pmap.c revision 5943
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.46 1995/01/26 01:45:02 davidg Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54/*
55 * Major modifications by John S. Dyson primarily to support
56 * pageable page tables, eliminating pmap_attributes,
57 * discontiguous memory pages, and using more efficient string
58 * instructions. Jan 13, 1994.  Further modifications on Mar 2, 1994,
59 * general clean-up and efficiency mods.
60 */
61
62/*
63 *	Manages physical address maps.
64 *
65 *	In addition to hardware address maps, this
66 *	module is called upon to provide software-use-only
67 *	maps which may or may not be stored in the same
68 *	form as hardware maps.  These pseudo-maps are
69 *	used to store intermediate results from copy
70 *	operations to and from address spaces.
71 *
72 *	Since the information managed by this module is
73 *	also stored by the logical address mapping module,
74 *	this module may throw away valid virtual-to-physical
75 *	mappings at almost any time.  However, invalidations
76 *	of virtual-to-physical mappings must be done as
77 *	requested.
78 *
79 *	In order to cope with hardware architectures which
80 *	make virtual-to-physical map invalidates expensive,
81 *	this module may delay invalidate or reduced protection
82 *	operations until such time as they are actually
83 *	necessary.  This module is given full information as
84 *	to which processors are currently using which maps,
85 *	and to when physical maps must be made correct.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/proc.h>
91#include <sys/malloc.h>
92#include <sys/user.h>
93
94#include <vm/vm.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_page.h>
97
98#include <i386/include/cputypes.h>
99
100#include <i386/isa/isa.h>
101
102/*
103 * Allocate various and sundry SYSMAPs used in the days of old VM
104 * and not yet converted.  XXX.
105 */
106#define BSDVM_COMPAT	1
107
108/*
109 * Get PDEs and PTEs for user/kernel address space
110 */
111#define	pmap_pde(m, v)	(&((m)->pm_pdir[((vm_offset_t)(v) >> PD_SHIFT)&1023]))
112#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PD_SHIFT)&1023])
113
114#define pmap_pte_pa(pte)	(*(int *)(pte) & PG_FRAME)
115
116#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
117#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
118#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
119#define pmap_pte_u(pte)		((*(int *)pte & PG_U) != 0)
120#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
121
122#define pmap_pte_set_w(pte, v)		((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
123#define pmap_pte_set_prot(pte, v)	((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
124
125/*
126 * Given a map and a machine independent protection code,
127 * convert to a vax protection code.
128 */
129#define pte_prot(m, p)	(protection_codes[p])
130int protection_codes[8];
131
132struct pmap kernel_pmap_store;
133pmap_t kernel_pmap;
134
135vm_offset_t phys_avail[6];	/* 2 entries + 1 null */
136vm_offset_t avail_start;	/* PA of first available physical page */
137vm_offset_t avail_end;		/* PA of last available physical page */
138vm_size_t mem_size;		/* memory size in bytes */
139vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
140vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
141int i386pagesperpage;		/* PAGE_SIZE / I386_PAGE_SIZE */
142boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
143vm_offset_t vm_first_phys, vm_last_phys;
144
145static inline int pmap_is_managed();
146static inline void *vm_get_pmap();
147static inline void vm_put_pmap();
148static void i386_protection_init();
149static void pmap_alloc_pv_entry();
150static inline pv_entry_t get_pv_entry();
151inline void pmap_use_pt();
152inline void pmap_unuse_pt();
153int nkpt;
154
155
156extern vm_offset_t clean_sva, clean_eva;
157extern int cpu_class;
158
159#if BSDVM_COMPAT
160#include <sys/msgbuf.h>
161
162/*
163 * All those kernel PT submaps that BSD is so fond of
164 */
165pt_entry_t *CMAP1, *CMAP2, *ptmmap;
166caddr_t CADDR1, CADDR2, ptvmmap;
167pt_entry_t *msgbufmap;
168struct msgbuf *msgbufp;
169
170#endif
171
172void
173init_pv_entries(int);
174
175/*
176 *	Routine:	pmap_pte
177 *	Function:
178 *		Extract the page table entry associated
179 *		with the given map/virtual_address pair.
180 * [ what about induced faults -wfj]
181 */
182
183inline pt_entry_t * const
184pmap_pte(pmap, va)
185	register pmap_t pmap;
186	vm_offset_t va;
187{
188
189	if (pmap && *pmap_pde(pmap, va)) {
190		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
191
192		/* are we current address space or kernel? */
193		if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
194			return ((pt_entry_t *) vtopte(va));
195		/* otherwise, we are alternate address space */
196		else {
197			if (frame != ((int) APTDpde & PG_FRAME)) {
198				APTDpde = pmap->pm_pdir[PTDPTDI];
199				pmap_update();
200			}
201			return ((pt_entry_t *) avtopte(va));
202		}
203	}
204	return (0);
205}
206
207/*
208 *	Routine:	pmap_extract
209 *	Function:
210 *		Extract the physical page address associated
211 *		with the given map/virtual_address pair.
212 */
213
214vm_offset_t
215pmap_extract(pmap, va)
216	register pmap_t pmap;
217	vm_offset_t va;
218{
219	vm_offset_t pa;
220
221	if (pmap && *pmap_pde(pmap, va)) {
222		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
223
224		/* are we current address space or kernel? */
225		if ((pmap == kernel_pmap)
226		    || (frame == ((int) PTDpde & PG_FRAME))) {
227			pa = *(int *) vtopte(va);
228			/* otherwise, we are alternate address space */
229		} else {
230			if (frame != ((int) APTDpde & PG_FRAME)) {
231				APTDpde = pmap->pm_pdir[PTDPTDI];
232				pmap_update();
233			}
234			pa = *(int *) avtopte(va);
235		}
236		return ((pa & PG_FRAME) | (va & ~PG_FRAME));
237	}
238	return 0;
239
240}
241
242/*
243 * determine if a page is managed (memory vs. device)
244 */
245static inline int
246pmap_is_managed(pa)
247	vm_offset_t pa;
248{
249	int i;
250
251	if (!pmap_initialized)
252		return 0;
253
254	for (i = 0; phys_avail[i + 1]; i += 2) {
255		if (pa >= phys_avail[i] && pa < phys_avail[i + 1])
256			return 1;
257	}
258	return 0;
259}
260
261/*
262 * find the vm_page_t of a pte (only) given va of pte and pmap
263 */
264__inline vm_page_t
265pmap_pte_vm_page(pmap, pt)
266	pmap_t pmap;
267	vm_offset_t pt;
268{
269	vm_page_t m;
270
271	pt = i386_trunc_page(pt);
272	pt = (pt - UPT_MIN_ADDRESS) / NBPG;
273	pt = ((vm_offset_t) pmap->pm_pdir[pt]) & PG_FRAME;
274	m = PHYS_TO_VM_PAGE(pt);
275	return m;
276}
277
278/*
279 * Wire a page table page
280 */
281inline void
282pmap_use_pt(pmap, va)
283	pmap_t pmap;
284	vm_offset_t va;
285{
286	vm_offset_t pt;
287
288	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
289		return;
290
291	pt = (vm_offset_t) vtopte(va);
292	vm_page_hold(pmap_pte_vm_page(pmap, pt));
293}
294
295/*
296 * Unwire a page table page
297 */
298inline void
299pmap_unuse_pt(pmap, va)
300	pmap_t pmap;
301	vm_offset_t va;
302{
303	vm_offset_t pt;
304	vm_page_t m;
305
306	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
307		return;
308
309	pt = (vm_offset_t) vtopte(va);
310	m = pmap_pte_vm_page(pmap, pt);
311	vm_page_unhold(m);
312	if (pmap != kernel_pmap &&
313	    (m->hold_count == 0) &&
314	    (m->wire_count == 0) &&
315	    (va < KPT_MIN_ADDRESS)) {
316		vm_page_deactivate(m);
317	}
318}
319
320/* [ macro again?, should I force kstack into user map here? -wfj ] */
321void
322pmap_activate(pmap, pcbp)
323	register pmap_t pmap;
324	struct pcb *pcbp;
325{
326	PMAP_ACTIVATE(pmap, pcbp);
327}
328
329/*
330 *	Bootstrap the system enough to run with virtual memory.
331 *	Map the kernel's code and data, and allocate the system page table.
332 *
333 *	On the I386 this is called after mapping has already been enabled
334 *	and just syncs the pmap module with what has already been done.
335 *	[We can't call it easily with mapping off since the kernel is not
336 *	mapped with PA == VA, hence we would have to relocate every address
337 *	from the linked base (virtual) address "KERNBASE" to the actual
338 *	(physical) address starting relative to 0]
339 */
340
341#define DMAPAGES 8
342void
343pmap_bootstrap(firstaddr, loadaddr)
344	vm_offset_t firstaddr;
345	vm_offset_t loadaddr;
346{
347#if BSDVM_COMPAT
348	vm_offset_t va;
349	pt_entry_t *pte;
350
351#endif
352
353	avail_start = firstaddr + DMAPAGES * NBPG;
354
355	virtual_avail = (vm_offset_t) KERNBASE + avail_start;
356	virtual_end = VM_MAX_KERNEL_ADDRESS;
357	i386pagesperpage = PAGE_SIZE / NBPG;
358
359	/*
360	 * Initialize protection array.
361	 */
362	i386_protection_init();
363
364	/*
365	 * The kernel's pmap is statically allocated so we don't have to use
366	 * pmap_create, which is unlikely to work correctly at this part of
367	 * the boot sequence.
368	 */
369	kernel_pmap = &kernel_pmap_store;
370
371	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
372
373	simple_lock_init(&kernel_pmap->pm_lock);
374	kernel_pmap->pm_count = 1;
375	nkpt = NKPT;
376
377#if BSDVM_COMPAT
378	/*
379	 * Allocate all the submaps we need
380	 */
381#define	SYSMAP(c, p, v, n)	\
382	v = (c)va; va += ((n)*NBPG); p = pte; pte += (n);
383
384	va = virtual_avail;
385	pte = pmap_pte(kernel_pmap, va);
386
387	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
388	    SYSMAP(caddr_t, CMAP2, CADDR2, 1)
389	    SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
390	    SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
391	    virtual_avail = va;
392#endif
393	/*
394	 * Reserve special hunk of memory for use by bus dma as a bounce
395	 * buffer (contiguous virtual *and* physical memory).
396	 */
397	{
398		extern vm_offset_t isaphysmem;
399
400		isaphysmem = va;
401
402		virtual_avail = pmap_map(va, firstaddr,
403		    firstaddr + DMAPAGES * NBPG, VM_PROT_ALL);
404	}
405
406	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
407	pmap_update();
408
409}
410
411/*
412 *	Initialize the pmap module.
413 *	Called by vm_init, to initialize any structures that the pmap
414 *	system needs to map virtual memory.
415 *	pmap_init has been enhanced to support in a fairly consistant
416 *	way, discontiguous physical memory.
417 */
418void
419pmap_init(phys_start, phys_end)
420	vm_offset_t phys_start, phys_end;
421{
422	vm_offset_t addr;
423	vm_size_t npg, s;
424	int i;
425
426	/*
427	 * Now that kernel map has been allocated, we can mark as unavailable
428	 * regions which we have mapped in locore.
429	 */
430	addr = atdevbase;
431	(void) vm_map_find(kernel_map, NULL, (vm_offset_t) 0,
432	    &addr, (0x100000 - 0xa0000), FALSE);
433
434	addr = (vm_offset_t) KERNBASE + IdlePTD;
435	vm_object_reference(kernel_object);
436	(void) vm_map_find(kernel_map, kernel_object, addr,
437	    &addr, (4 + NKPDE) * NBPG, FALSE);
438
439	/*
440	 * calculate the number of pv_entries needed
441	 */
442	vm_first_phys = phys_avail[0];
443	for (i = 0; phys_avail[i + 1]; i += 2);
444	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / NBPG;
445
446	/*
447	 * Allocate memory for random pmap data structures.  Includes the
448	 * pv_head_table.
449	 */
450	s = (vm_size_t) (sizeof(struct pv_entry) * npg);
451	s = i386_round_page(s);
452	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
453	pv_table = (pv_entry_t) addr;
454
455	/*
456	 * init the pv free list
457	 */
458	init_pv_entries(npg);
459	/*
460	 * Now it is safe to enable pv_table recording.
461	 */
462	pmap_initialized = TRUE;
463}
464
465/*
466 *	Used to map a range of physical addresses into kernel
467 *	virtual address space.
468 *
469 *	For now, VM is already on, we only need to map the
470 *	specified memory.
471 */
472vm_offset_t
473pmap_map(virt, start, end, prot)
474	vm_offset_t virt;
475	vm_offset_t start;
476	vm_offset_t end;
477	int prot;
478{
479	while (start < end) {
480		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
481		virt += PAGE_SIZE;
482		start += PAGE_SIZE;
483	}
484	return (virt);
485}
486
487/*
488 *	Create and return a physical map.
489 *
490 *	If the size specified for the map
491 *	is zero, the map is an actual physical
492 *	map, and may be referenced by the
493 *	hardware.
494 *
495 *	If the size specified is non-zero,
496 *	the map will be used in software only, and
497 *	is bounded by that size.
498 *
499 * [ just allocate a ptd and mark it uninitialize -- should we track
500 *   with a table which process has which ptd? -wfj ]
501 */
502
503pmap_t
504pmap_create(size)
505	vm_size_t size;
506{
507	register pmap_t pmap;
508
509	/*
510	 * Software use map does not need a pmap
511	 */
512	if (size)
513		return (NULL);
514
515	pmap = (pmap_t) malloc(sizeof *pmap, M_VMPMAP, M_WAITOK);
516	bzero(pmap, sizeof(*pmap));
517	pmap_pinit(pmap);
518	return (pmap);
519}
520
521
522struct pmaplist {
523	struct pmaplist *next;
524};
525
526static inline void *
527vm_get_pmap()
528{
529	struct pmaplist *rtval;
530
531	rtval = (struct pmaplist *) kmem_alloc(kernel_map, ctob(1));
532	bzero(rtval, ctob(1));
533	return rtval;
534}
535
536static inline void
537vm_put_pmap(up)
538	struct pmaplist *up;
539{
540	kmem_free(kernel_map, (vm_offset_t) up, ctob(1));
541}
542
543/*
544 * Initialize a preallocated and zeroed pmap structure,
545 * such as one in a vmspace structure.
546 */
547void
548pmap_pinit(pmap)
549	register struct pmap *pmap;
550{
551	/*
552	 * No need to allocate page table space yet but we do need a valid
553	 * page directory table.
554	 */
555	pmap->pm_pdir = (pd_entry_t *) vm_get_pmap();
556
557	/* wire in kernel global address entries */
558	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
559
560	/* install self-referential address mapping entry */
561	*(int *) (pmap->pm_pdir + PTDPTDI) =
562	    ((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
563
564	pmap->pm_count = 1;
565	simple_lock_init(&pmap->pm_lock);
566}
567
568/*
569 * grow the number of kernel page table entries, if needed
570 */
571
572vm_page_t nkpg;
573vm_offset_t kernel_vm_end;
574
575void
576pmap_growkernel(vm_offset_t addr)
577{
578	struct proc *p;
579	struct pmap *pmap;
580	int s;
581
582	s = splhigh();
583	if (kernel_vm_end == 0) {
584		kernel_vm_end = KERNBASE;
585		nkpt = 0;
586		while (pdir_pde(PTD, kernel_vm_end)) {
587			kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
588			++nkpt;
589		}
590	}
591	addr = (addr + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
592	while (kernel_vm_end < addr) {
593		if (pdir_pde(PTD, kernel_vm_end)) {
594			kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
595			continue;
596		}
597		++nkpt;
598		if (!nkpg) {
599			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
600			if (!nkpg)
601				panic("pmap_growkernel: no memory to grow kernel");
602			vm_page_wire(nkpg);
603			vm_page_remove(nkpg);
604			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
605		}
606		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
607		nkpg = NULL;
608
609		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
610			if (p->p_vmspace) {
611				pmap = &p->p_vmspace->vm_pmap;
612				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
613			}
614		}
615 		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
616		kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
617	}
618	splx(s);
619}
620
621/*
622 *	Retire the given physical map from service.
623 *	Should only be called if the map contains
624 *	no valid mappings.
625 */
626void
627pmap_destroy(pmap)
628	register pmap_t pmap;
629{
630	int count;
631
632	if (pmap == NULL)
633		return;
634
635	simple_lock(&pmap->pm_lock);
636	count = --pmap->pm_count;
637	simple_unlock(&pmap->pm_lock);
638	if (count == 0) {
639		pmap_release(pmap);
640		free((caddr_t) pmap, M_VMPMAP);
641	}
642}
643
644/*
645 * Release any resources held by the given physical map.
646 * Called when a pmap initialized by pmap_pinit is being released.
647 * Should only be called if the map contains no valid mappings.
648 */
649void
650pmap_release(pmap)
651	register struct pmap *pmap;
652{
653	vm_put_pmap((struct pmaplist *) pmap->pm_pdir);
654}
655
656/*
657 *	Add a reference to the specified pmap.
658 */
659void
660pmap_reference(pmap)
661	pmap_t pmap;
662{
663	if (pmap != NULL) {
664		simple_lock(&pmap->pm_lock);
665		pmap->pm_count++;
666		simple_unlock(&pmap->pm_lock);
667	}
668}
669
670#define PV_FREELIST_MIN ((NBPG / sizeof (struct pv_entry)) / 2)
671
672/*
673 * Data for the pv entry allocation mechanism
674 */
675int pv_freelistcnt;
676pv_entry_t pv_freelist;
677vm_offset_t pvva;
678int npvvapg;
679
680/*
681 * free the pv_entry back to the free list
682 */
683inline static void
684free_pv_entry(pv)
685	pv_entry_t pv;
686{
687	if (!pv)
688		return;
689	++pv_freelistcnt;
690	pv->pv_next = pv_freelist;
691	pv_freelist = pv;
692}
693
694/*
695 * get a new pv_entry, allocating a block from the system
696 * when needed.
697 * the memory allocation is performed bypassing the malloc code
698 * because of the possibility of allocations at interrupt time.
699 */
700static inline pv_entry_t
701get_pv_entry()
702{
703	pv_entry_t tmp;
704
705	/*
706	 * get more pv_entry pages if needed
707	 */
708	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
709		pmap_alloc_pv_entry();
710	}
711	/*
712	 * get a pv_entry off of the free list
713	 */
714	--pv_freelistcnt;
715	tmp = pv_freelist;
716	pv_freelist = tmp->pv_next;
717	return tmp;
718}
719
720/*
721 * this *strange* allocation routine *statistically* eliminates the
722 * *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
723 * also -- this code is MUCH MUCH faster than the malloc equiv...
724 */
725static void
726pmap_alloc_pv_entry()
727{
728	/*
729	 * do we have any pre-allocated map-pages left?
730	 */
731	if (npvvapg) {
732		vm_page_t m;
733
734		/*
735		 * we do this to keep recursion away
736		 */
737		pv_freelistcnt += PV_FREELIST_MIN;
738		/*
739		 * allocate a physical page out of the vm system
740		 */
741		m = vm_page_alloc(kernel_object,
742		    pvva - vm_map_min(kernel_map), VM_ALLOC_INTERRUPT);
743		if (m) {
744			int newentries;
745			int i;
746			pv_entry_t entry;
747
748			newentries = (NBPG / sizeof(struct pv_entry));
749			/*
750			 * wire the page
751			 */
752			vm_page_wire(m);
753			m->flags &= ~PG_BUSY;
754			/*
755			 * let the kernel see it
756			 */
757			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
758
759			entry = (pv_entry_t) pvva;
760			/*
761			 * update the allocation pointers
762			 */
763			pvva += NBPG;
764			--npvvapg;
765
766			/*
767			 * free the entries into the free list
768			 */
769			for (i = 0; i < newentries; i++) {
770				free_pv_entry(entry);
771				entry++;
772			}
773		}
774		pv_freelistcnt -= PV_FREELIST_MIN;
775	}
776	if (!pv_freelist)
777		panic("get_pv_entry: cannot get a pv_entry_t");
778}
779
780
781
782/*
783 * init the pv_entry allocation system
784 */
785#define PVSPERPAGE 64
786void
787init_pv_entries(npg)
788	int npg;
789{
790	/*
791	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
792	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
793	 * this is too small.)
794	 */
795	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry) + NBPG - 1) / NBPG;
796	pvva = kmem_alloc_pageable(kernel_map, npvvapg * NBPG);
797	/*
798	 * get the first batch of entries
799	 */
800	free_pv_entry(get_pv_entry());
801}
802
803static pt_entry_t *
804get_pt_entry(pmap)
805	pmap_t pmap;
806{
807	vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
808
809	/* are we current address space or kernel? */
810	if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
811		return PTmap;
812	}
813	/* otherwise, we are alternate address space */
814	if (frame != ((int) APTDpde & PG_FRAME)) {
815		APTDpde = pmap->pm_pdir[PTDPTDI];
816		pmap_update();
817	}
818	return APTmap;
819}
820
821/*
822 * If it is the first entry on the list, it is actually
823 * in the header and we must copy the following entry up
824 * to the header.  Otherwise we must search the list for
825 * the entry.  In either case we free the now unused entry.
826 */
827void
828pmap_remove_entry(pmap, pv, va)
829	struct pmap *pmap;
830	pv_entry_t pv;
831	vm_offset_t va;
832{
833	pv_entry_t npv;
834	int s;
835
836	s = splhigh();
837	if (pmap == pv->pv_pmap && va == pv->pv_va) {
838		npv = pv->pv_next;
839		if (npv) {
840			*pv = *npv;
841			free_pv_entry(npv);
842		} else {
843			pv->pv_pmap = NULL;
844		}
845	} else {
846		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
847			if (pmap == npv->pv_pmap && va == npv->pv_va) {
848				break;
849			}
850			pv = npv;
851		}
852		if (npv) {
853			pv->pv_next = npv->pv_next;
854			free_pv_entry(npv);
855		}
856	}
857	splx(s);
858}
859
860/*
861 *	Remove the given range of addresses from the specified map.
862 *
863 *	It is assumed that the start and end are properly
864 *	rounded to the page size.
865 */
866void
867pmap_remove(pmap, sva, eva)
868	struct pmap *pmap;
869	register vm_offset_t sva;
870	register vm_offset_t eva;
871{
872	register pt_entry_t *ptp, *ptq;
873	vm_offset_t pa;
874	register pv_entry_t pv;
875	vm_offset_t va;
876	vm_page_t m;
877	pt_entry_t oldpte;
878
879	if (pmap == NULL)
880		return;
881
882	ptp = get_pt_entry(pmap);
883
884	/*
885	 * special handling of removing one page.  a very
886	 * common operation and easy to short circuit some
887	 * code.
888	 */
889	if ((sva + NBPG) == eva) {
890
891		if (*pmap_pde(pmap, sva) == 0)
892			return;
893
894		ptq = ptp + i386_btop(sva);
895
896		if (!*ptq)
897			return;
898		/*
899		 * Update statistics
900		 */
901		if (pmap_pte_w(ptq))
902			pmap->pm_stats.wired_count--;
903		pmap->pm_stats.resident_count--;
904
905		pa = pmap_pte_pa(ptq);
906		oldpte = *ptq;
907		*ptq = 0;
908
909		if (pmap_is_managed(pa)) {
910			if ((int) oldpte & PG_M) {
911				if ((sva < USRSTACK || sva > UPT_MAX_ADDRESS) ||
912				    (sva >= USRSTACK && sva < USRSTACK + (UPAGES * NBPG))) {
913					if (sva < clean_sva || sva >= clean_eva) {
914						PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
915					}
916				}
917			}
918			pv = pa_to_pvh(pa);
919			pmap_remove_entry(pmap, pv, sva);
920		}
921		pmap_unuse_pt(pmap, sva);
922		pmap_update();
923		return;
924	}
925	sva = i386_btop(sva);
926	eva = i386_btop(eva);
927
928	while (sva < eva) {
929		/*
930		 * Weed out invalid mappings. Note: we assume that the page
931		 * directory table is always allocated, and in kernel virtual.
932		 */
933
934		if (*pmap_pde(pmap, i386_ptob(sva)) == 0) {
935			/* We can race ahead here, straight to next pde.. */
936			sva = ((sva + NPTEPG) & ~(NPTEPG - 1));
937			continue;
938		}
939		ptq = ptp + sva;
940
941		/*
942		 * search for page table entries, use string operations that
943		 * are much faster than explicitly scanning when page tables
944		 * are not fully populated.
945		 */
946		if (*ptq == 0) {
947			vm_offset_t pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
948			vm_offset_t nscan = pdnxt - sva;
949			int found = 0;
950
951			if ((nscan + sva) > eva)
952				nscan = eva - sva;
953
954			asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
955			    "=D"(ptq), "=a"(found) : "c"(nscan), "0"(ptq) : "cx");
956
957			if (!found) {
958				sva = pdnxt;
959				continue;
960			}
961			ptq -= 1;
962
963			sva = ptq - ptp;
964		}
965		/*
966		 * Update statistics
967		 */
968		oldpte = *ptq;
969		if (((int) oldpte) & PG_W)
970			pmap->pm_stats.wired_count--;
971		pmap->pm_stats.resident_count--;
972
973		/*
974		 * Invalidate the PTEs. XXX: should cluster them up and
975		 * invalidate as many as possible at once.
976		 */
977		*ptq = 0;
978
979		va = i386_ptob(sva);
980
981		/*
982		 * Remove from the PV table (raise IPL since we may be called
983		 * at interrupt time).
984		 */
985		pa = ((int) oldpte) & PG_FRAME;
986		if (!pmap_is_managed(pa)) {
987			pmap_unuse_pt(pmap, va);
988			++sva;
989			continue;
990		}
991		if ((int) oldpte & PG_M) {
992			if ((va < USRSTACK || va > UPT_MAX_ADDRESS) ||
993			    (va >= USRSTACK && va < USRSTACK + (UPAGES * NBPG))) {
994				if (va < clean_sva || va >= clean_eva) {
995					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
996				}
997			}
998		}
999		pv = pa_to_pvh(pa);
1000		pmap_remove_entry(pmap, pv, va);
1001		pmap_unuse_pt(pmap, va);
1002		++sva;
1003	}
1004	pmap_update();
1005}
1006
1007/*
1008 *	Routine:	pmap_remove_all
1009 *	Function:
1010 *		Removes this physical page from
1011 *		all physical maps in which it resides.
1012 *		Reflects back modify bits to the pager.
1013 *
1014 *	Notes:
1015 *		Original versions of this routine were very
1016 *		inefficient because they iteratively called
1017 *		pmap_remove (slow...)
1018 */
1019void
1020pmap_remove_all(pa)
1021	vm_offset_t pa;
1022{
1023	register pv_entry_t pv, npv;
1024	register pt_entry_t *pte, *ptp;
1025	vm_offset_t va;
1026	struct pmap *pmap;
1027	vm_page_t m;
1028	int s;
1029	int anyvalid = 0;
1030
1031	/*
1032	 * Not one of ours
1033	 */
1034	/*
1035	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1036	 * pages!
1037	 */
1038	if (!pmap_is_managed(pa))
1039		return;
1040
1041	pa = i386_trunc_page(pa);
1042	pv = pa_to_pvh(pa);
1043	m = PHYS_TO_VM_PAGE(pa);
1044
1045	s = splhigh();
1046	while (pv->pv_pmap != NULL) {
1047		pmap = pv->pv_pmap;
1048		ptp = get_pt_entry(pmap);
1049		va = pv->pv_va;
1050		pte = ptp + i386_btop(va);
1051		if (pmap_pte_w(pte))
1052			pmap->pm_stats.wired_count--;
1053		if (*pte) {
1054			pmap->pm_stats.resident_count--;
1055			anyvalid++;
1056
1057			/*
1058			 * Update the vm_page_t clean and reference bits.
1059			 */
1060			if ((int) *pte & PG_M) {
1061				if ((va < USRSTACK || va > UPT_MAX_ADDRESS) ||
1062				    (va >= USRSTACK && va < USRSTACK + (UPAGES * NBPG))) {
1063					if (va < clean_sva || va >= clean_eva) {
1064						PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
1065					}
1066				}
1067			}
1068			*pte = 0;
1069			pmap_unuse_pt(pmap, va);
1070		}
1071		npv = pv->pv_next;
1072		if (npv) {
1073			*pv = *npv;
1074			free_pv_entry(npv);
1075		} else {
1076			pv->pv_pmap = NULL;
1077		}
1078	}
1079	splx(s);
1080	if (anyvalid)
1081		pmap_update();
1082}
1083
1084
1085/*
1086 *	Set the physical protection on the
1087 *	specified range of this map as requested.
1088 */
1089void
1090pmap_protect(pmap, sva, eva, prot)
1091	register pmap_t pmap;
1092	vm_offset_t sva, eva;
1093	vm_prot_t prot;
1094{
1095	register pt_entry_t *pte;
1096	register vm_offset_t va;
1097	int i386prot;
1098	register pt_entry_t *ptp;
1099	int evap = i386_btop(eva);
1100	int anyvalid = 0;;
1101
1102	if (pmap == NULL)
1103		return;
1104
1105	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1106		pmap_remove(pmap, sva, eva);
1107		return;
1108	}
1109	if (prot & VM_PROT_WRITE)
1110		return;
1111
1112	ptp = get_pt_entry(pmap);
1113
1114	va = sva;
1115	while (va < eva) {
1116		int found = 0;
1117		int svap;
1118		vm_offset_t nscan;
1119
1120		/*
1121		 * Page table page is not allocated. Skip it, we don't want to
1122		 * force allocation of unnecessary PTE pages just to set the
1123		 * protection.
1124		 */
1125		if (!*pmap_pde(pmap, va)) {
1126			/* XXX: avoid address wrap around */
1127	nextpde:
1128			if (va >= i386_trunc_pdr((vm_offset_t) - 1))
1129				break;
1130			va = i386_round_pdr(va + PAGE_SIZE);
1131			continue;
1132		}
1133		pte = ptp + i386_btop(va);
1134
1135		if (*pte == 0) {
1136			/*
1137			 * scan for a non-empty pte
1138			 */
1139			svap = pte - ptp;
1140			nscan = ((svap + NPTEPG) & ~(NPTEPG - 1)) - svap;
1141
1142			if (nscan + svap > evap)
1143				nscan = evap - svap;
1144
1145			found = 0;
1146			if (nscan)
1147				asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
1148				    "=D"(pte), "=a"(found) : "c"(nscan), "0"(pte) : "cx");
1149
1150			if (!found)
1151				goto nextpde;
1152
1153			pte -= 1;
1154			svap = pte - ptp;
1155
1156			va = i386_ptob(svap);
1157		}
1158		anyvalid++;
1159
1160		i386prot = pte_prot(pmap, prot);
1161		if (va < UPT_MAX_ADDRESS) {
1162			i386prot |= PG_u;
1163			if (va >= UPT_MIN_ADDRESS)
1164				i386prot |= PG_RW;
1165		}
1166		pmap_pte_set_prot(pte, i386prot);
1167		va += PAGE_SIZE;
1168	}
1169	if (anyvalid)
1170		pmap_update();
1171}
1172
1173/*
1174 *	Insert the given physical page (p) at
1175 *	the specified virtual address (v) in the
1176 *	target physical map with the protection requested.
1177 *
1178 *	If specified, the page will be wired down, meaning
1179 *	that the related pte can not be reclaimed.
1180 *
1181 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1182 *	or lose information.  That is, this routine must actually
1183 *	insert this page into the given map NOW.
1184 */
1185void
1186pmap_enter(pmap, va, pa, prot, wired)
1187	register pmap_t pmap;
1188	vm_offset_t va;
1189	register vm_offset_t pa;
1190	vm_prot_t prot;
1191	boolean_t wired;
1192{
1193	register pt_entry_t *pte;
1194	register pt_entry_t npte;
1195	vm_offset_t opa;
1196	int ptevalid = 0;
1197
1198	if (pmap == NULL)
1199		return;
1200
1201	va = i386_trunc_page(va);
1202	pa = i386_trunc_page(pa);
1203	if (va > VM_MAX_KERNEL_ADDRESS)
1204		panic("pmap_enter: toobig");
1205
1206	/*
1207	 * Page Directory table entry not valid, we need a new PT page
1208	 */
1209	if (*pmap_pde(pmap, va) == 0) {
1210		printf("kernel page directory invalid pdir=0x%x, va=0x%x\n", pmap->pm_pdir[PTDPTDI], va);
1211		panic("invalid kernel page directory");
1212	}
1213	pte = pmap_pte(pmap, va);
1214	opa = pmap_pte_pa(pte);
1215
1216	/*
1217	 * Mapping has not changed, must be protection or wiring change.
1218	 */
1219	if (opa == pa) {
1220		/*
1221		 * Wiring change, just update stats. We don't worry about
1222		 * wiring PT pages as they remain resident as long as there
1223		 * are valid mappings in them. Hence, if a user page is wired,
1224		 * the PT page will be also.
1225		 */
1226		if (wired && !pmap_pte_w(pte))
1227			pmap->pm_stats.wired_count++;
1228		else if (!wired && pmap_pte_w(pte))
1229			pmap->pm_stats.wired_count--;
1230
1231		goto validate;
1232	}
1233	/*
1234	 * Mapping has changed, invalidate old range and fall through to
1235	 * handle validating new mapping.
1236	 */
1237	if (opa) {
1238		pmap_remove(pmap, va, va + PAGE_SIZE);
1239	}
1240	/*
1241	 * Enter on the PV list if part of our managed memory Note that we
1242	 * raise IPL while manipulating pv_table since pmap_enter can be
1243	 * called at interrupt time.
1244	 */
1245	if (pmap_is_managed(pa)) {
1246		register pv_entry_t pv, npv;
1247		int s;
1248
1249		pv = pa_to_pvh(pa);
1250		s = splhigh();
1251		/*
1252		 * No entries yet, use header as the first entry
1253		 */
1254		if (pv->pv_pmap == NULL) {
1255			pv->pv_va = va;
1256			pv->pv_pmap = pmap;
1257			pv->pv_next = NULL;
1258		}
1259		/*
1260		 * There is at least one other VA mapping this page. Place
1261		 * this entry after the header.
1262		 */
1263		else {
1264			npv = get_pv_entry();
1265			npv->pv_va = va;
1266			npv->pv_pmap = pmap;
1267			npv->pv_next = pv->pv_next;
1268			pv->pv_next = npv;
1269		}
1270		splx(s);
1271	}
1272
1273	/*
1274	 * Increment counters
1275	 */
1276	pmap->pm_stats.resident_count++;
1277	if (wired)
1278		pmap->pm_stats.wired_count++;
1279
1280validate:
1281	/*
1282	 * Now validate mapping with desired protection/wiring.
1283	 */
1284	npte = (pt_entry_t) ((int) (pa | pte_prot(pmap, prot) | PG_V));
1285
1286	/*
1287	 * When forking (copy-on-write, etc): A process will turn off write
1288	 * permissions for any of its writable pages.  If the data (object) is
1289	 * only referred to by one process, the processes map is modified
1290	 * directly as opposed to using the object manipulation routine.  When
1291	 * using pmap_protect, the modified bits are not kept in the vm_page_t
1292	 * data structure.  Therefore, when using pmap_enter in vm_fault to
1293	 * bring back writability of a page, there has been no memory of the
1294	 * modified or referenced bits except at the pte level.  this clause
1295	 * supports the carryover of the modified and used (referenced) bits.
1296	 */
1297	if (pa == opa)
1298		(int) npte |= (int) *pte & (PG_M | PG_U);
1299
1300
1301	if (wired)
1302		(int) npte |= PG_W;
1303	if (va < UPT_MIN_ADDRESS)
1304		(int) npte |= PG_u;
1305	else if (va < UPT_MAX_ADDRESS)
1306		(int) npte |= PG_u | PG_RW;
1307
1308	if (*pte != npte) {
1309		if (*pte)
1310			ptevalid++;
1311		*pte = npte;
1312	}
1313	if (ptevalid) {
1314		pmap_update();
1315	} else {
1316		pmap_use_pt(pmap, va);
1317	}
1318}
1319
1320/*
1321 * Add a list of wired pages to the kva
1322 * this routine is only used for temporary
1323 * kernel mappings that do not need to have
1324 * page modification or references recorded.
1325 * Note that old mappings are simply written
1326 * over.  The page *must* be wired.
1327 */
1328void
1329pmap_qenter(va, m, count)
1330	vm_offset_t va;
1331	vm_page_t *m;
1332	int count;
1333{
1334	int i;
1335	int anyvalid = 0;
1336	register pt_entry_t *pte;
1337
1338	for (i = 0; i < count; i++) {
1339		pte = vtopte(va + i * NBPG);
1340		if (*pte)
1341			anyvalid++;
1342		*pte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | PG_W));
1343	}
1344	if (anyvalid)
1345		pmap_update();
1346}
1347/*
1348 * this routine jerks page mappings from the
1349 * kernel -- it is meant only for temporary mappings.
1350 */
1351void
1352pmap_qremove(va, count)
1353	vm_offset_t va;
1354	int count;
1355{
1356	int i;
1357	register pt_entry_t *pte;
1358
1359	for (i = 0; i < count; i++) {
1360		pte = vtopte(va + i * NBPG);
1361		*pte = 0;
1362	}
1363	pmap_update();
1364}
1365
1366/*
1367 * add a wired page to the kva
1368 * note that in order for the mapping to take effect -- you
1369 * should do a pmap_update after doing the pmap_kenter...
1370 */
1371void
1372pmap_kenter(va, pa)
1373	vm_offset_t va;
1374	register vm_offset_t pa;
1375{
1376	register pt_entry_t *pte;
1377	int wasvalid = 0;
1378
1379	pte = vtopte(va);
1380
1381	if (*pte)
1382		wasvalid++;
1383
1384	*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_W));
1385
1386	if (wasvalid)
1387		pmap_update();
1388}
1389
1390/*
1391 * remove a page from the kernel pagetables
1392 */
1393void
1394pmap_kremove(va)
1395	vm_offset_t va;
1396{
1397	register pt_entry_t *pte;
1398
1399	pte = vtopte(va);
1400
1401	*pte = (pt_entry_t) 0;
1402	pmap_update();
1403}
1404
1405/*
1406 * this code makes some *MAJOR* assumptions:
1407 * 1. Current pmap & pmap exists.
1408 * 2. Not wired.
1409 * 3. Read access.
1410 * 4. No page table pages.
1411 * 5. Tlbflush is deferred to calling procedure.
1412 * 6. Page IS managed.
1413 * but is *MUCH* faster than pmap_enter...
1414 */
1415
1416static inline void
1417pmap_enter_quick(pmap, va, pa)
1418	register pmap_t pmap;
1419	vm_offset_t va;
1420	register vm_offset_t pa;
1421{
1422	register pt_entry_t *pte;
1423	register pv_entry_t pv, npv;
1424	int s;
1425
1426	/*
1427	 * Enter on the PV list if part of our managed memory Note that we
1428	 * raise IPL while manipulating pv_table since pmap_enter can be
1429	 * called at interrupt time.
1430	 */
1431
1432	pte = vtopte(va);
1433
1434	/* a fault on the page table might occur here */
1435	if (*pte) {
1436		pmap_remove(pmap, va, va + PAGE_SIZE);
1437	}
1438	pv = pa_to_pvh(pa);
1439	s = splhigh();
1440	/*
1441	 * No entries yet, use header as the first entry
1442	 */
1443	if (pv->pv_pmap == NULL) {
1444		pv->pv_pmap = pmap;
1445		pv->pv_va = va;
1446		pv->pv_next = NULL;
1447	}
1448	/*
1449	 * There is at least one other VA mapping this page. Place this entry
1450	 * after the header.
1451	 */
1452	else {
1453		npv = get_pv_entry();
1454		npv->pv_va = va;
1455		npv->pv_pmap = pmap;
1456		npv->pv_next = pv->pv_next;
1457		pv->pv_next = npv;
1458	}
1459	splx(s);
1460
1461	/*
1462	 * Increment counters
1463	 */
1464	pmap->pm_stats.resident_count++;
1465
1466	/*
1467	 * Now validate mapping with desired protection/wiring.
1468	 */
1469	*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
1470
1471	pmap_use_pt(pmap, va);
1472
1473	return;
1474}
1475
1476#define MAX_INIT_PT (1024*2048)
1477/*
1478 * pmap_object_init_pt preloads the ptes for a given object
1479 * into the specified pmap.  This eliminates the blast of soft
1480 * faults on process startup and immediately after an mmap.
1481 */
1482void
1483pmap_object_init_pt(pmap, addr, object, offset, size)
1484	pmap_t pmap;
1485	vm_offset_t addr;
1486	vm_object_t object;
1487	vm_offset_t offset;
1488	vm_offset_t size;
1489{
1490	vm_offset_t tmpoff;
1491	vm_page_t p;
1492	int bits;
1493	int objbytes;
1494
1495	if (!pmap || ((size > MAX_INIT_PT) &&
1496		(object->resident_page_count > (MAX_INIT_PT / NBPG)))) {
1497		return;
1498	}
1499	if (!vm_object_lock_try(object))
1500		return;
1501
1502	/*
1503	 * if we are processing a major portion of the object, then scan the
1504	 * entire thing.
1505	 */
1506	if (size > (object->size >> 2)) {
1507		objbytes = size;
1508
1509		for (p = object->memq.tqh_first;
1510		    ((objbytes > 0) && (p != NULL));
1511		    p = p->listq.tqe_next) {
1512
1513			tmpoff = p->offset;
1514			if (tmpoff < offset) {
1515				continue;
1516			}
1517			tmpoff -= offset;
1518			if (tmpoff >= size) {
1519				continue;
1520			}
1521			if ((p->bmapped == 0) &&
1522			    (p->busy == 0) &&
1523			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1524			    ((p->flags & (PG_ACTIVE | PG_INACTIVE)) != 0) &&
1525			    (p->flags & (PG_BUSY | PG_FICTITIOUS | PG_CACHE)) == 0) {
1526				vm_page_hold(p);
1527				pmap_enter_quick(pmap, addr + tmpoff, VM_PAGE_TO_PHYS(p));
1528				vm_page_unhold(p);
1529			}
1530			objbytes -= NBPG;
1531		}
1532	} else {
1533		/*
1534		 * else lookup the pages one-by-one.
1535		 */
1536		for (tmpoff = 0; tmpoff < size; tmpoff += NBPG) {
1537			p = vm_page_lookup(object, tmpoff + offset);
1538			if (p && (p->bmapped == 0) &&
1539			    (p->busy == 0) &&
1540			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1541			    ((p->flags & (PG_ACTIVE | PG_INACTIVE)) != 0) &&
1542			    (p->flags & (PG_BUSY | PG_FICTITIOUS | PG_CACHE)) == 0) {
1543				vm_page_hold(p);
1544				pmap_enter_quick(pmap, addr + tmpoff, VM_PAGE_TO_PHYS(p));
1545				vm_page_unhold(p);
1546			}
1547		}
1548	}
1549	vm_object_unlock(object);
1550}
1551
1552#if 0
1553/*
1554 * pmap_prefault provides a quick way of clustering
1555 * pagefaults into a processes address space.  It is a "cousin"
1556 * of pmap_object_init_pt, except it runs at page fault time instead
1557 * of mmap time.
1558 */
1559#define PFBAK 2
1560#define PFFOR 2
1561#define PAGEORDER_SIZE (PFBAK+PFFOR)
1562
1563static int pmap_prefault_pageorder[] = {
1564	-NBPG, NBPG, -2 * NBPG, 2 * NBPG
1565};
1566
1567void
1568pmap_prefault(pmap, addra, entry, object)
1569	pmap_t pmap;
1570	vm_offset_t addra;
1571	vm_map_entry_t entry;
1572	vm_object_t object;
1573{
1574	int i;
1575	vm_offset_t starta, enda;
1576	vm_offset_t offset, addr;
1577	vm_page_t m;
1578	int pageorder_index;
1579
1580	if (entry->object.vm_object != object)
1581		return;
1582
1583	if (pmap != &curproc->p_vmspace->vm_pmap)
1584		return;
1585
1586	starta = addra - PFBAK * NBPG;
1587	if (starta < entry->start) {
1588		starta = entry->start;
1589	} else if (starta > addra)
1590		starta = 0;
1591
1592	enda = addra + PFFOR * NBPG;
1593	if (enda > entry->end)
1594		enda = entry->end;
1595
1596	for (i = 0; i < PAGEORDER_SIZE; i++) {
1597		vm_object_t lobject;
1598		pt_entry_t *pte;
1599
1600		addr = addra + pmap_prefault_pageorder[i];
1601		if (addr < starta || addr >= enda)
1602			continue;
1603
1604		pte = vtopte(addr);
1605		if (*pte)
1606			continue;
1607
1608		offset = (addr - entry->start) + entry->offset;
1609		lobject = object;
1610		for (m = vm_page_lookup(lobject, offset);
1611		    (!m && lobject->shadow);
1612		    lobject = lobject->shadow) {
1613
1614			offset += lobject->shadow_offset;
1615			m = vm_page_lookup(lobject->shadow, offset);
1616		}
1617
1618		/*
1619		 * give-up when a page is not in memory
1620		 */
1621		if (m == NULL)
1622			break;
1623
1624		if ((m->bmapped == 0) &&
1625		    (m->busy == 0) &&
1626		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1627		    ((m->flags & (PG_ACTIVE | PG_INACTIVE)) != 0) &&
1628		    (m->flags & (PG_CACHE | PG_BUSY | PG_FICTITIOUS)) == 0) {
1629			/*
1630			 * test results show that the system is faster when
1631			 * pages are activated.
1632			 */
1633			if ((m->flags & PG_ACTIVE) == 0)
1634				vm_page_activate(m);
1635			vm_page_hold(m);
1636			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1637			vm_page_unhold(m);
1638		}
1639	}
1640}
1641#endif
1642
1643/*
1644 *	Routine:	pmap_change_wiring
1645 *	Function:	Change the wiring attribute for a map/virtual-address
1646 *			pair.
1647 *	In/out conditions:
1648 *			The mapping must already exist in the pmap.
1649 */
1650void
1651pmap_change_wiring(pmap, va, wired)
1652	register pmap_t pmap;
1653	vm_offset_t va;
1654	boolean_t wired;
1655{
1656	register pt_entry_t *pte;
1657
1658	if (pmap == NULL)
1659		return;
1660
1661	pte = pmap_pte(pmap, va);
1662
1663	if (wired && !pmap_pte_w(pte))
1664		pmap->pm_stats.wired_count++;
1665	else if (!wired && pmap_pte_w(pte))
1666		pmap->pm_stats.wired_count--;
1667
1668	/*
1669	 * Wiring is not a hardware characteristic so there is no need to
1670	 * invalidate TLB.
1671	 */
1672	pmap_pte_set_w(pte, wired);
1673	/*
1674	 * When unwiring, set the modified bit in the pte -- could have been
1675	 * changed by the kernel
1676	 */
1677	if (!wired)
1678		(int) *pte |= PG_M;
1679}
1680
1681
1682
1683/*
1684 *	Copy the range specified by src_addr/len
1685 *	from the source map to the range dst_addr/len
1686 *	in the destination map.
1687 *
1688 *	This routine is only advisory and need not do anything.
1689 */
1690void
1691pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1692	pmap_t dst_pmap, src_pmap;
1693	vm_offset_t dst_addr;
1694	vm_size_t len;
1695	vm_offset_t src_addr;
1696{
1697}
1698
1699/*
1700 *	Routine:	pmap_kernel
1701 *	Function:
1702 *		Returns the physical map handle for the kernel.
1703 */
1704pmap_t
1705pmap_kernel()
1706{
1707	return (kernel_pmap);
1708}
1709
1710/*
1711 *	pmap_zero_page zeros the specified (machine independent)
1712 *	page by mapping the page into virtual memory and using
1713 *	bzero to clear its contents, one machine dependent page
1714 *	at a time.
1715 */
1716void
1717pmap_zero_page(phys)
1718	vm_offset_t phys;
1719{
1720	if (*(int *) CMAP2)
1721		panic("pmap_zero_page: CMAP busy");
1722
1723	*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(phys);
1724	bzero(CADDR2, NBPG);
1725
1726	*(int *) CMAP2 = 0;
1727	pmap_update();
1728}
1729
1730/*
1731 *	pmap_copy_page copies the specified (machine independent)
1732 *	page by mapping the page into virtual memory and using
1733 *	bcopy to copy the page, one machine dependent page at a
1734 *	time.
1735 */
1736void
1737pmap_copy_page(src, dst)
1738	vm_offset_t src;
1739	vm_offset_t dst;
1740{
1741	if (*(int *) CMAP1 || *(int *) CMAP2)
1742		panic("pmap_copy_page: CMAP busy");
1743
1744	*(int *) CMAP1 = PG_V | PG_KW | i386_trunc_page(src);
1745	*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(dst);
1746
1747#if __GNUC__ > 1
1748	memcpy(CADDR2, CADDR1, NBPG);
1749#else
1750	bcopy(CADDR1, CADDR2, NBPG);
1751#endif
1752	*(int *) CMAP1 = 0;
1753	*(int *) CMAP2 = 0;
1754	pmap_update();
1755}
1756
1757
1758/*
1759 *	Routine:	pmap_pageable
1760 *	Function:
1761 *		Make the specified pages (by pmap, offset)
1762 *		pageable (or not) as requested.
1763 *
1764 *		A page which is not pageable may not take
1765 *		a fault; therefore, its page table entry
1766 *		must remain valid for the duration.
1767 *
1768 *		This routine is merely advisory; pmap_enter
1769 *		will specify that these pages are to be wired
1770 *		down (or not) as appropriate.
1771 */
1772void
1773pmap_pageable(pmap, sva, eva, pageable)
1774	pmap_t pmap;
1775	vm_offset_t sva, eva;
1776	boolean_t pageable;
1777{
1778}
1779
1780/*
1781 * this routine returns true if a physical page resides
1782 * in the given pmap.
1783 */
1784boolean_t
1785pmap_page_exists(pmap, pa)
1786	pmap_t pmap;
1787	vm_offset_t pa;
1788{
1789	register pv_entry_t pv;
1790	int s;
1791
1792	if (!pmap_is_managed(pa))
1793		return FALSE;
1794
1795	pv = pa_to_pvh(pa);
1796	s = splhigh();
1797
1798	/*
1799	 * Not found, check current mappings returning immediately if found.
1800	 */
1801	if (pv->pv_pmap != NULL) {
1802		for (; pv; pv = pv->pv_next) {
1803			if (pv->pv_pmap == pmap) {
1804				splx(s);
1805				return TRUE;
1806			}
1807		}
1808	}
1809	splx(s);
1810	return (FALSE);
1811}
1812
1813/*
1814 * pmap_testbit tests bits in pte's
1815 * note that the testbit/changebit routines are inline,
1816 * and a lot of things compile-time evaluate.
1817 */
1818__inline boolean_t
1819pmap_testbit(pa, bit)
1820	register vm_offset_t pa;
1821	int bit;
1822{
1823	register pv_entry_t pv;
1824	pt_entry_t *pte;
1825	int s;
1826
1827	if (!pmap_is_managed(pa))
1828		return FALSE;
1829
1830	pv = pa_to_pvh(pa);
1831	s = splhigh();
1832
1833	/*
1834	 * Not found, check current mappings returning immediately if found.
1835	 */
1836	if (pv->pv_pmap != NULL) {
1837		for (; pv; pv = pv->pv_next) {
1838			/*
1839			 * if the bit being tested is the modified bit, then
1840			 * mark UPAGES as always modified, and ptes as never
1841			 * modified.
1842			 */
1843			if (bit & PG_U) {
1844				if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
1845					continue;
1846				}
1847			}
1848			if (bit & PG_M) {
1849				if (pv->pv_va >= USRSTACK) {
1850					if (pv->pv_va >= clean_sva && pv->pv_va < clean_eva) {
1851						continue;
1852					}
1853					if (pv->pv_va < USRSTACK + (UPAGES * NBPG)) {
1854						splx(s);
1855						return TRUE;
1856					} else if (pv->pv_va < UPT_MAX_ADDRESS) {
1857						splx(s);
1858						return FALSE;
1859					}
1860				}
1861			}
1862			if (!pv->pv_pmap) {
1863				printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
1864				continue;
1865			}
1866			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1867			if ((int) *pte & bit) {
1868				splx(s);
1869				return TRUE;
1870			}
1871		}
1872	}
1873	splx(s);
1874	return (FALSE);
1875}
1876
1877/*
1878 * this routine is used to modify bits in ptes
1879 */
1880__inline void
1881pmap_changebit(pa, bit, setem)
1882	vm_offset_t pa;
1883	int bit;
1884	boolean_t setem;
1885{
1886	register pv_entry_t pv;
1887	register pt_entry_t *pte, npte;
1888	vm_offset_t va;
1889	int s;
1890
1891	if (!pmap_is_managed(pa))
1892		return;
1893
1894	pv = pa_to_pvh(pa);
1895	s = splhigh();
1896
1897	/*
1898	 * Loop over all current mappings setting/clearing as appropos If
1899	 * setting RO do we need to clear the VAC?
1900	 */
1901	if (pv->pv_pmap != NULL) {
1902		for (; pv; pv = pv->pv_next) {
1903			va = pv->pv_va;
1904
1905			/*
1906			 * don't write protect pager mappings
1907			 */
1908			if (!setem && (bit == PG_RW)) {
1909				if (va >= clean_sva && va < clean_eva)
1910					continue;
1911			}
1912			if (!pv->pv_pmap) {
1913				printf("Null pmap (cb) at va: 0x%lx\n", va);
1914				continue;
1915			}
1916			pte = pmap_pte(pv->pv_pmap, va);
1917			if (setem)
1918				(int) npte = (int) *pte | bit;
1919			else
1920				(int) npte = (int) *pte & ~bit;
1921			*pte = npte;
1922		}
1923	}
1924	splx(s);
1925	pmap_update();
1926}
1927
1928/*
1929 *      pmap_page_protect:
1930 *
1931 *      Lower the permission for all mappings to a given page.
1932 */
1933void
1934pmap_page_protect(phys, prot)
1935	vm_offset_t phys;
1936	vm_prot_t prot;
1937{
1938	if ((prot & VM_PROT_WRITE) == 0) {
1939		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
1940			pmap_changebit(phys, PG_RW, FALSE);
1941		else
1942			pmap_remove_all(phys);
1943	}
1944}
1945
1946vm_offset_t
1947pmap_phys_address(ppn)
1948	int ppn;
1949{
1950	return (i386_ptob(ppn));
1951}
1952
1953/*
1954 *	pmap_is_referenced:
1955 *
1956 *	Return whether or not the specified physical page was referenced
1957 *	by any physical maps.
1958 */
1959boolean_t
1960pmap_is_referenced(vm_offset_t pa)
1961{
1962	return pmap_testbit((pa), PG_U);
1963}
1964
1965/*
1966 *	pmap_is_modified:
1967 *
1968 *	Return whether or not the specified physical page was modified
1969 *	in any physical maps.
1970 */
1971boolean_t
1972pmap_is_modified(vm_offset_t pa)
1973{
1974	return pmap_testbit((pa), PG_M);
1975}
1976
1977/*
1978 *	Clear the modify bits on the specified physical page.
1979 */
1980void
1981pmap_clear_modify(vm_offset_t pa)
1982{
1983	pmap_changebit((pa), PG_M, FALSE);
1984}
1985
1986/*
1987 *	pmap_clear_reference:
1988 *
1989 *	Clear the reference bit on the specified physical page.
1990 */
1991void
1992pmap_clear_reference(vm_offset_t pa)
1993{
1994	pmap_changebit((pa), PG_U, FALSE);
1995}
1996
1997/*
1998 *	Routine:	pmap_copy_on_write
1999 *	Function:
2000 *		Remove write privileges from all
2001 *		physical maps for this physical page.
2002 */
2003void
2004pmap_copy_on_write(vm_offset_t pa)
2005{
2006	pmap_changebit((pa), PG_RW, FALSE);
2007}
2008
2009/*
2010 * Miscellaneous support routines follow
2011 */
2012
2013void
2014i386_protection_init()
2015{
2016	register int *kp, prot;
2017
2018	kp = protection_codes;
2019	for (prot = 0; prot < 8; prot++) {
2020		switch (prot) {
2021		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2022			/*
2023			 * Read access is also 0. There isn't any execute bit,
2024			 * so just make it readable.
2025			 */
2026		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2027		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2028		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2029			*kp++ = 0;
2030			break;
2031		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2032		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2033		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2034		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2035			*kp++ = PG_RW;
2036			break;
2037		}
2038	}
2039}
2040
2041/*
2042 * Map a set of physical memory pages into the kernel virtual
2043 * address space. Return a pointer to where it is mapped. This
2044 * routine is intended to be used for mapping device memory,
2045 * NOT real memory. The non-cacheable bits are set on each
2046 * mapped page.
2047 */
2048void *
2049pmap_mapdev(pa, size)
2050	vm_offset_t pa;
2051	vm_size_t size;
2052{
2053	vm_offset_t va, tmpva;
2054	pt_entry_t *pte;
2055
2056	pa = trunc_page(pa);
2057	size = roundup(size, PAGE_SIZE);
2058
2059	va = kmem_alloc_pageable(kernel_map, size);
2060	if (!va)
2061		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2062
2063	for (tmpva = va; size > 0;) {
2064		pte = vtopte(tmpva);
2065		*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
2066		size -= PAGE_SIZE;
2067		tmpva += PAGE_SIZE;
2068		pa += PAGE_SIZE;
2069	}
2070	pmap_update();
2071
2072	return ((void *) va);
2073}
2074
2075#ifdef DEBUG
2076/* print address space of pmap*/
2077void
2078pads(pm)
2079	pmap_t pm;
2080{
2081	unsigned va, i, j;
2082	pt_entry_t *ptep;
2083
2084	if (pm == kernel_pmap)
2085		return;
2086	for (i = 0; i < 1024; i++)
2087		if (pm->pm_pdir[i])
2088			for (j = 0; j < 1024; j++) {
2089				va = (i << PD_SHIFT) + (j << PG_SHIFT);
2090				if (pm == kernel_pmap && va < KERNBASE)
2091					continue;
2092				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2093					continue;
2094				ptep = pmap_pte(pm, va);
2095				if (pmap_pte_v(ptep))
2096					printf("%x:%x ", va, *(int *) ptep);
2097			};
2098
2099}
2100
2101void
2102pmap_pvdump(pa)
2103	vm_offset_t pa;
2104{
2105	register pv_entry_t pv;
2106
2107	printf("pa %x", pa);
2108	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2109#ifdef used_to_be
2110		printf(" -> pmap %x, va %x, flags %x",
2111		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2112#endif
2113		printf(" -> pmap %x, va %x",
2114		    pv->pv_pmap, pv->pv_va);
2115		pads(pv->pv_pmap);
2116	}
2117	printf(" ");
2118}
2119#endif
2120