pmap.c revision 117206
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/amd64/amd64/pmap.c 117206 2003-07-03 20:18:02Z alc $
43 */
44/*-
45 * Copyright (c) 2003 Networks Associates Technology, Inc.
46 * All rights reserved.
47 *
48 * This software was developed for the FreeBSD Project by Jake Burkholder,
49 * Safeport Network Services, and Network Associates Laboratories, the
50 * Security Research Division of Network Associates, Inc. under
51 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
52 * CHATS research program.
53 *
54 * Redistribution and use in source and binary forms, with or without
55 * modification, are permitted provided that the following conditions
56 * are met:
57 * 1. Redistributions of source code must retain the above copyright
58 *    notice, this list of conditions and the following disclaimer.
59 * 2. Redistributions in binary form must reproduce the above copyright
60 *    notice, this list of conditions and the following disclaimer in the
61 *    documentation and/or other materials provided with the distribution.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 */
75
76/*
77 *	Manages physical address maps.
78 *
79 *	In addition to hardware address maps, this
80 *	module is called upon to provide software-use-only
81 *	maps which may or may not be stored in the same
82 *	form as hardware maps.  These pseudo-maps are
83 *	used to store intermediate results from copy
84 *	operations to and from address spaces.
85 *
86 *	Since the information managed by this module is
87 *	also stored by the logical address mapping module,
88 *	this module may throw away valid virtual-to-physical
89 *	mappings at almost any time.  However, invalidations
90 *	of virtual-to-physical mappings must be done as
91 *	requested.
92 *
93 *	In order to cope with hardware architectures which
94 *	make virtual-to-physical map invalidates expensive,
95 *	this module may delay invalidate or reduced protection
96 *	operations until such time as they are actually
97 *	necessary.  This module is given full information as
98 *	to which processors are currently using which maps,
99 *	and to when physical maps must be made correct.
100 */
101
102#include "opt_msgbuf.h"
103#include "opt_kstack_pages.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/kernel.h>
108#include <sys/lock.h>
109#include <sys/mman.h>
110#include <sys/msgbuf.h>
111#include <sys/mutex.h>
112#include <sys/proc.h>
113#include <sys/sx.h>
114#include <sys/user.h>
115#include <sys/vmmeter.h>
116#include <sys/sysctl.h>
117
118#include <vm/vm.h>
119#include <vm/vm_param.h>
120#include <vm/vm_kern.h>
121#include <vm/vm_page.h>
122#include <vm/vm_map.h>
123#include <vm/vm_object.h>
124#include <vm/vm_extern.h>
125#include <vm/vm_pageout.h>
126#include <vm/vm_pager.h>
127#include <vm/uma.h>
128#include <vm/uma_int.h>
129
130#include <machine/cpu.h>
131#include <machine/cputypes.h>
132#include <machine/md_var.h>
133#include <machine/specialreg.h>
134
135#define PMAP_KEEP_PDIRS
136#ifndef PMAP_SHPGPERPROC
137#define PMAP_SHPGPERPROC 200
138#endif
139
140#if defined(DIAGNOSTIC)
141#define PMAP_DIAGNOSTIC
142#endif
143
144#define MINPV 2048
145
146#if !defined(PMAP_DIAGNOSTIC)
147#define PMAP_INLINE __inline
148#else
149#define PMAP_INLINE
150#endif
151
152/*
153 * Given a map and a machine independent protection code,
154 * convert to a vax protection code.
155 */
156#define pte_prot(m, p)	(protection_codes[p])
157static pt_entry_t protection_codes[8];
158
159struct pmap kernel_pmap_store;
160LIST_HEAD(pmaplist, pmap);
161static struct pmaplist allpmaps;
162static struct mtx allpmaps_lock;
163
164vm_paddr_t avail_start;		/* PA of first available physical page */
165vm_paddr_t avail_end;		/* PA of last available physical page */
166vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
167vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
168static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
169
170static int nkpt;
171static int ndmpdp;
172static vm_paddr_t dmaplimit;
173vm_offset_t kernel_vm_end;
174
175static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
176static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
177static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
178u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
179
180static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
181static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
182
183/*
184 * Data for the pv entry allocation mechanism
185 */
186static uma_zone_t pvzone;
187static struct vm_object pvzone_obj;
188static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
189int pmap_pagedaemon_waken;
190
191/*
192 * All those kernel PT submaps that BSD is so fond of
193 */
194pt_entry_t *CMAP1 = 0;
195static pt_entry_t *ptmmap;
196caddr_t CADDR1 = 0, ptvmmap = 0;
197static pt_entry_t *msgbufmap;
198struct msgbuf *msgbufp = 0;
199
200/*
201 * Crashdump maps.
202 */
203static pt_entry_t *pt_crashdumpmap;
204static caddr_t crashdumpmap;
205
206static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
207static pv_entry_t get_pv_entry(void);
208static void	amd64_protection_init(void);
209static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
210
211static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
212static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
213static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
214					vm_offset_t va);
215static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
216		vm_page_t mpte, vm_page_t m);
217
218static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
219
220static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex);
221static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
222static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
223static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
224static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
225
226CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
227CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
228
229/*
230 * Move the kernel virtual free pointer to the next
231 * 2MB.  This is used to help improve performance
232 * by using a large (2MB) page for much of the kernel
233 * (.text, .data, .bss)
234 */
235static vm_offset_t
236pmap_kmem_choose(vm_offset_t addr)
237{
238	vm_offset_t newaddr = addr;
239
240	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
241	return newaddr;
242}
243
244/********************/
245/* Inline functions */
246/********************/
247
248/* Return a non-clipped PD index for a given VA */
249static __inline vm_pindex_t
250pmap_pde_pindex(vm_offset_t va)
251{
252	return va >> PDRSHIFT;
253}
254
255
256/* Return various clipped indexes for a given VA */
257static __inline vm_pindex_t
258pmap_pte_index(vm_offset_t va)
259{
260
261	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
262}
263
264static __inline vm_pindex_t
265pmap_pde_index(vm_offset_t va)
266{
267
268	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
269}
270
271static __inline vm_pindex_t
272pmap_pdpe_index(vm_offset_t va)
273{
274
275	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
276}
277
278static __inline vm_pindex_t
279pmap_pml4e_index(vm_offset_t va)
280{
281
282	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
283}
284
285/* Return a pointer to the PML4 slot that corresponds to a VA */
286static __inline pml4_entry_t *
287pmap_pml4e(pmap_t pmap, vm_offset_t va)
288{
289
290	if (!pmap)
291		return NULL;
292	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
293}
294
295/* Return a pointer to the PDP slot that corresponds to a VA */
296static __inline pdp_entry_t *
297pmap_pdpe(pmap_t pmap, vm_offset_t va)
298{
299	pml4_entry_t *pml4e;
300	pdp_entry_t *pdpe;
301
302	pml4e = pmap_pml4e(pmap, va);
303	if (pml4e == NULL || (*pml4e & PG_V) == 0)
304		return NULL;
305	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
306	return (&pdpe[pmap_pdpe_index(va)]);
307}
308
309/* Return a pointer to the PD slot that corresponds to a VA */
310static __inline pd_entry_t *
311pmap_pde(pmap_t pmap, vm_offset_t va)
312{
313	pdp_entry_t *pdpe;
314	pd_entry_t *pde;
315
316	pdpe = pmap_pdpe(pmap, va);
317	if (pdpe == NULL || (*pdpe & PG_V) == 0)
318		 return NULL;
319	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
320	return (&pde[pmap_pde_index(va)]);
321}
322
323/* Return a pointer to the PT slot that corresponds to a VA */
324static __inline pt_entry_t *
325pmap_pte(pmap_t pmap, vm_offset_t va)
326{
327	pd_entry_t *pde;
328	pt_entry_t *pte;
329
330	pde = pmap_pde(pmap, va);
331	if (pde == NULL || (*pde & PG_V) == 0)
332		return NULL;
333	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
334	return (&pte[pmap_pte_index(va)]);
335}
336
337
338PMAP_INLINE pt_entry_t *
339vtopte(vm_offset_t va)
340{
341	u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
342
343	return (PTmap + (amd64_btop(va) & mask));
344}
345
346static u_int64_t
347allocpages(int n)
348{
349	u_int64_t ret;
350
351	ret = avail_start;
352	bzero((void *)ret, n * PAGE_SIZE);
353	avail_start += n * PAGE_SIZE;
354	return (ret);
355}
356
357static void
358create_pagetables(void)
359{
360	int i;
361
362	/* Allocate pages */
363	KPTphys = allocpages(NKPT);
364	KPML4phys = allocpages(1);
365	KPDPphys = allocpages(NKPML4E);
366	KPDphys = allocpages(NKPDPE);
367
368	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
369	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
370		ndmpdp = 4;
371	DMPDPphys = allocpages(NDMPML4E);
372	DMPDphys = allocpages(ndmpdp);
373	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
374
375	/* Fill in the underlying page table pages */
376	/* Read-only from zero to physfree */
377	/* XXX not fully used, underneath 2M pages */
378	for (i = 0; (i << PAGE_SHIFT) < avail_start; i++) {
379		((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
380		((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V;
381	}
382
383	/* Now map the page tables at their location within PTmap */
384	for (i = 0; i < NKPT; i++) {
385		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
386		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
387	}
388
389#if 0
390	/* Map from zero to end of allocations under 2M pages */
391	/* This replaces some of the KPTphys entries above */
392	for (i = 0; (i << PDRSHIFT) < avail_start; i++) {
393		((pd_entry_t *)KPDphys)[i] = i << PDRSHIFT;
394		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V | PG_PS;
395	}
396#endif
397
398	/* And connect up the PD to the PDP */
399	for (i = 0; i < NKPDPE; i++) {
400		((pdp_entry_t *)KPDPphys)[i + KPDPI] = KPDphys + (i << PAGE_SHIFT);
401		((pdp_entry_t *)KPDPphys)[i + KPDPI] |= PG_RW | PG_V | PG_U;
402	}
403
404
405	/* Now set up the direct map space using 2MB pages */
406	for (i = 0; i < NPDEPG * ndmpdp; i++) {
407		((pd_entry_t *)DMPDphys)[i] = (vm_paddr_t)i << PDRSHIFT;
408		((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS;
409	}
410
411	/* And the direct map space's PDP */
412	for (i = 0; i < ndmpdp; i++) {
413		((pdp_entry_t *)DMPDPphys)[i] = DMPDphys + (i << PAGE_SHIFT);
414		((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
415	}
416
417	/* And recursively map PML4 to itself in order to get PTmap */
418	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
419	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
420
421	/* Connect the Direct Map slot up to the PML4 */
422	((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
423	((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
424
425	/* Connect the KVA slot up to the PML4 */
426	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
427	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
428}
429
430/*
431 *	Bootstrap the system enough to run with virtual memory.
432 *
433 *	On amd64 this is called after mapping has already been enabled
434 *	and just syncs the pmap module with what has already been done.
435 *	[We can't call it easily with mapping off since the kernel is not
436 *	mapped with PA == VA, hence we would have to relocate every address
437 *	from the linked base (virtual) address "KERNBASE" to the actual
438 *	(physical) address starting relative to 0]
439 */
440void
441pmap_bootstrap(firstaddr)
442	vm_paddr_t *firstaddr;
443{
444	vm_offset_t va;
445	pt_entry_t *pte;
446
447	avail_start = *firstaddr;
448
449	/*
450	 * Create an initial set of page tables to run the kernel in.
451	 */
452	create_pagetables();
453	*firstaddr = avail_start;
454
455	virtual_avail = (vm_offset_t) KERNBASE + avail_start;
456	virtual_avail = pmap_kmem_choose(virtual_avail);
457
458	virtual_end = VM_MAX_KERNEL_ADDRESS;
459
460
461	/* XXX do %cr0 as well */
462	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
463	load_cr3(KPML4phys);
464
465	/*
466	 * Initialize protection array.
467	 */
468	amd64_protection_init();
469
470	/*
471	 * Initialize the kernel pmap (which is statically allocated).
472	 */
473	kernel_pmap->pm_pml4 = (pdp_entry_t *) (KERNBASE + KPML4phys);
474	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
475	TAILQ_INIT(&kernel_pmap->pm_pvlist);
476	LIST_INIT(&allpmaps);
477	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
478	mtx_lock_spin(&allpmaps_lock);
479	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
480	mtx_unlock_spin(&allpmaps_lock);
481	nkpt = NKPT;
482
483	/*
484	 * Reserve some special page table entries/VA space for temporary
485	 * mapping of pages.
486	 */
487#define	SYSMAP(c, p, v, n)	\
488	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
489
490	va = virtual_avail;
491	pte = vtopte(va);
492
493	/*
494	 * CMAP1 is only used for the memory test.
495	 */
496	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
497
498	/*
499	 * Crashdump maps.
500	 */
501	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
502
503	/*
504	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
505	 * XXX ptmmap is not used.
506	 */
507	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
508
509	/*
510	 * msgbufp is used to map the system message buffer.
511	 * XXX msgbufmap is not used.
512	 */
513	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
514	       atop(round_page(MSGBUF_SIZE)))
515
516	virtual_avail = va;
517
518	*CMAP1 = 0;
519
520	invltlb();
521}
522
523static void *
524pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
525{
526	*flags = UMA_SLAB_PRIV;
527	return (void *)kmem_alloc(kernel_map, bytes);
528}
529
530void *
531uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
532{
533	static vm_pindex_t colour;
534	vm_page_t m;
535	int pflags;
536	void *va;
537
538	*flags = UMA_SLAB_PRIV;
539
540	if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
541		pflags = VM_ALLOC_INTERRUPT;
542	else
543		pflags = VM_ALLOC_SYSTEM;
544
545	if (wait & M_ZERO)
546		pflags |= VM_ALLOC_ZERO;
547
548	for (;;) {
549		m = vm_page_alloc(NULL, colour++, pflags | VM_ALLOC_NOOBJ);
550		if (m == NULL) {
551			if (wait & M_NOWAIT)
552				return (NULL);
553			else
554				VM_WAIT;
555		} else
556			break;
557	}
558
559	va = (void *)PHYS_TO_DMAP(m->phys_addr);
560	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
561		pagezero(va);
562	return (va);
563}
564
565void
566uma_small_free(void *mem, int size, u_int8_t flags)
567{
568	vm_page_t m;
569
570	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)mem));
571	vm_page_lock_queues();
572	vm_page_free(m);
573	vm_page_unlock_queues();
574}
575
576/*
577 *	Initialize the pmap module.
578 *	Called by vm_init, to initialize any structures that the pmap
579 *	system needs to map virtual memory.
580 *	pmap_init has been enhanced to support in a fairly consistant
581 *	way, discontiguous physical memory.
582 */
583void
584pmap_init(phys_start, phys_end)
585	vm_paddr_t phys_start, phys_end;
586{
587	int i;
588	int initial_pvs;
589
590	/*
591	 * Allocate memory for random pmap data structures.  Includes the
592	 * pv_head_table.
593	 */
594
595	for(i = 0; i < vm_page_array_size; i++) {
596		vm_page_t m;
597
598		m = &vm_page_array[i];
599		TAILQ_INIT(&m->md.pv_list);
600		m->md.pv_list_count = 0;
601	}
602
603	/*
604	 * init the pv free list
605	 */
606	initial_pvs = vm_page_array_size;
607	if (initial_pvs < MINPV)
608		initial_pvs = MINPV;
609	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
610	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
611	uma_zone_set_allocf(pvzone, pmap_pv_allocf);
612	uma_prealloc(pvzone, initial_pvs);
613
614	/*
615	 * Now it is safe to enable pv_table recording.
616	 */
617	pmap_initialized = TRUE;
618}
619
620/*
621 * Initialize the address space (zone) for the pv_entries.  Set a
622 * high water mark so that the system can recover from excessive
623 * numbers of pv entries.
624 */
625void
626pmap_init2()
627{
628	int shpgperproc = PMAP_SHPGPERPROC;
629
630	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
631	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
632	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
633	pv_entry_high_water = 9 * (pv_entry_max / 10);
634	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
635}
636
637
638/***************************************************
639 * Low level helper routines.....
640 ***************************************************/
641
642#if defined(PMAP_DIAGNOSTIC)
643
644/*
645 * This code checks for non-writeable/modified pages.
646 * This should be an invalid condition.
647 */
648static int
649pmap_nw_modified(pt_entry_t ptea)
650{
651	int pte;
652
653	pte = (int) ptea;
654
655	if ((pte & (PG_M|PG_RW)) == PG_M)
656		return 1;
657	else
658		return 0;
659}
660#endif
661
662
663/*
664 * this routine defines the region(s) of memory that should
665 * not be tested for the modified bit.
666 */
667static PMAP_INLINE int
668pmap_track_modified(vm_offset_t va)
669{
670	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
671		return 1;
672	else
673		return 0;
674}
675
676/*
677 * Normal invalidation functions.
678 * We inline these within pmap.c for speed.
679 */
680PMAP_INLINE void
681pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
682{
683
684	if (pmap == kernel_pmap || pmap->pm_active)
685		invlpg(va);
686}
687
688PMAP_INLINE void
689pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
690{
691	vm_offset_t addr;
692
693	if (pmap == kernel_pmap || pmap->pm_active)
694		for (addr = sva; addr < eva; addr += PAGE_SIZE)
695			invlpg(addr);
696}
697
698PMAP_INLINE void
699pmap_invalidate_all(pmap_t pmap)
700{
701
702	if (pmap == kernel_pmap || pmap->pm_active)
703		invltlb();
704}
705
706/*
707 * Are we current address space or kernel?
708 */
709static __inline int
710pmap_is_current(pmap_t pmap)
711{
712	return (pmap == kernel_pmap ||
713	    (pmap->pm_pml4[PML4PML4I] & PG_FRAME) == (PML4pml4e[0] & PG_FRAME));
714}
715
716/*
717 *	Routine:	pmap_extract
718 *	Function:
719 *		Extract the physical page address associated
720 *		with the given map/virtual_address pair.
721 */
722vm_paddr_t
723pmap_extract(pmap, va)
724	register pmap_t pmap;
725	vm_offset_t va;
726{
727	vm_paddr_t rtval;
728	pt_entry_t *pte;
729	pd_entry_t pde, *pdep;
730
731	if (pmap == 0)
732		return 0;
733	pdep = pmap_pde(pmap, va);
734	if (pdep) {
735		pde = *pdep;
736		if (pde) {
737			if ((pde & PG_PS) != 0) {
738				rtval = (pde & ~PDRMASK) | (va & PDRMASK);
739				return rtval;
740			}
741			pte = pmap_pte(pmap, va);
742			rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
743			return rtval;
744		}
745	}
746	return 0;
747
748}
749
750vm_paddr_t
751pmap_kextract(vm_offset_t va)
752{
753	pd_entry_t *pde;
754	vm_paddr_t pa;
755
756	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
757		pa = DMAP_TO_PHYS(va);
758	} else {
759		pde = pmap_pde(kernel_pmap, va);
760		if (*pde & PG_PS) {
761			pa = (*pde & ~(NBPDR - 1)) | (va & (NBPDR - 1));
762		} else {
763			pa = *vtopte(va);
764			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
765		}
766	}
767	return pa;
768}
769
770/***************************************************
771 * Low level mapping routines.....
772 ***************************************************/
773
774/*
775 * Add a wired page to the kva.
776 * Note: not SMP coherent.
777 */
778PMAP_INLINE void
779pmap_kenter(vm_offset_t va, vm_paddr_t pa)
780{
781	pt_entry_t *pte;
782
783	pte = vtopte(va);
784	pte_store(pte, pa | PG_RW | PG_V | PG_G);
785}
786
787/*
788 * Remove a page from the kernel pagetables.
789 * Note: not SMP coherent.
790 */
791PMAP_INLINE void
792pmap_kremove(vm_offset_t va)
793{
794	pt_entry_t *pte;
795
796	pte = vtopte(va);
797	pte_clear(pte);
798}
799
800/*
801 *	Used to map a range of physical addresses into kernel
802 *	virtual address space.
803 *
804 *	The value passed in '*virt' is a suggested virtual address for
805 *	the mapping. Architectures which can support a direct-mapped
806 *	physical to virtual region can return the appropriate address
807 *	within that region, leaving '*virt' unchanged. Other
808 *	architectures should map the pages starting at '*virt' and
809 *	update '*virt' with the first usable address after the mapped
810 *	region.
811 */
812vm_offset_t
813pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
814{
815	return PHYS_TO_DMAP(start);
816}
817
818
819/*
820 * Add a list of wired pages to the kva
821 * this routine is only used for temporary
822 * kernel mappings that do not need to have
823 * page modification or references recorded.
824 * Note that old mappings are simply written
825 * over.  The page *must* be wired.
826 * Note: SMP coherent.  Uses a ranged shootdown IPI.
827 */
828void
829pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
830{
831	vm_offset_t va;
832
833	va = sva;
834	while (count-- > 0) {
835		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
836		va += PAGE_SIZE;
837		m++;
838	}
839	pmap_invalidate_range(kernel_pmap, sva, va);
840}
841
842/*
843 * This routine tears out page mappings from the
844 * kernel -- it is meant only for temporary mappings.
845 * Note: SMP coherent.  Uses a ranged shootdown IPI.
846 */
847void
848pmap_qremove(vm_offset_t sva, int count)
849{
850	vm_offset_t va;
851
852	va = sva;
853	while (count-- > 0) {
854		pmap_kremove(va);
855		va += PAGE_SIZE;
856	}
857	pmap_invalidate_range(kernel_pmap, sva, va);
858}
859
860static vm_page_t
861pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
862{
863	vm_page_t m;
864
865retry:
866	m = vm_page_lookup(object, pindex);
867	if (m != NULL) {
868		vm_page_lock_queues();
869		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
870			goto retry;
871		vm_page_unlock_queues();
872	}
873	return m;
874}
875
876/***************************************************
877 * Page table page management routines.....
878 ***************************************************/
879
880/*
881 * This routine unholds page table pages, and if the hold count
882 * drops to zero, then it decrements the wire count.
883 */
884static int
885_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
886{
887
888	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
889		vm_page_lock_queues();
890
891	if (m->hold_count == 0) {
892		vm_offset_t pteva;
893		/*
894		 * unmap the page table page
895		 */
896		if (m->pindex >= (NUPDE + NUPDPE)) {
897			/* PDP page */
898			pml4_entry_t *pml4;
899			pml4 = pmap_pml4e(pmap, va);
900			pteva = (vm_offset_t) PDPmap + amd64_ptob(m->pindex - (NUPDE + NUPDPE));
901			*pml4 = 0;
902		} else if (m->pindex >= NUPDE) {
903			/* PD page */
904			pdp_entry_t *pdp;
905			pdp = pmap_pdpe(pmap, va);
906			pteva = (vm_offset_t) PDmap + amd64_ptob(m->pindex - NUPDE);
907			*pdp = 0;
908		} else {
909			/* PTE page */
910			pd_entry_t *pd;
911			pd = pmap_pde(pmap, va);
912			pteva = (vm_offset_t) PTmap + amd64_ptob(m->pindex);
913			*pd = 0;
914		}
915		--pmap->pm_stats.resident_count;
916		if (m->pindex < NUPDE) {
917			/* Unhold the PD page */
918			vm_page_t pdpg;
919			pdpg = vm_page_lookup(pmap->pm_pteobj, NUPDE + pmap_pdpe_index(va));
920			while (vm_page_sleep_if_busy(pdpg, FALSE, "pulook"))
921				vm_page_lock_queues();
922			vm_page_unhold(pdpg);
923			if (pdpg->hold_count == 0)
924				_pmap_unwire_pte_hold(pmap, va, pdpg);
925		}
926		if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
927			/* Unhold the PDP page */
928			vm_page_t pdppg;
929			pdppg = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + pmap_pml4e_index(va));
930			while (vm_page_sleep_if_busy(pdppg, FALSE, "pulooK"))
931				vm_page_lock_queues();
932			vm_page_unhold(pdppg);
933			if (pdppg->hold_count == 0)
934				_pmap_unwire_pte_hold(pmap, va, pdppg);
935		}
936		if (pmap_is_current(pmap)) {
937			/*
938			 * Do an invltlb to make the invalidated mapping
939			 * take effect immediately.
940			 */
941			pmap_invalidate_page(pmap, pteva);
942		}
943
944		/*
945		 * If the page is finally unwired, simply free it.
946		 */
947		--m->wire_count;
948		if (m->wire_count == 0) {
949			vm_page_busy(m);
950			vm_page_free_zero(m);
951			atomic_subtract_int(&cnt.v_wire_count, 1);
952		}
953		return 1;
954	}
955	return 0;
956}
957
958static PMAP_INLINE int
959pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
960{
961	vm_page_unhold(m);
962	if (m->hold_count == 0)
963		return _pmap_unwire_pte_hold(pmap, va, m);
964	else
965		return 0;
966}
967
968/*
969 * After removing a page table entry, this routine is used to
970 * conditionally free the page, and manage the hold/wire counts.
971 */
972static int
973pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
974{
975	vm_pindex_t ptepindex;
976
977	if (va >= VM_MAXUSER_ADDRESS)
978		return 0;
979
980	if (mpte == NULL) {
981		ptepindex = pmap_pde_pindex(va);
982		if (pmap->pm_pteobj->root &&
983		    pmap->pm_pteobj->root->pindex == ptepindex) {
984			mpte = pmap->pm_pteobj->root;
985		} else {
986			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
987			    vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
988				vm_page_lock_queues();
989		}
990	}
991
992	return pmap_unwire_pte_hold(pmap, va, mpte);
993}
994
995void
996pmap_pinit0(pmap)
997	struct pmap *pmap;
998{
999
1000	pmap->pm_pml4 = (pml4_entry_t *)(KERNBASE + KPML4phys);
1001	pmap->pm_active = 0;
1002	TAILQ_INIT(&pmap->pm_pvlist);
1003	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1004	mtx_lock_spin(&allpmaps_lock);
1005	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1006	mtx_unlock_spin(&allpmaps_lock);
1007}
1008
1009/*
1010 * Initialize a preallocated and zeroed pmap structure,
1011 * such as one in a vmspace structure.
1012 */
1013void
1014pmap_pinit(pmap)
1015	register struct pmap *pmap;
1016{
1017	vm_page_t pml4pg;
1018
1019	/*
1020	 * allocate object for the ptes
1021	 */
1022	if (pmap->pm_pteobj == NULL)
1023		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + NUPML4E + 1);
1024
1025	/*
1026	 * allocate the page directory page
1027	 */
1028	pml4pg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + NUPML4E,
1029	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1030	vm_page_lock_queues();
1031	vm_page_flag_clear(pml4pg, PG_BUSY);
1032	pml4pg->valid = VM_PAGE_BITS_ALL;
1033	vm_page_unlock_queues();
1034
1035	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
1036
1037	if ((pml4pg->flags & PG_ZERO) == 0)
1038		bzero(pmap->pm_pml4, PAGE_SIZE);
1039
1040	mtx_lock_spin(&allpmaps_lock);
1041	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1042	mtx_unlock_spin(&allpmaps_lock);
1043
1044	/* Wire in kernel global address entries. */
1045	pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1046	pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
1047
1048	/* install self-referential address mapping entry(s) */
1049	pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | PG_V | PG_RW | PG_A | PG_M;
1050
1051	pmap->pm_active = 0;
1052	TAILQ_INIT(&pmap->pm_pvlist);
1053	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1054}
1055
1056/*
1057 * Wire in kernel global address entries.  To avoid a race condition
1058 * between pmap initialization and pmap_growkernel, this procedure
1059 * should be called after the vmspace is attached to the process
1060 * but before this pmap is activated.
1061 */
1062void
1063pmap_pinit2(pmap)
1064	struct pmap *pmap;
1065{
1066	/* XXX: Remove this stub when no longer called */
1067}
1068
1069/*
1070 * this routine is called if the page table page is not
1071 * mapped correctly.
1072 */
1073static vm_page_t
1074_pmap_allocpte(pmap, ptepindex)
1075	pmap_t	pmap;
1076	vm_pindex_t ptepindex;
1077{
1078	vm_page_t m, pdppg, pdpg;
1079
1080	/*
1081	 * Find or fabricate a new pagetable page
1082	 */
1083	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1084	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1085
1086	KASSERT(m->queue == PQ_NONE,
1087		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1088
1089	/*
1090	 * Increment the hold count for the page table page
1091	 * (denoting a new mapping.)
1092	 */
1093	m->hold_count++;
1094
1095	/*
1096	 * Map the pagetable page into the process address space, if
1097	 * it isn't already there.
1098	 */
1099
1100	pmap->pm_stats.resident_count++;
1101
1102	if (ptepindex >= (NUPDE + NUPDPE)) {
1103		pml4_entry_t *pml4;
1104		vm_pindex_t pml4index;
1105
1106		/* Wire up a new PDPE page */
1107		pml4index = ptepindex - (NUPDE + NUPDPE);
1108		pml4 = &pmap->pm_pml4[pml4index];
1109		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1110
1111	} else if (ptepindex >= NUPDE) {
1112		vm_pindex_t pml4index;
1113		vm_pindex_t pdpindex;
1114		pml4_entry_t *pml4;
1115		pdp_entry_t *pdp;
1116
1117		/* Wire up a new PDE page */
1118		pdpindex = ptepindex - NUPDE;
1119		pml4index = pdpindex >> NPML4EPGSHIFT;
1120
1121		pml4 = &pmap->pm_pml4[pml4index];
1122		if ((*pml4 & PG_V) == 0) {
1123			/* Have to allocate a new pdp, recurse */
1124			_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index);
1125		} else {
1126			/* Add reference to pdp page */
1127			pdppg = pmap_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + pml4index);
1128			pdppg->hold_count++;
1129		}
1130		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1131
1132		/* Now find the pdp page */
1133		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1134		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1135
1136	} else {
1137		vm_pindex_t pml4index;
1138		vm_pindex_t pdpindex;
1139		pml4_entry_t *pml4;
1140		pdp_entry_t *pdp;
1141		pd_entry_t *pd;
1142
1143		/* Wire up a new PTE page */
1144		pdpindex = ptepindex >> NPDPEPGSHIFT;
1145		pml4index = pdpindex >> NPML4EPGSHIFT;
1146
1147		/* First, find the pdp and check that its valid. */
1148		pml4 = &pmap->pm_pml4[pml4index];
1149		if ((*pml4 & PG_V) == 0) {
1150			/* Have to allocate a new pd, recurse */
1151			_pmap_allocpte(pmap, NUPDE + pdpindex);
1152			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1153			pdp = &pdp[pdpindex];
1154		} else {
1155			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1156			pdp = &pdp[pdpindex];
1157			if ((*pdp & PG_V) == 0) {
1158				/* Have to allocate a new pd, recurse */
1159				_pmap_allocpte(pmap, NUPDE + pdpindex);
1160			} else {
1161				/* Add reference to the pd page */
1162				pdpg = pmap_page_lookup(pmap->pm_pteobj, NUPDE + pdpindex);
1163				pdpg->hold_count++;
1164			}
1165		}
1166		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
1167
1168		/* Now we know where the page directory page is */
1169		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1170		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1171	}
1172
1173	/*
1174	 * Try to use the new mapping, but if we cannot, then
1175	 * do it with the routine that maps the page explicitly.
1176	 */
1177	if ((m->flags & PG_ZERO) == 0)
1178		pmap_zero_page(m);
1179	vm_page_lock_queues();
1180	m->valid = VM_PAGE_BITS_ALL;
1181	vm_page_flag_clear(m, PG_ZERO);
1182	vm_page_wakeup(m);
1183	vm_page_unlock_queues();
1184
1185	return m;
1186}
1187
1188static vm_page_t
1189pmap_allocpte(pmap_t pmap, vm_offset_t va)
1190{
1191	vm_pindex_t ptepindex;
1192	pd_entry_t *pd;
1193	vm_page_t m;
1194
1195	/*
1196	 * Calculate pagetable page index
1197	 */
1198	ptepindex = pmap_pde_pindex(va);
1199
1200	/*
1201	 * Get the page directory entry
1202	 */
1203	pd = pmap_pde(pmap, va);
1204
1205	/*
1206	 * This supports switching from a 2MB page to a
1207	 * normal 4K page.
1208	 */
1209	if (pd != 0 && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
1210		*pd = 0;
1211		pd = 0;
1212		pmap_invalidate_all(kernel_pmap);
1213	}
1214
1215	/*
1216	 * If the page table page is mapped, we just increment the
1217	 * hold count, and activate it.
1218	 */
1219	if (pd != 0 && (*pd & PG_V) != 0) {
1220		/*
1221		 * In order to get the page table page, try the
1222		 * hint first.
1223		 */
1224		if (pmap->pm_pteobj->root &&
1225			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1226			m = pmap->pm_pteobj->root;
1227		} else {
1228			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1229		}
1230		m->hold_count++;
1231		return m;
1232	}
1233	/*
1234	 * Here if the pte page isn't mapped, or if it has been deallocated.
1235	 */
1236	m = _pmap_allocpte(pmap, ptepindex);
1237	return m;
1238}
1239
1240
1241/***************************************************
1242* Pmap allocation/deallocation routines.
1243 ***************************************************/
1244
1245/*
1246 * Release any resources held by the given physical map.
1247 * Called when a pmap initialized by pmap_pinit is being released.
1248 * Should only be called if the map contains no valid mappings.
1249 */
1250void
1251pmap_release(pmap_t pmap)
1252{
1253	vm_object_t object;
1254	vm_page_t m;
1255
1256	object = pmap->pm_pteobj;
1257
1258	KASSERT(object->ref_count == 1,
1259	    ("pmap_release: pteobj reference count %d != 1",
1260	    object->ref_count));
1261	KASSERT(pmap->pm_stats.resident_count == 0,
1262	    ("pmap_release: pmap resident count %ld != 0",
1263	    pmap->pm_stats.resident_count));
1264
1265	mtx_lock_spin(&allpmaps_lock);
1266	LIST_REMOVE(pmap, pm_list);
1267	mtx_unlock_spin(&allpmaps_lock);
1268
1269	vm_page_lock_queues();
1270	while ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1271		m->wire_count--;
1272		atomic_subtract_int(&cnt.v_wire_count, 1);
1273		vm_page_busy(m);
1274		vm_page_free(m);
1275	}
1276	KASSERT(TAILQ_EMPTY(&object->memq),
1277	    ("pmap_release: leaking page table pages"));
1278	vm_page_unlock_queues();
1279}
1280
1281static int
1282kvm_size(SYSCTL_HANDLER_ARGS)
1283{
1284	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1285
1286	return sysctl_handle_long(oidp, &ksize, 0, req);
1287}
1288SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1289    0, 0, kvm_size, "IU", "Size of KVM");
1290
1291static int
1292kvm_free(SYSCTL_HANDLER_ARGS)
1293{
1294	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1295
1296	return sysctl_handle_long(oidp, &kfree, 0, req);
1297}
1298SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1299    0, 0, kvm_free, "IU", "Amount of KVM free");
1300
1301/*
1302 * grow the number of kernel page table entries, if needed
1303 */
1304void
1305pmap_growkernel(vm_offset_t addr)
1306{
1307	int s;
1308	vm_paddr_t paddr;
1309	vm_page_t nkpg;
1310	pd_entry_t *pde, newpdir;
1311	pdp_entry_t newpdp;
1312
1313	s = splhigh();
1314	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1315	if (kernel_vm_end == 0) {
1316		kernel_vm_end = KERNBASE;
1317		nkpt = 0;
1318		while ((*pmap_pde(kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1319			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1320			nkpt++;
1321		}
1322	}
1323	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1324	while (kernel_vm_end < addr) {
1325		pde = pmap_pde(kernel_pmap, kernel_vm_end);
1326		if (pde == NULL) {
1327			/* We need a new PDP entry */
1328			nkpg = vm_page_alloc(NULL, nkpt,
1329			    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1330			if (!nkpg)
1331				panic("pmap_growkernel: no memory to grow kernel");
1332			pmap_zero_page(nkpg);
1333			paddr = VM_PAGE_TO_PHYS(nkpg);
1334			newpdp = (pdp_entry_t)
1335				(paddr | PG_V | PG_RW | PG_A | PG_M);
1336			*pmap_pdpe(kernel_pmap, kernel_vm_end) = newpdp;
1337			continue; /* try again */
1338		}
1339		if ((*pde & PG_V) != 0) {
1340			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1341			continue;
1342		}
1343
1344		/*
1345		 * This index is bogus, but out of the way
1346		 */
1347		nkpg = vm_page_alloc(NULL, nkpt,
1348		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1349		if (!nkpg)
1350			panic("pmap_growkernel: no memory to grow kernel");
1351
1352		nkpt++;
1353
1354		pmap_zero_page(nkpg);
1355		paddr = VM_PAGE_TO_PHYS(nkpg);
1356		newpdir = (pd_entry_t) (paddr | PG_V | PG_RW | PG_A | PG_M);
1357		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
1358
1359		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1360	}
1361	splx(s);
1362}
1363
1364
1365/***************************************************
1366 * page management routines.
1367 ***************************************************/
1368
1369/*
1370 * free the pv_entry back to the free list
1371 */
1372static PMAP_INLINE void
1373free_pv_entry(pv_entry_t pv)
1374{
1375	pv_entry_count--;
1376	uma_zfree(pvzone, pv);
1377}
1378
1379/*
1380 * get a new pv_entry, allocating a block from the system
1381 * when needed.
1382 * the memory allocation is performed bypassing the malloc code
1383 * because of the possibility of allocations at interrupt time.
1384 */
1385static pv_entry_t
1386get_pv_entry(void)
1387{
1388	pv_entry_count++;
1389	if (pv_entry_high_water &&
1390		(pv_entry_count > pv_entry_high_water) &&
1391		(pmap_pagedaemon_waken == 0)) {
1392		pmap_pagedaemon_waken = 1;
1393		wakeup (&vm_pages_needed);
1394	}
1395	return uma_zalloc(pvzone, M_NOWAIT);
1396}
1397
1398/*
1399 * If it is the first entry on the list, it is actually
1400 * in the header and we must copy the following entry up
1401 * to the header.  Otherwise we must search the list for
1402 * the entry.  In either case we free the now unused entry.
1403 */
1404
1405static int
1406pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1407{
1408	pv_entry_t pv;
1409	int rtval;
1410	int s;
1411
1412	s = splvm();
1413	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1414	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1415		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1416			if (pmap == pv->pv_pmap && va == pv->pv_va)
1417				break;
1418		}
1419	} else {
1420		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1421			if (va == pv->pv_va)
1422				break;
1423		}
1424	}
1425
1426	rtval = 0;
1427	if (pv) {
1428		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1429		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1430		m->md.pv_list_count--;
1431		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1432			vm_page_flag_clear(m, PG_WRITEABLE);
1433
1434		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1435		free_pv_entry(pv);
1436	}
1437
1438	splx(s);
1439	return rtval;
1440}
1441
1442/*
1443 * Create a pv entry for page at pa for
1444 * (pmap, va).
1445 */
1446static void
1447pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1448{
1449
1450	int s;
1451	pv_entry_t pv;
1452
1453	s = splvm();
1454	pv = get_pv_entry();
1455	pv->pv_va = va;
1456	pv->pv_pmap = pmap;
1457	pv->pv_ptem = mpte;
1458
1459	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1460	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1461	m->md.pv_list_count++;
1462
1463	splx(s);
1464}
1465
1466/*
1467 * pmap_remove_pte: do the things to unmap a page in a process
1468 */
1469static int
1470pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1471{
1472	pt_entry_t oldpte;
1473	vm_page_t m;
1474
1475	oldpte = pte_load_clear(ptq);
1476	if (oldpte & PG_W)
1477		pmap->pm_stats.wired_count -= 1;
1478	/*
1479	 * Machines that don't support invlpg, also don't support
1480	 * PG_G.
1481	 */
1482	if (oldpte & PG_G)
1483		pmap_invalidate_page(kernel_pmap, va);
1484	pmap->pm_stats.resident_count -= 1;
1485	if (oldpte & PG_MANAGED) {
1486		m = PHYS_TO_VM_PAGE(oldpte);
1487		if (oldpte & PG_M) {
1488#if defined(PMAP_DIAGNOSTIC)
1489			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1490				printf(
1491	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1492				    va, oldpte);
1493			}
1494#endif
1495			if (pmap_track_modified(va))
1496				vm_page_dirty(m);
1497		}
1498		if (oldpte & PG_A)
1499			vm_page_flag_set(m, PG_REFERENCED);
1500		return pmap_remove_entry(pmap, m, va);
1501	} else {
1502		return pmap_unuse_pt(pmap, va, NULL);
1503	}
1504
1505	return 0;
1506}
1507
1508/*
1509 * Remove a single page from a process address space
1510 */
1511static void
1512pmap_remove_page(pmap_t pmap, vm_offset_t va)
1513{
1514	pt_entry_t *pte;
1515
1516	pte = pmap_pte(pmap, va);
1517	if (pte == NULL || (*pte & PG_V) == 0)
1518		return;
1519	pmap_remove_pte(pmap, pte, va);
1520	pmap_invalidate_page(pmap, va);
1521}
1522
1523/*
1524 *	Remove the given range of addresses from the specified map.
1525 *
1526 *	It is assumed that the start and end are properly
1527 *	rounded to the page size.
1528 */
1529void
1530pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1531{
1532	vm_offset_t pdnxt;
1533	pd_entry_t ptpaddr, *pde;
1534	pt_entry_t *pte;
1535	int anyvalid;
1536
1537	if (pmap == NULL)
1538		return;
1539
1540	if (pmap->pm_stats.resident_count == 0)
1541		return;
1542
1543	/*
1544	 * special handling of removing one page.  a very
1545	 * common operation and easy to short circuit some
1546	 * code.
1547	 */
1548	if (sva + PAGE_SIZE == eva) {
1549		pde = pmap_pde(pmap, sva);
1550		if (pde && (*pde & PG_PS) == 0) {
1551			pmap_remove_page(pmap, sva);
1552			return;
1553		}
1554	}
1555
1556	anyvalid = 0;
1557
1558	for (; sva < eva; sva = pdnxt) {
1559
1560		if (pmap->pm_stats.resident_count == 0)
1561			break;
1562
1563		/*
1564		 * Calculate index for next page table.
1565		 */
1566		pdnxt = (sva + NBPDR) & ~PDRMASK;
1567
1568		pde = pmap_pde(pmap, sva);
1569		if (pde == 0)
1570			continue;
1571		ptpaddr = *pde;
1572
1573		/*
1574		 * Weed out invalid mappings. Note: we assume that the page
1575		 * directory table is always allocated, and in kernel virtual.
1576		 */
1577		if (ptpaddr == 0)
1578			continue;
1579
1580		/*
1581		 * Check for large page.
1582		 */
1583		if ((ptpaddr & PG_PS) != 0) {
1584			*pde = 0;
1585			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1586			anyvalid = 1;
1587			continue;
1588		}
1589
1590		/*
1591		 * Limit our scan to either the end of the va represented
1592		 * by the current page table page, or to the end of the
1593		 * range being removed.
1594		 */
1595		if (pdnxt > eva)
1596			pdnxt = eva;
1597
1598		for (; sva != pdnxt; sva += PAGE_SIZE) {
1599			pte = pmap_pte(pmap, sva);
1600			if (pte == NULL || *pte == 0)
1601				continue;
1602			anyvalid = 1;
1603			if (pmap_remove_pte(pmap, pte, sva))
1604				break;
1605		}
1606	}
1607
1608	if (anyvalid)
1609		pmap_invalidate_all(pmap);
1610}
1611
1612/*
1613 *	Routine:	pmap_remove_all
1614 *	Function:
1615 *		Removes this physical page from
1616 *		all physical maps in which it resides.
1617 *		Reflects back modify bits to the pager.
1618 *
1619 *	Notes:
1620 *		Original versions of this routine were very
1621 *		inefficient because they iteratively called
1622 *		pmap_remove (slow...)
1623 */
1624
1625void
1626pmap_remove_all(vm_page_t m)
1627{
1628	register pv_entry_t pv;
1629	pt_entry_t *pte, tpte;
1630	int s;
1631
1632#if defined(PMAP_DIAGNOSTIC)
1633	/*
1634	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1635	 */
1636	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1637		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1638		    VM_PAGE_TO_PHYS(m));
1639	}
1640#endif
1641	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1642	s = splvm();
1643	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1644		pv->pv_pmap->pm_stats.resident_count--;
1645		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1646		tpte = pte_load_clear(pte);
1647		if (tpte & PG_W)
1648			pv->pv_pmap->pm_stats.wired_count--;
1649		if (tpte & PG_A)
1650			vm_page_flag_set(m, PG_REFERENCED);
1651
1652		/*
1653		 * Update the vm_page_t clean and reference bits.
1654		 */
1655		if (tpte & PG_M) {
1656#if defined(PMAP_DIAGNOSTIC)
1657			if (pmap_nw_modified((pt_entry_t) tpte)) {
1658				printf(
1659	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1660				    pv->pv_va, tpte);
1661			}
1662#endif
1663			if (pmap_track_modified(pv->pv_va))
1664				vm_page_dirty(m);
1665		}
1666		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1667		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1668		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1669		m->md.pv_list_count--;
1670		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1671		free_pv_entry(pv);
1672	}
1673	vm_page_flag_clear(m, PG_WRITEABLE);
1674	splx(s);
1675}
1676
1677/*
1678 *	Set the physical protection on the
1679 *	specified range of this map as requested.
1680 */
1681void
1682pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1683{
1684	vm_offset_t pdnxt;
1685	pd_entry_t ptpaddr, *pde;
1686	int anychanged;
1687
1688	if (pmap == NULL)
1689		return;
1690
1691	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1692		pmap_remove(pmap, sva, eva);
1693		return;
1694	}
1695
1696	if (prot & VM_PROT_WRITE)
1697		return;
1698
1699	anychanged = 0;
1700
1701	for (; sva < eva; sva = pdnxt) {
1702
1703		pdnxt = (sva + NBPDR) & ~PDRMASK;
1704
1705		pde = pmap_pde(pmap, sva);
1706		if (pde == NULL)
1707			continue;
1708		ptpaddr = *pde;
1709
1710		/*
1711		 * Weed out invalid mappings. Note: we assume that the page
1712		 * directory table is always allocated, and in kernel virtual.
1713		 */
1714		if (ptpaddr == 0)
1715			continue;
1716
1717		/*
1718		 * Check for large page.
1719		 */
1720		if ((ptpaddr & PG_PS) != 0) {
1721			*pde &= ~(PG_M|PG_RW);
1722			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1723			anychanged = 1;
1724			continue;
1725		}
1726
1727		if (pdnxt > eva)
1728			pdnxt = eva;
1729
1730		for (; sva != pdnxt; sva += PAGE_SIZE) {
1731			pt_entry_t pbits;
1732			pt_entry_t *pte;
1733			vm_page_t m;
1734
1735			pte = pmap_pte(pmap, sva);
1736			if (pte == NULL)
1737				continue;
1738			pbits = *pte;
1739			if (pbits & PG_MANAGED) {
1740				m = NULL;
1741				if (pbits & PG_A) {
1742					m = PHYS_TO_VM_PAGE(pbits);
1743					vm_page_flag_set(m, PG_REFERENCED);
1744					pbits &= ~PG_A;
1745				}
1746				if ((pbits & PG_M) != 0 &&
1747				    pmap_track_modified(sva)) {
1748					if (m == NULL)
1749						m = PHYS_TO_VM_PAGE(pbits);
1750					vm_page_dirty(m);
1751					pbits &= ~PG_M;
1752				}
1753			}
1754
1755			pbits &= ~PG_RW;
1756
1757			if (pbits != *pte) {
1758				pte_store(pte, pbits);
1759				anychanged = 1;
1760			}
1761		}
1762	}
1763	if (anychanged)
1764		pmap_invalidate_all(pmap);
1765}
1766
1767/*
1768 *	Insert the given physical page (p) at
1769 *	the specified virtual address (v) in the
1770 *	target physical map with the protection requested.
1771 *
1772 *	If specified, the page will be wired down, meaning
1773 *	that the related pte can not be reclaimed.
1774 *
1775 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1776 *	or lose information.  That is, this routine must actually
1777 *	insert this page into the given map NOW.
1778 */
1779void
1780pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1781	   boolean_t wired)
1782{
1783	vm_paddr_t pa;
1784	register pt_entry_t *pte;
1785	vm_paddr_t opa;
1786	pt_entry_t origpte, newpte;
1787	vm_page_t mpte;
1788
1789	if (pmap == NULL)
1790		return;
1791
1792	va &= PG_FRAME;
1793#ifdef PMAP_DIAGNOSTIC
1794	if (va > VM_MAX_KERNEL_ADDRESS)
1795		panic("pmap_enter: toobig");
1796	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1797		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1798#endif
1799
1800	mpte = NULL;
1801	/*
1802	 * In the case that a page table page is not
1803	 * resident, we are creating it here.
1804	 */
1805	if (va < VM_MAXUSER_ADDRESS) {
1806		mpte = pmap_allocpte(pmap, va);
1807	}
1808#if 0 && defined(PMAP_DIAGNOSTIC)
1809	else {
1810		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1811		origpte = *pdeaddr;
1812		if ((origpte & PG_V) == 0) {
1813			panic("pmap_enter: invalid kernel page table page, pde=%p, va=%p\n",
1814				origpte, va);
1815		}
1816	}
1817#endif
1818
1819	pte = pmap_pte(pmap, va);
1820
1821	/*
1822	 * Page Directory table entry not valid, we need a new PT page
1823	 */
1824	if (pte == NULL)
1825		panic("pmap_enter: invalid page directory va=%#lx\n", va);
1826
1827	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1828	origpte = *pte;
1829	opa = origpte & PG_FRAME;
1830
1831	if (origpte & PG_PS)
1832		panic("pmap_enter: attempted pmap_enter on 2MB page");
1833
1834	/*
1835	 * Mapping has not changed, must be protection or wiring change.
1836	 */
1837	if (origpte && (opa == pa)) {
1838		/*
1839		 * Wiring change, just update stats. We don't worry about
1840		 * wiring PT pages as they remain resident as long as there
1841		 * are valid mappings in them. Hence, if a user page is wired,
1842		 * the PT page will be also.
1843		 */
1844		if (wired && ((origpte & PG_W) == 0))
1845			pmap->pm_stats.wired_count++;
1846		else if (!wired && (origpte & PG_W))
1847			pmap->pm_stats.wired_count--;
1848
1849#if defined(PMAP_DIAGNOSTIC)
1850		if (pmap_nw_modified((pt_entry_t) origpte)) {
1851			printf(
1852	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1853			    va, origpte);
1854		}
1855#endif
1856
1857		/*
1858		 * Remove extra pte reference
1859		 */
1860		if (mpte)
1861			mpte->hold_count--;
1862
1863		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
1864			if ((origpte & PG_RW) == 0) {
1865				pte_store(pte, origpte | PG_RW);
1866				pmap_invalidate_page(pmap, va);
1867			}
1868			return;
1869		}
1870
1871		/*
1872		 * We might be turning off write access to the page,
1873		 * so we go ahead and sense modify status.
1874		 */
1875		if (origpte & PG_MANAGED) {
1876			if ((origpte & PG_M) && pmap_track_modified(va)) {
1877				vm_page_t om;
1878				om = PHYS_TO_VM_PAGE(opa);
1879				vm_page_dirty(om);
1880			}
1881			pa |= PG_MANAGED;
1882		}
1883		goto validate;
1884	}
1885	/*
1886	 * Mapping has changed, invalidate old range and fall through to
1887	 * handle validating new mapping.
1888	 */
1889	if (opa) {
1890		int err;
1891		vm_page_lock_queues();
1892		err = pmap_remove_pte(pmap, pte, va);
1893		vm_page_unlock_queues();
1894		if (err)
1895			panic("pmap_enter: pte vanished, va: 0x%lx", va);
1896	}
1897
1898	/*
1899	 * Enter on the PV list if part of our managed memory. Note that we
1900	 * raise IPL while manipulating pv_table since pmap_enter can be
1901	 * called at interrupt time.
1902	 */
1903	if (pmap_initialized &&
1904	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
1905		pmap_insert_entry(pmap, va, mpte, m);
1906		pa |= PG_MANAGED;
1907	}
1908
1909	/*
1910	 * Increment counters
1911	 */
1912	pmap->pm_stats.resident_count++;
1913	if (wired)
1914		pmap->pm_stats.wired_count++;
1915
1916validate:
1917	/*
1918	 * Now validate mapping with desired protection/wiring.
1919	 */
1920	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
1921
1922	if (wired)
1923		newpte |= PG_W;
1924	if (va < VM_MAXUSER_ADDRESS)
1925		newpte |= PG_U;
1926	if (pmap == kernel_pmap)
1927		newpte |= PG_G;
1928
1929	/*
1930	 * if the mapping or permission bits are different, we need
1931	 * to update the pte.
1932	 */
1933	if ((origpte & ~(PG_M|PG_A)) != newpte) {
1934		pte_store(pte, newpte | PG_A);
1935		/*if (origpte)*/ {
1936			pmap_invalidate_page(pmap, va);
1937		}
1938	}
1939}
1940
1941/*
1942 * this code makes some *MAJOR* assumptions:
1943 * 1. Current pmap & pmap exists.
1944 * 2. Not wired.
1945 * 3. Read access.
1946 * 4. No page table pages.
1947 * 5. Tlbflush is deferred to calling procedure.
1948 * 6. Page IS managed.
1949 * but is *MUCH* faster than pmap_enter...
1950 */
1951
1952vm_page_t
1953pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
1954{
1955	pt_entry_t *pte;
1956	vm_paddr_t pa;
1957
1958	/*
1959	 * In the case that a page table page is not
1960	 * resident, we are creating it here.
1961	 */
1962	if (va < VM_MAXUSER_ADDRESS) {
1963		vm_pindex_t ptepindex;
1964		pd_entry_t *ptepa;
1965
1966		/*
1967		 * Calculate pagetable page index
1968		 */
1969		ptepindex = pmap_pde_pindex(va);
1970		if (mpte && (mpte->pindex == ptepindex)) {
1971			mpte->hold_count++;
1972		} else {
1973retry:
1974			/*
1975			 * Get the page directory entry
1976			 */
1977			ptepa = pmap_pde(pmap, va);
1978
1979			/*
1980			 * If the page table page is mapped, we just increment
1981			 * the hold count, and activate it.
1982			 */
1983			if (ptepa && (*ptepa & PG_V) != 0) {
1984				if (*ptepa & PG_PS)
1985					panic("pmap_enter_quick: unexpected mapping into 2MB page");
1986				if (pmap->pm_pteobj->root &&
1987					(pmap->pm_pteobj->root->pindex == ptepindex)) {
1988					mpte = pmap->pm_pteobj->root;
1989				} else {
1990					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1991				}
1992				if (mpte == NULL)
1993					goto retry;
1994				mpte->hold_count++;
1995			} else {
1996				mpte = _pmap_allocpte(pmap, ptepindex);
1997			}
1998		}
1999	} else {
2000		mpte = NULL;
2001	}
2002
2003	/*
2004	 * This call to vtopte makes the assumption that we are
2005	 * entering the page into the current pmap.  In order to support
2006	 * quick entry into any pmap, one would likely use pmap_pte.
2007	 * But that isn't as quick as vtopte.
2008	 */
2009	pte = vtopte(va);
2010	if (*pte) {
2011		if (mpte != NULL) {
2012			vm_page_lock_queues();
2013			pmap_unwire_pte_hold(pmap, va, mpte);
2014			vm_page_unlock_queues();
2015		}
2016		return 0;
2017	}
2018
2019	/*
2020	 * Enter on the PV list if part of our managed memory. Note that we
2021	 * raise IPL while manipulating pv_table since pmap_enter can be
2022	 * called at interrupt time.
2023	 */
2024	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2025		pmap_insert_entry(pmap, va, mpte, m);
2026
2027	/*
2028	 * Increment counters
2029	 */
2030	pmap->pm_stats.resident_count++;
2031
2032	pa = VM_PAGE_TO_PHYS(m);
2033
2034	/*
2035	 * Now validate mapping with RO protection
2036	 */
2037	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2038		pte_store(pte, pa | PG_V | PG_U);
2039	else
2040		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2041
2042	return mpte;
2043}
2044
2045/*
2046 * Make a temporary mapping for a physical address.  This is only intended
2047 * to be used for panic dumps.
2048 */
2049void *
2050pmap_kenter_temporary(vm_offset_t pa, int i)
2051{
2052	vm_offset_t va;
2053
2054	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2055	pmap_kenter(va, pa);
2056	invlpg(va);
2057	return ((void *)crashdumpmap);
2058}
2059
2060/*
2061 * This code maps large physical mmap regions into the
2062 * processor address space.  Note that some shortcuts
2063 * are taken, but the code works.
2064 */
2065void
2066pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2067		    vm_object_t object, vm_pindex_t pindex,
2068		    vm_size_t size)
2069{
2070	vm_page_t p;
2071
2072	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2073	KASSERT(object->type == OBJT_DEVICE,
2074	    ("pmap_object_init_pt: non-device object"));
2075	if (((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2076		int i;
2077		vm_page_t m[1];
2078		int npdes;
2079		pd_entry_t ptepa, *pde;
2080
2081		pde = pmap_pde(pmap, addr);
2082		if (pde != 0 && (*pde & PG_V) != 0)
2083			return;
2084retry:
2085		p = vm_page_lookup(object, pindex);
2086		if (p != NULL) {
2087			vm_page_lock_queues();
2088			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2089				goto retry;
2090		} else {
2091			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2092			if (p == NULL)
2093				return;
2094			m[0] = p;
2095
2096			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2097				vm_page_lock_queues();
2098				vm_page_free(p);
2099				vm_page_unlock_queues();
2100				return;
2101			}
2102
2103			p = vm_page_lookup(object, pindex);
2104			vm_page_lock_queues();
2105			vm_page_wakeup(p);
2106		}
2107		vm_page_unlock_queues();
2108
2109		ptepa = VM_PAGE_TO_PHYS(p);
2110		if (ptepa & (NBPDR - 1))
2111			return;
2112
2113		p->valid = VM_PAGE_BITS_ALL;
2114
2115		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2116		npdes = size >> PDRSHIFT;
2117		for(i = 0; i < npdes; i++) {
2118			pde_store(pde, ptepa | PG_U | PG_RW | PG_V | PG_PS);
2119			ptepa += NBPDR;
2120			pde++;
2121		}
2122		pmap_invalidate_all(kernel_pmap);
2123	}
2124}
2125
2126/*
2127 * pmap_prefault provides a quick way of clustering
2128 * pagefaults into a processes address space.  It is a "cousin"
2129 * of pmap_object_init_pt, except it runs at page fault time instead
2130 * of mmap time.
2131 */
2132#define PFBAK 4
2133#define PFFOR 4
2134#define PAGEORDER_SIZE (PFBAK+PFFOR)
2135
2136static int pmap_prefault_pageorder[] = {
2137	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2138	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2139	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2140	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2141};
2142
2143void
2144pmap_prefault(pmap, addra, entry)
2145	pmap_t pmap;
2146	vm_offset_t addra;
2147	vm_map_entry_t entry;
2148{
2149	int i;
2150	vm_offset_t starta;
2151	vm_offset_t addr;
2152	vm_pindex_t pindex;
2153	vm_page_t m, mpte;
2154	vm_object_t object;
2155	pd_entry_t *pde;
2156
2157	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2158		return;
2159
2160	object = entry->object.vm_object;
2161
2162	starta = addra - PFBAK * PAGE_SIZE;
2163	if (starta < entry->start) {
2164		starta = entry->start;
2165	} else if (starta > addra) {
2166		starta = 0;
2167	}
2168
2169	mpte = NULL;
2170	for (i = 0; i < PAGEORDER_SIZE; i++) {
2171		vm_object_t lobject;
2172		pt_entry_t *pte;
2173
2174		addr = addra + pmap_prefault_pageorder[i];
2175		if (addr > addra + (PFFOR * PAGE_SIZE))
2176			addr = 0;
2177
2178		if (addr < starta || addr >= entry->end)
2179			continue;
2180
2181		pde = pmap_pde(pmap, addr);
2182		if (pde == NULL || (*pde & PG_V) == 0)
2183			continue;
2184
2185		pte = vtopte(addr);
2186		if ((*pte & PG_V) == 0)
2187			continue;
2188
2189		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2190		lobject = object;
2191		for (m = vm_page_lookup(lobject, pindex);
2192		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2193		    lobject = lobject->backing_object) {
2194			if (lobject->backing_object_offset & PAGE_MASK)
2195				break;
2196			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2197			m = vm_page_lookup(lobject->backing_object, pindex);
2198		}
2199
2200		/*
2201		 * give-up when a page is not in memory
2202		 */
2203		if (m == NULL)
2204			break;
2205		vm_page_lock_queues();
2206		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2207			(m->busy == 0) &&
2208		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2209
2210			if ((m->queue - m->pc) == PQ_CACHE) {
2211				vm_page_deactivate(m);
2212			}
2213			vm_page_busy(m);
2214			vm_page_unlock_queues();
2215			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2216			vm_page_lock_queues();
2217			vm_page_wakeup(m);
2218		}
2219		vm_page_unlock_queues();
2220	}
2221}
2222
2223/*
2224 *	Routine:	pmap_change_wiring
2225 *	Function:	Change the wiring attribute for a map/virtual-address
2226 *			pair.
2227 *	In/out conditions:
2228 *			The mapping must already exist in the pmap.
2229 */
2230void
2231pmap_change_wiring(pmap, va, wired)
2232	register pmap_t pmap;
2233	vm_offset_t va;
2234	boolean_t wired;
2235{
2236	register pt_entry_t *pte;
2237
2238	if (pmap == NULL)
2239		return;
2240
2241	/*
2242	 * Wiring is not a hardware characteristic so there is no need to
2243	 * invalidate TLB.
2244	 */
2245	pte = pmap_pte(pmap, va);
2246	if (wired && (*pte & PG_W) == 0) {
2247		pmap->pm_stats.wired_count++;
2248		*pte |= PG_W;
2249	} else if (!wired && (*pte & PG_W) != 0) {
2250		pmap->pm_stats.wired_count--;
2251		*pte &= ~PG_W;
2252	}
2253}
2254
2255
2256
2257/*
2258 *	Copy the range specified by src_addr/len
2259 *	from the source map to the range dst_addr/len
2260 *	in the destination map.
2261 *
2262 *	This routine is only advisory and need not do anything.
2263 */
2264
2265void
2266pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2267	  vm_offset_t src_addr)
2268{
2269	vm_offset_t addr;
2270	vm_offset_t end_addr = src_addr + len;
2271	vm_offset_t pdnxt;
2272	vm_page_t m;
2273
2274	if (dst_addr != src_addr)
2275		return;
2276
2277	if (!pmap_is_current(src_pmap))
2278		return;
2279
2280	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2281		pt_entry_t *src_pte, *dst_pte;
2282		vm_page_t dstmpte, srcmpte;
2283		pd_entry_t srcptepaddr, *pde;
2284		vm_pindex_t ptepindex;
2285
2286		if (addr >= UPT_MIN_ADDRESS)
2287			panic("pmap_copy: invalid to pmap_copy page tables\n");
2288
2289		/*
2290		 * Don't let optional prefaulting of pages make us go
2291		 * way below the low water mark of free pages or way
2292		 * above high water mark of used pv entries.
2293		 */
2294		if (cnt.v_free_count < cnt.v_free_reserved ||
2295		    pv_entry_count > pv_entry_high_water)
2296			break;
2297
2298		pdnxt = (addr + NBPDR) & ~PDRMASK;
2299		ptepindex = pmap_pde_pindex(addr);
2300
2301		pde = pmap_pde(src_pmap, addr);
2302		if (pde)
2303			srcptepaddr = *pde;
2304		else
2305			continue;
2306		if (srcptepaddr == 0)
2307			continue;
2308
2309		if (srcptepaddr & PG_PS) {
2310			pde = pmap_pde(dst_pmap, addr);
2311			if (pde == 0) {
2312				/*
2313				 * XXX should do an allocpte here to
2314				 * instantiate the pde
2315				 */
2316				continue;
2317			}
2318			if (*pde == 0) {
2319				*pde = srcptepaddr;
2320				dst_pmap->pm_stats.resident_count +=
2321				    NBPDR / PAGE_SIZE;
2322			}
2323			continue;
2324		}
2325
2326		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2327		if ((srcmpte == NULL) ||
2328		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2329			continue;
2330
2331		if (pdnxt > end_addr)
2332			pdnxt = end_addr;
2333
2334		src_pte = vtopte(addr);
2335		while (addr < pdnxt) {
2336			pt_entry_t ptetemp;
2337			ptetemp = *src_pte;
2338			/*
2339			 * we only virtual copy managed pages
2340			 */
2341			if ((ptetemp & PG_MANAGED) != 0) {
2342				/*
2343				 * We have to check after allocpte for the
2344				 * pte still being around...  allocpte can
2345				 * block.
2346				 */
2347				dstmpte = pmap_allocpte(dst_pmap, addr);
2348				dst_pte = pmap_pte(dst_pmap, addr);
2349				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2350					/*
2351					 * Clear the modified and
2352					 * accessed (referenced) bits
2353					 * during the copy.
2354					 */
2355					m = PHYS_TO_VM_PAGE(ptetemp);
2356					*dst_pte = ptetemp & ~(PG_M | PG_A);
2357					dst_pmap->pm_stats.resident_count++;
2358					pmap_insert_entry(dst_pmap, addr,
2359						dstmpte, m);
2360	 			} else {
2361					vm_page_lock_queues();
2362					pmap_unwire_pte_hold(dst_pmap, addr, dstmpte);
2363					vm_page_unlock_queues();
2364				}
2365				if (dstmpte->hold_count >= srcmpte->hold_count)
2366					break;
2367			}
2368			addr += PAGE_SIZE;
2369			src_pte++;
2370		}
2371	}
2372}
2373
2374/*
2375 *	pmap_zero_page zeros the specified hardware page by mapping
2376 *	the page into KVM and using bzero to clear its contents.
2377 */
2378void
2379pmap_zero_page(vm_page_t m)
2380{
2381	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2382
2383	pagezero((void *)va);
2384}
2385
2386/*
2387 *	pmap_zero_page_area zeros the specified hardware page by mapping
2388 *	the page into KVM and using bzero to clear its contents.
2389 *
2390 *	off and size may not cover an area beyond a single hardware page.
2391 */
2392void
2393pmap_zero_page_area(vm_page_t m, int off, int size)
2394{
2395	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2396
2397	if (off == 0 && size == PAGE_SIZE)
2398		pagezero((void *)va);
2399	else
2400		bzero((char *)va + off, size);
2401}
2402
2403/*
2404 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2405 *	the page into KVM and using bzero to clear its contents.  This
2406 *	is intended to be called from the vm_pagezero process only and
2407 *	outside of Giant.
2408 */
2409void
2410pmap_zero_page_idle(vm_page_t m)
2411{
2412	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2413
2414	pagezero((void *)va);
2415}
2416
2417/*
2418 *	pmap_copy_page copies the specified (machine independent)
2419 *	page by mapping the page into virtual memory and using
2420 *	bcopy to copy the page, one machine dependent page at a
2421 *	time.
2422 */
2423void
2424pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
2425{
2426	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2427	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2428
2429	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2430}
2431
2432/*
2433 * Returns true if the pmap's pv is one of the first
2434 * 16 pvs linked to from this page.  This count may
2435 * be changed upwards or downwards in the future; it
2436 * is only necessary that true be returned for a small
2437 * subset of pmaps for proper page aging.
2438 */
2439boolean_t
2440pmap_page_exists_quick(pmap, m)
2441	pmap_t pmap;
2442	vm_page_t m;
2443{
2444	pv_entry_t pv;
2445	int loops = 0;
2446	int s;
2447
2448	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2449		return FALSE;
2450
2451	s = splvm();
2452	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2453	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2454		if (pv->pv_pmap == pmap) {
2455			splx(s);
2456			return TRUE;
2457		}
2458		loops++;
2459		if (loops >= 16)
2460			break;
2461	}
2462	splx(s);
2463	return (FALSE);
2464}
2465
2466#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2467/*
2468 * Remove all pages from specified address space
2469 * this aids process exit speeds.  Also, this code
2470 * is special cased for current process only, but
2471 * can have the more generic (and slightly slower)
2472 * mode enabled.  This is much faster than pmap_remove
2473 * in the case of running down an entire address space.
2474 */
2475void
2476pmap_remove_pages(pmap, sva, eva)
2477	pmap_t pmap;
2478	vm_offset_t sva, eva;
2479{
2480	pt_entry_t *pte, tpte;
2481	vm_page_t m;
2482	pv_entry_t pv, npv;
2483	int s;
2484
2485#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2486	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2487		printf("warning: pmap_remove_pages called with non-current pmap\n");
2488		return;
2489	}
2490#endif
2491	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2492	s = splvm();
2493	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2494
2495		if (pv->pv_va >= eva || pv->pv_va < sva) {
2496			npv = TAILQ_NEXT(pv, pv_plist);
2497			continue;
2498		}
2499
2500#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2501		pte = vtopte(pv->pv_va);
2502#else
2503		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2504#endif
2505		tpte = *pte;
2506
2507		if (tpte == 0) {
2508			printf("TPTE at %p  IS ZERO @ VA %08lx\n",
2509							pte, pv->pv_va);
2510			panic("bad pte");
2511		}
2512
2513/*
2514 * We cannot remove wired pages from a process' mapping at this time
2515 */
2516		if (tpte & PG_W) {
2517			npv = TAILQ_NEXT(pv, pv_plist);
2518			continue;
2519		}
2520
2521		m = PHYS_TO_VM_PAGE(tpte);
2522		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2523		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2524		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2525
2526		KASSERT(m < &vm_page_array[vm_page_array_size],
2527			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2528
2529		pv->pv_pmap->pm_stats.resident_count--;
2530
2531		pte_clear(pte);
2532
2533		/*
2534		 * Update the vm_page_t clean and reference bits.
2535		 */
2536		if (tpte & PG_M) {
2537			vm_page_dirty(m);
2538		}
2539
2540		npv = TAILQ_NEXT(pv, pv_plist);
2541		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2542
2543		m->md.pv_list_count--;
2544		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2545		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2546			vm_page_flag_clear(m, PG_WRITEABLE);
2547		}
2548
2549		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2550		free_pv_entry(pv);
2551	}
2552	splx(s);
2553	pmap_invalidate_all(pmap);
2554}
2555
2556/*
2557 *	pmap_is_modified:
2558 *
2559 *	Return whether or not the specified physical page was modified
2560 *	in any physical maps.
2561 */
2562boolean_t
2563pmap_is_modified(vm_page_t m)
2564{
2565	pv_entry_t pv;
2566	pt_entry_t *pte;
2567	int s;
2568
2569	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2570		return FALSE;
2571
2572	s = splvm();
2573	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2574	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2575		/*
2576		 * if the bit being tested is the modified bit, then
2577		 * mark clean_map and ptes as never
2578		 * modified.
2579		 */
2580		if (!pmap_track_modified(pv->pv_va))
2581			continue;
2582#if defined(PMAP_DIAGNOSTIC)
2583		if (!pv->pv_pmap) {
2584			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2585			continue;
2586		}
2587#endif
2588		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2589		if (*pte & PG_M) {
2590			splx(s);
2591			return TRUE;
2592		}
2593	}
2594	splx(s);
2595	return (FALSE);
2596}
2597
2598/*
2599 * this routine is used to modify bits in ptes
2600 */
2601static __inline void
2602pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2603{
2604	register pv_entry_t pv;
2605	register pt_entry_t *pte;
2606	int s;
2607
2608	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2609	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2610		return;
2611
2612	s = splvm();
2613	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2614	/*
2615	 * Loop over all current mappings setting/clearing as appropos If
2616	 * setting RO do we need to clear the VAC?
2617	 */
2618	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2619		/*
2620		 * don't write protect pager mappings
2621		 */
2622		if (!setem && (bit == PG_RW)) {
2623			if (!pmap_track_modified(pv->pv_va))
2624				continue;
2625		}
2626
2627#if defined(PMAP_DIAGNOSTIC)
2628		if (!pv->pv_pmap) {
2629			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2630			continue;
2631		}
2632#endif
2633
2634		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2635
2636		if (setem) {
2637			*pte |= bit;
2638			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2639		} else {
2640			pt_entry_t pbits = *pte;
2641			if (pbits & bit) {
2642				if (bit == PG_RW) {
2643					if (pbits & PG_M) {
2644						vm_page_dirty(m);
2645					}
2646					pte_store(pte, pbits & ~(PG_M|PG_RW));
2647				} else {
2648					pte_store(pte, pbits & ~bit);
2649				}
2650				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2651			}
2652		}
2653	}
2654	if (!setem && bit == PG_RW)
2655		vm_page_flag_clear(m, PG_WRITEABLE);
2656	splx(s);
2657}
2658
2659/*
2660 *      pmap_page_protect:
2661 *
2662 *      Lower the permission for all mappings to a given page.
2663 */
2664void
2665pmap_page_protect(vm_page_t m, vm_prot_t prot)
2666{
2667	if ((prot & VM_PROT_WRITE) == 0) {
2668		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2669			pmap_changebit(m, PG_RW, FALSE);
2670		} else {
2671			pmap_remove_all(m);
2672		}
2673	}
2674}
2675
2676/*
2677 *	pmap_ts_referenced:
2678 *
2679 *	Return a count of reference bits for a page, clearing those bits.
2680 *	It is not necessary for every reference bit to be cleared, but it
2681 *	is necessary that 0 only be returned when there are truly no
2682 *	reference bits set.
2683 *
2684 *	XXX: The exact number of bits to check and clear is a matter that
2685 *	should be tested and standardized at some point in the future for
2686 *	optimal aging of shared pages.
2687 */
2688int
2689pmap_ts_referenced(vm_page_t m)
2690{
2691	register pv_entry_t pv, pvf, pvn;
2692	pt_entry_t *pte;
2693	pt_entry_t v;
2694	int s;
2695	int rtval = 0;
2696
2697	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2698		return (rtval);
2699
2700	s = splvm();
2701	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2702	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2703
2704		pvf = pv;
2705
2706		do {
2707			pvn = TAILQ_NEXT(pv, pv_list);
2708
2709			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2710
2711			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2712
2713			if (!pmap_track_modified(pv->pv_va))
2714				continue;
2715
2716			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2717
2718			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2719				pte_store(pte, v & ~PG_A);
2720				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2721
2722				rtval++;
2723				if (rtval > 4) {
2724					break;
2725				}
2726			}
2727		} while ((pv = pvn) != NULL && pv != pvf);
2728	}
2729	splx(s);
2730
2731	return (rtval);
2732}
2733
2734/*
2735 *	Clear the modify bits on the specified physical page.
2736 */
2737void
2738pmap_clear_modify(vm_page_t m)
2739{
2740	pmap_changebit(m, PG_M, FALSE);
2741}
2742
2743/*
2744 *	pmap_clear_reference:
2745 *
2746 *	Clear the reference bit on the specified physical page.
2747 */
2748void
2749pmap_clear_reference(vm_page_t m)
2750{
2751	pmap_changebit(m, PG_A, FALSE);
2752}
2753
2754/*
2755 * Miscellaneous support routines follow
2756 */
2757
2758static void
2759amd64_protection_init()
2760{
2761	register long *kp, prot;
2762
2763#if 0
2764#define PG_NX (1ul << 63)
2765#else
2766#define PG_NX 0
2767#endif
2768
2769	kp = protection_codes;
2770	for (prot = 0; prot < 8; prot++) {
2771		switch (prot) {
2772		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2773		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2774			*kp++ = PG_NX;
2775			break;
2776		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2777		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2778			*kp++ = 0;
2779			break;
2780		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2781		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2782			*kp++ = PG_RW | PG_NX;
2783			break;
2784		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2785		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2786			*kp++ = PG_RW;
2787			break;
2788		}
2789	}
2790}
2791
2792/*
2793 * Map a set of physical memory pages into the kernel virtual
2794 * address space. Return a pointer to where it is mapped. This
2795 * routine is intended to be used for mapping device memory,
2796 * NOT real memory.
2797 */
2798void *
2799pmap_mapdev(pa, size)
2800	vm_paddr_t pa;
2801	vm_size_t size;
2802{
2803	vm_offset_t va, tmpva, offset;
2804
2805	/* If this fits within the direct map window, use it */
2806	if (pa < dmaplimit && (pa + size) < dmaplimit)
2807		return ((void *)PHYS_TO_DMAP(pa));
2808	offset = pa & PAGE_MASK;
2809	size = roundup(offset + size, PAGE_SIZE);
2810	va = kmem_alloc_pageable(kernel_map, size);
2811	if (!va)
2812		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2813	pa = pa & PG_FRAME;
2814	for (tmpva = va; size > 0; ) {
2815		pmap_kenter(tmpva, pa);
2816		size -= PAGE_SIZE;
2817		tmpva += PAGE_SIZE;
2818		pa += PAGE_SIZE;
2819	}
2820	pmap_invalidate_range(kernel_pmap, va, tmpva);
2821	return ((void *)(va + offset));
2822}
2823
2824void
2825pmap_unmapdev(va, size)
2826	vm_offset_t va;
2827	vm_size_t size;
2828{
2829	vm_offset_t base, offset, tmpva;
2830	pt_entry_t *pte;
2831
2832	/* If we gave a direct map region in pmap_mapdev, do nothing */
2833	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
2834		return;
2835	base = va & PG_FRAME;
2836	offset = va & PAGE_MASK;
2837	size = roundup(offset + size, PAGE_SIZE);
2838	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
2839		pte = vtopte(tmpva);
2840		pte_clear(pte);
2841	}
2842	pmap_invalidate_range(kernel_pmap, va, tmpva);
2843	kmem_free(kernel_map, base, size);
2844}
2845
2846/*
2847 * perform the pmap work for mincore
2848 */
2849int
2850pmap_mincore(pmap, addr)
2851	pmap_t pmap;
2852	vm_offset_t addr;
2853{
2854	pt_entry_t *ptep, pte;
2855	vm_page_t m;
2856	int val = 0;
2857
2858	ptep = pmap_pte(pmap, addr);
2859	if (ptep == 0) {
2860		return 0;
2861	}
2862
2863	if ((pte = *ptep) != 0) {
2864		vm_paddr_t pa;
2865
2866		val = MINCORE_INCORE;
2867		if ((pte & PG_MANAGED) == 0)
2868			return val;
2869
2870		pa = pte & PG_FRAME;
2871
2872		m = PHYS_TO_VM_PAGE(pa);
2873
2874		/*
2875		 * Modified by us
2876		 */
2877		if (pte & PG_M)
2878			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2879		else {
2880			/*
2881			 * Modified by someone else
2882			 */
2883			vm_page_lock_queues();
2884			if (m->dirty || pmap_is_modified(m))
2885				val |= MINCORE_MODIFIED_OTHER;
2886			vm_page_unlock_queues();
2887		}
2888		/*
2889		 * Referenced by us
2890		 */
2891		if (pte & PG_A)
2892			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2893		else {
2894			/*
2895			 * Referenced by someone else
2896			 */
2897			vm_page_lock_queues();
2898			if ((m->flags & PG_REFERENCED) ||
2899			    pmap_ts_referenced(m)) {
2900				val |= MINCORE_REFERENCED_OTHER;
2901				vm_page_flag_set(m, PG_REFERENCED);
2902			}
2903			vm_page_unlock_queues();
2904		}
2905	}
2906	return val;
2907}
2908
2909void
2910pmap_activate(struct thread *td)
2911{
2912	struct proc *p = td->td_proc;
2913	pmap_t	pmap;
2914	u_int64_t  cr3;
2915
2916	critical_enter();
2917	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2918	pmap->pm_active |= PCPU_GET(cpumask);
2919	cr3 = vtophys(pmap->pm_pml4);
2920	/* XXXKSE this is wrong.
2921	 * pmap_activate is for the current thread on the current cpu
2922	 */
2923	if (p->p_flag & P_SA) {
2924		/* Make sure all other cr3 entries are updated. */
2925		/* what if they are running?  XXXKSE (maybe abort them) */
2926		FOREACH_THREAD_IN_PROC(p, td) {
2927			td->td_pcb->pcb_cr3 = cr3;
2928		}
2929	} else {
2930		td->td_pcb->pcb_cr3 = cr3;
2931	}
2932	load_cr3(cr3);
2933	critical_exit();
2934}
2935
2936vm_offset_t
2937pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2938{
2939
2940	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
2941		return addr;
2942	}
2943
2944	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
2945	return addr;
2946}
2947