vmm.c revision 268935
1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: stable/10/sys/amd64/vmm/vmm.c 268935 2014-07-21 02:39:17Z jhb $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/amd64/vmm/vmm.c 268935 2014-07-21 02:39:17Z jhb $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/module.h>
36#include <sys/sysctl.h>
37#include <sys/malloc.h>
38#include <sys/pcpu.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/proc.h>
42#include <sys/rwlock.h>
43#include <sys/sched.h>
44#include <sys/smp.h>
45#include <sys/systm.h>
46
47#include <vm/vm.h>
48#include <vm/vm_object.h>
49#include <vm/vm_page.h>
50#include <vm/pmap.h>
51#include <vm/vm_map.h>
52#include <vm/vm_extern.h>
53#include <vm/vm_param.h>
54
55#include <machine/cpu.h>
56#include <machine/vm.h>
57#include <machine/pcb.h>
58#include <machine/smp.h>
59#include <x86/psl.h>
60#include <x86/apicreg.h>
61#include <machine/vmparam.h>
62
63#include <machine/vmm.h>
64#include <machine/vmm_dev.h>
65
66#include "vmm_ktr.h"
67#include "vmm_host.h"
68#include "vmm_mem.h"
69#include "vmm_util.h"
70#include "vatpic.h"
71#include "vatpit.h"
72#include "vhpet.h"
73#include "vioapic.h"
74#include "vlapic.h"
75#include "vmm_msr.h"
76#include "vmm_ipi.h"
77#include "vmm_stat.h"
78#include "vmm_lapic.h"
79
80#include "io/ppt.h"
81#include "io/iommu.h"
82
83struct vlapic;
84
85struct vcpu {
86	int		flags;
87	enum vcpu_state	state;
88	struct mtx	mtx;
89	int		hostcpu;	/* host cpuid this vcpu last ran on */
90	uint64_t	guest_msrs[VMM_MSR_NUM];
91	struct vlapic	*vlapic;
92	int		 vcpuid;
93	struct savefpu	*guestfpu;	/* guest fpu state */
94	uint64_t	guest_xcr0;
95	void		*stats;
96	struct vm_exit	exitinfo;
97	enum x2apic_state x2apic_state;
98	int		nmi_pending;
99	int		extint_pending;
100	struct vm_exception exception;
101	int		exception_pending;
102};
103
104#define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
105#define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
106#define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
107#define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
108
109struct mem_seg {
110	vm_paddr_t	gpa;
111	size_t		len;
112	boolean_t	wired;
113	vm_object_t	object;
114};
115#define	VM_MAX_MEMORY_SEGMENTS	2
116
117struct vm {
118	void		*cookie;	/* processor-specific data */
119	void		*iommu;		/* iommu-specific data */
120	struct vhpet	*vhpet;		/* virtual HPET */
121	struct vioapic	*vioapic;	/* virtual ioapic */
122	struct vatpic	*vatpic;	/* virtual atpic */
123	struct vatpit	*vatpit;	/* virtual atpit */
124	struct vmspace	*vmspace;	/* guest's address space */
125	struct vcpu	vcpu[VM_MAXCPU];
126	int		num_mem_segs;
127	struct mem_seg	mem_segs[VM_MAX_MEMORY_SEGMENTS];
128	char		name[VM_MAX_NAMELEN];
129
130	/*
131	 * Set of active vcpus.
132	 * An active vcpu is one that has been started implicitly (BSP) or
133	 * explicitly (AP) by sending it a startup ipi.
134	 */
135	volatile cpuset_t active_cpus;
136
137	struct mtx	rendezvous_mtx;
138	cpuset_t	rendezvous_req_cpus;
139	cpuset_t	rendezvous_done_cpus;
140	void		*rendezvous_arg;
141	vm_rendezvous_func_t rendezvous_func;
142
143	int		suspend;
144	volatile cpuset_t suspended_cpus;
145
146	volatile cpuset_t halted_cpus;
147};
148
149static int vmm_initialized;
150
151static struct vmm_ops *ops;
152#define	VMM_INIT(num)	(ops != NULL ? (*ops->init)(num) : 0)
153#define	VMM_CLEANUP()	(ops != NULL ? (*ops->cleanup)() : 0)
154#define	VMM_RESUME()	(ops != NULL ? (*ops->resume)() : 0)
155
156#define	VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
157#define	VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \
158	(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO)
159#define	VMCLEANUP(vmi)	(ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
160#define	VMSPACE_ALLOC(min, max) \
161	(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
162#define	VMSPACE_FREE(vmspace) \
163	(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
164#define	VMGETREG(vmi, vcpu, num, retval)		\
165	(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
166#define	VMSETREG(vmi, vcpu, num, val)		\
167	(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
168#define	VMGETDESC(vmi, vcpu, num, desc)		\
169	(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
170#define	VMSETDESC(vmi, vcpu, num, desc)		\
171	(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
172#define	VMGETCAP(vmi, vcpu, num, retval)	\
173	(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
174#define	VMSETCAP(vmi, vcpu, num, val)		\
175	(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
176#define	VLAPIC_INIT(vmi, vcpu)			\
177	(ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
178#define	VLAPIC_CLEANUP(vmi, vlapic)		\
179	(ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
180
181#define	fpu_start_emulating()	load_cr0(rcr0() | CR0_TS)
182#define	fpu_stop_emulating()	clts()
183
184static MALLOC_DEFINE(M_VM, "vm", "vm");
185CTASSERT(VMM_MSR_NUM <= 64);	/* msr_mask can keep track of up to 64 msrs */
186
187/* statistics */
188static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
189
190SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
191
192/*
193 * Halt the guest if all vcpus are executing a HLT instruction with
194 * interrupts disabled.
195 */
196static int halt_detection_enabled = 1;
197TUNABLE_INT("hw.vmm.halt_detection", &halt_detection_enabled);
198SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
199    &halt_detection_enabled, 0,
200    "Halt VM if all vcpus execute HLT with interrupts disabled");
201
202static int vmm_ipinum;
203SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
204    "IPI vector used for vcpu notifications");
205
206static void
207vcpu_cleanup(struct vm *vm, int i)
208{
209	struct vcpu *vcpu = &vm->vcpu[i];
210
211	VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
212	vmm_stat_free(vcpu->stats);
213	fpu_save_area_free(vcpu->guestfpu);
214}
215
216static void
217vcpu_init(struct vm *vm, uint32_t vcpu_id)
218{
219	struct vcpu *vcpu;
220
221	vcpu = &vm->vcpu[vcpu_id];
222
223	vcpu_lock_init(vcpu);
224	vcpu->hostcpu = NOCPU;
225	vcpu->vcpuid = vcpu_id;
226	vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
227	vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
228	vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
229	vcpu->guestfpu = fpu_save_area_alloc();
230	fpu_save_area_reset(vcpu->guestfpu);
231	vcpu->stats = vmm_stat_alloc();
232}
233
234struct vm_exit *
235vm_exitinfo(struct vm *vm, int cpuid)
236{
237	struct vcpu *vcpu;
238
239	if (cpuid < 0 || cpuid >= VM_MAXCPU)
240		panic("vm_exitinfo: invalid cpuid %d", cpuid);
241
242	vcpu = &vm->vcpu[cpuid];
243
244	return (&vcpu->exitinfo);
245}
246
247static void
248vmm_resume(void)
249{
250	VMM_RESUME();
251}
252
253static int
254vmm_init(void)
255{
256	int error;
257
258	vmm_host_state_init();
259
260	vmm_ipinum = vmm_ipi_alloc();
261	if (vmm_ipinum == 0)
262		vmm_ipinum = IPI_AST;
263
264	error = vmm_mem_init();
265	if (error)
266		return (error);
267
268	if (vmm_is_intel())
269		ops = &vmm_ops_intel;
270	else if (vmm_is_amd())
271		ops = &vmm_ops_amd;
272	else
273		return (ENXIO);
274
275	vmm_msr_init();
276	vmm_resume_p = vmm_resume;
277
278	return (VMM_INIT(vmm_ipinum));
279}
280
281static int
282vmm_handler(module_t mod, int what, void *arg)
283{
284	int error;
285
286	switch (what) {
287	case MOD_LOAD:
288		vmmdev_init();
289		if (ppt_avail_devices() > 0)
290			iommu_init();
291		error = vmm_init();
292		if (error == 0)
293			vmm_initialized = 1;
294		break;
295	case MOD_UNLOAD:
296		error = vmmdev_cleanup();
297		if (error == 0) {
298			vmm_resume_p = NULL;
299			iommu_cleanup();
300			if (vmm_ipinum != IPI_AST)
301				vmm_ipi_free(vmm_ipinum);
302			error = VMM_CLEANUP();
303			/*
304			 * Something bad happened - prevent new
305			 * VMs from being created
306			 */
307			if (error)
308				vmm_initialized = 0;
309		}
310		break;
311	default:
312		error = 0;
313		break;
314	}
315	return (error);
316}
317
318static moduledata_t vmm_kmod = {
319	"vmm",
320	vmm_handler,
321	NULL
322};
323
324/*
325 * vmm initialization has the following dependencies:
326 *
327 * - iommu initialization must happen after the pci passthru driver has had
328 *   a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
329 *
330 * - VT-x initialization requires smp_rendezvous() and therefore must happen
331 *   after SMP is fully functional (after SI_SUB_SMP).
332 */
333DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
334MODULE_VERSION(vmm, 1);
335
336int
337vm_create(const char *name, struct vm **retvm)
338{
339	int i;
340	struct vm *vm;
341	struct vmspace *vmspace;
342
343	const int BSP = 0;
344
345	/*
346	 * If vmm.ko could not be successfully initialized then don't attempt
347	 * to create the virtual machine.
348	 */
349	if (!vmm_initialized)
350		return (ENXIO);
351
352	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
353		return (EINVAL);
354
355	vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
356	if (vmspace == NULL)
357		return (ENOMEM);
358
359	vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
360	strcpy(vm->name, name);
361	vm->vmspace = vmspace;
362	mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
363	vm->cookie = VMINIT(vm, vmspace_pmap(vmspace));
364	vm->vioapic = vioapic_init(vm);
365	vm->vhpet = vhpet_init(vm);
366	vm->vatpic = vatpic_init(vm);
367	vm->vatpit = vatpit_init(vm);
368
369	for (i = 0; i < VM_MAXCPU; i++) {
370		vcpu_init(vm, i);
371		guest_msrs_init(vm, i);
372	}
373
374	vm_activate_cpu(vm, BSP);
375
376	*retvm = vm;
377	return (0);
378}
379
380static void
381vm_free_mem_seg(struct vm *vm, struct mem_seg *seg)
382{
383
384	if (seg->object != NULL)
385		vmm_mem_free(vm->vmspace, seg->gpa, seg->len);
386
387	bzero(seg, sizeof(*seg));
388}
389
390void
391vm_destroy(struct vm *vm)
392{
393	int i;
394
395	ppt_unassign_all(vm);
396
397	if (vm->iommu != NULL)
398		iommu_destroy_domain(vm->iommu);
399
400	vatpit_cleanup(vm->vatpit);
401	vhpet_cleanup(vm->vhpet);
402	vatpic_cleanup(vm->vatpic);
403	vioapic_cleanup(vm->vioapic);
404
405	for (i = 0; i < vm->num_mem_segs; i++)
406		vm_free_mem_seg(vm, &vm->mem_segs[i]);
407
408	vm->num_mem_segs = 0;
409
410	for (i = 0; i < VM_MAXCPU; i++)
411		vcpu_cleanup(vm, i);
412
413	VMSPACE_FREE(vm->vmspace);
414
415	VMCLEANUP(vm->cookie);
416
417	free(vm, M_VM);
418}
419
420const char *
421vm_name(struct vm *vm)
422{
423	return (vm->name);
424}
425
426int
427vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
428{
429	vm_object_t obj;
430
431	if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
432		return (ENOMEM);
433	else
434		return (0);
435}
436
437int
438vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
439{
440
441	vmm_mmio_free(vm->vmspace, gpa, len);
442	return (0);
443}
444
445boolean_t
446vm_mem_allocated(struct vm *vm, vm_paddr_t gpa)
447{
448	int i;
449	vm_paddr_t gpabase, gpalimit;
450
451	for (i = 0; i < vm->num_mem_segs; i++) {
452		gpabase = vm->mem_segs[i].gpa;
453		gpalimit = gpabase + vm->mem_segs[i].len;
454		if (gpa >= gpabase && gpa < gpalimit)
455			return (TRUE);		/* 'gpa' is regular memory */
456	}
457
458	if (ppt_is_mmio(vm, gpa))
459		return (TRUE);			/* 'gpa' is pci passthru mmio */
460
461	return (FALSE);
462}
463
464int
465vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len)
466{
467	int available, allocated;
468	struct mem_seg *seg;
469	vm_object_t object;
470	vm_paddr_t g;
471
472	if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0)
473		return (EINVAL);
474
475	available = allocated = 0;
476	g = gpa;
477	while (g < gpa + len) {
478		if (vm_mem_allocated(vm, g))
479			allocated++;
480		else
481			available++;
482
483		g += PAGE_SIZE;
484	}
485
486	/*
487	 * If there are some allocated and some available pages in the address
488	 * range then it is an error.
489	 */
490	if (allocated && available)
491		return (EINVAL);
492
493	/*
494	 * If the entire address range being requested has already been
495	 * allocated then there isn't anything more to do.
496	 */
497	if (allocated && available == 0)
498		return (0);
499
500	if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS)
501		return (E2BIG);
502
503	seg = &vm->mem_segs[vm->num_mem_segs];
504
505	if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL)
506		return (ENOMEM);
507
508	seg->gpa = gpa;
509	seg->len = len;
510	seg->object = object;
511	seg->wired = FALSE;
512
513	vm->num_mem_segs++;
514
515	return (0);
516}
517
518static void
519vm_gpa_unwire(struct vm *vm)
520{
521	int i, rv;
522	struct mem_seg *seg;
523
524	for (i = 0; i < vm->num_mem_segs; i++) {
525		seg = &vm->mem_segs[i];
526		if (!seg->wired)
527			continue;
528
529		rv = vm_map_unwire(&vm->vmspace->vm_map,
530				   seg->gpa, seg->gpa + seg->len,
531				   VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
532		KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment "
533		    "%#lx/%ld could not be unwired: %d",
534		    vm_name(vm), seg->gpa, seg->len, rv));
535
536		seg->wired = FALSE;
537	}
538}
539
540static int
541vm_gpa_wire(struct vm *vm)
542{
543	int i, rv;
544	struct mem_seg *seg;
545
546	for (i = 0; i < vm->num_mem_segs; i++) {
547		seg = &vm->mem_segs[i];
548		if (seg->wired)
549			continue;
550
551		/* XXX rlimits? */
552		rv = vm_map_wire(&vm->vmspace->vm_map,
553				 seg->gpa, seg->gpa + seg->len,
554				 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
555		if (rv != KERN_SUCCESS)
556			break;
557
558		seg->wired = TRUE;
559	}
560
561	if (i < vm->num_mem_segs) {
562		/*
563		 * Undo the wiring before returning an error.
564		 */
565		vm_gpa_unwire(vm);
566		return (EAGAIN);
567	}
568
569	return (0);
570}
571
572static void
573vm_iommu_modify(struct vm *vm, boolean_t map)
574{
575	int i, sz;
576	vm_paddr_t gpa, hpa;
577	struct mem_seg *seg;
578	void *vp, *cookie, *host_domain;
579
580	sz = PAGE_SIZE;
581	host_domain = iommu_host_domain();
582
583	for (i = 0; i < vm->num_mem_segs; i++) {
584		seg = &vm->mem_segs[i];
585		KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired",
586		    vm_name(vm), seg->gpa, seg->len));
587
588		gpa = seg->gpa;
589		while (gpa < seg->gpa + seg->len) {
590			vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE,
591					 &cookie);
592			KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
593			    vm_name(vm), gpa));
594
595			vm_gpa_release(cookie);
596
597			hpa = DMAP_TO_PHYS((uintptr_t)vp);
598			if (map) {
599				iommu_create_mapping(vm->iommu, gpa, hpa, sz);
600				iommu_remove_mapping(host_domain, hpa, sz);
601			} else {
602				iommu_remove_mapping(vm->iommu, gpa, sz);
603				iommu_create_mapping(host_domain, hpa, hpa, sz);
604			}
605
606			gpa += PAGE_SIZE;
607		}
608	}
609
610	/*
611	 * Invalidate the cached translations associated with the domain
612	 * from which pages were removed.
613	 */
614	if (map)
615		iommu_invalidate_tlb(host_domain);
616	else
617		iommu_invalidate_tlb(vm->iommu);
618}
619
620#define	vm_iommu_unmap(vm)	vm_iommu_modify((vm), FALSE)
621#define	vm_iommu_map(vm)	vm_iommu_modify((vm), TRUE)
622
623int
624vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
625{
626	int error;
627
628	error = ppt_unassign_device(vm, bus, slot, func);
629	if (error)
630		return (error);
631
632	if (ppt_assigned_devices(vm) == 0) {
633		vm_iommu_unmap(vm);
634		vm_gpa_unwire(vm);
635	}
636	return (0);
637}
638
639int
640vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
641{
642	int error;
643	vm_paddr_t maxaddr;
644
645	/*
646	 * Virtual machines with pci passthru devices get special treatment:
647	 * - the guest physical memory is wired
648	 * - the iommu is programmed to do the 'gpa' to 'hpa' translation
649	 *
650	 * We need to do this before the first pci passthru device is attached.
651	 */
652	if (ppt_assigned_devices(vm) == 0) {
653		KASSERT(vm->iommu == NULL,
654		    ("vm_assign_pptdev: iommu must be NULL"));
655		maxaddr = vmm_mem_maxaddr();
656		vm->iommu = iommu_create_domain(maxaddr);
657
658		error = vm_gpa_wire(vm);
659		if (error)
660			return (error);
661
662		vm_iommu_map(vm);
663	}
664
665	error = ppt_assign_device(vm, bus, slot, func);
666	return (error);
667}
668
669void *
670vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
671	    void **cookie)
672{
673	int count, pageoff;
674	vm_page_t m;
675
676	pageoff = gpa & PAGE_MASK;
677	if (len > PAGE_SIZE - pageoff)
678		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
679
680	count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
681	    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
682
683	if (count == 1) {
684		*cookie = m;
685		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
686	} else {
687		*cookie = NULL;
688		return (NULL);
689	}
690}
691
692void
693vm_gpa_release(void *cookie)
694{
695	vm_page_t m = cookie;
696
697	vm_page_lock(m);
698	vm_page_unhold(m);
699	vm_page_unlock(m);
700}
701
702int
703vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase,
704		  struct vm_memory_segment *seg)
705{
706	int i;
707
708	for (i = 0; i < vm->num_mem_segs; i++) {
709		if (gpabase == vm->mem_segs[i].gpa) {
710			seg->gpa = vm->mem_segs[i].gpa;
711			seg->len = vm->mem_segs[i].len;
712			seg->wired = vm->mem_segs[i].wired;
713			return (0);
714		}
715	}
716	return (-1);
717}
718
719int
720vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len,
721	      vm_offset_t *offset, struct vm_object **object)
722{
723	int i;
724	size_t seg_len;
725	vm_paddr_t seg_gpa;
726	vm_object_t seg_obj;
727
728	for (i = 0; i < vm->num_mem_segs; i++) {
729		if ((seg_obj = vm->mem_segs[i].object) == NULL)
730			continue;
731
732		seg_gpa = vm->mem_segs[i].gpa;
733		seg_len = vm->mem_segs[i].len;
734
735		if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) {
736			*offset = gpa - seg_gpa;
737			*object = seg_obj;
738			vm_object_reference(seg_obj);
739			return (0);
740		}
741	}
742
743	return (EINVAL);
744}
745
746int
747vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
748{
749
750	if (vcpu < 0 || vcpu >= VM_MAXCPU)
751		return (EINVAL);
752
753	if (reg >= VM_REG_LAST)
754		return (EINVAL);
755
756	return (VMGETREG(vm->cookie, vcpu, reg, retval));
757}
758
759int
760vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val)
761{
762
763	if (vcpu < 0 || vcpu >= VM_MAXCPU)
764		return (EINVAL);
765
766	if (reg >= VM_REG_LAST)
767		return (EINVAL);
768
769	return (VMSETREG(vm->cookie, vcpu, reg, val));
770}
771
772static boolean_t
773is_descriptor_table(int reg)
774{
775
776	switch (reg) {
777	case VM_REG_GUEST_IDTR:
778	case VM_REG_GUEST_GDTR:
779		return (TRUE);
780	default:
781		return (FALSE);
782	}
783}
784
785static boolean_t
786is_segment_register(int reg)
787{
788
789	switch (reg) {
790	case VM_REG_GUEST_ES:
791	case VM_REG_GUEST_CS:
792	case VM_REG_GUEST_SS:
793	case VM_REG_GUEST_DS:
794	case VM_REG_GUEST_FS:
795	case VM_REG_GUEST_GS:
796	case VM_REG_GUEST_TR:
797	case VM_REG_GUEST_LDTR:
798		return (TRUE);
799	default:
800		return (FALSE);
801	}
802}
803
804int
805vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
806		struct seg_desc *desc)
807{
808
809	if (vcpu < 0 || vcpu >= VM_MAXCPU)
810		return (EINVAL);
811
812	if (!is_segment_register(reg) && !is_descriptor_table(reg))
813		return (EINVAL);
814
815	return (VMGETDESC(vm->cookie, vcpu, reg, desc));
816}
817
818int
819vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
820		struct seg_desc *desc)
821{
822	if (vcpu < 0 || vcpu >= VM_MAXCPU)
823		return (EINVAL);
824
825	if (!is_segment_register(reg) && !is_descriptor_table(reg))
826		return (EINVAL);
827
828	return (VMSETDESC(vm->cookie, vcpu, reg, desc));
829}
830
831static void
832restore_guest_fpustate(struct vcpu *vcpu)
833{
834
835	/* flush host state to the pcb */
836	fpuexit(curthread);
837
838	/* restore guest FPU state */
839	fpu_stop_emulating();
840	fpurestore(vcpu->guestfpu);
841
842	/* restore guest XCR0 if XSAVE is enabled in the host */
843	if (rcr4() & CR4_XSAVE)
844		load_xcr(0, vcpu->guest_xcr0);
845
846	/*
847	 * The FPU is now "dirty" with the guest's state so turn on emulation
848	 * to trap any access to the FPU by the host.
849	 */
850	fpu_start_emulating();
851}
852
853static void
854save_guest_fpustate(struct vcpu *vcpu)
855{
856
857	if ((rcr0() & CR0_TS) == 0)
858		panic("fpu emulation not enabled in host!");
859
860	/* save guest XCR0 and restore host XCR0 */
861	if (rcr4() & CR4_XSAVE) {
862		vcpu->guest_xcr0 = rxcr(0);
863		load_xcr(0, vmm_get_host_xcr0());
864	}
865
866	/* save guest FPU state */
867	fpu_stop_emulating();
868	fpusave(vcpu->guestfpu);
869	fpu_start_emulating();
870}
871
872static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
873
874static int
875vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
876    bool from_idle)
877{
878	int error;
879
880	vcpu_assert_locked(vcpu);
881
882	/*
883	 * State transitions from the vmmdev_ioctl() must always begin from
884	 * the VCPU_IDLE state. This guarantees that there is only a single
885	 * ioctl() operating on a vcpu at any point.
886	 */
887	if (from_idle) {
888		while (vcpu->state != VCPU_IDLE)
889			msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
890	} else {
891		KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
892		    "vcpu idle state"));
893	}
894
895	if (vcpu->state == VCPU_RUNNING) {
896		KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
897		    "mismatch for running vcpu", curcpu, vcpu->hostcpu));
898	} else {
899		KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
900		    "vcpu that is not running", vcpu->hostcpu));
901	}
902
903	/*
904	 * The following state transitions are allowed:
905	 * IDLE -> FROZEN -> IDLE
906	 * FROZEN -> RUNNING -> FROZEN
907	 * FROZEN -> SLEEPING -> FROZEN
908	 */
909	switch (vcpu->state) {
910	case VCPU_IDLE:
911	case VCPU_RUNNING:
912	case VCPU_SLEEPING:
913		error = (newstate != VCPU_FROZEN);
914		break;
915	case VCPU_FROZEN:
916		error = (newstate == VCPU_FROZEN);
917		break;
918	default:
919		error = 1;
920		break;
921	}
922
923	if (error)
924		return (EBUSY);
925
926	vcpu->state = newstate;
927	if (newstate == VCPU_RUNNING)
928		vcpu->hostcpu = curcpu;
929	else
930		vcpu->hostcpu = NOCPU;
931
932	if (newstate == VCPU_IDLE)
933		wakeup(&vcpu->state);
934
935	return (0);
936}
937
938static void
939vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
940{
941	int error;
942
943	if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
944		panic("Error %d setting state to %d\n", error, newstate);
945}
946
947static void
948vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
949{
950	int error;
951
952	if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
953		panic("Error %d setting state to %d", error, newstate);
954}
955
956static void
957vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
958{
959
960	KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
961
962	/*
963	 * Update 'rendezvous_func' and execute a write memory barrier to
964	 * ensure that it is visible across all host cpus. This is not needed
965	 * for correctness but it does ensure that all the vcpus will notice
966	 * that the rendezvous is requested immediately.
967	 */
968	vm->rendezvous_func = func;
969	wmb();
970}
971
972#define	RENDEZVOUS_CTR0(vm, vcpuid, fmt)				\
973	do {								\
974		if (vcpuid >= 0)					\
975			VCPU_CTR0(vm, vcpuid, fmt);			\
976		else							\
977			VM_CTR0(vm, fmt);				\
978	} while (0)
979
980static void
981vm_handle_rendezvous(struct vm *vm, int vcpuid)
982{
983
984	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
985	    ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
986
987	mtx_lock(&vm->rendezvous_mtx);
988	while (vm->rendezvous_func != NULL) {
989		/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
990		CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
991
992		if (vcpuid != -1 &&
993		    CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
994		    !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
995			VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
996			(*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
997			CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
998		}
999		if (CPU_CMP(&vm->rendezvous_req_cpus,
1000		    &vm->rendezvous_done_cpus) == 0) {
1001			VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
1002			vm_set_rendezvous_func(vm, NULL);
1003			wakeup(&vm->rendezvous_func);
1004			break;
1005		}
1006		RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
1007		mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1008		    "vmrndv", 0);
1009	}
1010	mtx_unlock(&vm->rendezvous_mtx);
1011}
1012
1013/*
1014 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1015 */
1016static int
1017vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
1018{
1019	struct vcpu *vcpu;
1020	const char *wmesg;
1021	int t, vcpu_halted, vm_halted;
1022
1023	KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1024
1025	vcpu = &vm->vcpu[vcpuid];
1026	vcpu_halted = 0;
1027	vm_halted = 0;
1028
1029	vcpu_lock(vcpu);
1030	while (1) {
1031		/*
1032		 * Do a final check for pending NMI or interrupts before
1033		 * really putting this thread to sleep. Also check for
1034		 * software events that would cause this vcpu to wakeup.
1035		 *
1036		 * These interrupts/events could have happened after the
1037		 * vcpu returned from VMRUN() and before it acquired the
1038		 * vcpu lock above.
1039		 */
1040		if (vm->rendezvous_func != NULL || vm->suspend)
1041			break;
1042		if (vm_nmi_pending(vm, vcpuid))
1043			break;
1044		if (!intr_disabled) {
1045			if (vm_extint_pending(vm, vcpuid) ||
1046			    vlapic_pending_intr(vcpu->vlapic, NULL)) {
1047				break;
1048			}
1049		}
1050
1051		/*
1052		 * Some Linux guests implement "halt" by having all vcpus
1053		 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1054		 * track of the vcpus that have entered this state. When all
1055		 * vcpus enter the halted state the virtual machine is halted.
1056		 */
1057		if (intr_disabled) {
1058			wmesg = "vmhalt";
1059			VCPU_CTR0(vm, vcpuid, "Halted");
1060			if (!vcpu_halted && halt_detection_enabled) {
1061				vcpu_halted = 1;
1062				CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1063			}
1064			if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1065				vm_halted = 1;
1066				break;
1067			}
1068		} else {
1069			wmesg = "vmidle";
1070		}
1071
1072		t = ticks;
1073		vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1074		msleep_spin(vcpu, &vcpu->mtx, wmesg, 0);
1075		vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1076		vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
1077	}
1078
1079	if (vcpu_halted)
1080		CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1081
1082	vcpu_unlock(vcpu);
1083
1084	if (vm_halted)
1085		vm_suspend(vm, VM_SUSPEND_HALT);
1086
1087	return (0);
1088}
1089
1090static int
1091vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
1092{
1093	int rv, ftype;
1094	struct vm_map *map;
1095	struct vcpu *vcpu;
1096	struct vm_exit *vme;
1097
1098	vcpu = &vm->vcpu[vcpuid];
1099	vme = &vcpu->exitinfo;
1100
1101	ftype = vme->u.paging.fault_type;
1102	KASSERT(ftype == VM_PROT_READ ||
1103	    ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1104	    ("vm_handle_paging: invalid fault_type %d", ftype));
1105
1106	if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1107		rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1108		    vme->u.paging.gpa, ftype);
1109		if (rv == 0)
1110			goto done;
1111	}
1112
1113	map = &vm->vmspace->vm_map;
1114	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
1115
1116	VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
1117	    "ftype = %d", rv, vme->u.paging.gpa, ftype);
1118
1119	if (rv != KERN_SUCCESS)
1120		return (EFAULT);
1121done:
1122	/* restart execution at the faulting instruction */
1123	vme->inst_length = 0;
1124
1125	return (0);
1126}
1127
1128static int
1129vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
1130{
1131	struct vie *vie;
1132	struct vcpu *vcpu;
1133	struct vm_exit *vme;
1134	int error, inst_length;
1135	uint64_t rip, gla, gpa, cr3;
1136	enum vie_cpu_mode cpu_mode;
1137	enum vie_paging_mode paging_mode;
1138	mem_region_read_t mread;
1139	mem_region_write_t mwrite;
1140
1141	vcpu = &vm->vcpu[vcpuid];
1142	vme = &vcpu->exitinfo;
1143
1144	rip = vme->rip;
1145	inst_length = vme->inst_length;
1146
1147	gla = vme->u.inst_emul.gla;
1148	gpa = vme->u.inst_emul.gpa;
1149	cr3 = vme->u.inst_emul.cr3;
1150	cpu_mode = vme->u.inst_emul.cpu_mode;
1151	paging_mode = vme->u.inst_emul.paging_mode;
1152	vie = &vme->u.inst_emul.vie;
1153
1154	vie_init(vie);
1155
1156	/* Fetch, decode and emulate the faulting instruction */
1157	if (vmm_fetch_instruction(vm, vcpuid, rip, inst_length, cr3,
1158	    paging_mode, vie) != 0)
1159		return (EFAULT);
1160
1161	if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, vie) != 0)
1162		return (EFAULT);
1163
1164	/* return to userland unless this is an in-kernel emulated device */
1165	if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1166		mread = lapic_mmio_read;
1167		mwrite = lapic_mmio_write;
1168	} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1169		mread = vioapic_mmio_read;
1170		mwrite = vioapic_mmio_write;
1171	} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1172		mread = vhpet_mmio_read;
1173		mwrite = vhpet_mmio_write;
1174	} else {
1175		*retu = true;
1176		return (0);
1177	}
1178
1179	error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, mread, mwrite,
1180	    retu);
1181
1182	return (error);
1183}
1184
1185static int
1186vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
1187{
1188	int i, done;
1189	struct vcpu *vcpu;
1190
1191	done = 0;
1192	vcpu = &vm->vcpu[vcpuid];
1193
1194	CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
1195
1196	/*
1197	 * Wait until all 'active_cpus' have suspended themselves.
1198	 *
1199	 * Since a VM may be suspended at any time including when one or
1200	 * more vcpus are doing a rendezvous we need to call the rendezvous
1201	 * handler while we are waiting to prevent a deadlock.
1202	 */
1203	vcpu_lock(vcpu);
1204	while (1) {
1205		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1206			VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
1207			break;
1208		}
1209
1210		if (vm->rendezvous_func == NULL) {
1211			VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
1212			vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1213			msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1214			vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1215		} else {
1216			VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
1217			vcpu_unlock(vcpu);
1218			vm_handle_rendezvous(vm, vcpuid);
1219			vcpu_lock(vcpu);
1220		}
1221	}
1222	vcpu_unlock(vcpu);
1223
1224	/*
1225	 * Wakeup the other sleeping vcpus and return to userspace.
1226	 */
1227	for (i = 0; i < VM_MAXCPU; i++) {
1228		if (CPU_ISSET(i, &vm->suspended_cpus)) {
1229			vcpu_notify_event(vm, i, false);
1230		}
1231	}
1232
1233	*retu = true;
1234	return (0);
1235}
1236
1237int
1238vm_suspend(struct vm *vm, enum vm_suspend_how how)
1239{
1240	int i;
1241
1242	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1243		return (EINVAL);
1244
1245	if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1246		VM_CTR2(vm, "virtual machine already suspended %d/%d",
1247		    vm->suspend, how);
1248		return (EALREADY);
1249	}
1250
1251	VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1252
1253	/*
1254	 * Notify all active vcpus that they are now suspended.
1255	 */
1256	for (i = 0; i < VM_MAXCPU; i++) {
1257		if (CPU_ISSET(i, &vm->active_cpus))
1258			vcpu_notify_event(vm, i, false);
1259	}
1260
1261	return (0);
1262}
1263
1264void
1265vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
1266{
1267	struct vm_exit *vmexit;
1268
1269	KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1270	    ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1271
1272	vmexit = vm_exitinfo(vm, vcpuid);
1273	vmexit->rip = rip;
1274	vmexit->inst_length = 0;
1275	vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1276	vmexit->u.suspended.how = vm->suspend;
1277}
1278
1279int
1280vm_run(struct vm *vm, struct vm_run *vmrun)
1281{
1282	int error, vcpuid;
1283	struct vcpu *vcpu;
1284	struct pcb *pcb;
1285	uint64_t tscval, rip;
1286	struct vm_exit *vme;
1287	bool retu, intr_disabled;
1288	pmap_t pmap;
1289	void *rptr, *sptr;
1290
1291	vcpuid = vmrun->cpuid;
1292
1293	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1294		return (EINVAL);
1295
1296	rptr = &vm->rendezvous_func;
1297	sptr = &vm->suspend;
1298	pmap = vmspace_pmap(vm->vmspace);
1299	vcpu = &vm->vcpu[vcpuid];
1300	vme = &vcpu->exitinfo;
1301	rip = vmrun->rip;
1302restart:
1303	critical_enter();
1304
1305	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1306	    ("vm_run: absurd pm_active"));
1307
1308	tscval = rdtsc();
1309
1310	pcb = PCPU_GET(curpcb);
1311	set_pcb_flags(pcb, PCB_FULL_IRET);
1312
1313	restore_guest_msrs(vm, vcpuid);
1314	restore_guest_fpustate(vcpu);
1315
1316	vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
1317	error = VMRUN(vm->cookie, vcpuid, rip, pmap, rptr, sptr);
1318	vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
1319
1320	save_guest_fpustate(vcpu);
1321	restore_host_msrs(vm, vcpuid);
1322
1323	vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1324
1325	critical_exit();
1326
1327	if (error == 0) {
1328		retu = false;
1329		switch (vme->exitcode) {
1330		case VM_EXITCODE_SUSPENDED:
1331			error = vm_handle_suspend(vm, vcpuid, &retu);
1332			break;
1333		case VM_EXITCODE_IOAPIC_EOI:
1334			vioapic_process_eoi(vm, vcpuid,
1335			    vme->u.ioapic_eoi.vector);
1336			break;
1337		case VM_EXITCODE_RENDEZVOUS:
1338			vm_handle_rendezvous(vm, vcpuid);
1339			error = 0;
1340			break;
1341		case VM_EXITCODE_HLT:
1342			intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1343			error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
1344			break;
1345		case VM_EXITCODE_PAGING:
1346			error = vm_handle_paging(vm, vcpuid, &retu);
1347			break;
1348		case VM_EXITCODE_INST_EMUL:
1349			error = vm_handle_inst_emul(vm, vcpuid, &retu);
1350			break;
1351		default:
1352			retu = true;	/* handled in userland */
1353			break;
1354		}
1355	}
1356
1357	if (error == 0 && retu == false) {
1358		rip = vme->rip + vme->inst_length;
1359		goto restart;
1360	}
1361
1362	/* copy the exit information */
1363	bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
1364	return (error);
1365}
1366
1367int
1368vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception)
1369{
1370	struct vcpu *vcpu;
1371
1372	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1373		return (EINVAL);
1374
1375	if (exception->vector < 0 || exception->vector >= 32)
1376		return (EINVAL);
1377
1378	vcpu = &vm->vcpu[vcpuid];
1379
1380	if (vcpu->exception_pending) {
1381		VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
1382		    "pending exception %d", exception->vector,
1383		    vcpu->exception.vector);
1384		return (EBUSY);
1385	}
1386
1387	vcpu->exception_pending = 1;
1388	vcpu->exception = *exception;
1389	VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector);
1390	return (0);
1391}
1392
1393int
1394vm_exception_pending(struct vm *vm, int vcpuid, struct vm_exception *exception)
1395{
1396	struct vcpu *vcpu;
1397	int pending;
1398
1399	KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
1400
1401	vcpu = &vm->vcpu[vcpuid];
1402	pending = vcpu->exception_pending;
1403	if (pending) {
1404		vcpu->exception_pending = 0;
1405		*exception = vcpu->exception;
1406		VCPU_CTR1(vm, vcpuid, "Exception %d delivered",
1407		    exception->vector);
1408	}
1409	return (pending);
1410}
1411
1412static void
1413vm_inject_fault(struct vm *vm, int vcpuid, struct vm_exception *exception)
1414{
1415	struct vm_exit *vmexit;
1416	int error;
1417
1418	error = vm_inject_exception(vm, vcpuid, exception);
1419	KASSERT(error == 0, ("vm_inject_exception error %d", error));
1420
1421	/*
1422	 * A fault-like exception allows the instruction to be restarted
1423	 * after the exception handler returns.
1424	 *
1425	 * By setting the inst_length to 0 we ensure that the instruction
1426	 * pointer remains at the faulting instruction.
1427	 */
1428	vmexit = vm_exitinfo(vm, vcpuid);
1429	vmexit->inst_length = 0;
1430}
1431
1432void
1433vm_inject_gp(struct vm *vm, int vcpuid)
1434{
1435	struct vm_exception gpf = {
1436		.vector = IDT_GP,
1437		.error_code_valid = 1,
1438		.error_code = 0
1439	};
1440
1441	vm_inject_fault(vm, vcpuid, &gpf);
1442}
1443
1444void
1445vm_inject_ud(struct vm *vm, int vcpuid)
1446{
1447	struct vm_exception udf = {
1448		.vector = IDT_UD,
1449		.error_code_valid = 0
1450	};
1451
1452	vm_inject_fault(vm, vcpuid, &udf);
1453}
1454
1455static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
1456
1457int
1458vm_inject_nmi(struct vm *vm, int vcpuid)
1459{
1460	struct vcpu *vcpu;
1461
1462	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1463		return (EINVAL);
1464
1465	vcpu = &vm->vcpu[vcpuid];
1466
1467	vcpu->nmi_pending = 1;
1468	vcpu_notify_event(vm, vcpuid, false);
1469	return (0);
1470}
1471
1472int
1473vm_nmi_pending(struct vm *vm, int vcpuid)
1474{
1475	struct vcpu *vcpu;
1476
1477	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1478		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
1479
1480	vcpu = &vm->vcpu[vcpuid];
1481
1482	return (vcpu->nmi_pending);
1483}
1484
1485void
1486vm_nmi_clear(struct vm *vm, int vcpuid)
1487{
1488	struct vcpu *vcpu;
1489
1490	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1491		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
1492
1493	vcpu = &vm->vcpu[vcpuid];
1494
1495	if (vcpu->nmi_pending == 0)
1496		panic("vm_nmi_clear: inconsistent nmi_pending state");
1497
1498	vcpu->nmi_pending = 0;
1499	vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
1500}
1501
1502static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
1503
1504int
1505vm_inject_extint(struct vm *vm, int vcpuid)
1506{
1507	struct vcpu *vcpu;
1508
1509	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1510		return (EINVAL);
1511
1512	vcpu = &vm->vcpu[vcpuid];
1513
1514	vcpu->extint_pending = 1;
1515	vcpu_notify_event(vm, vcpuid, false);
1516	return (0);
1517}
1518
1519int
1520vm_extint_pending(struct vm *vm, int vcpuid)
1521{
1522	struct vcpu *vcpu;
1523
1524	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1525		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
1526
1527	vcpu = &vm->vcpu[vcpuid];
1528
1529	return (vcpu->extint_pending);
1530}
1531
1532void
1533vm_extint_clear(struct vm *vm, int vcpuid)
1534{
1535	struct vcpu *vcpu;
1536
1537	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1538		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
1539
1540	vcpu = &vm->vcpu[vcpuid];
1541
1542	if (vcpu->extint_pending == 0)
1543		panic("vm_extint_clear: inconsistent extint_pending state");
1544
1545	vcpu->extint_pending = 0;
1546	vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
1547}
1548
1549int
1550vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
1551{
1552	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1553		return (EINVAL);
1554
1555	if (type < 0 || type >= VM_CAP_MAX)
1556		return (EINVAL);
1557
1558	return (VMGETCAP(vm->cookie, vcpu, type, retval));
1559}
1560
1561int
1562vm_set_capability(struct vm *vm, int vcpu, int type, int val)
1563{
1564	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1565		return (EINVAL);
1566
1567	if (type < 0 || type >= VM_CAP_MAX)
1568		return (EINVAL);
1569
1570	return (VMSETCAP(vm->cookie, vcpu, type, val));
1571}
1572
1573uint64_t *
1574vm_guest_msrs(struct vm *vm, int cpu)
1575{
1576	return (vm->vcpu[cpu].guest_msrs);
1577}
1578
1579struct vlapic *
1580vm_lapic(struct vm *vm, int cpu)
1581{
1582	return (vm->vcpu[cpu].vlapic);
1583}
1584
1585struct vioapic *
1586vm_ioapic(struct vm *vm)
1587{
1588
1589	return (vm->vioapic);
1590}
1591
1592struct vhpet *
1593vm_hpet(struct vm *vm)
1594{
1595
1596	return (vm->vhpet);
1597}
1598
1599boolean_t
1600vmm_is_pptdev(int bus, int slot, int func)
1601{
1602	int found, i, n;
1603	int b, s, f;
1604	char *val, *cp, *cp2;
1605
1606	/*
1607	 * XXX
1608	 * The length of an environment variable is limited to 128 bytes which
1609	 * puts an upper limit on the number of passthru devices that may be
1610	 * specified using a single environment variable.
1611	 *
1612	 * Work around this by scanning multiple environment variable
1613	 * names instead of a single one - yuck!
1614	 */
1615	const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
1616
1617	/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
1618	found = 0;
1619	for (i = 0; names[i] != NULL && !found; i++) {
1620		cp = val = getenv(names[i]);
1621		while (cp != NULL && *cp != '\0') {
1622			if ((cp2 = strchr(cp, ' ')) != NULL)
1623				*cp2 = '\0';
1624
1625			n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
1626			if (n == 3 && bus == b && slot == s && func == f) {
1627				found = 1;
1628				break;
1629			}
1630
1631			if (cp2 != NULL)
1632				*cp2++ = ' ';
1633
1634			cp = cp2;
1635		}
1636		freeenv(val);
1637	}
1638	return (found);
1639}
1640
1641void *
1642vm_iommu_domain(struct vm *vm)
1643{
1644
1645	return (vm->iommu);
1646}
1647
1648int
1649vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
1650    bool from_idle)
1651{
1652	int error;
1653	struct vcpu *vcpu;
1654
1655	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1656		panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
1657
1658	vcpu = &vm->vcpu[vcpuid];
1659
1660	vcpu_lock(vcpu);
1661	error = vcpu_set_state_locked(vcpu, newstate, from_idle);
1662	vcpu_unlock(vcpu);
1663
1664	return (error);
1665}
1666
1667enum vcpu_state
1668vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
1669{
1670	struct vcpu *vcpu;
1671	enum vcpu_state state;
1672
1673	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1674		panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
1675
1676	vcpu = &vm->vcpu[vcpuid];
1677
1678	vcpu_lock(vcpu);
1679	state = vcpu->state;
1680	if (hostcpu != NULL)
1681		*hostcpu = vcpu->hostcpu;
1682	vcpu_unlock(vcpu);
1683
1684	return (state);
1685}
1686
1687void
1688vm_activate_cpu(struct vm *vm, int vcpuid)
1689{
1690
1691	KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU,
1692	    ("vm_activate_cpu: invalid vcpuid %d", vcpuid));
1693	KASSERT(!CPU_ISSET(vcpuid, &vm->active_cpus),
1694	    ("vm_activate_cpu: vcpuid %d is already active", vcpuid));
1695
1696	VCPU_CTR0(vm, vcpuid, "activated");
1697	CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
1698}
1699
1700cpuset_t
1701vm_active_cpus(struct vm *vm)
1702{
1703
1704	return (vm->active_cpus);
1705}
1706
1707void *
1708vcpu_stats(struct vm *vm, int vcpuid)
1709{
1710
1711	return (vm->vcpu[vcpuid].stats);
1712}
1713
1714int
1715vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
1716{
1717	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1718		return (EINVAL);
1719
1720	*state = vm->vcpu[vcpuid].x2apic_state;
1721
1722	return (0);
1723}
1724
1725int
1726vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
1727{
1728	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1729		return (EINVAL);
1730
1731	if (state >= X2APIC_STATE_LAST)
1732		return (EINVAL);
1733
1734	vm->vcpu[vcpuid].x2apic_state = state;
1735
1736	vlapic_set_x2apic_state(vm, vcpuid, state);
1737
1738	return (0);
1739}
1740
1741/*
1742 * This function is called to ensure that a vcpu "sees" a pending event
1743 * as soon as possible:
1744 * - If the vcpu thread is sleeping then it is woken up.
1745 * - If the vcpu is running on a different host_cpu then an IPI will be directed
1746 *   to the host_cpu to cause the vcpu to trap into the hypervisor.
1747 */
1748void
1749vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
1750{
1751	int hostcpu;
1752	struct vcpu *vcpu;
1753
1754	vcpu = &vm->vcpu[vcpuid];
1755
1756	vcpu_lock(vcpu);
1757	hostcpu = vcpu->hostcpu;
1758	if (vcpu->state == VCPU_RUNNING) {
1759		KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
1760		if (hostcpu != curcpu) {
1761			if (lapic_intr) {
1762				vlapic_post_intr(vcpu->vlapic, hostcpu,
1763				    vmm_ipinum);
1764			} else {
1765				ipi_cpu(hostcpu, vmm_ipinum);
1766			}
1767		} else {
1768			/*
1769			 * If the 'vcpu' is running on 'curcpu' then it must
1770			 * be sending a notification to itself (e.g. SELF_IPI).
1771			 * The pending event will be picked up when the vcpu
1772			 * transitions back to guest context.
1773			 */
1774		}
1775	} else {
1776		KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
1777		    "with hostcpu %d", vcpu->state, hostcpu));
1778		if (vcpu->state == VCPU_SLEEPING)
1779			wakeup_one(vcpu);
1780	}
1781	vcpu_unlock(vcpu);
1782}
1783
1784struct vmspace *
1785vm_get_vmspace(struct vm *vm)
1786{
1787
1788	return (vm->vmspace);
1789}
1790
1791int
1792vm_apicid2vcpuid(struct vm *vm, int apicid)
1793{
1794	/*
1795	 * XXX apic id is assumed to be numerically identical to vcpu id
1796	 */
1797	return (apicid);
1798}
1799
1800void
1801vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
1802    vm_rendezvous_func_t func, void *arg)
1803{
1804	int i;
1805
1806	/*
1807	 * Enforce that this function is called without any locks
1808	 */
1809	WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
1810	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
1811	    ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
1812
1813restart:
1814	mtx_lock(&vm->rendezvous_mtx);
1815	if (vm->rendezvous_func != NULL) {
1816		/*
1817		 * If a rendezvous is already in progress then we need to
1818		 * call the rendezvous handler in case this 'vcpuid' is one
1819		 * of the targets of the rendezvous.
1820		 */
1821		RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
1822		mtx_unlock(&vm->rendezvous_mtx);
1823		vm_handle_rendezvous(vm, vcpuid);
1824		goto restart;
1825	}
1826	KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
1827	    "rendezvous is still in progress"));
1828
1829	RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
1830	vm->rendezvous_req_cpus = dest;
1831	CPU_ZERO(&vm->rendezvous_done_cpus);
1832	vm->rendezvous_arg = arg;
1833	vm_set_rendezvous_func(vm, func);
1834	mtx_unlock(&vm->rendezvous_mtx);
1835
1836	/*
1837	 * Wake up any sleeping vcpus and trigger a VM-exit in any running
1838	 * vcpus so they handle the rendezvous as soon as possible.
1839	 */
1840	for (i = 0; i < VM_MAXCPU; i++) {
1841		if (CPU_ISSET(i, &dest))
1842			vcpu_notify_event(vm, i, false);
1843	}
1844
1845	vm_handle_rendezvous(vm, vcpuid);
1846}
1847
1848struct vatpic *
1849vm_atpic(struct vm *vm)
1850{
1851	return (vm->vatpic);
1852}
1853
1854struct vatpit *
1855vm_atpit(struct vm *vm)
1856{
1857	return (vm->vatpit);
1858}
1859