memstat.c revision 209215
1/*-
2 * Copyright (c) 2005 Robert N. M. Watson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: head/lib/libmemstat/memstat.c 209215 2010-06-15 19:28:37Z sbruno $
27 */
28
29#include <sys/param.h>
30#include <sys/sysctl.h>
31
32#include <err.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36#include <string.h>
37
38#include "memstat.h"
39#include "memstat_internal.h"
40
41const char *
42memstat_strerror(int error)
43{
44
45	switch (error) {
46	case MEMSTAT_ERROR_NOMEMORY:
47		return ("Cannot allocate memory");
48	case MEMSTAT_ERROR_VERSION:
49		return ("Version mismatch");
50	case MEMSTAT_ERROR_PERMISSION:
51		return ("Permission denied");
52	case MEMSTAT_ERROR_TOOMANYCPUS:
53		return ("Too many CPUs");
54	case MEMSTAT_ERROR_DATAERROR:
55		return ("Data format error");
56	case MEMSTAT_ERROR_KVM:
57		return ("KVM error");
58	case MEMSTAT_ERROR_KVM_NOSYMBOL:
59		return ("KVM unable to find symbol");
60	case MEMSTAT_ERROR_KVM_SHORTREAD:
61		return ("KVM short read");
62	case MEMSTAT_ERROR_UNDEFINED:
63	default:
64		return ("Unknown error");
65	}
66}
67
68struct memory_type_list *
69memstat_mtl_alloc(void)
70{
71	struct memory_type_list *mtlp;
72
73	mtlp = malloc(sizeof(*mtlp));
74	if (mtlp == NULL)
75		return (NULL);
76
77	LIST_INIT(&mtlp->mtl_list);
78	mtlp->mtl_error = MEMSTAT_ERROR_UNDEFINED;
79	return (mtlp);
80}
81
82struct memory_type *
83memstat_mtl_first(struct memory_type_list *list)
84{
85
86	return (LIST_FIRST(&list->mtl_list));
87}
88
89struct memory_type *
90memstat_mtl_next(struct memory_type *mtp)
91{
92
93	return (LIST_NEXT(mtp, mt_list));
94}
95
96void
97_memstat_mtl_empty(struct memory_type_list *list)
98{
99	struct memory_type *mtp;
100
101	while ((mtp = LIST_FIRST(&list->mtl_list))) {
102		LIST_REMOVE(mtp, mt_list);
103		free(mtp);
104	}
105}
106
107void
108memstat_mtl_free(struct memory_type_list *list)
109{
110
111	_memstat_mtl_empty(list);
112	free(list);
113}
114
115int
116memstat_mtl_geterror(struct memory_type_list *list)
117{
118
119	return (list->mtl_error);
120}
121
122/*
123 * Look for an existing memory_type entry in a memory_type list, based on the
124 * allocator and name of the type.  If not found, return NULL.  No errno or
125 * memstat error.
126 */
127struct memory_type *
128memstat_mtl_find(struct memory_type_list *list, int allocator,
129    const char *name)
130{
131	struct memory_type *mtp;
132
133	LIST_FOREACH(mtp, &list->mtl_list, mt_list) {
134		if ((mtp->mt_allocator == allocator ||
135		    allocator == ALLOCATOR_ANY) &&
136		    strcmp(mtp->mt_name, name) == 0)
137			return (mtp);
138	}
139	return (NULL);
140}
141
142/*
143 * Allocate a new memory_type with the specificed allocator type and name,
144 * then insert into the list.  The structure will be zero'd.
145 *
146 * libmemstat(3) internal function.
147 */
148struct memory_type *
149_memstat_mt_allocate(struct memory_type_list *list, int allocator,
150    const char *name)
151{
152	struct memory_type *mtp;
153
154	mtp = malloc(sizeof(*mtp));
155	if (mtp == NULL)
156		return (NULL);
157
158	bzero(mtp, sizeof(*mtp));
159
160	mtp->mt_allocator = allocator;
161	strlcpy(mtp->mt_name, name, MEMTYPE_MAXNAME);
162	LIST_INSERT_HEAD(&list->mtl_list, mtp, mt_list);
163	return (mtp);
164}
165
166/*
167 * Reset any libmemstat(3)-owned statistics in a memory_type record so that
168 * it can be reused without incremental addition problems.  Caller-owned
169 * memory is left "as-is", and must be updated by the caller if desired.
170 *
171 * libmemstat(3) internal function.
172 */
173void
174_memstat_mt_reset_stats(struct memory_type *mtp)
175{
176	int i;
177
178	mtp->mt_countlimit = 0;
179	mtp->mt_byteslimit = 0;
180	mtp->mt_sizemask = 0;
181	mtp->mt_size = 0;
182
183	mtp->mt_memalloced = 0;
184	mtp->mt_memfreed = 0;
185	mtp->mt_numallocs = 0;
186	mtp->mt_numfrees = 0;
187	mtp->mt_bytes = 0;
188	mtp->mt_count = 0;
189	mtp->mt_free = 0;
190	mtp->mt_failures = 0;
191	mtp->mt_sleeps = 0;
192
193	mtp->mt_zonefree = 0;
194	mtp->mt_kegfree = 0;
195
196	for (i = 0; i < MEMSTAT_MAXCPU; i++) {
197		mtp->mt_percpu_alloc[i].mtp_memalloced = 0;
198		mtp->mt_percpu_alloc[i].mtp_memfreed = 0;
199		mtp->mt_percpu_alloc[i].mtp_numallocs = 0;
200		mtp->mt_percpu_alloc[i].mtp_numfrees = 0;
201		mtp->mt_percpu_alloc[i].mtp_sizemask = 0;
202		mtp->mt_percpu_cache[i].mtp_free = 0;
203	}
204}
205
206/*
207 * Accessor methods for struct memory_type.  Avoids encoding the structure
208 * ABI into the application.
209 */
210const char *
211memstat_get_name(const struct memory_type *mtp)
212{
213
214	return (mtp->mt_name);
215}
216
217int
218memstat_get_allocator(const struct memory_type *mtp)
219{
220
221	return (mtp->mt_allocator);
222}
223
224uint64_t
225memstat_get_countlimit(const struct memory_type *mtp)
226{
227
228	return (mtp->mt_countlimit);
229}
230
231uint64_t
232memstat_get_byteslimit(const struct memory_type *mtp)
233{
234
235	return (mtp->mt_byteslimit);
236}
237
238uint64_t
239memstat_get_sizemask(const struct memory_type *mtp)
240{
241
242	return (mtp->mt_sizemask);
243}
244
245uint64_t
246memstat_get_size(const struct memory_type *mtp)
247{
248
249	return (mtp->mt_size);
250}
251
252uint64_t
253memstat_get_memalloced(const struct memory_type *mtp)
254{
255
256	return (mtp->mt_memalloced);
257}
258
259uint64_t
260memstat_get_memfreed(const struct memory_type *mtp)
261{
262
263	return (mtp->mt_memfreed);
264}
265
266uint64_t
267memstat_get_numallocs(const struct memory_type *mtp)
268{
269
270	return (mtp->mt_numallocs);
271}
272
273uint64_t
274memstat_get_numfrees(const struct memory_type *mtp)
275{
276
277	return (mtp->mt_numfrees);
278}
279
280uint64_t
281memstat_get_bytes(const struct memory_type *mtp)
282{
283
284	return (mtp->mt_bytes);
285}
286
287uint64_t
288memstat_get_count(const struct memory_type *mtp)
289{
290
291	return (mtp->mt_count);
292}
293
294uint64_t
295memstat_get_free(const struct memory_type *mtp)
296{
297
298	return (mtp->mt_free);
299}
300
301uint64_t
302memstat_get_failures(const struct memory_type *mtp)
303{
304
305	return (mtp->mt_failures);
306}
307
308uint64_t
309memstat_get_sleeps(const struct memory_type *mtp)
310{
311
312	return (mtp->mt_sleeps);
313}
314
315void *
316memstat_get_caller_pointer(const struct memory_type *mtp, int index)
317{
318
319	return (mtp->mt_caller_pointer[index]);
320}
321
322void
323memstat_set_caller_pointer(struct memory_type *mtp, int index, void *value)
324{
325
326	mtp->mt_caller_pointer[index] = value;
327}
328
329uint64_t
330memstat_get_caller_uint64(const struct memory_type *mtp, int index)
331{
332
333	return (mtp->mt_caller_uint64[index]);
334}
335
336void
337memstat_set_caller_uint64(struct memory_type *mtp, int index, uint64_t value)
338{
339
340	mtp->mt_caller_uint64[index] = value;
341}
342
343uint64_t
344memstat_get_zonefree(const struct memory_type *mtp)
345{
346
347	return (mtp->mt_zonefree);
348}
349
350uint64_t
351memstat_get_kegfree(const struct memory_type *mtp)
352{
353
354	return (mtp->mt_kegfree);
355}
356
357uint64_t
358memstat_get_percpu_memalloced(const struct memory_type *mtp, int cpu)
359{
360
361	return (mtp->mt_percpu_alloc[cpu].mtp_memalloced);
362}
363
364uint64_t
365memstat_get_percpu_memfreed(const struct memory_type *mtp, int cpu)
366{
367
368	return (mtp->mt_percpu_alloc[cpu].mtp_memfreed);
369}
370
371uint64_t
372memstat_get_percpu_numallocs(const struct memory_type *mtp, int cpu)
373{
374
375	return (mtp->mt_percpu_alloc[cpu].mtp_numallocs);
376}
377
378uint64_t
379memstat_get_percpu_numfrees(const struct memory_type *mtp, int cpu)
380{
381
382	return (mtp->mt_percpu_alloc[cpu].mtp_numfrees);
383}
384
385uint64_t
386memstat_get_percpu_sizemask(const struct memory_type *mtp, int cpu)
387{
388
389	return (mtp->mt_percpu_alloc[cpu].mtp_sizemask);
390}
391
392void *
393memstat_get_percpu_caller_pointer(const struct memory_type *mtp, int cpu,
394    int index)
395{
396
397	return (mtp->mt_percpu_alloc[cpu].mtp_caller_pointer[index]);
398}
399
400void
401memstat_set_percpu_caller_pointer(struct memory_type *mtp, int cpu,
402    int index, void *value)
403{
404
405	mtp->mt_percpu_alloc[cpu].mtp_caller_pointer[index] = value;
406}
407
408uint64_t
409memstat_get_percpu_caller_uint64(const struct memory_type *mtp, int cpu,
410    int index)
411{
412
413	return (mtp->mt_percpu_alloc[cpu].mtp_caller_uint64[index]);
414}
415
416void
417memstat_set_percpu_caller_uint64(struct memory_type *mtp, int cpu, int index,
418    uint64_t value)
419{
420
421	mtp->mt_percpu_alloc[cpu].mtp_caller_uint64[index] = value;
422}
423
424uint64_t
425memstat_get_percpu_free(const struct memory_type *mtp, int cpu)
426{
427
428	return (mtp->mt_percpu_cache[cpu].mtp_free);
429}
430