pmap.c revision 119399
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/amd64/amd64/pmap.c 119399 2003-08-24 08:07:06Z alc $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_msgbuf.h"
105#include "opt_kstack_pages.h"
106
107#include <sys/param.h>
108#include <sys/systm.h>
109#include <sys/kernel.h>
110#include <sys/lock.h>
111#include <sys/mman.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/sx.h>
116#include <sys/user.h>
117#include <sys/vmmeter.h>
118#include <sys/sysctl.h>
119
120#include <vm/vm.h>
121#include <vm/vm_param.h>
122#include <vm/vm_kern.h>
123#include <vm/vm_page.h>
124#include <vm/vm_map.h>
125#include <vm/vm_object.h>
126#include <vm/vm_extern.h>
127#include <vm/vm_pageout.h>
128#include <vm/vm_pager.h>
129#include <vm/uma.h>
130#include <vm/uma_int.h>
131
132#include <machine/cpu.h>
133#include <machine/cputypes.h>
134#include <machine/md_var.h>
135#include <machine/specialreg.h>
136
137#define PMAP_KEEP_PDIRS
138#ifndef PMAP_SHPGPERPROC
139#define PMAP_SHPGPERPROC 200
140#endif
141
142#if defined(DIAGNOSTIC)
143#define PMAP_DIAGNOSTIC
144#endif
145
146#define MINPV 2048
147
148#if !defined(PMAP_DIAGNOSTIC)
149#define PMAP_INLINE __inline
150#else
151#define PMAP_INLINE
152#endif
153
154/*
155 * Given a map and a machine independent protection code,
156 * convert to a vax protection code.
157 */
158#define pte_prot(m, p)	(protection_codes[p])
159static pt_entry_t protection_codes[8];
160
161struct pmap kernel_pmap_store;
162LIST_HEAD(pmaplist, pmap);
163static struct pmaplist allpmaps;
164static struct mtx allpmaps_lock;
165
166vm_paddr_t avail_start;		/* PA of first available physical page */
167vm_paddr_t avail_end;		/* PA of last available physical page */
168vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
169vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
170static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
171
172static int nkpt;
173static int ndmpdp;
174static vm_paddr_t dmaplimit;
175vm_offset_t kernel_vm_end;
176
177static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
178static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
179static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
180u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
181
182static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
183static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
184
185/*
186 * Data for the pv entry allocation mechanism
187 */
188static uma_zone_t pvzone;
189static struct vm_object pvzone_obj;
190static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
191int pmap_pagedaemon_waken;
192
193/*
194 * All those kernel PT submaps that BSD is so fond of
195 */
196pt_entry_t *CMAP1 = 0;
197static pt_entry_t *ptmmap;
198caddr_t CADDR1 = 0, ptvmmap = 0;
199static pt_entry_t *msgbufmap;
200struct msgbuf *msgbufp = 0;
201
202/*
203 * Crashdump maps.
204 */
205static pt_entry_t *pt_crashdumpmap;
206static caddr_t crashdumpmap;
207
208static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
209static pv_entry_t get_pv_entry(void);
210static void	amd64_protection_init(void);
211static void	pmap_clear_ptes(vm_page_t m, int bit)
212    __always_inline;
213
214static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
215static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
216static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
217					vm_offset_t va);
218static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
219		vm_page_t mpte, vm_page_t m);
220
221static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
222
223static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex);
224static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
225static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
226static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
227
228CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
229CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
230
231/*
232 * Move the kernel virtual free pointer to the next
233 * 2MB.  This is used to help improve performance
234 * by using a large (2MB) page for much of the kernel
235 * (.text, .data, .bss)
236 */
237static vm_offset_t
238pmap_kmem_choose(vm_offset_t addr)
239{
240	vm_offset_t newaddr = addr;
241
242	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
243	return newaddr;
244}
245
246/********************/
247/* Inline functions */
248/********************/
249
250/* Return a non-clipped PD index for a given VA */
251static __inline vm_pindex_t
252pmap_pde_pindex(vm_offset_t va)
253{
254	return va >> PDRSHIFT;
255}
256
257
258/* Return various clipped indexes for a given VA */
259static __inline vm_pindex_t
260pmap_pte_index(vm_offset_t va)
261{
262
263	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
264}
265
266static __inline vm_pindex_t
267pmap_pde_index(vm_offset_t va)
268{
269
270	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
271}
272
273static __inline vm_pindex_t
274pmap_pdpe_index(vm_offset_t va)
275{
276
277	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
278}
279
280static __inline vm_pindex_t
281pmap_pml4e_index(vm_offset_t va)
282{
283
284	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
285}
286
287/* Return a pointer to the PML4 slot that corresponds to a VA */
288static __inline pml4_entry_t *
289pmap_pml4e(pmap_t pmap, vm_offset_t va)
290{
291
292	if (!pmap)
293		return NULL;
294	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
295}
296
297/* Return a pointer to the PDP slot that corresponds to a VA */
298static __inline pdp_entry_t *
299pmap_pdpe(pmap_t pmap, vm_offset_t va)
300{
301	pml4_entry_t *pml4e;
302	pdp_entry_t *pdpe;
303
304	pml4e = pmap_pml4e(pmap, va);
305	if (pml4e == NULL || (*pml4e & PG_V) == 0)
306		return NULL;
307	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
308	return (&pdpe[pmap_pdpe_index(va)]);
309}
310
311/* Return a pointer to the PD slot that corresponds to a VA */
312static __inline pd_entry_t *
313pmap_pde(pmap_t pmap, vm_offset_t va)
314{
315	pdp_entry_t *pdpe;
316	pd_entry_t *pde;
317
318	pdpe = pmap_pdpe(pmap, va);
319	if (pdpe == NULL || (*pdpe & PG_V) == 0)
320		 return NULL;
321	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
322	return (&pde[pmap_pde_index(va)]);
323}
324
325/* Return a pointer to the PT slot that corresponds to a VA */
326static __inline pt_entry_t *
327pmap_pte(pmap_t pmap, vm_offset_t va)
328{
329	pd_entry_t *pde;
330	pt_entry_t *pte;
331
332	pde = pmap_pde(pmap, va);
333	if (pde == NULL || (*pde & PG_V) == 0)
334		return NULL;
335	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
336		return ((pt_entry_t *)pde);
337	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
338	return (&pte[pmap_pte_index(va)]);
339}
340
341
342PMAP_INLINE pt_entry_t *
343vtopte(vm_offset_t va)
344{
345	u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
346
347	return (PTmap + (amd64_btop(va) & mask));
348}
349
350static u_int64_t
351allocpages(int n)
352{
353	u_int64_t ret;
354
355	ret = avail_start;
356	bzero((void *)ret, n * PAGE_SIZE);
357	avail_start += n * PAGE_SIZE;
358	return (ret);
359}
360
361static void
362create_pagetables(void)
363{
364	int i;
365
366	/* Allocate pages */
367	KPTphys = allocpages(NKPT);
368	KPML4phys = allocpages(1);
369	KPDPphys = allocpages(NKPML4E);
370	KPDphys = allocpages(NKPDPE);
371
372	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
373	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
374		ndmpdp = 4;
375	DMPDPphys = allocpages(NDMPML4E);
376	DMPDphys = allocpages(ndmpdp);
377	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
378
379	/* Fill in the underlying page table pages */
380	/* Read-only from zero to physfree */
381	/* XXX not fully used, underneath 2M pages */
382	for (i = 0; (i << PAGE_SHIFT) < avail_start; i++) {
383		((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
384		((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V;
385	}
386
387	/* Now map the page tables at their location within PTmap */
388	for (i = 0; i < NKPT; i++) {
389		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
390		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
391	}
392
393	/* Map from zero to end of allocations under 2M pages */
394	/* This replaces some of the KPTphys entries above */
395	for (i = 0; (i << PDRSHIFT) < avail_start; i++) {
396		((pd_entry_t *)KPDphys)[i] = i << PDRSHIFT;
397		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V | PG_PS;
398	}
399
400	/* And connect up the PD to the PDP */
401	for (i = 0; i < NKPDPE; i++) {
402		((pdp_entry_t *)KPDPphys)[i + KPDPI] = KPDphys + (i << PAGE_SHIFT);
403		((pdp_entry_t *)KPDPphys)[i + KPDPI] |= PG_RW | PG_V | PG_U;
404	}
405
406
407	/* Now set up the direct map space using 2MB pages */
408	for (i = 0; i < NPDEPG * ndmpdp; i++) {
409		((pd_entry_t *)DMPDphys)[i] = (vm_paddr_t)i << PDRSHIFT;
410		((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS;
411	}
412
413	/* And the direct map space's PDP */
414	for (i = 0; i < ndmpdp; i++) {
415		((pdp_entry_t *)DMPDPphys)[i] = DMPDphys + (i << PAGE_SHIFT);
416		((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
417	}
418
419	/* And recursively map PML4 to itself in order to get PTmap */
420	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
421	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
422
423	/* Connect the Direct Map slot up to the PML4 */
424	((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
425	((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
426
427	/* Connect the KVA slot up to the PML4 */
428	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
429	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
430}
431
432/*
433 *	Bootstrap the system enough to run with virtual memory.
434 *
435 *	On amd64 this is called after mapping has already been enabled
436 *	and just syncs the pmap module with what has already been done.
437 *	[We can't call it easily with mapping off since the kernel is not
438 *	mapped with PA == VA, hence we would have to relocate every address
439 *	from the linked base (virtual) address "KERNBASE" to the actual
440 *	(physical) address starting relative to 0]
441 */
442void
443pmap_bootstrap(firstaddr)
444	vm_paddr_t *firstaddr;
445{
446	vm_offset_t va;
447	pt_entry_t *pte;
448
449	avail_start = *firstaddr;
450
451	/*
452	 * Create an initial set of page tables to run the kernel in.
453	 */
454	create_pagetables();
455	*firstaddr = avail_start;
456
457	virtual_avail = (vm_offset_t) KERNBASE + avail_start;
458	virtual_avail = pmap_kmem_choose(virtual_avail);
459
460	virtual_end = VM_MAX_KERNEL_ADDRESS;
461
462
463	/* XXX do %cr0 as well */
464	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
465	load_cr3(KPML4phys);
466
467	/*
468	 * Initialize protection array.
469	 */
470	amd64_protection_init();
471
472	/*
473	 * Initialize the kernel pmap (which is statically allocated).
474	 */
475	kernel_pmap->pm_pml4 = (pdp_entry_t *) (KERNBASE + KPML4phys);
476	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
477	TAILQ_INIT(&kernel_pmap->pm_pvlist);
478	LIST_INIT(&allpmaps);
479	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
480	mtx_lock_spin(&allpmaps_lock);
481	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
482	mtx_unlock_spin(&allpmaps_lock);
483	nkpt = NKPT;
484
485	/*
486	 * Reserve some special page table entries/VA space for temporary
487	 * mapping of pages.
488	 */
489#define	SYSMAP(c, p, v, n)	\
490	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
491
492	va = virtual_avail;
493	pte = vtopte(va);
494
495	/*
496	 * CMAP1 is only used for the memory test.
497	 */
498	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
499
500	/*
501	 * Crashdump maps.
502	 */
503	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
504
505	/*
506	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
507	 * XXX ptmmap is not used.
508	 */
509	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
510
511	/*
512	 * msgbufp is used to map the system message buffer.
513	 * XXX msgbufmap is not used.
514	 */
515	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
516	       atop(round_page(MSGBUF_SIZE)))
517
518	virtual_avail = va;
519
520	*CMAP1 = 0;
521
522	invltlb();
523}
524
525static void *
526pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
527{
528	*flags = UMA_SLAB_PRIV;
529	return (void *)kmem_alloc(kernel_map, bytes);
530}
531
532void *
533uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
534{
535	static vm_pindex_t colour;
536	vm_page_t m;
537	int pflags;
538	void *va;
539
540	*flags = UMA_SLAB_PRIV;
541
542	if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
543		pflags = VM_ALLOC_INTERRUPT;
544	else
545		pflags = VM_ALLOC_SYSTEM;
546
547	if (wait & M_ZERO)
548		pflags |= VM_ALLOC_ZERO;
549
550	for (;;) {
551		m = vm_page_alloc(NULL, colour++, pflags | VM_ALLOC_NOOBJ);
552		if (m == NULL) {
553			if (wait & M_NOWAIT)
554				return (NULL);
555			else
556				VM_WAIT;
557		} else
558			break;
559	}
560
561	va = (void *)PHYS_TO_DMAP(m->phys_addr);
562	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
563		pagezero(va);
564	return (va);
565}
566
567void
568uma_small_free(void *mem, int size, u_int8_t flags)
569{
570	vm_page_t m;
571
572	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)mem));
573	vm_page_lock_queues();
574	vm_page_free(m);
575	vm_page_unlock_queues();
576}
577
578/*
579 *	Initialize the pmap module.
580 *	Called by vm_init, to initialize any structures that the pmap
581 *	system needs to map virtual memory.
582 *	pmap_init has been enhanced to support in a fairly consistant
583 *	way, discontiguous physical memory.
584 */
585void
586pmap_init(phys_start, phys_end)
587	vm_paddr_t phys_start, phys_end;
588{
589	int i;
590	int initial_pvs;
591
592	/*
593	 * Allocate memory for random pmap data structures.  Includes the
594	 * pv_head_table.
595	 */
596
597	for(i = 0; i < vm_page_array_size; i++) {
598		vm_page_t m;
599
600		m = &vm_page_array[i];
601		TAILQ_INIT(&m->md.pv_list);
602		m->md.pv_list_count = 0;
603	}
604
605	/*
606	 * init the pv free list
607	 */
608	initial_pvs = vm_page_array_size;
609	if (initial_pvs < MINPV)
610		initial_pvs = MINPV;
611	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
612	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
613	uma_zone_set_allocf(pvzone, pmap_pv_allocf);
614	uma_prealloc(pvzone, initial_pvs);
615
616	/*
617	 * Now it is safe to enable pv_table recording.
618	 */
619	pmap_initialized = TRUE;
620}
621
622/*
623 * Initialize the address space (zone) for the pv_entries.  Set a
624 * high water mark so that the system can recover from excessive
625 * numbers of pv entries.
626 */
627void
628pmap_init2()
629{
630	int shpgperproc = PMAP_SHPGPERPROC;
631
632	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
633	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
634	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
635	pv_entry_high_water = 9 * (pv_entry_max / 10);
636	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
637}
638
639
640/***************************************************
641 * Low level helper routines.....
642 ***************************************************/
643
644#if defined(PMAP_DIAGNOSTIC)
645
646/*
647 * This code checks for non-writeable/modified pages.
648 * This should be an invalid condition.
649 */
650static int
651pmap_nw_modified(pt_entry_t ptea)
652{
653	int pte;
654
655	pte = (int) ptea;
656
657	if ((pte & (PG_M|PG_RW)) == PG_M)
658		return 1;
659	else
660		return 0;
661}
662#endif
663
664
665/*
666 * this routine defines the region(s) of memory that should
667 * not be tested for the modified bit.
668 */
669static PMAP_INLINE int
670pmap_track_modified(vm_offset_t va)
671{
672	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
673		return 1;
674	else
675		return 0;
676}
677
678/*
679 * Normal invalidation functions.
680 * We inline these within pmap.c for speed.
681 */
682PMAP_INLINE void
683pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
684{
685
686	if (pmap == kernel_pmap || pmap->pm_active)
687		invlpg(va);
688}
689
690PMAP_INLINE void
691pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
692{
693	vm_offset_t addr;
694
695	if (pmap == kernel_pmap || pmap->pm_active)
696		for (addr = sva; addr < eva; addr += PAGE_SIZE)
697			invlpg(addr);
698}
699
700PMAP_INLINE void
701pmap_invalidate_all(pmap_t pmap)
702{
703
704	if (pmap == kernel_pmap || pmap->pm_active)
705		invltlb();
706}
707
708/*
709 * Are we current address space or kernel?
710 */
711static __inline int
712pmap_is_current(pmap_t pmap)
713{
714	return (pmap == kernel_pmap ||
715	    (pmap->pm_pml4[PML4PML4I] & PG_FRAME) == (PML4pml4e[0] & PG_FRAME));
716}
717
718/*
719 *	Routine:	pmap_extract
720 *	Function:
721 *		Extract the physical page address associated
722 *		with the given map/virtual_address pair.
723 */
724vm_paddr_t
725pmap_extract(pmap, va)
726	register pmap_t pmap;
727	vm_offset_t va;
728{
729	vm_paddr_t rtval;
730	pt_entry_t *pte;
731	pd_entry_t pde, *pdep;
732
733	if (pmap == 0)
734		return 0;
735	pdep = pmap_pde(pmap, va);
736	if (pdep) {
737		pde = *pdep;
738		if (pde) {
739			if ((pde & PG_PS) != 0) {
740				rtval = (pde & ~PDRMASK) | (va & PDRMASK);
741				return rtval;
742			}
743			pte = pmap_pte(pmap, va);
744			rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
745			return rtval;
746		}
747	}
748	return 0;
749
750}
751
752vm_paddr_t
753pmap_kextract(vm_offset_t va)
754{
755	pd_entry_t *pde;
756	vm_paddr_t pa;
757
758	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
759		pa = DMAP_TO_PHYS(va);
760	} else {
761		pde = pmap_pde(kernel_pmap, va);
762		if (*pde & PG_PS) {
763			pa = (*pde & ~(NBPDR - 1)) | (va & (NBPDR - 1));
764		} else {
765			pa = *vtopte(va);
766			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
767		}
768	}
769	return pa;
770}
771
772/***************************************************
773 * Low level mapping routines.....
774 ***************************************************/
775
776/*
777 * Add a wired page to the kva.
778 * Note: not SMP coherent.
779 */
780PMAP_INLINE void
781pmap_kenter(vm_offset_t va, vm_paddr_t pa)
782{
783	pt_entry_t *pte;
784
785	pte = vtopte(va);
786	pte_store(pte, pa | PG_RW | PG_V | PG_G);
787}
788
789/*
790 * Remove a page from the kernel pagetables.
791 * Note: not SMP coherent.
792 */
793PMAP_INLINE void
794pmap_kremove(vm_offset_t va)
795{
796	pt_entry_t *pte;
797
798	pte = vtopte(va);
799	pte_clear(pte);
800}
801
802/*
803 *	Used to map a range of physical addresses into kernel
804 *	virtual address space.
805 *
806 *	The value passed in '*virt' is a suggested virtual address for
807 *	the mapping. Architectures which can support a direct-mapped
808 *	physical to virtual region can return the appropriate address
809 *	within that region, leaving '*virt' unchanged. Other
810 *	architectures should map the pages starting at '*virt' and
811 *	update '*virt' with the first usable address after the mapped
812 *	region.
813 */
814vm_offset_t
815pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
816{
817	return PHYS_TO_DMAP(start);
818}
819
820
821/*
822 * Add a list of wired pages to the kva
823 * this routine is only used for temporary
824 * kernel mappings that do not need to have
825 * page modification or references recorded.
826 * Note that old mappings are simply written
827 * over.  The page *must* be wired.
828 * Note: SMP coherent.  Uses a ranged shootdown IPI.
829 */
830void
831pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
832{
833	vm_offset_t va;
834
835	va = sva;
836	while (count-- > 0) {
837		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
838		va += PAGE_SIZE;
839		m++;
840	}
841	pmap_invalidate_range(kernel_pmap, sva, va);
842}
843
844/*
845 * This routine tears out page mappings from the
846 * kernel -- it is meant only for temporary mappings.
847 * Note: SMP coherent.  Uses a ranged shootdown IPI.
848 */
849void
850pmap_qremove(vm_offset_t sva, int count)
851{
852	vm_offset_t va;
853
854	va = sva;
855	while (count-- > 0) {
856		pmap_kremove(va);
857		va += PAGE_SIZE;
858	}
859	pmap_invalidate_range(kernel_pmap, sva, va);
860}
861
862/***************************************************
863 * Page table page management routines.....
864 ***************************************************/
865
866/*
867 * This routine unholds page table pages, and if the hold count
868 * drops to zero, then it decrements the wire count.
869 */
870static int
871_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
872{
873
874	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
875		vm_page_lock_queues();
876
877	if (m->hold_count == 0) {
878		vm_offset_t pteva;
879
880		/*
881		 * unmap the page table page
882		 */
883		if (m->pindex >= (NUPDE + NUPDPE)) {
884			/* PDP page */
885			pml4_entry_t *pml4;
886			pml4 = pmap_pml4e(pmap, va);
887			pteva = (vm_offset_t) PDPmap + amd64_ptob(m->pindex - (NUPDE + NUPDPE));
888			*pml4 = 0;
889		} else if (m->pindex >= NUPDE) {
890			/* PD page */
891			pdp_entry_t *pdp;
892			pdp = pmap_pdpe(pmap, va);
893			pteva = (vm_offset_t) PDmap + amd64_ptob(m->pindex - NUPDE);
894			*pdp = 0;
895		} else {
896			/* PTE page */
897			pd_entry_t *pd;
898			pd = pmap_pde(pmap, va);
899			pteva = (vm_offset_t) PTmap + amd64_ptob(m->pindex);
900			*pd = 0;
901		}
902		--pmap->pm_stats.resident_count;
903		if (m->pindex < NUPDE) {
904			/* We just released a PT, unhold the matching PD */
905			vm_page_t pdpg;
906
907			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va));
908			vm_page_unhold(pdpg);
909			if (pdpg->hold_count == 0)
910				_pmap_unwire_pte_hold(pmap, va, pdpg);
911		}
912		if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
913			/* We just released a PD, unhold the matching PDP */
914			vm_page_t pdppg;
915
916			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va));
917			vm_page_unhold(pdppg);
918			if (pdppg->hold_count == 0)
919				_pmap_unwire_pte_hold(pmap, va, pdppg);
920		}
921		if (pmap_is_current(pmap)) {
922			/*
923			 * Do an invltlb to make the invalidated mapping
924			 * take effect immediately.
925			 */
926			pmap_invalidate_page(pmap, pteva);
927		}
928
929		/*
930		 * If the page is finally unwired, simply free it.
931		 */
932		--m->wire_count;
933		if (m->wire_count == 0) {
934			vm_page_busy(m);
935			vm_page_free_zero(m);
936			atomic_subtract_int(&cnt.v_wire_count, 1);
937		}
938		return 1;
939	}
940	return 0;
941}
942
943static PMAP_INLINE int
944pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
945{
946	vm_page_unhold(m);
947	if (m->hold_count == 0)
948		return _pmap_unwire_pte_hold(pmap, va, m);
949	else
950		return 0;
951}
952
953/*
954 * After removing a page table entry, this routine is used to
955 * conditionally free the page, and manage the hold/wire counts.
956 */
957static int
958pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
959{
960
961	if (va >= VM_MAXUSER_ADDRESS)
962		return 0;
963
964	if (mpte == NULL) {
965		mpte = PHYS_TO_VM_PAGE(*pmap_pde(pmap, va));
966	}
967
968	return pmap_unwire_pte_hold(pmap, va, mpte);
969}
970
971void
972pmap_pinit0(pmap)
973	struct pmap *pmap;
974{
975
976	pmap->pm_pml4 = (pml4_entry_t *)(KERNBASE + KPML4phys);
977	pmap->pm_active = 0;
978	TAILQ_INIT(&pmap->pm_pvlist);
979	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
980	mtx_lock_spin(&allpmaps_lock);
981	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
982	mtx_unlock_spin(&allpmaps_lock);
983}
984
985/*
986 * Initialize a preallocated and zeroed pmap structure,
987 * such as one in a vmspace structure.
988 */
989void
990pmap_pinit(pmap)
991	register struct pmap *pmap;
992{
993	vm_page_t pml4pg;
994
995	/*
996	 * allocate object for the ptes
997	 */
998	if (pmap->pm_pteobj == NULL)
999		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + NUPML4E + 1);
1000
1001	/*
1002	 * allocate the page directory page
1003	 */
1004	VM_OBJECT_LOCK(pmap->pm_pteobj);
1005	pml4pg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + NUPML4E,
1006	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1007	vm_page_lock_queues();
1008	vm_page_flag_clear(pml4pg, PG_BUSY);
1009	pml4pg->valid = VM_PAGE_BITS_ALL;
1010	vm_page_unlock_queues();
1011	VM_OBJECT_UNLOCK(pmap->pm_pteobj);
1012
1013	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
1014
1015	if ((pml4pg->flags & PG_ZERO) == 0)
1016		bzero(pmap->pm_pml4, PAGE_SIZE);
1017
1018	mtx_lock_spin(&allpmaps_lock);
1019	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1020	mtx_unlock_spin(&allpmaps_lock);
1021
1022	/* Wire in kernel global address entries. */
1023	pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1024	pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
1025
1026	/* install self-referential address mapping entry(s) */
1027	pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | PG_V | PG_RW | PG_A | PG_M;
1028
1029	pmap->pm_active = 0;
1030	TAILQ_INIT(&pmap->pm_pvlist);
1031	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1032}
1033
1034/*
1035 * Wire in kernel global address entries.  To avoid a race condition
1036 * between pmap initialization and pmap_growkernel, this procedure
1037 * should be called after the vmspace is attached to the process
1038 * but before this pmap is activated.
1039 */
1040void
1041pmap_pinit2(pmap)
1042	struct pmap *pmap;
1043{
1044	/* XXX: Remove this stub when no longer called */
1045}
1046
1047/*
1048 * this routine is called if the page table page is not
1049 * mapped correctly.
1050 */
1051static vm_page_t
1052_pmap_allocpte(pmap, ptepindex)
1053	pmap_t	pmap;
1054	vm_pindex_t ptepindex;
1055{
1056	vm_page_t m, pdppg, pdpg;
1057	int is_object_locked;
1058
1059	/*
1060	 * Find or fabricate a new pagetable page
1061	 */
1062	if (!(is_object_locked = VM_OBJECT_LOCKED(pmap->pm_pteobj)))
1063		VM_OBJECT_LOCK(pmap->pm_pteobj);
1064	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1065	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1066	if ((m->flags & PG_ZERO) == 0)
1067		pmap_zero_page(m);
1068
1069	KASSERT(m->queue == PQ_NONE,
1070		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1071
1072	/*
1073	 * Increment the hold count for the page table page
1074	 * (denoting a new mapping.)
1075	 */
1076	m->hold_count++;
1077
1078	/*
1079	 * Map the pagetable page into the process address space, if
1080	 * it isn't already there.
1081	 */
1082
1083	pmap->pm_stats.resident_count++;
1084
1085	if (ptepindex >= (NUPDE + NUPDPE)) {
1086		pml4_entry_t *pml4;
1087		vm_pindex_t pml4index;
1088
1089		/* Wire up a new PDPE page */
1090		pml4index = ptepindex - (NUPDE + NUPDPE);
1091		pml4 = &pmap->pm_pml4[pml4index];
1092		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1093
1094	} else if (ptepindex >= NUPDE) {
1095		vm_pindex_t pml4index;
1096		vm_pindex_t pdpindex;
1097		pml4_entry_t *pml4;
1098		pdp_entry_t *pdp;
1099
1100		/* Wire up a new PDE page */
1101		pdpindex = ptepindex - NUPDE;
1102		pml4index = pdpindex >> NPML4EPGSHIFT;
1103
1104		pml4 = &pmap->pm_pml4[pml4index];
1105		if ((*pml4 & PG_V) == 0) {
1106			/* Have to allocate a new pdp, recurse */
1107			_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index);
1108		} else {
1109			/* Add reference to pdp page */
1110			pdppg = PHYS_TO_VM_PAGE(*pml4);
1111			pdppg->hold_count++;
1112		}
1113		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1114
1115		/* Now find the pdp page */
1116		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1117		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1118
1119	} else {
1120		vm_pindex_t pml4index;
1121		vm_pindex_t pdpindex;
1122		pml4_entry_t *pml4;
1123		pdp_entry_t *pdp;
1124		pd_entry_t *pd;
1125
1126		/* Wire up a new PTE page */
1127		pdpindex = ptepindex >> NPDPEPGSHIFT;
1128		pml4index = pdpindex >> NPML4EPGSHIFT;
1129
1130		/* First, find the pdp and check that its valid. */
1131		pml4 = &pmap->pm_pml4[pml4index];
1132		if ((*pml4 & PG_V) == 0) {
1133			/* Have to allocate a new pd, recurse */
1134			_pmap_allocpte(pmap, NUPDE + pdpindex);
1135			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1136			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1137		} else {
1138			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1139			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1140			if ((*pdp & PG_V) == 0) {
1141				/* Have to allocate a new pd, recurse */
1142				_pmap_allocpte(pmap, NUPDE + pdpindex);
1143			} else {
1144				/* Add reference to the pd page */
1145				pdpg = PHYS_TO_VM_PAGE(*pdp);
1146				pdpg->hold_count++;
1147			}
1148		}
1149		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
1150
1151		/* Now we know where the page directory page is */
1152		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1153		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1154	}
1155
1156	vm_page_lock_queues();
1157	m->valid = VM_PAGE_BITS_ALL;
1158	vm_page_flag_clear(m, PG_ZERO);
1159	vm_page_wakeup(m);
1160	vm_page_unlock_queues();
1161	if (!is_object_locked)
1162		VM_OBJECT_UNLOCK(pmap->pm_pteobj);
1163
1164	return m;
1165}
1166
1167static vm_page_t
1168pmap_allocpte(pmap_t pmap, vm_offset_t va)
1169{
1170	vm_pindex_t ptepindex;
1171	pd_entry_t *pd;
1172	vm_page_t m;
1173
1174	/*
1175	 * Calculate pagetable page index
1176	 */
1177	ptepindex = pmap_pde_pindex(va);
1178
1179	/*
1180	 * Get the page directory entry
1181	 */
1182	pd = pmap_pde(pmap, va);
1183
1184	/*
1185	 * This supports switching from a 2MB page to a
1186	 * normal 4K page.
1187	 */
1188	if (pd != 0 && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
1189		*pd = 0;
1190		pd = 0;
1191		pmap_invalidate_all(kernel_pmap);
1192	}
1193
1194	/*
1195	 * If the page table page is mapped, we just increment the
1196	 * hold count, and activate it.
1197	 */
1198	if (pd != 0 && (*pd & PG_V) != 0) {
1199		m = PHYS_TO_VM_PAGE(*pd);
1200		m->hold_count++;
1201		return m;
1202	}
1203	/*
1204	 * Here if the pte page isn't mapped, or if it has been deallocated.
1205	 */
1206	m = _pmap_allocpte(pmap, ptepindex);
1207	return m;
1208}
1209
1210
1211/***************************************************
1212 * Pmap allocation/deallocation routines.
1213 ***************************************************/
1214
1215/*
1216 * Release any resources held by the given physical map.
1217 * Called when a pmap initialized by pmap_pinit is being released.
1218 * Should only be called if the map contains no valid mappings.
1219 */
1220void
1221pmap_release(pmap_t pmap)
1222{
1223	vm_object_t object;
1224	vm_page_t m;
1225
1226	object = pmap->pm_pteobj;
1227
1228	KASSERT(object->ref_count == 1,
1229	    ("pmap_release: pteobj reference count %d != 1",
1230	    object->ref_count));
1231	KASSERT(pmap->pm_stats.resident_count == 0,
1232	    ("pmap_release: pmap resident count %ld != 0",
1233	    pmap->pm_stats.resident_count));
1234
1235	mtx_lock_spin(&allpmaps_lock);
1236	LIST_REMOVE(pmap, pm_list);
1237	mtx_unlock_spin(&allpmaps_lock);
1238
1239	vm_page_lock_queues();
1240	while ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1241		m->wire_count--;
1242		atomic_subtract_int(&cnt.v_wire_count, 1);
1243		vm_page_busy(m);
1244		vm_page_free(m);
1245	}
1246	KASSERT(TAILQ_EMPTY(&object->memq),
1247	    ("pmap_release: leaking page table pages"));
1248	vm_page_unlock_queues();
1249}
1250
1251static int
1252kvm_size(SYSCTL_HANDLER_ARGS)
1253{
1254	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1255
1256	return sysctl_handle_long(oidp, &ksize, 0, req);
1257}
1258SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1259    0, 0, kvm_size, "IU", "Size of KVM");
1260
1261static int
1262kvm_free(SYSCTL_HANDLER_ARGS)
1263{
1264	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1265
1266	return sysctl_handle_long(oidp, &kfree, 0, req);
1267}
1268SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1269    0, 0, kvm_free, "IU", "Amount of KVM free");
1270
1271/*
1272 * grow the number of kernel page table entries, if needed
1273 */
1274void
1275pmap_growkernel(vm_offset_t addr)
1276{
1277	int s;
1278	vm_paddr_t paddr;
1279	vm_page_t nkpg;
1280	pd_entry_t *pde, newpdir;
1281	pdp_entry_t newpdp;
1282
1283	s = splhigh();
1284	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1285	if (kernel_vm_end == 0) {
1286		kernel_vm_end = KERNBASE;
1287		nkpt = 0;
1288		while ((*pmap_pde(kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1289			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1290			nkpt++;
1291		}
1292	}
1293	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1294	while (kernel_vm_end < addr) {
1295		pde = pmap_pde(kernel_pmap, kernel_vm_end);
1296		if (pde == NULL) {
1297			/* We need a new PDP entry */
1298			nkpg = vm_page_alloc(NULL, nkpt,
1299			    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1300			if (!nkpg)
1301				panic("pmap_growkernel: no memory to grow kernel");
1302			pmap_zero_page(nkpg);
1303			paddr = VM_PAGE_TO_PHYS(nkpg);
1304			newpdp = (pdp_entry_t)
1305				(paddr | PG_V | PG_RW | PG_A | PG_M);
1306			*pmap_pdpe(kernel_pmap, kernel_vm_end) = newpdp;
1307			continue; /* try again */
1308		}
1309		if ((*pde & PG_V) != 0) {
1310			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1311			continue;
1312		}
1313
1314		/*
1315		 * This index is bogus, but out of the way
1316		 */
1317		nkpg = vm_page_alloc(NULL, nkpt,
1318		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1319		if (!nkpg)
1320			panic("pmap_growkernel: no memory to grow kernel");
1321
1322		nkpt++;
1323
1324		pmap_zero_page(nkpg);
1325		paddr = VM_PAGE_TO_PHYS(nkpg);
1326		newpdir = (pd_entry_t) (paddr | PG_V | PG_RW | PG_A | PG_M);
1327		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
1328
1329		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1330	}
1331	splx(s);
1332}
1333
1334
1335/***************************************************
1336 * page management routines.
1337 ***************************************************/
1338
1339/*
1340 * free the pv_entry back to the free list
1341 */
1342static PMAP_INLINE void
1343free_pv_entry(pv_entry_t pv)
1344{
1345	pv_entry_count--;
1346	uma_zfree(pvzone, pv);
1347}
1348
1349/*
1350 * get a new pv_entry, allocating a block from the system
1351 * when needed.
1352 * the memory allocation is performed bypassing the malloc code
1353 * because of the possibility of allocations at interrupt time.
1354 */
1355static pv_entry_t
1356get_pv_entry(void)
1357{
1358	pv_entry_count++;
1359	if (pv_entry_high_water &&
1360		(pv_entry_count > pv_entry_high_water) &&
1361		(pmap_pagedaemon_waken == 0)) {
1362		pmap_pagedaemon_waken = 1;
1363		wakeup (&vm_pages_needed);
1364	}
1365	return uma_zalloc(pvzone, M_NOWAIT);
1366}
1367
1368/*
1369 * If it is the first entry on the list, it is actually
1370 * in the header and we must copy the following entry up
1371 * to the header.  Otherwise we must search the list for
1372 * the entry.  In either case we free the now unused entry.
1373 */
1374
1375static int
1376pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1377{
1378	pv_entry_t pv;
1379	int rtval;
1380	int s;
1381
1382	s = splvm();
1383	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1384	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1385		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1386			if (pmap == pv->pv_pmap && va == pv->pv_va)
1387				break;
1388		}
1389	} else {
1390		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1391			if (va == pv->pv_va)
1392				break;
1393		}
1394	}
1395
1396	rtval = 0;
1397	if (pv) {
1398		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1399		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1400		m->md.pv_list_count--;
1401		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1402			vm_page_flag_clear(m, PG_WRITEABLE);
1403
1404		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1405		free_pv_entry(pv);
1406	}
1407
1408	splx(s);
1409	return rtval;
1410}
1411
1412/*
1413 * Create a pv entry for page at pa for
1414 * (pmap, va).
1415 */
1416static void
1417pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1418{
1419
1420	int s;
1421	pv_entry_t pv;
1422
1423	s = splvm();
1424	pv = get_pv_entry();
1425	pv->pv_va = va;
1426	pv->pv_pmap = pmap;
1427	pv->pv_ptem = mpte;
1428
1429	vm_page_lock_queues();
1430	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1431	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1432	m->md.pv_list_count++;
1433
1434	vm_page_unlock_queues();
1435	splx(s);
1436}
1437
1438/*
1439 * pmap_remove_pte: do the things to unmap a page in a process
1440 */
1441static int
1442pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1443{
1444	pt_entry_t oldpte;
1445	vm_page_t m;
1446
1447	oldpte = pte_load_clear(ptq);
1448	if (oldpte & PG_W)
1449		pmap->pm_stats.wired_count -= 1;
1450	/*
1451	 * Machines that don't support invlpg, also don't support
1452	 * PG_G.
1453	 */
1454	if (oldpte & PG_G)
1455		pmap_invalidate_page(kernel_pmap, va);
1456	pmap->pm_stats.resident_count -= 1;
1457	if (oldpte & PG_MANAGED) {
1458		m = PHYS_TO_VM_PAGE(oldpte);
1459		if (oldpte & PG_M) {
1460#if defined(PMAP_DIAGNOSTIC)
1461			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1462				printf(
1463	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1464				    va, oldpte);
1465			}
1466#endif
1467			if (pmap_track_modified(va))
1468				vm_page_dirty(m);
1469		}
1470		if (oldpte & PG_A)
1471			vm_page_flag_set(m, PG_REFERENCED);
1472		return pmap_remove_entry(pmap, m, va);
1473	} else {
1474		return pmap_unuse_pt(pmap, va, NULL);
1475	}
1476
1477	return 0;
1478}
1479
1480/*
1481 * Remove a single page from a process address space
1482 */
1483static void
1484pmap_remove_page(pmap_t pmap, vm_offset_t va)
1485{
1486	pt_entry_t *pte;
1487
1488	pte = pmap_pte(pmap, va);
1489	if (pte == NULL || (*pte & PG_V) == 0)
1490		return;
1491	pmap_remove_pte(pmap, pte, va);
1492	pmap_invalidate_page(pmap, va);
1493}
1494
1495/*
1496 *	Remove the given range of addresses from the specified map.
1497 *
1498 *	It is assumed that the start and end are properly
1499 *	rounded to the page size.
1500 */
1501void
1502pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1503{
1504	vm_offset_t pdnxt;
1505	pd_entry_t ptpaddr, *pde;
1506	pt_entry_t *pte;
1507	int anyvalid;
1508
1509	if (pmap == NULL)
1510		return;
1511
1512	if (pmap->pm_stats.resident_count == 0)
1513		return;
1514
1515	/*
1516	 * special handling of removing one page.  a very
1517	 * common operation and easy to short circuit some
1518	 * code.
1519	 */
1520	if (sva + PAGE_SIZE == eva) {
1521		pde = pmap_pde(pmap, sva);
1522		if (pde && (*pde & PG_PS) == 0) {
1523			pmap_remove_page(pmap, sva);
1524			return;
1525		}
1526	}
1527
1528	anyvalid = 0;
1529
1530	for (; sva < eva; sva = pdnxt) {
1531
1532		if (pmap->pm_stats.resident_count == 0)
1533			break;
1534
1535		/*
1536		 * Calculate index for next page table.
1537		 */
1538		pdnxt = (sva + NBPDR) & ~PDRMASK;
1539
1540		pde = pmap_pde(pmap, sva);
1541		if (pde == 0)
1542			continue;
1543		ptpaddr = *pde;
1544
1545		/*
1546		 * Weed out invalid mappings. Note: we assume that the page
1547		 * directory table is always allocated, and in kernel virtual.
1548		 */
1549		if (ptpaddr == 0)
1550			continue;
1551
1552		/*
1553		 * Check for large page.
1554		 */
1555		if ((ptpaddr & PG_PS) != 0) {
1556			*pde = 0;
1557			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1558			anyvalid = 1;
1559			continue;
1560		}
1561
1562		/*
1563		 * Limit our scan to either the end of the va represented
1564		 * by the current page table page, or to the end of the
1565		 * range being removed.
1566		 */
1567		if (pdnxt > eva)
1568			pdnxt = eva;
1569
1570		for (; sva != pdnxt; sva += PAGE_SIZE) {
1571			pte = pmap_pte(pmap, sva);
1572			if (pte == NULL || *pte == 0)
1573				continue;
1574			anyvalid = 1;
1575			if (pmap_remove_pte(pmap, pte, sva))
1576				break;
1577		}
1578	}
1579
1580	if (anyvalid)
1581		pmap_invalidate_all(pmap);
1582}
1583
1584/*
1585 *	Routine:	pmap_remove_all
1586 *	Function:
1587 *		Removes this physical page from
1588 *		all physical maps in which it resides.
1589 *		Reflects back modify bits to the pager.
1590 *
1591 *	Notes:
1592 *		Original versions of this routine were very
1593 *		inefficient because they iteratively called
1594 *		pmap_remove (slow...)
1595 */
1596
1597void
1598pmap_remove_all(vm_page_t m)
1599{
1600	register pv_entry_t pv;
1601	pt_entry_t *pte, tpte;
1602	int s;
1603
1604#if defined(PMAP_DIAGNOSTIC)
1605	/*
1606	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1607	 */
1608	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1609		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1610		    VM_PAGE_TO_PHYS(m));
1611	}
1612#endif
1613	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1614	s = splvm();
1615	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1616		pv->pv_pmap->pm_stats.resident_count--;
1617		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1618		tpte = pte_load_clear(pte);
1619		if (tpte & PG_W)
1620			pv->pv_pmap->pm_stats.wired_count--;
1621		if (tpte & PG_A)
1622			vm_page_flag_set(m, PG_REFERENCED);
1623
1624		/*
1625		 * Update the vm_page_t clean and reference bits.
1626		 */
1627		if (tpte & PG_M) {
1628#if defined(PMAP_DIAGNOSTIC)
1629			if (pmap_nw_modified((pt_entry_t) tpte)) {
1630				printf(
1631	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1632				    pv->pv_va, tpte);
1633			}
1634#endif
1635			if (pmap_track_modified(pv->pv_va))
1636				vm_page_dirty(m);
1637		}
1638		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1639		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1640		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1641		m->md.pv_list_count--;
1642		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1643		free_pv_entry(pv);
1644	}
1645	vm_page_flag_clear(m, PG_WRITEABLE);
1646	splx(s);
1647}
1648
1649/*
1650 *	Set the physical protection on the
1651 *	specified range of this map as requested.
1652 */
1653void
1654pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1655{
1656	vm_offset_t pdnxt;
1657	pd_entry_t ptpaddr, *pde;
1658	int anychanged;
1659
1660	if (pmap == NULL)
1661		return;
1662
1663	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1664		pmap_remove(pmap, sva, eva);
1665		return;
1666	}
1667
1668	if (prot & VM_PROT_WRITE)
1669		return;
1670
1671	anychanged = 0;
1672
1673	for (; sva < eva; sva = pdnxt) {
1674
1675		pdnxt = (sva + NBPDR) & ~PDRMASK;
1676
1677		pde = pmap_pde(pmap, sva);
1678		if (pde == NULL)
1679			continue;
1680		ptpaddr = *pde;
1681
1682		/*
1683		 * Weed out invalid mappings. Note: we assume that the page
1684		 * directory table is always allocated, and in kernel virtual.
1685		 */
1686		if (ptpaddr == 0)
1687			continue;
1688
1689		/*
1690		 * Check for large page.
1691		 */
1692		if ((ptpaddr & PG_PS) != 0) {
1693			*pde &= ~(PG_M|PG_RW);
1694			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1695			anychanged = 1;
1696			continue;
1697		}
1698
1699		if (pdnxt > eva)
1700			pdnxt = eva;
1701
1702		for (; sva != pdnxt; sva += PAGE_SIZE) {
1703			pt_entry_t pbits;
1704			pt_entry_t *pte;
1705			vm_page_t m;
1706
1707			pte = pmap_pte(pmap, sva);
1708			if (pte == NULL)
1709				continue;
1710			pbits = *pte;
1711			if (pbits & PG_MANAGED) {
1712				m = NULL;
1713				if (pbits & PG_A) {
1714					m = PHYS_TO_VM_PAGE(pbits);
1715					vm_page_flag_set(m, PG_REFERENCED);
1716					pbits &= ~PG_A;
1717				}
1718				if ((pbits & PG_M) != 0 &&
1719				    pmap_track_modified(sva)) {
1720					if (m == NULL)
1721						m = PHYS_TO_VM_PAGE(pbits);
1722					vm_page_dirty(m);
1723					pbits &= ~PG_M;
1724				}
1725			}
1726
1727			pbits &= ~PG_RW;
1728
1729			if (pbits != *pte) {
1730				pte_store(pte, pbits);
1731				anychanged = 1;
1732			}
1733		}
1734	}
1735	if (anychanged)
1736		pmap_invalidate_all(pmap);
1737}
1738
1739/*
1740 *	Insert the given physical page (p) at
1741 *	the specified virtual address (v) in the
1742 *	target physical map with the protection requested.
1743 *
1744 *	If specified, the page will be wired down, meaning
1745 *	that the related pte can not be reclaimed.
1746 *
1747 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1748 *	or lose information.  That is, this routine must actually
1749 *	insert this page into the given map NOW.
1750 */
1751void
1752pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1753	   boolean_t wired)
1754{
1755	vm_paddr_t pa;
1756	register pt_entry_t *pte;
1757	vm_paddr_t opa;
1758	pt_entry_t origpte, newpte;
1759	vm_page_t mpte;
1760
1761	if (pmap == NULL)
1762		return;
1763
1764	va &= PG_FRAME;
1765#ifdef PMAP_DIAGNOSTIC
1766	if (va > VM_MAX_KERNEL_ADDRESS)
1767		panic("pmap_enter: toobig");
1768	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1769		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1770#endif
1771
1772	mpte = NULL;
1773	/*
1774	 * In the case that a page table page is not
1775	 * resident, we are creating it here.
1776	 */
1777	if (va < VM_MAXUSER_ADDRESS) {
1778		mpte = pmap_allocpte(pmap, va);
1779	}
1780#if 0 && defined(PMAP_DIAGNOSTIC)
1781	else {
1782		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1783		origpte = *pdeaddr;
1784		if ((origpte & PG_V) == 0) {
1785			panic("pmap_enter: invalid kernel page table page, pde=%p, va=%p\n",
1786				origpte, va);
1787		}
1788	}
1789#endif
1790
1791	pte = pmap_pte(pmap, va);
1792
1793	/*
1794	 * Page Directory table entry not valid, we need a new PT page
1795	 */
1796	if (pte == NULL)
1797		panic("pmap_enter: invalid page directory va=%#lx\n", va);
1798
1799	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1800	origpte = *pte;
1801	opa = origpte & PG_FRAME;
1802
1803	if (origpte & PG_PS)
1804		panic("pmap_enter: attempted pmap_enter on 2MB page");
1805
1806	/*
1807	 * Mapping has not changed, must be protection or wiring change.
1808	 */
1809	if (origpte && (opa == pa)) {
1810		/*
1811		 * Wiring change, just update stats. We don't worry about
1812		 * wiring PT pages as they remain resident as long as there
1813		 * are valid mappings in them. Hence, if a user page is wired,
1814		 * the PT page will be also.
1815		 */
1816		if (wired && ((origpte & PG_W) == 0))
1817			pmap->pm_stats.wired_count++;
1818		else if (!wired && (origpte & PG_W))
1819			pmap->pm_stats.wired_count--;
1820
1821#if defined(PMAP_DIAGNOSTIC)
1822		if (pmap_nw_modified((pt_entry_t) origpte)) {
1823			printf(
1824	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1825			    va, origpte);
1826		}
1827#endif
1828
1829		/*
1830		 * Remove extra pte reference
1831		 */
1832		if (mpte)
1833			mpte->hold_count--;
1834
1835		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
1836			if ((origpte & PG_RW) == 0) {
1837				pte_store(pte, origpte | PG_RW);
1838				pmap_invalidate_page(pmap, va);
1839			}
1840			return;
1841		}
1842
1843		/*
1844		 * We might be turning off write access to the page,
1845		 * so we go ahead and sense modify status.
1846		 */
1847		if (origpte & PG_MANAGED) {
1848			if ((origpte & PG_M) && pmap_track_modified(va)) {
1849				vm_page_t om;
1850				om = PHYS_TO_VM_PAGE(opa);
1851				vm_page_dirty(om);
1852			}
1853			pa |= PG_MANAGED;
1854		}
1855		goto validate;
1856	}
1857	/*
1858	 * Mapping has changed, invalidate old range and fall through to
1859	 * handle validating new mapping.
1860	 */
1861	if (opa) {
1862		int err;
1863		vm_page_lock_queues();
1864		err = pmap_remove_pte(pmap, pte, va);
1865		vm_page_unlock_queues();
1866		if (err)
1867			panic("pmap_enter: pte vanished, va: 0x%lx", va);
1868	}
1869
1870	/*
1871	 * Enter on the PV list if part of our managed memory. Note that we
1872	 * raise IPL while manipulating pv_table since pmap_enter can be
1873	 * called at interrupt time.
1874	 */
1875	if (pmap_initialized &&
1876	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
1877		pmap_insert_entry(pmap, va, mpte, m);
1878		pa |= PG_MANAGED;
1879	}
1880
1881	/*
1882	 * Increment counters
1883	 */
1884	pmap->pm_stats.resident_count++;
1885	if (wired)
1886		pmap->pm_stats.wired_count++;
1887
1888validate:
1889	/*
1890	 * Now validate mapping with desired protection/wiring.
1891	 */
1892	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
1893
1894	if (wired)
1895		newpte |= PG_W;
1896	if (va < VM_MAXUSER_ADDRESS)
1897		newpte |= PG_U;
1898	if (pmap == kernel_pmap)
1899		newpte |= PG_G;
1900
1901	/*
1902	 * if the mapping or permission bits are different, we need
1903	 * to update the pte.
1904	 */
1905	if ((origpte & ~(PG_M|PG_A)) != newpte) {
1906		pte_store(pte, newpte | PG_A);
1907		/*if (origpte)*/ {
1908			pmap_invalidate_page(pmap, va);
1909		}
1910	}
1911}
1912
1913/*
1914 * this code makes some *MAJOR* assumptions:
1915 * 1. Current pmap & pmap exists.
1916 * 2. Not wired.
1917 * 3. Read access.
1918 * 4. No page table pages.
1919 * 5. Tlbflush is deferred to calling procedure.
1920 * 6. Page IS managed.
1921 * but is *MUCH* faster than pmap_enter...
1922 */
1923
1924vm_page_t
1925pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
1926{
1927	pt_entry_t *pte;
1928	vm_paddr_t pa;
1929
1930	/*
1931	 * In the case that a page table page is not
1932	 * resident, we are creating it here.
1933	 */
1934	if (va < VM_MAXUSER_ADDRESS) {
1935		vm_pindex_t ptepindex;
1936		pd_entry_t *ptepa;
1937
1938		/*
1939		 * Calculate pagetable page index
1940		 */
1941		ptepindex = pmap_pde_pindex(va);
1942		if (mpte && (mpte->pindex == ptepindex)) {
1943			mpte->hold_count++;
1944		} else {
1945			/*
1946			 * Get the page directory entry
1947			 */
1948			ptepa = pmap_pde(pmap, va);
1949
1950			/*
1951			 * If the page table page is mapped, we just increment
1952			 * the hold count, and activate it.
1953			 */
1954			if (ptepa && (*ptepa & PG_V) != 0) {
1955				if (*ptepa & PG_PS)
1956					panic("pmap_enter_quick: unexpected mapping into 2MB page");
1957				mpte = PHYS_TO_VM_PAGE(*ptepa);
1958				mpte->hold_count++;
1959			} else {
1960				mpte = _pmap_allocpte(pmap, ptepindex);
1961			}
1962		}
1963	} else {
1964		mpte = NULL;
1965	}
1966
1967	/*
1968	 * This call to vtopte makes the assumption that we are
1969	 * entering the page into the current pmap.  In order to support
1970	 * quick entry into any pmap, one would likely use pmap_pte.
1971	 * But that isn't as quick as vtopte.
1972	 */
1973	pte = vtopte(va);
1974	if (*pte) {
1975		if (mpte != NULL) {
1976			vm_page_lock_queues();
1977			pmap_unwire_pte_hold(pmap, va, mpte);
1978			vm_page_unlock_queues();
1979		}
1980		return 0;
1981	}
1982
1983	/*
1984	 * Enter on the PV list if part of our managed memory. Note that we
1985	 * raise IPL while manipulating pv_table since pmap_enter can be
1986	 * called at interrupt time.
1987	 */
1988	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
1989		pmap_insert_entry(pmap, va, mpte, m);
1990
1991	/*
1992	 * Increment counters
1993	 */
1994	pmap->pm_stats.resident_count++;
1995
1996	pa = VM_PAGE_TO_PHYS(m);
1997
1998	/*
1999	 * Now validate mapping with RO protection
2000	 */
2001	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2002		pte_store(pte, pa | PG_V | PG_U);
2003	else
2004		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2005
2006	return mpte;
2007}
2008
2009/*
2010 * Make a temporary mapping for a physical address.  This is only intended
2011 * to be used for panic dumps.
2012 */
2013void *
2014pmap_kenter_temporary(vm_offset_t pa, int i)
2015{
2016	vm_offset_t va;
2017
2018	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2019	pmap_kenter(va, pa);
2020	invlpg(va);
2021	return ((void *)crashdumpmap);
2022}
2023
2024/*
2025 * This code maps large physical mmap regions into the
2026 * processor address space.  Note that some shortcuts
2027 * are taken, but the code works.
2028 */
2029void
2030pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2031		    vm_object_t object, vm_pindex_t pindex,
2032		    vm_size_t size)
2033{
2034	vm_page_t p;
2035
2036	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2037	KASSERT(object->type == OBJT_DEVICE,
2038	    ("pmap_object_init_pt: non-device object"));
2039	if (((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2040		int i;
2041		vm_page_t m[1];
2042		int npdes;
2043		pd_entry_t ptepa, *pde;
2044
2045		pde = pmap_pde(pmap, addr);
2046		if (pde != 0 && (*pde & PG_V) != 0)
2047			return;
2048retry:
2049		p = vm_page_lookup(object, pindex);
2050		if (p != NULL) {
2051			vm_page_lock_queues();
2052			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2053				goto retry;
2054		} else {
2055			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2056			if (p == NULL)
2057				return;
2058			m[0] = p;
2059
2060			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2061				vm_page_lock_queues();
2062				vm_page_free(p);
2063				vm_page_unlock_queues();
2064				return;
2065			}
2066
2067			p = vm_page_lookup(object, pindex);
2068			vm_page_lock_queues();
2069			vm_page_wakeup(p);
2070		}
2071		vm_page_unlock_queues();
2072
2073		ptepa = VM_PAGE_TO_PHYS(p);
2074		if (ptepa & (NBPDR - 1))
2075			return;
2076
2077		p->valid = VM_PAGE_BITS_ALL;
2078
2079		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2080		npdes = size >> PDRSHIFT;
2081		for(i = 0; i < npdes; i++) {
2082			pde_store(pde, ptepa | PG_U | PG_RW | PG_V | PG_PS);
2083			ptepa += NBPDR;
2084			pde++;
2085		}
2086		pmap_invalidate_all(pmap);
2087	}
2088}
2089
2090/*
2091 * pmap_prefault provides a quick way of clustering
2092 * pagefaults into a processes address space.  It is a "cousin"
2093 * of pmap_object_init_pt, except it runs at page fault time instead
2094 * of mmap time.
2095 */
2096#define PFBAK 4
2097#define PFFOR 4
2098#define PAGEORDER_SIZE (PFBAK+PFFOR)
2099
2100static int pmap_prefault_pageorder[] = {
2101	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2102	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2103	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2104	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2105};
2106
2107void
2108pmap_prefault(pmap, addra, entry)
2109	pmap_t pmap;
2110	vm_offset_t addra;
2111	vm_map_entry_t entry;
2112{
2113	int i;
2114	vm_offset_t starta;
2115	vm_offset_t addr;
2116	vm_pindex_t pindex;
2117	vm_page_t m, mpte;
2118	vm_object_t object;
2119	pd_entry_t *pde;
2120
2121	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2122		return;
2123
2124	object = entry->object.vm_object;
2125
2126	starta = addra - PFBAK * PAGE_SIZE;
2127	if (starta < entry->start) {
2128		starta = entry->start;
2129	} else if (starta > addra) {
2130		starta = 0;
2131	}
2132
2133	mpte = NULL;
2134	for (i = 0; i < PAGEORDER_SIZE; i++) {
2135		vm_object_t backing_object, lobject;
2136		pt_entry_t *pte;
2137
2138		addr = addra + pmap_prefault_pageorder[i];
2139		if (addr > addra + (PFFOR * PAGE_SIZE))
2140			addr = 0;
2141
2142		if (addr < starta || addr >= entry->end)
2143			continue;
2144
2145		pde = pmap_pde(pmap, addr);
2146		if (pde == NULL || (*pde & PG_V) == 0)
2147			continue;
2148
2149		pte = vtopte(addr);
2150		if ((*pte & PG_V) == 0)
2151			continue;
2152
2153		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2154		lobject = object;
2155		VM_OBJECT_LOCK(lobject);
2156		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2157		    lobject->type == OBJT_DEFAULT &&
2158		    (backing_object = lobject->backing_object) != NULL) {
2159			if (lobject->backing_object_offset & PAGE_MASK)
2160				break;
2161			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2162			VM_OBJECT_LOCK(backing_object);
2163			VM_OBJECT_UNLOCK(lobject);
2164			lobject = backing_object;
2165		}
2166		VM_OBJECT_UNLOCK(lobject);
2167		/*
2168		 * give-up when a page is not in memory
2169		 */
2170		if (m == NULL)
2171			break;
2172		vm_page_lock_queues();
2173		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2174			(m->busy == 0) &&
2175		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2176
2177			if ((m->queue - m->pc) == PQ_CACHE) {
2178				vm_page_deactivate(m);
2179			}
2180			vm_page_busy(m);
2181			vm_page_unlock_queues();
2182			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2183			vm_page_lock_queues();
2184			vm_page_wakeup(m);
2185		}
2186		vm_page_unlock_queues();
2187	}
2188}
2189
2190/*
2191 *	Routine:	pmap_change_wiring
2192 *	Function:	Change the wiring attribute for a map/virtual-address
2193 *			pair.
2194 *	In/out conditions:
2195 *			The mapping must already exist in the pmap.
2196 */
2197void
2198pmap_change_wiring(pmap, va, wired)
2199	register pmap_t pmap;
2200	vm_offset_t va;
2201	boolean_t wired;
2202{
2203	register pt_entry_t *pte;
2204
2205	if (pmap == NULL)
2206		return;
2207
2208	/*
2209	 * Wiring is not a hardware characteristic so there is no need to
2210	 * invalidate TLB.
2211	 */
2212	pte = pmap_pte(pmap, va);
2213	if (wired && (*pte & PG_W) == 0) {
2214		pmap->pm_stats.wired_count++;
2215		*pte |= PG_W;
2216	} else if (!wired && (*pte & PG_W) != 0) {
2217		pmap->pm_stats.wired_count--;
2218		*pte &= ~PG_W;
2219	}
2220}
2221
2222
2223
2224/*
2225 *	Copy the range specified by src_addr/len
2226 *	from the source map to the range dst_addr/len
2227 *	in the destination map.
2228 *
2229 *	This routine is only advisory and need not do anything.
2230 */
2231
2232void
2233pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2234	  vm_offset_t src_addr)
2235{
2236	vm_offset_t addr;
2237	vm_offset_t end_addr = src_addr + len;
2238	vm_offset_t pdnxt;
2239	vm_page_t m;
2240
2241	if (dst_addr != src_addr)
2242		return;
2243
2244	if (!pmap_is_current(src_pmap))
2245		return;
2246
2247	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2248		pt_entry_t *src_pte, *dst_pte;
2249		vm_page_t dstmpte, srcmpte;
2250		pd_entry_t srcptepaddr, *pde;
2251		vm_pindex_t ptepindex;
2252
2253		if (addr >= UPT_MIN_ADDRESS)
2254			panic("pmap_copy: invalid to pmap_copy page tables\n");
2255
2256		/*
2257		 * Don't let optional prefaulting of pages make us go
2258		 * way below the low water mark of free pages or way
2259		 * above high water mark of used pv entries.
2260		 */
2261		if (cnt.v_free_count < cnt.v_free_reserved ||
2262		    pv_entry_count > pv_entry_high_water)
2263			break;
2264
2265		pdnxt = (addr + NBPDR) & ~PDRMASK;
2266		ptepindex = pmap_pde_pindex(addr);
2267
2268		pde = pmap_pde(src_pmap, addr);
2269		if (pde)
2270			srcptepaddr = *pde;
2271		else
2272			continue;
2273		if (srcptepaddr == 0)
2274			continue;
2275
2276		if (srcptepaddr & PG_PS) {
2277			pde = pmap_pde(dst_pmap, addr);
2278			if (pde == 0) {
2279				/*
2280				 * XXX should do an allocpte here to
2281				 * instantiate the pde
2282				 */
2283				continue;
2284			}
2285			if (*pde == 0) {
2286				*pde = srcptepaddr;
2287				dst_pmap->pm_stats.resident_count +=
2288				    NBPDR / PAGE_SIZE;
2289			}
2290			continue;
2291		}
2292
2293		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2294		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2295			continue;
2296
2297		if (pdnxt > end_addr)
2298			pdnxt = end_addr;
2299
2300		src_pte = vtopte(addr);
2301		while (addr < pdnxt) {
2302			pt_entry_t ptetemp;
2303			ptetemp = *src_pte;
2304			/*
2305			 * we only virtual copy managed pages
2306			 */
2307			if ((ptetemp & PG_MANAGED) != 0) {
2308				/*
2309				 * We have to check after allocpte for the
2310				 * pte still being around...  allocpte can
2311				 * block.
2312				 */
2313				dstmpte = pmap_allocpte(dst_pmap, addr);
2314				dst_pte = pmap_pte(dst_pmap, addr);
2315				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2316					/*
2317					 * Clear the modified and
2318					 * accessed (referenced) bits
2319					 * during the copy.
2320					 */
2321					m = PHYS_TO_VM_PAGE(ptetemp);
2322					*dst_pte = ptetemp & ~(PG_M | PG_A);
2323					dst_pmap->pm_stats.resident_count++;
2324					pmap_insert_entry(dst_pmap, addr,
2325						dstmpte, m);
2326	 			} else {
2327					vm_page_lock_queues();
2328					pmap_unwire_pte_hold(dst_pmap, addr, dstmpte);
2329					vm_page_unlock_queues();
2330				}
2331				if (dstmpte->hold_count >= srcmpte->hold_count)
2332					break;
2333			}
2334			addr += PAGE_SIZE;
2335			src_pte++;
2336		}
2337	}
2338}
2339
2340/*
2341 *	pmap_zero_page zeros the specified hardware page by mapping
2342 *	the page into KVM and using bzero to clear its contents.
2343 */
2344void
2345pmap_zero_page(vm_page_t m)
2346{
2347	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2348
2349	pagezero((void *)va);
2350}
2351
2352/*
2353 *	pmap_zero_page_area zeros the specified hardware page by mapping
2354 *	the page into KVM and using bzero to clear its contents.
2355 *
2356 *	off and size may not cover an area beyond a single hardware page.
2357 */
2358void
2359pmap_zero_page_area(vm_page_t m, int off, int size)
2360{
2361	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2362
2363	if (off == 0 && size == PAGE_SIZE)
2364		pagezero((void *)va);
2365	else
2366		bzero((char *)va + off, size);
2367}
2368
2369/*
2370 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2371 *	the page into KVM and using bzero to clear its contents.  This
2372 *	is intended to be called from the vm_pagezero process only and
2373 *	outside of Giant.
2374 */
2375void
2376pmap_zero_page_idle(vm_page_t m)
2377{
2378	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2379
2380	pagezero((void *)va);
2381}
2382
2383/*
2384 *	pmap_copy_page copies the specified (machine independent)
2385 *	page by mapping the page into virtual memory and using
2386 *	bcopy to copy the page, one machine dependent page at a
2387 *	time.
2388 */
2389void
2390pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
2391{
2392	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2393	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2394
2395	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2396}
2397
2398/*
2399 * Returns true if the pmap's pv is one of the first
2400 * 16 pvs linked to from this page.  This count may
2401 * be changed upwards or downwards in the future; it
2402 * is only necessary that true be returned for a small
2403 * subset of pmaps for proper page aging.
2404 */
2405boolean_t
2406pmap_page_exists_quick(pmap, m)
2407	pmap_t pmap;
2408	vm_page_t m;
2409{
2410	pv_entry_t pv;
2411	int loops = 0;
2412	int s;
2413
2414	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2415		return FALSE;
2416
2417	s = splvm();
2418	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2419	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2420		if (pv->pv_pmap == pmap) {
2421			splx(s);
2422			return TRUE;
2423		}
2424		loops++;
2425		if (loops >= 16)
2426			break;
2427	}
2428	splx(s);
2429	return (FALSE);
2430}
2431
2432#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2433/*
2434 * Remove all pages from specified address space
2435 * this aids process exit speeds.  Also, this code
2436 * is special cased for current process only, but
2437 * can have the more generic (and slightly slower)
2438 * mode enabled.  This is much faster than pmap_remove
2439 * in the case of running down an entire address space.
2440 */
2441void
2442pmap_remove_pages(pmap, sva, eva)
2443	pmap_t pmap;
2444	vm_offset_t sva, eva;
2445{
2446	pt_entry_t *pte, tpte;
2447	vm_page_t m;
2448	pv_entry_t pv, npv;
2449	int s;
2450
2451#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2452	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2453		printf("warning: pmap_remove_pages called with non-current pmap\n");
2454		return;
2455	}
2456#endif
2457	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2458	s = splvm();
2459	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2460
2461		if (pv->pv_va >= eva || pv->pv_va < sva) {
2462			npv = TAILQ_NEXT(pv, pv_plist);
2463			continue;
2464		}
2465
2466#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2467		pte = vtopte(pv->pv_va);
2468#else
2469		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2470#endif
2471		tpte = *pte;
2472
2473		if (tpte == 0) {
2474			printf("TPTE at %p  IS ZERO @ VA %08lx\n",
2475							pte, pv->pv_va);
2476			panic("bad pte");
2477		}
2478
2479/*
2480 * We cannot remove wired pages from a process' mapping at this time
2481 */
2482		if (tpte & PG_W) {
2483			npv = TAILQ_NEXT(pv, pv_plist);
2484			continue;
2485		}
2486
2487		m = PHYS_TO_VM_PAGE(tpte);
2488		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2489		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2490		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2491
2492		KASSERT(m < &vm_page_array[vm_page_array_size],
2493			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2494
2495		pv->pv_pmap->pm_stats.resident_count--;
2496
2497		pte_clear(pte);
2498
2499		/*
2500		 * Update the vm_page_t clean and reference bits.
2501		 */
2502		if (tpte & PG_M) {
2503			vm_page_dirty(m);
2504		}
2505
2506		npv = TAILQ_NEXT(pv, pv_plist);
2507		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2508
2509		m->md.pv_list_count--;
2510		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2511		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2512			vm_page_flag_clear(m, PG_WRITEABLE);
2513		}
2514
2515		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2516		free_pv_entry(pv);
2517	}
2518	splx(s);
2519	pmap_invalidate_all(pmap);
2520}
2521
2522/*
2523 *	pmap_is_modified:
2524 *
2525 *	Return whether or not the specified physical page was modified
2526 *	in any physical maps.
2527 */
2528boolean_t
2529pmap_is_modified(vm_page_t m)
2530{
2531	pv_entry_t pv;
2532	pt_entry_t *pte;
2533	int s;
2534
2535	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2536		return FALSE;
2537
2538	s = splvm();
2539	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2540	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2541		/*
2542		 * if the bit being tested is the modified bit, then
2543		 * mark clean_map and ptes as never
2544		 * modified.
2545		 */
2546		if (!pmap_track_modified(pv->pv_va))
2547			continue;
2548#if defined(PMAP_DIAGNOSTIC)
2549		if (!pv->pv_pmap) {
2550			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2551			continue;
2552		}
2553#endif
2554		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2555		if (*pte & PG_M) {
2556			splx(s);
2557			return TRUE;
2558		}
2559	}
2560	splx(s);
2561	return (FALSE);
2562}
2563
2564/*
2565 *	Clear the given bit in each of the given page's ptes.
2566 */
2567static __inline void
2568pmap_clear_ptes(vm_page_t m, int bit)
2569{
2570	register pv_entry_t pv;
2571	pt_entry_t pbits, *pte;
2572	int s;
2573
2574	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2575	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2576		return;
2577
2578	s = splvm();
2579	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2580	/*
2581	 * Loop over all current mappings setting/clearing as appropos If
2582	 * setting RO do we need to clear the VAC?
2583	 */
2584	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2585		/*
2586		 * don't write protect pager mappings
2587		 */
2588		if (bit == PG_RW) {
2589			if (!pmap_track_modified(pv->pv_va))
2590				continue;
2591		}
2592
2593#if defined(PMAP_DIAGNOSTIC)
2594		if (!pv->pv_pmap) {
2595			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2596			continue;
2597		}
2598#endif
2599
2600		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2601		pbits = *pte;
2602		if (pbits & bit) {
2603			if (bit == PG_RW) {
2604				if (pbits & PG_M) {
2605					vm_page_dirty(m);
2606				}
2607				pte_store(pte, pbits & ~(PG_M|PG_RW));
2608			} else {
2609				pte_store(pte, pbits & ~bit);
2610			}
2611			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2612		}
2613	}
2614	if (bit == PG_RW)
2615		vm_page_flag_clear(m, PG_WRITEABLE);
2616	splx(s);
2617}
2618
2619/*
2620 *      pmap_page_protect:
2621 *
2622 *      Lower the permission for all mappings to a given page.
2623 */
2624void
2625pmap_page_protect(vm_page_t m, vm_prot_t prot)
2626{
2627	if ((prot & VM_PROT_WRITE) == 0) {
2628		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2629			pmap_clear_ptes(m, PG_RW);
2630		} else {
2631			pmap_remove_all(m);
2632		}
2633	}
2634}
2635
2636/*
2637 *	pmap_ts_referenced:
2638 *
2639 *	Return a count of reference bits for a page, clearing those bits.
2640 *	It is not necessary for every reference bit to be cleared, but it
2641 *	is necessary that 0 only be returned when there are truly no
2642 *	reference bits set.
2643 *
2644 *	XXX: The exact number of bits to check and clear is a matter that
2645 *	should be tested and standardized at some point in the future for
2646 *	optimal aging of shared pages.
2647 */
2648int
2649pmap_ts_referenced(vm_page_t m)
2650{
2651	register pv_entry_t pv, pvf, pvn;
2652	pt_entry_t *pte;
2653	pt_entry_t v;
2654	int s;
2655	int rtval = 0;
2656
2657	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2658		return (rtval);
2659
2660	s = splvm();
2661	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2662	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2663
2664		pvf = pv;
2665
2666		do {
2667			pvn = TAILQ_NEXT(pv, pv_list);
2668
2669			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2670
2671			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2672
2673			if (!pmap_track_modified(pv->pv_va))
2674				continue;
2675
2676			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2677
2678			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2679				pte_store(pte, v & ~PG_A);
2680				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2681
2682				rtval++;
2683				if (rtval > 4) {
2684					break;
2685				}
2686			}
2687		} while ((pv = pvn) != NULL && pv != pvf);
2688	}
2689	splx(s);
2690
2691	return (rtval);
2692}
2693
2694/*
2695 *	Clear the modify bits on the specified physical page.
2696 */
2697void
2698pmap_clear_modify(vm_page_t m)
2699{
2700	pmap_clear_ptes(m, PG_M);
2701}
2702
2703/*
2704 *	pmap_clear_reference:
2705 *
2706 *	Clear the reference bit on the specified physical page.
2707 */
2708void
2709pmap_clear_reference(vm_page_t m)
2710{
2711	pmap_clear_ptes(m, PG_A);
2712}
2713
2714/*
2715 * Miscellaneous support routines follow
2716 */
2717
2718static void
2719amd64_protection_init()
2720{
2721	register long *kp, prot;
2722
2723#if 0
2724#define PG_NX (1ul << 63)
2725#else
2726#define PG_NX 0
2727#endif
2728
2729	kp = protection_codes;
2730	for (prot = 0; prot < 8; prot++) {
2731		switch (prot) {
2732		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2733		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2734			*kp++ = PG_NX;
2735			break;
2736		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2737		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2738			*kp++ = 0;
2739			break;
2740		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2741		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2742			*kp++ = PG_RW | PG_NX;
2743			break;
2744		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2745		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2746			*kp++ = PG_RW;
2747			break;
2748		}
2749	}
2750}
2751
2752/*
2753 * Map a set of physical memory pages into the kernel virtual
2754 * address space. Return a pointer to where it is mapped. This
2755 * routine is intended to be used for mapping device memory,
2756 * NOT real memory.
2757 */
2758void *
2759pmap_mapdev(pa, size)
2760	vm_paddr_t pa;
2761	vm_size_t size;
2762{
2763	vm_offset_t va, tmpva, offset;
2764
2765	/* If this fits within the direct map window, use it */
2766	if (pa < dmaplimit && (pa + size) < dmaplimit)
2767		return ((void *)PHYS_TO_DMAP(pa));
2768	offset = pa & PAGE_MASK;
2769	size = roundup(offset + size, PAGE_SIZE);
2770	va = kmem_alloc_nofault(kernel_map, size);
2771	if (!va)
2772		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2773	pa = pa & PG_FRAME;
2774	for (tmpva = va; size > 0; ) {
2775		pmap_kenter(tmpva, pa);
2776		size -= PAGE_SIZE;
2777		tmpva += PAGE_SIZE;
2778		pa += PAGE_SIZE;
2779	}
2780	pmap_invalidate_range(kernel_pmap, va, tmpva);
2781	return ((void *)(va + offset));
2782}
2783
2784void
2785pmap_unmapdev(va, size)
2786	vm_offset_t va;
2787	vm_size_t size;
2788{
2789	vm_offset_t base, offset, tmpva;
2790	pt_entry_t *pte;
2791
2792	/* If we gave a direct map region in pmap_mapdev, do nothing */
2793	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
2794		return;
2795	base = va & PG_FRAME;
2796	offset = va & PAGE_MASK;
2797	size = roundup(offset + size, PAGE_SIZE);
2798	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
2799		pte = vtopte(tmpva);
2800		pte_clear(pte);
2801	}
2802	pmap_invalidate_range(kernel_pmap, va, tmpva);
2803	kmem_free(kernel_map, base, size);
2804}
2805
2806/*
2807 * perform the pmap work for mincore
2808 */
2809int
2810pmap_mincore(pmap, addr)
2811	pmap_t pmap;
2812	vm_offset_t addr;
2813{
2814	pt_entry_t *ptep, pte;
2815	vm_page_t m;
2816	int val = 0;
2817
2818	ptep = pmap_pte(pmap, addr);
2819	if (ptep == 0) {
2820		return 0;
2821	}
2822
2823	if ((pte = *ptep) != 0) {
2824		vm_paddr_t pa;
2825
2826		val = MINCORE_INCORE;
2827		if ((pte & PG_MANAGED) == 0)
2828			return val;
2829
2830		pa = pte & PG_FRAME;
2831
2832		m = PHYS_TO_VM_PAGE(pa);
2833
2834		/*
2835		 * Modified by us
2836		 */
2837		if (pte & PG_M)
2838			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2839		else {
2840			/*
2841			 * Modified by someone else
2842			 */
2843			vm_page_lock_queues();
2844			if (m->dirty || pmap_is_modified(m))
2845				val |= MINCORE_MODIFIED_OTHER;
2846			vm_page_unlock_queues();
2847		}
2848		/*
2849		 * Referenced by us
2850		 */
2851		if (pte & PG_A)
2852			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2853		else {
2854			/*
2855			 * Referenced by someone else
2856			 */
2857			vm_page_lock_queues();
2858			if ((m->flags & PG_REFERENCED) ||
2859			    pmap_ts_referenced(m)) {
2860				val |= MINCORE_REFERENCED_OTHER;
2861				vm_page_flag_set(m, PG_REFERENCED);
2862			}
2863			vm_page_unlock_queues();
2864		}
2865	}
2866	return val;
2867}
2868
2869void
2870pmap_activate(struct thread *td)
2871{
2872	struct proc *p = td->td_proc;
2873	pmap_t	pmap;
2874	u_int64_t  cr3;
2875
2876	critical_enter();
2877	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2878	pmap->pm_active |= PCPU_GET(cpumask);
2879	cr3 = vtophys(pmap->pm_pml4);
2880	/* XXXKSE this is wrong.
2881	 * pmap_activate is for the current thread on the current cpu
2882	 */
2883	if (p->p_flag & P_SA) {
2884		/* Make sure all other cr3 entries are updated. */
2885		/* what if they are running?  XXXKSE (maybe abort them) */
2886		FOREACH_THREAD_IN_PROC(p, td) {
2887			td->td_pcb->pcb_cr3 = cr3;
2888		}
2889	} else {
2890		td->td_pcb->pcb_cr3 = cr3;
2891	}
2892	load_cr3(cr3);
2893	critical_exit();
2894}
2895
2896vm_offset_t
2897pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2898{
2899
2900	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
2901		return addr;
2902	}
2903
2904	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
2905	return addr;
2906}
2907