCE:
16286		*result = (void *)0;
16287		error = DDI_SUCCESS;
16288		break;
16289	default:
16290		error = DDI_FAILURE;
16291	}
16292	return (error);
16293}
16294#endif
16295
16296#if defined(sun)
16297static struct cb_ops dtrace_cb_ops = {
16298	dtrace_open,		/* open */
16299	dtrace_close,		/* close */
16300	nulldev,		/* strategy */
16301	nulldev,		/* print */
16302	nodev,			/* dump */
16303	nodev,			/* read */
16304	nodev,			/* write */
16305	dtrace_ioctl,		/* ioctl */
16306	nodev,			/* devmap */
16307	nodev,			/* mmap */
16308	nodev,			/* segmap */
16309	nochpoll,		/* poll */
16310	ddi_prop_op,		/* cb_prop_op */
16311	0,			/* streamtab  */
16312	D_NEW | D_MP		/* Driver compatibility flag */
16313};
16314
16315static struct dev_ops dtrace_ops = {
16316	DEVO_REV,		/* devo_rev */
16317	0,			/* refcnt */
16318	dtrace_info,		/* get_dev_info */
16319	nulldev,		/* identify */
16320	nulldev,		/* probe */
16321	dtrace_attach,		/* attach */
16322	dtrace_detach,		/* detach */
16323	nodev,			/* reset */
16324	&dtrace_cb_ops,		/* driver operations */
16325	NULL,			/* bus operations */
16326	nodev			/* dev power */
16327};
16328
16329static struct modldrv modldrv = {
16330	&mod_driverops,		/* module type (this is a pseudo driver) */
16331	"Dynamic Tracing",	/* name of module */
16332	&dtrace_ops,		/* driver ops */
16333};
16334
16335static struct modlinkage modlinkage = {
16336	MODREV_1,
16337	(void *)&modldrv,
16338	NULL
16339};
16340
16341int
16342_init(void)
16343{
16344	return (mod_install(&modlinkage));
16345}
16346
16347int
16348_info(struct modinfo *modinfop)
16349{
16350	return (mod_info(&modlinkage, modinfop));
16351}
16352
16353int
16354_fini(void)
16355{
16356	return (mod_remove(&modlinkage));
16357}
16358#else
16359
16360static d_ioctl_t	dtrace_ioctl;
16361static void		dtrace_load(void *);
16362static int		dtrace_unload(void);
16363static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16364static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16365static eventhandler_tag	eh_tag;			/* Event handler tag. */
16366
16367void dtrace_invop_init(void);
16368void dtrace_invop_uninit(void);
16369
16370static struct cdevsw dtrace_cdevsw = {
16371	.d_version	= D_VERSION,
16372	.d_close	= dtrace_close,
16373	.d_ioctl	= dtrace_ioctl,
16374	.d_open		= dtrace_open,
16375	.d_name		= "dtrace",
16376};
16377
16378#include <dtrace_anon.c>
16379#include <dtrace_clone.c>
16380#include <dtrace_ioctl.c>
16381#include <dtrace_load.c>
16382#include <dtrace_modevent.c>
16383#include <dtrace_sysctl.c>
16384#include <dtrace_unload.c>
16385#include <dtrace_vtime.c>
16386#include <dtrace_hacks.c>
16387#include <dtrace_isa.c>
16388
16389SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16390SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16391SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16392
16393DEV_MODULE(dtrace, dtrace_modevent, NULL);
16394MODULE_VERSION(dtrace, 1);
16395MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16396MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16397#endif
16398