1140609Sdas/*-
2226245Sdas * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
3140609Sdas * All rights reserved.
4140609Sdas *
5140609Sdas * Redistribution and use in source and binary forms, with or without
6140609Sdas * modification, are permitted provided that the following conditions
7140609Sdas * are met:
8140609Sdas * 1. Redistributions of source code must retain the above copyright
9140609Sdas *    notice, this list of conditions and the following disclaimer.
10140609Sdas * 2. Redistributions in binary form must reproduce the above copyright
11140609Sdas *    notice, this list of conditions and the following disclaimer in the
12140609Sdas *    documentation and/or other materials provided with the distribution.
13140609Sdas *
14140609Sdas * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15140609Sdas * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16140609Sdas * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17140609Sdas * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18140609Sdas * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19140609Sdas * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20140609Sdas * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21140609Sdas * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22140609Sdas * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23140609Sdas * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24140609Sdas * SUCH DAMAGE.
25140609Sdas */
26140609Sdas
27140609Sdas#include <sys/cdefs.h>
28140609Sdas__FBSDID("$FreeBSD: releng/10.2/lib/msun/src/s_fma.c 252170 2013-06-24 19:12:17Z eadler $");
29140609Sdas
30140609Sdas#include <fenv.h>
31140609Sdas#include <float.h>
32140609Sdas#include <math.h>
33140609Sdas
34226371Sdas#include "math_private.h"
35226371Sdas
36140609Sdas/*
37226245Sdas * A struct dd represents a floating-point number with twice the precision
38226245Sdas * of a double.  We maintain the invariant that "hi" stores the 53 high-order
39226245Sdas * bits of the result.
40226245Sdas */
41226245Sdasstruct dd {
42226245Sdas	double hi;
43226245Sdas	double lo;
44226245Sdas};
45226245Sdas
46226245Sdas/*
47226245Sdas * Compute a+b exactly, returning the exact result in a struct dd.  We assume
48226245Sdas * that both a and b are finite, but make no assumptions about their relative
49226245Sdas * magnitudes.
50226245Sdas */
51226245Sdasstatic inline struct dd
52226245Sdasdd_add(double a, double b)
53226245Sdas{
54226245Sdas	struct dd ret;
55226245Sdas	double s;
56226245Sdas
57226245Sdas	ret.hi = a + b;
58226245Sdas	s = ret.hi - a;
59226245Sdas	ret.lo = (a - (ret.hi - s)) + (b - s);
60226245Sdas	return (ret);
61226245Sdas}
62226245Sdas
63226245Sdas/*
64226371Sdas * Compute a+b, with a small tweak:  The least significant bit of the
65226371Sdas * result is adjusted into a sticky bit summarizing all the bits that
66226371Sdas * were lost to rounding.  This adjustment negates the effects of double
67226371Sdas * rounding when the result is added to another number with a higher
68226371Sdas * exponent.  For an explanation of round and sticky bits, see any reference
69226371Sdas * on FPU design, e.g.,
70226371Sdas *
71226371Sdas *     J. Coonen.  An Implementation Guide to a Proposed Standard for
72226371Sdas *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
73226371Sdas */
74226371Sdasstatic inline double
75226371Sdasadd_adjusted(double a, double b)
76226371Sdas{
77226371Sdas	struct dd sum;
78226371Sdas	uint64_t hibits, lobits;
79226371Sdas
80226371Sdas	sum = dd_add(a, b);
81226371Sdas	if (sum.lo != 0) {
82226371Sdas		EXTRACT_WORD64(hibits, sum.hi);
83226371Sdas		if ((hibits & 1) == 0) {
84226371Sdas			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
85226371Sdas			EXTRACT_WORD64(lobits, sum.lo);
86226371Sdas			hibits += 1 - ((hibits ^ lobits) >> 62);
87226371Sdas			INSERT_WORD64(sum.hi, hibits);
88226371Sdas		}
89226371Sdas	}
90226371Sdas	return (sum.hi);
91226371Sdas}
92226371Sdas
93226371Sdas/*
94226371Sdas * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
95226371Sdas * that the result will be subnormal, and care is taken to ensure that
96226371Sdas * double rounding does not occur.
97226371Sdas */
98226371Sdasstatic inline double
99226371Sdasadd_and_denormalize(double a, double b, int scale)
100226371Sdas{
101226371Sdas	struct dd sum;
102226371Sdas	uint64_t hibits, lobits;
103226371Sdas	int bits_lost;
104226371Sdas
105226371Sdas	sum = dd_add(a, b);
106226371Sdas
107226371Sdas	/*
108226371Sdas	 * If we are losing at least two bits of accuracy to denormalization,
109226371Sdas	 * then the first lost bit becomes a round bit, and we adjust the
110226371Sdas	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
111226371Sdas	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
112226371Sdas	 * break any ties in the correct direction.
113226371Sdas	 *
114226371Sdas	 * If we are losing only one bit to denormalization, however, we must
115226371Sdas	 * break the ties manually.
116226371Sdas	 */
117226371Sdas	if (sum.lo != 0) {
118226371Sdas		EXTRACT_WORD64(hibits, sum.hi);
119226371Sdas		bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
120252170Seadler		if ((bits_lost != 1) ^ (int)(hibits & 1)) {
121226371Sdas			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
122226371Sdas			EXTRACT_WORD64(lobits, sum.lo);
123226371Sdas			hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
124226371Sdas			INSERT_WORD64(sum.hi, hibits);
125226371Sdas		}
126226371Sdas	}
127226371Sdas	return (ldexp(sum.hi, scale));
128226371Sdas}
129226371Sdas
130226371Sdas/*
131226245Sdas * Compute a*b exactly, returning the exact result in a struct dd.  We assume
132226245Sdas * that both a and b are normalized, so no underflow or overflow will occur.
133226245Sdas * The current rounding mode must be round-to-nearest.
134226245Sdas */
135226245Sdasstatic inline struct dd
136226245Sdasdd_mul(double a, double b)
137226245Sdas{
138226245Sdas	static const double split = 0x1p27 + 1.0;
139226245Sdas	struct dd ret;
140226245Sdas	double ha, hb, la, lb, p, q;
141226245Sdas
142226245Sdas	p = a * split;
143226245Sdas	ha = a - p;
144226245Sdas	ha += p;
145226245Sdas	la = a - ha;
146226245Sdas
147226245Sdas	p = b * split;
148226245Sdas	hb = b - p;
149226245Sdas	hb += p;
150226245Sdas	lb = b - hb;
151226245Sdas
152226245Sdas	p = ha * hb;
153226245Sdas	q = ha * lb + la * hb;
154226245Sdas
155226245Sdas	ret.hi = p + q;
156226245Sdas	ret.lo = p - ret.hi + q + la * lb;
157226245Sdas	return (ret);
158226245Sdas}
159226245Sdas
160226245Sdas/*
161140609Sdas * Fused multiply-add: Compute x * y + z with a single rounding error.
162140609Sdas *
163140609Sdas * We use scaling to avoid overflow/underflow, along with the
164140609Sdas * canonical precision-doubling technique adapted from:
165140609Sdas *
166140609Sdas *	Dekker, T.  A Floating-Point Technique for Extending the
167140609Sdas *	Available Precision.  Numer. Math. 18, 224-242 (1971).
168140609Sdas *
169140609Sdas * This algorithm is sensitive to the rounding precision.  FPUs such
170140609Sdas * as the i387 must be set in double-precision mode if variables are
171140609Sdas * to be stored in FP registers in order to avoid incorrect results.
172140609Sdas * This is the default on FreeBSD, but not on many other systems.
173140609Sdas *
174143780Sdas * Hardware instructions should be used on architectures that support it,
175143780Sdas * since this implementation will likely be several times slower.
176140609Sdas */
177140609Sdasdouble
178140609Sdasfma(double x, double y, double z)
179140609Sdas{
180226371Sdas	double xs, ys, zs, adj;
181226371Sdas	struct dd xy, r;
182140609Sdas	int oround;
183140609Sdas	int ex, ey, ez;
184140609Sdas	int spread;
185140609Sdas
186177875Sdas	/*
187177875Sdas	 * Handle special cases. The order of operations and the particular
188177875Sdas	 * return values here are crucial in handling special cases involving
189177875Sdas	 * infinities, NaNs, overflows, and signed zeroes correctly.
190177875Sdas	 */
191177875Sdas	if (x == 0.0 || y == 0.0)
192177875Sdas		return (x * y + z);
193140609Sdas	if (z == 0.0)
194140609Sdas		return (x * y);
195177875Sdas	if (!isfinite(x) || !isfinite(y))
196143230Sdas		return (x * y + z);
197177875Sdas	if (!isfinite(z))
198177875Sdas		return (z);
199140609Sdas
200140609Sdas	xs = frexp(x, &ex);
201140609Sdas	ys = frexp(y, &ey);
202140609Sdas	zs = frexp(z, &ez);
203140609Sdas	oround = fegetround();
204140609Sdas	spread = ex + ey - ez;
205140609Sdas
206140609Sdas	/*
207140609Sdas	 * If x * y and z are many orders of magnitude apart, the scaling
208140609Sdas	 * will overflow, so we handle these cases specially.  Rounding
209140609Sdas	 * modes other than FE_TONEAREST are painful.
210140609Sdas	 */
211140609Sdas	if (spread < -DBL_MANT_DIG) {
212140609Sdas		feraiseexcept(FE_INEXACT);
213140609Sdas		if (!isnormal(z))
214140609Sdas			feraiseexcept(FE_UNDERFLOW);
215140609Sdas		switch (oround) {
216140609Sdas		case FE_TONEAREST:
217140609Sdas			return (z);
218140609Sdas		case FE_TOWARDZERO:
219140609Sdas			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
220140609Sdas				return (z);
221140609Sdas			else
222140609Sdas				return (nextafter(z, 0));
223140609Sdas		case FE_DOWNWARD:
224140609Sdas			if (x > 0.0 ^ y < 0.0)
225140609Sdas				return (z);
226140609Sdas			else
227140609Sdas				return (nextafter(z, -INFINITY));
228140609Sdas		default:	/* FE_UPWARD */
229140609Sdas			if (x > 0.0 ^ y < 0.0)
230140609Sdas				return (nextafter(z, INFINITY));
231140609Sdas			else
232140609Sdas				return (z);
233140609Sdas		}
234140609Sdas	}
235226371Sdas	if (spread <= DBL_MANT_DIG * 2)
236226371Sdas		zs = ldexp(zs, -spread);
237226371Sdas	else
238226371Sdas		zs = copysign(DBL_MIN, zs);
239140609Sdas
240140609Sdas	fesetround(FE_TONEAREST);
241251024Sdas	/* work around clang bug 8100 */
242251024Sdas	volatile double vxs = xs;
243140609Sdas
244226371Sdas	/*
245226371Sdas	 * Basic approach for round-to-nearest:
246226371Sdas	 *
247226371Sdas	 *     (xy.hi, xy.lo) = x * y		(exact)
248226371Sdas	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
249226371Sdas	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
250226371Sdas	 *     result = r.hi + adj		(correctly rounded)
251226371Sdas	 */
252251024Sdas	xy = dd_mul(vxs, ys);
253226245Sdas	r = dd_add(xy.hi, zs);
254140609Sdas
255226601Sdas	spread = ex + ey;
256226601Sdas
257226371Sdas	if (r.hi == 0.0) {
258226371Sdas		/*
259226371Sdas		 * When the addends cancel to 0, ensure that the result has
260226371Sdas		 * the correct sign.
261226371Sdas		 */
262226371Sdas		fesetround(oround);
263226371Sdas		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
264226601Sdas		return (xy.hi + vzs + ldexp(xy.lo, spread));
265226371Sdas	}
266226371Sdas
267226371Sdas	if (oround != FE_TONEAREST) {
268143780Sdas		/*
269226371Sdas		 * There is no need to worry about double rounding in directed
270226371Sdas		 * rounding modes.
271143780Sdas		 */
272143780Sdas		fesetround(oround);
273251024Sdas		/* work around clang bug 8100 */
274251024Sdas		volatile double vrlo = r.lo;
275251024Sdas		adj = vrlo + xy.lo;
276226371Sdas		return (ldexp(r.hi + adj, spread));
277143780Sdas	}
278226371Sdas
279226371Sdas	adj = add_adjusted(r.lo, xy.lo);
280226371Sdas	if (spread + ilogb(r.hi) > -1023)
281226371Sdas		return (ldexp(r.hi + adj, spread));
282226371Sdas	else
283226371Sdas		return (add_and_denormalize(r.hi, adj, spread));
284140609Sdas}
285143230Sdas
286143230Sdas#if (LDBL_MANT_DIG == 53)
287143264Sdas__weak_reference(fma, fmal);
288143230Sdas#endif
289