pmap.c revision 193734
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2003 Peter Wemm
9 * All rights reserved.
10 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * the Systems Programming Group of the University of Utah Computer
15 * Science Department and William Jolitz of UUNET Technologies Inc.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 *    notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 *    notice, this list of conditions and the following disclaimer in the
24 *    documentation and/or other materials provided with the distribution.
25 * 3. All advertising materials mentioning features or use of this software
26 *    must display the following acknowledgement:
27 *	This product includes software developed by the University of
28 *	California, Berkeley and its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 *    may be used to endorse or promote products derived from this software
31 *    without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46 */
47/*-
48 * Copyright (c) 2003 Networks Associates Technology, Inc.
49 * All rights reserved.
50 *
51 * This software was developed for the FreeBSD Project by Jake Burkholder,
52 * Safeport Network Services, and Network Associates Laboratories, the
53 * Security Research Division of Network Associates, Inc. under
54 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
55 * CHATS research program.
56 *
57 * Redistribution and use in source and binary forms, with or without
58 * modification, are permitted provided that the following conditions
59 * are met:
60 * 1. Redistributions of source code must retain the above copyright
61 *    notice, this list of conditions and the following disclaimer.
62 * 2. Redistributions in binary form must reproduce the above copyright
63 *    notice, this list of conditions and the following disclaimer in the
64 *    documentation and/or other materials provided with the distribution.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
67 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
70 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76 * SUCH DAMAGE.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/amd64/amd64/pmap.c 193734 2009-06-08 18:23:43Z ed $");
81
82/*
83 *	Manages physical address maps.
84 *
85 *	In addition to hardware address maps, this
86 *	module is called upon to provide software-use-only
87 *	maps which may or may not be stored in the same
88 *	form as hardware maps.  These pseudo-maps are
89 *	used to store intermediate results from copy
90 *	operations to and from address spaces.
91 *
92 *	Since the information managed by this module is
93 *	also stored by the logical address mapping module,
94 *	this module may throw away valid virtual-to-physical
95 *	mappings at almost any time.  However, invalidations
96 *	of virtual-to-physical mappings must be done as
97 *	requested.
98 *
99 *	In order to cope with hardware architectures which
100 *	make virtual-to-physical map invalidates expensive,
101 *	this module may delay invalidate or reduced protection
102 *	operations until such time as they are actually
103 *	necessary.  This module is given full information as
104 *	to which processors are currently using which maps,
105 *	and to when physical maps must be made correct.
106 */
107
108#include "opt_msgbuf.h"
109#include "opt_pmap.h"
110#include "opt_vm.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/vm_reserv.h>
140#include <vm/uma.h>
141
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifndef PMAP_SHPGPERPROC
152#define PMAP_SHPGPERPROC 200
153#endif
154
155#if !defined(DIAGNOSTIC)
156#define PMAP_INLINE	__gnu89_inline
157#else
158#define PMAP_INLINE
159#endif
160
161#define PV_STATS
162#ifdef PV_STATS
163#define PV_STAT(x)	do { x ; } while (0)
164#else
165#define PV_STAT(x)	do { } while (0)
166#endif
167
168#define	pa_index(pa)	((pa) >> PDRSHIFT)
169#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
170
171struct pmap kernel_pmap_store;
172
173vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
174vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
175
176static int ndmpdp;
177static vm_paddr_t dmaplimit;
178vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
179pt_entry_t pg_nx;
180
181SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
182
183static int pg_ps_enabled = 1;
184SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
185    "Are large page mappings enabled?");
186
187static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
188static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
189u_int64_t		KPDPphys;	/* phys addr of kernel level 3 */
190u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
191
192static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
193static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
194
195/*
196 * Data for the pv entry allocation mechanism
197 */
198static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
199static struct md_page *pv_table;
200static int shpgperproc = PMAP_SHPGPERPROC;
201
202/*
203 * All those kernel PT submaps that BSD is so fond of
204 */
205pt_entry_t *CMAP1 = 0;
206caddr_t CADDR1 = 0;
207struct msgbuf *msgbufp = 0;
208
209/*
210 * Crashdump maps.
211 */
212static caddr_t crashdumpmap;
213
214static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
215static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
216static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
217static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
218static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
219static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
220static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
221		    vm_offset_t va);
222static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
223
224static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
225static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
226static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
227    vm_offset_t va);
228static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
229    vm_prot_t prot);
230static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
231    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
232static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
233static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
234static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
235static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
236static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
237static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
238static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
239static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
240    vm_prot_t prot);
241static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
242static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
243		vm_page_t *free);
244static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq,
245		vm_offset_t sva, pd_entry_t ptepde, vm_page_t *free);
246static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
247static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
248    vm_page_t *free);
249static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
250		vm_offset_t va);
251static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
252static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
253    vm_page_t m);
254
255static vm_page_t pmap_allocpde(pmap_t pmap, vm_offset_t va, int flags);
256static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
257
258static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, int flags);
259static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
260                vm_page_t* free);
261static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, vm_page_t *);
262static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
263
264CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
265CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
266
267/*
268 * Move the kernel virtual free pointer to the next
269 * 2MB.  This is used to help improve performance
270 * by using a large (2MB) page for much of the kernel
271 * (.text, .data, .bss)
272 */
273static vm_offset_t
274pmap_kmem_choose(vm_offset_t addr)
275{
276	vm_offset_t newaddr = addr;
277
278	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
279	return newaddr;
280}
281
282/********************/
283/* Inline functions */
284/********************/
285
286/* Return a non-clipped PD index for a given VA */
287static __inline vm_pindex_t
288pmap_pde_pindex(vm_offset_t va)
289{
290	return va >> PDRSHIFT;
291}
292
293
294/* Return various clipped indexes for a given VA */
295static __inline vm_pindex_t
296pmap_pte_index(vm_offset_t va)
297{
298
299	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
300}
301
302static __inline vm_pindex_t
303pmap_pde_index(vm_offset_t va)
304{
305
306	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
307}
308
309static __inline vm_pindex_t
310pmap_pdpe_index(vm_offset_t va)
311{
312
313	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
314}
315
316static __inline vm_pindex_t
317pmap_pml4e_index(vm_offset_t va)
318{
319
320	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
321}
322
323/* Return a pointer to the PML4 slot that corresponds to a VA */
324static __inline pml4_entry_t *
325pmap_pml4e(pmap_t pmap, vm_offset_t va)
326{
327
328	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
329}
330
331/* Return a pointer to the PDP slot that corresponds to a VA */
332static __inline pdp_entry_t *
333pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
334{
335	pdp_entry_t *pdpe;
336
337	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
338	return (&pdpe[pmap_pdpe_index(va)]);
339}
340
341/* Return a pointer to the PDP slot that corresponds to a VA */
342static __inline pdp_entry_t *
343pmap_pdpe(pmap_t pmap, vm_offset_t va)
344{
345	pml4_entry_t *pml4e;
346
347	pml4e = pmap_pml4e(pmap, va);
348	if ((*pml4e & PG_V) == 0)
349		return NULL;
350	return (pmap_pml4e_to_pdpe(pml4e, va));
351}
352
353/* Return a pointer to the PD slot that corresponds to a VA */
354static __inline pd_entry_t *
355pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
356{
357	pd_entry_t *pde;
358
359	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
360	return (&pde[pmap_pde_index(va)]);
361}
362
363/* Return a pointer to the PD slot that corresponds to a VA */
364static __inline pd_entry_t *
365pmap_pde(pmap_t pmap, vm_offset_t va)
366{
367	pdp_entry_t *pdpe;
368
369	pdpe = pmap_pdpe(pmap, va);
370	if (pdpe == NULL || (*pdpe & PG_V) == 0)
371		 return NULL;
372	return (pmap_pdpe_to_pde(pdpe, va));
373}
374
375/* Return a pointer to the PT slot that corresponds to a VA */
376static __inline pt_entry_t *
377pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
378{
379	pt_entry_t *pte;
380
381	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
382	return (&pte[pmap_pte_index(va)]);
383}
384
385/* Return a pointer to the PT slot that corresponds to a VA */
386static __inline pt_entry_t *
387pmap_pte(pmap_t pmap, vm_offset_t va)
388{
389	pd_entry_t *pde;
390
391	pde = pmap_pde(pmap, va);
392	if (pde == NULL || (*pde & PG_V) == 0)
393		return NULL;
394	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
395		return ((pt_entry_t *)pde);
396	return (pmap_pde_to_pte(pde, va));
397}
398
399
400PMAP_INLINE pt_entry_t *
401vtopte(vm_offset_t va)
402{
403	u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
404
405	return (PTmap + ((va >> PAGE_SHIFT) & mask));
406}
407
408static __inline pd_entry_t *
409vtopde(vm_offset_t va)
410{
411	u_int64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
412
413	return (PDmap + ((va >> PDRSHIFT) & mask));
414}
415
416static u_int64_t
417allocpages(vm_paddr_t *firstaddr, int n)
418{
419	u_int64_t ret;
420
421	ret = *firstaddr;
422	bzero((void *)ret, n * PAGE_SIZE);
423	*firstaddr += n * PAGE_SIZE;
424	return (ret);
425}
426
427static void
428create_pagetables(vm_paddr_t *firstaddr)
429{
430	int i;
431
432	/* Allocate pages */
433	KPTphys = allocpages(firstaddr, NKPT);
434	KPML4phys = allocpages(firstaddr, 1);
435	KPDPphys = allocpages(firstaddr, NKPML4E);
436	KPDphys = allocpages(firstaddr, NKPDPE);
437
438	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
439	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
440		ndmpdp = 4;
441	DMPDPphys = allocpages(firstaddr, NDMPML4E);
442	if ((amd_feature & AMDID_PAGE1GB) == 0)
443		DMPDphys = allocpages(firstaddr, ndmpdp);
444	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
445
446	/* Fill in the underlying page table pages */
447	/* Read-only from zero to physfree */
448	/* XXX not fully used, underneath 2M pages */
449	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
450		((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
451		((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V | PG_G;
452	}
453
454	/* Now map the page tables at their location within PTmap */
455	for (i = 0; i < NKPT; i++) {
456		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
457		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
458	}
459
460	/* Map from zero to end of allocations under 2M pages */
461	/* This replaces some of the KPTphys entries above */
462	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
463		((pd_entry_t *)KPDphys)[i] = i << PDRSHIFT;
464		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V | PG_PS | PG_G;
465	}
466
467	/* And connect up the PD to the PDP */
468	for (i = 0; i < NKPDPE; i++) {
469		((pdp_entry_t *)KPDPphys)[i + KPDPI] = KPDphys +
470		    (i << PAGE_SHIFT);
471		((pdp_entry_t *)KPDPphys)[i + KPDPI] |= PG_RW | PG_V | PG_U;
472	}
473
474	/* Now set up the direct map space using either 2MB or 1GB pages */
475	/* Preset PG_M and PG_A because demotion expects it */
476	if ((amd_feature & AMDID_PAGE1GB) == 0) {
477		for (i = 0; i < NPDEPG * ndmpdp; i++) {
478			((pd_entry_t *)DMPDphys)[i] = (vm_paddr_t)i << PDRSHIFT;
479			((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS |
480			    PG_G | PG_M | PG_A;
481		}
482		/* And the direct map space's PDP */
483		for (i = 0; i < ndmpdp; i++) {
484			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
485			    (i << PAGE_SHIFT);
486			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
487		}
488	} else {
489		for (i = 0; i < ndmpdp; i++) {
490			((pdp_entry_t *)DMPDPphys)[i] =
491			    (vm_paddr_t)i << PDPSHIFT;
492			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_PS |
493			    PG_G | PG_M | PG_A;
494		}
495	}
496
497	/* And recursively map PML4 to itself in order to get PTmap */
498	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
499	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
500
501	/* Connect the Direct Map slot up to the PML4 */
502	((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
503	((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
504
505	/* Connect the KVA slot up to the PML4 */
506	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
507	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
508}
509
510/*
511 *	Bootstrap the system enough to run with virtual memory.
512 *
513 *	On amd64 this is called after mapping has already been enabled
514 *	and just syncs the pmap module with what has already been done.
515 *	[We can't call it easily with mapping off since the kernel is not
516 *	mapped with PA == VA, hence we would have to relocate every address
517 *	from the linked base (virtual) address "KERNBASE" to the actual
518 *	(physical) address starting relative to 0]
519 */
520void
521pmap_bootstrap(vm_paddr_t *firstaddr)
522{
523	vm_offset_t va;
524	pt_entry_t *pte, *unused;
525
526	/*
527	 * Create an initial set of page tables to run the kernel in.
528	 */
529	create_pagetables(firstaddr);
530
531	virtual_avail = (vm_offset_t) KERNBASE + *firstaddr;
532	virtual_avail = pmap_kmem_choose(virtual_avail);
533
534	virtual_end = VM_MAX_KERNEL_ADDRESS;
535
536
537	/* XXX do %cr0 as well */
538	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
539	load_cr3(KPML4phys);
540
541	/*
542	 * Initialize the kernel pmap (which is statically allocated).
543	 */
544	PMAP_LOCK_INIT(kernel_pmap);
545	kernel_pmap->pm_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(KPML4phys);
546	kernel_pmap->pm_root = NULL;
547	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
548	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
549
550	/*
551	 * Reserve some special page table entries/VA space for temporary
552	 * mapping of pages.
553	 */
554#define	SYSMAP(c, p, v, n)	\
555	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
556
557	va = virtual_avail;
558	pte = vtopte(va);
559
560	/*
561	 * CMAP1 is only used for the memory test.
562	 */
563	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
564
565	/*
566	 * Crashdump maps.
567	 */
568	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
569
570	/*
571	 * msgbufp is used to map the system message buffer.
572	 */
573	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
574
575	virtual_avail = va;
576
577	*CMAP1 = 0;
578
579	invltlb();
580
581	/* Initialize the PAT MSR. */
582	pmap_init_pat();
583}
584
585/*
586 * Setup the PAT MSR.
587 */
588void
589pmap_init_pat(void)
590{
591	uint64_t pat_msr;
592
593	/* Bail if this CPU doesn't implement PAT. */
594	if (!(cpu_feature & CPUID_PAT))
595		panic("no PAT??");
596
597	/*
598	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
599	 * Program 4 and 5 as WP and WC.
600	 * Leave 6 and 7 as UC and UC-.
601	 */
602	pat_msr = rdmsr(MSR_PAT);
603	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
604	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
605	    PAT_VALUE(5, PAT_WRITE_COMBINING);
606	wrmsr(MSR_PAT, pat_msr);
607}
608
609/*
610 *	Initialize a vm_page's machine-dependent fields.
611 */
612void
613pmap_page_init(vm_page_t m)
614{
615
616	TAILQ_INIT(&m->md.pv_list);
617}
618
619/*
620 *	Initialize the pmap module.
621 *	Called by vm_init, to initialize any structures that the pmap
622 *	system needs to map virtual memory.
623 */
624void
625pmap_init(void)
626{
627	pd_entry_t *pd;
628	vm_page_t mpte;
629	vm_size_t s;
630	int i, pv_npg;
631
632	/*
633	 * Initialize the vm page array entries for the kernel pmap's
634	 * page table pages.
635	 */
636	pd = pmap_pde(kernel_pmap, KERNBASE);
637	for (i = 0; i < NKPT; i++) {
638		if ((pd[i] & (PG_PS | PG_V)) == (PG_PS | PG_V))
639			continue;
640		KASSERT((pd[i] & PG_V) != 0,
641		    ("pmap_init: page table page is missing"));
642		mpte = PHYS_TO_VM_PAGE(pd[i] & PG_FRAME);
643		KASSERT(mpte >= vm_page_array &&
644		    mpte < &vm_page_array[vm_page_array_size],
645		    ("pmap_init: page table page is out of range"));
646		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
647		mpte->phys_addr = pd[i] & PG_FRAME;
648	}
649
650	/*
651	 * Initialize the address space (zone) for the pv entries.  Set a
652	 * high water mark so that the system can recover from excessive
653	 * numbers of pv entries.
654	 */
655	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
656	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
657	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
658	pv_entry_high_water = 9 * (pv_entry_max / 10);
659
660	/*
661	 * Are large page mappings enabled?
662	 */
663	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
664
665	/*
666	 * Calculate the size of the pv head table for superpages.
667	 */
668	for (i = 0; phys_avail[i + 1]; i += 2);
669	pv_npg = round_2mpage(phys_avail[(i - 2) + 1]) / NBPDR;
670
671	/*
672	 * Allocate memory for the pv head table for superpages.
673	 */
674	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
675	s = round_page(s);
676	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
677	for (i = 0; i < pv_npg; i++)
678		TAILQ_INIT(&pv_table[i].pv_list);
679}
680
681static int
682pmap_pventry_proc(SYSCTL_HANDLER_ARGS)
683{
684	int error;
685
686	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
687	if (error == 0 && req->newptr) {
688		shpgperproc = (pv_entry_max - cnt.v_page_count) / maxproc;
689		pv_entry_high_water = 9 * (pv_entry_max / 10);
690	}
691	return (error);
692}
693SYSCTL_PROC(_vm_pmap, OID_AUTO, pv_entry_max, CTLTYPE_INT|CTLFLAG_RW,
694    &pv_entry_max, 0, pmap_pventry_proc, "IU", "Max number of PV entries");
695
696static int
697pmap_shpgperproc_proc(SYSCTL_HANDLER_ARGS)
698{
699	int error;
700
701	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
702	if (error == 0 && req->newptr) {
703		pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
704		pv_entry_high_water = 9 * (pv_entry_max / 10);
705	}
706	return (error);
707}
708SYSCTL_PROC(_vm_pmap, OID_AUTO, shpgperproc, CTLTYPE_INT|CTLFLAG_RW,
709    &shpgperproc, 0, pmap_shpgperproc_proc, "IU", "Page share factor per proc");
710
711SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
712    "2MB page mapping counters");
713
714static u_long pmap_pde_demotions;
715SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
716    &pmap_pde_demotions, 0, "2MB page demotions");
717
718static u_long pmap_pde_mappings;
719SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
720    &pmap_pde_mappings, 0, "2MB page mappings");
721
722static u_long pmap_pde_p_failures;
723SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
724    &pmap_pde_p_failures, 0, "2MB page promotion failures");
725
726static u_long pmap_pde_promotions;
727SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
728    &pmap_pde_promotions, 0, "2MB page promotions");
729
730SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD, 0,
731    "1GB page mapping counters");
732
733static u_long pmap_pdpe_demotions;
734SYSCTL_ULONG(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
735    &pmap_pdpe_demotions, 0, "1GB page demotions");
736
737
738/***************************************************
739 * Low level helper routines.....
740 ***************************************************/
741
742/*
743 * Determine the appropriate bits to set in a PTE or PDE for a specified
744 * caching mode.
745 */
746static int
747pmap_cache_bits(int mode, boolean_t is_pde)
748{
749	int pat_flag, pat_index, cache_bits;
750
751	/* The PAT bit is different for PTE's and PDE's. */
752	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
753
754	/* If we don't support PAT, map extended modes to older ones. */
755	if (!(cpu_feature & CPUID_PAT)) {
756		switch (mode) {
757		case PAT_UNCACHEABLE:
758		case PAT_WRITE_THROUGH:
759		case PAT_WRITE_BACK:
760			break;
761		case PAT_UNCACHED:
762		case PAT_WRITE_COMBINING:
763		case PAT_WRITE_PROTECTED:
764			mode = PAT_UNCACHEABLE;
765			break;
766		}
767	}
768
769	/* Map the caching mode to a PAT index. */
770	switch (mode) {
771	case PAT_UNCACHEABLE:
772		pat_index = 3;
773		break;
774	case PAT_WRITE_THROUGH:
775		pat_index = 1;
776		break;
777	case PAT_WRITE_BACK:
778		pat_index = 0;
779		break;
780	case PAT_UNCACHED:
781		pat_index = 2;
782		break;
783	case PAT_WRITE_COMBINING:
784		pat_index = 5;
785		break;
786	case PAT_WRITE_PROTECTED:
787		pat_index = 4;
788		break;
789	default:
790		panic("Unknown caching mode %d\n", mode);
791	}
792
793	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
794	cache_bits = 0;
795	if (pat_index & 0x4)
796		cache_bits |= pat_flag;
797	if (pat_index & 0x2)
798		cache_bits |= PG_NC_PCD;
799	if (pat_index & 0x1)
800		cache_bits |= PG_NC_PWT;
801	return (cache_bits);
802}
803#ifdef SMP
804/*
805 * For SMP, these functions have to use the IPI mechanism for coherence.
806 *
807 * N.B.: Before calling any of the following TLB invalidation functions,
808 * the calling processor must ensure that all stores updating a non-
809 * kernel page table are globally performed.  Otherwise, another
810 * processor could cache an old, pre-update entry without being
811 * invalidated.  This can happen one of two ways: (1) The pmap becomes
812 * active on another processor after its pm_active field is checked by
813 * one of the following functions but before a store updating the page
814 * table is globally performed. (2) The pmap becomes active on another
815 * processor before its pm_active field is checked but due to
816 * speculative loads one of the following functions stills reads the
817 * pmap as inactive on the other processor.
818 *
819 * The kernel page table is exempt because its pm_active field is
820 * immutable.  The kernel page table is always active on every
821 * processor.
822 */
823void
824pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
825{
826	u_int cpumask;
827	u_int other_cpus;
828
829	sched_pin();
830	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
831		invlpg(va);
832		smp_invlpg(va);
833	} else {
834		cpumask = PCPU_GET(cpumask);
835		other_cpus = PCPU_GET(other_cpus);
836		if (pmap->pm_active & cpumask)
837			invlpg(va);
838		if (pmap->pm_active & other_cpus)
839			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
840	}
841	sched_unpin();
842}
843
844void
845pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
846{
847	u_int cpumask;
848	u_int other_cpus;
849	vm_offset_t addr;
850
851	sched_pin();
852	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
853		for (addr = sva; addr < eva; addr += PAGE_SIZE)
854			invlpg(addr);
855		smp_invlpg_range(sva, eva);
856	} else {
857		cpumask = PCPU_GET(cpumask);
858		other_cpus = PCPU_GET(other_cpus);
859		if (pmap->pm_active & cpumask)
860			for (addr = sva; addr < eva; addr += PAGE_SIZE)
861				invlpg(addr);
862		if (pmap->pm_active & other_cpus)
863			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
864			    sva, eva);
865	}
866	sched_unpin();
867}
868
869void
870pmap_invalidate_all(pmap_t pmap)
871{
872	u_int cpumask;
873	u_int other_cpus;
874
875	sched_pin();
876	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
877		invltlb();
878		smp_invltlb();
879	} else {
880		cpumask = PCPU_GET(cpumask);
881		other_cpus = PCPU_GET(other_cpus);
882		if (pmap->pm_active & cpumask)
883			invltlb();
884		if (pmap->pm_active & other_cpus)
885			smp_masked_invltlb(pmap->pm_active & other_cpus);
886	}
887	sched_unpin();
888}
889
890void
891pmap_invalidate_cache(void)
892{
893
894	sched_pin();
895	wbinvd();
896	smp_cache_flush();
897	sched_unpin();
898}
899#else /* !SMP */
900/*
901 * Normal, non-SMP, invalidation functions.
902 * We inline these within pmap.c for speed.
903 */
904PMAP_INLINE void
905pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
906{
907
908	if (pmap == kernel_pmap || pmap->pm_active)
909		invlpg(va);
910}
911
912PMAP_INLINE void
913pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
914{
915	vm_offset_t addr;
916
917	if (pmap == kernel_pmap || pmap->pm_active)
918		for (addr = sva; addr < eva; addr += PAGE_SIZE)
919			invlpg(addr);
920}
921
922PMAP_INLINE void
923pmap_invalidate_all(pmap_t pmap)
924{
925
926	if (pmap == kernel_pmap || pmap->pm_active)
927		invltlb();
928}
929
930PMAP_INLINE void
931pmap_invalidate_cache(void)
932{
933
934	wbinvd();
935}
936#endif /* !SMP */
937
938/*
939 * Are we current address space or kernel?
940 */
941static __inline int
942pmap_is_current(pmap_t pmap)
943{
944	return (pmap == kernel_pmap ||
945	    (pmap->pm_pml4[PML4PML4I] & PG_FRAME) == (PML4pml4e[0] & PG_FRAME));
946}
947
948/*
949 *	Routine:	pmap_extract
950 *	Function:
951 *		Extract the physical page address associated
952 *		with the given map/virtual_address pair.
953 */
954vm_paddr_t
955pmap_extract(pmap_t pmap, vm_offset_t va)
956{
957	vm_paddr_t rtval;
958	pt_entry_t *pte;
959	pd_entry_t pde, *pdep;
960
961	rtval = 0;
962	PMAP_LOCK(pmap);
963	pdep = pmap_pde(pmap, va);
964	if (pdep != NULL) {
965		pde = *pdep;
966		if (pde) {
967			if ((pde & PG_PS) != 0)
968				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
969			else {
970				pte = pmap_pde_to_pte(pdep, va);
971				rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
972			}
973		}
974	}
975	PMAP_UNLOCK(pmap);
976	return (rtval);
977}
978
979/*
980 *	Routine:	pmap_extract_and_hold
981 *	Function:
982 *		Atomically extract and hold the physical page
983 *		with the given pmap and virtual address pair
984 *		if that mapping permits the given protection.
985 */
986vm_page_t
987pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
988{
989	pd_entry_t pde, *pdep;
990	pt_entry_t pte;
991	vm_page_t m;
992
993	m = NULL;
994	vm_page_lock_queues();
995	PMAP_LOCK(pmap);
996	pdep = pmap_pde(pmap, va);
997	if (pdep != NULL && (pde = *pdep)) {
998		if (pde & PG_PS) {
999			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1000				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1001				    (va & PDRMASK));
1002				vm_page_hold(m);
1003			}
1004		} else {
1005			pte = *pmap_pde_to_pte(pdep, va);
1006			if ((pte & PG_V) &&
1007			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1008				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1009				vm_page_hold(m);
1010			}
1011		}
1012	}
1013	vm_page_unlock_queues();
1014	PMAP_UNLOCK(pmap);
1015	return (m);
1016}
1017
1018vm_paddr_t
1019pmap_kextract(vm_offset_t va)
1020{
1021	pd_entry_t pde;
1022	vm_paddr_t pa;
1023
1024	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1025		pa = DMAP_TO_PHYS(va);
1026	} else {
1027		pde = *vtopde(va);
1028		if (pde & PG_PS) {
1029			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
1030		} else {
1031			/*
1032			 * Beware of a concurrent promotion that changes the
1033			 * PDE at this point!  For example, vtopte() must not
1034			 * be used to access the PTE because it would use the
1035			 * new PDE.  It is, however, safe to use the old PDE
1036			 * because the page table page is preserved by the
1037			 * promotion.
1038			 */
1039			pa = *pmap_pde_to_pte(&pde, va);
1040			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1041		}
1042	}
1043	return pa;
1044}
1045
1046/***************************************************
1047 * Low level mapping routines.....
1048 ***************************************************/
1049
1050/*
1051 * Add a wired page to the kva.
1052 * Note: not SMP coherent.
1053 */
1054PMAP_INLINE void
1055pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1056{
1057	pt_entry_t *pte;
1058
1059	pte = vtopte(va);
1060	pte_store(pte, pa | PG_RW | PG_V | PG_G);
1061}
1062
1063static __inline void
1064pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1065{
1066	pt_entry_t *pte;
1067
1068	pte = vtopte(va);
1069	pte_store(pte, pa | PG_RW | PG_V | PG_G | pmap_cache_bits(mode, 0));
1070}
1071
1072/*
1073 * Remove a page from the kernel pagetables.
1074 * Note: not SMP coherent.
1075 */
1076PMAP_INLINE void
1077pmap_kremove(vm_offset_t va)
1078{
1079	pt_entry_t *pte;
1080
1081	pte = vtopte(va);
1082	pte_clear(pte);
1083}
1084
1085/*
1086 *	Used to map a range of physical addresses into kernel
1087 *	virtual address space.
1088 *
1089 *	The value passed in '*virt' is a suggested virtual address for
1090 *	the mapping. Architectures which can support a direct-mapped
1091 *	physical to virtual region can return the appropriate address
1092 *	within that region, leaving '*virt' unchanged. Other
1093 *	architectures should map the pages starting at '*virt' and
1094 *	update '*virt' with the first usable address after the mapped
1095 *	region.
1096 */
1097vm_offset_t
1098pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1099{
1100	return PHYS_TO_DMAP(start);
1101}
1102
1103
1104/*
1105 * Add a list of wired pages to the kva
1106 * this routine is only used for temporary
1107 * kernel mappings that do not need to have
1108 * page modification or references recorded.
1109 * Note that old mappings are simply written
1110 * over.  The page *must* be wired.
1111 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1112 */
1113void
1114pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1115{
1116	pt_entry_t *endpte, oldpte, *pte;
1117
1118	oldpte = 0;
1119	pte = vtopte(sva);
1120	endpte = pte + count;
1121	while (pte < endpte) {
1122		oldpte |= *pte;
1123		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | PG_G | PG_RW | PG_V);
1124		pte++;
1125		ma++;
1126	}
1127	if ((oldpte & PG_V) != 0)
1128		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1129		    PAGE_SIZE);
1130}
1131
1132/*
1133 * This routine tears out page mappings from the
1134 * kernel -- it is meant only for temporary mappings.
1135 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1136 */
1137void
1138pmap_qremove(vm_offset_t sva, int count)
1139{
1140	vm_offset_t va;
1141
1142	va = sva;
1143	while (count-- > 0) {
1144		pmap_kremove(va);
1145		va += PAGE_SIZE;
1146	}
1147	pmap_invalidate_range(kernel_pmap, sva, va);
1148}
1149
1150/***************************************************
1151 * Page table page management routines.....
1152 ***************************************************/
1153static __inline void
1154pmap_free_zero_pages(vm_page_t free)
1155{
1156	vm_page_t m;
1157
1158	while (free != NULL) {
1159		m = free;
1160		free = m->right;
1161		/* Preserve the page's PG_ZERO setting. */
1162		vm_page_free_toq(m);
1163	}
1164}
1165
1166/*
1167 * Schedule the specified unused page table page to be freed.  Specifically,
1168 * add the page to the specified list of pages that will be released to the
1169 * physical memory manager after the TLB has been updated.
1170 */
1171static __inline void
1172pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1173{
1174
1175	if (set_PG_ZERO)
1176		m->flags |= PG_ZERO;
1177	else
1178		m->flags &= ~PG_ZERO;
1179	m->right = *free;
1180	*free = m;
1181}
1182
1183/*
1184 * Inserts the specified page table page into the specified pmap's collection
1185 * of idle page table pages.  Each of a pmap's page table pages is responsible
1186 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1187 * ordered by this virtual address range.
1188 */
1189static void
1190pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1191{
1192	vm_page_t root;
1193
1194	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1195	root = pmap->pm_root;
1196	if (root == NULL) {
1197		mpte->left = NULL;
1198		mpte->right = NULL;
1199	} else {
1200		root = vm_page_splay(mpte->pindex, root);
1201		if (mpte->pindex < root->pindex) {
1202			mpte->left = root->left;
1203			mpte->right = root;
1204			root->left = NULL;
1205		} else if (mpte->pindex == root->pindex)
1206			panic("pmap_insert_pt_page: pindex already inserted");
1207		else {
1208			mpte->right = root->right;
1209			mpte->left = root;
1210			root->right = NULL;
1211		}
1212	}
1213	pmap->pm_root = mpte;
1214}
1215
1216/*
1217 * Looks for a page table page mapping the specified virtual address in the
1218 * specified pmap's collection of idle page table pages.  Returns NULL if there
1219 * is no page table page corresponding to the specified virtual address.
1220 */
1221static vm_page_t
1222pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1223{
1224	vm_page_t mpte;
1225	vm_pindex_t pindex = pmap_pde_pindex(va);
1226
1227	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1228	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1229		mpte = vm_page_splay(pindex, mpte);
1230		if ((pmap->pm_root = mpte)->pindex != pindex)
1231			mpte = NULL;
1232	}
1233	return (mpte);
1234}
1235
1236/*
1237 * Removes the specified page table page from the specified pmap's collection
1238 * of idle page table pages.  The specified page table page must be a member of
1239 * the pmap's collection.
1240 */
1241static void
1242pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1243{
1244	vm_page_t root;
1245
1246	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1247	if (mpte != pmap->pm_root) {
1248		root = vm_page_splay(mpte->pindex, pmap->pm_root);
1249		KASSERT(mpte == root,
1250		    ("pmap_remove_pt_page: mpte %p is missing from pmap %p",
1251		    mpte, pmap));
1252	}
1253	if (mpte->left == NULL)
1254		root = mpte->right;
1255	else {
1256		root = vm_page_splay(mpte->pindex, mpte->left);
1257		root->right = mpte->right;
1258	}
1259	pmap->pm_root = root;
1260}
1261
1262/*
1263 * This routine unholds page table pages, and if the hold count
1264 * drops to zero, then it decrements the wire count.
1265 */
1266static __inline int
1267pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t *free)
1268{
1269
1270	--m->wire_count;
1271	if (m->wire_count == 0)
1272		return _pmap_unwire_pte_hold(pmap, va, m, free);
1273	else
1274		return 0;
1275}
1276
1277static int
1278_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
1279    vm_page_t *free)
1280{
1281
1282	/*
1283	 * unmap the page table page
1284	 */
1285	if (m->pindex >= (NUPDE + NUPDPE)) {
1286		/* PDP page */
1287		pml4_entry_t *pml4;
1288		pml4 = pmap_pml4e(pmap, va);
1289		*pml4 = 0;
1290	} else if (m->pindex >= NUPDE) {
1291		/* PD page */
1292		pdp_entry_t *pdp;
1293		pdp = pmap_pdpe(pmap, va);
1294		*pdp = 0;
1295	} else {
1296		/* PTE page */
1297		pd_entry_t *pd;
1298		pd = pmap_pde(pmap, va);
1299		*pd = 0;
1300	}
1301	--pmap->pm_stats.resident_count;
1302	if (m->pindex < NUPDE) {
1303		/* We just released a PT, unhold the matching PD */
1304		vm_page_t pdpg;
1305
1306		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
1307		pmap_unwire_pte_hold(pmap, va, pdpg, free);
1308	}
1309	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
1310		/* We just released a PD, unhold the matching PDP */
1311		vm_page_t pdppg;
1312
1313		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
1314		pmap_unwire_pte_hold(pmap, va, pdppg, free);
1315	}
1316
1317	/*
1318	 * This is a release store so that the ordinary store unmapping
1319	 * the page table page is globally performed before TLB shoot-
1320	 * down is begun.
1321	 */
1322	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1323
1324	/*
1325	 * Put page on a list so that it is released after
1326	 * *ALL* TLB shootdown is done
1327	 */
1328	pmap_add_delayed_free_list(m, free, TRUE);
1329
1330	return 1;
1331}
1332
1333/*
1334 * After removing a page table entry, this routine is used to
1335 * conditionally free the page, and manage the hold/wire counts.
1336 */
1337static int
1338pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde, vm_page_t *free)
1339{
1340	vm_page_t mpte;
1341
1342	if (va >= VM_MAXUSER_ADDRESS)
1343		return 0;
1344	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1345	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1346	return pmap_unwire_pte_hold(pmap, va, mpte, free);
1347}
1348
1349void
1350pmap_pinit0(pmap_t pmap)
1351{
1352
1353	PMAP_LOCK_INIT(pmap);
1354	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1355	pmap->pm_root = NULL;
1356	pmap->pm_active = 0;
1357	TAILQ_INIT(&pmap->pm_pvchunk);
1358	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1359}
1360
1361/*
1362 * Initialize a preallocated and zeroed pmap structure,
1363 * such as one in a vmspace structure.
1364 */
1365int
1366pmap_pinit(pmap_t pmap)
1367{
1368	vm_page_t pml4pg;
1369	static vm_pindex_t color;
1370
1371	PMAP_LOCK_INIT(pmap);
1372
1373	/*
1374	 * allocate the page directory page
1375	 */
1376	while ((pml4pg = vm_page_alloc(NULL, color++, VM_ALLOC_NOOBJ |
1377	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1378		VM_WAIT;
1379
1380	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
1381
1382	if ((pml4pg->flags & PG_ZERO) == 0)
1383		pagezero(pmap->pm_pml4);
1384
1385	/* Wire in kernel global address entries. */
1386	pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1387	pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
1388
1389	/* install self-referential address mapping entry(s) */
1390	pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | PG_V | PG_RW | PG_A | PG_M;
1391
1392	pmap->pm_root = NULL;
1393	pmap->pm_active = 0;
1394	TAILQ_INIT(&pmap->pm_pvchunk);
1395	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1396
1397	return (1);
1398}
1399
1400/*
1401 * this routine is called if the page table page is not
1402 * mapped correctly.
1403 *
1404 * Note: If a page allocation fails at page table level two or three,
1405 * one or two pages may be held during the wait, only to be released
1406 * afterwards.  This conservative approach is easily argued to avoid
1407 * race conditions.
1408 */
1409static vm_page_t
1410_pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, int flags)
1411{
1412	vm_page_t m, pdppg, pdpg;
1413
1414	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1415	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1416	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1417
1418	/*
1419	 * Allocate a page table page.
1420	 */
1421	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1422	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1423		if (flags & M_WAITOK) {
1424			PMAP_UNLOCK(pmap);
1425			vm_page_unlock_queues();
1426			VM_WAIT;
1427			vm_page_lock_queues();
1428			PMAP_LOCK(pmap);
1429		}
1430
1431		/*
1432		 * Indicate the need to retry.  While waiting, the page table
1433		 * page may have been allocated.
1434		 */
1435		return (NULL);
1436	}
1437	if ((m->flags & PG_ZERO) == 0)
1438		pmap_zero_page(m);
1439
1440	/*
1441	 * Map the pagetable page into the process address space, if
1442	 * it isn't already there.
1443	 */
1444
1445	if (ptepindex >= (NUPDE + NUPDPE)) {
1446		pml4_entry_t *pml4;
1447		vm_pindex_t pml4index;
1448
1449		/* Wire up a new PDPE page */
1450		pml4index = ptepindex - (NUPDE + NUPDPE);
1451		pml4 = &pmap->pm_pml4[pml4index];
1452		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1453
1454	} else if (ptepindex >= NUPDE) {
1455		vm_pindex_t pml4index;
1456		vm_pindex_t pdpindex;
1457		pml4_entry_t *pml4;
1458		pdp_entry_t *pdp;
1459
1460		/* Wire up a new PDE page */
1461		pdpindex = ptepindex - NUPDE;
1462		pml4index = pdpindex >> NPML4EPGSHIFT;
1463
1464		pml4 = &pmap->pm_pml4[pml4index];
1465		if ((*pml4 & PG_V) == 0) {
1466			/* Have to allocate a new pdp, recurse */
1467			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index,
1468			    flags) == NULL) {
1469				--m->wire_count;
1470				atomic_subtract_int(&cnt.v_wire_count, 1);
1471				vm_page_free_zero(m);
1472				return (NULL);
1473			}
1474		} else {
1475			/* Add reference to pdp page */
1476			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
1477			pdppg->wire_count++;
1478		}
1479		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1480
1481		/* Now find the pdp page */
1482		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1483		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1484
1485	} else {
1486		vm_pindex_t pml4index;
1487		vm_pindex_t pdpindex;
1488		pml4_entry_t *pml4;
1489		pdp_entry_t *pdp;
1490		pd_entry_t *pd;
1491
1492		/* Wire up a new PTE page */
1493		pdpindex = ptepindex >> NPDPEPGSHIFT;
1494		pml4index = pdpindex >> NPML4EPGSHIFT;
1495
1496		/* First, find the pdp and check that its valid. */
1497		pml4 = &pmap->pm_pml4[pml4index];
1498		if ((*pml4 & PG_V) == 0) {
1499			/* Have to allocate a new pd, recurse */
1500			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
1501			    flags) == NULL) {
1502				--m->wire_count;
1503				atomic_subtract_int(&cnt.v_wire_count, 1);
1504				vm_page_free_zero(m);
1505				return (NULL);
1506			}
1507			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1508			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1509		} else {
1510			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1511			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1512			if ((*pdp & PG_V) == 0) {
1513				/* Have to allocate a new pd, recurse */
1514				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
1515				    flags) == NULL) {
1516					--m->wire_count;
1517					atomic_subtract_int(&cnt.v_wire_count,
1518					    1);
1519					vm_page_free_zero(m);
1520					return (NULL);
1521				}
1522			} else {
1523				/* Add reference to the pd page */
1524				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
1525				pdpg->wire_count++;
1526			}
1527		}
1528		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
1529
1530		/* Now we know where the page directory page is */
1531		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1532		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1533	}
1534
1535	pmap->pm_stats.resident_count++;
1536
1537	return m;
1538}
1539
1540static vm_page_t
1541pmap_allocpde(pmap_t pmap, vm_offset_t va, int flags)
1542{
1543	vm_pindex_t pdpindex, ptepindex;
1544	pdp_entry_t *pdpe;
1545	vm_page_t pdpg;
1546
1547	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1548	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1549	    ("pmap_allocpde: flags is neither M_NOWAIT nor M_WAITOK"));
1550retry:
1551	pdpe = pmap_pdpe(pmap, va);
1552	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
1553		/* Add a reference to the pd page. */
1554		pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
1555		pdpg->wire_count++;
1556	} else {
1557		/* Allocate a pd page. */
1558		ptepindex = pmap_pde_pindex(va);
1559		pdpindex = ptepindex >> NPDPEPGSHIFT;
1560		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, flags);
1561		if (pdpg == NULL && (flags & M_WAITOK))
1562			goto retry;
1563	}
1564	return (pdpg);
1565}
1566
1567static vm_page_t
1568pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1569{
1570	vm_pindex_t ptepindex;
1571	pd_entry_t *pd;
1572	vm_page_t m;
1573
1574	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1575	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1576	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1577
1578	/*
1579	 * Calculate pagetable page index
1580	 */
1581	ptepindex = pmap_pde_pindex(va);
1582retry:
1583	/*
1584	 * Get the page directory entry
1585	 */
1586	pd = pmap_pde(pmap, va);
1587
1588	/*
1589	 * This supports switching from a 2MB page to a
1590	 * normal 4K page.
1591	 */
1592	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
1593		if (!pmap_demote_pde(pmap, pd, va)) {
1594			/*
1595			 * Invalidation of the 2MB page mapping may have caused
1596			 * the deallocation of the underlying PD page.
1597			 */
1598			pd = NULL;
1599		}
1600	}
1601
1602	/*
1603	 * If the page table page is mapped, we just increment the
1604	 * hold count, and activate it.
1605	 */
1606	if (pd != NULL && (*pd & PG_V) != 0) {
1607		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
1608		m->wire_count++;
1609	} else {
1610		/*
1611		 * Here if the pte page isn't mapped, or if it has been
1612		 * deallocated.
1613		 */
1614		m = _pmap_allocpte(pmap, ptepindex, flags);
1615		if (m == NULL && (flags & M_WAITOK))
1616			goto retry;
1617	}
1618	return (m);
1619}
1620
1621
1622/***************************************************
1623 * Pmap allocation/deallocation routines.
1624 ***************************************************/
1625
1626/*
1627 * Release any resources held by the given physical map.
1628 * Called when a pmap initialized by pmap_pinit is being released.
1629 * Should only be called if the map contains no valid mappings.
1630 */
1631void
1632pmap_release(pmap_t pmap)
1633{
1634	vm_page_t m;
1635
1636	KASSERT(pmap->pm_stats.resident_count == 0,
1637	    ("pmap_release: pmap resident count %ld != 0",
1638	    pmap->pm_stats.resident_count));
1639	KASSERT(pmap->pm_root == NULL,
1640	    ("pmap_release: pmap has reserved page table page(s)"));
1641
1642	m = PHYS_TO_VM_PAGE(pmap->pm_pml4[PML4PML4I] & PG_FRAME);
1643
1644	pmap->pm_pml4[KPML4I] = 0;	/* KVA */
1645	pmap->pm_pml4[DMPML4I] = 0;	/* Direct Map */
1646	pmap->pm_pml4[PML4PML4I] = 0;	/* Recursive Mapping */
1647
1648	m->wire_count--;
1649	atomic_subtract_int(&cnt.v_wire_count, 1);
1650	vm_page_free_zero(m);
1651	PMAP_LOCK_DESTROY(pmap);
1652}
1653
1654static int
1655kvm_size(SYSCTL_HANDLER_ARGS)
1656{
1657	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
1658
1659	return sysctl_handle_long(oidp, &ksize, 0, req);
1660}
1661SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1662    0, 0, kvm_size, "LU", "Size of KVM");
1663
1664static int
1665kvm_free(SYSCTL_HANDLER_ARGS)
1666{
1667	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1668
1669	return sysctl_handle_long(oidp, &kfree, 0, req);
1670}
1671SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1672    0, 0, kvm_free, "LU", "Amount of KVM free");
1673
1674/*
1675 * grow the number of kernel page table entries, if needed
1676 */
1677void
1678pmap_growkernel(vm_offset_t addr)
1679{
1680	vm_paddr_t paddr;
1681	vm_page_t nkpg;
1682	pd_entry_t *pde, newpdir;
1683	pdp_entry_t *pdpe;
1684
1685	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1686
1687	/*
1688	 * Return if "addr" is within the range of kernel page table pages
1689	 * that were preallocated during pmap bootstrap.  Moreover, leave
1690	 * "kernel_vm_end" and the kernel page table as they were.
1691	 *
1692	 * The correctness of this action is based on the following
1693	 * argument: vm_map_findspace() allocates contiguous ranges of the
1694	 * kernel virtual address space.  It calls this function if a range
1695	 * ends after "kernel_vm_end".  If the kernel is mapped between
1696	 * "kernel_vm_end" and "addr", then the range cannot begin at
1697	 * "kernel_vm_end".  In fact, its beginning address cannot be less
1698	 * than the kernel.  Thus, there is no immediate need to allocate
1699	 * any new kernel page table pages between "kernel_vm_end" and
1700	 * "KERNBASE".
1701	 */
1702	if (KERNBASE < addr && addr <= KERNBASE + NKPT * NBPDR)
1703		return;
1704
1705	addr = roundup2(addr, NBPDR);
1706	if (addr - 1 >= kernel_map->max_offset)
1707		addr = kernel_map->max_offset;
1708	while (kernel_vm_end < addr) {
1709		pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
1710		if ((*pdpe & PG_V) == 0) {
1711			/* We need a new PDP entry */
1712			nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDPSHIFT,
1713			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1714			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1715			if (nkpg == NULL)
1716				panic("pmap_growkernel: no memory to grow kernel");
1717			if ((nkpg->flags & PG_ZERO) == 0)
1718				pmap_zero_page(nkpg);
1719			paddr = VM_PAGE_TO_PHYS(nkpg);
1720			*pdpe = (pdp_entry_t)
1721				(paddr | PG_V | PG_RW | PG_A | PG_M);
1722			continue; /* try again */
1723		}
1724		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1725		if ((*pde & PG_V) != 0) {
1726			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1727			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1728				kernel_vm_end = kernel_map->max_offset;
1729				break;
1730			}
1731			continue;
1732		}
1733
1734		nkpg = vm_page_alloc(NULL, pmap_pde_pindex(kernel_vm_end),
1735		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1736		    VM_ALLOC_ZERO);
1737		if (nkpg == NULL)
1738			panic("pmap_growkernel: no memory to grow kernel");
1739		if ((nkpg->flags & PG_ZERO) == 0)
1740			pmap_zero_page(nkpg);
1741		paddr = VM_PAGE_TO_PHYS(nkpg);
1742		newpdir = (pd_entry_t) (paddr | PG_V | PG_RW | PG_A | PG_M);
1743		pde_store(pde, newpdir);
1744
1745		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1746		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1747			kernel_vm_end = kernel_map->max_offset;
1748			break;
1749		}
1750	}
1751}
1752
1753
1754/***************************************************
1755 * page management routines.
1756 ***************************************************/
1757
1758CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1759CTASSERT(_NPCM == 3);
1760CTASSERT(_NPCPV == 168);
1761
1762static __inline struct pv_chunk *
1763pv_to_chunk(pv_entry_t pv)
1764{
1765
1766	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1767}
1768
1769#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1770
1771#define	PC_FREE0	0xfffffffffffffffful
1772#define	PC_FREE1	0xfffffffffffffffful
1773#define	PC_FREE2	0x000000fffffffffful
1774
1775static uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
1776
1777SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1778	"Current number of pv entries");
1779
1780#ifdef PV_STATS
1781static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1782
1783SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1784	"Current number of pv entry chunks");
1785SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1786	"Current number of pv entry chunks allocated");
1787SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1788	"Current number of pv entry chunks frees");
1789SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1790	"Number of times tried to get a chunk page but failed.");
1791
1792static long pv_entry_frees, pv_entry_allocs;
1793static int pv_entry_spare;
1794
1795SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1796	"Current number of pv entry frees");
1797SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1798	"Current number of pv entry allocs");
1799SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1800	"Current number of spare pv entries");
1801
1802static int pmap_collect_inactive, pmap_collect_active;
1803
1804SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1805	"Current number times pmap_collect called on inactive queue");
1806SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1807	"Current number times pmap_collect called on active queue");
1808#endif
1809
1810/*
1811 * We are in a serious low memory condition.  Resort to
1812 * drastic measures to free some pages so we can allocate
1813 * another pv entry chunk.  This is normally called to
1814 * unmap inactive pages, and if necessary, active pages.
1815 *
1816 * We do not, however, unmap 2mpages because subsequent accesses will
1817 * allocate per-page pv entries until repromotion occurs, thereby
1818 * exacerbating the shortage of free pv entries.
1819 */
1820static void
1821pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1822{
1823	struct md_page *pvh;
1824	pd_entry_t *pde;
1825	pmap_t pmap;
1826	pt_entry_t *pte, tpte;
1827	pv_entry_t next_pv, pv;
1828	vm_offset_t va;
1829	vm_page_t m, free;
1830
1831	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1832		if (m->hold_count || m->busy)
1833			continue;
1834		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1835			va = pv->pv_va;
1836			pmap = PV_PMAP(pv);
1837			/* Avoid deadlock and lock recursion. */
1838			if (pmap > locked_pmap)
1839				PMAP_LOCK(pmap);
1840			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1841				continue;
1842			pmap->pm_stats.resident_count--;
1843			pde = pmap_pde(pmap, va);
1844			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
1845			    " a 2mpage in page %p's pv list", m));
1846			pte = pmap_pde_to_pte(pde, va);
1847			tpte = pte_load_clear(pte);
1848			KASSERT((tpte & PG_W) == 0,
1849			    ("pmap_collect: wired pte %#lx", tpte));
1850			if (tpte & PG_A)
1851				vm_page_flag_set(m, PG_REFERENCED);
1852			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1853				vm_page_dirty(m);
1854			free = NULL;
1855			pmap_unuse_pt(pmap, va, *pde, &free);
1856			pmap_invalidate_page(pmap, va);
1857			pmap_free_zero_pages(free);
1858			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1859			if (TAILQ_EMPTY(&m->md.pv_list)) {
1860				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1861				if (TAILQ_EMPTY(&pvh->pv_list))
1862					vm_page_flag_clear(m, PG_WRITEABLE);
1863			}
1864			free_pv_entry(pmap, pv);
1865			if (pmap != locked_pmap)
1866				PMAP_UNLOCK(pmap);
1867		}
1868	}
1869}
1870
1871
1872/*
1873 * free the pv_entry back to the free list
1874 */
1875static void
1876free_pv_entry(pmap_t pmap, pv_entry_t pv)
1877{
1878	vm_page_t m;
1879	struct pv_chunk *pc;
1880	int idx, field, bit;
1881
1882	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1883	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1884	PV_STAT(pv_entry_frees++);
1885	PV_STAT(pv_entry_spare++);
1886	pv_entry_count--;
1887	pc = pv_to_chunk(pv);
1888	idx = pv - &pc->pc_pventry[0];
1889	field = idx / 64;
1890	bit = idx % 64;
1891	pc->pc_map[field] |= 1ul << bit;
1892	/* move to head of list */
1893	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1894	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
1895	    pc->pc_map[2] != PC_FREE2) {
1896		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1897		return;
1898	}
1899	PV_STAT(pv_entry_spare -= _NPCPV);
1900	PV_STAT(pc_chunk_count--);
1901	PV_STAT(pc_chunk_frees++);
1902	/* entire chunk is free, return it */
1903	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1904	dump_drop_page(m->phys_addr);
1905	vm_page_unwire(m, 0);
1906	vm_page_free(m);
1907}
1908
1909/*
1910 * get a new pv_entry, allocating a block from the system
1911 * when needed.
1912 */
1913static pv_entry_t
1914get_pv_entry(pmap_t pmap, int try)
1915{
1916	static const struct timeval printinterval = { 60, 0 };
1917	static struct timeval lastprint;
1918	static vm_pindex_t colour;
1919	struct vpgqueues *pq;
1920	int bit, field;
1921	pv_entry_t pv;
1922	struct pv_chunk *pc;
1923	vm_page_t m;
1924
1925	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1926	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1927	PV_STAT(pv_entry_allocs++);
1928	pv_entry_count++;
1929	if (pv_entry_count > pv_entry_high_water)
1930		if (ratecheck(&lastprint, &printinterval))
1931			printf("Approaching the limit on PV entries, consider "
1932			    "increasing either the vm.pmap.shpgperproc or the "
1933			    "vm.pmap.pv_entry_max sysctl.\n");
1934	pq = NULL;
1935retry:
1936	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1937	if (pc != NULL) {
1938		for (field = 0; field < _NPCM; field++) {
1939			if (pc->pc_map[field]) {
1940				bit = bsfq(pc->pc_map[field]);
1941				break;
1942			}
1943		}
1944		if (field < _NPCM) {
1945			pv = &pc->pc_pventry[field * 64 + bit];
1946			pc->pc_map[field] &= ~(1ul << bit);
1947			/* If this was the last item, move it to tail */
1948			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
1949			    pc->pc_map[2] == 0) {
1950				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1951				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1952			}
1953			PV_STAT(pv_entry_spare--);
1954			return (pv);
1955		}
1956	}
1957	/* No free items, allocate another chunk */
1958	m = vm_page_alloc(NULL, colour, (pq == &vm_page_queues[PQ_ACTIVE] ?
1959	    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) | VM_ALLOC_NOOBJ |
1960	    VM_ALLOC_WIRED);
1961	if (m == NULL) {
1962		if (try) {
1963			pv_entry_count--;
1964			PV_STAT(pc_chunk_tryfail++);
1965			return (NULL);
1966		}
1967		/*
1968		 * Reclaim pv entries: At first, destroy mappings to inactive
1969		 * pages.  After that, if a pv chunk entry is still needed,
1970		 * destroy mappings to active pages.
1971		 */
1972		if (pq == NULL) {
1973			PV_STAT(pmap_collect_inactive++);
1974			pq = &vm_page_queues[PQ_INACTIVE];
1975		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
1976			PV_STAT(pmap_collect_active++);
1977			pq = &vm_page_queues[PQ_ACTIVE];
1978		} else
1979			panic("get_pv_entry: increase vm.pmap.shpgperproc");
1980		pmap_collect(pmap, pq);
1981		goto retry;
1982	}
1983	PV_STAT(pc_chunk_count++);
1984	PV_STAT(pc_chunk_allocs++);
1985	colour++;
1986	dump_add_page(m->phys_addr);
1987	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1988	pc->pc_pmap = pmap;
1989	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1990	pc->pc_map[1] = PC_FREE1;
1991	pc->pc_map[2] = PC_FREE2;
1992	pv = &pc->pc_pventry[0];
1993	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1994	PV_STAT(pv_entry_spare += _NPCPV - 1);
1995	return (pv);
1996}
1997
1998/*
1999 * First find and then remove the pv entry for the specified pmap and virtual
2000 * address from the specified pv list.  Returns the pv entry if found and NULL
2001 * otherwise.  This operation can be performed on pv lists for either 4KB or
2002 * 2MB page mappings.
2003 */
2004static __inline pv_entry_t
2005pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2006{
2007	pv_entry_t pv;
2008
2009	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2010	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2011		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2012			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2013			break;
2014		}
2015	}
2016	return (pv);
2017}
2018
2019/*
2020 * After demotion from a 2MB page mapping to 512 4KB page mappings,
2021 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2022 * entries for each of the 4KB page mappings.
2023 */
2024static void
2025pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2026{
2027	struct md_page *pvh;
2028	pv_entry_t pv;
2029	vm_offset_t va_last;
2030	vm_page_t m;
2031
2032	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2033	KASSERT((pa & PDRMASK) == 0,
2034	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
2035
2036	/*
2037	 * Transfer the 2mpage's pv entry for this mapping to the first
2038	 * page's pv list.
2039	 */
2040	pvh = pa_to_pvh(pa);
2041	va = trunc_2mpage(va);
2042	pv = pmap_pvh_remove(pvh, pmap, va);
2043	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2044	m = PHYS_TO_VM_PAGE(pa);
2045	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2046	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2047	va_last = va + NBPDR - PAGE_SIZE;
2048	do {
2049		m++;
2050		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2051		    ("pmap_pv_demote_pde: page %p is not managed", m));
2052		va += PAGE_SIZE;
2053		pmap_insert_entry(pmap, va, m);
2054	} while (va < va_last);
2055}
2056
2057/*
2058 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
2059 * replace the many pv entries for the 4KB page mappings by a single pv entry
2060 * for the 2MB page mapping.
2061 */
2062static void
2063pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2064{
2065	struct md_page *pvh;
2066	pv_entry_t pv;
2067	vm_offset_t va_last;
2068	vm_page_t m;
2069
2070	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2071	KASSERT((pa & PDRMASK) == 0,
2072	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
2073
2074	/*
2075	 * Transfer the first page's pv entry for this mapping to the
2076	 * 2mpage's pv list.  Aside from avoiding the cost of a call
2077	 * to get_pv_entry(), a transfer avoids the possibility that
2078	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2079	 * removes one of the mappings that is being promoted.
2080	 */
2081	m = PHYS_TO_VM_PAGE(pa);
2082	va = trunc_2mpage(va);
2083	pv = pmap_pvh_remove(&m->md, pmap, va);
2084	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2085	pvh = pa_to_pvh(pa);
2086	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2087	/* Free the remaining NPTEPG - 1 pv entries. */
2088	va_last = va + NBPDR - PAGE_SIZE;
2089	do {
2090		m++;
2091		va += PAGE_SIZE;
2092		pmap_pvh_free(&m->md, pmap, va);
2093	} while (va < va_last);
2094}
2095
2096/*
2097 * First find and then destroy the pv entry for the specified pmap and virtual
2098 * address.  This operation can be performed on pv lists for either 4KB or 2MB
2099 * page mappings.
2100 */
2101static void
2102pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2103{
2104	pv_entry_t pv;
2105
2106	pv = pmap_pvh_remove(pvh, pmap, va);
2107	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2108	free_pv_entry(pmap, pv);
2109}
2110
2111static void
2112pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2113{
2114	struct md_page *pvh;
2115
2116	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2117	pmap_pvh_free(&m->md, pmap, va);
2118	if (TAILQ_EMPTY(&m->md.pv_list)) {
2119		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2120		if (TAILQ_EMPTY(&pvh->pv_list))
2121			vm_page_flag_clear(m, PG_WRITEABLE);
2122	}
2123}
2124
2125/*
2126 * Create a pv entry for page at pa for
2127 * (pmap, va).
2128 */
2129static void
2130pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2131{
2132	pv_entry_t pv;
2133
2134	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2135	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2136	pv = get_pv_entry(pmap, FALSE);
2137	pv->pv_va = va;
2138	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2139}
2140
2141/*
2142 * Conditionally create a pv entry.
2143 */
2144static boolean_t
2145pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2146{
2147	pv_entry_t pv;
2148
2149	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2150	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2151	if (pv_entry_count < pv_entry_high_water &&
2152	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2153		pv->pv_va = va;
2154		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2155		return (TRUE);
2156	} else
2157		return (FALSE);
2158}
2159
2160/*
2161 * Create the pv entry for a 2MB page mapping.
2162 */
2163static boolean_t
2164pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2165{
2166	struct md_page *pvh;
2167	pv_entry_t pv;
2168
2169	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2170	if (pv_entry_count < pv_entry_high_water &&
2171	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2172		pv->pv_va = va;
2173		pvh = pa_to_pvh(pa);
2174		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2175		return (TRUE);
2176	} else
2177		return (FALSE);
2178}
2179
2180/*
2181 * Fills a page table page with mappings to consecutive physical pages.
2182 */
2183static void
2184pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2185{
2186	pt_entry_t *pte;
2187
2188	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2189		*pte = newpte;
2190		newpte += PAGE_SIZE;
2191	}
2192}
2193
2194/*
2195 * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
2196 * mapping is invalidated.
2197 */
2198static boolean_t
2199pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2200{
2201	pd_entry_t newpde, oldpde;
2202	pt_entry_t *firstpte, newpte;
2203	vm_paddr_t mptepa;
2204	vm_page_t free, mpte;
2205
2206	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2207	oldpde = *pde;
2208	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2209	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2210	mpte = pmap_lookup_pt_page(pmap, va);
2211	if (mpte != NULL)
2212		pmap_remove_pt_page(pmap, mpte);
2213	else {
2214		KASSERT((oldpde & PG_W) == 0,
2215		    ("pmap_demote_pde: page table page for a wired mapping"
2216		    " is missing"));
2217
2218		/*
2219		 * Invalidate the 2MB page mapping and return "failure" if the
2220		 * mapping was never accessed or the allocation of the new
2221		 * page table page fails.
2222		 */
2223		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2224		    pmap_pde_pindex(va), VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2225		    VM_ALLOC_WIRED)) == NULL) {
2226			free = NULL;
2227			pmap_remove_pde(pmap, pde, trunc_2mpage(va), &free);
2228			pmap_invalidate_page(pmap, trunc_2mpage(va));
2229			pmap_free_zero_pages(free);
2230			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx"
2231			    " in pmap %p", va, pmap);
2232			return (FALSE);
2233		}
2234	}
2235	mptepa = VM_PAGE_TO_PHYS(mpte);
2236	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
2237	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2238	KASSERT((oldpde & PG_A) != 0,
2239	    ("pmap_demote_pde: oldpde is missing PG_A"));
2240	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2241	    ("pmap_demote_pde: oldpde is missing PG_M"));
2242	newpte = oldpde & ~PG_PS;
2243	if ((newpte & PG_PDE_PAT) != 0)
2244		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2245
2246	/*
2247	 * If the page table page is new, initialize it.
2248	 */
2249	if (mpte->wire_count == 1) {
2250		mpte->wire_count = NPTEPG;
2251		pmap_fill_ptp(firstpte, newpte);
2252	}
2253	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2254	    ("pmap_demote_pde: firstpte and newpte map different physical"
2255	    " addresses"));
2256
2257	/*
2258	 * If the mapping has changed attributes, update the page table
2259	 * entries.
2260	 */
2261	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2262		pmap_fill_ptp(firstpte, newpte);
2263
2264	/*
2265	 * Demote the mapping.  This pmap is locked.  The old PDE has
2266	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2267	 * set.  Thus, there is no danger of a race with another
2268	 * processor changing the setting of PG_A and/or PG_M between
2269	 * the read above and the store below.
2270	 */
2271	pde_store(pde, newpde);
2272
2273	/*
2274	 * Invalidate a stale recursive mapping of the page table page.
2275	 */
2276	if (va >= VM_MAXUSER_ADDRESS)
2277		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2278
2279	/*
2280	 * Demote the pv entry.  This depends on the earlier demotion
2281	 * of the mapping.  Specifically, the (re)creation of a per-
2282	 * page pv entry might trigger the execution of pmap_collect(),
2283	 * which might reclaim a newly (re)created per-page pv entry
2284	 * and destroy the associated mapping.  In order to destroy
2285	 * the mapping, the PDE must have already changed from mapping
2286	 * the 2mpage to referencing the page table page.
2287	 */
2288	if ((oldpde & PG_MANAGED) != 0)
2289		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2290
2291	pmap_pde_demotions++;
2292	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx"
2293	    " in pmap %p", va, pmap);
2294	return (TRUE);
2295}
2296
2297/*
2298 * pmap_remove_pde: do the things to unmap a superpage in a process
2299 */
2300static int
2301pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2302    vm_page_t *free)
2303{
2304	struct md_page *pvh;
2305	pd_entry_t oldpde;
2306	vm_offset_t eva, va;
2307	vm_page_t m, mpte;
2308
2309	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2310	KASSERT((sva & PDRMASK) == 0,
2311	    ("pmap_remove_pde: sva is not 2mpage aligned"));
2312	oldpde = pte_load_clear(pdq);
2313	if (oldpde & PG_W)
2314		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2315
2316	/*
2317	 * Machines that don't support invlpg, also don't support
2318	 * PG_G.
2319	 */
2320	if (oldpde & PG_G)
2321		pmap_invalidate_page(kernel_pmap, sva);
2322	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2323	if (oldpde & PG_MANAGED) {
2324		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2325		pmap_pvh_free(pvh, pmap, sva);
2326		eva = sva + NBPDR;
2327		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2328		    va < eva; va += PAGE_SIZE, m++) {
2329			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2330				vm_page_dirty(m);
2331			if (oldpde & PG_A)
2332				vm_page_flag_set(m, PG_REFERENCED);
2333			if (TAILQ_EMPTY(&m->md.pv_list) &&
2334			    TAILQ_EMPTY(&pvh->pv_list))
2335				vm_page_flag_clear(m, PG_WRITEABLE);
2336		}
2337	}
2338	if (pmap == kernel_pmap) {
2339		if (!pmap_demote_pde(pmap, pdq, sva))
2340			panic("pmap_remove_pde: failed demotion");
2341	} else {
2342		mpte = pmap_lookup_pt_page(pmap, sva);
2343		if (mpte != NULL) {
2344			pmap_remove_pt_page(pmap, mpte);
2345			pmap->pm_stats.resident_count--;
2346			KASSERT(mpte->wire_count == NPTEPG,
2347			    ("pmap_remove_pde: pte page wire count error"));
2348			mpte->wire_count = 0;
2349			pmap_add_delayed_free_list(mpte, free, FALSE);
2350			atomic_subtract_int(&cnt.v_wire_count, 1);
2351		}
2352	}
2353	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
2354}
2355
2356/*
2357 * pmap_remove_pte: do the things to unmap a page in a process
2358 */
2359static int
2360pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2361    pd_entry_t ptepde, vm_page_t *free)
2362{
2363	pt_entry_t oldpte;
2364	vm_page_t m;
2365
2366	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2367	oldpte = pte_load_clear(ptq);
2368	if (oldpte & PG_W)
2369		pmap->pm_stats.wired_count -= 1;
2370	/*
2371	 * Machines that don't support invlpg, also don't support
2372	 * PG_G.
2373	 */
2374	if (oldpte & PG_G)
2375		pmap_invalidate_page(kernel_pmap, va);
2376	pmap->pm_stats.resident_count -= 1;
2377	if (oldpte & PG_MANAGED) {
2378		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2379		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2380			vm_page_dirty(m);
2381		if (oldpte & PG_A)
2382			vm_page_flag_set(m, PG_REFERENCED);
2383		pmap_remove_entry(pmap, m, va);
2384	}
2385	return (pmap_unuse_pt(pmap, va, ptepde, free));
2386}
2387
2388/*
2389 * Remove a single page from a process address space
2390 */
2391static void
2392pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, vm_page_t *free)
2393{
2394	pt_entry_t *pte;
2395
2396	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2397	if ((*pde & PG_V) == 0)
2398		return;
2399	pte = pmap_pde_to_pte(pde, va);
2400	if ((*pte & PG_V) == 0)
2401		return;
2402	pmap_remove_pte(pmap, pte, va, *pde, free);
2403	pmap_invalidate_page(pmap, va);
2404}
2405
2406/*
2407 *	Remove the given range of addresses from the specified map.
2408 *
2409 *	It is assumed that the start and end are properly
2410 *	rounded to the page size.
2411 */
2412void
2413pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2414{
2415	vm_offset_t va_next;
2416	pml4_entry_t *pml4e;
2417	pdp_entry_t *pdpe;
2418	pd_entry_t ptpaddr, *pde;
2419	pt_entry_t *pte;
2420	vm_page_t free = NULL;
2421	int anyvalid;
2422
2423	/*
2424	 * Perform an unsynchronized read.  This is, however, safe.
2425	 */
2426	if (pmap->pm_stats.resident_count == 0)
2427		return;
2428
2429	anyvalid = 0;
2430
2431	vm_page_lock_queues();
2432	PMAP_LOCK(pmap);
2433
2434	/*
2435	 * special handling of removing one page.  a very
2436	 * common operation and easy to short circuit some
2437	 * code.
2438	 */
2439	if (sva + PAGE_SIZE == eva) {
2440		pde = pmap_pde(pmap, sva);
2441		if (pde && (*pde & PG_PS) == 0) {
2442			pmap_remove_page(pmap, sva, pde, &free);
2443			goto out;
2444		}
2445	}
2446
2447	for (; sva < eva; sva = va_next) {
2448
2449		if (pmap->pm_stats.resident_count == 0)
2450			break;
2451
2452		pml4e = pmap_pml4e(pmap, sva);
2453		if ((*pml4e & PG_V) == 0) {
2454			va_next = (sva + NBPML4) & ~PML4MASK;
2455			if (va_next < sva)
2456				va_next = eva;
2457			continue;
2458		}
2459
2460		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2461		if ((*pdpe & PG_V) == 0) {
2462			va_next = (sva + NBPDP) & ~PDPMASK;
2463			if (va_next < sva)
2464				va_next = eva;
2465			continue;
2466		}
2467
2468		/*
2469		 * Calculate index for next page table.
2470		 */
2471		va_next = (sva + NBPDR) & ~PDRMASK;
2472		if (va_next < sva)
2473			va_next = eva;
2474
2475		pde = pmap_pdpe_to_pde(pdpe, sva);
2476		ptpaddr = *pde;
2477
2478		/*
2479		 * Weed out invalid mappings.
2480		 */
2481		if (ptpaddr == 0)
2482			continue;
2483
2484		/*
2485		 * Check for large page.
2486		 */
2487		if ((ptpaddr & PG_PS) != 0) {
2488			/*
2489			 * Are we removing the entire large page?  If not,
2490			 * demote the mapping and fall through.
2491			 */
2492			if (sva + NBPDR == va_next && eva >= va_next) {
2493				/*
2494				 * The TLB entry for a PG_G mapping is
2495				 * invalidated by pmap_remove_pde().
2496				 */
2497				if ((ptpaddr & PG_G) == 0)
2498					anyvalid = 1;
2499				pmap_remove_pde(pmap, pde, sva, &free);
2500				continue;
2501			} else if (!pmap_demote_pde(pmap, pde, sva)) {
2502				/* The large page mapping was destroyed. */
2503				continue;
2504			} else
2505				ptpaddr = *pde;
2506		}
2507
2508		/*
2509		 * Limit our scan to either the end of the va represented
2510		 * by the current page table page, or to the end of the
2511		 * range being removed.
2512		 */
2513		if (va_next > eva)
2514			va_next = eva;
2515
2516		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2517		    sva += PAGE_SIZE) {
2518			if (*pte == 0)
2519				continue;
2520
2521			/*
2522			 * The TLB entry for a PG_G mapping is invalidated
2523			 * by pmap_remove_pte().
2524			 */
2525			if ((*pte & PG_G) == 0)
2526				anyvalid = 1;
2527			if (pmap_remove_pte(pmap, pte, sva, ptpaddr, &free))
2528				break;
2529		}
2530	}
2531out:
2532	if (anyvalid)
2533		pmap_invalidate_all(pmap);
2534	vm_page_unlock_queues();
2535	PMAP_UNLOCK(pmap);
2536	pmap_free_zero_pages(free);
2537}
2538
2539/*
2540 *	Routine:	pmap_remove_all
2541 *	Function:
2542 *		Removes this physical page from
2543 *		all physical maps in which it resides.
2544 *		Reflects back modify bits to the pager.
2545 *
2546 *	Notes:
2547 *		Original versions of this routine were very
2548 *		inefficient because they iteratively called
2549 *		pmap_remove (slow...)
2550 */
2551
2552void
2553pmap_remove_all(vm_page_t m)
2554{
2555	struct md_page *pvh;
2556	pv_entry_t pv;
2557	pmap_t pmap;
2558	pt_entry_t *pte, tpte;
2559	pd_entry_t *pde;
2560	vm_offset_t va;
2561	vm_page_t free;
2562
2563	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2564	    ("pmap_remove_all: page %p is fictitious", m));
2565	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2566	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2567	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2568		va = pv->pv_va;
2569		pmap = PV_PMAP(pv);
2570		PMAP_LOCK(pmap);
2571		pde = pmap_pde(pmap, va);
2572		(void)pmap_demote_pde(pmap, pde, va);
2573		PMAP_UNLOCK(pmap);
2574	}
2575	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2576		pmap = PV_PMAP(pv);
2577		PMAP_LOCK(pmap);
2578		pmap->pm_stats.resident_count--;
2579		pde = pmap_pde(pmap, pv->pv_va);
2580		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2581		    " a 2mpage in page %p's pv list", m));
2582		pte = pmap_pde_to_pte(pde, pv->pv_va);
2583		tpte = pte_load_clear(pte);
2584		if (tpte & PG_W)
2585			pmap->pm_stats.wired_count--;
2586		if (tpte & PG_A)
2587			vm_page_flag_set(m, PG_REFERENCED);
2588
2589		/*
2590		 * Update the vm_page_t clean and reference bits.
2591		 */
2592		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2593			vm_page_dirty(m);
2594		free = NULL;
2595		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
2596		pmap_invalidate_page(pmap, pv->pv_va);
2597		pmap_free_zero_pages(free);
2598		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2599		free_pv_entry(pmap, pv);
2600		PMAP_UNLOCK(pmap);
2601	}
2602	vm_page_flag_clear(m, PG_WRITEABLE);
2603}
2604
2605/*
2606 * pmap_protect_pde: do the things to protect a 2mpage in a process
2607 */
2608static boolean_t
2609pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2610{
2611	pd_entry_t newpde, oldpde;
2612	vm_offset_t eva, va;
2613	vm_page_t m;
2614	boolean_t anychanged;
2615
2616	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2617	KASSERT((sva & PDRMASK) == 0,
2618	    ("pmap_protect_pde: sva is not 2mpage aligned"));
2619	anychanged = FALSE;
2620retry:
2621	oldpde = newpde = *pde;
2622	if (oldpde & PG_MANAGED) {
2623		eva = sva + NBPDR;
2624		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2625		    va < eva; va += PAGE_SIZE, m++) {
2626			/*
2627			 * In contrast to the analogous operation on a 4KB page
2628			 * mapping, the mapping's PG_A flag is not cleared and
2629			 * the page's PG_REFERENCED flag is not set.  The
2630			 * reason is that pmap_demote_pde() expects that a 2MB
2631			 * page mapping with a stored page table page has PG_A
2632			 * set.
2633			 */
2634			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2635				vm_page_dirty(m);
2636		}
2637	}
2638	if ((prot & VM_PROT_WRITE) == 0)
2639		newpde &= ~(PG_RW | PG_M);
2640	if ((prot & VM_PROT_EXECUTE) == 0)
2641		newpde |= pg_nx;
2642	if (newpde != oldpde) {
2643		if (!atomic_cmpset_long(pde, oldpde, newpde))
2644			goto retry;
2645		if (oldpde & PG_G)
2646			pmap_invalidate_page(pmap, sva);
2647		else
2648			anychanged = TRUE;
2649	}
2650	return (anychanged);
2651}
2652
2653/*
2654 *	Set the physical protection on the
2655 *	specified range of this map as requested.
2656 */
2657void
2658pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2659{
2660	vm_offset_t va_next;
2661	pml4_entry_t *pml4e;
2662	pdp_entry_t *pdpe;
2663	pd_entry_t ptpaddr, *pde;
2664	pt_entry_t *pte;
2665	int anychanged;
2666
2667	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2668		pmap_remove(pmap, sva, eva);
2669		return;
2670	}
2671
2672	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2673	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2674		return;
2675
2676	anychanged = 0;
2677
2678	vm_page_lock_queues();
2679	PMAP_LOCK(pmap);
2680	for (; sva < eva; sva = va_next) {
2681
2682		pml4e = pmap_pml4e(pmap, sva);
2683		if ((*pml4e & PG_V) == 0) {
2684			va_next = (sva + NBPML4) & ~PML4MASK;
2685			if (va_next < sva)
2686				va_next = eva;
2687			continue;
2688		}
2689
2690		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2691		if ((*pdpe & PG_V) == 0) {
2692			va_next = (sva + NBPDP) & ~PDPMASK;
2693			if (va_next < sva)
2694				va_next = eva;
2695			continue;
2696		}
2697
2698		va_next = (sva + NBPDR) & ~PDRMASK;
2699		if (va_next < sva)
2700			va_next = eva;
2701
2702		pde = pmap_pdpe_to_pde(pdpe, sva);
2703		ptpaddr = *pde;
2704
2705		/*
2706		 * Weed out invalid mappings.
2707		 */
2708		if (ptpaddr == 0)
2709			continue;
2710
2711		/*
2712		 * Check for large page.
2713		 */
2714		if ((ptpaddr & PG_PS) != 0) {
2715			/*
2716			 * Are we protecting the entire large page?  If not,
2717			 * demote the mapping and fall through.
2718			 */
2719			if (sva + NBPDR == va_next && eva >= va_next) {
2720				/*
2721				 * The TLB entry for a PG_G mapping is
2722				 * invalidated by pmap_protect_pde().
2723				 */
2724				if (pmap_protect_pde(pmap, pde, sva, prot))
2725					anychanged = 1;
2726				continue;
2727			} else if (!pmap_demote_pde(pmap, pde, sva)) {
2728				/* The large page mapping was destroyed. */
2729				continue;
2730			}
2731		}
2732
2733		if (va_next > eva)
2734			va_next = eva;
2735
2736		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2737		    sva += PAGE_SIZE) {
2738			pt_entry_t obits, pbits;
2739			vm_page_t m;
2740
2741retry:
2742			obits = pbits = *pte;
2743			if ((pbits & PG_V) == 0)
2744				continue;
2745			if (pbits & PG_MANAGED) {
2746				m = NULL;
2747				if (pbits & PG_A) {
2748					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2749					vm_page_flag_set(m, PG_REFERENCED);
2750					pbits &= ~PG_A;
2751				}
2752				if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2753					if (m == NULL)
2754						m = PHYS_TO_VM_PAGE(pbits &
2755						    PG_FRAME);
2756					vm_page_dirty(m);
2757				}
2758			}
2759
2760			if ((prot & VM_PROT_WRITE) == 0)
2761				pbits &= ~(PG_RW | PG_M);
2762			if ((prot & VM_PROT_EXECUTE) == 0)
2763				pbits |= pg_nx;
2764
2765			if (pbits != obits) {
2766				if (!atomic_cmpset_long(pte, obits, pbits))
2767					goto retry;
2768				if (obits & PG_G)
2769					pmap_invalidate_page(pmap, sva);
2770				else
2771					anychanged = 1;
2772			}
2773		}
2774	}
2775	if (anychanged)
2776		pmap_invalidate_all(pmap);
2777	vm_page_unlock_queues();
2778	PMAP_UNLOCK(pmap);
2779}
2780
2781/*
2782 * Tries to promote the 512, contiguous 4KB page mappings that are within a
2783 * single page table page (PTP) to a single 2MB page mapping.  For promotion
2784 * to occur, two conditions must be met: (1) the 4KB page mappings must map
2785 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2786 * identical characteristics.
2787 */
2788static void
2789pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2790{
2791	pd_entry_t newpde;
2792	pt_entry_t *firstpte, oldpte, pa, *pte;
2793	vm_offset_t oldpteva;
2794	vm_page_t mpte;
2795
2796	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2797
2798	/*
2799	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2800	 * either invalid, unused, or does not map the first 4KB physical page
2801	 * within a 2MB page.
2802	 */
2803	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
2804setpde:
2805	newpde = *firstpte;
2806	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2807		pmap_pde_p_failures++;
2808		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
2809		    " in pmap %p", va, pmap);
2810		return;
2811	}
2812	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2813		/*
2814		 * When PG_M is already clear, PG_RW can be cleared without
2815		 * a TLB invalidation.
2816		 */
2817		if (!atomic_cmpset_long(firstpte, newpde, newpde & ~PG_RW))
2818			goto setpde;
2819		newpde &= ~PG_RW;
2820	}
2821
2822	/*
2823	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2824	 * PTE maps an unexpected 4KB physical page or does not have identical
2825	 * characteristics to the first PTE.
2826	 */
2827	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
2828	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2829setpte:
2830		oldpte = *pte;
2831		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2832			pmap_pde_p_failures++;
2833			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
2834			    " in pmap %p", va, pmap);
2835			return;
2836		}
2837		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2838			/*
2839			 * When PG_M is already clear, PG_RW can be cleared
2840			 * without a TLB invalidation.
2841			 */
2842			if (!atomic_cmpset_long(pte, oldpte, oldpte & ~PG_RW))
2843				goto setpte;
2844			oldpte &= ~PG_RW;
2845			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
2846			    (va & ~PDRMASK);
2847			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
2848			    " in pmap %p", oldpteva, pmap);
2849		}
2850		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2851			pmap_pde_p_failures++;
2852			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
2853			    " in pmap %p", va, pmap);
2854			return;
2855		}
2856		pa -= PAGE_SIZE;
2857	}
2858
2859	/*
2860	 * Save the page table page in its current state until the PDE
2861	 * mapping the superpage is demoted by pmap_demote_pde() or
2862	 * destroyed by pmap_remove_pde().
2863	 */
2864	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
2865	KASSERT(mpte >= vm_page_array &&
2866	    mpte < &vm_page_array[vm_page_array_size],
2867	    ("pmap_promote_pde: page table page is out of range"));
2868	KASSERT(mpte->pindex == pmap_pde_pindex(va),
2869	    ("pmap_promote_pde: page table page's pindex is wrong"));
2870	pmap_insert_pt_page(pmap, mpte);
2871
2872	/*
2873	 * Promote the pv entries.
2874	 */
2875	if ((newpde & PG_MANAGED) != 0)
2876		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
2877
2878	/*
2879	 * Propagate the PAT index to its proper position.
2880	 */
2881	if ((newpde & PG_PTE_PAT) != 0)
2882		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
2883
2884	/*
2885	 * Map the superpage.
2886	 */
2887	pde_store(pde, PG_PS | newpde);
2888
2889	pmap_pde_promotions++;
2890	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
2891	    " in pmap %p", va, pmap);
2892}
2893
2894/*
2895 *	Insert the given physical page (p) at
2896 *	the specified virtual address (v) in the
2897 *	target physical map with the protection requested.
2898 *
2899 *	If specified, the page will be wired down, meaning
2900 *	that the related pte can not be reclaimed.
2901 *
2902 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2903 *	or lose information.  That is, this routine must actually
2904 *	insert this page into the given map NOW.
2905 */
2906void
2907pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2908    vm_prot_t prot, boolean_t wired)
2909{
2910	vm_paddr_t pa;
2911	pd_entry_t *pde;
2912	pt_entry_t *pte;
2913	vm_paddr_t opa;
2914	pt_entry_t origpte, newpte;
2915	vm_page_t mpte, om;
2916	boolean_t invlva;
2917
2918	va = trunc_page(va);
2919	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2920	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2921	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)", va));
2922
2923	mpte = NULL;
2924
2925	vm_page_lock_queues();
2926	PMAP_LOCK(pmap);
2927
2928	/*
2929	 * In the case that a page table page is not
2930	 * resident, we are creating it here.
2931	 */
2932	if (va < VM_MAXUSER_ADDRESS) {
2933		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2934	}
2935
2936	pde = pmap_pde(pmap, va);
2937	if (pde != NULL && (*pde & PG_V) != 0) {
2938		if ((*pde & PG_PS) != 0)
2939			panic("pmap_enter: attempted pmap_enter on 2MB page");
2940		pte = pmap_pde_to_pte(pde, va);
2941	} else
2942		panic("pmap_enter: invalid page directory va=%#lx", va);
2943
2944	pa = VM_PAGE_TO_PHYS(m);
2945	om = NULL;
2946	origpte = *pte;
2947	opa = origpte & PG_FRAME;
2948
2949	/*
2950	 * Mapping has not changed, must be protection or wiring change.
2951	 */
2952	if (origpte && (opa == pa)) {
2953		/*
2954		 * Wiring change, just update stats. We don't worry about
2955		 * wiring PT pages as they remain resident as long as there
2956		 * are valid mappings in them. Hence, if a user page is wired,
2957		 * the PT page will be also.
2958		 */
2959		if (wired && ((origpte & PG_W) == 0))
2960			pmap->pm_stats.wired_count++;
2961		else if (!wired && (origpte & PG_W))
2962			pmap->pm_stats.wired_count--;
2963
2964		/*
2965		 * Remove extra pte reference
2966		 */
2967		if (mpte)
2968			mpte->wire_count--;
2969
2970		/*
2971		 * We might be turning off write access to the page,
2972		 * so we go ahead and sense modify status.
2973		 */
2974		if (origpte & PG_MANAGED) {
2975			om = m;
2976			pa |= PG_MANAGED;
2977		}
2978		goto validate;
2979	}
2980	/*
2981	 * Mapping has changed, invalidate old range and fall through to
2982	 * handle validating new mapping.
2983	 */
2984	if (opa) {
2985		if (origpte & PG_W)
2986			pmap->pm_stats.wired_count--;
2987		if (origpte & PG_MANAGED) {
2988			om = PHYS_TO_VM_PAGE(opa);
2989			pmap_remove_entry(pmap, om, va);
2990		}
2991		if (mpte != NULL) {
2992			mpte->wire_count--;
2993			KASSERT(mpte->wire_count > 0,
2994			    ("pmap_enter: missing reference to page table page,"
2995			     " va: 0x%lx", va));
2996		}
2997	} else
2998		pmap->pm_stats.resident_count++;
2999
3000	/*
3001	 * Enter on the PV list if part of our managed memory.
3002	 */
3003	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3004		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3005		    ("pmap_enter: managed mapping within the clean submap"));
3006		pmap_insert_entry(pmap, va, m);
3007		pa |= PG_MANAGED;
3008	}
3009
3010	/*
3011	 * Increment counters
3012	 */
3013	if (wired)
3014		pmap->pm_stats.wired_count++;
3015
3016validate:
3017	/*
3018	 * Now validate mapping with desired protection/wiring.
3019	 */
3020	newpte = (pt_entry_t)(pa | PG_V);
3021	if ((prot & VM_PROT_WRITE) != 0) {
3022		newpte |= PG_RW;
3023		vm_page_flag_set(m, PG_WRITEABLE);
3024	}
3025	if ((prot & VM_PROT_EXECUTE) == 0)
3026		newpte |= pg_nx;
3027	if (wired)
3028		newpte |= PG_W;
3029	if (va < VM_MAXUSER_ADDRESS)
3030		newpte |= PG_U;
3031	if (pmap == kernel_pmap)
3032		newpte |= PG_G;
3033
3034	/*
3035	 * if the mapping or permission bits are different, we need
3036	 * to update the pte.
3037	 */
3038	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3039		newpte |= PG_A;
3040		if ((access & VM_PROT_WRITE) != 0)
3041			newpte |= PG_M;
3042		if (origpte & PG_V) {
3043			invlva = FALSE;
3044			origpte = pte_load_store(pte, newpte);
3045			if (origpte & PG_A) {
3046				if (origpte & PG_MANAGED)
3047					vm_page_flag_set(om, PG_REFERENCED);
3048				if (opa != VM_PAGE_TO_PHYS(m) || ((origpte &
3049				    PG_NX) == 0 && (newpte & PG_NX)))
3050					invlva = TRUE;
3051			}
3052			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3053				if ((origpte & PG_MANAGED) != 0)
3054					vm_page_dirty(om);
3055				if ((newpte & PG_RW) == 0)
3056					invlva = TRUE;
3057			}
3058			if (invlva)
3059				pmap_invalidate_page(pmap, va);
3060		} else
3061			pte_store(pte, newpte);
3062	}
3063
3064	/*
3065	 * If both the page table page and the reservation are fully
3066	 * populated, then attempt promotion.
3067	 */
3068	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3069	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3070		pmap_promote_pde(pmap, pde, va);
3071
3072	vm_page_unlock_queues();
3073	PMAP_UNLOCK(pmap);
3074}
3075
3076/*
3077 * Tries to create a 2MB page mapping.  Returns TRUE if successful and FALSE
3078 * otherwise.  Fails if (1) a page table page cannot be allocated without
3079 * blocking, (2) a mapping already exists at the specified virtual address, or
3080 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3081 */
3082static boolean_t
3083pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3084{
3085	pd_entry_t *pde, newpde;
3086	vm_page_t free, mpde;
3087
3088	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3089	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3090	if ((mpde = pmap_allocpde(pmap, va, M_NOWAIT)) == NULL) {
3091		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3092		    " in pmap %p", va, pmap);
3093		return (FALSE);
3094	}
3095	pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpde));
3096	pde = &pde[pmap_pde_index(va)];
3097	if ((*pde & PG_V) != 0) {
3098		KASSERT(mpde->wire_count > 1,
3099		    ("pmap_enter_pde: mpde's wire count is too low"));
3100		mpde->wire_count--;
3101		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3102		    " in pmap %p", va, pmap);
3103		return (FALSE);
3104	}
3105	newpde = VM_PAGE_TO_PHYS(m) | PG_PS | PG_V;
3106	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3107		newpde |= PG_MANAGED;
3108
3109		/*
3110		 * Abort this mapping if its PV entry could not be created.
3111		 */
3112		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3113			free = NULL;
3114			if (pmap_unwire_pte_hold(pmap, va, mpde, &free)) {
3115				pmap_invalidate_page(pmap, va);
3116				pmap_free_zero_pages(free);
3117			}
3118			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3119			    " in pmap %p", va, pmap);
3120			return (FALSE);
3121		}
3122	}
3123	if ((prot & VM_PROT_EXECUTE) == 0)
3124		newpde |= pg_nx;
3125	if (va < VM_MAXUSER_ADDRESS)
3126		newpde |= PG_U;
3127
3128	/*
3129	 * Increment counters.
3130	 */
3131	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3132
3133	/*
3134	 * Map the superpage.
3135	 */
3136	pde_store(pde, newpde);
3137
3138	pmap_pde_mappings++;
3139	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3140	    " in pmap %p", va, pmap);
3141	return (TRUE);
3142}
3143
3144/*
3145 * Maps a sequence of resident pages belonging to the same object.
3146 * The sequence begins with the given page m_start.  This page is
3147 * mapped at the given virtual address start.  Each subsequent page is
3148 * mapped at a virtual address that is offset from start by the same
3149 * amount as the page is offset from m_start within the object.  The
3150 * last page in the sequence is the page with the largest offset from
3151 * m_start that can be mapped at a virtual address less than the given
3152 * virtual address end.  Not every virtual page between start and end
3153 * is mapped; only those for which a resident page exists with the
3154 * corresponding offset from m_start are mapped.
3155 */
3156void
3157pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3158    vm_page_t m_start, vm_prot_t prot)
3159{
3160	vm_offset_t va;
3161	vm_page_t m, mpte;
3162	vm_pindex_t diff, psize;
3163
3164	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3165	psize = atop(end - start);
3166	mpte = NULL;
3167	m = m_start;
3168	PMAP_LOCK(pmap);
3169	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3170		va = start + ptoa(diff);
3171		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3172		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3173		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3174		    pmap_enter_pde(pmap, va, m, prot))
3175			m = &m[NBPDR / PAGE_SIZE - 1];
3176		else
3177			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3178			    mpte);
3179		m = TAILQ_NEXT(m, listq);
3180	}
3181 	PMAP_UNLOCK(pmap);
3182}
3183
3184/*
3185 * this code makes some *MAJOR* assumptions:
3186 * 1. Current pmap & pmap exists.
3187 * 2. Not wired.
3188 * 3. Read access.
3189 * 4. No page table pages.
3190 * but is *MUCH* faster than pmap_enter...
3191 */
3192
3193void
3194pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3195{
3196
3197	PMAP_LOCK(pmap);
3198	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3199	PMAP_UNLOCK(pmap);
3200}
3201
3202static vm_page_t
3203pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3204    vm_prot_t prot, vm_page_t mpte)
3205{
3206	vm_page_t free;
3207	pt_entry_t *pte;
3208	vm_paddr_t pa;
3209
3210	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3211	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3212	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3213	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3214	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3215
3216	/*
3217	 * In the case that a page table page is not
3218	 * resident, we are creating it here.
3219	 */
3220	if (va < VM_MAXUSER_ADDRESS) {
3221		vm_pindex_t ptepindex;
3222		pd_entry_t *ptepa;
3223
3224		/*
3225		 * Calculate pagetable page index
3226		 */
3227		ptepindex = pmap_pde_pindex(va);
3228		if (mpte && (mpte->pindex == ptepindex)) {
3229			mpte->wire_count++;
3230		} else {
3231			/*
3232			 * Get the page directory entry
3233			 */
3234			ptepa = pmap_pde(pmap, va);
3235
3236			/*
3237			 * If the page table page is mapped, we just increment
3238			 * the hold count, and activate it.
3239			 */
3240			if (ptepa && (*ptepa & PG_V) != 0) {
3241				if (*ptepa & PG_PS)
3242					return (NULL);
3243				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
3244				mpte->wire_count++;
3245			} else {
3246				mpte = _pmap_allocpte(pmap, ptepindex,
3247				    M_NOWAIT);
3248				if (mpte == NULL)
3249					return (mpte);
3250			}
3251		}
3252		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3253		pte = &pte[pmap_pte_index(va)];
3254	} else {
3255		mpte = NULL;
3256		pte = vtopte(va);
3257	}
3258	if (*pte) {
3259		if (mpte != NULL) {
3260			mpte->wire_count--;
3261			mpte = NULL;
3262		}
3263		return (mpte);
3264	}
3265
3266	/*
3267	 * Enter on the PV list if part of our managed memory.
3268	 */
3269	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3270	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3271		if (mpte != NULL) {
3272			free = NULL;
3273			if (pmap_unwire_pte_hold(pmap, va, mpte, &free)) {
3274				pmap_invalidate_page(pmap, va);
3275				pmap_free_zero_pages(free);
3276			}
3277			mpte = NULL;
3278		}
3279		return (mpte);
3280	}
3281
3282	/*
3283	 * Increment counters
3284	 */
3285	pmap->pm_stats.resident_count++;
3286
3287	pa = VM_PAGE_TO_PHYS(m);
3288	if ((prot & VM_PROT_EXECUTE) == 0)
3289		pa |= pg_nx;
3290
3291	/*
3292	 * Now validate mapping with RO protection
3293	 */
3294	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3295		pte_store(pte, pa | PG_V | PG_U);
3296	else
3297		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3298	return mpte;
3299}
3300
3301/*
3302 * Make a temporary mapping for a physical address.  This is only intended
3303 * to be used for panic dumps.
3304 */
3305void *
3306pmap_kenter_temporary(vm_paddr_t pa, int i)
3307{
3308	vm_offset_t va;
3309
3310	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3311	pmap_kenter(va, pa);
3312	invlpg(va);
3313	return ((void *)crashdumpmap);
3314}
3315
3316/*
3317 * This code maps large physical mmap regions into the
3318 * processor address space.  Note that some shortcuts
3319 * are taken, but the code works.
3320 */
3321void
3322pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3323    vm_pindex_t pindex, vm_size_t size)
3324{
3325	vm_offset_t va;
3326	vm_page_t p, pdpg;
3327
3328	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3329	KASSERT(object->type == OBJT_DEVICE,
3330	    ("pmap_object_init_pt: non-device object"));
3331	if (((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3332		vm_page_t m[1];
3333		pd_entry_t ptepa, *pde;
3334
3335		PMAP_LOCK(pmap);
3336		pde = pmap_pde(pmap, addr);
3337		if (pde != 0 && (*pde & PG_V) != 0)
3338			goto out;
3339		PMAP_UNLOCK(pmap);
3340retry:
3341		p = vm_page_lookup(object, pindex);
3342		if (p != NULL) {
3343			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3344				goto retry;
3345		} else {
3346			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3347			if (p == NULL)
3348				return;
3349			m[0] = p;
3350
3351			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3352				vm_page_lock_queues();
3353				vm_page_free(p);
3354				vm_page_unlock_queues();
3355				return;
3356			}
3357
3358			p = vm_page_lookup(object, pindex);
3359			vm_page_wakeup(p);
3360		}
3361
3362		ptepa = VM_PAGE_TO_PHYS(p);
3363		if (ptepa & (NBPDR - 1))
3364			return;
3365
3366		p->valid = VM_PAGE_BITS_ALL;
3367
3368		PMAP_LOCK(pmap);
3369		for (va = addr; va < addr + size; va += NBPDR) {
3370			while ((pdpg =
3371			    pmap_allocpde(pmap, va, M_NOWAIT)) == NULL) {
3372				PMAP_UNLOCK(pmap);
3373				vm_page_busy(p);
3374				VM_OBJECT_UNLOCK(object);
3375				VM_WAIT;
3376				VM_OBJECT_LOCK(object);
3377				vm_page_wakeup(p);
3378				PMAP_LOCK(pmap);
3379			}
3380			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3381			pde = &pde[pmap_pde_index(va)];
3382			if ((*pde & PG_V) == 0) {
3383				pde_store(pde, ptepa | PG_PS | PG_M | PG_A |
3384				    PG_U | PG_RW | PG_V);
3385				pmap->pm_stats.resident_count +=
3386				    NBPDR / PAGE_SIZE;
3387			} else {
3388				pdpg->wire_count--;
3389				KASSERT(pdpg->wire_count > 0,
3390				    ("pmap_object_init_pt: missing reference "
3391				     "to page directory page, va: 0x%lx", va));
3392			}
3393			ptepa += NBPDR;
3394		}
3395		pmap_invalidate_all(pmap);
3396out:
3397		PMAP_UNLOCK(pmap);
3398	}
3399}
3400
3401/*
3402 *	Routine:	pmap_change_wiring
3403 *	Function:	Change the wiring attribute for a map/virtual-address
3404 *			pair.
3405 *	In/out conditions:
3406 *			The mapping must already exist in the pmap.
3407 */
3408void
3409pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3410{
3411	pd_entry_t *pde;
3412	pt_entry_t *pte;
3413	boolean_t are_queues_locked;
3414
3415	are_queues_locked = FALSE;
3416
3417	/*
3418	 * Wiring is not a hardware characteristic so there is no need to
3419	 * invalidate TLB.
3420	 */
3421retry:
3422	PMAP_LOCK(pmap);
3423	pde = pmap_pde(pmap, va);
3424	if ((*pde & PG_PS) != 0) {
3425		if (!wired != ((*pde & PG_W) == 0)) {
3426			if (!are_queues_locked) {
3427				are_queues_locked = TRUE;
3428				if (!mtx_trylock(&vm_page_queue_mtx)) {
3429					PMAP_UNLOCK(pmap);
3430					vm_page_lock_queues();
3431					goto retry;
3432				}
3433			}
3434			if (!pmap_demote_pde(pmap, pde, va))
3435				panic("pmap_change_wiring: demotion failed");
3436		} else
3437			goto out;
3438	}
3439	pte = pmap_pde_to_pte(pde, va);
3440	if (wired && (*pte & PG_W) == 0) {
3441		pmap->pm_stats.wired_count++;
3442		atomic_set_long(pte, PG_W);
3443	} else if (!wired && (*pte & PG_W) != 0) {
3444		pmap->pm_stats.wired_count--;
3445		atomic_clear_long(pte, PG_W);
3446	}
3447out:
3448	if (are_queues_locked)
3449		vm_page_unlock_queues();
3450	PMAP_UNLOCK(pmap);
3451}
3452
3453
3454
3455/*
3456 *	Copy the range specified by src_addr/len
3457 *	from the source map to the range dst_addr/len
3458 *	in the destination map.
3459 *
3460 *	This routine is only advisory and need not do anything.
3461 */
3462
3463void
3464pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3465    vm_offset_t src_addr)
3466{
3467	vm_page_t   free;
3468	vm_offset_t addr;
3469	vm_offset_t end_addr = src_addr + len;
3470	vm_offset_t va_next;
3471
3472	if (dst_addr != src_addr)
3473		return;
3474
3475	vm_page_lock_queues();
3476	if (dst_pmap < src_pmap) {
3477		PMAP_LOCK(dst_pmap);
3478		PMAP_LOCK(src_pmap);
3479	} else {
3480		PMAP_LOCK(src_pmap);
3481		PMAP_LOCK(dst_pmap);
3482	}
3483	for (addr = src_addr; addr < end_addr; addr = va_next) {
3484		pt_entry_t *src_pte, *dst_pte;
3485		vm_page_t dstmpde, dstmpte, srcmpte;
3486		pml4_entry_t *pml4e;
3487		pdp_entry_t *pdpe;
3488		pd_entry_t srcptepaddr, *pde;
3489
3490		KASSERT(addr < UPT_MIN_ADDRESS,
3491		    ("pmap_copy: invalid to pmap_copy page tables"));
3492
3493		pml4e = pmap_pml4e(src_pmap, addr);
3494		if ((*pml4e & PG_V) == 0) {
3495			va_next = (addr + NBPML4) & ~PML4MASK;
3496			if (va_next < addr)
3497				va_next = end_addr;
3498			continue;
3499		}
3500
3501		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
3502		if ((*pdpe & PG_V) == 0) {
3503			va_next = (addr + NBPDP) & ~PDPMASK;
3504			if (va_next < addr)
3505				va_next = end_addr;
3506			continue;
3507		}
3508
3509		va_next = (addr + NBPDR) & ~PDRMASK;
3510		if (va_next < addr)
3511			va_next = end_addr;
3512
3513		pde = pmap_pdpe_to_pde(pdpe, addr);
3514		srcptepaddr = *pde;
3515		if (srcptepaddr == 0)
3516			continue;
3517
3518		if (srcptepaddr & PG_PS) {
3519			dstmpde = pmap_allocpde(dst_pmap, addr, M_NOWAIT);
3520			if (dstmpde == NULL)
3521				break;
3522			pde = (pd_entry_t *)
3523			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpde));
3524			pde = &pde[pmap_pde_index(addr)];
3525			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
3526			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3527			    PG_PS_FRAME))) {
3528				*pde = srcptepaddr & ~PG_W;
3529				dst_pmap->pm_stats.resident_count +=
3530				    NBPDR / PAGE_SIZE;
3531			} else
3532				dstmpde->wire_count--;
3533			continue;
3534		}
3535
3536		srcptepaddr &= PG_FRAME;
3537		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
3538		KASSERT(srcmpte->wire_count > 0,
3539		    ("pmap_copy: source page table page is unused"));
3540
3541		if (va_next > end_addr)
3542			va_next = end_addr;
3543
3544		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
3545		src_pte = &src_pte[pmap_pte_index(addr)];
3546		dstmpte = NULL;
3547		while (addr < va_next) {
3548			pt_entry_t ptetemp;
3549			ptetemp = *src_pte;
3550			/*
3551			 * we only virtual copy managed pages
3552			 */
3553			if ((ptetemp & PG_MANAGED) != 0) {
3554				if (dstmpte != NULL &&
3555				    dstmpte->pindex == pmap_pde_pindex(addr))
3556					dstmpte->wire_count++;
3557				else if ((dstmpte = pmap_allocpte(dst_pmap,
3558				    addr, M_NOWAIT)) == NULL)
3559					goto out;
3560				dst_pte = (pt_entry_t *)
3561				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
3562				dst_pte = &dst_pte[pmap_pte_index(addr)];
3563				if (*dst_pte == 0 &&
3564				    pmap_try_insert_pv_entry(dst_pmap, addr,
3565				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3566					/*
3567					 * Clear the wired, modified, and
3568					 * accessed (referenced) bits
3569					 * during the copy.
3570					 */
3571					*dst_pte = ptetemp & ~(PG_W | PG_M |
3572					    PG_A);
3573					dst_pmap->pm_stats.resident_count++;
3574	 			} else {
3575					free = NULL;
3576					if (pmap_unwire_pte_hold(dst_pmap,
3577					    addr, dstmpte, &free)) {
3578					    	pmap_invalidate_page(dst_pmap,
3579					 	    addr);
3580				    	    	pmap_free_zero_pages(free);
3581					}
3582					goto out;
3583				}
3584				if (dstmpte->wire_count >= srcmpte->wire_count)
3585					break;
3586			}
3587			addr += PAGE_SIZE;
3588			src_pte++;
3589		}
3590	}
3591out:
3592	vm_page_unlock_queues();
3593	PMAP_UNLOCK(src_pmap);
3594	PMAP_UNLOCK(dst_pmap);
3595}
3596
3597/*
3598 *	pmap_zero_page zeros the specified hardware page by mapping
3599 *	the page into KVM and using bzero to clear its contents.
3600 */
3601void
3602pmap_zero_page(vm_page_t m)
3603{
3604	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3605
3606	pagezero((void *)va);
3607}
3608
3609/*
3610 *	pmap_zero_page_area zeros the specified hardware page by mapping
3611 *	the page into KVM and using bzero to clear its contents.
3612 *
3613 *	off and size may not cover an area beyond a single hardware page.
3614 */
3615void
3616pmap_zero_page_area(vm_page_t m, int off, int size)
3617{
3618	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3619
3620	if (off == 0 && size == PAGE_SIZE)
3621		pagezero((void *)va);
3622	else
3623		bzero((char *)va + off, size);
3624}
3625
3626/*
3627 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3628 *	the page into KVM and using bzero to clear its contents.  This
3629 *	is intended to be called from the vm_pagezero process only and
3630 *	outside of Giant.
3631 */
3632void
3633pmap_zero_page_idle(vm_page_t m)
3634{
3635	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3636
3637	pagezero((void *)va);
3638}
3639
3640/*
3641 *	pmap_copy_page copies the specified (machine independent)
3642 *	page by mapping the page into virtual memory and using
3643 *	bcopy to copy the page, one machine dependent page at a
3644 *	time.
3645 */
3646void
3647pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
3648{
3649	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
3650	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
3651
3652	pagecopy((void *)src, (void *)dst);
3653}
3654
3655/*
3656 * Returns true if the pmap's pv is one of the first
3657 * 16 pvs linked to from this page.  This count may
3658 * be changed upwards or downwards in the future; it
3659 * is only necessary that true be returned for a small
3660 * subset of pmaps for proper page aging.
3661 */
3662boolean_t
3663pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3664{
3665	struct md_page *pvh;
3666	pv_entry_t pv;
3667	int loops = 0;
3668
3669	if (m->flags & PG_FICTITIOUS)
3670		return FALSE;
3671
3672	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3673	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3674		if (PV_PMAP(pv) == pmap) {
3675			return TRUE;
3676		}
3677		loops++;
3678		if (loops >= 16)
3679			break;
3680	}
3681	if (loops < 16) {
3682		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3683		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3684			if (PV_PMAP(pv) == pmap)
3685				return (TRUE);
3686			loops++;
3687			if (loops >= 16)
3688				break;
3689		}
3690	}
3691	return (FALSE);
3692}
3693
3694/*
3695 *	pmap_page_wired_mappings:
3696 *
3697 *	Return the number of managed mappings to the given physical page
3698 *	that are wired.
3699 */
3700int
3701pmap_page_wired_mappings(vm_page_t m)
3702{
3703	int count;
3704
3705	count = 0;
3706	if ((m->flags & PG_FICTITIOUS) != 0)
3707		return (count);
3708	count = pmap_pvh_wired_mappings(&m->md, count);
3709	return (pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count));
3710}
3711
3712/*
3713 *	pmap_pvh_wired_mappings:
3714 *
3715 *	Return the updated number "count" of managed mappings that are wired.
3716 */
3717static int
3718pmap_pvh_wired_mappings(struct md_page *pvh, int count)
3719{
3720	pmap_t pmap;
3721	pt_entry_t *pte;
3722	pv_entry_t pv;
3723
3724	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3725	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3726		pmap = PV_PMAP(pv);
3727		PMAP_LOCK(pmap);
3728		pte = pmap_pte(pmap, pv->pv_va);
3729		if ((*pte & PG_W) != 0)
3730			count++;
3731		PMAP_UNLOCK(pmap);
3732	}
3733	return (count);
3734}
3735
3736/*
3737 * Returns TRUE if the given page is mapped individually or as part of
3738 * a 2mpage.  Otherwise, returns FALSE.
3739 */
3740boolean_t
3741pmap_page_is_mapped(vm_page_t m)
3742{
3743	struct md_page *pvh;
3744
3745	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3746		return (FALSE);
3747	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3748	if (TAILQ_EMPTY(&m->md.pv_list)) {
3749		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3750		return (!TAILQ_EMPTY(&pvh->pv_list));
3751	} else
3752		return (TRUE);
3753}
3754
3755/*
3756 * Remove all pages from specified address space
3757 * this aids process exit speeds.  Also, this code
3758 * is special cased for current process only, but
3759 * can have the more generic (and slightly slower)
3760 * mode enabled.  This is much faster than pmap_remove
3761 * in the case of running down an entire address space.
3762 */
3763void
3764pmap_remove_pages(pmap_t pmap)
3765{
3766	pd_entry_t ptepde;
3767	pt_entry_t *pte, tpte;
3768	vm_page_t free = NULL;
3769	vm_page_t m, mpte, mt;
3770	pv_entry_t pv;
3771	struct md_page *pvh;
3772	struct pv_chunk *pc, *npc;
3773	int field, idx;
3774	int64_t bit;
3775	uint64_t inuse, bitmask;
3776	int allfree;
3777
3778	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3779		printf("warning: pmap_remove_pages called with non-current pmap\n");
3780		return;
3781	}
3782	vm_page_lock_queues();
3783	PMAP_LOCK(pmap);
3784	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3785		allfree = 1;
3786		for (field = 0; field < _NPCM; field++) {
3787			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3788			while (inuse != 0) {
3789				bit = bsfq(inuse);
3790				bitmask = 1UL << bit;
3791				idx = field * 64 + bit;
3792				pv = &pc->pc_pventry[idx];
3793				inuse &= ~bitmask;
3794
3795				pte = pmap_pdpe(pmap, pv->pv_va);
3796				ptepde = *pte;
3797				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
3798				tpte = *pte;
3799				if ((tpte & (PG_PS | PG_V)) == PG_V) {
3800					ptepde = tpte;
3801					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
3802					    PG_FRAME);
3803					pte = &pte[pmap_pte_index(pv->pv_va)];
3804					tpte = *pte & ~PG_PTE_PAT;
3805				}
3806				if ((tpte & PG_V) == 0)
3807					panic("bad pte");
3808
3809/*
3810 * We cannot remove wired pages from a process' mapping at this time
3811 */
3812				if (tpte & PG_W) {
3813					allfree = 0;
3814					continue;
3815				}
3816
3817				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3818				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3819				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3820				    m, (uintmax_t)m->phys_addr,
3821				    (uintmax_t)tpte));
3822
3823				KASSERT(m < &vm_page_array[vm_page_array_size],
3824					("pmap_remove_pages: bad tpte %#jx",
3825					(uintmax_t)tpte));
3826
3827				pte_clear(pte);
3828
3829				/*
3830				 * Update the vm_page_t clean/reference bits.
3831				 */
3832				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3833					if ((tpte & PG_PS) != 0) {
3834						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3835							vm_page_dirty(mt);
3836					} else
3837						vm_page_dirty(m);
3838				}
3839
3840				/* Mark free */
3841				PV_STAT(pv_entry_frees++);
3842				PV_STAT(pv_entry_spare++);
3843				pv_entry_count--;
3844				pc->pc_map[field] |= bitmask;
3845				if ((tpte & PG_PS) != 0) {
3846					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3847					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
3848					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
3849					if (TAILQ_EMPTY(&pvh->pv_list)) {
3850						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
3851							if (TAILQ_EMPTY(&mt->md.pv_list))
3852								vm_page_flag_clear(mt, PG_WRITEABLE);
3853					}
3854					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
3855					if (mpte != NULL) {
3856						pmap_remove_pt_page(pmap, mpte);
3857						pmap->pm_stats.resident_count--;
3858						KASSERT(mpte->wire_count == NPTEPG,
3859						    ("pmap_remove_pages: pte page wire count error"));
3860						mpte->wire_count = 0;
3861						pmap_add_delayed_free_list(mpte, &free, FALSE);
3862						atomic_subtract_int(&cnt.v_wire_count, 1);
3863					}
3864				} else {
3865					pmap->pm_stats.resident_count--;
3866					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3867					if (TAILQ_EMPTY(&m->md.pv_list)) {
3868						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3869						if (TAILQ_EMPTY(&pvh->pv_list))
3870							vm_page_flag_clear(m, PG_WRITEABLE);
3871					}
3872				}
3873				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
3874			}
3875		}
3876		if (allfree) {
3877			PV_STAT(pv_entry_spare -= _NPCPV);
3878			PV_STAT(pc_chunk_count--);
3879			PV_STAT(pc_chunk_frees++);
3880			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3881			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
3882			dump_drop_page(m->phys_addr);
3883			vm_page_unwire(m, 0);
3884			vm_page_free(m);
3885		}
3886	}
3887	pmap_invalidate_all(pmap);
3888	vm_page_unlock_queues();
3889	PMAP_UNLOCK(pmap);
3890	pmap_free_zero_pages(free);
3891}
3892
3893/*
3894 *	pmap_is_modified:
3895 *
3896 *	Return whether or not the specified physical page was modified
3897 *	in any physical maps.
3898 */
3899boolean_t
3900pmap_is_modified(vm_page_t m)
3901{
3902
3903	if (m->flags & PG_FICTITIOUS)
3904		return (FALSE);
3905	if (pmap_is_modified_pvh(&m->md))
3906		return (TRUE);
3907	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
3908}
3909
3910/*
3911 * Returns TRUE if any of the given mappings were used to modify
3912 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
3913 * mappings are supported.
3914 */
3915static boolean_t
3916pmap_is_modified_pvh(struct md_page *pvh)
3917{
3918	pv_entry_t pv;
3919	pt_entry_t *pte;
3920	pmap_t pmap;
3921	boolean_t rv;
3922
3923	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3924	rv = FALSE;
3925	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
3926		pmap = PV_PMAP(pv);
3927		PMAP_LOCK(pmap);
3928		pte = pmap_pte(pmap, pv->pv_va);
3929		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
3930		PMAP_UNLOCK(pmap);
3931		if (rv)
3932			break;
3933	}
3934	return (rv);
3935}
3936
3937/*
3938 *	pmap_is_prefaultable:
3939 *
3940 *	Return whether or not the specified virtual address is elgible
3941 *	for prefault.
3942 */
3943boolean_t
3944pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3945{
3946	pd_entry_t *pde;
3947	pt_entry_t *pte;
3948	boolean_t rv;
3949
3950	rv = FALSE;
3951	PMAP_LOCK(pmap);
3952	pde = pmap_pde(pmap, addr);
3953	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
3954		pte = pmap_pde_to_pte(pde, addr);
3955		rv = (*pte & PG_V) == 0;
3956	}
3957	PMAP_UNLOCK(pmap);
3958	return (rv);
3959}
3960
3961/*
3962 * Clear the write and modified bits in each of the given page's mappings.
3963 */
3964void
3965pmap_remove_write(vm_page_t m)
3966{
3967	struct md_page *pvh;
3968	pmap_t pmap;
3969	pv_entry_t next_pv, pv;
3970	pd_entry_t *pde;
3971	pt_entry_t oldpte, *pte;
3972	vm_offset_t va;
3973
3974	if ((m->flags & PG_FICTITIOUS) != 0 ||
3975	    (m->flags & PG_WRITEABLE) == 0)
3976		return;
3977	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3978	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3979	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
3980		va = pv->pv_va;
3981		pmap = PV_PMAP(pv);
3982		PMAP_LOCK(pmap);
3983		pde = pmap_pde(pmap, va);
3984		if ((*pde & PG_RW) != 0)
3985			(void)pmap_demote_pde(pmap, pde, va);
3986		PMAP_UNLOCK(pmap);
3987	}
3988	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3989		pmap = PV_PMAP(pv);
3990		PMAP_LOCK(pmap);
3991		pde = pmap_pde(pmap, pv->pv_va);
3992		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
3993		    " a 2mpage in page %p's pv list", m));
3994		pte = pmap_pde_to_pte(pde, pv->pv_va);
3995retry:
3996		oldpte = *pte;
3997		if (oldpte & PG_RW) {
3998			if (!atomic_cmpset_long(pte, oldpte, oldpte &
3999			    ~(PG_RW | PG_M)))
4000				goto retry;
4001			if ((oldpte & PG_M) != 0)
4002				vm_page_dirty(m);
4003			pmap_invalidate_page(pmap, pv->pv_va);
4004		}
4005		PMAP_UNLOCK(pmap);
4006	}
4007	vm_page_flag_clear(m, PG_WRITEABLE);
4008}
4009
4010/*
4011 *	pmap_ts_referenced:
4012 *
4013 *	Return a count of reference bits for a page, clearing those bits.
4014 *	It is not necessary for every reference bit to be cleared, but it
4015 *	is necessary that 0 only be returned when there are truly no
4016 *	reference bits set.
4017 *
4018 *	XXX: The exact number of bits to check and clear is a matter that
4019 *	should be tested and standardized at some point in the future for
4020 *	optimal aging of shared pages.
4021 */
4022int
4023pmap_ts_referenced(vm_page_t m)
4024{
4025	struct md_page *pvh;
4026	pv_entry_t pv, pvf, pvn;
4027	pmap_t pmap;
4028	pd_entry_t oldpde, *pde;
4029	pt_entry_t *pte;
4030	vm_offset_t va;
4031	int rtval = 0;
4032
4033	if (m->flags & PG_FICTITIOUS)
4034		return (rtval);
4035	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4036	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4037	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4038		va = pv->pv_va;
4039		pmap = PV_PMAP(pv);
4040		PMAP_LOCK(pmap);
4041		pde = pmap_pde(pmap, va);
4042		oldpde = *pde;
4043		if ((oldpde & PG_A) != 0) {
4044			if (pmap_demote_pde(pmap, pde, va)) {
4045				if ((oldpde & PG_W) == 0) {
4046					/*
4047					 * Remove the mapping to a single page
4048					 * so that a subsequent access may
4049					 * repromote.  Since the underlying
4050					 * page table page is fully populated,
4051					 * this removal never frees a page
4052					 * table page.
4053					 */
4054					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4055					    PG_PS_FRAME);
4056					pmap_remove_page(pmap, va, pde, NULL);
4057					rtval++;
4058					if (rtval > 4) {
4059						PMAP_UNLOCK(pmap);
4060						return (rtval);
4061					}
4062				}
4063			}
4064		}
4065		PMAP_UNLOCK(pmap);
4066	}
4067	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4068		pvf = pv;
4069		do {
4070			pvn = TAILQ_NEXT(pv, pv_list);
4071			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4072			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4073			pmap = PV_PMAP(pv);
4074			PMAP_LOCK(pmap);
4075			pde = pmap_pde(pmap, pv->pv_va);
4076			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4077			    " found a 2mpage in page %p's pv list", m));
4078			pte = pmap_pde_to_pte(pde, pv->pv_va);
4079			if ((*pte & PG_A) != 0) {
4080				atomic_clear_long(pte, PG_A);
4081				pmap_invalidate_page(pmap, pv->pv_va);
4082				rtval++;
4083				if (rtval > 4)
4084					pvn = NULL;
4085			}
4086			PMAP_UNLOCK(pmap);
4087		} while ((pv = pvn) != NULL && pv != pvf);
4088	}
4089	return (rtval);
4090}
4091
4092/*
4093 *	Clear the modify bits on the specified physical page.
4094 */
4095void
4096pmap_clear_modify(vm_page_t m)
4097{
4098	struct md_page *pvh;
4099	pmap_t pmap;
4100	pv_entry_t next_pv, pv;
4101	pd_entry_t oldpde, *pde;
4102	pt_entry_t oldpte, *pte;
4103	vm_offset_t va;
4104
4105	if ((m->flags & PG_FICTITIOUS) != 0)
4106		return;
4107	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4108	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4109	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4110		va = pv->pv_va;
4111		pmap = PV_PMAP(pv);
4112		PMAP_LOCK(pmap);
4113		pde = pmap_pde(pmap, va);
4114		oldpde = *pde;
4115		if ((oldpde & PG_RW) != 0) {
4116			if (pmap_demote_pde(pmap, pde, va)) {
4117				if ((oldpde & PG_W) == 0) {
4118					/*
4119					 * Write protect the mapping to a
4120					 * single page so that a subsequent
4121					 * write access may repromote.
4122					 */
4123					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4124					    PG_PS_FRAME);
4125					pte = pmap_pde_to_pte(pde, va);
4126					oldpte = *pte;
4127					if ((oldpte & PG_V) != 0) {
4128						while (!atomic_cmpset_long(pte,
4129						    oldpte,
4130						    oldpte & ~(PG_M | PG_RW)))
4131							oldpte = *pte;
4132						vm_page_dirty(m);
4133						pmap_invalidate_page(pmap, va);
4134					}
4135				}
4136			}
4137		}
4138		PMAP_UNLOCK(pmap);
4139	}
4140	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4141		pmap = PV_PMAP(pv);
4142		PMAP_LOCK(pmap);
4143		pde = pmap_pde(pmap, pv->pv_va);
4144		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4145		    " a 2mpage in page %p's pv list", m));
4146		pte = pmap_pde_to_pte(pde, pv->pv_va);
4147		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4148			atomic_clear_long(pte, PG_M);
4149			pmap_invalidate_page(pmap, pv->pv_va);
4150		}
4151		PMAP_UNLOCK(pmap);
4152	}
4153}
4154
4155/*
4156 *	pmap_clear_reference:
4157 *
4158 *	Clear the reference bit on the specified physical page.
4159 */
4160void
4161pmap_clear_reference(vm_page_t m)
4162{
4163	struct md_page *pvh;
4164	pmap_t pmap;
4165	pv_entry_t next_pv, pv;
4166	pd_entry_t oldpde, *pde;
4167	pt_entry_t *pte;
4168	vm_offset_t va;
4169
4170	if ((m->flags & PG_FICTITIOUS) != 0)
4171		return;
4172	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4173	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4174	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4175		va = pv->pv_va;
4176		pmap = PV_PMAP(pv);
4177		PMAP_LOCK(pmap);
4178		pde = pmap_pde(pmap, va);
4179		oldpde = *pde;
4180		if ((oldpde & PG_A) != 0) {
4181			if (pmap_demote_pde(pmap, pde, va)) {
4182				/*
4183				 * Remove the mapping to a single page so
4184				 * that a subsequent access may repromote.
4185				 * Since the underlying page table page is
4186				 * fully populated, this removal never frees
4187				 * a page table page.
4188				 */
4189				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4190				    PG_PS_FRAME);
4191				pmap_remove_page(pmap, va, pde, NULL);
4192			}
4193		}
4194		PMAP_UNLOCK(pmap);
4195	}
4196	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4197		pmap = PV_PMAP(pv);
4198		PMAP_LOCK(pmap);
4199		pde = pmap_pde(pmap, pv->pv_va);
4200		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4201		    " a 2mpage in page %p's pv list", m));
4202		pte = pmap_pde_to_pte(pde, pv->pv_va);
4203		if (*pte & PG_A) {
4204			atomic_clear_long(pte, PG_A);
4205			pmap_invalidate_page(pmap, pv->pv_va);
4206		}
4207		PMAP_UNLOCK(pmap);
4208	}
4209}
4210
4211/*
4212 * Miscellaneous support routines follow
4213 */
4214
4215/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4216static __inline void
4217pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4218{
4219	u_int opte, npte;
4220
4221	/*
4222	 * The cache mode bits are all in the low 32-bits of the
4223	 * PTE, so we can just spin on updating the low 32-bits.
4224	 */
4225	do {
4226		opte = *(u_int *)pte;
4227		npte = opte & ~PG_PTE_CACHE;
4228		npte |= cache_bits;
4229	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4230}
4231
4232/* Adjust the cache mode for a 2MB page mapped via a PDE. */
4233static __inline void
4234pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4235{
4236	u_int opde, npde;
4237
4238	/*
4239	 * The cache mode bits are all in the low 32-bits of the
4240	 * PDE, so we can just spin on updating the low 32-bits.
4241	 */
4242	do {
4243		opde = *(u_int *)pde;
4244		npde = opde & ~PG_PDE_CACHE;
4245		npde |= cache_bits;
4246	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4247}
4248
4249/*
4250 * Map a set of physical memory pages into the kernel virtual
4251 * address space. Return a pointer to where it is mapped. This
4252 * routine is intended to be used for mapping device memory,
4253 * NOT real memory.
4254 */
4255void *
4256pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4257{
4258	vm_offset_t va, tmpva, offset;
4259
4260	/*
4261	 * If the specified range of physical addresses fits within the direct
4262	 * map window, use the direct map.
4263	 */
4264	if (pa < dmaplimit && pa + size < dmaplimit) {
4265		va = PHYS_TO_DMAP(pa);
4266		if (!pmap_change_attr(va, size, mode))
4267			return ((void *)va);
4268	}
4269	offset = pa & PAGE_MASK;
4270	size = roundup(offset + size, PAGE_SIZE);
4271	va = kmem_alloc_nofault(kernel_map, size);
4272	if (!va)
4273		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4274	pa = trunc_page(pa);
4275	for (tmpva = va; size > 0; ) {
4276		pmap_kenter_attr(tmpva, pa, mode);
4277		size -= PAGE_SIZE;
4278		tmpva += PAGE_SIZE;
4279		pa += PAGE_SIZE;
4280	}
4281	pmap_invalidate_range(kernel_pmap, va, tmpva);
4282	pmap_invalidate_cache();
4283	return ((void *)(va + offset));
4284}
4285
4286void *
4287pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4288{
4289
4290	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4291}
4292
4293void *
4294pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4295{
4296
4297	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4298}
4299
4300void
4301pmap_unmapdev(vm_offset_t va, vm_size_t size)
4302{
4303	vm_offset_t base, offset, tmpva;
4304
4305	/* If we gave a direct map region in pmap_mapdev, do nothing */
4306	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
4307		return;
4308	base = trunc_page(va);
4309	offset = va & PAGE_MASK;
4310	size = roundup(offset + size, PAGE_SIZE);
4311	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4312		pmap_kremove(tmpva);
4313	pmap_invalidate_range(kernel_pmap, va, tmpva);
4314	kmem_free(kernel_map, base, size);
4315}
4316
4317/*
4318 * Tries to demote a 1GB page mapping.
4319 */
4320static boolean_t
4321pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
4322{
4323	pdp_entry_t newpdpe, oldpdpe;
4324	pd_entry_t *firstpde, newpde, *pde;
4325	vm_paddr_t mpdepa;
4326	vm_page_t mpde;
4327
4328	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4329	oldpdpe = *pdpe;
4330	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
4331	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
4332	if ((mpde = vm_page_alloc(NULL, va >> PDPSHIFT, VM_ALLOC_INTERRUPT |
4333	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4334		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
4335		    " in pmap %p", va, pmap);
4336		return (FALSE);
4337	}
4338	mpdepa = VM_PAGE_TO_PHYS(mpde);
4339	firstpde = (pd_entry_t *)PHYS_TO_DMAP(mpdepa);
4340	newpdpe = mpdepa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
4341	KASSERT((oldpdpe & PG_A) != 0,
4342	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
4343	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
4344	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
4345	newpde = oldpdpe;
4346
4347	/*
4348	 * Initialize the page directory page.
4349	 */
4350	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
4351		*pde = newpde;
4352		newpde += NBPDR;
4353	}
4354
4355	/*
4356	 * Demote the mapping.
4357	 */
4358	*pdpe = newpdpe;
4359
4360	/*
4361	 * Invalidate a stale recursive mapping of the page directory page.
4362	 */
4363	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
4364
4365	pmap_pdpe_demotions++;
4366	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
4367	    " in pmap %p", va, pmap);
4368	return (TRUE);
4369}
4370
4371/*
4372 * Changes the specified virtual address range's memory type to that given by
4373 * the parameter "mode".  The specified virtual address range must be
4374 * completely contained within either the direct map or the kernel map.  If
4375 * the virtual address range is contained within the kernel map, then the
4376 * memory type for each of the corresponding ranges of the direct map is also
4377 * changed.  (The corresponding ranges of the direct map are those ranges that
4378 * map the same physical pages as the specified virtual address range.)  These
4379 * changes to the direct map are necessary because Intel describes the
4380 * behavior of their processors as "undefined" if two or more mappings to the
4381 * same physical page have different memory types.
4382 *
4383 * Returns zero if the change completed successfully, and either EINVAL or
4384 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4385 * of the virtual address range was not mapped, and ENOMEM is returned if
4386 * there was insufficient memory available to complete the change.  In the
4387 * latter case, the memory type may have been changed on some part of the
4388 * virtual address range or the direct map.
4389 */
4390int
4391pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4392{
4393	int error;
4394
4395	PMAP_LOCK(kernel_pmap);
4396	error = pmap_change_attr_locked(va, size, mode);
4397	PMAP_UNLOCK(kernel_pmap);
4398	return (error);
4399}
4400
4401static int
4402pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
4403{
4404	vm_offset_t base, offset, tmpva;
4405	vm_paddr_t pa_start, pa_end;
4406	pdp_entry_t *pdpe;
4407	pd_entry_t *pde;
4408	pt_entry_t *pte;
4409	int cache_bits_pte, cache_bits_pde, error;
4410	boolean_t changed;
4411
4412	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
4413	base = trunc_page(va);
4414	offset = va & PAGE_MASK;
4415	size = roundup(offset + size, PAGE_SIZE);
4416
4417	/*
4418	 * Only supported on kernel virtual addresses, including the direct
4419	 * map but excluding the recursive map.
4420	 */
4421	if (base < DMAP_MIN_ADDRESS)
4422		return (EINVAL);
4423
4424	cache_bits_pde = cache_bits_pte = -1;
4425	changed = FALSE;
4426
4427	/*
4428	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
4429	 * into 4KB pages if required.
4430	 */
4431	for (tmpva = base; tmpva < base + size; ) {
4432		pdpe = pmap_pdpe(kernel_pmap, tmpva);
4433		if (*pdpe == 0)
4434			return (EINVAL);
4435		if (*pdpe & PG_PS) {
4436			/*
4437			 * If the current 1GB page already has the required
4438			 * memory type, then we need not demote this page. Just
4439			 * increment tmpva to the next 1GB page frame.
4440			 */
4441			if (cache_bits_pde < 0)
4442				cache_bits_pde = pmap_cache_bits(mode, 1);
4443			if ((*pdpe & PG_PDE_CACHE) == cache_bits_pde) {
4444				tmpva = trunc_1gpage(tmpva) + NBPDP;
4445				continue;
4446			}
4447
4448			/*
4449			 * If the current offset aligns with a 1GB page frame
4450			 * and there is at least 1GB left within the range, then
4451			 * we need not break down this page into 2MB pages.
4452			 */
4453			if ((tmpva & PDPMASK) == 0 &&
4454			    tmpva + PDPMASK < base + size) {
4455				tmpva += NBPDP;
4456				continue;
4457			}
4458			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
4459				return (ENOMEM);
4460		}
4461		pde = pmap_pdpe_to_pde(pdpe, tmpva);
4462		if (*pde == 0)
4463			return (EINVAL);
4464		if (*pde & PG_PS) {
4465			/*
4466			 * If the current 2MB page already has the required
4467			 * memory type, then we need not demote this page. Just
4468			 * increment tmpva to the next 2MB page frame.
4469			 */
4470			if (cache_bits_pde < 0)
4471				cache_bits_pde = pmap_cache_bits(mode, 1);
4472			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4473				tmpva = trunc_2mpage(tmpva) + NBPDR;
4474				continue;
4475			}
4476
4477			/*
4478			 * If the current offset aligns with a 2MB page frame
4479			 * and there is at least 2MB left within the range, then
4480			 * we need not break down this page into 4KB pages.
4481			 */
4482			if ((tmpva & PDRMASK) == 0 &&
4483			    tmpva + PDRMASK < base + size) {
4484				tmpva += NBPDR;
4485				continue;
4486			}
4487			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
4488				return (ENOMEM);
4489		}
4490		pte = pmap_pde_to_pte(pde, tmpva);
4491		if (*pte == 0)
4492			return (EINVAL);
4493		tmpva += PAGE_SIZE;
4494	}
4495	error = 0;
4496
4497	/*
4498	 * Ok, all the pages exist, so run through them updating their
4499	 * cache mode if required.
4500	 */
4501	pa_start = pa_end = 0;
4502	for (tmpva = base; tmpva < base + size; ) {
4503		pdpe = pmap_pdpe(kernel_pmap, tmpva);
4504		if (*pdpe & PG_PS) {
4505			if (cache_bits_pde < 0)
4506				cache_bits_pde = pmap_cache_bits(mode, 1);
4507			if ((*pdpe & PG_PDE_CACHE) != cache_bits_pde) {
4508				pmap_pde_attr(pdpe, cache_bits_pde);
4509				if (!changed)
4510					changed = TRUE;
4511			}
4512			if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
4513				if (pa_start == pa_end) {
4514					/* Start physical address run. */
4515					pa_start = *pdpe & PG_PS_FRAME;
4516					pa_end = pa_start + NBPDP;
4517				} else if (pa_end == (*pdpe & PG_PS_FRAME))
4518					pa_end += NBPDP;
4519				else {
4520					/* Run ended, update direct map. */
4521					error = pmap_change_attr_locked(
4522					    PHYS_TO_DMAP(pa_start),
4523					    pa_end - pa_start, mode);
4524					if (error != 0)
4525						break;
4526					/* Start physical address run. */
4527					pa_start = *pdpe & PG_PS_FRAME;
4528					pa_end = pa_start + NBPDP;
4529				}
4530			}
4531			tmpva = trunc_1gpage(tmpva) + NBPDP;
4532			continue;
4533		}
4534		pde = pmap_pdpe_to_pde(pdpe, tmpva);
4535		if (*pde & PG_PS) {
4536			if (cache_bits_pde < 0)
4537				cache_bits_pde = pmap_cache_bits(mode, 1);
4538			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4539				pmap_pde_attr(pde, cache_bits_pde);
4540				if (!changed)
4541					changed = TRUE;
4542			}
4543			if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
4544				if (pa_start == pa_end) {
4545					/* Start physical address run. */
4546					pa_start = *pde & PG_PS_FRAME;
4547					pa_end = pa_start + NBPDR;
4548				} else if (pa_end == (*pde & PG_PS_FRAME))
4549					pa_end += NBPDR;
4550				else {
4551					/* Run ended, update direct map. */
4552					error = pmap_change_attr_locked(
4553					    PHYS_TO_DMAP(pa_start),
4554					    pa_end - pa_start, mode);
4555					if (error != 0)
4556						break;
4557					/* Start physical address run. */
4558					pa_start = *pde & PG_PS_FRAME;
4559					pa_end = pa_start + NBPDR;
4560				}
4561			}
4562			tmpva = trunc_2mpage(tmpva) + NBPDR;
4563		} else {
4564			if (cache_bits_pte < 0)
4565				cache_bits_pte = pmap_cache_bits(mode, 0);
4566			pte = pmap_pde_to_pte(pde, tmpva);
4567			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4568				pmap_pte_attr(pte, cache_bits_pte);
4569				if (!changed)
4570					changed = TRUE;
4571			}
4572			if (tmpva >= VM_MIN_KERNEL_ADDRESS) {
4573				if (pa_start == pa_end) {
4574					/* Start physical address run. */
4575					pa_start = *pte & PG_FRAME;
4576					pa_end = pa_start + PAGE_SIZE;
4577				} else if (pa_end == (*pte & PG_FRAME))
4578					pa_end += PAGE_SIZE;
4579				else {
4580					/* Run ended, update direct map. */
4581					error = pmap_change_attr_locked(
4582					    PHYS_TO_DMAP(pa_start),
4583					    pa_end - pa_start, mode);
4584					if (error != 0)
4585						break;
4586					/* Start physical address run. */
4587					pa_start = *pte & PG_FRAME;
4588					pa_end = pa_start + PAGE_SIZE;
4589				}
4590			}
4591			tmpva += PAGE_SIZE;
4592		}
4593	}
4594	if (error == 0 && pa_start != pa_end)
4595		error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
4596		    pa_end - pa_start, mode);
4597
4598	/*
4599	 * Flush CPU caches if required to make sure any data isn't cached that
4600	 * shouldn't be, etc.
4601	 */
4602	if (changed) {
4603		pmap_invalidate_range(kernel_pmap, base, tmpva);
4604		pmap_invalidate_cache();
4605	}
4606	return (error);
4607}
4608
4609/*
4610 * perform the pmap work for mincore
4611 */
4612int
4613pmap_mincore(pmap_t pmap, vm_offset_t addr)
4614{
4615	pd_entry_t *pdep;
4616	pt_entry_t pte;
4617	vm_paddr_t pa;
4618	vm_page_t m;
4619	int val = 0;
4620
4621	PMAP_LOCK(pmap);
4622	pdep = pmap_pde(pmap, addr);
4623	if (pdep != NULL && (*pdep & PG_V)) {
4624		if (*pdep & PG_PS) {
4625			pte = *pdep;
4626			val = MINCORE_SUPER;
4627			/* Compute the physical address of the 4KB page. */
4628			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4629			    PG_FRAME;
4630		} else {
4631			pte = *pmap_pde_to_pte(pdep, addr);
4632			pa = pte & PG_FRAME;
4633		}
4634	} else {
4635		pte = 0;
4636		pa = 0;
4637	}
4638	PMAP_UNLOCK(pmap);
4639
4640	if (pte != 0) {
4641		val |= MINCORE_INCORE;
4642		if ((pte & PG_MANAGED) == 0)
4643			return val;
4644
4645		m = PHYS_TO_VM_PAGE(pa);
4646
4647		/*
4648		 * Modified by us
4649		 */
4650		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4651			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4652		else {
4653			/*
4654			 * Modified by someone else
4655			 */
4656			vm_page_lock_queues();
4657			if (m->dirty || pmap_is_modified(m))
4658				val |= MINCORE_MODIFIED_OTHER;
4659			vm_page_unlock_queues();
4660		}
4661		/*
4662		 * Referenced by us
4663		 */
4664		if (pte & PG_A)
4665			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4666		else {
4667			/*
4668			 * Referenced by someone else
4669			 */
4670			vm_page_lock_queues();
4671			if ((m->flags & PG_REFERENCED) ||
4672			    pmap_ts_referenced(m)) {
4673				val |= MINCORE_REFERENCED_OTHER;
4674				vm_page_flag_set(m, PG_REFERENCED);
4675			}
4676			vm_page_unlock_queues();
4677		}
4678	}
4679	return val;
4680}
4681
4682void
4683pmap_activate(struct thread *td)
4684{
4685	pmap_t	pmap, oldpmap;
4686	u_int64_t  cr3;
4687
4688	critical_enter();
4689	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4690	oldpmap = PCPU_GET(curpmap);
4691#ifdef SMP
4692if (oldpmap)	/* XXX FIXME */
4693	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4694	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4695#else
4696if (oldpmap)	/* XXX FIXME */
4697	oldpmap->pm_active &= ~PCPU_GET(cpumask);
4698	pmap->pm_active |= PCPU_GET(cpumask);
4699#endif
4700	cr3 = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml4);
4701	td->td_pcb->pcb_cr3 = cr3;
4702	load_cr3(cr3);
4703	critical_exit();
4704}
4705
4706/*
4707 *	Increase the starting virtual address of the given mapping if a
4708 *	different alignment might result in more superpage mappings.
4709 */
4710void
4711pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4712    vm_offset_t *addr, vm_size_t size)
4713{
4714	vm_offset_t superpage_offset;
4715
4716	if (size < NBPDR)
4717		return;
4718	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4719		offset += ptoa(object->pg_color);
4720	superpage_offset = offset & PDRMASK;
4721	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4722	    (*addr & PDRMASK) == superpage_offset)
4723		return;
4724	if ((*addr & PDRMASK) < superpage_offset)
4725		*addr = (*addr & ~PDRMASK) + superpage_offset;
4726	else
4727		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4728}
4729