pmap.c revision 130224
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2003 Peter Wemm
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/amd64/amd64/pmap.c 130224 2004-06-08 01:02:52Z peter $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_msgbuf.h"
107#include "opt_kstack_pages.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#ifdef SMP
123#include <sys/smp.h>
124#endif
125
126#include <vm/vm.h>
127#include <vm/vm_param.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_page.h>
130#include <vm/vm_map.h>
131#include <vm/vm_object.h>
132#include <vm/vm_extern.h>
133#include <vm/vm_pageout.h>
134#include <vm/vm_pager.h>
135#include <vm/uma.h>
136
137#include <machine/cpu.h>
138#include <machine/cputypes.h>
139#include <machine/md_var.h>
140#include <machine/specialreg.h>
141#ifdef SMP
142#include <machine/smp.h>
143#endif
144
145#define PMAP_KEEP_PDIRS
146#ifndef PMAP_SHPGPERPROC
147#define PMAP_SHPGPERPROC 200
148#endif
149
150#if defined(DIAGNOSTIC)
151#define PMAP_DIAGNOSTIC
152#endif
153
154#define MINPV 2048
155
156#if !defined(PMAP_DIAGNOSTIC)
157#define PMAP_INLINE __inline
158#else
159#define PMAP_INLINE
160#endif
161
162struct pmap kernel_pmap_store;
163LIST_HEAD(pmaplist, pmap);
164static struct pmaplist allpmaps;
165static struct mtx allpmaps_lock;
166
167vm_paddr_t avail_start;		/* PA of first available physical page */
168vm_paddr_t avail_end;		/* PA of last available physical page */
169vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
170vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
171static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
172
173static int nkpt;
174static int ndmpdp;
175static vm_paddr_t dmaplimit;
176vm_offset_t kernel_vm_end;
177pt_entry_t pg_nx;
178
179static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
180static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
181static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
182u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
183
184static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
185static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
186
187/*
188 * Data for the pv entry allocation mechanism
189 */
190static uma_zone_t pvzone;
191static struct vm_object pvzone_obj;
192static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
193int pmap_pagedaemon_waken;
194
195/*
196 * All those kernel PT submaps that BSD is so fond of
197 */
198pt_entry_t *CMAP1 = 0;
199caddr_t CADDR1 = 0;
200static pt_entry_t *msgbufmap;
201struct msgbuf *msgbufp = 0;
202
203/*
204 * Crashdump maps.
205 */
206static pt_entry_t *pt_crashdumpmap;
207static caddr_t crashdumpmap;
208
209static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
210static pv_entry_t get_pv_entry(void);
211static void	pmap_clear_ptes(vm_page_t m, int bit)
212    __always_inline;
213
214static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
215static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
216static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
217					vm_offset_t va);
218static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
219		vm_page_t mpte, vm_page_t m);
220
221static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
222
223static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex);
224static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
225static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
226
227CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
228CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
229
230/*
231 * Move the kernel virtual free pointer to the next
232 * 2MB.  This is used to help improve performance
233 * by using a large (2MB) page for much of the kernel
234 * (.text, .data, .bss)
235 */
236static vm_offset_t
237pmap_kmem_choose(vm_offset_t addr)
238{
239	vm_offset_t newaddr = addr;
240
241	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
242	return newaddr;
243}
244
245/********************/
246/* Inline functions */
247/********************/
248
249/* Return a non-clipped PD index for a given VA */
250static __inline vm_pindex_t
251pmap_pde_pindex(vm_offset_t va)
252{
253	return va >> PDRSHIFT;
254}
255
256
257/* Return various clipped indexes for a given VA */
258static __inline vm_pindex_t
259pmap_pte_index(vm_offset_t va)
260{
261
262	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
263}
264
265static __inline vm_pindex_t
266pmap_pde_index(vm_offset_t va)
267{
268
269	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
270}
271
272static __inline vm_pindex_t
273pmap_pdpe_index(vm_offset_t va)
274{
275
276	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
277}
278
279static __inline vm_pindex_t
280pmap_pml4e_index(vm_offset_t va)
281{
282
283	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
284}
285
286/* Return a pointer to the PML4 slot that corresponds to a VA */
287static __inline pml4_entry_t *
288pmap_pml4e(pmap_t pmap, vm_offset_t va)
289{
290
291	if (!pmap)
292		return NULL;
293	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
294}
295
296/* Return a pointer to the PDP slot that corresponds to a VA */
297static __inline pdp_entry_t *
298pmap_pdpe(pmap_t pmap, vm_offset_t va)
299{
300	pml4_entry_t *pml4e;
301	pdp_entry_t *pdpe;
302
303	pml4e = pmap_pml4e(pmap, va);
304	if (pml4e == NULL || (*pml4e & PG_V) == 0)
305		return NULL;
306	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
307	return (&pdpe[pmap_pdpe_index(va)]);
308}
309
310/* Return a pointer to the PD slot that corresponds to a VA */
311static __inline pd_entry_t *
312pmap_pde(pmap_t pmap, vm_offset_t va)
313{
314	pdp_entry_t *pdpe;
315	pd_entry_t *pde;
316
317	pdpe = pmap_pdpe(pmap, va);
318	if (pdpe == NULL || (*pdpe & PG_V) == 0)
319		 return NULL;
320	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
321	return (&pde[pmap_pde_index(va)]);
322}
323
324/* Return a pointer to the PT slot that corresponds to a VA */
325static __inline pt_entry_t *
326pmap_pte(pmap_t pmap, vm_offset_t va)
327{
328	pd_entry_t *pde;
329	pt_entry_t *pte;
330
331	pde = pmap_pde(pmap, va);
332	if (pde == NULL || (*pde & PG_V) == 0)
333		return NULL;
334	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
335		return ((pt_entry_t *)pde);
336	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
337	return (&pte[pmap_pte_index(va)]);
338}
339
340
341PMAP_INLINE pt_entry_t *
342vtopte(vm_offset_t va)
343{
344	u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
345
346	return (PTmap + (amd64_btop(va) & mask));
347}
348
349static u_int64_t
350allocpages(int n)
351{
352	u_int64_t ret;
353
354	ret = avail_start;
355	bzero((void *)ret, n * PAGE_SIZE);
356	avail_start += n * PAGE_SIZE;
357	return (ret);
358}
359
360static void
361create_pagetables(void)
362{
363	int i;
364
365	/* Allocate pages */
366	KPTphys = allocpages(NKPT);
367	KPML4phys = allocpages(1);
368	KPDPphys = allocpages(NKPML4E);
369	KPDphys = allocpages(NKPDPE);
370
371	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
372	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
373		ndmpdp = 4;
374	DMPDPphys = allocpages(NDMPML4E);
375	DMPDphys = allocpages(ndmpdp);
376	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
377
378	/* Fill in the underlying page table pages */
379	/* Read-only from zero to physfree */
380	/* XXX not fully used, underneath 2M pages */
381	for (i = 0; (i << PAGE_SHIFT) < avail_start; i++) {
382		((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
383		((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V | PG_G;
384	}
385
386	/* Now map the page tables at their location within PTmap */
387	for (i = 0; i < NKPT; i++) {
388		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
389		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
390	}
391
392	/* Map from zero to end of allocations under 2M pages */
393	/* This replaces some of the KPTphys entries above */
394	for (i = 0; (i << PDRSHIFT) < avail_start; i++) {
395		((pd_entry_t *)KPDphys)[i] = i << PDRSHIFT;
396		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V | PG_PS | PG_G;
397	}
398
399	/* And connect up the PD to the PDP */
400	for (i = 0; i < NKPDPE; i++) {
401		((pdp_entry_t *)KPDPphys)[i + KPDPI] = KPDphys + (i << PAGE_SHIFT);
402		((pdp_entry_t *)KPDPphys)[i + KPDPI] |= PG_RW | PG_V | PG_U;
403	}
404
405
406	/* Now set up the direct map space using 2MB pages */
407	for (i = 0; i < NPDEPG * ndmpdp; i++) {
408		((pd_entry_t *)DMPDphys)[i] = (vm_paddr_t)i << PDRSHIFT;
409		((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS | PG_G;
410	}
411
412	/* And the direct map space's PDP */
413	for (i = 0; i < ndmpdp; i++) {
414		((pdp_entry_t *)DMPDPphys)[i] = DMPDphys + (i << PAGE_SHIFT);
415		((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
416	}
417
418	/* And recursively map PML4 to itself in order to get PTmap */
419	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
420	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
421
422	/* Connect the Direct Map slot up to the PML4 */
423	((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
424	((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
425
426	/* Connect the KVA slot up to the PML4 */
427	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
428	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
429}
430
431/*
432 *	Bootstrap the system enough to run with virtual memory.
433 *
434 *	On amd64 this is called after mapping has already been enabled
435 *	and just syncs the pmap module with what has already been done.
436 *	[We can't call it easily with mapping off since the kernel is not
437 *	mapped with PA == VA, hence we would have to relocate every address
438 *	from the linked base (virtual) address "KERNBASE" to the actual
439 *	(physical) address starting relative to 0]
440 */
441void
442pmap_bootstrap(firstaddr)
443	vm_paddr_t *firstaddr;
444{
445	vm_offset_t va;
446	pt_entry_t *pte;
447
448	avail_start = *firstaddr;
449
450	/*
451	 * Create an initial set of page tables to run the kernel in.
452	 */
453	create_pagetables();
454	*firstaddr = avail_start;
455
456	virtual_avail = (vm_offset_t) KERNBASE + avail_start;
457	virtual_avail = pmap_kmem_choose(virtual_avail);
458
459	virtual_end = VM_MAX_KERNEL_ADDRESS;
460
461
462	/* XXX do %cr0 as well */
463	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
464	load_cr3(KPML4phys);
465
466	/*
467	 * Initialize the kernel pmap (which is statically allocated).
468	 */
469	kernel_pmap->pm_pml4 = (pdp_entry_t *) (KERNBASE + KPML4phys);
470	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
471	TAILQ_INIT(&kernel_pmap->pm_pvlist);
472	LIST_INIT(&allpmaps);
473	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
474	mtx_lock_spin(&allpmaps_lock);
475	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
476	mtx_unlock_spin(&allpmaps_lock);
477	nkpt = NKPT;
478
479	/*
480	 * Reserve some special page table entries/VA space for temporary
481	 * mapping of pages.
482	 */
483#define	SYSMAP(c, p, v, n)	\
484	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
485
486	va = virtual_avail;
487	pte = vtopte(va);
488
489	/*
490	 * CMAP1 is only used for the memory test.
491	 */
492	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
493
494	/*
495	 * Crashdump maps.
496	 */
497	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
498
499	/*
500	 * msgbufp is used to map the system message buffer.
501	 * XXX msgbufmap is not used.
502	 */
503	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
504	       atop(round_page(MSGBUF_SIZE)))
505
506	virtual_avail = va;
507
508	*CMAP1 = 0;
509
510	invltlb();
511}
512
513/*
514 *	Initialize the pmap module.
515 *	Called by vm_init, to initialize any structures that the pmap
516 *	system needs to map virtual memory.
517 *	pmap_init has been enhanced to support in a fairly consistant
518 *	way, discontiguous physical memory.
519 */
520void
521pmap_init(void)
522{
523	int i;
524
525	/*
526	 * Allocate memory for random pmap data structures.  Includes the
527	 * pv_head_table.
528	 */
529
530	for(i = 0; i < vm_page_array_size; i++) {
531		vm_page_t m;
532
533		m = &vm_page_array[i];
534		TAILQ_INIT(&m->md.pv_list);
535		m->md.pv_list_count = 0;
536	}
537
538	/*
539	 * init the pv free list
540	 */
541	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
542	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
543	uma_prealloc(pvzone, MINPV);
544
545	/*
546	 * Now it is safe to enable pv_table recording.
547	 */
548	pmap_initialized = TRUE;
549}
550
551/*
552 * Initialize the address space (zone) for the pv_entries.  Set a
553 * high water mark so that the system can recover from excessive
554 * numbers of pv entries.
555 */
556void
557pmap_init2()
558{
559	int shpgperproc = PMAP_SHPGPERPROC;
560
561	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
562	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
563	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
564	pv_entry_high_water = 9 * (pv_entry_max / 10);
565	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
566}
567
568
569/***************************************************
570 * Low level helper routines.....
571 ***************************************************/
572
573#if defined(PMAP_DIAGNOSTIC)
574
575/*
576 * This code checks for non-writeable/modified pages.
577 * This should be an invalid condition.
578 */
579static int
580pmap_nw_modified(pt_entry_t ptea)
581{
582	int pte;
583
584	pte = (int) ptea;
585
586	if ((pte & (PG_M|PG_RW)) == PG_M)
587		return 1;
588	else
589		return 0;
590}
591#endif
592
593
594/*
595 * this routine defines the region(s) of memory that should
596 * not be tested for the modified bit.
597 */
598static PMAP_INLINE int
599pmap_track_modified(vm_offset_t va)
600{
601	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
602		return 1;
603	else
604		return 0;
605}
606
607#ifdef SMP
608/*
609 * For SMP, these functions have to use the IPI mechanism for coherence.
610 */
611void
612pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
613{
614	u_int cpumask;
615	u_int other_cpus;
616
617	if (smp_started) {
618		if (!(read_rflags() & PSL_I))
619			panic("%s: interrupts disabled", __func__);
620		mtx_lock_spin(&smp_tlb_mtx);
621	} else
622		critical_enter();
623	/*
624	 * We need to disable interrupt preemption but MUST NOT have
625	 * interrupts disabled here.
626	 * XXX we may need to hold schedlock to get a coherent pm_active
627	 * XXX critical sections disable interrupts again
628	 */
629	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
630		invlpg(va);
631		smp_invlpg(va);
632	} else {
633		cpumask = PCPU_GET(cpumask);
634		other_cpus = PCPU_GET(other_cpus);
635		if (pmap->pm_active & cpumask)
636			invlpg(va);
637		if (pmap->pm_active & other_cpus)
638			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
639	}
640	if (smp_started)
641		mtx_unlock_spin(&smp_tlb_mtx);
642	else
643		critical_exit();
644}
645
646void
647pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
648{
649	u_int cpumask;
650	u_int other_cpus;
651	vm_offset_t addr;
652
653	if (smp_started) {
654		if (!(read_rflags() & PSL_I))
655			panic("%s: interrupts disabled", __func__);
656		mtx_lock_spin(&smp_tlb_mtx);
657	} else
658		critical_enter();
659	/*
660	 * We need to disable interrupt preemption but MUST NOT have
661	 * interrupts disabled here.
662	 * XXX we may need to hold schedlock to get a coherent pm_active
663	 * XXX critical sections disable interrupts again
664	 */
665	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
666		for (addr = sva; addr < eva; addr += PAGE_SIZE)
667			invlpg(addr);
668		smp_invlpg_range(sva, eva);
669	} else {
670		cpumask = PCPU_GET(cpumask);
671		other_cpus = PCPU_GET(other_cpus);
672		if (pmap->pm_active & cpumask)
673			for (addr = sva; addr < eva; addr += PAGE_SIZE)
674				invlpg(addr);
675		if (pmap->pm_active & other_cpus)
676			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
677			    sva, eva);
678	}
679	if (smp_started)
680		mtx_unlock_spin(&smp_tlb_mtx);
681	else
682		critical_exit();
683}
684
685void
686pmap_invalidate_all(pmap_t pmap)
687{
688	u_int cpumask;
689	u_int other_cpus;
690
691	if (smp_started) {
692		if (!(read_rflags() & PSL_I))
693			panic("%s: interrupts disabled", __func__);
694		mtx_lock_spin(&smp_tlb_mtx);
695	} else
696		critical_enter();
697	/*
698	 * We need to disable interrupt preemption but MUST NOT have
699	 * interrupts disabled here.
700	 * XXX we may need to hold schedlock to get a coherent pm_active
701	 * XXX critical sections disable interrupts again
702	 */
703	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
704		invltlb();
705		smp_invltlb();
706	} else {
707		cpumask = PCPU_GET(cpumask);
708		other_cpus = PCPU_GET(other_cpus);
709		if (pmap->pm_active & cpumask)
710			invltlb();
711		if (pmap->pm_active & other_cpus)
712			smp_masked_invltlb(pmap->pm_active & other_cpus);
713	}
714	if (smp_started)
715		mtx_unlock_spin(&smp_tlb_mtx);
716	else
717		critical_exit();
718}
719#else /* !SMP */
720/*
721 * Normal, non-SMP, invalidation functions.
722 * We inline these within pmap.c for speed.
723 */
724PMAP_INLINE void
725pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
726{
727
728	if (pmap == kernel_pmap || pmap->pm_active)
729		invlpg(va);
730}
731
732PMAP_INLINE void
733pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
734{
735	vm_offset_t addr;
736
737	if (pmap == kernel_pmap || pmap->pm_active)
738		for (addr = sva; addr < eva; addr += PAGE_SIZE)
739			invlpg(addr);
740}
741
742PMAP_INLINE void
743pmap_invalidate_all(pmap_t pmap)
744{
745
746	if (pmap == kernel_pmap || pmap->pm_active)
747		invltlb();
748}
749#endif /* !SMP */
750
751/*
752 * Are we current address space or kernel?
753 */
754static __inline int
755pmap_is_current(pmap_t pmap)
756{
757	return (pmap == kernel_pmap ||
758	    (pmap->pm_pml4[PML4PML4I] & PG_FRAME) == (PML4pml4e[0] & PG_FRAME));
759}
760
761/*
762 *	Routine:	pmap_extract
763 *	Function:
764 *		Extract the physical page address associated
765 *		with the given map/virtual_address pair.
766 */
767vm_paddr_t
768pmap_extract(pmap, va)
769	register pmap_t pmap;
770	vm_offset_t va;
771{
772	vm_paddr_t rtval;
773	pt_entry_t *pte;
774	pd_entry_t pde, *pdep;
775
776	if (pmap == 0)
777		return 0;
778	pdep = pmap_pde(pmap, va);
779	if (pdep) {
780		pde = *pdep;
781		if (pde) {
782			if ((pde & PG_PS) != 0) {
783				rtval = (pde & ~PDRMASK) | (va & PDRMASK);
784				return rtval;
785			}
786			pte = pmap_pte(pmap, va);
787			rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
788			return rtval;
789		}
790	}
791	return 0;
792
793}
794
795/*
796 *	Routine:	pmap_extract_and_hold
797 *	Function:
798 *		Atomically extract and hold the physical page
799 *		with the given pmap and virtual address pair
800 *		if that mapping permits the given protection.
801 */
802vm_page_t
803pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
804{
805	vm_paddr_t pa;
806	vm_page_t m;
807
808	m = NULL;
809	mtx_lock(&Giant);
810	if ((pa = pmap_extract(pmap, va)) != 0) {
811		m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
812		vm_page_lock_queues();
813		vm_page_hold(m);
814		vm_page_unlock_queues();
815	}
816	mtx_unlock(&Giant);
817	return (m);
818}
819
820vm_paddr_t
821pmap_kextract(vm_offset_t va)
822{
823	pd_entry_t *pde;
824	vm_paddr_t pa;
825
826	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
827		pa = DMAP_TO_PHYS(va);
828	} else {
829		pde = pmap_pde(kernel_pmap, va);
830		if (*pde & PG_PS) {
831			pa = (*pde & ~(NBPDR - 1)) | (va & (NBPDR - 1));
832		} else {
833			pa = *vtopte(va);
834			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
835		}
836	}
837	return pa;
838}
839
840/***************************************************
841 * Low level mapping routines.....
842 ***************************************************/
843
844/*
845 * Add a wired page to the kva.
846 * Note: not SMP coherent.
847 */
848PMAP_INLINE void
849pmap_kenter(vm_offset_t va, vm_paddr_t pa)
850{
851	pt_entry_t *pte;
852
853	pte = vtopte(va);
854	pte_store(pte, pa | PG_RW | PG_V | PG_G);
855}
856
857/*
858 * Remove a page from the kernel pagetables.
859 * Note: not SMP coherent.
860 */
861PMAP_INLINE void
862pmap_kremove(vm_offset_t va)
863{
864	pt_entry_t *pte;
865
866	pte = vtopte(va);
867	pte_clear(pte);
868}
869
870/*
871 *	Used to map a range of physical addresses into kernel
872 *	virtual address space.
873 *
874 *	The value passed in '*virt' is a suggested virtual address for
875 *	the mapping. Architectures which can support a direct-mapped
876 *	physical to virtual region can return the appropriate address
877 *	within that region, leaving '*virt' unchanged. Other
878 *	architectures should map the pages starting at '*virt' and
879 *	update '*virt' with the first usable address after the mapped
880 *	region.
881 */
882vm_offset_t
883pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
884{
885	return PHYS_TO_DMAP(start);
886}
887
888
889/*
890 * Add a list of wired pages to the kva
891 * this routine is only used for temporary
892 * kernel mappings that do not need to have
893 * page modification or references recorded.
894 * Note that old mappings are simply written
895 * over.  The page *must* be wired.
896 * Note: SMP coherent.  Uses a ranged shootdown IPI.
897 */
898void
899pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
900{
901	vm_offset_t va;
902
903	va = sva;
904	while (count-- > 0) {
905		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
906		va += PAGE_SIZE;
907		m++;
908	}
909	pmap_invalidate_range(kernel_pmap, sva, va);
910}
911
912/*
913 * This routine tears out page mappings from the
914 * kernel -- it is meant only for temporary mappings.
915 * Note: SMP coherent.  Uses a ranged shootdown IPI.
916 */
917void
918pmap_qremove(vm_offset_t sva, int count)
919{
920	vm_offset_t va;
921
922	va = sva;
923	while (count-- > 0) {
924		pmap_kremove(va);
925		va += PAGE_SIZE;
926	}
927	pmap_invalidate_range(kernel_pmap, sva, va);
928}
929
930/***************************************************
931 * Page table page management routines.....
932 ***************************************************/
933
934/*
935 * This routine unholds page table pages, and if the hold count
936 * drops to zero, then it decrements the wire count.
937 */
938static int
939_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
940{
941
942	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
943		vm_page_lock_queues();
944
945	if (m->hold_count == 0) {
946		vm_offset_t pteva;
947
948		/*
949		 * unmap the page table page
950		 */
951		if (m->pindex >= (NUPDE + NUPDPE)) {
952			/* PDP page */
953			pml4_entry_t *pml4;
954			pml4 = pmap_pml4e(pmap, va);
955			pteva = (vm_offset_t) PDPmap + amd64_ptob(m->pindex - (NUPDE + NUPDPE));
956			*pml4 = 0;
957		} else if (m->pindex >= NUPDE) {
958			/* PD page */
959			pdp_entry_t *pdp;
960			pdp = pmap_pdpe(pmap, va);
961			pteva = (vm_offset_t) PDmap + amd64_ptob(m->pindex - NUPDE);
962			*pdp = 0;
963		} else {
964			/* PTE page */
965			pd_entry_t *pd;
966			pd = pmap_pde(pmap, va);
967			pteva = (vm_offset_t) PTmap + amd64_ptob(m->pindex);
968			*pd = 0;
969		}
970		--pmap->pm_stats.resident_count;
971		if (m->pindex < NUPDE) {
972			/* We just released a PT, unhold the matching PD */
973			vm_page_t pdpg;
974
975			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
976			vm_page_unhold(pdpg);
977			if (pdpg->hold_count == 0)
978				_pmap_unwire_pte_hold(pmap, va, pdpg);
979		}
980		if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
981			/* We just released a PD, unhold the matching PDP */
982			vm_page_t pdppg;
983
984			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
985			vm_page_unhold(pdppg);
986			if (pdppg->hold_count == 0)
987				_pmap_unwire_pte_hold(pmap, va, pdppg);
988		}
989		if (pmap_is_current(pmap)) {
990			/*
991			 * Do an invltlb to make the invalidated mapping
992			 * take effect immediately.
993			 */
994			pmap_invalidate_page(pmap, pteva);
995		}
996
997		/*
998		 * If the page is finally unwired, simply free it.
999		 */
1000		--m->wire_count;
1001		if (m->wire_count == 0) {
1002			vm_page_busy(m);
1003			vm_page_free_zero(m);
1004			atomic_subtract_int(&cnt.v_wire_count, 1);
1005		}
1006		return 1;
1007	}
1008	return 0;
1009}
1010
1011static PMAP_INLINE int
1012pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1013{
1014	vm_page_unhold(m);
1015	if (m->hold_count == 0)
1016		return _pmap_unwire_pte_hold(pmap, va, m);
1017	else
1018		return 0;
1019}
1020
1021/*
1022 * After removing a page table entry, this routine is used to
1023 * conditionally free the page, and manage the hold/wire counts.
1024 */
1025static int
1026pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1027{
1028
1029	if (va >= VM_MAXUSER_ADDRESS)
1030		return 0;
1031
1032	return pmap_unwire_pte_hold(pmap, va, mpte);
1033}
1034
1035void
1036pmap_pinit0(pmap)
1037	struct pmap *pmap;
1038{
1039
1040	pmap->pm_pml4 = (pml4_entry_t *)(KERNBASE + KPML4phys);
1041	pmap->pm_active = 0;
1042	TAILQ_INIT(&pmap->pm_pvlist);
1043	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1044	mtx_lock_spin(&allpmaps_lock);
1045	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1046	mtx_unlock_spin(&allpmaps_lock);
1047}
1048
1049/*
1050 * Initialize a preallocated and zeroed pmap structure,
1051 * such as one in a vmspace structure.
1052 */
1053void
1054pmap_pinit(pmap)
1055	register struct pmap *pmap;
1056{
1057	vm_page_t pml4pg;
1058	static vm_pindex_t color;
1059
1060	/*
1061	 * allocate the page directory page
1062	 */
1063	while ((pml4pg = vm_page_alloc(NULL, color++, VM_ALLOC_NOOBJ |
1064	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
1065		VM_WAIT;
1066
1067	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
1068
1069	if ((pml4pg->flags & PG_ZERO) == 0)
1070		pagezero(pmap->pm_pml4);
1071
1072	mtx_lock_spin(&allpmaps_lock);
1073	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1074	mtx_unlock_spin(&allpmaps_lock);
1075
1076	/* Wire in kernel global address entries. */
1077	pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1078	pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
1079
1080	/* install self-referential address mapping entry(s) */
1081	pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | PG_V | PG_RW | PG_A | PG_M;
1082
1083	pmap->pm_active = 0;
1084	TAILQ_INIT(&pmap->pm_pvlist);
1085	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1086}
1087
1088/*
1089 * this routine is called if the page table page is not
1090 * mapped correctly.
1091 *
1092 * Note: If a page allocation fails at page table level two or three,
1093 * one or two pages may be held during the wait, only to be released
1094 * afterwards.  This conservative approach is easily argued to avoid
1095 * race conditions.
1096 */
1097static vm_page_t
1098_pmap_allocpte(pmap, ptepindex)
1099	pmap_t	pmap;
1100	vm_pindex_t ptepindex;
1101{
1102	vm_page_t m, pdppg, pdpg;
1103
1104	/*
1105	 * Allocate a page table page.
1106	 */
1107	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1108	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1109		VM_WAIT;
1110		/*
1111		 * Indicate the need to retry.  While waiting, the page table
1112		 * page may have been allocated.
1113		 */
1114		return (NULL);
1115	}
1116	if ((m->flags & PG_ZERO) == 0)
1117		pmap_zero_page(m);
1118
1119	KASSERT(m->queue == PQ_NONE,
1120		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1121
1122	/*
1123	 * Increment the hold count for the page table page
1124	 * (denoting a new mapping.)
1125	 */
1126	m->hold_count++;
1127
1128	/*
1129	 * Map the pagetable page into the process address space, if
1130	 * it isn't already there.
1131	 */
1132
1133	pmap->pm_stats.resident_count++;
1134
1135	if (ptepindex >= (NUPDE + NUPDPE)) {
1136		pml4_entry_t *pml4;
1137		vm_pindex_t pml4index;
1138
1139		/* Wire up a new PDPE page */
1140		pml4index = ptepindex - (NUPDE + NUPDPE);
1141		pml4 = &pmap->pm_pml4[pml4index];
1142		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1143
1144	} else if (ptepindex >= NUPDE) {
1145		vm_pindex_t pml4index;
1146		vm_pindex_t pdpindex;
1147		pml4_entry_t *pml4;
1148		pdp_entry_t *pdp;
1149
1150		/* Wire up a new PDE page */
1151		pdpindex = ptepindex - NUPDE;
1152		pml4index = pdpindex >> NPML4EPGSHIFT;
1153
1154		pml4 = &pmap->pm_pml4[pml4index];
1155		if ((*pml4 & PG_V) == 0) {
1156			/* Have to allocate a new pdp, recurse */
1157			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index) == NULL) {
1158				vm_page_lock_queues();
1159				vm_page_unhold(m);
1160				vm_page_free(m);
1161				vm_page_unlock_queues();
1162				return (NULL);
1163			}
1164		} else {
1165			/* Add reference to pdp page */
1166			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
1167			pdppg->hold_count++;
1168		}
1169		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1170
1171		/* Now find the pdp page */
1172		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1173		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1174
1175	} else {
1176		vm_pindex_t pml4index;
1177		vm_pindex_t pdpindex;
1178		pml4_entry_t *pml4;
1179		pdp_entry_t *pdp;
1180		pd_entry_t *pd;
1181
1182		/* Wire up a new PTE page */
1183		pdpindex = ptepindex >> NPDPEPGSHIFT;
1184		pml4index = pdpindex >> NPML4EPGSHIFT;
1185
1186		/* First, find the pdp and check that its valid. */
1187		pml4 = &pmap->pm_pml4[pml4index];
1188		if ((*pml4 & PG_V) == 0) {
1189			/* Have to allocate a new pd, recurse */
1190			if (_pmap_allocpte(pmap, NUPDE + pdpindex) == NULL) {
1191				vm_page_lock_queues();
1192				vm_page_unhold(m);
1193				vm_page_free(m);
1194				vm_page_unlock_queues();
1195				return (NULL);
1196			}
1197			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1198			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1199		} else {
1200			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1201			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1202			if ((*pdp & PG_V) == 0) {
1203				/* Have to allocate a new pd, recurse */
1204				if (_pmap_allocpte(pmap, NUPDE + pdpindex) == NULL) {
1205					vm_page_lock_queues();
1206					vm_page_unhold(m);
1207					vm_page_free(m);
1208					vm_page_unlock_queues();
1209					return (NULL);
1210				}
1211			} else {
1212				/* Add reference to the pd page */
1213				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
1214				pdpg->hold_count++;
1215			}
1216		}
1217		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
1218
1219		/* Now we know where the page directory page is */
1220		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1221		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1222	}
1223
1224	vm_page_lock_queues();
1225	vm_page_wakeup(m);
1226	vm_page_unlock_queues();
1227
1228	return m;
1229}
1230
1231static vm_page_t
1232pmap_allocpte(pmap_t pmap, vm_offset_t va)
1233{
1234	vm_pindex_t ptepindex;
1235	pd_entry_t *pd;
1236	vm_page_t m;
1237
1238	/*
1239	 * Calculate pagetable page index
1240	 */
1241	ptepindex = pmap_pde_pindex(va);
1242retry:
1243	/*
1244	 * Get the page directory entry
1245	 */
1246	pd = pmap_pde(pmap, va);
1247
1248	/*
1249	 * This supports switching from a 2MB page to a
1250	 * normal 4K page.
1251	 */
1252	if (pd != 0 && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
1253		*pd = 0;
1254		pd = 0;
1255		pmap_invalidate_all(kernel_pmap);
1256	}
1257
1258	/*
1259	 * If the page table page is mapped, we just increment the
1260	 * hold count, and activate it.
1261	 */
1262	if (pd != 0 && (*pd & PG_V) != 0) {
1263		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
1264		m->hold_count++;
1265	} else {
1266		/*
1267		 * Here if the pte page isn't mapped, or if it has been
1268		 * deallocated.
1269		 */
1270		m = _pmap_allocpte(pmap, ptepindex);
1271		if (m == NULL)
1272			goto retry;
1273	}
1274	return (m);
1275}
1276
1277
1278/***************************************************
1279 * Pmap allocation/deallocation routines.
1280 ***************************************************/
1281
1282/*
1283 * Release any resources held by the given physical map.
1284 * Called when a pmap initialized by pmap_pinit is being released.
1285 * Should only be called if the map contains no valid mappings.
1286 */
1287void
1288pmap_release(pmap_t pmap)
1289{
1290	vm_page_t m;
1291
1292	KASSERT(pmap->pm_stats.resident_count == 0,
1293	    ("pmap_release: pmap resident count %ld != 0",
1294	    pmap->pm_stats.resident_count));
1295
1296	mtx_lock_spin(&allpmaps_lock);
1297	LIST_REMOVE(pmap, pm_list);
1298	mtx_unlock_spin(&allpmaps_lock);
1299
1300	m = PHYS_TO_VM_PAGE(pmap->pm_pml4[PML4PML4I] & PG_FRAME);
1301
1302	pmap->pm_pml4[KPML4I] = 0;	/* KVA */
1303	pmap->pm_pml4[DMPML4I] = 0;	/* Direct Map */
1304	pmap->pm_pml4[PML4PML4I] = 0;	/* Recursive Mapping */
1305
1306	vm_page_lock_queues();
1307	m->wire_count--;
1308	atomic_subtract_int(&cnt.v_wire_count, 1);
1309	vm_page_free_zero(m);
1310	vm_page_unlock_queues();
1311}
1312
1313static int
1314kvm_size(SYSCTL_HANDLER_ARGS)
1315{
1316	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1317
1318	return sysctl_handle_long(oidp, &ksize, 0, req);
1319}
1320SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1321    0, 0, kvm_size, "IU", "Size of KVM");
1322
1323static int
1324kvm_free(SYSCTL_HANDLER_ARGS)
1325{
1326	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1327
1328	return sysctl_handle_long(oidp, &kfree, 0, req);
1329}
1330SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1331    0, 0, kvm_free, "IU", "Amount of KVM free");
1332
1333/*
1334 * grow the number of kernel page table entries, if needed
1335 */
1336void
1337pmap_growkernel(vm_offset_t addr)
1338{
1339	int s;
1340	vm_paddr_t paddr;
1341	vm_page_t nkpg;
1342	pd_entry_t *pde, newpdir;
1343	pdp_entry_t newpdp;
1344
1345	s = splhigh();
1346	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1347	if (kernel_vm_end == 0) {
1348		kernel_vm_end = KERNBASE;
1349		nkpt = 0;
1350		while ((*pmap_pde(kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1351			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1352			nkpt++;
1353		}
1354	}
1355	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1356	while (kernel_vm_end < addr) {
1357		pde = pmap_pde(kernel_pmap, kernel_vm_end);
1358		if (pde == NULL) {
1359			/* We need a new PDP entry */
1360			nkpg = vm_page_alloc(NULL, nkpt,
1361			    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1362			if (!nkpg)
1363				panic("pmap_growkernel: no memory to grow kernel");
1364			pmap_zero_page(nkpg);
1365			paddr = VM_PAGE_TO_PHYS(nkpg);
1366			newpdp = (pdp_entry_t)
1367				(paddr | PG_V | PG_RW | PG_A | PG_M);
1368			*pmap_pdpe(kernel_pmap, kernel_vm_end) = newpdp;
1369			continue; /* try again */
1370		}
1371		if ((*pde & PG_V) != 0) {
1372			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1373			continue;
1374		}
1375
1376		/*
1377		 * This index is bogus, but out of the way
1378		 */
1379		nkpg = vm_page_alloc(NULL, nkpt,
1380		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1381		if (!nkpg)
1382			panic("pmap_growkernel: no memory to grow kernel");
1383
1384		nkpt++;
1385
1386		pmap_zero_page(nkpg);
1387		paddr = VM_PAGE_TO_PHYS(nkpg);
1388		newpdir = (pd_entry_t) (paddr | PG_V | PG_RW | PG_A | PG_M);
1389		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
1390
1391		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1392	}
1393	splx(s);
1394}
1395
1396
1397/***************************************************
1398 * page management routines.
1399 ***************************************************/
1400
1401/*
1402 * free the pv_entry back to the free list
1403 */
1404static PMAP_INLINE void
1405free_pv_entry(pv_entry_t pv)
1406{
1407	pv_entry_count--;
1408	uma_zfree(pvzone, pv);
1409}
1410
1411/*
1412 * get a new pv_entry, allocating a block from the system
1413 * when needed.
1414 * the memory allocation is performed bypassing the malloc code
1415 * because of the possibility of allocations at interrupt time.
1416 */
1417static pv_entry_t
1418get_pv_entry(void)
1419{
1420	pv_entry_count++;
1421	if (pv_entry_high_water &&
1422		(pv_entry_count > pv_entry_high_water) &&
1423		(pmap_pagedaemon_waken == 0)) {
1424		pmap_pagedaemon_waken = 1;
1425		wakeup (&vm_pages_needed);
1426	}
1427	return uma_zalloc(pvzone, M_NOWAIT);
1428}
1429
1430/*
1431 * If it is the first entry on the list, it is actually
1432 * in the header and we must copy the following entry up
1433 * to the header.  Otherwise we must search the list for
1434 * the entry.  In either case we free the now unused entry.
1435 */
1436
1437static int
1438pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1439{
1440	pv_entry_t pv;
1441	int rtval;
1442	int s;
1443
1444	s = splvm();
1445	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1446	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1447		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1448			if (pmap == pv->pv_pmap && va == pv->pv_va)
1449				break;
1450		}
1451	} else {
1452		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1453			if (va == pv->pv_va)
1454				break;
1455		}
1456	}
1457
1458	rtval = 0;
1459	if (pv) {
1460		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1461		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1462		m->md.pv_list_count--;
1463		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1464			vm_page_flag_clear(m, PG_WRITEABLE);
1465
1466		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1467		free_pv_entry(pv);
1468	}
1469
1470	splx(s);
1471	return rtval;
1472}
1473
1474/*
1475 * Create a pv entry for page at pa for
1476 * (pmap, va).
1477 */
1478static void
1479pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1480{
1481
1482	int s;
1483	pv_entry_t pv;
1484
1485	s = splvm();
1486	pv = get_pv_entry();
1487	pv->pv_va = va;
1488	pv->pv_pmap = pmap;
1489	pv->pv_ptem = mpte;
1490
1491	vm_page_lock_queues();
1492	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1493	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1494	m->md.pv_list_count++;
1495
1496	vm_page_unlock_queues();
1497	splx(s);
1498}
1499
1500/*
1501 * pmap_remove_pte: do the things to unmap a page in a process
1502 */
1503static int
1504pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1505{
1506	pt_entry_t oldpte;
1507	vm_page_t m, mpte;
1508
1509	oldpte = pte_load_clear(ptq);
1510	if (oldpte & PG_W)
1511		pmap->pm_stats.wired_count -= 1;
1512	/*
1513	 * Machines that don't support invlpg, also don't support
1514	 * PG_G.
1515	 */
1516	if (oldpte & PG_G)
1517		pmap_invalidate_page(kernel_pmap, va);
1518	pmap->pm_stats.resident_count -= 1;
1519	if (oldpte & PG_MANAGED) {
1520		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
1521		if (oldpte & PG_M) {
1522#if defined(PMAP_DIAGNOSTIC)
1523			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1524				printf(
1525	"pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
1526				    va, oldpte);
1527			}
1528#endif
1529			if (pmap_track_modified(va))
1530				vm_page_dirty(m);
1531		}
1532		if (oldpte & PG_A)
1533			vm_page_flag_set(m, PG_REFERENCED);
1534		return pmap_remove_entry(pmap, m, va);
1535	} else {
1536		mpte = PHYS_TO_VM_PAGE(*pmap_pde(pmap, va) & PG_FRAME);
1537		return pmap_unuse_pt(pmap, va, mpte);
1538	}
1539}
1540
1541/*
1542 * Remove a single page from a process address space
1543 */
1544static void
1545pmap_remove_page(pmap_t pmap, vm_offset_t va)
1546{
1547	pt_entry_t *pte;
1548
1549	pte = pmap_pte(pmap, va);
1550	if (pte == NULL || (*pte & PG_V) == 0)
1551		return;
1552	pmap_remove_pte(pmap, pte, va);
1553	pmap_invalidate_page(pmap, va);
1554}
1555
1556/*
1557 *	Remove the given range of addresses from the specified map.
1558 *
1559 *	It is assumed that the start and end are properly
1560 *	rounded to the page size.
1561 */
1562void
1563pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1564{
1565	vm_offset_t va_next;
1566	pml4_entry_t *pml4e;
1567	pdp_entry_t *pdpe;
1568	pd_entry_t ptpaddr, *pde;
1569	pt_entry_t *pte;
1570	int anyvalid;
1571
1572	if (pmap == NULL)
1573		return;
1574
1575	if (pmap->pm_stats.resident_count == 0)
1576		return;
1577
1578	/*
1579	 * special handling of removing one page.  a very
1580	 * common operation and easy to short circuit some
1581	 * code.
1582	 */
1583	if (sva + PAGE_SIZE == eva) {
1584		pde = pmap_pde(pmap, sva);
1585		if (pde && (*pde & PG_PS) == 0) {
1586			pmap_remove_page(pmap, sva);
1587			return;
1588		}
1589	}
1590
1591	anyvalid = 0;
1592
1593	for (; sva < eva; sva = va_next) {
1594
1595		if (pmap->pm_stats.resident_count == 0)
1596			break;
1597
1598		pml4e = pmap_pml4e(pmap, sva);
1599		if (pml4e == 0) {
1600			va_next = (sva + NBPML4) & ~PML4MASK;
1601			continue;
1602		}
1603
1604		pdpe = pmap_pdpe(pmap, sva);
1605		if (pdpe == 0) {
1606			va_next = (sva + NBPDP) & ~PDPMASK;
1607			continue;
1608		}
1609
1610		/*
1611		 * Calculate index for next page table.
1612		 */
1613		va_next = (sva + NBPDR) & ~PDRMASK;
1614
1615		pde = pmap_pde(pmap, sva);
1616		if (pde == 0)
1617			continue;
1618		ptpaddr = *pde;
1619
1620		/*
1621		 * Weed out invalid mappings. Note: we assume that the page
1622		 * directory table is always allocated, and in kernel virtual.
1623		 */
1624		if (ptpaddr == 0)
1625			continue;
1626
1627		/*
1628		 * Check for large page.
1629		 */
1630		if ((ptpaddr & PG_PS) != 0) {
1631			*pde = 0;
1632			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1633			anyvalid = 1;
1634			continue;
1635		}
1636
1637		/*
1638		 * Limit our scan to either the end of the va represented
1639		 * by the current page table page, or to the end of the
1640		 * range being removed.
1641		 */
1642		if (va_next > eva)
1643			va_next = eva;
1644
1645		for (; sva != va_next; sva += PAGE_SIZE) {
1646			pte = pmap_pte(pmap, sva);
1647			if (pte == NULL || *pte == 0)
1648				continue;
1649			anyvalid = 1;
1650			if (pmap_remove_pte(pmap, pte, sva))
1651				break;
1652		}
1653	}
1654
1655	if (anyvalid)
1656		pmap_invalidate_all(pmap);
1657}
1658
1659/*
1660 *	Routine:	pmap_remove_all
1661 *	Function:
1662 *		Removes this physical page from
1663 *		all physical maps in which it resides.
1664 *		Reflects back modify bits to the pager.
1665 *
1666 *	Notes:
1667 *		Original versions of this routine were very
1668 *		inefficient because they iteratively called
1669 *		pmap_remove (slow...)
1670 */
1671
1672void
1673pmap_remove_all(vm_page_t m)
1674{
1675	register pv_entry_t pv;
1676	pt_entry_t *pte, tpte;
1677	int s;
1678
1679#if defined(PMAP_DIAGNOSTIC)
1680	/*
1681	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1682	 */
1683	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1684		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%lx",
1685		    VM_PAGE_TO_PHYS(m));
1686	}
1687#endif
1688	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1689	s = splvm();
1690	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1691		pv->pv_pmap->pm_stats.resident_count--;
1692		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1693		tpte = pte_load_clear(pte);
1694		if (tpte & PG_W)
1695			pv->pv_pmap->pm_stats.wired_count--;
1696		if (tpte & PG_A)
1697			vm_page_flag_set(m, PG_REFERENCED);
1698
1699		/*
1700		 * Update the vm_page_t clean and reference bits.
1701		 */
1702		if (tpte & PG_M) {
1703#if defined(PMAP_DIAGNOSTIC)
1704			if (pmap_nw_modified((pt_entry_t) tpte)) {
1705				printf(
1706	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
1707				    pv->pv_va, tpte);
1708			}
1709#endif
1710			if (pmap_track_modified(pv->pv_va))
1711				vm_page_dirty(m);
1712		}
1713		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1714		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1715		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1716		m->md.pv_list_count--;
1717		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1718		free_pv_entry(pv);
1719	}
1720	vm_page_flag_clear(m, PG_WRITEABLE);
1721	splx(s);
1722}
1723
1724/*
1725 *	Set the physical protection on the
1726 *	specified range of this map as requested.
1727 */
1728void
1729pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1730{
1731	vm_offset_t va_next;
1732	pml4_entry_t *pml4e;
1733	pdp_entry_t *pdpe;
1734	pd_entry_t ptpaddr, *pde;
1735	int anychanged;
1736
1737	if (pmap == NULL)
1738		return;
1739
1740	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1741		pmap_remove(pmap, sva, eva);
1742		return;
1743	}
1744
1745	if (prot & VM_PROT_WRITE)
1746		return;
1747
1748	anychanged = 0;
1749
1750	for (; sva < eva; sva = va_next) {
1751
1752		pml4e = pmap_pml4e(pmap, sva);
1753		if (pml4e == 0) {
1754			va_next = (sva + NBPML4) & ~PML4MASK;
1755			continue;
1756		}
1757
1758		pdpe = pmap_pdpe(pmap, sva);
1759		if (pdpe == 0) {
1760			va_next = (sva + NBPDP) & ~PDPMASK;
1761			continue;
1762		}
1763
1764		va_next = (sva + NBPDR) & ~PDRMASK;
1765
1766		pde = pmap_pde(pmap, sva);
1767		if (pde == NULL)
1768			continue;
1769		ptpaddr = *pde;
1770
1771		/*
1772		 * Weed out invalid mappings. Note: we assume that the page
1773		 * directory table is always allocated, and in kernel virtual.
1774		 */
1775		if (ptpaddr == 0)
1776			continue;
1777
1778		/*
1779		 * Check for large page.
1780		 */
1781		if ((ptpaddr & PG_PS) != 0) {
1782			*pde &= ~(PG_M|PG_RW);
1783			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1784			anychanged = 1;
1785			continue;
1786		}
1787
1788		if (va_next > eva)
1789			va_next = eva;
1790
1791		for (; sva != va_next; sva += PAGE_SIZE) {
1792			pt_entry_t pbits;
1793			pt_entry_t *pte;
1794			vm_page_t m;
1795
1796			pte = pmap_pte(pmap, sva);
1797			if (pte == NULL)
1798				continue;
1799			pbits = *pte;
1800			if (pbits & PG_MANAGED) {
1801				m = NULL;
1802				if (pbits & PG_A) {
1803					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
1804					vm_page_flag_set(m, PG_REFERENCED);
1805					pbits &= ~PG_A;
1806				}
1807				if ((pbits & PG_M) != 0 &&
1808				    pmap_track_modified(sva)) {
1809					if (m == NULL)
1810						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
1811					vm_page_dirty(m);
1812					pbits &= ~PG_M;
1813				}
1814			}
1815
1816			pbits &= ~PG_RW;
1817
1818			if (pbits != *pte) {
1819				pte_store(pte, pbits);
1820				anychanged = 1;
1821			}
1822		}
1823	}
1824	if (anychanged)
1825		pmap_invalidate_all(pmap);
1826}
1827
1828/*
1829 *	Insert the given physical page (p) at
1830 *	the specified virtual address (v) in the
1831 *	target physical map with the protection requested.
1832 *
1833 *	If specified, the page will be wired down, meaning
1834 *	that the related pte can not be reclaimed.
1835 *
1836 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1837 *	or lose information.  That is, this routine must actually
1838 *	insert this page into the given map NOW.
1839 */
1840void
1841pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1842	   boolean_t wired)
1843{
1844	vm_paddr_t pa;
1845	register pt_entry_t *pte;
1846	vm_paddr_t opa;
1847	pt_entry_t origpte, newpte;
1848	vm_page_t mpte;
1849
1850	if (pmap == NULL)
1851		return;
1852
1853	va = trunc_page(va);
1854#ifdef PMAP_DIAGNOSTIC
1855	if (va > VM_MAX_KERNEL_ADDRESS)
1856		panic("pmap_enter: toobig");
1857	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1858		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)", va);
1859#endif
1860
1861	mpte = NULL;
1862	/*
1863	 * In the case that a page table page is not
1864	 * resident, we are creating it here.
1865	 */
1866	if (va < VM_MAXUSER_ADDRESS) {
1867		mpte = pmap_allocpte(pmap, va);
1868	}
1869#if 0 && defined(PMAP_DIAGNOSTIC)
1870	else {
1871		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1872		origpte = *pdeaddr;
1873		if ((origpte & PG_V) == 0) {
1874			panic("pmap_enter: invalid kernel page table page, pde=%p, va=%p\n",
1875				origpte, va);
1876		}
1877	}
1878#endif
1879
1880	pte = pmap_pte(pmap, va);
1881
1882	/*
1883	 * Page Directory table entry not valid, we need a new PT page
1884	 */
1885	if (pte == NULL)
1886		panic("pmap_enter: invalid page directory va=%#lx\n", va);
1887
1888	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1889	origpte = *pte;
1890	opa = origpte & PG_FRAME;
1891
1892	if (origpte & PG_PS)
1893		panic("pmap_enter: attempted pmap_enter on 2MB page");
1894
1895	/*
1896	 * Mapping has not changed, must be protection or wiring change.
1897	 */
1898	if (origpte && (opa == pa)) {
1899		/*
1900		 * Wiring change, just update stats. We don't worry about
1901		 * wiring PT pages as they remain resident as long as there
1902		 * are valid mappings in them. Hence, if a user page is wired,
1903		 * the PT page will be also.
1904		 */
1905		if (wired && ((origpte & PG_W) == 0))
1906			pmap->pm_stats.wired_count++;
1907		else if (!wired && (origpte & PG_W))
1908			pmap->pm_stats.wired_count--;
1909
1910#if defined(PMAP_DIAGNOSTIC)
1911		if (pmap_nw_modified((pt_entry_t) origpte)) {
1912			printf(
1913	"pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
1914			    va, origpte);
1915		}
1916#endif
1917
1918		/*
1919		 * Remove extra pte reference
1920		 */
1921		if (mpte)
1922			mpte->hold_count--;
1923
1924		/*
1925		 * We might be turning off write access to the page,
1926		 * so we go ahead and sense modify status.
1927		 */
1928		if (origpte & PG_MANAGED) {
1929			if ((origpte & PG_M) && pmap_track_modified(va)) {
1930				vm_page_t om;
1931				om = PHYS_TO_VM_PAGE(opa & PG_FRAME);
1932				vm_page_dirty(om);
1933			}
1934			pa |= PG_MANAGED;
1935		}
1936		goto validate;
1937	}
1938	/*
1939	 * Mapping has changed, invalidate old range and fall through to
1940	 * handle validating new mapping.
1941	 */
1942	if (opa) {
1943		int err;
1944		vm_page_lock_queues();
1945		err = pmap_remove_pte(pmap, pte, va);
1946		vm_page_unlock_queues();
1947		if (err)
1948			panic("pmap_enter: pte vanished, va: 0x%lx", va);
1949	}
1950
1951	/*
1952	 * Enter on the PV list if part of our managed memory. Note that we
1953	 * raise IPL while manipulating pv_table since pmap_enter can be
1954	 * called at interrupt time.
1955	 */
1956	if (pmap_initialized &&
1957	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
1958		pmap_insert_entry(pmap, va, mpte, m);
1959		pa |= PG_MANAGED;
1960	}
1961
1962	/*
1963	 * Increment counters
1964	 */
1965	pmap->pm_stats.resident_count++;
1966	if (wired)
1967		pmap->pm_stats.wired_count++;
1968
1969validate:
1970	/*
1971	 * Now validate mapping with desired protection/wiring.
1972	 */
1973	newpte = (pt_entry_t)(pa | PG_V);
1974	if ((prot & VM_PROT_WRITE) != 0)
1975		newpte |= PG_RW;
1976	if ((prot & VM_PROT_EXECUTE) == 0)
1977		newpte |= pg_nx;
1978	if (wired)
1979		newpte |= PG_W;
1980	if (va < VM_MAXUSER_ADDRESS)
1981		newpte |= PG_U;
1982	if (pmap == kernel_pmap)
1983		newpte |= PG_G;
1984
1985	/*
1986	 * if the mapping or permission bits are different, we need
1987	 * to update the pte.
1988	 */
1989	if ((origpte & ~(PG_M|PG_A)) != newpte) {
1990		pte_store(pte, newpte | PG_A);
1991		/*if (origpte)*/ {
1992			pmap_invalidate_page(pmap, va);
1993		}
1994	}
1995}
1996
1997/*
1998 * this code makes some *MAJOR* assumptions:
1999 * 1. Current pmap & pmap exists.
2000 * 2. Not wired.
2001 * 3. Read access.
2002 * 4. No page table pages.
2003 * 5. Tlbflush is deferred to calling procedure.
2004 * 6. Page IS managed.
2005 * but is *MUCH* faster than pmap_enter...
2006 */
2007
2008vm_page_t
2009pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2010{
2011	pt_entry_t *pte;
2012	vm_paddr_t pa;
2013
2014	/*
2015	 * In the case that a page table page is not
2016	 * resident, we are creating it here.
2017	 */
2018	if (va < VM_MAXUSER_ADDRESS) {
2019		vm_pindex_t ptepindex;
2020		pd_entry_t *ptepa;
2021
2022		/*
2023		 * Calculate pagetable page index
2024		 */
2025		ptepindex = pmap_pde_pindex(va);
2026		if (mpte && (mpte->pindex == ptepindex)) {
2027			mpte->hold_count++;
2028		} else {
2029	retry:
2030			/*
2031			 * Get the page directory entry
2032			 */
2033			ptepa = pmap_pde(pmap, va);
2034
2035			/*
2036			 * If the page table page is mapped, we just increment
2037			 * the hold count, and activate it.
2038			 */
2039			if (ptepa && (*ptepa & PG_V) != 0) {
2040				if (*ptepa & PG_PS)
2041					panic("pmap_enter_quick: unexpected mapping into 2MB page");
2042				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
2043				mpte->hold_count++;
2044			} else {
2045				mpte = _pmap_allocpte(pmap, ptepindex);
2046				if (mpte == NULL)
2047					goto retry;
2048			}
2049		}
2050	} else {
2051		mpte = NULL;
2052	}
2053
2054	/*
2055	 * This call to vtopte makes the assumption that we are
2056	 * entering the page into the current pmap.  In order to support
2057	 * quick entry into any pmap, one would likely use pmap_pte.
2058	 * But that isn't as quick as vtopte.
2059	 */
2060	pte = vtopte(va);
2061	if (*pte) {
2062		if (mpte != NULL) {
2063			vm_page_lock_queues();
2064			pmap_unwire_pte_hold(pmap, va, mpte);
2065			vm_page_unlock_queues();
2066		}
2067		return 0;
2068	}
2069
2070	/*
2071	 * Enter on the PV list if part of our managed memory. Note that we
2072	 * raise IPL while manipulating pv_table since pmap_enter can be
2073	 * called at interrupt time.
2074	 */
2075	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2076		pmap_insert_entry(pmap, va, mpte, m);
2077
2078	/*
2079	 * Increment counters
2080	 */
2081	pmap->pm_stats.resident_count++;
2082
2083	pa = VM_PAGE_TO_PHYS(m);
2084
2085	/*
2086	 * Now validate mapping with RO protection
2087	 */
2088	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2089		pte_store(pte, pa | PG_V | PG_U);
2090	else
2091		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2092
2093	return mpte;
2094}
2095
2096/*
2097 * Make a temporary mapping for a physical address.  This is only intended
2098 * to be used for panic dumps.
2099 */
2100void *
2101pmap_kenter_temporary(vm_paddr_t pa, int i)
2102{
2103	vm_offset_t va;
2104
2105	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2106	pmap_kenter(va, pa);
2107	invlpg(va);
2108	return ((void *)crashdumpmap);
2109}
2110
2111/*
2112 * This code maps large physical mmap regions into the
2113 * processor address space.  Note that some shortcuts
2114 * are taken, but the code works.
2115 */
2116void
2117pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2118		    vm_object_t object, vm_pindex_t pindex,
2119		    vm_size_t size)
2120{
2121	vm_page_t p;
2122
2123	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2124	KASSERT(object->type == OBJT_DEVICE,
2125	    ("pmap_object_init_pt: non-device object"));
2126	if (((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2127		int i;
2128		vm_page_t m[1];
2129		int npdes;
2130		pd_entry_t ptepa, *pde;
2131
2132		pde = pmap_pde(pmap, addr);
2133		if (pde != 0 && (*pde & PG_V) != 0)
2134			return;
2135retry:
2136		p = vm_page_lookup(object, pindex);
2137		if (p != NULL) {
2138			vm_page_lock_queues();
2139			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2140				goto retry;
2141		} else {
2142			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2143			if (p == NULL)
2144				return;
2145			m[0] = p;
2146
2147			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2148				vm_page_lock_queues();
2149				vm_page_free(p);
2150				vm_page_unlock_queues();
2151				return;
2152			}
2153
2154			p = vm_page_lookup(object, pindex);
2155			vm_page_lock_queues();
2156			vm_page_wakeup(p);
2157		}
2158		vm_page_unlock_queues();
2159
2160		ptepa = VM_PAGE_TO_PHYS(p);
2161		if (ptepa & (NBPDR - 1))
2162			return;
2163
2164		p->valid = VM_PAGE_BITS_ALL;
2165
2166		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2167		npdes = size >> PDRSHIFT;
2168		for(i = 0; i < npdes; i++) {
2169			pde_store(pde, ptepa | PG_U | PG_RW | PG_V | PG_PS);
2170			ptepa += NBPDR;
2171			pde++;
2172		}
2173		pmap_invalidate_all(pmap);
2174	}
2175}
2176
2177/*
2178 *	Routine:	pmap_change_wiring
2179 *	Function:	Change the wiring attribute for a map/virtual-address
2180 *			pair.
2181 *	In/out conditions:
2182 *			The mapping must already exist in the pmap.
2183 */
2184void
2185pmap_change_wiring(pmap, va, wired)
2186	register pmap_t pmap;
2187	vm_offset_t va;
2188	boolean_t wired;
2189{
2190	register pt_entry_t *pte;
2191
2192	if (pmap == NULL)
2193		return;
2194
2195	/*
2196	 * Wiring is not a hardware characteristic so there is no need to
2197	 * invalidate TLB.
2198	 */
2199	pte = pmap_pte(pmap, va);
2200	if (wired && (*pte & PG_W) == 0) {
2201		pmap->pm_stats.wired_count++;
2202		*pte |= PG_W;
2203	} else if (!wired && (*pte & PG_W) != 0) {
2204		pmap->pm_stats.wired_count--;
2205		*pte &= ~PG_W;
2206	}
2207}
2208
2209
2210
2211/*
2212 *	Copy the range specified by src_addr/len
2213 *	from the source map to the range dst_addr/len
2214 *	in the destination map.
2215 *
2216 *	This routine is only advisory and need not do anything.
2217 */
2218
2219void
2220pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2221	  vm_offset_t src_addr)
2222{
2223	vm_offset_t addr;
2224	vm_offset_t end_addr = src_addr + len;
2225	vm_offset_t va_next;
2226	vm_page_t m;
2227
2228	if (dst_addr != src_addr)
2229		return;
2230
2231	if (!pmap_is_current(src_pmap))
2232		return;
2233
2234	for (addr = src_addr; addr < end_addr; addr = va_next) {
2235		pt_entry_t *src_pte, *dst_pte;
2236		vm_page_t dstmpte, srcmpte;
2237		pml4_entry_t *pml4e;
2238		pdp_entry_t *pdpe;
2239		pd_entry_t srcptepaddr, *pde;
2240		vm_pindex_t ptepindex;
2241
2242		if (addr >= UPT_MIN_ADDRESS)
2243			panic("pmap_copy: invalid to pmap_copy page tables\n");
2244
2245		/*
2246		 * Don't let optional prefaulting of pages make us go
2247		 * way below the low water mark of free pages or way
2248		 * above high water mark of used pv entries.
2249		 */
2250		if (cnt.v_free_count < cnt.v_free_reserved ||
2251		    pv_entry_count > pv_entry_high_water)
2252			break;
2253
2254		pml4e = pmap_pml4e(src_pmap, addr);
2255		if (pml4e == 0) {
2256			va_next = (addr + NBPML4) & ~PML4MASK;
2257			continue;
2258		}
2259
2260		pdpe = pmap_pdpe(src_pmap, addr);
2261		if (pdpe == 0) {
2262			va_next = (addr + NBPDP) & ~PDPMASK;
2263			continue;
2264		}
2265
2266		va_next = (addr + NBPDR) & ~PDRMASK;
2267		ptepindex = pmap_pde_pindex(addr);
2268
2269		pde = pmap_pde(src_pmap, addr);
2270		if (pde)
2271			srcptepaddr = *pde;
2272		else
2273			continue;
2274		if (srcptepaddr == 0)
2275			continue;
2276
2277		if (srcptepaddr & PG_PS) {
2278			pde = pmap_pde(dst_pmap, addr);
2279			if (pde == 0) {
2280				/*
2281				 * XXX should do an allocpte here to
2282				 * instantiate the pde
2283				 */
2284				continue;
2285			}
2286			if (*pde == 0) {
2287				*pde = srcptepaddr;
2288				dst_pmap->pm_stats.resident_count +=
2289				    NBPDR / PAGE_SIZE;
2290			}
2291			continue;
2292		}
2293
2294		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
2295		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2296			continue;
2297
2298		if (va_next > end_addr)
2299			va_next = end_addr;
2300
2301		src_pte = vtopte(addr);
2302		while (addr < va_next) {
2303			pt_entry_t ptetemp;
2304			ptetemp = *src_pte;
2305			/*
2306			 * we only virtual copy managed pages
2307			 */
2308			if ((ptetemp & PG_MANAGED) != 0) {
2309				/*
2310				 * We have to check after allocpte for the
2311				 * pte still being around...  allocpte can
2312				 * block.
2313				 */
2314				dstmpte = pmap_allocpte(dst_pmap, addr);
2315				dst_pte = pmap_pte(dst_pmap, addr);
2316				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2317					/*
2318					 * Clear the modified and
2319					 * accessed (referenced) bits
2320					 * during the copy.
2321					 */
2322					m = PHYS_TO_VM_PAGE(ptetemp & PG_FRAME);
2323					*dst_pte = ptetemp & ~(PG_M | PG_A);
2324					dst_pmap->pm_stats.resident_count++;
2325					pmap_insert_entry(dst_pmap, addr,
2326						dstmpte, m);
2327	 			} else {
2328					vm_page_lock_queues();
2329					pmap_unwire_pte_hold(dst_pmap, addr, dstmpte);
2330					vm_page_unlock_queues();
2331				}
2332				if (dstmpte->hold_count >= srcmpte->hold_count)
2333					break;
2334			}
2335			addr += PAGE_SIZE;
2336			src_pte++;
2337		}
2338	}
2339}
2340
2341/*
2342 *	pmap_zero_page zeros the specified hardware page by mapping
2343 *	the page into KVM and using bzero to clear its contents.
2344 */
2345void
2346pmap_zero_page(vm_page_t m)
2347{
2348	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2349
2350	pagezero((void *)va);
2351}
2352
2353/*
2354 *	pmap_zero_page_area zeros the specified hardware page by mapping
2355 *	the page into KVM and using bzero to clear its contents.
2356 *
2357 *	off and size may not cover an area beyond a single hardware page.
2358 */
2359void
2360pmap_zero_page_area(vm_page_t m, int off, int size)
2361{
2362	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2363
2364	if (off == 0 && size == PAGE_SIZE)
2365		pagezero((void *)va);
2366	else
2367		bzero((char *)va + off, size);
2368}
2369
2370/*
2371 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2372 *	the page into KVM and using bzero to clear its contents.  This
2373 *	is intended to be called from the vm_pagezero process only and
2374 *	outside of Giant.
2375 */
2376void
2377pmap_zero_page_idle(vm_page_t m)
2378{
2379	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2380
2381	pagezero((void *)va);
2382}
2383
2384/*
2385 *	pmap_copy_page copies the specified (machine independent)
2386 *	page by mapping the page into virtual memory and using
2387 *	bcopy to copy the page, one machine dependent page at a
2388 *	time.
2389 */
2390void
2391pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
2392{
2393	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2394	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2395
2396	pagecopy((void *)src, (void *)dst);
2397}
2398
2399/*
2400 * Returns true if the pmap's pv is one of the first
2401 * 16 pvs linked to from this page.  This count may
2402 * be changed upwards or downwards in the future; it
2403 * is only necessary that true be returned for a small
2404 * subset of pmaps for proper page aging.
2405 */
2406boolean_t
2407pmap_page_exists_quick(pmap, m)
2408	pmap_t pmap;
2409	vm_page_t m;
2410{
2411	pv_entry_t pv;
2412	int loops = 0;
2413	int s;
2414
2415	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2416		return FALSE;
2417
2418	s = splvm();
2419	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2420	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2421		if (pv->pv_pmap == pmap) {
2422			splx(s);
2423			return TRUE;
2424		}
2425		loops++;
2426		if (loops >= 16)
2427			break;
2428	}
2429	splx(s);
2430	return (FALSE);
2431}
2432
2433#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2434/*
2435 * Remove all pages from specified address space
2436 * this aids process exit speeds.  Also, this code
2437 * is special cased for current process only, but
2438 * can have the more generic (and slightly slower)
2439 * mode enabled.  This is much faster than pmap_remove
2440 * in the case of running down an entire address space.
2441 */
2442void
2443pmap_remove_pages(pmap, sva, eva)
2444	pmap_t pmap;
2445	vm_offset_t sva, eva;
2446{
2447	pt_entry_t *pte, tpte;
2448	vm_page_t m;
2449	pv_entry_t pv, npv;
2450	int s;
2451
2452#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2453	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2454		printf("warning: pmap_remove_pages called with non-current pmap\n");
2455		return;
2456	}
2457#endif
2458	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2459	s = splvm();
2460	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2461
2462		if (pv->pv_va >= eva || pv->pv_va < sva) {
2463			npv = TAILQ_NEXT(pv, pv_plist);
2464			continue;
2465		}
2466
2467#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2468		pte = vtopte(pv->pv_va);
2469#else
2470		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2471#endif
2472		tpte = *pte;
2473
2474		if (tpte == 0) {
2475			printf("TPTE at %p  IS ZERO @ VA %08lx\n",
2476							pte, pv->pv_va);
2477			panic("bad pte");
2478		}
2479
2480/*
2481 * We cannot remove wired pages from a process' mapping at this time
2482 */
2483		if (tpte & PG_W) {
2484			npv = TAILQ_NEXT(pv, pv_plist);
2485			continue;
2486		}
2487
2488		m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2489		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2490		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2491		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2492
2493		KASSERT(m < &vm_page_array[vm_page_array_size],
2494			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2495
2496		pv->pv_pmap->pm_stats.resident_count--;
2497
2498		pte_clear(pte);
2499
2500		/*
2501		 * Update the vm_page_t clean and reference bits.
2502		 */
2503		if (tpte & PG_M) {
2504			vm_page_dirty(m);
2505		}
2506
2507		npv = TAILQ_NEXT(pv, pv_plist);
2508		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2509
2510		m->md.pv_list_count--;
2511		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2512		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2513			vm_page_flag_clear(m, PG_WRITEABLE);
2514		}
2515
2516		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2517		free_pv_entry(pv);
2518	}
2519	splx(s);
2520	pmap_invalidate_all(pmap);
2521}
2522
2523/*
2524 *	pmap_is_modified:
2525 *
2526 *	Return whether or not the specified physical page was modified
2527 *	in any physical maps.
2528 */
2529boolean_t
2530pmap_is_modified(vm_page_t m)
2531{
2532	pv_entry_t pv;
2533	pt_entry_t *pte;
2534	int s;
2535
2536	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2537		return FALSE;
2538
2539	s = splvm();
2540	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2541	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2542		/*
2543		 * if the bit being tested is the modified bit, then
2544		 * mark clean_map and ptes as never
2545		 * modified.
2546		 */
2547		if (!pmap_track_modified(pv->pv_va))
2548			continue;
2549#if defined(PMAP_DIAGNOSTIC)
2550		if (!pv->pv_pmap) {
2551			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2552			continue;
2553		}
2554#endif
2555		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2556		if (*pte & PG_M) {
2557			splx(s);
2558			return TRUE;
2559		}
2560	}
2561	splx(s);
2562	return (FALSE);
2563}
2564
2565/*
2566 *	pmap_is_prefaultable:
2567 *
2568 *	Return whether or not the specified virtual address is elgible
2569 *	for prefault.
2570 */
2571boolean_t
2572pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2573{
2574	pd_entry_t *pde;
2575	pt_entry_t *pte;
2576
2577	pde = pmap_pde(pmap, addr);
2578	if (pde == NULL || (*pde & PG_V) == 0)
2579		return (FALSE);
2580	pte = vtopte(addr);
2581	if ((*pte & PG_V) == 0)
2582		return (FALSE);
2583	return (TRUE);
2584}
2585
2586/*
2587 *	Clear the given bit in each of the given page's ptes.
2588 */
2589static __inline void
2590pmap_clear_ptes(vm_page_t m, int bit)
2591{
2592	register pv_entry_t pv;
2593	pt_entry_t pbits, *pte;
2594	int s;
2595
2596	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2597	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2598		return;
2599
2600	s = splvm();
2601	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2602	/*
2603	 * Loop over all current mappings setting/clearing as appropos If
2604	 * setting RO do we need to clear the VAC?
2605	 */
2606	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2607		/*
2608		 * don't write protect pager mappings
2609		 */
2610		if (bit == PG_RW) {
2611			if (!pmap_track_modified(pv->pv_va))
2612				continue;
2613		}
2614
2615#if defined(PMAP_DIAGNOSTIC)
2616		if (!pv->pv_pmap) {
2617			printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2618			continue;
2619		}
2620#endif
2621
2622		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2623		pbits = *pte;
2624		if (pbits & bit) {
2625			if (bit == PG_RW) {
2626				if (pbits & PG_M) {
2627					vm_page_dirty(m);
2628				}
2629				pte_store(pte, pbits & ~(PG_M|PG_RW));
2630			} else {
2631				pte_store(pte, pbits & ~bit);
2632			}
2633			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2634		}
2635	}
2636	if (bit == PG_RW)
2637		vm_page_flag_clear(m, PG_WRITEABLE);
2638	splx(s);
2639}
2640
2641/*
2642 *      pmap_page_protect:
2643 *
2644 *      Lower the permission for all mappings to a given page.
2645 */
2646void
2647pmap_page_protect(vm_page_t m, vm_prot_t prot)
2648{
2649	if ((prot & VM_PROT_WRITE) == 0) {
2650		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2651			pmap_clear_ptes(m, PG_RW);
2652		} else {
2653			pmap_remove_all(m);
2654		}
2655	}
2656}
2657
2658/*
2659 *	pmap_ts_referenced:
2660 *
2661 *	Return a count of reference bits for a page, clearing those bits.
2662 *	It is not necessary for every reference bit to be cleared, but it
2663 *	is necessary that 0 only be returned when there are truly no
2664 *	reference bits set.
2665 *
2666 *	XXX: The exact number of bits to check and clear is a matter that
2667 *	should be tested and standardized at some point in the future for
2668 *	optimal aging of shared pages.
2669 */
2670int
2671pmap_ts_referenced(vm_page_t m)
2672{
2673	register pv_entry_t pv, pvf, pvn;
2674	pt_entry_t *pte;
2675	pt_entry_t v;
2676	int s;
2677	int rtval = 0;
2678
2679	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2680		return (rtval);
2681
2682	s = splvm();
2683	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2684	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2685
2686		pvf = pv;
2687
2688		do {
2689			pvn = TAILQ_NEXT(pv, pv_list);
2690
2691			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2692
2693			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2694
2695			if (!pmap_track_modified(pv->pv_va))
2696				continue;
2697
2698			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2699
2700			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2701				pte_store(pte, v & ~PG_A);
2702				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2703
2704				rtval++;
2705				if (rtval > 4) {
2706					break;
2707				}
2708			}
2709		} while ((pv = pvn) != NULL && pv != pvf);
2710	}
2711	splx(s);
2712
2713	return (rtval);
2714}
2715
2716/*
2717 *	Clear the modify bits on the specified physical page.
2718 */
2719void
2720pmap_clear_modify(vm_page_t m)
2721{
2722	pmap_clear_ptes(m, PG_M);
2723}
2724
2725/*
2726 *	pmap_clear_reference:
2727 *
2728 *	Clear the reference bit on the specified physical page.
2729 */
2730void
2731pmap_clear_reference(vm_page_t m)
2732{
2733	pmap_clear_ptes(m, PG_A);
2734}
2735
2736/*
2737 * Miscellaneous support routines follow
2738 */
2739
2740/*
2741 * Map a set of physical memory pages into the kernel virtual
2742 * address space. Return a pointer to where it is mapped. This
2743 * routine is intended to be used for mapping device memory,
2744 * NOT real memory.
2745 */
2746void *
2747pmap_mapdev(pa, size)
2748	vm_paddr_t pa;
2749	vm_size_t size;
2750{
2751	vm_offset_t va, tmpva, offset;
2752
2753	/* If this fits within the direct map window, use it */
2754	if (pa < dmaplimit && (pa + size) < dmaplimit)
2755		return ((void *)PHYS_TO_DMAP(pa));
2756	offset = pa & PAGE_MASK;
2757	size = roundup(offset + size, PAGE_SIZE);
2758	va = kmem_alloc_nofault(kernel_map, size);
2759	if (!va)
2760		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2761	pa = pa & PG_FRAME;
2762	for (tmpva = va; size > 0; ) {
2763		pmap_kenter(tmpva, pa);
2764		size -= PAGE_SIZE;
2765		tmpva += PAGE_SIZE;
2766		pa += PAGE_SIZE;
2767	}
2768	pmap_invalidate_range(kernel_pmap, va, tmpva);
2769	return ((void *)(va + offset));
2770}
2771
2772void
2773pmap_unmapdev(va, size)
2774	vm_offset_t va;
2775	vm_size_t size;
2776{
2777	vm_offset_t base, offset, tmpva;
2778
2779	/* If we gave a direct map region in pmap_mapdev, do nothing */
2780	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
2781		return;
2782	base = trunc_page(va);
2783	offset = va & PAGE_MASK;
2784	size = roundup(offset + size, PAGE_SIZE);
2785	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2786		pmap_kremove(tmpva);
2787	pmap_invalidate_range(kernel_pmap, va, tmpva);
2788	kmem_free(kernel_map, base, size);
2789}
2790
2791/*
2792 * perform the pmap work for mincore
2793 */
2794int
2795pmap_mincore(pmap, addr)
2796	pmap_t pmap;
2797	vm_offset_t addr;
2798{
2799	pt_entry_t *ptep, pte;
2800	vm_page_t m;
2801	int val = 0;
2802
2803	ptep = pmap_pte(pmap, addr);
2804	if (ptep == 0) {
2805		return 0;
2806	}
2807
2808	if ((pte = *ptep) != 0) {
2809		vm_paddr_t pa;
2810
2811		val = MINCORE_INCORE;
2812		if ((pte & PG_MANAGED) == 0)
2813			return val;
2814
2815		pa = pte & PG_FRAME;
2816
2817		m = PHYS_TO_VM_PAGE(pa);
2818
2819		/*
2820		 * Modified by us
2821		 */
2822		if (pte & PG_M)
2823			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2824		else {
2825			/*
2826			 * Modified by someone else
2827			 */
2828			vm_page_lock_queues();
2829			if (m->dirty || pmap_is_modified(m))
2830				val |= MINCORE_MODIFIED_OTHER;
2831			vm_page_unlock_queues();
2832		}
2833		/*
2834		 * Referenced by us
2835		 */
2836		if (pte & PG_A)
2837			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2838		else {
2839			/*
2840			 * Referenced by someone else
2841			 */
2842			vm_page_lock_queues();
2843			if ((m->flags & PG_REFERENCED) ||
2844			    pmap_ts_referenced(m)) {
2845				val |= MINCORE_REFERENCED_OTHER;
2846				vm_page_flag_set(m, PG_REFERENCED);
2847			}
2848			vm_page_unlock_queues();
2849		}
2850	}
2851	return val;
2852}
2853
2854void
2855pmap_activate(struct thread *td)
2856{
2857	struct proc *p = td->td_proc;
2858	pmap_t	pmap, oldpmap;
2859	u_int64_t  cr3;
2860
2861	critical_enter();
2862	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2863	oldpmap = PCPU_GET(curpmap);
2864#ifdef SMP
2865if (oldpmap)	/* XXX FIXME */
2866	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
2867	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
2868#else
2869if (oldpmap)	/* XXX FIXME */
2870	oldpmap->pm_active &= ~PCPU_GET(cpumask);
2871	pmap->pm_active |= PCPU_GET(cpumask);
2872#endif
2873	cr3 = vtophys(pmap->pm_pml4);
2874	/* XXXKSE this is wrong.
2875	 * pmap_activate is for the current thread on the current cpu
2876	 */
2877	if (p->p_flag & P_SA) {
2878		/* Make sure all other cr3 entries are updated. */
2879		/* what if they are running?  XXXKSE (maybe abort them) */
2880		FOREACH_THREAD_IN_PROC(p, td) {
2881			td->td_pcb->pcb_cr3 = cr3;
2882		}
2883	} else {
2884		td->td_pcb->pcb_cr3 = cr3;
2885	}
2886	load_cr3(cr3);
2887	critical_exit();
2888}
2889
2890vm_offset_t
2891pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2892{
2893
2894	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
2895		return addr;
2896	}
2897
2898	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
2899	return addr;
2900}
2901