pmap.c revision 131666
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2003 Peter Wemm
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/amd64/amd64/pmap.c 131666 2004-07-06 02:33:11Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_msgbuf.h"
107#include "opt_kstack_pages.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#ifdef SMP
123#include <sys/smp.h>
124#endif
125
126#include <vm/vm.h>
127#include <vm/vm_param.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_page.h>
130#include <vm/vm_map.h>
131#include <vm/vm_object.h>
132#include <vm/vm_extern.h>
133#include <vm/vm_pageout.h>
134#include <vm/vm_pager.h>
135#include <vm/uma.h>
136
137#include <machine/cpu.h>
138#include <machine/cputypes.h>
139#include <machine/md_var.h>
140#include <machine/specialreg.h>
141#ifdef SMP
142#include <machine/smp.h>
143#endif
144
145#ifndef PMAP_SHPGPERPROC
146#define PMAP_SHPGPERPROC 200
147#endif
148
149#if defined(DIAGNOSTIC)
150#define PMAP_DIAGNOSTIC
151#endif
152
153#define MINPV 2048
154
155#if !defined(PMAP_DIAGNOSTIC)
156#define PMAP_INLINE __inline
157#else
158#define PMAP_INLINE
159#endif
160
161struct pmap kernel_pmap_store;
162LIST_HEAD(pmaplist, pmap);
163static struct pmaplist allpmaps;
164static struct mtx allpmaps_lock;
165
166vm_paddr_t avail_start;		/* PA of first available physical page */
167vm_paddr_t avail_end;		/* PA of last available physical page */
168vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
169vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
170static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
171
172static int nkpt;
173static int ndmpdp;
174static vm_paddr_t dmaplimit;
175vm_offset_t kernel_vm_end;
176pt_entry_t pg_nx;
177
178static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
179static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
180static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
181u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
182
183static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
184static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
185
186/*
187 * Data for the pv entry allocation mechanism
188 */
189static uma_zone_t pvzone;
190static struct vm_object pvzone_obj;
191static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
192int pmap_pagedaemon_waken;
193
194/*
195 * All those kernel PT submaps that BSD is so fond of
196 */
197pt_entry_t *CMAP1 = 0;
198caddr_t CADDR1 = 0;
199struct msgbuf *msgbufp = 0;
200
201/*
202 * Crashdump maps.
203 */
204static caddr_t crashdumpmap;
205
206static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
207static pv_entry_t get_pv_entry(void);
208static void	pmap_clear_ptes(vm_page_t m, int bit);
209
210static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
211static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
212static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
213					vm_offset_t va);
214static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_page_t m);
216
217static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
218
219static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex);
220static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
221static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
222
223CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
224CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
225
226/*
227 * Move the kernel virtual free pointer to the next
228 * 2MB.  This is used to help improve performance
229 * by using a large (2MB) page for much of the kernel
230 * (.text, .data, .bss)
231 */
232static vm_offset_t
233pmap_kmem_choose(vm_offset_t addr)
234{
235	vm_offset_t newaddr = addr;
236
237	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
238	return newaddr;
239}
240
241/********************/
242/* Inline functions */
243/********************/
244
245/* Return a non-clipped PD index for a given VA */
246static __inline vm_pindex_t
247pmap_pde_pindex(vm_offset_t va)
248{
249	return va >> PDRSHIFT;
250}
251
252
253/* Return various clipped indexes for a given VA */
254static __inline vm_pindex_t
255pmap_pte_index(vm_offset_t va)
256{
257
258	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
259}
260
261static __inline vm_pindex_t
262pmap_pde_index(vm_offset_t va)
263{
264
265	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
266}
267
268static __inline vm_pindex_t
269pmap_pdpe_index(vm_offset_t va)
270{
271
272	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
273}
274
275static __inline vm_pindex_t
276pmap_pml4e_index(vm_offset_t va)
277{
278
279	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
280}
281
282/* Return a pointer to the PML4 slot that corresponds to a VA */
283static __inline pml4_entry_t *
284pmap_pml4e(pmap_t pmap, vm_offset_t va)
285{
286
287	if (!pmap)
288		return NULL;
289	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
290}
291
292/* Return a pointer to the PDP slot that corresponds to a VA */
293static __inline pdp_entry_t *
294pmap_pdpe(pmap_t pmap, vm_offset_t va)
295{
296	pml4_entry_t *pml4e;
297	pdp_entry_t *pdpe;
298
299	pml4e = pmap_pml4e(pmap, va);
300	if (pml4e == NULL || (*pml4e & PG_V) == 0)
301		return NULL;
302	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
303	return (&pdpe[pmap_pdpe_index(va)]);
304}
305
306/* Return a pointer to the PD slot that corresponds to a VA */
307static __inline pd_entry_t *
308pmap_pde(pmap_t pmap, vm_offset_t va)
309{
310	pdp_entry_t *pdpe;
311	pd_entry_t *pde;
312
313	pdpe = pmap_pdpe(pmap, va);
314	if (pdpe == NULL || (*pdpe & PG_V) == 0)
315		 return NULL;
316	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
317	return (&pde[pmap_pde_index(va)]);
318}
319
320/* Return a pointer to the PT slot that corresponds to a VA */
321static __inline pt_entry_t *
322pmap_pte(pmap_t pmap, vm_offset_t va)
323{
324	pd_entry_t *pde;
325	pt_entry_t *pte;
326
327	pde = pmap_pde(pmap, va);
328	if (pde == NULL || (*pde & PG_V) == 0)
329		return NULL;
330	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
331		return ((pt_entry_t *)pde);
332	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
333	return (&pte[pmap_pte_index(va)]);
334}
335
336
337PMAP_INLINE pt_entry_t *
338vtopte(vm_offset_t va)
339{
340	u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
341
342	return (PTmap + (amd64_btop(va) & mask));
343}
344
345static u_int64_t
346allocpages(int n)
347{
348	u_int64_t ret;
349
350	ret = avail_start;
351	bzero((void *)ret, n * PAGE_SIZE);
352	avail_start += n * PAGE_SIZE;
353	return (ret);
354}
355
356static void
357create_pagetables(void)
358{
359	int i;
360
361	/* Allocate pages */
362	KPTphys = allocpages(NKPT);
363	KPML4phys = allocpages(1);
364	KPDPphys = allocpages(NKPML4E);
365	KPDphys = allocpages(NKPDPE);
366
367	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
368	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
369		ndmpdp = 4;
370	DMPDPphys = allocpages(NDMPML4E);
371	DMPDphys = allocpages(ndmpdp);
372	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
373
374	/* Fill in the underlying page table pages */
375	/* Read-only from zero to physfree */
376	/* XXX not fully used, underneath 2M pages */
377	for (i = 0; (i << PAGE_SHIFT) < avail_start; i++) {
378		((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
379		((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V | PG_G;
380	}
381
382	/* Now map the page tables at their location within PTmap */
383	for (i = 0; i < NKPT; i++) {
384		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
385		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
386	}
387
388	/* Map from zero to end of allocations under 2M pages */
389	/* This replaces some of the KPTphys entries above */
390	for (i = 0; (i << PDRSHIFT) < avail_start; i++) {
391		((pd_entry_t *)KPDphys)[i] = i << PDRSHIFT;
392		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V | PG_PS | PG_G;
393	}
394
395	/* And connect up the PD to the PDP */
396	for (i = 0; i < NKPDPE; i++) {
397		((pdp_entry_t *)KPDPphys)[i + KPDPI] = KPDphys + (i << PAGE_SHIFT);
398		((pdp_entry_t *)KPDPphys)[i + KPDPI] |= PG_RW | PG_V | PG_U;
399	}
400
401
402	/* Now set up the direct map space using 2MB pages */
403	for (i = 0; i < NPDEPG * ndmpdp; i++) {
404		((pd_entry_t *)DMPDphys)[i] = (vm_paddr_t)i << PDRSHIFT;
405		((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS | PG_G;
406	}
407
408	/* And the direct map space's PDP */
409	for (i = 0; i < ndmpdp; i++) {
410		((pdp_entry_t *)DMPDPphys)[i] = DMPDphys + (i << PAGE_SHIFT);
411		((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
412	}
413
414	/* And recursively map PML4 to itself in order to get PTmap */
415	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
416	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
417
418	/* Connect the Direct Map slot up to the PML4 */
419	((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
420	((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
421
422	/* Connect the KVA slot up to the PML4 */
423	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
424	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
425}
426
427/*
428 *	Bootstrap the system enough to run with virtual memory.
429 *
430 *	On amd64 this is called after mapping has already been enabled
431 *	and just syncs the pmap module with what has already been done.
432 *	[We can't call it easily with mapping off since the kernel is not
433 *	mapped with PA == VA, hence we would have to relocate every address
434 *	from the linked base (virtual) address "KERNBASE" to the actual
435 *	(physical) address starting relative to 0]
436 */
437void
438pmap_bootstrap(firstaddr)
439	vm_paddr_t *firstaddr;
440{
441	vm_offset_t va;
442	pt_entry_t *pte, *unused;
443
444	avail_start = *firstaddr;
445
446	/*
447	 * Create an initial set of page tables to run the kernel in.
448	 */
449	create_pagetables();
450	*firstaddr = avail_start;
451
452	virtual_avail = (vm_offset_t) KERNBASE + avail_start;
453	virtual_avail = pmap_kmem_choose(virtual_avail);
454
455	virtual_end = VM_MAX_KERNEL_ADDRESS;
456
457
458	/* XXX do %cr0 as well */
459	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
460	load_cr3(KPML4phys);
461
462	/*
463	 * Initialize the kernel pmap (which is statically allocated).
464	 */
465	PMAP_LOCK_INIT(kernel_pmap);
466	kernel_pmap->pm_pml4 = (pdp_entry_t *) (KERNBASE + KPML4phys);
467	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
468	TAILQ_INIT(&kernel_pmap->pm_pvlist);
469	LIST_INIT(&allpmaps);
470	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
471	mtx_lock_spin(&allpmaps_lock);
472	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
473	mtx_unlock_spin(&allpmaps_lock);
474	nkpt = NKPT;
475
476	/*
477	 * Reserve some special page table entries/VA space for temporary
478	 * mapping of pages.
479	 */
480#define	SYSMAP(c, p, v, n)	\
481	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
482
483	va = virtual_avail;
484	pte = vtopte(va);
485
486	/*
487	 * CMAP1 is only used for the memory test.
488	 */
489	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
490
491	/*
492	 * Crashdump maps.
493	 */
494	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
495
496	/*
497	 * msgbufp is used to map the system message buffer.
498	 */
499	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
500
501	virtual_avail = va;
502
503	*CMAP1 = 0;
504
505	invltlb();
506}
507
508/*
509 *	Initialize the pmap module.
510 *	Called by vm_init, to initialize any structures that the pmap
511 *	system needs to map virtual memory.
512 *	pmap_init has been enhanced to support in a fairly consistant
513 *	way, discontiguous physical memory.
514 */
515void
516pmap_init(void)
517{
518	int i;
519
520	/*
521	 * Allocate memory for random pmap data structures.  Includes the
522	 * pv_head_table.
523	 */
524
525	for(i = 0; i < vm_page_array_size; i++) {
526		vm_page_t m;
527
528		m = &vm_page_array[i];
529		TAILQ_INIT(&m->md.pv_list);
530		m->md.pv_list_count = 0;
531	}
532
533	/*
534	 * init the pv free list
535	 */
536	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
537	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
538	uma_prealloc(pvzone, MINPV);
539
540	/*
541	 * Now it is safe to enable pv_table recording.
542	 */
543	pmap_initialized = TRUE;
544}
545
546/*
547 * Initialize the address space (zone) for the pv_entries.  Set a
548 * high water mark so that the system can recover from excessive
549 * numbers of pv entries.
550 */
551void
552pmap_init2()
553{
554	int shpgperproc = PMAP_SHPGPERPROC;
555
556	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
557	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
558	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
559	pv_entry_high_water = 9 * (pv_entry_max / 10);
560	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
561}
562
563
564/***************************************************
565 * Low level helper routines.....
566 ***************************************************/
567
568#if defined(PMAP_DIAGNOSTIC)
569
570/*
571 * This code checks for non-writeable/modified pages.
572 * This should be an invalid condition.
573 */
574static int
575pmap_nw_modified(pt_entry_t ptea)
576{
577	int pte;
578
579	pte = (int) ptea;
580
581	if ((pte & (PG_M|PG_RW)) == PG_M)
582		return 1;
583	else
584		return 0;
585}
586#endif
587
588
589/*
590 * this routine defines the region(s) of memory that should
591 * not be tested for the modified bit.
592 */
593static PMAP_INLINE int
594pmap_track_modified(vm_offset_t va)
595{
596	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
597		return 1;
598	else
599		return 0;
600}
601
602#ifdef SMP
603/*
604 * For SMP, these functions have to use the IPI mechanism for coherence.
605 */
606void
607pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
608{
609	u_int cpumask;
610	u_int other_cpus;
611
612	if (smp_started) {
613		if (!(read_rflags() & PSL_I))
614			panic("%s: interrupts disabled", __func__);
615		mtx_lock_spin(&smp_tlb_mtx);
616	} else
617		critical_enter();
618	/*
619	 * We need to disable interrupt preemption but MUST NOT have
620	 * interrupts disabled here.
621	 * XXX we may need to hold schedlock to get a coherent pm_active
622	 * XXX critical sections disable interrupts again
623	 */
624	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
625		invlpg(va);
626		smp_invlpg(va);
627	} else {
628		cpumask = PCPU_GET(cpumask);
629		other_cpus = PCPU_GET(other_cpus);
630		if (pmap->pm_active & cpumask)
631			invlpg(va);
632		if (pmap->pm_active & other_cpus)
633			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
634	}
635	if (smp_started)
636		mtx_unlock_spin(&smp_tlb_mtx);
637	else
638		critical_exit();
639}
640
641void
642pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
643{
644	u_int cpumask;
645	u_int other_cpus;
646	vm_offset_t addr;
647
648	if (smp_started) {
649		if (!(read_rflags() & PSL_I))
650			panic("%s: interrupts disabled", __func__);
651		mtx_lock_spin(&smp_tlb_mtx);
652	} else
653		critical_enter();
654	/*
655	 * We need to disable interrupt preemption but MUST NOT have
656	 * interrupts disabled here.
657	 * XXX we may need to hold schedlock to get a coherent pm_active
658	 * XXX critical sections disable interrupts again
659	 */
660	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
661		for (addr = sva; addr < eva; addr += PAGE_SIZE)
662			invlpg(addr);
663		smp_invlpg_range(sva, eva);
664	} else {
665		cpumask = PCPU_GET(cpumask);
666		other_cpus = PCPU_GET(other_cpus);
667		if (pmap->pm_active & cpumask)
668			for (addr = sva; addr < eva; addr += PAGE_SIZE)
669				invlpg(addr);
670		if (pmap->pm_active & other_cpus)
671			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
672			    sva, eva);
673	}
674	if (smp_started)
675		mtx_unlock_spin(&smp_tlb_mtx);
676	else
677		critical_exit();
678}
679
680void
681pmap_invalidate_all(pmap_t pmap)
682{
683	u_int cpumask;
684	u_int other_cpus;
685
686	if (smp_started) {
687		if (!(read_rflags() & PSL_I))
688			panic("%s: interrupts disabled", __func__);
689		mtx_lock_spin(&smp_tlb_mtx);
690	} else
691		critical_enter();
692	/*
693	 * We need to disable interrupt preemption but MUST NOT have
694	 * interrupts disabled here.
695	 * XXX we may need to hold schedlock to get a coherent pm_active
696	 * XXX critical sections disable interrupts again
697	 */
698	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
699		invltlb();
700		smp_invltlb();
701	} else {
702		cpumask = PCPU_GET(cpumask);
703		other_cpus = PCPU_GET(other_cpus);
704		if (pmap->pm_active & cpumask)
705			invltlb();
706		if (pmap->pm_active & other_cpus)
707			smp_masked_invltlb(pmap->pm_active & other_cpus);
708	}
709	if (smp_started)
710		mtx_unlock_spin(&smp_tlb_mtx);
711	else
712		critical_exit();
713}
714#else /* !SMP */
715/*
716 * Normal, non-SMP, invalidation functions.
717 * We inline these within pmap.c for speed.
718 */
719PMAP_INLINE void
720pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
721{
722
723	if (pmap == kernel_pmap || pmap->pm_active)
724		invlpg(va);
725}
726
727PMAP_INLINE void
728pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
729{
730	vm_offset_t addr;
731
732	if (pmap == kernel_pmap || pmap->pm_active)
733		for (addr = sva; addr < eva; addr += PAGE_SIZE)
734			invlpg(addr);
735}
736
737PMAP_INLINE void
738pmap_invalidate_all(pmap_t pmap)
739{
740
741	if (pmap == kernel_pmap || pmap->pm_active)
742		invltlb();
743}
744#endif /* !SMP */
745
746/*
747 * Are we current address space or kernel?
748 */
749static __inline int
750pmap_is_current(pmap_t pmap)
751{
752	return (pmap == kernel_pmap ||
753	    (pmap->pm_pml4[PML4PML4I] & PG_FRAME) == (PML4pml4e[0] & PG_FRAME));
754}
755
756/*
757 *	Routine:	pmap_extract
758 *	Function:
759 *		Extract the physical page address associated
760 *		with the given map/virtual_address pair.
761 */
762vm_paddr_t
763pmap_extract(pmap_t pmap, vm_offset_t va)
764{
765	vm_paddr_t rtval;
766	pt_entry_t *pte;
767	pd_entry_t pde, *pdep;
768
769	if (pmap == NULL)
770		return 0;
771	PMAP_LOCK(pmap);
772	pdep = pmap_pde(pmap, va);
773	if (pdep) {
774		pde = *pdep;
775		if (pde) {
776			if ((pde & PG_PS) != 0) {
777				rtval = (pde & ~PDRMASK) | (va & PDRMASK);
778				PMAP_UNLOCK(pmap);
779				return rtval;
780			}
781			pte = pmap_pte(pmap, va);
782			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
783			PMAP_UNLOCK(pmap);
784			return rtval;
785		}
786	}
787	PMAP_UNLOCK(pmap);
788	return 0;
789
790}
791
792/*
793 *	Routine:	pmap_extract_and_hold
794 *	Function:
795 *		Atomically extract and hold the physical page
796 *		with the given pmap and virtual address pair
797 *		if that mapping permits the given protection.
798 */
799vm_page_t
800pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
801{
802	pd_entry_t pde, *pdep;
803	pt_entry_t pte;
804	vm_page_t m;
805
806	m = NULL;
807	if (pmap == NULL)
808		return (m);
809	vm_page_lock_queues();
810	PMAP_LOCK(pmap);
811	pdep = pmap_pde(pmap, va);
812	if (pdep != NULL && (pde = *pdep)) {
813		if (pde & PG_PS) {
814			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
815				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
816				    (va & PDRMASK));
817				vm_page_hold(m);
818			}
819		} else {
820			pte = *pmap_pte(pmap, va);
821			if ((pte & PG_V) &&
822			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
823				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
824				vm_page_hold(m);
825			}
826		}
827	}
828	vm_page_unlock_queues();
829	PMAP_UNLOCK(pmap);
830	return (m);
831}
832
833vm_paddr_t
834pmap_kextract(vm_offset_t va)
835{
836	pd_entry_t *pde;
837	vm_paddr_t pa;
838
839	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
840		pa = DMAP_TO_PHYS(va);
841	} else {
842		pde = pmap_pde(kernel_pmap, va);
843		if (*pde & PG_PS) {
844			pa = (*pde & ~(NBPDR - 1)) | (va & (NBPDR - 1));
845		} else {
846			pa = *vtopte(va);
847			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
848		}
849	}
850	return pa;
851}
852
853/***************************************************
854 * Low level mapping routines.....
855 ***************************************************/
856
857/*
858 * Add a wired page to the kva.
859 * Note: not SMP coherent.
860 */
861PMAP_INLINE void
862pmap_kenter(vm_offset_t va, vm_paddr_t pa)
863{
864	pt_entry_t *pte;
865
866	pte = vtopte(va);
867	pte_store(pte, pa | PG_RW | PG_V | PG_G);
868}
869
870/*
871 * Remove a page from the kernel pagetables.
872 * Note: not SMP coherent.
873 */
874PMAP_INLINE void
875pmap_kremove(vm_offset_t va)
876{
877	pt_entry_t *pte;
878
879	pte = vtopte(va);
880	pte_clear(pte);
881}
882
883/*
884 *	Used to map a range of physical addresses into kernel
885 *	virtual address space.
886 *
887 *	The value passed in '*virt' is a suggested virtual address for
888 *	the mapping. Architectures which can support a direct-mapped
889 *	physical to virtual region can return the appropriate address
890 *	within that region, leaving '*virt' unchanged. Other
891 *	architectures should map the pages starting at '*virt' and
892 *	update '*virt' with the first usable address after the mapped
893 *	region.
894 */
895vm_offset_t
896pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
897{
898	return PHYS_TO_DMAP(start);
899}
900
901
902/*
903 * Add a list of wired pages to the kva
904 * this routine is only used for temporary
905 * kernel mappings that do not need to have
906 * page modification or references recorded.
907 * Note that old mappings are simply written
908 * over.  The page *must* be wired.
909 * Note: SMP coherent.  Uses a ranged shootdown IPI.
910 */
911void
912pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
913{
914	vm_offset_t va;
915
916	va = sva;
917	while (count-- > 0) {
918		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
919		va += PAGE_SIZE;
920		m++;
921	}
922	pmap_invalidate_range(kernel_pmap, sva, va);
923}
924
925/*
926 * This routine tears out page mappings from the
927 * kernel -- it is meant only for temporary mappings.
928 * Note: SMP coherent.  Uses a ranged shootdown IPI.
929 */
930void
931pmap_qremove(vm_offset_t sva, int count)
932{
933	vm_offset_t va;
934
935	va = sva;
936	while (count-- > 0) {
937		pmap_kremove(va);
938		va += PAGE_SIZE;
939	}
940	pmap_invalidate_range(kernel_pmap, sva, va);
941}
942
943/***************************************************
944 * Page table page management routines.....
945 ***************************************************/
946
947/*
948 * This routine unholds page table pages, and if the hold count
949 * drops to zero, then it decrements the wire count.
950 */
951static int
952_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
953{
954
955	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
956		vm_page_lock_queues();
957
958	if (m->hold_count == 0) {
959		vm_offset_t pteva;
960
961		/*
962		 * unmap the page table page
963		 */
964		if (m->pindex >= (NUPDE + NUPDPE)) {
965			/* PDP page */
966			pml4_entry_t *pml4;
967			pml4 = pmap_pml4e(pmap, va);
968			pteva = (vm_offset_t) PDPmap + amd64_ptob(m->pindex - (NUPDE + NUPDPE));
969			*pml4 = 0;
970		} else if (m->pindex >= NUPDE) {
971			/* PD page */
972			pdp_entry_t *pdp;
973			pdp = pmap_pdpe(pmap, va);
974			pteva = (vm_offset_t) PDmap + amd64_ptob(m->pindex - NUPDE);
975			*pdp = 0;
976		} else {
977			/* PTE page */
978			pd_entry_t *pd;
979			pd = pmap_pde(pmap, va);
980			pteva = (vm_offset_t) PTmap + amd64_ptob(m->pindex);
981			*pd = 0;
982		}
983		--pmap->pm_stats.resident_count;
984		if (m->pindex < NUPDE) {
985			/* We just released a PT, unhold the matching PD */
986			vm_page_t pdpg;
987
988			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
989			vm_page_unhold(pdpg);
990			if (pdpg->hold_count == 0)
991				_pmap_unwire_pte_hold(pmap, va, pdpg);
992		}
993		if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
994			/* We just released a PD, unhold the matching PDP */
995			vm_page_t pdppg;
996
997			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
998			vm_page_unhold(pdppg);
999			if (pdppg->hold_count == 0)
1000				_pmap_unwire_pte_hold(pmap, va, pdppg);
1001		}
1002		if (pmap_is_current(pmap)) {
1003			/*
1004			 * Do an invltlb to make the invalidated mapping
1005			 * take effect immediately.
1006			 */
1007			pmap_invalidate_page(pmap, pteva);
1008		}
1009
1010		/*
1011		 * If the page is finally unwired, simply free it.
1012		 */
1013		--m->wire_count;
1014		if (m->wire_count == 0) {
1015			vm_page_busy(m);
1016			vm_page_free_zero(m);
1017			atomic_subtract_int(&cnt.v_wire_count, 1);
1018		}
1019		return 1;
1020	}
1021	return 0;
1022}
1023
1024static PMAP_INLINE int
1025pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1026{
1027	vm_page_unhold(m);
1028	if (m->hold_count == 0)
1029		return _pmap_unwire_pte_hold(pmap, va, m);
1030	else
1031		return 0;
1032}
1033
1034/*
1035 * After removing a page table entry, this routine is used to
1036 * conditionally free the page, and manage the hold/wire counts.
1037 */
1038static int
1039pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1040{
1041
1042	if (va >= VM_MAXUSER_ADDRESS)
1043		return 0;
1044
1045	return pmap_unwire_pte_hold(pmap, va, mpte);
1046}
1047
1048void
1049pmap_pinit0(pmap)
1050	struct pmap *pmap;
1051{
1052
1053	PMAP_LOCK_INIT(pmap);
1054	pmap->pm_pml4 = (pml4_entry_t *)(KERNBASE + KPML4phys);
1055	pmap->pm_active = 0;
1056	TAILQ_INIT(&pmap->pm_pvlist);
1057	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1058	mtx_lock_spin(&allpmaps_lock);
1059	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1060	mtx_unlock_spin(&allpmaps_lock);
1061}
1062
1063/*
1064 * Initialize a preallocated and zeroed pmap structure,
1065 * such as one in a vmspace structure.
1066 */
1067void
1068pmap_pinit(pmap)
1069	register struct pmap *pmap;
1070{
1071	vm_page_t pml4pg;
1072	static vm_pindex_t color;
1073
1074	PMAP_LOCK_INIT(pmap);
1075
1076	/*
1077	 * allocate the page directory page
1078	 */
1079	while ((pml4pg = vm_page_alloc(NULL, color++, VM_ALLOC_NOOBJ |
1080	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1081		VM_WAIT;
1082
1083	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
1084
1085	if ((pml4pg->flags & PG_ZERO) == 0)
1086		pagezero(pmap->pm_pml4);
1087
1088	mtx_lock_spin(&allpmaps_lock);
1089	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1090	mtx_unlock_spin(&allpmaps_lock);
1091
1092	/* Wire in kernel global address entries. */
1093	pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1094	pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
1095
1096	/* install self-referential address mapping entry(s) */
1097	pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | PG_V | PG_RW | PG_A | PG_M;
1098
1099	pmap->pm_active = 0;
1100	TAILQ_INIT(&pmap->pm_pvlist);
1101	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1102}
1103
1104/*
1105 * this routine is called if the page table page is not
1106 * mapped correctly.
1107 *
1108 * Note: If a page allocation fails at page table level two or three,
1109 * one or two pages may be held during the wait, only to be released
1110 * afterwards.  This conservative approach is easily argued to avoid
1111 * race conditions.
1112 */
1113static vm_page_t
1114_pmap_allocpte(pmap, ptepindex)
1115	pmap_t	pmap;
1116	vm_pindex_t ptepindex;
1117{
1118	vm_page_t m, pdppg, pdpg;
1119
1120	/*
1121	 * Allocate a page table page.
1122	 */
1123	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1124	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1125		VM_WAIT;
1126		/*
1127		 * Indicate the need to retry.  While waiting, the page table
1128		 * page may have been allocated.
1129		 */
1130		return (NULL);
1131	}
1132	if ((m->flags & PG_ZERO) == 0)
1133		pmap_zero_page(m);
1134
1135	KASSERT(m->queue == PQ_NONE,
1136		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1137
1138	/*
1139	 * Increment the hold count for the page table page
1140	 * (denoting a new mapping.)
1141	 */
1142	m->hold_count++;
1143
1144	/*
1145	 * Map the pagetable page into the process address space, if
1146	 * it isn't already there.
1147	 */
1148
1149	pmap->pm_stats.resident_count++;
1150
1151	if (ptepindex >= (NUPDE + NUPDPE)) {
1152		pml4_entry_t *pml4;
1153		vm_pindex_t pml4index;
1154
1155		/* Wire up a new PDPE page */
1156		pml4index = ptepindex - (NUPDE + NUPDPE);
1157		pml4 = &pmap->pm_pml4[pml4index];
1158		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1159
1160	} else if (ptepindex >= NUPDE) {
1161		vm_pindex_t pml4index;
1162		vm_pindex_t pdpindex;
1163		pml4_entry_t *pml4;
1164		pdp_entry_t *pdp;
1165
1166		/* Wire up a new PDE page */
1167		pdpindex = ptepindex - NUPDE;
1168		pml4index = pdpindex >> NPML4EPGSHIFT;
1169
1170		pml4 = &pmap->pm_pml4[pml4index];
1171		if ((*pml4 & PG_V) == 0) {
1172			/* Have to allocate a new pdp, recurse */
1173			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index) == NULL) {
1174				vm_page_lock_queues();
1175				vm_page_unhold(m);
1176				vm_page_free(m);
1177				vm_page_unlock_queues();
1178				return (NULL);
1179			}
1180		} else {
1181			/* Add reference to pdp page */
1182			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
1183			pdppg->hold_count++;
1184		}
1185		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1186
1187		/* Now find the pdp page */
1188		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1189		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1190
1191	} else {
1192		vm_pindex_t pml4index;
1193		vm_pindex_t pdpindex;
1194		pml4_entry_t *pml4;
1195		pdp_entry_t *pdp;
1196		pd_entry_t *pd;
1197
1198		/* Wire up a new PTE page */
1199		pdpindex = ptepindex >> NPDPEPGSHIFT;
1200		pml4index = pdpindex >> NPML4EPGSHIFT;
1201
1202		/* First, find the pdp and check that its valid. */
1203		pml4 = &pmap->pm_pml4[pml4index];
1204		if ((*pml4 & PG_V) == 0) {
1205			/* Have to allocate a new pd, recurse */
1206			if (_pmap_allocpte(pmap, NUPDE + pdpindex) == NULL) {
1207				vm_page_lock_queues();
1208				vm_page_unhold(m);
1209				vm_page_free(m);
1210				vm_page_unlock_queues();
1211				return (NULL);
1212			}
1213			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1214			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1215		} else {
1216			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1217			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1218			if ((*pdp & PG_V) == 0) {
1219				/* Have to allocate a new pd, recurse */
1220				if (_pmap_allocpte(pmap, NUPDE + pdpindex) == NULL) {
1221					vm_page_lock_queues();
1222					vm_page_unhold(m);
1223					vm_page_free(m);
1224					vm_page_unlock_queues();
1225					return (NULL);
1226				}
1227			} else {
1228				/* Add reference to the pd page */
1229				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
1230				pdpg->hold_count++;
1231			}
1232		}
1233		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
1234
1235		/* Now we know where the page directory page is */
1236		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1237		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1238	}
1239
1240	return m;
1241}
1242
1243static vm_page_t
1244pmap_allocpte(pmap_t pmap, vm_offset_t va)
1245{
1246	vm_pindex_t ptepindex;
1247	pd_entry_t *pd;
1248	vm_page_t m;
1249
1250	/*
1251	 * Calculate pagetable page index
1252	 */
1253	ptepindex = pmap_pde_pindex(va);
1254retry:
1255	/*
1256	 * Get the page directory entry
1257	 */
1258	pd = pmap_pde(pmap, va);
1259
1260	/*
1261	 * This supports switching from a 2MB page to a
1262	 * normal 4K page.
1263	 */
1264	if (pd != 0 && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
1265		*pd = 0;
1266		pd = 0;
1267		pmap_invalidate_all(kernel_pmap);
1268	}
1269
1270	/*
1271	 * If the page table page is mapped, we just increment the
1272	 * hold count, and activate it.
1273	 */
1274	if (pd != 0 && (*pd & PG_V) != 0) {
1275		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
1276		m->hold_count++;
1277	} else {
1278		/*
1279		 * Here if the pte page isn't mapped, or if it has been
1280		 * deallocated.
1281		 */
1282		m = _pmap_allocpte(pmap, ptepindex);
1283		if (m == NULL)
1284			goto retry;
1285	}
1286	return (m);
1287}
1288
1289
1290/***************************************************
1291 * Pmap allocation/deallocation routines.
1292 ***************************************************/
1293
1294/*
1295 * Release any resources held by the given physical map.
1296 * Called when a pmap initialized by pmap_pinit is being released.
1297 * Should only be called if the map contains no valid mappings.
1298 */
1299void
1300pmap_release(pmap_t pmap)
1301{
1302	vm_page_t m;
1303
1304	KASSERT(pmap->pm_stats.resident_count == 0,
1305	    ("pmap_release: pmap resident count %ld != 0",
1306	    pmap->pm_stats.resident_count));
1307
1308	mtx_lock_spin(&allpmaps_lock);
1309	LIST_REMOVE(pmap, pm_list);
1310	mtx_unlock_spin(&allpmaps_lock);
1311
1312	m = PHYS_TO_VM_PAGE(pmap->pm_pml4[PML4PML4I] & PG_FRAME);
1313
1314	pmap->pm_pml4[KPML4I] = 0;	/* KVA */
1315	pmap->pm_pml4[DMPML4I] = 0;	/* Direct Map */
1316	pmap->pm_pml4[PML4PML4I] = 0;	/* Recursive Mapping */
1317
1318	vm_page_lock_queues();
1319	m->wire_count--;
1320	atomic_subtract_int(&cnt.v_wire_count, 1);
1321	vm_page_free_zero(m);
1322	vm_page_unlock_queues();
1323	PMAP_LOCK_DESTROY(pmap);
1324}
1325
1326static int
1327kvm_size(SYSCTL_HANDLER_ARGS)
1328{
1329	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1330
1331	return sysctl_handle_long(oidp, &ksize, 0, req);
1332}
1333SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1334    0, 0, kvm_size, "IU", "Size of KVM");
1335
1336static int
1337kvm_free(SYSCTL_HANDLER_ARGS)
1338{
1339	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1340
1341	return sysctl_handle_long(oidp, &kfree, 0, req);
1342}
1343SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1344    0, 0, kvm_free, "IU", "Amount of KVM free");
1345
1346/*
1347 * grow the number of kernel page table entries, if needed
1348 */
1349void
1350pmap_growkernel(vm_offset_t addr)
1351{
1352	vm_paddr_t paddr;
1353	vm_page_t nkpg;
1354	pd_entry_t *pde, newpdir;
1355	pdp_entry_t newpdp;
1356
1357	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1358	if (kernel_vm_end == 0) {
1359		kernel_vm_end = KERNBASE;
1360		nkpt = 0;
1361		while ((*pmap_pde(kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1362			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1363			nkpt++;
1364		}
1365	}
1366	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1367	while (kernel_vm_end < addr) {
1368		pde = pmap_pde(kernel_pmap, kernel_vm_end);
1369		if (pde == NULL) {
1370			/* We need a new PDP entry */
1371			nkpg = vm_page_alloc(NULL, nkpt,
1372			    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1373			if (!nkpg)
1374				panic("pmap_growkernel: no memory to grow kernel");
1375			pmap_zero_page(nkpg);
1376			paddr = VM_PAGE_TO_PHYS(nkpg);
1377			newpdp = (pdp_entry_t)
1378				(paddr | PG_V | PG_RW | PG_A | PG_M);
1379			*pmap_pdpe(kernel_pmap, kernel_vm_end) = newpdp;
1380			continue; /* try again */
1381		}
1382		if ((*pde & PG_V) != 0) {
1383			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1384			continue;
1385		}
1386
1387		/*
1388		 * This index is bogus, but out of the way
1389		 */
1390		nkpg = vm_page_alloc(NULL, nkpt,
1391		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1392		if (!nkpg)
1393			panic("pmap_growkernel: no memory to grow kernel");
1394
1395		nkpt++;
1396
1397		pmap_zero_page(nkpg);
1398		paddr = VM_PAGE_TO_PHYS(nkpg);
1399		newpdir = (pd_entry_t) (paddr | PG_V | PG_RW | PG_A | PG_M);
1400		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
1401
1402		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1403	}
1404}
1405
1406
1407/***************************************************
1408 * page management routines.
1409 ***************************************************/
1410
1411/*
1412 * free the pv_entry back to the free list
1413 */
1414static PMAP_INLINE void
1415free_pv_entry(pv_entry_t pv)
1416{
1417	pv_entry_count--;
1418	uma_zfree(pvzone, pv);
1419}
1420
1421/*
1422 * get a new pv_entry, allocating a block from the system
1423 * when needed.
1424 * the memory allocation is performed bypassing the malloc code
1425 * because of the possibility of allocations at interrupt time.
1426 */
1427static pv_entry_t
1428get_pv_entry(void)
1429{
1430	pv_entry_count++;
1431	if (pv_entry_high_water &&
1432		(pv_entry_count > pv_entry_high_water) &&
1433		(pmap_pagedaemon_waken == 0)) {
1434		pmap_pagedaemon_waken = 1;
1435		wakeup (&vm_pages_needed);
1436	}
1437	return uma_zalloc(pvzone, M_NOWAIT);
1438}
1439
1440
1441static int
1442pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1443{
1444	pv_entry_t pv;
1445	int rtval;
1446
1447	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1448	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1449	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1450		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1451			if (pmap == pv->pv_pmap && va == pv->pv_va)
1452				break;
1453		}
1454	} else {
1455		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1456			if (va == pv->pv_va)
1457				break;
1458		}
1459	}
1460
1461	rtval = 0;
1462	if (pv) {
1463		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1464		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1465		m->md.pv_list_count--;
1466		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1467			vm_page_flag_clear(m, PG_WRITEABLE);
1468
1469		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1470		free_pv_entry(pv);
1471	}
1472
1473	return rtval;
1474}
1475
1476/*
1477 * Create a pv entry for page at pa for
1478 * (pmap, va).
1479 */
1480static void
1481pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1482{
1483
1484	pv_entry_t pv;
1485
1486	pv = get_pv_entry();
1487	pv->pv_va = va;
1488	pv->pv_pmap = pmap;
1489	pv->pv_ptem = mpte;
1490
1491	vm_page_lock_queues();
1492	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1493	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1494	m->md.pv_list_count++;
1495
1496	vm_page_unlock_queues();
1497}
1498
1499/*
1500 * pmap_remove_pte: do the things to unmap a page in a process
1501 */
1502static int
1503pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1504{
1505	pt_entry_t oldpte;
1506	vm_page_t m, mpte;
1507
1508	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1509	oldpte = pte_load_clear(ptq);
1510	if (oldpte & PG_W)
1511		pmap->pm_stats.wired_count -= 1;
1512	/*
1513	 * Machines that don't support invlpg, also don't support
1514	 * PG_G.
1515	 */
1516	if (oldpte & PG_G)
1517		pmap_invalidate_page(kernel_pmap, va);
1518	pmap->pm_stats.resident_count -= 1;
1519	if (oldpte & PG_MANAGED) {
1520		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
1521		if (oldpte & PG_M) {
1522#if defined(PMAP_DIAGNOSTIC)
1523			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1524				printf(
1525	"pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
1526				    va, oldpte);
1527			}
1528#endif
1529			if (pmap_track_modified(va))
1530				vm_page_dirty(m);
1531		}
1532		if (oldpte & PG_A)
1533			vm_page_flag_set(m, PG_REFERENCED);
1534		return pmap_remove_entry(pmap, m, va);
1535	} else {
1536		mpte = PHYS_TO_VM_PAGE(*pmap_pde(pmap, va) & PG_FRAME);
1537		return pmap_unuse_pt(pmap, va, mpte);
1538	}
1539}
1540
1541/*
1542 * Remove a single page from a process address space
1543 */
1544static void
1545pmap_remove_page(pmap_t pmap, vm_offset_t va)
1546{
1547	pt_entry_t *pte;
1548
1549	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1550	pte = pmap_pte(pmap, va);
1551	if (pte == NULL || (*pte & PG_V) == 0)
1552		return;
1553	pmap_remove_pte(pmap, pte, va);
1554	pmap_invalidate_page(pmap, va);
1555}
1556
1557/*
1558 *	Remove the given range of addresses from the specified map.
1559 *
1560 *	It is assumed that the start and end are properly
1561 *	rounded to the page size.
1562 */
1563void
1564pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1565{
1566	vm_offset_t va_next;
1567	pml4_entry_t *pml4e;
1568	pdp_entry_t *pdpe;
1569	pd_entry_t ptpaddr, *pde;
1570	pt_entry_t *pte;
1571	int anyvalid;
1572
1573	if (pmap == NULL)
1574		return;
1575
1576	/*
1577	 * Perform an unsynchronized read.  This is, however, safe.
1578	 */
1579	if (pmap->pm_stats.resident_count == 0)
1580		return;
1581	PMAP_LOCK(pmap);
1582
1583	/*
1584	 * special handling of removing one page.  a very
1585	 * common operation and easy to short circuit some
1586	 * code.
1587	 */
1588	if (sva + PAGE_SIZE == eva) {
1589		pde = pmap_pde(pmap, sva);
1590		if (pde && (*pde & PG_PS) == 0) {
1591			pmap_remove_page(pmap, sva);
1592			PMAP_UNLOCK(pmap);
1593			return;
1594		}
1595	}
1596
1597	anyvalid = 0;
1598
1599	for (; sva < eva; sva = va_next) {
1600
1601		if (pmap->pm_stats.resident_count == 0)
1602			break;
1603
1604		pml4e = pmap_pml4e(pmap, sva);
1605		if (pml4e == 0) {
1606			va_next = (sva + NBPML4) & ~PML4MASK;
1607			continue;
1608		}
1609
1610		pdpe = pmap_pdpe(pmap, sva);
1611		if (pdpe == 0) {
1612			va_next = (sva + NBPDP) & ~PDPMASK;
1613			continue;
1614		}
1615
1616		/*
1617		 * Calculate index for next page table.
1618		 */
1619		va_next = (sva + NBPDR) & ~PDRMASK;
1620
1621		pde = pmap_pde(pmap, sva);
1622		if (pde == 0)
1623			continue;
1624		ptpaddr = *pde;
1625
1626		/*
1627		 * Weed out invalid mappings. Note: we assume that the page
1628		 * directory table is always allocated, and in kernel virtual.
1629		 */
1630		if (ptpaddr == 0)
1631			continue;
1632
1633		/*
1634		 * Check for large page.
1635		 */
1636		if ((ptpaddr & PG_PS) != 0) {
1637			*pde = 0;
1638			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1639			anyvalid = 1;
1640			continue;
1641		}
1642
1643		/*
1644		 * Limit our scan to either the end of the va represented
1645		 * by the current page table page, or to the end of the
1646		 * range being removed.
1647		 */
1648		if (va_next > eva)
1649			va_next = eva;
1650
1651		for (; sva != va_next; sva += PAGE_SIZE) {
1652			pte = pmap_pte(pmap, sva);
1653			if (pte == NULL || *pte == 0)
1654				continue;
1655			anyvalid = 1;
1656			if (pmap_remove_pte(pmap, pte, sva))
1657				break;
1658		}
1659	}
1660
1661	if (anyvalid)
1662		pmap_invalidate_all(pmap);
1663	PMAP_UNLOCK(pmap);
1664}
1665
1666/*
1667 *	Routine:	pmap_remove_all
1668 *	Function:
1669 *		Removes this physical page from
1670 *		all physical maps in which it resides.
1671 *		Reflects back modify bits to the pager.
1672 *
1673 *	Notes:
1674 *		Original versions of this routine were very
1675 *		inefficient because they iteratively called
1676 *		pmap_remove (slow...)
1677 */
1678
1679void
1680pmap_remove_all(vm_page_t m)
1681{
1682	register pv_entry_t pv;
1683	pt_entry_t *pte, tpte;
1684
1685#if defined(PMAP_DIAGNOSTIC)
1686	/*
1687	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1688	 */
1689	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1690		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%lx",
1691		    VM_PAGE_TO_PHYS(m));
1692	}
1693#endif
1694	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1695	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1696		PMAP_LOCK(pv->pv_pmap);
1697		pv->pv_pmap->pm_stats.resident_count--;
1698		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1699		tpte = pte_load_clear(pte);
1700		if (tpte & PG_W)
1701			pv->pv_pmap->pm_stats.wired_count--;
1702		if (tpte & PG_A)
1703			vm_page_flag_set(m, PG_REFERENCED);
1704
1705		/*
1706		 * Update the vm_page_t clean and reference bits.
1707		 */
1708		if (tpte & PG_M) {
1709#if defined(PMAP_DIAGNOSTIC)
1710			if (pmap_nw_modified((pt_entry_t) tpte)) {
1711				printf(
1712	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
1713				    pv->pv_va, tpte);
1714			}
1715#endif
1716			if (pmap_track_modified(pv->pv_va))
1717				vm_page_dirty(m);
1718		}
1719		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1720		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1721		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1722		m->md.pv_list_count--;
1723		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1724		PMAP_UNLOCK(pv->pv_pmap);
1725		free_pv_entry(pv);
1726	}
1727	vm_page_flag_clear(m, PG_WRITEABLE);
1728}
1729
1730/*
1731 *	Set the physical protection on the
1732 *	specified range of this map as requested.
1733 */
1734void
1735pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1736{
1737	vm_offset_t va_next;
1738	pml4_entry_t *pml4e;
1739	pdp_entry_t *pdpe;
1740	pd_entry_t ptpaddr, *pde;
1741	int anychanged;
1742
1743	if (pmap == NULL)
1744		return;
1745
1746	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1747		pmap_remove(pmap, sva, eva);
1748		return;
1749	}
1750
1751	if (prot & VM_PROT_WRITE)
1752		return;
1753
1754	anychanged = 0;
1755
1756	PMAP_LOCK(pmap);
1757	for (; sva < eva; sva = va_next) {
1758
1759		pml4e = pmap_pml4e(pmap, sva);
1760		if (pml4e == 0) {
1761			va_next = (sva + NBPML4) & ~PML4MASK;
1762			continue;
1763		}
1764
1765		pdpe = pmap_pdpe(pmap, sva);
1766		if (pdpe == 0) {
1767			va_next = (sva + NBPDP) & ~PDPMASK;
1768			continue;
1769		}
1770
1771		va_next = (sva + NBPDR) & ~PDRMASK;
1772
1773		pde = pmap_pde(pmap, sva);
1774		if (pde == NULL)
1775			continue;
1776		ptpaddr = *pde;
1777
1778		/*
1779		 * Weed out invalid mappings. Note: we assume that the page
1780		 * directory table is always allocated, and in kernel virtual.
1781		 */
1782		if (ptpaddr == 0)
1783			continue;
1784
1785		/*
1786		 * Check for large page.
1787		 */
1788		if ((ptpaddr & PG_PS) != 0) {
1789			*pde &= ~(PG_M|PG_RW);
1790			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1791			anychanged = 1;
1792			continue;
1793		}
1794
1795		if (va_next > eva)
1796			va_next = eva;
1797
1798		for (; sva != va_next; sva += PAGE_SIZE) {
1799			pt_entry_t pbits;
1800			pt_entry_t *pte;
1801			vm_page_t m;
1802
1803			pte = pmap_pte(pmap, sva);
1804			if (pte == NULL)
1805				continue;
1806			pbits = *pte;
1807			if (pbits & PG_MANAGED) {
1808				m = NULL;
1809				if (pbits & PG_A) {
1810					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
1811					vm_page_flag_set(m, PG_REFERENCED);
1812					pbits &= ~PG_A;
1813				}
1814				if ((pbits & PG_M) != 0 &&
1815				    pmap_track_modified(sva)) {
1816					if (m == NULL)
1817						m = PHYS_TO_VM_PAGE(pbits &
1818						    PG_FRAME);
1819					vm_page_dirty(m);
1820					pbits &= ~PG_M;
1821				}
1822			}
1823
1824			pbits &= ~PG_RW;
1825
1826			if (pbits != *pte) {
1827				pte_store(pte, pbits);
1828				anychanged = 1;
1829			}
1830		}
1831	}
1832	if (anychanged)
1833		pmap_invalidate_all(pmap);
1834	PMAP_UNLOCK(pmap);
1835}
1836
1837/*
1838 *	Insert the given physical page (p) at
1839 *	the specified virtual address (v) in the
1840 *	target physical map with the protection requested.
1841 *
1842 *	If specified, the page will be wired down, meaning
1843 *	that the related pte can not be reclaimed.
1844 *
1845 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1846 *	or lose information.  That is, this routine must actually
1847 *	insert this page into the given map NOW.
1848 */
1849void
1850pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1851	   boolean_t wired)
1852{
1853	vm_paddr_t pa;
1854	register pt_entry_t *pte;
1855	vm_paddr_t opa;
1856	pt_entry_t origpte, newpte;
1857	vm_page_t mpte;
1858
1859	if (pmap == NULL)
1860		return;
1861
1862	va = trunc_page(va);
1863#ifdef PMAP_DIAGNOSTIC
1864	if (va > VM_MAX_KERNEL_ADDRESS)
1865		panic("pmap_enter: toobig");
1866	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1867		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)", va);
1868#endif
1869
1870	mpte = NULL;
1871	/*
1872	 * In the case that a page table page is not
1873	 * resident, we are creating it here.
1874	 */
1875	if (va < VM_MAXUSER_ADDRESS) {
1876		mpte = pmap_allocpte(pmap, va);
1877	}
1878#if 0 && defined(PMAP_DIAGNOSTIC)
1879	else {
1880		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1881		origpte = *pdeaddr;
1882		if ((origpte & PG_V) == 0) {
1883			panic("pmap_enter: invalid kernel page table page, pde=%p, va=%p\n",
1884				origpte, va);
1885		}
1886	}
1887#endif
1888
1889	pte = pmap_pte(pmap, va);
1890
1891	/*
1892	 * Page Directory table entry not valid, we need a new PT page
1893	 */
1894	if (pte == NULL)
1895		panic("pmap_enter: invalid page directory va=%#lx\n", va);
1896
1897	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1898	origpte = *pte;
1899	opa = origpte & PG_FRAME;
1900
1901	if (origpte & PG_PS)
1902		panic("pmap_enter: attempted pmap_enter on 2MB page");
1903
1904	/*
1905	 * Mapping has not changed, must be protection or wiring change.
1906	 */
1907	if (origpte && (opa == pa)) {
1908		/*
1909		 * Wiring change, just update stats. We don't worry about
1910		 * wiring PT pages as they remain resident as long as there
1911		 * are valid mappings in them. Hence, if a user page is wired,
1912		 * the PT page will be also.
1913		 */
1914		if (wired && ((origpte & PG_W) == 0))
1915			pmap->pm_stats.wired_count++;
1916		else if (!wired && (origpte & PG_W))
1917			pmap->pm_stats.wired_count--;
1918
1919#if defined(PMAP_DIAGNOSTIC)
1920		if (pmap_nw_modified((pt_entry_t) origpte)) {
1921			printf(
1922	"pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
1923			    va, origpte);
1924		}
1925#endif
1926
1927		/*
1928		 * Remove extra pte reference
1929		 */
1930		if (mpte)
1931			mpte->hold_count--;
1932
1933		/*
1934		 * We might be turning off write access to the page,
1935		 * so we go ahead and sense modify status.
1936		 */
1937		if (origpte & PG_MANAGED) {
1938			if ((origpte & PG_M) && pmap_track_modified(va)) {
1939				vm_page_t om;
1940				om = PHYS_TO_VM_PAGE(opa);
1941				vm_page_dirty(om);
1942			}
1943			pa |= PG_MANAGED;
1944		}
1945		goto validate;
1946	}
1947	/*
1948	 * Mapping has changed, invalidate old range and fall through to
1949	 * handle validating new mapping.
1950	 */
1951	if (opa) {
1952		int err;
1953		vm_page_lock_queues();
1954		PMAP_LOCK(pmap);
1955		err = pmap_remove_pte(pmap, pte, va);
1956		PMAP_UNLOCK(pmap);
1957		vm_page_unlock_queues();
1958		if (err)
1959			panic("pmap_enter: pte vanished, va: 0x%lx", va);
1960	}
1961
1962	/*
1963	 * Enter on the PV list if part of our managed memory. Note that we
1964	 * raise IPL while manipulating pv_table since pmap_enter can be
1965	 * called at interrupt time.
1966	 */
1967	if (pmap_initialized &&
1968	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
1969		pmap_insert_entry(pmap, va, mpte, m);
1970		pa |= PG_MANAGED;
1971	}
1972
1973	/*
1974	 * Increment counters
1975	 */
1976	pmap->pm_stats.resident_count++;
1977	if (wired)
1978		pmap->pm_stats.wired_count++;
1979
1980validate:
1981	/*
1982	 * Now validate mapping with desired protection/wiring.
1983	 */
1984	newpte = (pt_entry_t)(pa | PG_V);
1985	if ((prot & VM_PROT_WRITE) != 0)
1986		newpte |= PG_RW;
1987	if ((prot & VM_PROT_EXECUTE) == 0)
1988		newpte |= pg_nx;
1989	if (wired)
1990		newpte |= PG_W;
1991	if (va < VM_MAXUSER_ADDRESS)
1992		newpte |= PG_U;
1993	if (pmap == kernel_pmap)
1994		newpte |= PG_G;
1995
1996	/*
1997	 * if the mapping or permission bits are different, we need
1998	 * to update the pte.
1999	 */
2000	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2001		pte_store(pte, newpte | PG_A);
2002		/*if (origpte)*/ {
2003			pmap_invalidate_page(pmap, va);
2004		}
2005	}
2006}
2007
2008/*
2009 * this code makes some *MAJOR* assumptions:
2010 * 1. Current pmap & pmap exists.
2011 * 2. Not wired.
2012 * 3. Read access.
2013 * 4. No page table pages.
2014 * 5. Tlbflush is deferred to calling procedure.
2015 * 6. Page IS managed.
2016 * but is *MUCH* faster than pmap_enter...
2017 */
2018
2019vm_page_t
2020pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2021{
2022	pt_entry_t *pte;
2023	vm_paddr_t pa;
2024
2025	/*
2026	 * In the case that a page table page is not
2027	 * resident, we are creating it here.
2028	 */
2029	if (va < VM_MAXUSER_ADDRESS) {
2030		vm_pindex_t ptepindex;
2031		pd_entry_t *ptepa;
2032
2033		/*
2034		 * Calculate pagetable page index
2035		 */
2036		ptepindex = pmap_pde_pindex(va);
2037		if (mpte && (mpte->pindex == ptepindex)) {
2038			mpte->hold_count++;
2039		} else {
2040	retry:
2041			/*
2042			 * Get the page directory entry
2043			 */
2044			ptepa = pmap_pde(pmap, va);
2045
2046			/*
2047			 * If the page table page is mapped, we just increment
2048			 * the hold count, and activate it.
2049			 */
2050			if (ptepa && (*ptepa & PG_V) != 0) {
2051				if (*ptepa & PG_PS)
2052					panic("pmap_enter_quick: unexpected mapping into 2MB page");
2053				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
2054				mpte->hold_count++;
2055			} else {
2056				mpte = _pmap_allocpte(pmap, ptepindex);
2057				if (mpte == NULL)
2058					goto retry;
2059			}
2060		}
2061	} else {
2062		mpte = NULL;
2063	}
2064
2065	/*
2066	 * This call to vtopte makes the assumption that we are
2067	 * entering the page into the current pmap.  In order to support
2068	 * quick entry into any pmap, one would likely use pmap_pte.
2069	 * But that isn't as quick as vtopte.
2070	 */
2071	pte = vtopte(va);
2072	if (*pte) {
2073		if (mpte != NULL) {
2074			vm_page_lock_queues();
2075			pmap_unwire_pte_hold(pmap, va, mpte);
2076			vm_page_unlock_queues();
2077		}
2078		return 0;
2079	}
2080
2081	/*
2082	 * Enter on the PV list if part of our managed memory. Note that we
2083	 * raise IPL while manipulating pv_table since pmap_enter can be
2084	 * called at interrupt time.
2085	 */
2086	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2087		pmap_insert_entry(pmap, va, mpte, m);
2088
2089	/*
2090	 * Increment counters
2091	 */
2092	pmap->pm_stats.resident_count++;
2093
2094	pa = VM_PAGE_TO_PHYS(m);
2095
2096	/*
2097	 * Now validate mapping with RO protection
2098	 */
2099	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2100		pte_store(pte, pa | PG_V | PG_U);
2101	else
2102		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2103
2104	return mpte;
2105}
2106
2107/*
2108 * Make a temporary mapping for a physical address.  This is only intended
2109 * to be used for panic dumps.
2110 */
2111void *
2112pmap_kenter_temporary(vm_paddr_t pa, int i)
2113{
2114	vm_offset_t va;
2115
2116	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2117	pmap_kenter(va, pa);
2118	invlpg(va);
2119	return ((void *)crashdumpmap);
2120}
2121
2122/*
2123 * This code maps large physical mmap regions into the
2124 * processor address space.  Note that some shortcuts
2125 * are taken, but the code works.
2126 */
2127void
2128pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2129		    vm_object_t object, vm_pindex_t pindex,
2130		    vm_size_t size)
2131{
2132	vm_page_t p;
2133
2134	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2135	KASSERT(object->type == OBJT_DEVICE,
2136	    ("pmap_object_init_pt: non-device object"));
2137	if (((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2138		int i;
2139		vm_page_t m[1];
2140		int npdes;
2141		pd_entry_t ptepa, *pde;
2142
2143		pde = pmap_pde(pmap, addr);
2144		if (pde != 0 && (*pde & PG_V) != 0)
2145			return;
2146retry:
2147		p = vm_page_lookup(object, pindex);
2148		if (p != NULL) {
2149			vm_page_lock_queues();
2150			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2151				goto retry;
2152		} else {
2153			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2154			if (p == NULL)
2155				return;
2156			m[0] = p;
2157
2158			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2159				vm_page_lock_queues();
2160				vm_page_free(p);
2161				vm_page_unlock_queues();
2162				return;
2163			}
2164
2165			p = vm_page_lookup(object, pindex);
2166			vm_page_lock_queues();
2167			vm_page_wakeup(p);
2168		}
2169		vm_page_unlock_queues();
2170
2171		ptepa = VM_PAGE_TO_PHYS(p);
2172		if (ptepa & (NBPDR - 1))
2173			return;
2174
2175		p->valid = VM_PAGE_BITS_ALL;
2176
2177		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2178		npdes = size >> PDRSHIFT;
2179		for(i = 0; i < npdes; i++) {
2180			pde_store(pde, ptepa | PG_U | PG_RW | PG_V | PG_PS);
2181			ptepa += NBPDR;
2182			pde++;
2183		}
2184		pmap_invalidate_all(pmap);
2185	}
2186}
2187
2188/*
2189 *	Routine:	pmap_change_wiring
2190 *	Function:	Change the wiring attribute for a map/virtual-address
2191 *			pair.
2192 *	In/out conditions:
2193 *			The mapping must already exist in the pmap.
2194 */
2195void
2196pmap_change_wiring(pmap, va, wired)
2197	register pmap_t pmap;
2198	vm_offset_t va;
2199	boolean_t wired;
2200{
2201	register pt_entry_t *pte;
2202
2203	if (pmap == NULL)
2204		return;
2205
2206	/*
2207	 * Wiring is not a hardware characteristic so there is no need to
2208	 * invalidate TLB.
2209	 */
2210	PMAP_LOCK(pmap);
2211	pte = pmap_pte(pmap, va);
2212	if (wired && (*pte & PG_W) == 0) {
2213		pmap->pm_stats.wired_count++;
2214		atomic_set_long(pte, PG_W);
2215	} else if (!wired && (*pte & PG_W) != 0) {
2216		pmap->pm_stats.wired_count--;
2217		atomic_clear_long(pte, PG_W);
2218	}
2219	PMAP_UNLOCK(pmap);
2220}
2221
2222
2223
2224/*
2225 *	Copy the range specified by src_addr/len
2226 *	from the source map to the range dst_addr/len
2227 *	in the destination map.
2228 *
2229 *	This routine is only advisory and need not do anything.
2230 */
2231
2232void
2233pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2234	  vm_offset_t src_addr)
2235{
2236	vm_offset_t addr;
2237	vm_offset_t end_addr = src_addr + len;
2238	vm_offset_t va_next;
2239	vm_page_t m;
2240
2241	if (dst_addr != src_addr)
2242		return;
2243
2244	if (!pmap_is_current(src_pmap))
2245		return;
2246
2247	for (addr = src_addr; addr < end_addr; addr = va_next) {
2248		pt_entry_t *src_pte, *dst_pte;
2249		vm_page_t dstmpte, srcmpte;
2250		pml4_entry_t *pml4e;
2251		pdp_entry_t *pdpe;
2252		pd_entry_t srcptepaddr, *pde;
2253		vm_pindex_t ptepindex;
2254
2255		if (addr >= UPT_MIN_ADDRESS)
2256			panic("pmap_copy: invalid to pmap_copy page tables\n");
2257
2258		/*
2259		 * Don't let optional prefaulting of pages make us go
2260		 * way below the low water mark of free pages or way
2261		 * above high water mark of used pv entries.
2262		 */
2263		if (cnt.v_free_count < cnt.v_free_reserved ||
2264		    pv_entry_count > pv_entry_high_water)
2265			break;
2266
2267		pml4e = pmap_pml4e(src_pmap, addr);
2268		if (pml4e == 0) {
2269			va_next = (addr + NBPML4) & ~PML4MASK;
2270			continue;
2271		}
2272
2273		pdpe = pmap_pdpe(src_pmap, addr);
2274		if (pdpe == 0) {
2275			va_next = (addr + NBPDP) & ~PDPMASK;
2276			continue;
2277		}
2278
2279		va_next = (addr + NBPDR) & ~PDRMASK;
2280		ptepindex = pmap_pde_pindex(addr);
2281
2282		pde = pmap_pde(src_pmap, addr);
2283		if (pde)
2284			srcptepaddr = *pde;
2285		else
2286			continue;
2287		if (srcptepaddr == 0)
2288			continue;
2289
2290		if (srcptepaddr & PG_PS) {
2291			pde = pmap_pde(dst_pmap, addr);
2292			if (pde == 0) {
2293				/*
2294				 * XXX should do an allocpte here to
2295				 * instantiate the pde
2296				 */
2297				continue;
2298			}
2299			if (*pde == 0) {
2300				*pde = srcptepaddr;
2301				dst_pmap->pm_stats.resident_count +=
2302				    NBPDR / PAGE_SIZE;
2303			}
2304			continue;
2305		}
2306
2307		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
2308		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2309			continue;
2310
2311		if (va_next > end_addr)
2312			va_next = end_addr;
2313
2314		src_pte = vtopte(addr);
2315		while (addr < va_next) {
2316			pt_entry_t ptetemp;
2317			ptetemp = *src_pte;
2318			/*
2319			 * we only virtual copy managed pages
2320			 */
2321			if ((ptetemp & PG_MANAGED) != 0) {
2322				/*
2323				 * We have to check after allocpte for the
2324				 * pte still being around...  allocpte can
2325				 * block.
2326				 */
2327				dstmpte = pmap_allocpte(dst_pmap, addr);
2328				dst_pte = pmap_pte(dst_pmap, addr);
2329				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2330					/*
2331					 * Clear the modified and
2332					 * accessed (referenced) bits
2333					 * during the copy.
2334					 */
2335					m = PHYS_TO_VM_PAGE(ptetemp & PG_FRAME);
2336					*dst_pte = ptetemp & ~(PG_M | PG_A);
2337					dst_pmap->pm_stats.resident_count++;
2338					pmap_insert_entry(dst_pmap, addr,
2339						dstmpte, m);
2340	 			} else {
2341					vm_page_lock_queues();
2342					pmap_unwire_pte_hold(dst_pmap, addr, dstmpte);
2343					vm_page_unlock_queues();
2344				}
2345				if (dstmpte->hold_count >= srcmpte->hold_count)
2346					break;
2347			}
2348			addr += PAGE_SIZE;
2349			src_pte++;
2350		}
2351	}
2352}
2353
2354/*
2355 *	pmap_zero_page zeros the specified hardware page by mapping
2356 *	the page into KVM and using bzero to clear its contents.
2357 */
2358void
2359pmap_zero_page(vm_page_t m)
2360{
2361	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2362
2363	pagezero((void *)va);
2364}
2365
2366/*
2367 *	pmap_zero_page_area zeros the specified hardware page by mapping
2368 *	the page into KVM and using bzero to clear its contents.
2369 *
2370 *	off and size may not cover an area beyond a single hardware page.
2371 */
2372void
2373pmap_zero_page_area(vm_page_t m, int off, int size)
2374{
2375	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2376
2377	if (off == 0 && size == PAGE_SIZE)
2378		pagezero((void *)va);
2379	else
2380		bzero((char *)va + off, size);
2381}
2382
2383/*
2384 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2385 *	the page into KVM and using bzero to clear its contents.  This
2386 *	is intended to be called from the vm_pagezero process only and
2387 *	outside of Giant.
2388 */
2389void
2390pmap_zero_page_idle(vm_page_t m)
2391{
2392	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2393
2394	pagezero((void *)va);
2395}
2396
2397/*
2398 *	pmap_copy_page copies the specified (machine independent)
2399 *	page by mapping the page into virtual memory and using
2400 *	bcopy to copy the page, one machine dependent page at a
2401 *	time.
2402 */
2403void
2404pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
2405{
2406	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2407	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2408
2409	pagecopy((void *)src, (void *)dst);
2410}
2411
2412/*
2413 * Returns true if the pmap's pv is one of the first
2414 * 16 pvs linked to from this page.  This count may
2415 * be changed upwards or downwards in the future; it
2416 * is only necessary that true be returned for a small
2417 * subset of pmaps for proper page aging.
2418 */
2419boolean_t
2420pmap_page_exists_quick(pmap, m)
2421	pmap_t pmap;
2422	vm_page_t m;
2423{
2424	pv_entry_t pv;
2425	int loops = 0;
2426
2427	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2428		return FALSE;
2429
2430	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2431	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2432		if (pv->pv_pmap == pmap) {
2433			return TRUE;
2434		}
2435		loops++;
2436		if (loops >= 16)
2437			break;
2438	}
2439	return (FALSE);
2440}
2441
2442#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2443/*
2444 * Remove all pages from specified address space
2445 * this aids process exit speeds.  Also, this code
2446 * is special cased for current process only, but
2447 * can have the more generic (and slightly slower)
2448 * mode enabled.  This is much faster than pmap_remove
2449 * in the case of running down an entire address space.
2450 */
2451void
2452pmap_remove_pages(pmap, sva, eva)
2453	pmap_t pmap;
2454	vm_offset_t sva, eva;
2455{
2456	pt_entry_t *pte, tpte;
2457	vm_page_t m;
2458	pv_entry_t pv, npv;
2459
2460#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2461	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2462		printf("warning: pmap_remove_pages called with non-current pmap\n");
2463		return;
2464	}
2465#endif
2466	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2467	PMAP_LOCK(pmap);
2468	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2469
2470		if (pv->pv_va >= eva || pv->pv_va < sva) {
2471			npv = TAILQ_NEXT(pv, pv_plist);
2472			continue;
2473		}
2474
2475#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2476		pte = vtopte(pv->pv_va);
2477#else
2478		pte = pmap_pte(pmap, pv->pv_va);
2479#endif
2480		tpte = *pte;
2481
2482		if (tpte == 0) {
2483			printf("TPTE at %p  IS ZERO @ VA %08lx\n",
2484							pte, pv->pv_va);
2485			panic("bad pte");
2486		}
2487
2488/*
2489 * We cannot remove wired pages from a process' mapping at this time
2490 */
2491		if (tpte & PG_W) {
2492			npv = TAILQ_NEXT(pv, pv_plist);
2493			continue;
2494		}
2495
2496		m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2497		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2498		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2499		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2500
2501		KASSERT(m < &vm_page_array[vm_page_array_size],
2502			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2503
2504		pmap->pm_stats.resident_count--;
2505
2506		pte_clear(pte);
2507
2508		/*
2509		 * Update the vm_page_t clean and reference bits.
2510		 */
2511		if (tpte & PG_M) {
2512			vm_page_dirty(m);
2513		}
2514
2515		npv = TAILQ_NEXT(pv, pv_plist);
2516		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2517
2518		m->md.pv_list_count--;
2519		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2520		if (TAILQ_EMPTY(&m->md.pv_list))
2521			vm_page_flag_clear(m, PG_WRITEABLE);
2522
2523		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2524		free_pv_entry(pv);
2525	}
2526	pmap_invalidate_all(pmap);
2527	PMAP_UNLOCK(pmap);
2528}
2529
2530/*
2531 *	pmap_is_modified:
2532 *
2533 *	Return whether or not the specified physical page was modified
2534 *	in any physical maps.
2535 */
2536boolean_t
2537pmap_is_modified(vm_page_t m)
2538{
2539	pv_entry_t pv;
2540	pt_entry_t *pte;
2541	boolean_t rv;
2542
2543	rv = FALSE;
2544	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2545		return (rv);
2546
2547	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2548	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2549		/*
2550		 * if the bit being tested is the modified bit, then
2551		 * mark clean_map and ptes as never
2552		 * modified.
2553		 */
2554		if (!pmap_track_modified(pv->pv_va))
2555			continue;
2556#if defined(PMAP_DIAGNOSTIC)
2557		if (!pv->pv_pmap) {
2558			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2559			continue;
2560		}
2561#endif
2562		PMAP_LOCK(pv->pv_pmap);
2563		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2564		rv = (*pte & PG_M) != 0;
2565		PMAP_UNLOCK(pv->pv_pmap);
2566		if (rv)
2567			break;
2568	}
2569	return (rv);
2570}
2571
2572/*
2573 *	pmap_is_prefaultable:
2574 *
2575 *	Return whether or not the specified virtual address is elgible
2576 *	for prefault.
2577 */
2578boolean_t
2579pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2580{
2581	pd_entry_t *pde;
2582	pt_entry_t *pte;
2583	boolean_t rv;
2584
2585	rv = FALSE;
2586	PMAP_LOCK(pmap);
2587	pde = pmap_pde(pmap, addr);
2588	if (pde != NULL && (*pde & PG_V)) {
2589		pte = vtopte(addr);
2590		rv = (*pte & PG_V) == 0;
2591	}
2592	PMAP_UNLOCK(pmap);
2593	return (rv);
2594}
2595
2596/*
2597 *	Clear the given bit in each of the given page's ptes.
2598 */
2599static __inline void
2600pmap_clear_ptes(vm_page_t m, int bit)
2601{
2602	register pv_entry_t pv;
2603	pt_entry_t pbits, *pte;
2604
2605	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2606	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2607		return;
2608
2609	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2610	/*
2611	 * Loop over all current mappings setting/clearing as appropos If
2612	 * setting RO do we need to clear the VAC?
2613	 */
2614	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2615		/*
2616		 * don't write protect pager mappings
2617		 */
2618		if (bit == PG_RW) {
2619			if (!pmap_track_modified(pv->pv_va))
2620				continue;
2621		}
2622
2623#if defined(PMAP_DIAGNOSTIC)
2624		if (!pv->pv_pmap) {
2625			printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2626			continue;
2627		}
2628#endif
2629
2630		PMAP_LOCK(pv->pv_pmap);
2631		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2632		pbits = *pte;
2633		if (pbits & bit) {
2634			if (bit == PG_RW) {
2635				if (pbits & PG_M) {
2636					vm_page_dirty(m);
2637				}
2638				pte_store(pte, pbits & ~(PG_M|PG_RW));
2639			} else {
2640				pte_store(pte, pbits & ~bit);
2641			}
2642			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2643		}
2644		PMAP_UNLOCK(pv->pv_pmap);
2645	}
2646	if (bit == PG_RW)
2647		vm_page_flag_clear(m, PG_WRITEABLE);
2648}
2649
2650/*
2651 *      pmap_page_protect:
2652 *
2653 *      Lower the permission for all mappings to a given page.
2654 */
2655void
2656pmap_page_protect(vm_page_t m, vm_prot_t prot)
2657{
2658	if ((prot & VM_PROT_WRITE) == 0) {
2659		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2660			pmap_clear_ptes(m, PG_RW);
2661		} else {
2662			pmap_remove_all(m);
2663		}
2664	}
2665}
2666
2667/*
2668 *	pmap_ts_referenced:
2669 *
2670 *	Return a count of reference bits for a page, clearing those bits.
2671 *	It is not necessary for every reference bit to be cleared, but it
2672 *	is necessary that 0 only be returned when there are truly no
2673 *	reference bits set.
2674 *
2675 *	XXX: The exact number of bits to check and clear is a matter that
2676 *	should be tested and standardized at some point in the future for
2677 *	optimal aging of shared pages.
2678 */
2679int
2680pmap_ts_referenced(vm_page_t m)
2681{
2682	register pv_entry_t pv, pvf, pvn;
2683	pt_entry_t *pte;
2684	pt_entry_t v;
2685	int rtval = 0;
2686
2687	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2688		return (rtval);
2689
2690	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2691	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2692
2693		pvf = pv;
2694
2695		do {
2696			pvn = TAILQ_NEXT(pv, pv_list);
2697
2698			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2699
2700			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2701
2702			if (!pmap_track_modified(pv->pv_va))
2703				continue;
2704
2705			PMAP_LOCK(pv->pv_pmap);
2706			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2707
2708			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2709				atomic_clear_long(pte, PG_A);
2710				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2711
2712				rtval++;
2713				if (rtval > 4) {
2714					PMAP_UNLOCK(pv->pv_pmap);
2715					break;
2716				}
2717			}
2718			PMAP_UNLOCK(pv->pv_pmap);
2719		} while ((pv = pvn) != NULL && pv != pvf);
2720	}
2721
2722	return (rtval);
2723}
2724
2725/*
2726 *	Clear the modify bits on the specified physical page.
2727 */
2728void
2729pmap_clear_modify(vm_page_t m)
2730{
2731	pmap_clear_ptes(m, PG_M);
2732}
2733
2734/*
2735 *	pmap_clear_reference:
2736 *
2737 *	Clear the reference bit on the specified physical page.
2738 */
2739void
2740pmap_clear_reference(vm_page_t m)
2741{
2742	pmap_clear_ptes(m, PG_A);
2743}
2744
2745/*
2746 * Miscellaneous support routines follow
2747 */
2748
2749/*
2750 * Map a set of physical memory pages into the kernel virtual
2751 * address space. Return a pointer to where it is mapped. This
2752 * routine is intended to be used for mapping device memory,
2753 * NOT real memory.
2754 */
2755void *
2756pmap_mapdev(pa, size)
2757	vm_paddr_t pa;
2758	vm_size_t size;
2759{
2760	vm_offset_t va, tmpva, offset;
2761
2762	/* If this fits within the direct map window, use it */
2763	if (pa < dmaplimit && (pa + size) < dmaplimit)
2764		return ((void *)PHYS_TO_DMAP(pa));
2765	offset = pa & PAGE_MASK;
2766	size = roundup(offset + size, PAGE_SIZE);
2767	va = kmem_alloc_nofault(kernel_map, size);
2768	if (!va)
2769		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2770	pa = trunc_page(pa);
2771	for (tmpva = va; size > 0; ) {
2772		pmap_kenter(tmpva, pa);
2773		size -= PAGE_SIZE;
2774		tmpva += PAGE_SIZE;
2775		pa += PAGE_SIZE;
2776	}
2777	pmap_invalidate_range(kernel_pmap, va, tmpva);
2778	return ((void *)(va + offset));
2779}
2780
2781void
2782pmap_unmapdev(va, size)
2783	vm_offset_t va;
2784	vm_size_t size;
2785{
2786	vm_offset_t base, offset, tmpva;
2787
2788	/* If we gave a direct map region in pmap_mapdev, do nothing */
2789	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
2790		return;
2791	base = trunc_page(va);
2792	offset = va & PAGE_MASK;
2793	size = roundup(offset + size, PAGE_SIZE);
2794	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2795		pmap_kremove(tmpva);
2796	pmap_invalidate_range(kernel_pmap, va, tmpva);
2797	kmem_free(kernel_map, base, size);
2798}
2799
2800/*
2801 * perform the pmap work for mincore
2802 */
2803int
2804pmap_mincore(pmap, addr)
2805	pmap_t pmap;
2806	vm_offset_t addr;
2807{
2808	pt_entry_t *ptep, pte;
2809	vm_page_t m;
2810	int val = 0;
2811
2812	PMAP_LOCK(pmap);
2813	ptep = pmap_pte(pmap, addr);
2814	pte = (ptep != NULL) ? *ptep : 0;
2815	PMAP_UNLOCK(pmap);
2816
2817	if (pte != 0) {
2818		vm_paddr_t pa;
2819
2820		val = MINCORE_INCORE;
2821		if ((pte & PG_MANAGED) == 0)
2822			return val;
2823
2824		pa = pte & PG_FRAME;
2825
2826		m = PHYS_TO_VM_PAGE(pa);
2827
2828		/*
2829		 * Modified by us
2830		 */
2831		if (pte & PG_M)
2832			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2833		else {
2834			/*
2835			 * Modified by someone else
2836			 */
2837			vm_page_lock_queues();
2838			if (m->dirty || pmap_is_modified(m))
2839				val |= MINCORE_MODIFIED_OTHER;
2840			vm_page_unlock_queues();
2841		}
2842		/*
2843		 * Referenced by us
2844		 */
2845		if (pte & PG_A)
2846			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2847		else {
2848			/*
2849			 * Referenced by someone else
2850			 */
2851			vm_page_lock_queues();
2852			if ((m->flags & PG_REFERENCED) ||
2853			    pmap_ts_referenced(m)) {
2854				val |= MINCORE_REFERENCED_OTHER;
2855				vm_page_flag_set(m, PG_REFERENCED);
2856			}
2857			vm_page_unlock_queues();
2858		}
2859	}
2860	return val;
2861}
2862
2863void
2864pmap_activate(struct thread *td)
2865{
2866	struct proc *p = td->td_proc;
2867	pmap_t	pmap, oldpmap;
2868	u_int64_t  cr3;
2869
2870	critical_enter();
2871	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2872	oldpmap = PCPU_GET(curpmap);
2873#ifdef SMP
2874if (oldpmap)	/* XXX FIXME */
2875	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
2876	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
2877#else
2878if (oldpmap)	/* XXX FIXME */
2879	oldpmap->pm_active &= ~PCPU_GET(cpumask);
2880	pmap->pm_active |= PCPU_GET(cpumask);
2881#endif
2882	cr3 = vtophys(pmap->pm_pml4);
2883	/* XXXKSE this is wrong.
2884	 * pmap_activate is for the current thread on the current cpu
2885	 */
2886	if (p->p_flag & P_SA) {
2887		/* Make sure all other cr3 entries are updated. */
2888		/* what if they are running?  XXXKSE (maybe abort them) */
2889		FOREACH_THREAD_IN_PROC(p, td) {
2890			td->td_pcb->pcb_cr3 = cr3;
2891		}
2892	} else {
2893		td->td_pcb->pcb_cr3 = cr3;
2894	}
2895	load_cr3(cr3);
2896	critical_exit();
2897}
2898
2899vm_offset_t
2900pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2901{
2902
2903	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
2904		return addr;
2905	}
2906
2907	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
2908	return addr;
2909}
2910