fpu_explode.c revision 91174
1/*
2 * Copyright (c) 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 *	This product includes software developed by the University of
12 *	California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
43 *	from: NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp
44 *
45 * $FreeBSD: head/lib/libc/sparc64/fpu/fpu_explode.c 91174 2002-02-23 21:37:18Z tmm $
46 */
47
48/*
49 * FPU subroutines: `explode' the machine's `packed binary' format numbers
50 * into our internal format.
51 */
52
53#include <sys/param.h>
54
55#include <machine/frame.h>
56#include <machine/fp.h>
57#include <machine/fsr.h>
58#include <machine/ieee.h>
59#include <machine/instr.h>
60
61#include "fpu_arith.h"
62#include "fpu_emu.h"
63#include "fpu_extern.h"
64
65/*
66 * N.B.: in all of the following, we assume the FP format is
67 *
68 *	---------------------------
69 *	| s | exponent | fraction |
70 *	---------------------------
71 *
72 * (which represents -1**s * 1.fraction * 2**exponent), so that the
73 * sign bit is way at the top (bit 31), the exponent is next, and
74 * then the remaining bits mark the fraction.  A zero exponent means
75 * zero or denormalized (0.fraction rather than 1.fraction), and the
76 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
77 *
78 * Since the sign bit is always the topmost bit---this holds even for
79 * integers---we set that outside all the *tof functions.  Each function
80 * returns the class code for the new number (but note that we use
81 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
82 */
83
84/*
85 * int -> fpn.
86 */
87int
88__fpu_itof(fp, i)
89	register struct fpn *fp;
90	register u_int i;
91{
92
93	if (i == 0)
94		return (FPC_ZERO);
95	/*
96	 * The value FP_1 represents 2^FP_LG, so set the exponent
97	 * there and let normalization fix it up.  Convert negative
98	 * numbers to sign-and-magnitude.  Note that this relies on
99	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
100	 */
101	fp->fp_exp = FP_LG;
102	fp->fp_mant[0] = (int)i < 0 ? -i : i;
103	fp->fp_mant[1] = 0;
104	fp->fp_mant[2] = 0;
105	fp->fp_mant[3] = 0;
106	__fpu_norm(fp);
107	return (FPC_NUM);
108}
109
110/*
111 * 64-bit int -> fpn.
112 */
113int
114__fpu_xtof(fp, i)
115	register struct fpn *fp;
116	register u_int64_t i;
117{
118
119	if (i == 0)
120		return (FPC_ZERO);
121	/*
122	 * The value FP_1 represents 2^FP_LG, so set the exponent
123	 * there and let normalization fix it up.  Convert negative
124	 * numbers to sign-and-magnitude.  Note that this relies on
125	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
126	 */
127	fp->fp_exp = FP_LG2;
128	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
129	fp->fp_mant[2] = 0;
130	fp->fp_mant[3] = 0;
131	__fpu_norm(fp);
132	return (FPC_NUM);
133}
134
135#define	mask(nbits) ((1L << (nbits)) - 1)
136
137/*
138 * All external floating formats convert to internal in the same manner,
139 * as defined here.  Note that only normals get an implied 1.0 inserted.
140 */
141#define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
142	if (exp == 0) { \
143		if (allfrac == 0) \
144			return (FPC_ZERO); \
145		fp->fp_exp = 1 - expbias; \
146		fp->fp_mant[0] = f0; \
147		fp->fp_mant[1] = f1; \
148		fp->fp_mant[2] = f2; \
149		fp->fp_mant[3] = f3; \
150		__fpu_norm(fp); \
151		return (FPC_NUM); \
152	} \
153	if (exp == (2 * expbias + 1)) { \
154		if (allfrac == 0) \
155			return (FPC_INF); \
156		fp->fp_mant[0] = f0; \
157		fp->fp_mant[1] = f1; \
158		fp->fp_mant[2] = f2; \
159		fp->fp_mant[3] = f3; \
160		return (FPC_QNAN); \
161	} \
162	fp->fp_exp = exp - expbias; \
163	fp->fp_mant[0] = FP_1 | f0; \
164	fp->fp_mant[1] = f1; \
165	fp->fp_mant[2] = f2; \
166	fp->fp_mant[3] = f3; \
167	return (FPC_NUM)
168
169/*
170 * 32-bit single precision -> fpn.
171 * We assume a single occupies at most (64-FP_LG) bits in the internal
172 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
173 */
174int
175__fpu_stof(fp, i)
176	register struct fpn *fp;
177	register u_int i;
178{
179	register int exp;
180	register u_int frac, f0, f1;
181#define SNG_SHIFT (SNG_FRACBITS - FP_LG)
182
183	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
184	frac = i & mask(SNG_FRACBITS);
185	f0 = frac >> SNG_SHIFT;
186	f1 = frac << (32 - SNG_SHIFT);
187	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
188}
189
190/*
191 * 64-bit double -> fpn.
192 * We assume this uses at most (96-FP_LG) bits.
193 */
194int
195__fpu_dtof(fp, i, j)
196	register struct fpn *fp;
197	register u_int i, j;
198{
199	register int exp;
200	register u_int frac, f0, f1, f2;
201#define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
202
203	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
204	frac = i & mask(DBL_FRACBITS - 32);
205	f0 = frac >> DBL_SHIFT;
206	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
207	f2 = j << (32 - DBL_SHIFT);
208	frac |= j;
209	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
210}
211
212/*
213 * 128-bit extended -> fpn.
214 */
215int
216__fpu_qtof(fp, i, j, k, l)
217	register struct fpn *fp;
218	register u_int i, j, k, l;
219{
220	register int exp;
221	register u_int frac, f0, f1, f2, f3;
222#define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
223
224	/*
225	 * Note that ext and fpn `line up', hence no shifting needed.
226	 */
227	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
228	frac = i & mask(EXT_FRACBITS - 3 * 32);
229	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
230	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
231	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
232	f3 = l << EXT_SHIFT;
233	frac |= j | k | l;
234	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
235}
236
237/*
238 * Explode the contents of a register / regpair / regquad.
239 * If the input is a signalling NaN, an NV (invalid) exception
240 * will be set.  (Note that nothing but NV can occur until ALU
241 * operations are performed.)
242 */
243void
244__fpu_explode(fe, fp, type, reg)
245	struct fpemu *fe;
246	struct fpn *fp;
247	int type, reg;
248{
249	u_int s;
250	u_int64_t l;
251
252	l = __fpu_getreg64(reg & ~1);
253	s = __fpu_getreg(reg);
254	fp->fp_sign = s >> 31;
255	fp->fp_sticky = 0;
256	switch (type) {
257	case FTYPE_LNG:
258		s = __fpu_xtof(fp, l);
259		break;
260
261	case FTYPE_INT:
262		s = __fpu_itof(fp, s);
263		break;
264
265	case FTYPE_SNG:
266		s = __fpu_stof(fp, s);
267		break;
268
269	case FTYPE_DBL:
270		s = __fpu_dtof(fp, s, __fpu_getreg(reg + 1));
271		break;
272
273	case FTYPE_EXT:
274		s = __fpu_qtof(fp, s, __fpu_getreg(reg + 1),
275		    __fpu_getreg(reg + 2),
276		    __fpu_getreg(reg + 3));
277		break;
278
279	default:
280		__fpu_panic("fpu_explode");
281	}
282
283	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
284		/*
285		 * Input is a signalling NaN.  All operations that return
286		 * an input NaN operand put it through a ``NaN conversion'',
287		 * which basically just means ``turn on the quiet bit''.
288		 * We do this here so that all NaNs internally look quiet
289		 * (we can tell signalling ones by their class).
290		 */
291		fp->fp_mant[0] |= FP_QUIETBIT;
292		fe->fe_cx = FSR_NV;	/* assert invalid operand */
293		s = FPC_SNAN;
294	}
295	fp->fp_class = s;
296	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
297		((type == FTYPE_INT) ? 'i' :
298			((type == FTYPE_SNG) ? 's' :
299				((type == FTYPE_DBL) ? 'd' :
300					((type == FTYPE_EXT) ? 'q' : '?')))),
301		reg));
302	DUMPFPN(FPE_REG, fp);
303	DPRINTF(FPE_REG, ("\n"));
304}
305