pmap.c revision 47678
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.236 1999/05/28 05:38:56 alc Exp $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_disable_pse.h"
72#include "opt_pmap.h"
73#include "opt_msgbuf.h"
74#include "opt_user_ldt.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/proc.h>
79#include <sys/msgbuf.h>
80#include <sys/vmmeter.h>
81#include <sys/mman.h>
82
83#include <vm/vm.h>
84#include <vm/vm_param.h>
85#include <vm/vm_prot.h>
86#include <sys/lock.h>
87#include <vm/vm_kern.h>
88#include <vm/vm_page.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/vm_zone.h>
95
96#include <sys/user.h>
97
98#include <machine/cputypes.h>
99#include <machine/md_var.h>
100#include <machine/specialreg.h>
101#if defined(SMP) || defined(APIC_IO)
102#include <machine/smp.h>
103#include <machine/apic.h>
104#include <machine/segments.h>
105#include <machine/tss.h>
106#include <machine/globaldata.h>
107#endif /* SMP || APIC_IO */
108
109#define PMAP_KEEP_PDIRS
110#ifndef PMAP_SHPGPERPROC
111#define PMAP_SHPGPERPROC 200
112#endif
113
114#if defined(DIAGNOSTIC)
115#define PMAP_DIAGNOSTIC
116#endif
117
118#define MINPV 2048
119
120#if !defined(PMAP_DIAGNOSTIC)
121#define PMAP_INLINE __inline
122#else
123#define PMAP_INLINE
124#endif
125
126/*
127 * Get PDEs and PTEs for user/kernel address space
128 */
129#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
130#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
131
132#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
133#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
134#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
135#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
136#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
137
138#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
139#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
140
141/*
142 * Given a map and a machine independent protection code,
143 * convert to a vax protection code.
144 */
145#define pte_prot(m, p)	(protection_codes[p])
146static int protection_codes[8];
147
148#define	pa_index(pa)		atop((pa) - vm_first_phys)
149#define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
150
151static struct pmap kernel_pmap_store;
152pmap_t kernel_pmap;
153
154vm_offset_t avail_start;	/* PA of first available physical page */
155vm_offset_t avail_end;		/* PA of last available physical page */
156vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
157vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
158static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
159static vm_offset_t vm_first_phys;
160static int pgeflag;		/* PG_G or-in */
161static int pseflag;		/* PG_PS or-in */
162static int pv_npg;
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168
169/*
170 * Data for the pv entry allocation mechanism
171 */
172static vm_zone_t pvzone;
173static struct vm_zone pvzone_store;
174static struct vm_object pvzone_obj;
175static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
176static int pmap_pagedaemon_waken = 0;
177static struct pv_entry *pvinit;
178
179/*
180 * All those kernel PT submaps that BSD is so fond of
181 */
182pt_entry_t *CMAP1 = 0;
183static pt_entry_t *CMAP2, *ptmmap;
184static pv_table_t *pv_table;
185caddr_t CADDR1 = 0, ptvmmap = 0;
186static caddr_t CADDR2;
187static pt_entry_t *msgbufmap;
188struct msgbuf *msgbufp=0;
189
190#ifdef SMP
191extern pt_entry_t *SMPpt;
192#else
193static pt_entry_t *PMAP1 = 0;
194static unsigned *PADDR1 = 0;
195#endif
196
197static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
198static unsigned * get_ptbase __P((pmap_t pmap));
199static pv_entry_t get_pv_entry __P((void));
200static void	i386_protection_init __P((void));
201static __inline void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
202static void	pmap_clearbit __P((vm_offset_t pa, int bit));
203
204static PMAP_INLINE int	pmap_is_managed __P((vm_offset_t pa));
205static void	pmap_remove_all __P((vm_offset_t pa));
206static vm_page_t pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
207				      vm_offset_t pa, vm_page_t mpte));
208static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
209					vm_offset_t sva));
210static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
211static int pmap_remove_entry __P((struct pmap *pmap, pv_table_t *pv,
212					vm_offset_t va));
213static boolean_t pmap_testbit __P((vm_offset_t pa, int bit));
214static void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_offset_t pa));
216
217static vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
218
219static int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
220static vm_page_t _pmap_allocpte __P((pmap_t pmap, unsigned ptepindex));
221static unsigned * pmap_pte_quick __P((pmap_t pmap, vm_offset_t va));
222static vm_page_t pmap_page_lookup __P((vm_object_t object, vm_pindex_t pindex));
223static int pmap_unuse_pt __P((pmap_t, vm_offset_t, vm_page_t));
224static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
225
226static unsigned pdir4mb;
227
228/*
229 *	Routine:	pmap_pte
230 *	Function:
231 *		Extract the page table entry associated
232 *		with the given map/virtual_address pair.
233 */
234
235PMAP_INLINE unsigned *
236pmap_pte(pmap, va)
237	register pmap_t pmap;
238	vm_offset_t va;
239{
240	unsigned *pdeaddr;
241
242	if (pmap) {
243		pdeaddr = (unsigned *) pmap_pde(pmap, va);
244		if (*pdeaddr & PG_PS)
245			return pdeaddr;
246		if (*pdeaddr) {
247			return get_ptbase(pmap) + i386_btop(va);
248		}
249	}
250	return (0);
251}
252
253/*
254 * Move the kernel virtual free pointer to the next
255 * 4MB.  This is used to help improve performance
256 * by using a large (4MB) page for much of the kernel
257 * (.text, .data, .bss)
258 */
259static vm_offset_t
260pmap_kmem_choose(vm_offset_t addr) {
261	vm_offset_t newaddr = addr;
262#ifndef DISABLE_PSE
263	if (cpu_feature & CPUID_PSE) {
264		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
265	}
266#endif
267	return newaddr;
268}
269
270/*
271 *	Bootstrap the system enough to run with virtual memory.
272 *
273 *	On the i386 this is called after mapping has already been enabled
274 *	and just syncs the pmap module with what has already been done.
275 *	[We can't call it easily with mapping off since the kernel is not
276 *	mapped with PA == VA, hence we would have to relocate every address
277 *	from the linked base (virtual) address "KERNBASE" to the actual
278 *	(physical) address starting relative to 0]
279 */
280void
281pmap_bootstrap(firstaddr, loadaddr)
282	vm_offset_t firstaddr;
283	vm_offset_t loadaddr;
284{
285	vm_offset_t va;
286	pt_entry_t *pte;
287#ifdef SMP
288	int i, j;
289	struct globaldata *gd;
290#endif
291
292	avail_start = firstaddr;
293
294	/*
295	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
296	 * large. It should instead be correctly calculated in locore.s and
297	 * not based on 'first' (which is a physical address, not a virtual
298	 * address, for the start of unused physical memory). The kernel
299	 * page tables are NOT double mapped and thus should not be included
300	 * in this calculation.
301	 */
302	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
303	virtual_avail = pmap_kmem_choose(virtual_avail);
304
305	virtual_end = VM_MAX_KERNEL_ADDRESS;
306
307	/*
308	 * Initialize protection array.
309	 */
310	i386_protection_init();
311
312	/*
313	 * The kernel's pmap is statically allocated so we don't have to use
314	 * pmap_create, which is unlikely to work correctly at this part of
315	 * the boot sequence (XXX and which no longer exists).
316	 */
317	kernel_pmap = &kernel_pmap_store;
318
319	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
320	kernel_pmap->pm_count = 1;
321	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
322	TAILQ_INIT(&kernel_pmap->pm_pvlist);
323	nkpt = NKPT;
324
325	/*
326	 * Reserve some special page table entries/VA space for temporary
327	 * mapping of pages.
328	 */
329#define	SYSMAP(c, p, v, n)	\
330	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
331
332	va = virtual_avail;
333	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
334
335	/*
336	 * CMAP1/CMAP2 are used for zeroing and copying pages.
337	 */
338	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
339	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
340
341	/*
342	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
343	 * XXX ptmmap is not used.
344	 */
345	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
346
347	/*
348	 * msgbufp is used to map the system message buffer.
349	 * XXX msgbufmap is not used.
350	 */
351	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
352	       atop(round_page(MSGBUF_SIZE)))
353
354#if !defined(SMP)
355	/*
356	 * ptemap is used for pmap_pte_quick
357	 */
358	SYSMAP(unsigned *, PMAP1, PADDR1, 1);
359#endif
360
361	virtual_avail = va;
362
363	*(int *) CMAP1 = *(int *) CMAP2 = 0;
364	*(int *) PTD = 0;
365
366
367	pgeflag = 0;
368#if !defined(SMP)
369	if (cpu_feature & CPUID_PGE) {
370		pgeflag = PG_G;
371	}
372#endif
373
374/*
375 * Initialize the 4MB page size flag
376 */
377	pseflag = 0;
378/*
379 * The 4MB page version of the initial
380 * kernel page mapping.
381 */
382	pdir4mb = 0;
383
384#if !defined(DISABLE_PSE)
385	if (cpu_feature & CPUID_PSE) {
386		unsigned ptditmp;
387		/*
388		 * Enable the PSE mode
389		 */
390		load_cr4(rcr4() | CR4_PSE);
391
392		/*
393		 * Note that we have enabled PSE mode
394		 */
395		pseflag = PG_PS;
396		ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
397		ptditmp &= ~(NBPDR - 1);
398		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
399		pdir4mb = ptditmp;
400
401#if !defined(SMP)
402		/*
403		 * We can do the mapping here for the single processor
404		 * case.  We simply ignore the old page table page from
405		 * now on.
406		 */
407		/*
408		 * For SMP, we still need 4K pages to bootstrap APs,
409		 * PSE will be enabled as soon as all APs are up.
410		 */
411		PTD[KPTDI] = (pd_entry_t) ptditmp;
412		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t) ptditmp;
413		invltlb();
414#endif
415	}
416#endif
417
418#ifdef SMP
419	if (cpu_apic_address == 0)
420		panic("pmap_bootstrap: no local apic!");
421
422	/* local apic is mapped on last page */
423	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
424	    (cpu_apic_address & PG_FRAME));
425
426	for (i = 0; i < mp_napics; i++) {
427		for (j = 0; j < mp_napics; j++) {
428			/* same page frame as a previous IO apic? */
429			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
430			    (io_apic_address[0] & PG_FRAME)) {
431				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
432					+ (NPTEPG-2-j)*PAGE_SIZE);
433				break;
434			}
435			/* use this slot if available */
436			if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
437				SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
438				    pgeflag | (io_apic_address[i] & PG_FRAME));
439				ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
440					+ (NPTEPG-2-j)*PAGE_SIZE);
441				break;
442			}
443		}
444	}
445
446	/* BSP does this itself, AP's get it pre-set */
447	gd = &SMP_prvspace[0].globaldata;
448	gd->gd_prv_CMAP1 = &SMPpt[1];
449	gd->gd_prv_CMAP2 = &SMPpt[2];
450	gd->gd_prv_CMAP3 = &SMPpt[3];
451	gd->gd_prv_PMAP1 = &SMPpt[4];
452	gd->gd_prv_CADDR1 = SMP_prvspace[0].CPAGE1;
453	gd->gd_prv_CADDR2 = SMP_prvspace[0].CPAGE2;
454	gd->gd_prv_CADDR3 = SMP_prvspace[0].CPAGE3;
455	gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[0].PPAGE1;
456#endif
457
458	invltlb();
459}
460
461#ifdef SMP
462/*
463 * Set 4mb pdir for mp startup, and global flags
464 */
465void
466pmap_set_opt(unsigned *pdir) {
467	int i;
468
469	if (pseflag && (cpu_feature & CPUID_PSE)) {
470		load_cr4(rcr4() | CR4_PSE);
471		if (pdir4mb) {
472			pdir[KPTDI] = pdir4mb;
473		}
474	}
475
476	if (pgeflag && (cpu_feature & CPUID_PGE)) {
477		load_cr4(rcr4() | CR4_PGE);
478		for(i = KPTDI; i < KPTDI + nkpt; i++) {
479			if (pdir[i]) {
480				pdir[i] |= PG_G;
481			}
482		}
483	}
484}
485
486/*
487 * Setup the PTD for the boot processor
488 */
489void
490pmap_set_opt_bsp(void)
491{
492	pmap_set_opt((unsigned *)kernel_pmap->pm_pdir);
493	pmap_set_opt((unsigned *)PTD);
494	invltlb();
495}
496#endif
497
498/*
499 *	Initialize the pmap module.
500 *	Called by vm_init, to initialize any structures that the pmap
501 *	system needs to map virtual memory.
502 *	pmap_init has been enhanced to support in a fairly consistant
503 *	way, discontiguous physical memory.
504 */
505void
506pmap_init(phys_start, phys_end)
507	vm_offset_t phys_start, phys_end;
508{
509	vm_offset_t addr;
510	vm_size_t s;
511	int i;
512	int initial_pvs;
513
514	/*
515	 * object for kernel page table pages
516	 */
517	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
518
519	/*
520	 * calculate the number of pv_entries needed
521	 */
522	vm_first_phys = phys_avail[0];
523	for (i = 0; phys_avail[i + 1]; i += 2);
524	pv_npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
525
526	/*
527	 * Allocate memory for random pmap data structures.  Includes the
528	 * pv_head_table.
529	 */
530	s = (vm_size_t) (sizeof(pv_table_t) * pv_npg);
531	s = round_page(s);
532
533	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
534	pv_table = (pv_table_t *) addr;
535	for(i = 0; i < pv_npg; i++) {
536		vm_offset_t pa;
537		TAILQ_INIT(&pv_table[i].pv_list);
538		pv_table[i].pv_list_count = 0;
539		pa = vm_first_phys + i * PAGE_SIZE;
540		pv_table[i].pv_vm_page = PHYS_TO_VM_PAGE(pa);
541	}
542
543	/*
544	 * init the pv free list
545	 */
546	initial_pvs = pv_npg;
547	if (initial_pvs < MINPV)
548		initial_pvs = MINPV;
549	pvzone = &pvzone_store;
550	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
551		initial_pvs * sizeof (struct pv_entry));
552	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit, pv_npg);
553
554	/*
555	 * Now it is safe to enable pv_table recording.
556	 */
557	pmap_initialized = TRUE;
558}
559
560/*
561 * Initialize the address space (zone) for the pv_entries.  Set a
562 * high water mark so that the system can recover from excessive
563 * numbers of pv entries.
564 */
565void
566pmap_init2() {
567	pv_entry_max = PMAP_SHPGPERPROC * maxproc + pv_npg;
568	pv_entry_high_water = 9 * (pv_entry_max / 10);
569	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
570}
571
572/*
573 *	Used to map a range of physical addresses into kernel
574 *	virtual address space.
575 *
576 *	For now, VM is already on, we only need to map the
577 *	specified memory.
578 */
579vm_offset_t
580pmap_map(virt, start, end, prot)
581	vm_offset_t virt;
582	vm_offset_t start;
583	vm_offset_t end;
584	int prot;
585{
586	while (start < end) {
587		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
588		virt += PAGE_SIZE;
589		start += PAGE_SIZE;
590	}
591	return (virt);
592}
593
594
595/***************************************************
596 * Low level helper routines.....
597 ***************************************************/
598
599#if defined(PMAP_DIAGNOSTIC)
600
601/*
602 * This code checks for non-writeable/modified pages.
603 * This should be an invalid condition.
604 */
605static int
606pmap_nw_modified(pt_entry_t ptea) {
607	int pte;
608
609	pte = (int) ptea;
610
611	if ((pte & (PG_M|PG_RW)) == PG_M)
612		return 1;
613	else
614		return 0;
615}
616#endif
617
618
619/*
620 * this routine defines the region(s) of memory that should
621 * not be tested for the modified bit.
622 */
623static PMAP_INLINE int
624pmap_track_modified( vm_offset_t va) {
625	if ((va < clean_sva) || (va >= clean_eva))
626		return 1;
627	else
628		return 0;
629}
630
631static PMAP_INLINE void
632invltlb_1pg( vm_offset_t va) {
633#if defined(I386_CPU)
634	if (cpu_class == CPUCLASS_386) {
635		invltlb();
636	} else
637#endif
638	{
639		invlpg(va);
640	}
641}
642
643static __inline void
644pmap_TLB_invalidate(pmap_t pmap, vm_offset_t va)
645{
646#if defined(SMP)
647	if (pmap->pm_active & (1 << cpuid))
648		cpu_invlpg((void *)va);
649	if (pmap->pm_active & other_cpus)
650		smp_invltlb();
651#else
652	if (pmap->pm_active)
653		invltlb_1pg(va);
654#endif
655}
656
657static __inline void
658pmap_TLB_invalidate_all(pmap_t pmap)
659{
660#if defined(SMP)
661	if (pmap->pm_active & (1 << cpuid))
662		cpu_invltlb();
663	if (pmap->pm_active & other_cpus)
664		smp_invltlb();
665#else
666	if (pmap->pm_active)
667		invltlb();
668#endif
669}
670
671static unsigned *
672get_ptbase(pmap)
673	pmap_t pmap;
674{
675	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
676
677	/* are we current address space or kernel? */
678	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
679		return (unsigned *) PTmap;
680	}
681	/* otherwise, we are alternate address space */
682	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
683		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
684#if defined(SMP)
685		/* The page directory is not shared between CPUs */
686		cpu_invltlb();
687#else
688		invltlb();
689#endif
690	}
691	return (unsigned *) APTmap;
692}
693
694/*
695 * Super fast pmap_pte routine best used when scanning
696 * the pv lists.  This eliminates many coarse-grained
697 * invltlb calls.  Note that many of the pv list
698 * scans are across different pmaps.  It is very wasteful
699 * to do an entire invltlb for checking a single mapping.
700 */
701
702static unsigned *
703pmap_pte_quick(pmap, va)
704	register pmap_t pmap;
705	vm_offset_t va;
706{
707	unsigned pde, newpf;
708	if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
709		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
710		unsigned index = i386_btop(va);
711		/* are we current address space or kernel? */
712		if ((pmap == kernel_pmap) ||
713			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
714			return (unsigned *) PTmap + index;
715		}
716		newpf = pde & PG_FRAME;
717#ifdef SMP
718		if ( ((* (unsigned *) prv_PMAP1) & PG_FRAME) != newpf) {
719			* (unsigned *) prv_PMAP1 = newpf | PG_RW | PG_V;
720			cpu_invlpg(prv_PADDR1);
721		}
722		return prv_PADDR1 + ((unsigned) index & (NPTEPG - 1));
723#else
724		if ( ((* (unsigned *) PMAP1) & PG_FRAME) != newpf) {
725			* (unsigned *) PMAP1 = newpf | PG_RW | PG_V;
726			invltlb_1pg((vm_offset_t) PADDR1);
727		}
728		return PADDR1 + ((unsigned) index & (NPTEPG - 1));
729#endif
730	}
731	return (0);
732}
733
734/*
735 *	Routine:	pmap_extract
736 *	Function:
737 *		Extract the physical page address associated
738 *		with the given map/virtual_address pair.
739 */
740vm_offset_t
741pmap_extract(pmap, va)
742	register pmap_t pmap;
743	vm_offset_t va;
744{
745	vm_offset_t rtval;
746	vm_offset_t pdirindex;
747	pdirindex = va >> PDRSHIFT;
748	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
749		unsigned *pte;
750		if ((rtval & PG_PS) != 0) {
751			rtval &= ~(NBPDR - 1);
752			rtval |= va & (NBPDR - 1);
753			return rtval;
754		}
755		pte = get_ptbase(pmap) + i386_btop(va);
756		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
757		return rtval;
758	}
759	return 0;
760
761}
762
763/*
764 * determine if a page is managed (memory vs. device)
765 */
766static PMAP_INLINE int
767pmap_is_managed(pa)
768	vm_offset_t pa;
769{
770	int i;
771
772	if (!pmap_initialized)
773		return 0;
774
775	for (i = 0; phys_avail[i + 1]; i += 2) {
776		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
777			return 1;
778	}
779	return 0;
780}
781
782
783/***************************************************
784 * Low level mapping routines.....
785 ***************************************************/
786
787/*
788 * add a wired page to the kva
789 * note that in order for the mapping to take effect -- you
790 * should do a invltlb after doing the pmap_kenter...
791 */
792PMAP_INLINE void
793pmap_kenter(va, pa)
794	vm_offset_t va;
795	register vm_offset_t pa;
796{
797	register unsigned *pte;
798	unsigned npte, opte;
799
800	npte = pa | PG_RW | PG_V | pgeflag;
801	pte = (unsigned *)vtopte(va);
802	opte = *pte;
803	*pte = npte;
804	if (opte)
805		invltlb_1pg(va);
806}
807
808/*
809 * remove a page from the kernel pagetables
810 */
811PMAP_INLINE void
812pmap_kremove(va)
813	vm_offset_t va;
814{
815	register unsigned *pte;
816
817	pte = (unsigned *)vtopte(va);
818	*pte = 0;
819	invltlb_1pg(va);
820}
821
822/*
823 * Add a list of wired pages to the kva
824 * this routine is only used for temporary
825 * kernel mappings that do not need to have
826 * page modification or references recorded.
827 * Note that old mappings are simply written
828 * over.  The page *must* be wired.
829 */
830void
831pmap_qenter(va, m, count)
832	vm_offset_t va;
833	vm_page_t *m;
834	int count;
835{
836	int i;
837
838	for (i = 0; i < count; i++) {
839		vm_offset_t tva = va + i * PAGE_SIZE;
840		pmap_kenter(tva, VM_PAGE_TO_PHYS(m[i]));
841	}
842}
843
844/*
845 * this routine jerks page mappings from the
846 * kernel -- it is meant only for temporary mappings.
847 */
848void
849pmap_qremove(va, count)
850	vm_offset_t va;
851	int count;
852{
853	vm_offset_t end_va;
854
855	end_va = va + count*PAGE_SIZE;
856
857	while (va < end_va) {
858		unsigned *pte;
859
860		pte = (unsigned *)vtopte(va);
861		*pte = 0;
862#ifdef SMP
863		cpu_invlpg((void *)va);
864#else
865		invltlb_1pg(va);
866#endif
867		va += PAGE_SIZE;
868	}
869#ifdef SMP
870	smp_invltlb();
871#endif
872}
873
874static vm_page_t
875pmap_page_lookup(object, pindex)
876	vm_object_t object;
877	vm_pindex_t pindex;
878{
879	vm_page_t m;
880retry:
881	m = vm_page_lookup(object, pindex);
882	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
883		goto retry;
884	return m;
885}
886
887/*
888 * Create the UPAGES for a new process.
889 * This routine directly affects the fork perf for a process.
890 */
891void
892pmap_new_proc(p)
893	struct proc *p;
894{
895	int i, updateneeded;
896	vm_object_t upobj;
897	vm_page_t m;
898	struct user *up;
899	unsigned *ptek, oldpte;
900
901	/*
902	 * allocate object for the upages
903	 */
904	if ((upobj = p->p_upages_obj) == NULL) {
905		upobj = vm_object_allocate( OBJT_DEFAULT, UPAGES);
906		p->p_upages_obj = upobj;
907	}
908
909	/* get a kernel virtual address for the UPAGES for this proc */
910	if ((up = p->p_addr) == NULL) {
911		up = (struct user *) kmem_alloc_pageable(kernel_map,
912				UPAGES * PAGE_SIZE);
913#if !defined(MAX_PERF)
914		if (up == NULL)
915			panic("pmap_new_proc: u_map allocation failed");
916#endif
917		p->p_addr = up;
918	}
919
920	ptek = (unsigned *) vtopte((vm_offset_t) up);
921
922	updateneeded = 0;
923	for(i=0;i<UPAGES;i++) {
924		/*
925		 * Get a kernel stack page
926		 */
927		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
928
929		/*
930		 * Wire the page
931		 */
932		m->wire_count++;
933		cnt.v_wire_count++;
934
935		oldpte = *(ptek + i);
936		/*
937		 * Enter the page into the kernel address space.
938		 */
939		*(ptek + i) = VM_PAGE_TO_PHYS(m) | PG_RW | PG_V | pgeflag;
940		if (oldpte) {
941			if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386)) {
942				invlpg((vm_offset_t) up + i * PAGE_SIZE);
943			} else {
944				updateneeded = 1;
945			}
946		}
947
948		vm_page_wakeup(m);
949		vm_page_flag_clear(m, PG_ZERO);
950		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
951		m->valid = VM_PAGE_BITS_ALL;
952	}
953	if (updateneeded)
954		invltlb();
955}
956
957/*
958 * Dispose the UPAGES for a process that has exited.
959 * This routine directly impacts the exit perf of a process.
960 */
961void
962pmap_dispose_proc(p)
963	struct proc *p;
964{
965	int i;
966	vm_object_t upobj;
967	vm_page_t m;
968	unsigned *ptek, oldpte;
969
970	upobj = p->p_upages_obj;
971
972	ptek = (unsigned *) vtopte((vm_offset_t) p->p_addr);
973	for(i=0;i<UPAGES;i++) {
974
975		if ((m = vm_page_lookup(upobj, i)) == NULL)
976			panic("pmap_dispose_proc: upage already missing???");
977
978		vm_page_busy(m);
979
980		oldpte = *(ptek + i);
981		*(ptek + i) = 0;
982		if ((oldpte & PG_G) || (cpu_class > CPUCLASS_386))
983			invlpg((vm_offset_t) p->p_addr + i * PAGE_SIZE);
984		vm_page_unwire(m, 0);
985		vm_page_free(m);
986	}
987#if defined(I386_CPU)
988	if (cpu_class <= CPUCLASS_386)
989		invltlb();
990#endif
991}
992
993/*
994 * Allow the UPAGES for a process to be prejudicially paged out.
995 */
996void
997pmap_swapout_proc(p)
998	struct proc *p;
999{
1000	int i;
1001	vm_object_t upobj;
1002	vm_page_t m;
1003
1004	upobj = p->p_upages_obj;
1005	/*
1006	 * let the upages be paged
1007	 */
1008	for(i=0;i<UPAGES;i++) {
1009		if ((m = vm_page_lookup(upobj, i)) == NULL)
1010			panic("pmap_swapout_proc: upage already missing???");
1011		vm_page_dirty(m);
1012		vm_page_unwire(m, 0);
1013		pmap_kremove( (vm_offset_t) p->p_addr + PAGE_SIZE * i);
1014	}
1015}
1016
1017/*
1018 * Bring the UPAGES for a specified process back in.
1019 */
1020void
1021pmap_swapin_proc(p)
1022	struct proc *p;
1023{
1024	int i,rv;
1025	vm_object_t upobj;
1026	vm_page_t m;
1027
1028	upobj = p->p_upages_obj;
1029	for(i=0;i<UPAGES;i++) {
1030
1031		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1032
1033		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
1034			VM_PAGE_TO_PHYS(m));
1035
1036		if (m->valid != VM_PAGE_BITS_ALL) {
1037			rv = vm_pager_get_pages(upobj, &m, 1, 0);
1038#if !defined(MAX_PERF)
1039			if (rv != VM_PAGER_OK)
1040				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
1041#endif
1042			m = vm_page_lookup(upobj, i);
1043			m->valid = VM_PAGE_BITS_ALL;
1044		}
1045
1046		vm_page_wire(m);
1047		vm_page_wakeup(m);
1048		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1049	}
1050}
1051
1052/***************************************************
1053 * Page table page management routines.....
1054 ***************************************************/
1055
1056/*
1057 * This routine unholds page table pages, and if the hold count
1058 * drops to zero, then it decrements the wire count.
1059 */
1060static int
1061_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1062
1063	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1064		;
1065
1066	if (m->hold_count == 0) {
1067		vm_offset_t pteva;
1068		/*
1069		 * unmap the page table page
1070		 */
1071		pmap->pm_pdir[m->pindex] = 0;
1072		--pmap->pm_stats.resident_count;
1073		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1074			(((unsigned) PTDpde) & PG_FRAME)) {
1075			/*
1076			 * Do a invltlb to make the invalidated mapping
1077			 * take effect immediately.
1078			 */
1079			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
1080			pmap_TLB_invalidate(pmap, pteva);
1081		}
1082
1083		if (pmap->pm_ptphint == m)
1084			pmap->pm_ptphint = NULL;
1085
1086		/*
1087		 * If the page is finally unwired, simply free it.
1088		 */
1089		--m->wire_count;
1090		if (m->wire_count == 0) {
1091
1092			vm_page_flash(m);
1093			vm_page_busy(m);
1094			vm_page_free_zero(m);
1095			--cnt.v_wire_count;
1096		}
1097		return 1;
1098	}
1099	return 0;
1100}
1101
1102static PMAP_INLINE int
1103pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m) {
1104	vm_page_unhold(m);
1105	if (m->hold_count == 0)
1106		return _pmap_unwire_pte_hold(pmap, m);
1107	else
1108		return 0;
1109}
1110
1111/*
1112 * After removing a page table entry, this routine is used to
1113 * conditionally free the page, and manage the hold/wire counts.
1114 */
1115static int
1116pmap_unuse_pt(pmap, va, mpte)
1117	pmap_t pmap;
1118	vm_offset_t va;
1119	vm_page_t mpte;
1120{
1121	unsigned ptepindex;
1122	if (va >= UPT_MIN_ADDRESS)
1123		return 0;
1124
1125	if (mpte == NULL) {
1126		ptepindex = (va >> PDRSHIFT);
1127		if (pmap->pm_ptphint &&
1128			(pmap->pm_ptphint->pindex == ptepindex)) {
1129			mpte = pmap->pm_ptphint;
1130		} else {
1131			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1132			pmap->pm_ptphint = mpte;
1133		}
1134	}
1135
1136	return pmap_unwire_pte_hold(pmap, mpte);
1137}
1138
1139void
1140pmap_pinit0(pmap)
1141	struct pmap *pmap;
1142{
1143	pmap->pm_pdir =
1144		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1145	pmap_kenter((vm_offset_t) pmap->pm_pdir, (vm_offset_t) IdlePTD);
1146	pmap->pm_count = 1;
1147	pmap->pm_active = 0;
1148	pmap->pm_ptphint = NULL;
1149	TAILQ_INIT(&pmap->pm_pvlist);
1150	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1151}
1152
1153/*
1154 * Initialize a preallocated and zeroed pmap structure,
1155 * such as one in a vmspace structure.
1156 */
1157void
1158pmap_pinit(pmap)
1159	register struct pmap *pmap;
1160{
1161	vm_page_t ptdpg;
1162
1163	/*
1164	 * No need to allocate page table space yet but we do need a valid
1165	 * page directory table.
1166	 */
1167	if (pmap->pm_pdir == NULL)
1168		pmap->pm_pdir =
1169			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1170
1171	/*
1172	 * allocate object for the ptes
1173	 */
1174	if (pmap->pm_pteobj == NULL)
1175		pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
1176
1177	/*
1178	 * allocate the page directory page
1179	 */
1180	ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
1181			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1182
1183	ptdpg->wire_count = 1;
1184	++cnt.v_wire_count;
1185
1186
1187	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1188	ptdpg->valid = VM_PAGE_BITS_ALL;
1189
1190	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1191	if ((ptdpg->flags & PG_ZERO) == 0)
1192		bzero(pmap->pm_pdir, PAGE_SIZE);
1193
1194	/* wire in kernel global address entries */
1195	/* XXX copies current process, does not fill in MPPTDI */
1196	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1197#ifdef SMP
1198	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1199#endif
1200
1201	/* install self-referential address mapping entry */
1202	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1203		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1204
1205	pmap->pm_count = 1;
1206	pmap->pm_active = 0;
1207	pmap->pm_ptphint = NULL;
1208	TAILQ_INIT(&pmap->pm_pvlist);
1209	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1210}
1211
1212static int
1213pmap_release_free_page(pmap, p)
1214	struct pmap *pmap;
1215	vm_page_t p;
1216{
1217	unsigned *pde = (unsigned *) pmap->pm_pdir;
1218	/*
1219	 * This code optimizes the case of freeing non-busy
1220	 * page-table pages.  Those pages are zero now, and
1221	 * might as well be placed directly into the zero queue.
1222	 */
1223	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1224		return 0;
1225
1226	vm_page_busy(p);
1227
1228	/*
1229	 * Remove the page table page from the processes address space.
1230	 */
1231	pde[p->pindex] = 0;
1232	pmap->pm_stats.resident_count--;
1233
1234#if !defined(MAX_PERF)
1235	if (p->hold_count)  {
1236		panic("pmap_release: freeing held page table page");
1237	}
1238#endif
1239	/*
1240	 * Page directory pages need to have the kernel
1241	 * stuff cleared, so they can go into the zero queue also.
1242	 */
1243	if (p->pindex == PTDPTDI) {
1244		bzero(pde + KPTDI, nkpt * PTESIZE);
1245#ifdef SMP
1246		pde[MPPTDI] = 0;
1247#endif
1248		pde[APTDPTDI] = 0;
1249		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1250	}
1251
1252	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1253		pmap->pm_ptphint = NULL;
1254
1255	p->wire_count--;
1256	cnt.v_wire_count--;
1257	vm_page_free_zero(p);
1258	return 1;
1259}
1260
1261/*
1262 * this routine is called if the page table page is not
1263 * mapped correctly.
1264 */
1265static vm_page_t
1266_pmap_allocpte(pmap, ptepindex)
1267	pmap_t	pmap;
1268	unsigned ptepindex;
1269{
1270	vm_offset_t pteva, ptepa;
1271	vm_page_t m;
1272
1273	/*
1274	 * Find or fabricate a new pagetable page
1275	 */
1276	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1277			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1278
1279	if (m->queue != PQ_NONE) {
1280		int s = splvm();
1281		vm_page_unqueue(m);
1282		splx(s);
1283	}
1284
1285	if (m->wire_count == 0)
1286		cnt.v_wire_count++;
1287	m->wire_count++;
1288
1289	/*
1290	 * Increment the hold count for the page table page
1291	 * (denoting a new mapping.)
1292	 */
1293	m->hold_count++;
1294
1295	/*
1296	 * Map the pagetable page into the process address space, if
1297	 * it isn't already there.
1298	 */
1299
1300	pmap->pm_stats.resident_count++;
1301
1302	ptepa = VM_PAGE_TO_PHYS(m);
1303	pmap->pm_pdir[ptepindex] =
1304		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1305
1306	/*
1307	 * Set the page table hint
1308	 */
1309	pmap->pm_ptphint = m;
1310
1311	/*
1312	 * Try to use the new mapping, but if we cannot, then
1313	 * do it with the routine that maps the page explicitly.
1314	 */
1315	if ((m->flags & PG_ZERO) == 0) {
1316		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1317			(((unsigned) PTDpde) & PG_FRAME)) {
1318			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1319			bzero((caddr_t) pteva, PAGE_SIZE);
1320		} else {
1321			pmap_zero_page(ptepa);
1322		}
1323	}
1324
1325	m->valid = VM_PAGE_BITS_ALL;
1326	vm_page_flag_clear(m, PG_ZERO);
1327	vm_page_flag_set(m, PG_MAPPED);
1328	vm_page_wakeup(m);
1329
1330	return m;
1331}
1332
1333static vm_page_t
1334pmap_allocpte(pmap, va)
1335	pmap_t	pmap;
1336	vm_offset_t va;
1337{
1338	unsigned ptepindex;
1339	vm_offset_t ptepa;
1340	vm_page_t m;
1341
1342	/*
1343	 * Calculate pagetable page index
1344	 */
1345	ptepindex = va >> PDRSHIFT;
1346
1347	/*
1348	 * Get the page directory entry
1349	 */
1350	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1351
1352	/*
1353	 * This supports switching from a 4MB page to a
1354	 * normal 4K page.
1355	 */
1356	if (ptepa & PG_PS) {
1357		pmap->pm_pdir[ptepindex] = 0;
1358		ptepa = 0;
1359		invltlb();
1360	}
1361
1362	/*
1363	 * If the page table page is mapped, we just increment the
1364	 * hold count, and activate it.
1365	 */
1366	if (ptepa) {
1367		/*
1368		 * In order to get the page table page, try the
1369		 * hint first.
1370		 */
1371		if (pmap->pm_ptphint &&
1372			(pmap->pm_ptphint->pindex == ptepindex)) {
1373			m = pmap->pm_ptphint;
1374		} else {
1375			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1376			pmap->pm_ptphint = m;
1377		}
1378		m->hold_count++;
1379		return m;
1380	}
1381	/*
1382	 * Here if the pte page isn't mapped, or if it has been deallocated.
1383	 */
1384	return _pmap_allocpte(pmap, ptepindex);
1385}
1386
1387
1388/***************************************************
1389* Pmap allocation/deallocation routines.
1390 ***************************************************/
1391
1392/*
1393 * Release any resources held by the given physical map.
1394 * Called when a pmap initialized by pmap_pinit is being released.
1395 * Should only be called if the map contains no valid mappings.
1396 */
1397void
1398pmap_release(pmap)
1399	register struct pmap *pmap;
1400{
1401	vm_page_t p,n,ptdpg;
1402	vm_object_t object = pmap->pm_pteobj;
1403	int curgeneration;
1404
1405#if defined(DIAGNOSTIC)
1406	if (object->ref_count != 1)
1407		panic("pmap_release: pteobj reference count != 1");
1408#endif
1409
1410	ptdpg = NULL;
1411retry:
1412	curgeneration = object->generation;
1413	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1414		n = TAILQ_NEXT(p, listq);
1415		if (p->pindex == PTDPTDI) {
1416			ptdpg = p;
1417			continue;
1418		}
1419		while (1) {
1420			if (!pmap_release_free_page(pmap, p) &&
1421				(object->generation != curgeneration))
1422				goto retry;
1423		}
1424	}
1425
1426	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1427		goto retry;
1428}
1429
1430/*
1431 * grow the number of kernel page table entries, if needed
1432 */
1433void
1434pmap_growkernel(vm_offset_t addr)
1435{
1436	struct proc *p;
1437	struct pmap *pmap;
1438	int s;
1439	vm_offset_t ptppaddr;
1440	vm_page_t nkpg;
1441	pd_entry_t newpdir;
1442
1443	s = splhigh();
1444	if (kernel_vm_end == 0) {
1445		kernel_vm_end = KERNBASE;
1446		nkpt = 0;
1447		while (pdir_pde(PTD, kernel_vm_end)) {
1448			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1449			nkpt++;
1450		}
1451	}
1452	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1453	while (kernel_vm_end < addr) {
1454		if (pdir_pde(PTD, kernel_vm_end)) {
1455			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1456			continue;
1457		}
1458
1459		/*
1460		 * This index is bogus, but out of the way
1461		 */
1462		nkpg = vm_page_alloc(kptobj, nkpt, VM_ALLOC_SYSTEM);
1463#if !defined(MAX_PERF)
1464		if (!nkpg)
1465			panic("pmap_growkernel: no memory to grow kernel");
1466#endif
1467
1468		nkpt++;
1469
1470		vm_page_wire(nkpg);
1471		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1472		pmap_zero_page(ptppaddr);
1473		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1474		pdir_pde(PTD, kernel_vm_end) = newpdir;
1475
1476		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1477			if (p->p_vmspace) {
1478				pmap = vmspace_pmap(p->p_vmspace);
1479				*pmap_pde(pmap, kernel_vm_end) = newpdir;
1480			}
1481		}
1482		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
1483		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1484	}
1485	splx(s);
1486}
1487
1488/*
1489 *	Retire the given physical map from service.
1490 *	Should only be called if the map contains
1491 *	no valid mappings.
1492 */
1493void
1494pmap_destroy(pmap)
1495	register pmap_t pmap;
1496{
1497	int count;
1498
1499	if (pmap == NULL)
1500		return;
1501
1502	count = --pmap->pm_count;
1503	if (count == 0) {
1504		pmap_release(pmap);
1505#if !defined(MAX_PERF)
1506		panic("destroying a pmap is not yet implemented");
1507#endif
1508	}
1509}
1510
1511/*
1512 *	Add a reference to the specified pmap.
1513 */
1514void
1515pmap_reference(pmap)
1516	pmap_t pmap;
1517{
1518	if (pmap != NULL) {
1519		pmap->pm_count++;
1520	}
1521}
1522
1523/***************************************************
1524* page management routines.
1525 ***************************************************/
1526
1527/*
1528 * free the pv_entry back to the free list
1529 */
1530static PMAP_INLINE void
1531free_pv_entry(pv)
1532	pv_entry_t pv;
1533{
1534	pv_entry_count--;
1535	zfreei(pvzone, pv);
1536}
1537
1538/*
1539 * get a new pv_entry, allocating a block from the system
1540 * when needed.
1541 * the memory allocation is performed bypassing the malloc code
1542 * because of the possibility of allocations at interrupt time.
1543 */
1544static pv_entry_t
1545get_pv_entry(void)
1546{
1547	pv_entry_count++;
1548	if (pv_entry_high_water &&
1549		(pv_entry_count > pv_entry_high_water) &&
1550		(pmap_pagedaemon_waken == 0)) {
1551		pmap_pagedaemon_waken = 1;
1552		wakeup (&vm_pages_needed);
1553	}
1554	return zalloci(pvzone);
1555}
1556
1557/*
1558 * This routine is very drastic, but can save the system
1559 * in a pinch.
1560 */
1561void
1562pmap_collect() {
1563	pv_table_t *ppv;
1564	int i;
1565	vm_offset_t pa;
1566	vm_page_t m;
1567	static int warningdone=0;
1568
1569	if (pmap_pagedaemon_waken == 0)
1570		return;
1571
1572	if (warningdone < 5) {
1573		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1574		warningdone++;
1575	}
1576
1577	for(i = 0; i < pv_npg; i++) {
1578		if ((ppv = &pv_table[i]) == 0)
1579			continue;
1580		m = ppv->pv_vm_page;
1581		if ((pa = VM_PAGE_TO_PHYS(m)) == 0)
1582			continue;
1583		if (m->wire_count || m->hold_count || m->busy ||
1584			(m->flags & PG_BUSY))
1585			continue;
1586		pmap_remove_all(pa);
1587	}
1588	pmap_pagedaemon_waken = 0;
1589}
1590
1591
1592/*
1593 * If it is the first entry on the list, it is actually
1594 * in the header and we must copy the following entry up
1595 * to the header.  Otherwise we must search the list for
1596 * the entry.  In either case we free the now unused entry.
1597 */
1598
1599static int
1600pmap_remove_entry(pmap, ppv, va)
1601	struct pmap *pmap;
1602	pv_table_t *ppv;
1603	vm_offset_t va;
1604{
1605	pv_entry_t pv;
1606	int rtval;
1607	int s;
1608
1609	s = splvm();
1610	if (ppv->pv_list_count < pmap->pm_stats.resident_count) {
1611		for (pv = TAILQ_FIRST(&ppv->pv_list);
1612			pv;
1613			pv = TAILQ_NEXT(pv, pv_list)) {
1614			if (pmap == pv->pv_pmap && va == pv->pv_va)
1615				break;
1616		}
1617	} else {
1618		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1619			pv;
1620			pv = TAILQ_NEXT(pv, pv_plist)) {
1621			if (va == pv->pv_va)
1622				break;
1623		}
1624	}
1625
1626	rtval = 0;
1627	if (pv) {
1628
1629		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1630		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1631		ppv->pv_list_count--;
1632		if (TAILQ_FIRST(&ppv->pv_list) == NULL)
1633			vm_page_flag_clear(ppv->pv_vm_page, PG_MAPPED | PG_WRITEABLE);
1634
1635		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1636		free_pv_entry(pv);
1637	}
1638
1639	splx(s);
1640	return rtval;
1641}
1642
1643/*
1644 * Create a pv entry for page at pa for
1645 * (pmap, va).
1646 */
1647static void
1648pmap_insert_entry(pmap, va, mpte, pa)
1649	pmap_t pmap;
1650	vm_offset_t va;
1651	vm_page_t mpte;
1652	vm_offset_t pa;
1653{
1654
1655	int s;
1656	pv_entry_t pv;
1657	pv_table_t *ppv;
1658
1659	s = splvm();
1660	pv = get_pv_entry();
1661	pv->pv_va = va;
1662	pv->pv_pmap = pmap;
1663	pv->pv_ptem = mpte;
1664
1665	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1666
1667	ppv = pa_to_pvh(pa);
1668	TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
1669	ppv->pv_list_count++;
1670
1671	splx(s);
1672}
1673
1674/*
1675 * pmap_remove_pte: do the things to unmap a page in a process
1676 */
1677static int
1678pmap_remove_pte(pmap, ptq, va)
1679	struct pmap *pmap;
1680	unsigned *ptq;
1681	vm_offset_t va;
1682{
1683	unsigned oldpte;
1684	pv_table_t *ppv;
1685
1686	oldpte = loadandclear(ptq);
1687	if (oldpte & PG_W)
1688		pmap->pm_stats.wired_count -= 1;
1689	/*
1690	 * Machines that don't support invlpg, also don't support
1691	 * PG_G.
1692	 */
1693	if (oldpte & PG_G)
1694		invlpg(va);
1695	pmap->pm_stats.resident_count -= 1;
1696	if (oldpte & PG_MANAGED) {
1697		ppv = pa_to_pvh(oldpte);
1698		if (oldpte & PG_M) {
1699#if defined(PMAP_DIAGNOSTIC)
1700			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1701				printf(
1702	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1703				    va, oldpte);
1704			}
1705#endif
1706			if (pmap_track_modified(va))
1707				vm_page_dirty(ppv->pv_vm_page);
1708		}
1709		if (oldpte & PG_A)
1710			vm_page_flag_set(ppv->pv_vm_page, PG_REFERENCED);
1711		return pmap_remove_entry(pmap, ppv, va);
1712	} else {
1713		return pmap_unuse_pt(pmap, va, NULL);
1714	}
1715
1716	return 0;
1717}
1718
1719/*
1720 * Remove a single page from a process address space
1721 */
1722static void
1723pmap_remove_page(pmap, va)
1724	struct pmap *pmap;
1725	register vm_offset_t va;
1726{
1727	register unsigned *ptq;
1728
1729	/*
1730	 * if there is no pte for this address, just skip it!!!
1731	 */
1732	if (*pmap_pde(pmap, va) == 0) {
1733		return;
1734	}
1735
1736	/*
1737	 * get a local va for mappings for this pmap.
1738	 */
1739	ptq = get_ptbase(pmap) + i386_btop(va);
1740	if (*ptq) {
1741		(void) pmap_remove_pte(pmap, ptq, va);
1742		pmap_TLB_invalidate(pmap, va);
1743	}
1744	return;
1745}
1746
1747/*
1748 *	Remove the given range of addresses from the specified map.
1749 *
1750 *	It is assumed that the start and end are properly
1751 *	rounded to the page size.
1752 */
1753void
1754pmap_remove(pmap, sva, eva)
1755	struct pmap *pmap;
1756	register vm_offset_t sva;
1757	register vm_offset_t eva;
1758{
1759	register unsigned *ptbase;
1760	vm_offset_t pdnxt;
1761	vm_offset_t ptpaddr;
1762	vm_offset_t sindex, eindex;
1763	int anyvalid;
1764
1765	if (pmap == NULL)
1766		return;
1767
1768	if (pmap->pm_stats.resident_count == 0)
1769		return;
1770
1771	/*
1772	 * special handling of removing one page.  a very
1773	 * common operation and easy to short circuit some
1774	 * code.
1775	 */
1776	if (((sva + PAGE_SIZE) == eva) &&
1777		(((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1778		pmap_remove_page(pmap, sva);
1779		return;
1780	}
1781
1782	anyvalid = 0;
1783
1784	/*
1785	 * Get a local virtual address for the mappings that are being
1786	 * worked with.
1787	 */
1788	ptbase = get_ptbase(pmap);
1789
1790	sindex = i386_btop(sva);
1791	eindex = i386_btop(eva);
1792
1793	for (; sindex < eindex; sindex = pdnxt) {
1794		unsigned pdirindex;
1795
1796		/*
1797		 * Calculate index for next page table.
1798		 */
1799		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1800		if (pmap->pm_stats.resident_count == 0)
1801			break;
1802
1803		pdirindex = sindex / NPDEPG;
1804		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1805			pmap->pm_pdir[pdirindex] = 0;
1806			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1807			anyvalid++;
1808			continue;
1809		}
1810
1811		/*
1812		 * Weed out invalid mappings. Note: we assume that the page
1813		 * directory table is always allocated, and in kernel virtual.
1814		 */
1815		if (ptpaddr == 0)
1816			continue;
1817
1818		/*
1819		 * Limit our scan to either the end of the va represented
1820		 * by the current page table page, or to the end of the
1821		 * range being removed.
1822		 */
1823		if (pdnxt > eindex) {
1824			pdnxt = eindex;
1825		}
1826
1827		for ( ;sindex != pdnxt; sindex++) {
1828			vm_offset_t va;
1829			if (ptbase[sindex] == 0) {
1830				continue;
1831			}
1832			va = i386_ptob(sindex);
1833
1834			anyvalid++;
1835			if (pmap_remove_pte(pmap,
1836				ptbase + sindex, va))
1837				break;
1838		}
1839	}
1840
1841	if (anyvalid)
1842		pmap_TLB_invalidate_all(pmap);
1843}
1844
1845/*
1846 *	Routine:	pmap_remove_all
1847 *	Function:
1848 *		Removes this physical page from
1849 *		all physical maps in which it resides.
1850 *		Reflects back modify bits to the pager.
1851 *
1852 *	Notes:
1853 *		Original versions of this routine were very
1854 *		inefficient because they iteratively called
1855 *		pmap_remove (slow...)
1856 */
1857
1858static void
1859pmap_remove_all(pa)
1860	vm_offset_t pa;
1861{
1862	register pv_entry_t pv;
1863	pv_table_t *ppv;
1864	register unsigned *pte, tpte;
1865	int s;
1866
1867#if defined(PMAP_DIAGNOSTIC)
1868	/*
1869	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1870	 * pages!
1871	 */
1872	if (!pmap_is_managed(pa)) {
1873		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", pa);
1874	}
1875#endif
1876
1877	s = splvm();
1878	ppv = pa_to_pvh(pa);
1879	while ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
1880		pv->pv_pmap->pm_stats.resident_count--;
1881
1882		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1883
1884		tpte = loadandclear(pte);
1885		if (tpte & PG_W)
1886			pv->pv_pmap->pm_stats.wired_count--;
1887
1888		if (tpte & PG_A)
1889			vm_page_flag_set(ppv->pv_vm_page, PG_REFERENCED);
1890
1891		/*
1892		 * Update the vm_page_t clean and reference bits.
1893		 */
1894		if (tpte & PG_M) {
1895#if defined(PMAP_DIAGNOSTIC)
1896			if (pmap_nw_modified((pt_entry_t) tpte)) {
1897				printf(
1898	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1899				    pv->pv_va, tpte);
1900			}
1901#endif
1902			if (pmap_track_modified(pv->pv_va))
1903				vm_page_dirty(ppv->pv_vm_page);
1904		}
1905		pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
1906
1907		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1908		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
1909		ppv->pv_list_count--;
1910		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1911		free_pv_entry(pv);
1912	}
1913
1914	vm_page_flag_clear(ppv->pv_vm_page, PG_MAPPED | PG_WRITEABLE);
1915
1916	splx(s);
1917}
1918
1919/*
1920 *	Set the physical protection on the
1921 *	specified range of this map as requested.
1922 */
1923void
1924pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1925{
1926	register unsigned *ptbase;
1927	vm_offset_t pdnxt, ptpaddr;
1928	vm_pindex_t sindex, eindex;
1929	int anychanged;
1930
1931
1932	if (pmap == NULL)
1933		return;
1934
1935	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1936		pmap_remove(pmap, sva, eva);
1937		return;
1938	}
1939
1940	if (prot & VM_PROT_WRITE)
1941		return;
1942
1943	anychanged = 0;
1944
1945	ptbase = get_ptbase(pmap);
1946
1947	sindex = i386_btop(sva);
1948	eindex = i386_btop(eva);
1949
1950	for (; sindex < eindex; sindex = pdnxt) {
1951
1952		unsigned pdirindex;
1953
1954		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1955
1956		pdirindex = sindex / NPDEPG;
1957		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1958			(unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1959			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1960			anychanged++;
1961			continue;
1962		}
1963
1964		/*
1965		 * Weed out invalid mappings. Note: we assume that the page
1966		 * directory table is always allocated, and in kernel virtual.
1967		 */
1968		if (ptpaddr == 0)
1969			continue;
1970
1971		if (pdnxt > eindex) {
1972			pdnxt = eindex;
1973		}
1974
1975		for (; sindex != pdnxt; sindex++) {
1976
1977			unsigned pbits;
1978			pv_table_t *ppv;
1979
1980			pbits = ptbase[sindex];
1981
1982			if (pbits & PG_MANAGED) {
1983				ppv = NULL;
1984				if (pbits & PG_A) {
1985					ppv = pa_to_pvh(pbits);
1986					vm_page_flag_set(ppv->pv_vm_page, PG_REFERENCED);
1987					pbits &= ~PG_A;
1988				}
1989				if (pbits & PG_M) {
1990					if (pmap_track_modified(i386_ptob(sindex))) {
1991						if (ppv == NULL)
1992							ppv = pa_to_pvh(pbits);
1993						vm_page_dirty(ppv->pv_vm_page);
1994						pbits &= ~PG_M;
1995					}
1996				}
1997			}
1998
1999			pbits &= ~PG_RW;
2000
2001			if (pbits != ptbase[sindex]) {
2002				ptbase[sindex] = pbits;
2003				anychanged = 1;
2004			}
2005		}
2006	}
2007	if (anychanged)
2008		pmap_TLB_invalidate_all(pmap);
2009}
2010
2011/*
2012 *	Insert the given physical page (p) at
2013 *	the specified virtual address (v) in the
2014 *	target physical map with the protection requested.
2015 *
2016 *	If specified, the page will be wired down, meaning
2017 *	that the related pte can not be reclaimed.
2018 *
2019 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2020 *	or lose information.  That is, this routine must actually
2021 *	insert this page into the given map NOW.
2022 */
2023void
2024pmap_enter(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_prot_t prot,
2025	   boolean_t wired)
2026{
2027	register unsigned *pte;
2028	vm_offset_t opa;
2029	vm_offset_t origpte, newpte;
2030	vm_page_t mpte;
2031
2032	if (pmap == NULL)
2033		return;
2034
2035	va &= PG_FRAME;
2036#ifdef PMAP_DIAGNOSTIC
2037	if (va > VM_MAX_KERNEL_ADDRESS)
2038		panic("pmap_enter: toobig");
2039	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2040		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2041#endif
2042
2043	mpte = NULL;
2044	/*
2045	 * In the case that a page table page is not
2046	 * resident, we are creating it here.
2047	 */
2048	if (va < UPT_MIN_ADDRESS) {
2049		mpte = pmap_allocpte(pmap, va);
2050	}
2051#if 0 && defined(PMAP_DIAGNOSTIC)
2052	else {
2053		vm_offset_t *pdeaddr = (vm_offset_t *)pmap_pde(pmap, va);
2054		if (((origpte = (vm_offset_t) *pdeaddr) & PG_V) == 0) {
2055			panic("pmap_enter: invalid kernel page table page(0), pdir=%p, pde=%p, va=%p\n",
2056				pmap->pm_pdir[PTDPTDI], origpte, va);
2057		}
2058		if (smp_active) {
2059			pdeaddr = (vm_offset_t *) IdlePTDS[cpuid];
2060			if (((newpte = pdeaddr[va >> PDRSHIFT]) & PG_V) == 0) {
2061				if ((vm_offset_t) my_idlePTD != (vm_offset_t) vtophys(pdeaddr))
2062					printf("pde mismatch: %x, %x\n", my_idlePTD, pdeaddr);
2063				printf("cpuid: %d, pdeaddr: 0x%x\n", cpuid, pdeaddr);
2064				panic("pmap_enter: invalid kernel page table page(1), pdir=%p, npde=%p, pde=%p, va=%p\n",
2065					pmap->pm_pdir[PTDPTDI], newpte, origpte, va);
2066			}
2067		}
2068	}
2069#endif
2070
2071	pte = pmap_pte(pmap, va);
2072
2073#if !defined(MAX_PERF)
2074	/*
2075	 * Page Directory table entry not valid, we need a new PT page
2076	 */
2077	if (pte == NULL) {
2078		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2079			(void *)pmap->pm_pdir[PTDPTDI], va);
2080	}
2081#endif
2082
2083	origpte = *(vm_offset_t *)pte;
2084	pa &= PG_FRAME;
2085	opa = origpte & PG_FRAME;
2086
2087#if !defined(MAX_PERF)
2088	if (origpte & PG_PS)
2089		panic("pmap_enter: attempted pmap_enter on 4MB page");
2090#endif
2091
2092	/*
2093	 * Mapping has not changed, must be protection or wiring change.
2094	 */
2095	if (origpte && (opa == pa)) {
2096		/*
2097		 * Wiring change, just update stats. We don't worry about
2098		 * wiring PT pages as they remain resident as long as there
2099		 * are valid mappings in them. Hence, if a user page is wired,
2100		 * the PT page will be also.
2101		 */
2102		if (wired && ((origpte & PG_W) == 0))
2103			pmap->pm_stats.wired_count++;
2104		else if (!wired && (origpte & PG_W))
2105			pmap->pm_stats.wired_count--;
2106
2107#if defined(PMAP_DIAGNOSTIC)
2108		if (pmap_nw_modified((pt_entry_t) origpte)) {
2109			printf(
2110	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2111			    va, origpte);
2112		}
2113#endif
2114
2115		/*
2116		 * Remove extra pte reference
2117		 */
2118		if (mpte)
2119			mpte->hold_count--;
2120
2121		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2122			if ((origpte & PG_RW) == 0) {
2123				*pte |= PG_RW;
2124#ifdef SMP
2125				cpu_invlpg((void *)va);
2126				if (pmap->pm_active & other_cpus)
2127					smp_invltlb();
2128#else
2129				invltlb_1pg(va);
2130#endif
2131			}
2132			return;
2133		}
2134
2135		/*
2136		 * We might be turning off write access to the page,
2137		 * so we go ahead and sense modify status.
2138		 */
2139		if (origpte & PG_MANAGED) {
2140			if ((origpte & PG_M) && pmap_track_modified(va)) {
2141				pv_table_t *ppv;
2142				ppv = pa_to_pvh(opa);
2143				vm_page_dirty(ppv->pv_vm_page);
2144			}
2145			pa |= PG_MANAGED;
2146		}
2147		goto validate;
2148	}
2149	/*
2150	 * Mapping has changed, invalidate old range and fall through to
2151	 * handle validating new mapping.
2152	 */
2153	if (opa) {
2154		int err;
2155		err = pmap_remove_pte(pmap, pte, va);
2156#if !defined(MAX_PERF)
2157		if (err)
2158			panic("pmap_enter: pte vanished, va: 0x%x", va);
2159#endif
2160	}
2161
2162	/*
2163	 * Enter on the PV list if part of our managed memory Note that we
2164	 * raise IPL while manipulating pv_table since pmap_enter can be
2165	 * called at interrupt time.
2166	 */
2167	if (pmap_is_managed(pa)) {
2168		pmap_insert_entry(pmap, va, mpte, pa);
2169		pa |= PG_MANAGED;
2170	}
2171
2172	/*
2173	 * Increment counters
2174	 */
2175	pmap->pm_stats.resident_count++;
2176	if (wired)
2177		pmap->pm_stats.wired_count++;
2178
2179validate:
2180	/*
2181	 * Now validate mapping with desired protection/wiring.
2182	 */
2183	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2184
2185	if (wired)
2186		newpte |= PG_W;
2187	if (va < UPT_MIN_ADDRESS)
2188		newpte |= PG_U;
2189	if (pmap == kernel_pmap)
2190		newpte |= pgeflag;
2191
2192	/*
2193	 * if the mapping or permission bits are different, we need
2194	 * to update the pte.
2195	 */
2196	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2197		*pte = newpte | PG_A;
2198		if (origpte) {
2199#ifdef SMP
2200			cpu_invlpg((void *)va);
2201			if (pmap->pm_active & other_cpus)
2202				smp_invltlb();
2203#else
2204			invltlb_1pg(va);
2205#endif
2206		}
2207	}
2208}
2209
2210/*
2211 * this code makes some *MAJOR* assumptions:
2212 * 1. Current pmap & pmap exists.
2213 * 2. Not wired.
2214 * 3. Read access.
2215 * 4. No page table pages.
2216 * 5. Tlbflush is deferred to calling procedure.
2217 * 6. Page IS managed.
2218 * but is *MUCH* faster than pmap_enter...
2219 */
2220
2221static vm_page_t
2222pmap_enter_quick(pmap, va, pa, mpte)
2223	register pmap_t pmap;
2224	vm_offset_t va;
2225	register vm_offset_t pa;
2226	vm_page_t mpte;
2227{
2228	register unsigned *pte;
2229
2230	/*
2231	 * In the case that a page table page is not
2232	 * resident, we are creating it here.
2233	 */
2234	if (va < UPT_MIN_ADDRESS) {
2235		unsigned ptepindex;
2236		vm_offset_t ptepa;
2237
2238		/*
2239		 * Calculate pagetable page index
2240		 */
2241		ptepindex = va >> PDRSHIFT;
2242		if (mpte && (mpte->pindex == ptepindex)) {
2243			mpte->hold_count++;
2244		} else {
2245retry:
2246			/*
2247			 * Get the page directory entry
2248			 */
2249			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2250
2251			/*
2252			 * If the page table page is mapped, we just increment
2253			 * the hold count, and activate it.
2254			 */
2255			if (ptepa) {
2256#if !defined(MAX_PERF)
2257				if (ptepa & PG_PS)
2258					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2259#endif
2260				if (pmap->pm_ptphint &&
2261					(pmap->pm_ptphint->pindex == ptepindex)) {
2262					mpte = pmap->pm_ptphint;
2263				} else {
2264					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2265					pmap->pm_ptphint = mpte;
2266				}
2267				if (mpte == NULL)
2268					goto retry;
2269				mpte->hold_count++;
2270			} else {
2271				mpte = _pmap_allocpte(pmap, ptepindex);
2272			}
2273		}
2274	} else {
2275		mpte = NULL;
2276	}
2277
2278	/*
2279	 * This call to vtopte makes the assumption that we are
2280	 * entering the page into the current pmap.  In order to support
2281	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2282	 * But that isn't as quick as vtopte.
2283	 */
2284	pte = (unsigned *)vtopte(va);
2285	if (*pte) {
2286		if (mpte)
2287			pmap_unwire_pte_hold(pmap, mpte);
2288		return 0;
2289	}
2290
2291	/*
2292	 * Enter on the PV list if part of our managed memory Note that we
2293	 * raise IPL while manipulating pv_table since pmap_enter can be
2294	 * called at interrupt time.
2295	 */
2296	pmap_insert_entry(pmap, va, mpte, pa);
2297
2298	/*
2299	 * Increment counters
2300	 */
2301	pmap->pm_stats.resident_count++;
2302
2303	/*
2304	 * Now validate mapping with RO protection
2305	 */
2306	*pte = pa | PG_V | PG_U | PG_MANAGED;
2307
2308	return mpte;
2309}
2310
2311#define MAX_INIT_PT (96)
2312/*
2313 * pmap_object_init_pt preloads the ptes for a given object
2314 * into the specified pmap.  This eliminates the blast of soft
2315 * faults on process startup and immediately after an mmap.
2316 */
2317void
2318pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
2319	pmap_t pmap;
2320	vm_offset_t addr;
2321	vm_object_t object;
2322	vm_pindex_t pindex;
2323	vm_size_t size;
2324	int limit;
2325{
2326	vm_offset_t tmpidx;
2327	int psize;
2328	vm_page_t p, mpte;
2329	int objpgs;
2330
2331	if (!pmap)
2332		return;
2333
2334	/*
2335	 * This code maps large physical mmap regions into the
2336	 * processor address space.  Note that some shortcuts
2337	 * are taken, but the code works.
2338	 */
2339	if (pseflag &&
2340		(object->type == OBJT_DEVICE) &&
2341		((addr & (NBPDR - 1)) == 0) &&
2342		((size & (NBPDR - 1)) == 0) ) {
2343		int i;
2344		vm_page_t m[1];
2345		unsigned int ptepindex;
2346		int npdes;
2347		vm_offset_t ptepa;
2348
2349		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2350			return;
2351
2352retry:
2353		p = vm_page_lookup(object, pindex);
2354		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2355			goto retry;
2356
2357		if (p == NULL) {
2358			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2359			if (p == NULL)
2360				return;
2361			m[0] = p;
2362
2363			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2364				vm_page_free(p);
2365				return;
2366			}
2367
2368			p = vm_page_lookup(object, pindex);
2369			vm_page_wakeup(p);
2370		}
2371
2372		ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
2373		if (ptepa & (NBPDR - 1)) {
2374			return;
2375		}
2376
2377		p->valid = VM_PAGE_BITS_ALL;
2378
2379		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2380		npdes = size >> PDRSHIFT;
2381		for(i=0;i<npdes;i++) {
2382			pmap->pm_pdir[ptepindex] =
2383				(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
2384			ptepa += NBPDR;
2385			ptepindex += 1;
2386		}
2387		vm_page_flag_set(p, PG_MAPPED);
2388		invltlb();
2389		return;
2390	}
2391
2392	psize = i386_btop(size);
2393
2394	if ((object->type != OBJT_VNODE) ||
2395		(limit && (psize > MAX_INIT_PT) &&
2396			(object->resident_page_count > MAX_INIT_PT))) {
2397		return;
2398	}
2399
2400	if (psize + pindex > object->size)
2401		psize = object->size - pindex;
2402
2403	mpte = NULL;
2404	/*
2405	 * if we are processing a major portion of the object, then scan the
2406	 * entire thing.
2407	 */
2408	if (psize > (object->resident_page_count >> 2)) {
2409		objpgs = psize;
2410
2411		for (p = TAILQ_FIRST(&object->memq);
2412		    ((objpgs > 0) && (p != NULL));
2413		    p = TAILQ_NEXT(p, listq)) {
2414
2415			tmpidx = p->pindex;
2416			if (tmpidx < pindex) {
2417				continue;
2418			}
2419			tmpidx -= pindex;
2420			if (tmpidx >= psize) {
2421				continue;
2422			}
2423			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2424				(p->busy == 0) &&
2425			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2426				if ((p->queue - p->pc) == PQ_CACHE)
2427					vm_page_deactivate(p);
2428				vm_page_busy(p);
2429				mpte = pmap_enter_quick(pmap,
2430					addr + i386_ptob(tmpidx),
2431					VM_PAGE_TO_PHYS(p), mpte);
2432				vm_page_flag_set(p, PG_MAPPED);
2433				vm_page_wakeup(p);
2434			}
2435			objpgs -= 1;
2436		}
2437	} else {
2438		/*
2439		 * else lookup the pages one-by-one.
2440		 */
2441		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2442			p = vm_page_lookup(object, tmpidx + pindex);
2443			if (p &&
2444			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2445				(p->busy == 0) &&
2446			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2447				if ((p->queue - p->pc) == PQ_CACHE)
2448					vm_page_deactivate(p);
2449				vm_page_busy(p);
2450				mpte = pmap_enter_quick(pmap,
2451					addr + i386_ptob(tmpidx),
2452					VM_PAGE_TO_PHYS(p), mpte);
2453				vm_page_flag_set(p, PG_MAPPED);
2454				vm_page_wakeup(p);
2455			}
2456		}
2457	}
2458	return;
2459}
2460
2461/*
2462 * pmap_prefault provides a quick way of clustering
2463 * pagefaults into a processes address space.  It is a "cousin"
2464 * of pmap_object_init_pt, except it runs at page fault time instead
2465 * of mmap time.
2466 */
2467#define PFBAK 4
2468#define PFFOR 4
2469#define PAGEORDER_SIZE (PFBAK+PFFOR)
2470
2471static int pmap_prefault_pageorder[] = {
2472	-PAGE_SIZE, PAGE_SIZE,
2473	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2474	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2475	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2476};
2477
2478void
2479pmap_prefault(pmap, addra, entry)
2480	pmap_t pmap;
2481	vm_offset_t addra;
2482	vm_map_entry_t entry;
2483{
2484	int i;
2485	vm_offset_t starta;
2486	vm_offset_t addr;
2487	vm_pindex_t pindex;
2488	vm_page_t m, mpte;
2489	vm_object_t object;
2490
2491	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace)))
2492		return;
2493
2494	object = entry->object.vm_object;
2495
2496	starta = addra - PFBAK * PAGE_SIZE;
2497	if (starta < entry->start) {
2498		starta = entry->start;
2499	} else if (starta > addra) {
2500		starta = 0;
2501	}
2502
2503	mpte = NULL;
2504	for (i = 0; i < PAGEORDER_SIZE; i++) {
2505		vm_object_t lobject;
2506		unsigned *pte;
2507
2508		addr = addra + pmap_prefault_pageorder[i];
2509		if (addr > addra + (PFFOR * PAGE_SIZE))
2510			addr = 0;
2511
2512		if (addr < starta || addr >= entry->end)
2513			continue;
2514
2515		if ((*pmap_pde(pmap, addr)) == NULL)
2516			continue;
2517
2518		pte = (unsigned *) vtopte(addr);
2519		if (*pte)
2520			continue;
2521
2522		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2523		lobject = object;
2524		for (m = vm_page_lookup(lobject, pindex);
2525		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2526		    lobject = lobject->backing_object) {
2527			if (lobject->backing_object_offset & PAGE_MASK)
2528				break;
2529			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2530			m = vm_page_lookup(lobject->backing_object, pindex);
2531		}
2532
2533		/*
2534		 * give-up when a page is not in memory
2535		 */
2536		if (m == NULL)
2537			break;
2538
2539		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2540			(m->busy == 0) &&
2541		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2542
2543			if ((m->queue - m->pc) == PQ_CACHE) {
2544				vm_page_deactivate(m);
2545			}
2546			vm_page_busy(m);
2547			mpte = pmap_enter_quick(pmap, addr,
2548				VM_PAGE_TO_PHYS(m), mpte);
2549			vm_page_flag_set(m, PG_MAPPED);
2550			vm_page_wakeup(m);
2551		}
2552	}
2553}
2554
2555/*
2556 *	Routine:	pmap_change_wiring
2557 *	Function:	Change the wiring attribute for a map/virtual-address
2558 *			pair.
2559 *	In/out conditions:
2560 *			The mapping must already exist in the pmap.
2561 */
2562void
2563pmap_change_wiring(pmap, va, wired)
2564	register pmap_t pmap;
2565	vm_offset_t va;
2566	boolean_t wired;
2567{
2568	register unsigned *pte;
2569
2570	if (pmap == NULL)
2571		return;
2572
2573	pte = pmap_pte(pmap, va);
2574
2575	if (wired && !pmap_pte_w(pte))
2576		pmap->pm_stats.wired_count++;
2577	else if (!wired && pmap_pte_w(pte))
2578		pmap->pm_stats.wired_count--;
2579
2580	/*
2581	 * Wiring is not a hardware characteristic so there is no need to
2582	 * invalidate TLB.
2583	 */
2584	pmap_pte_set_w(pte, wired);
2585}
2586
2587
2588
2589/*
2590 *	Copy the range specified by src_addr/len
2591 *	from the source map to the range dst_addr/len
2592 *	in the destination map.
2593 *
2594 *	This routine is only advisory and need not do anything.
2595 */
2596
2597void
2598pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
2599	pmap_t dst_pmap, src_pmap;
2600	vm_offset_t dst_addr;
2601	vm_size_t len;
2602	vm_offset_t src_addr;
2603{
2604	vm_offset_t addr;
2605	vm_offset_t end_addr = src_addr + len;
2606	vm_offset_t pdnxt;
2607	unsigned src_frame, dst_frame;
2608
2609	if (dst_addr != src_addr)
2610		return;
2611
2612	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2613	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2614		return;
2615	}
2616
2617	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2618	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
2619		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
2620#if defined(SMP)
2621		/* The page directory is not shared between CPUs */
2622		cpu_invltlb();
2623#else
2624		invltlb();
2625#endif
2626	}
2627
2628	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
2629		unsigned *src_pte, *dst_pte;
2630		vm_page_t dstmpte, srcmpte;
2631		vm_offset_t srcptepaddr;
2632		unsigned ptepindex;
2633
2634#if !defined(MAX_PERF)
2635		if (addr >= UPT_MIN_ADDRESS)
2636			panic("pmap_copy: invalid to pmap_copy page tables\n");
2637#endif
2638
2639		/*
2640		 * Don't let optional prefaulting of pages make us go
2641		 * way below the low water mark of free pages or way
2642		 * above high water mark of used pv entries.
2643		 */
2644		if (cnt.v_free_count < cnt.v_free_reserved ||
2645		    pv_entry_count > pv_entry_high_water)
2646			break;
2647
2648		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2649		ptepindex = addr >> PDRSHIFT;
2650
2651		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2652		if (srcptepaddr == 0)
2653			continue;
2654
2655		if (srcptepaddr & PG_PS) {
2656			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2657				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2658				dst_pmap->pm_stats.resident_count += NBPDR;
2659			}
2660			continue;
2661		}
2662
2663		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2664		if ((srcmpte == NULL) ||
2665			(srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2666			continue;
2667
2668		if (pdnxt > end_addr)
2669			pdnxt = end_addr;
2670
2671		src_pte = (unsigned *) vtopte(addr);
2672		dst_pte = (unsigned *) avtopte(addr);
2673		while (addr < pdnxt) {
2674			unsigned ptetemp;
2675			ptetemp = *src_pte;
2676			/*
2677			 * we only virtual copy managed pages
2678			 */
2679			if ((ptetemp & PG_MANAGED) != 0) {
2680				/*
2681				 * We have to check after allocpte for the
2682				 * pte still being around...  allocpte can
2683				 * block.
2684				 */
2685				dstmpte = pmap_allocpte(dst_pmap, addr);
2686				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2687					/*
2688					 * Clear the modified and
2689					 * accessed (referenced) bits
2690					 * during the copy.
2691					 */
2692					*dst_pte = ptetemp & ~(PG_M | PG_A);
2693					dst_pmap->pm_stats.resident_count++;
2694					pmap_insert_entry(dst_pmap, addr,
2695						dstmpte,
2696						(ptetemp & PG_FRAME));
2697	 			} else {
2698					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2699				}
2700				if (dstmpte->hold_count >= srcmpte->hold_count)
2701					break;
2702			}
2703			addr += PAGE_SIZE;
2704			src_pte++;
2705			dst_pte++;
2706		}
2707	}
2708}
2709
2710/*
2711 *	Routine:	pmap_kernel
2712 *	Function:
2713 *		Returns the physical map handle for the kernel.
2714 */
2715pmap_t
2716pmap_kernel()
2717{
2718	return (kernel_pmap);
2719}
2720
2721/*
2722 *	pmap_zero_page zeros the specified hardware page by mapping
2723 *	the page into KVM and using bzero to clear its contents.
2724 */
2725void
2726pmap_zero_page(phys)
2727	vm_offset_t phys;
2728{
2729#ifdef SMP
2730#if !defined(MAX_PERF)
2731	if (*(int *) prv_CMAP3)
2732		panic("pmap_zero_page: prv_CMAP3 busy");
2733#endif
2734
2735	*(int *) prv_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2736	cpu_invlpg(prv_CADDR3);
2737
2738#if defined(I686_CPU)
2739	if (cpu_class == CPUCLASS_686)
2740		i686_pagezero(prv_CADDR3);
2741	else
2742#endif
2743		bzero(prv_CADDR3, PAGE_SIZE);
2744
2745	*(int *) prv_CMAP3 = 0;
2746#else
2747#if !defined(MAX_PERF)
2748	if (*(int *) CMAP2)
2749		panic("pmap_zero_page: CMAP2 busy");
2750#endif
2751
2752	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2753	invltlb_1pg((vm_offset_t)CADDR2);
2754
2755#if defined(I686_CPU)
2756	if (cpu_class == CPUCLASS_686)
2757		i686_pagezero(CADDR2);
2758	else
2759#endif
2760		bzero(CADDR2, PAGE_SIZE);
2761	*(int *) CMAP2 = 0;
2762#endif
2763}
2764
2765/*
2766 *	pmap_zero_page_area zeros the specified hardware page by mapping
2767 *	the page into KVM and using bzero to clear its contents.
2768 *
2769 *	off and size may not cover an area beyond a single hardware page.
2770 */
2771void
2772pmap_zero_page_area(phys, off, size)
2773	vm_offset_t phys;
2774	int off;
2775	int size;
2776{
2777#ifdef SMP
2778#if !defined(MAX_PERF)
2779	if (*(int *) prv_CMAP3)
2780		panic("pmap_zero_page: prv_CMAP3 busy");
2781#endif
2782
2783	*(int *) prv_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2784	cpu_invlpg(prv_CADDR3);
2785
2786#if defined(I686_CPU)
2787	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2788		i686_pagezero(prv_CADDR3);
2789	else
2790#endif
2791		bzero((char *)prv_CADDR3 + off, size);
2792
2793	*(int *) prv_CMAP3 = 0;
2794#else
2795#if !defined(MAX_PERF)
2796	if (*(int *) CMAP2)
2797		panic("pmap_zero_page: CMAP2 busy");
2798#endif
2799
2800	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2801	invltlb_1pg((vm_offset_t)CADDR2);
2802
2803#if defined(I686_CPU)
2804	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2805		i686_pagezero(CADDR2);
2806	else
2807#endif
2808		bzero((char *)CADDR2 + off, size);
2809	*(int *) CMAP2 = 0;
2810#endif
2811}
2812
2813/*
2814 *	pmap_copy_page copies the specified (machine independent)
2815 *	page by mapping the page into virtual memory and using
2816 *	bcopy to copy the page, one machine dependent page at a
2817 *	time.
2818 */
2819void
2820pmap_copy_page(src, dst)
2821	vm_offset_t src;
2822	vm_offset_t dst;
2823{
2824#ifdef SMP
2825#if !defined(MAX_PERF)
2826	if (*(int *) prv_CMAP1)
2827		panic("pmap_copy_page: prv_CMAP1 busy");
2828	if (*(int *) prv_CMAP2)
2829		panic("pmap_copy_page: prv_CMAP2 busy");
2830#endif
2831
2832	*(int *) prv_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2833	*(int *) prv_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2834
2835	cpu_invlpg(prv_CADDR1);
2836	cpu_invlpg(prv_CADDR2);
2837
2838	bcopy(prv_CADDR1, prv_CADDR2, PAGE_SIZE);
2839
2840	*(int *) prv_CMAP1 = 0;
2841	*(int *) prv_CMAP2 = 0;
2842#else
2843#if !defined(MAX_PERF)
2844	if (*(int *) CMAP1 || *(int *) CMAP2)
2845		panic("pmap_copy_page: CMAP busy");
2846#endif
2847
2848	*(int *) CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2849	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2850#if defined(I386_CPU)
2851	if (cpu_class == CPUCLASS_386) {
2852		invltlb();
2853	} else
2854#endif
2855	{
2856		invlpg((u_int)CADDR1);
2857		invlpg((u_int)CADDR2);
2858	}
2859
2860	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2861
2862	*(int *) CMAP1 = 0;
2863	*(int *) CMAP2 = 0;
2864#endif
2865}
2866
2867
2868/*
2869 *	Routine:	pmap_pageable
2870 *	Function:
2871 *		Make the specified pages (by pmap, offset)
2872 *		pageable (or not) as requested.
2873 *
2874 *		A page which is not pageable may not take
2875 *		a fault; therefore, its page table entry
2876 *		must remain valid for the duration.
2877 *
2878 *		This routine is merely advisory; pmap_enter
2879 *		will specify that these pages are to be wired
2880 *		down (or not) as appropriate.
2881 */
2882void
2883pmap_pageable(pmap, sva, eva, pageable)
2884	pmap_t pmap;
2885	vm_offset_t sva, eva;
2886	boolean_t pageable;
2887{
2888}
2889
2890/*
2891 * this routine returns true if a physical page resides
2892 * in the given pmap.
2893 */
2894boolean_t
2895pmap_page_exists(pmap, pa)
2896	pmap_t pmap;
2897	vm_offset_t pa;
2898{
2899	register pv_entry_t pv;
2900	pv_table_t *ppv;
2901	int s;
2902
2903	if (!pmap_is_managed(pa))
2904		return FALSE;
2905
2906	s = splvm();
2907
2908	ppv = pa_to_pvh(pa);
2909	/*
2910	 * Not found, check current mappings returning immediately if found.
2911	 */
2912	for (pv = TAILQ_FIRST(&ppv->pv_list);
2913		pv;
2914		pv = TAILQ_NEXT(pv, pv_list)) {
2915		if (pv->pv_pmap == pmap) {
2916			splx(s);
2917			return TRUE;
2918		}
2919	}
2920	splx(s);
2921	return (FALSE);
2922}
2923
2924#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2925/*
2926 * Remove all pages from specified address space
2927 * this aids process exit speeds.  Also, this code
2928 * is special cased for current process only, but
2929 * can have the more generic (and slightly slower)
2930 * mode enabled.  This is much faster than pmap_remove
2931 * in the case of running down an entire address space.
2932 */
2933void
2934pmap_remove_pages(pmap, sva, eva)
2935	pmap_t pmap;
2936	vm_offset_t sva, eva;
2937{
2938	unsigned *pte, tpte;
2939	pv_table_t *ppv;
2940	pv_entry_t pv, npv;
2941	int s;
2942
2943#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2944	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace))) {
2945		printf("warning: pmap_remove_pages called with non-current pmap\n");
2946		return;
2947	}
2948#endif
2949
2950	s = splvm();
2951	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
2952		pv;
2953		pv = npv) {
2954
2955		if (pv->pv_va >= eva || pv->pv_va < sva) {
2956			npv = TAILQ_NEXT(pv, pv_plist);
2957			continue;
2958		}
2959
2960#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2961		pte = (unsigned *)vtopte(pv->pv_va);
2962#else
2963		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2964#endif
2965		tpte = *pte;
2966
2967/*
2968 * We cannot remove wired pages from a process' mapping at this time
2969 */
2970		if (tpte & PG_W) {
2971			npv = TAILQ_NEXT(pv, pv_plist);
2972			continue;
2973		}
2974		*pte = 0;
2975
2976		ppv = pa_to_pvh(tpte);
2977
2978		pv->pv_pmap->pm_stats.resident_count--;
2979
2980		/*
2981		 * Update the vm_page_t clean and reference bits.
2982		 */
2983		if (tpte & PG_M) {
2984			vm_page_dirty(ppv->pv_vm_page);
2985		}
2986
2987
2988		npv = TAILQ_NEXT(pv, pv_plist);
2989		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2990
2991		ppv->pv_list_count--;
2992		TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
2993		if (TAILQ_FIRST(&ppv->pv_list) == NULL) {
2994			vm_page_flag_clear(ppv->pv_vm_page, PG_MAPPED | PG_WRITEABLE);
2995		}
2996
2997		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2998		free_pv_entry(pv);
2999	}
3000	splx(s);
3001	pmap_TLB_invalidate_all(pmap);
3002}
3003
3004/*
3005 * pmap_testbit tests bits in pte's
3006 * note that the testbit/changebit routines are inline,
3007 * and a lot of things compile-time evaluate.
3008 */
3009static boolean_t
3010pmap_testbit(pa, bit)
3011	register vm_offset_t pa;
3012	int bit;
3013{
3014	register pv_entry_t pv;
3015	pv_table_t *ppv;
3016	unsigned *pte;
3017	int s;
3018
3019	if (!pmap_is_managed(pa))
3020		return FALSE;
3021
3022	ppv = pa_to_pvh(pa);
3023	if (TAILQ_FIRST(&ppv->pv_list) == NULL)
3024		return FALSE;
3025
3026	s = splvm();
3027
3028	for (pv = TAILQ_FIRST(&ppv->pv_list);
3029		pv;
3030		pv = TAILQ_NEXT(pv, pv_list)) {
3031
3032		/*
3033		 * if the bit being tested is the modified bit, then
3034		 * mark clean_map and ptes as never
3035		 * modified.
3036		 */
3037		if (bit & (PG_A|PG_M)) {
3038			if (!pmap_track_modified(pv->pv_va))
3039				continue;
3040		}
3041
3042#if defined(PMAP_DIAGNOSTIC)
3043		if (!pv->pv_pmap) {
3044			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3045			continue;
3046		}
3047#endif
3048		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3049		if (*pte & bit) {
3050			splx(s);
3051			return TRUE;
3052		}
3053	}
3054	splx(s);
3055	return (FALSE);
3056}
3057
3058/*
3059 * this routine is used to modify bits in ptes
3060 */
3061static __inline void
3062pmap_changebit(pa, bit, setem)
3063	vm_offset_t pa;
3064	int bit;
3065	boolean_t setem;
3066{
3067	register pv_entry_t pv;
3068	pv_table_t *ppv;
3069	register unsigned *pte;
3070	int s;
3071
3072	if (!pmap_is_managed(pa))
3073		return;
3074
3075	s = splvm();
3076	ppv = pa_to_pvh(pa);
3077
3078	/*
3079	 * Loop over all current mappings setting/clearing as appropos If
3080	 * setting RO do we need to clear the VAC?
3081	 */
3082	for (pv = TAILQ_FIRST(&ppv->pv_list);
3083		pv;
3084		pv = TAILQ_NEXT(pv, pv_list)) {
3085
3086		/*
3087		 * don't write protect pager mappings
3088		 */
3089		if (!setem && (bit == PG_RW)) {
3090			if (!pmap_track_modified(pv->pv_va))
3091				continue;
3092		}
3093
3094#if defined(PMAP_DIAGNOSTIC)
3095		if (!pv->pv_pmap) {
3096			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3097			continue;
3098		}
3099#endif
3100
3101		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3102
3103		if (setem) {
3104			*(int *)pte |= bit;
3105			pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3106		} else {
3107			vm_offset_t pbits = *(vm_offset_t *)pte;
3108			if (pbits & bit) {
3109				if (bit == PG_RW) {
3110					if (pbits & PG_M) {
3111						vm_page_dirty(ppv->pv_vm_page);
3112					}
3113					*(int *)pte = pbits & ~(PG_M|PG_RW);
3114				} else {
3115					*(int *)pte = pbits & ~bit;
3116				}
3117				pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3118			}
3119		}
3120	}
3121	splx(s);
3122}
3123
3124/*
3125 *	pmap_clearbit:
3126 *
3127 *	Clear a bit/bits in every pte mapping a given physical page.
3128 */
3129static void
3130pmap_clearbit(
3131	vm_offset_t pa,
3132	int	bit)
3133{
3134	pmap_changebit(pa, bit, FALSE);
3135}
3136
3137/*
3138 *      pmap_page_protect:
3139 *
3140 *      Lower the permission for all mappings to a given page.
3141 */
3142void
3143pmap_page_protect(vm_offset_t phys, vm_prot_t prot)
3144{
3145	if ((prot & VM_PROT_WRITE) == 0) {
3146		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3147			pmap_clearbit(phys, PG_RW);
3148		} else {
3149			pmap_remove_all(phys);
3150		}
3151	}
3152}
3153
3154vm_offset_t
3155pmap_phys_address(ppn)
3156	int ppn;
3157{
3158	return (i386_ptob(ppn));
3159}
3160
3161/*
3162 *	pmap_ts_referenced:
3163 *
3164 *	Return the count of reference bits for a page, clearing all of them.
3165 */
3166int
3167pmap_ts_referenced(vm_offset_t pa)
3168{
3169	register pv_entry_t pv, pvf, pvn;
3170	pv_table_t *ppv;
3171	unsigned *pte;
3172	int s;
3173	int rtval = 0;
3174
3175	if (!pmap_is_managed(pa))
3176		return (rtval);
3177
3178	s = splvm();
3179
3180	ppv = pa_to_pvh(pa);
3181
3182	if ((pv = TAILQ_FIRST(&ppv->pv_list)) != NULL) {
3183
3184		pvf = pv;
3185
3186		do {
3187			pvn = TAILQ_NEXT(pv, pv_list);
3188
3189			TAILQ_REMOVE(&ppv->pv_list, pv, pv_list);
3190
3191			TAILQ_INSERT_TAIL(&ppv->pv_list, pv, pv_list);
3192
3193			if (!pmap_track_modified(pv->pv_va))
3194				continue;
3195
3196			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3197
3198			if (pte && *pte & PG_A) {
3199				*pte &= ~PG_A;
3200
3201				pmap_TLB_invalidate(pv->pv_pmap, pv->pv_va);
3202
3203				rtval++;
3204				if (rtval > 4) {
3205					break;
3206				}
3207			}
3208		} while ((pv = pvn) != NULL && pv != pvf);
3209	}
3210	splx(s);
3211
3212	return (rtval);
3213}
3214
3215/*
3216 *	pmap_is_modified:
3217 *
3218 *	Return whether or not the specified physical page was modified
3219 *	in any physical maps.
3220 */
3221boolean_t
3222pmap_is_modified(vm_offset_t pa)
3223{
3224	return pmap_testbit((pa), PG_M);
3225}
3226
3227/*
3228 *	Clear the modify bits on the specified physical page.
3229 */
3230void
3231pmap_clear_modify(vm_offset_t pa)
3232{
3233	pmap_clearbit(pa, PG_M);
3234}
3235
3236/*
3237 *	pmap_clear_reference:
3238 *
3239 *	Clear the reference bit on the specified physical page.
3240 */
3241void
3242pmap_clear_reference(vm_offset_t pa)
3243{
3244	pmap_clearbit(pa, PG_A);
3245}
3246
3247/*
3248 * Miscellaneous support routines follow
3249 */
3250
3251static void
3252i386_protection_init()
3253{
3254	register int *kp, prot;
3255
3256	kp = protection_codes;
3257	for (prot = 0; prot < 8; prot++) {
3258		switch (prot) {
3259		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3260			/*
3261			 * Read access is also 0. There isn't any execute bit,
3262			 * so just make it readable.
3263			 */
3264		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3265		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3266		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3267			*kp++ = 0;
3268			break;
3269		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3270		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3271		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3272		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3273			*kp++ = PG_RW;
3274			break;
3275		}
3276	}
3277}
3278
3279/*
3280 * Map a set of physical memory pages into the kernel virtual
3281 * address space. Return a pointer to where it is mapped. This
3282 * routine is intended to be used for mapping device memory,
3283 * NOT real memory.
3284 */
3285void *
3286pmap_mapdev(pa, size)
3287	vm_offset_t pa;
3288	vm_size_t size;
3289{
3290	vm_offset_t va, tmpva;
3291	unsigned *pte;
3292
3293	size = roundup(size, PAGE_SIZE);
3294
3295	va = kmem_alloc_pageable(kernel_map, size);
3296#if !defined(MAX_PERF)
3297	if (!va)
3298		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3299#endif
3300
3301	pa = pa & PG_FRAME;
3302	for (tmpva = va; size > 0;) {
3303		pte = (unsigned *)vtopte(tmpva);
3304		*pte = pa | PG_RW | PG_V | pgeflag;
3305		size -= PAGE_SIZE;
3306		tmpva += PAGE_SIZE;
3307		pa += PAGE_SIZE;
3308	}
3309	invltlb();
3310
3311	return ((void *) va);
3312}
3313
3314/*
3315 * perform the pmap work for mincore
3316 */
3317int
3318pmap_mincore(pmap, addr)
3319	pmap_t pmap;
3320	vm_offset_t addr;
3321{
3322
3323	unsigned *ptep, pte;
3324	vm_page_t m;
3325	int val = 0;
3326
3327	ptep = pmap_pte(pmap, addr);
3328	if (ptep == 0) {
3329		return 0;
3330	}
3331
3332	if ((pte = *ptep) != 0) {
3333		pv_table_t *ppv;
3334		vm_offset_t pa;
3335
3336		val = MINCORE_INCORE;
3337		if ((pte & PG_MANAGED) == 0)
3338			return val;
3339
3340		pa = pte & PG_FRAME;
3341
3342		ppv = pa_to_pvh((pa & PG_FRAME));
3343		m = ppv->pv_vm_page;
3344
3345		/*
3346		 * Modified by us
3347		 */
3348		if (pte & PG_M)
3349			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3350		/*
3351		 * Modified by someone
3352		 */
3353		else if (m->dirty || pmap_is_modified(pa))
3354			val |= MINCORE_MODIFIED_OTHER;
3355		/*
3356		 * Referenced by us
3357		 */
3358		if (pte & PG_A)
3359			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3360
3361		/*
3362		 * Referenced by someone
3363		 */
3364		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(pa)) {
3365			val |= MINCORE_REFERENCED_OTHER;
3366			vm_page_flag_set(m, PG_REFERENCED);
3367		}
3368	}
3369	return val;
3370}
3371
3372void
3373pmap_activate(struct proc *p)
3374{
3375	pmap_t	pmap;
3376
3377	pmap = vmspace_pmap(p->p_vmspace);
3378#if defined(SMP)
3379	pmap->pm_active |= 1 << cpuid;
3380#else
3381	pmap->pm_active |= 1;
3382#endif
3383#if defined(SWTCH_OPTIM_STATS)
3384	tlb_flush_count++;
3385#endif
3386	load_cr3(p->p_addr->u_pcb.pcb_cr3 = vtophys(pmap->pm_pdir));
3387}
3388
3389vm_offset_t
3390pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) {
3391
3392	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3393		return addr;
3394	}
3395
3396	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3397	return addr;
3398}
3399
3400
3401#if defined(PMAP_DEBUG)
3402pmap_pid_dump(int pid) {
3403	pmap_t pmap;
3404	struct proc *p;
3405	int npte = 0;
3406	int index;
3407	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
3408		if (p->p_pid != pid)
3409			continue;
3410
3411		if (p->p_vmspace) {
3412			int i,j;
3413			index = 0;
3414			pmap = vmspace_pmap(p->p_vmspace);
3415			for(i=0;i<1024;i++) {
3416				pd_entry_t *pde;
3417				unsigned *pte;
3418				unsigned base = i << PDRSHIFT;
3419
3420				pde = &pmap->pm_pdir[i];
3421				if (pde && pmap_pde_v(pde)) {
3422					for(j=0;j<1024;j++) {
3423						unsigned va = base + (j << PAGE_SHIFT);
3424						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3425							if (index) {
3426								index = 0;
3427								printf("\n");
3428							}
3429							return npte;
3430						}
3431						pte = pmap_pte_quick( pmap, va);
3432						if (pte && pmap_pte_v(pte)) {
3433							vm_offset_t pa;
3434							vm_page_t m;
3435							pa = *(int *)pte;
3436							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
3437							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3438								va, pa, m->hold_count, m->wire_count, m->flags);
3439							npte++;
3440							index++;
3441							if (index >= 2) {
3442								index = 0;
3443								printf("\n");
3444							} else {
3445								printf(" ");
3446							}
3447						}
3448					}
3449				}
3450			}
3451		}
3452	}
3453	return npte;
3454}
3455#endif
3456
3457#if defined(DEBUG)
3458
3459static void	pads __P((pmap_t pm));
3460void		pmap_pvdump __P((vm_offset_t pa));
3461
3462/* print address space of pmap*/
3463static void
3464pads(pm)
3465	pmap_t pm;
3466{
3467	unsigned va, i, j;
3468	unsigned *ptep;
3469
3470	if (pm == kernel_pmap)
3471		return;
3472	for (i = 0; i < 1024; i++)
3473		if (pm->pm_pdir[i])
3474			for (j = 0; j < 1024; j++) {
3475				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3476				if (pm == kernel_pmap && va < KERNBASE)
3477					continue;
3478				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3479					continue;
3480				ptep = pmap_pte_quick(pm, va);
3481				if (pmap_pte_v(ptep))
3482					printf("%x:%x ", va, *(int *) ptep);
3483			};
3484
3485}
3486
3487void
3488pmap_pvdump(pa)
3489	vm_offset_t pa;
3490{
3491	pv_table_t *ppv;
3492	register pv_entry_t pv;
3493
3494	printf("pa %x", pa);
3495	ppv = pa_to_pvh(pa);
3496	for (pv = TAILQ_FIRST(&ppv->pv_list);
3497		pv;
3498		pv = TAILQ_NEXT(pv, pv_list)) {
3499#ifdef used_to_be
3500		printf(" -> pmap %p, va %x, flags %x",
3501		    (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
3502#endif
3503		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3504		pads(pv->pv_pmap);
3505	}
3506	printf(" ");
3507}
3508#endif
3509