key.c revision 240075
1/* $OpenBSD: key.c,v 1.99 2012/05/23 03:28:28 djm Exp $ */
2/*
3 * read_bignum():
4 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
5 *
6 * As far as I am concerned, the code I have written for this software
7 * can be used freely for any purpose.  Any derived versions of this
8 * software must be clearly marked as such, and if the derived work is
9 * incompatible with the protocol description in the RFC file, it must be
10 * called by a name other than "ssh" or "Secure Shell".
11 *
12 *
13 * Copyright (c) 2000, 2001 Markus Friedl.  All rights reserved.
14 * Copyright (c) 2008 Alexander von Gernler.  All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#include "includes.h"
38
39#include <sys/param.h>
40#include <sys/types.h>
41
42#include <openssl/evp.h>
43#include <openbsd-compat/openssl-compat.h>
44
45#include <stdarg.h>
46#include <stdio.h>
47#include <string.h>
48
49#include "xmalloc.h"
50#include "key.h"
51#include "rsa.h"
52#include "uuencode.h"
53#include "buffer.h"
54#include "log.h"
55#include "misc.h"
56#include "ssh2.h"
57
58static struct KeyCert *
59cert_new(void)
60{
61	struct KeyCert *cert;
62
63	cert = xcalloc(1, sizeof(*cert));
64	buffer_init(&cert->certblob);
65	buffer_init(&cert->critical);
66	buffer_init(&cert->extensions);
67	cert->key_id = NULL;
68	cert->principals = NULL;
69	cert->signature_key = NULL;
70	return cert;
71}
72
73Key *
74key_new(int type)
75{
76	Key *k;
77	RSA *rsa;
78	DSA *dsa;
79	k = xcalloc(1, sizeof(*k));
80	k->type = type;
81	k->ecdsa = NULL;
82	k->ecdsa_nid = -1;
83	k->dsa = NULL;
84	k->rsa = NULL;
85	k->cert = NULL;
86	switch (k->type) {
87	case KEY_RSA1:
88	case KEY_RSA:
89	case KEY_RSA_CERT_V00:
90	case KEY_RSA_CERT:
91		if ((rsa = RSA_new()) == NULL)
92			fatal("key_new: RSA_new failed");
93		if ((rsa->n = BN_new()) == NULL)
94			fatal("key_new: BN_new failed");
95		if ((rsa->e = BN_new()) == NULL)
96			fatal("key_new: BN_new failed");
97		k->rsa = rsa;
98		break;
99	case KEY_DSA:
100	case KEY_DSA_CERT_V00:
101	case KEY_DSA_CERT:
102		if ((dsa = DSA_new()) == NULL)
103			fatal("key_new: DSA_new failed");
104		if ((dsa->p = BN_new()) == NULL)
105			fatal("key_new: BN_new failed");
106		if ((dsa->q = BN_new()) == NULL)
107			fatal("key_new: BN_new failed");
108		if ((dsa->g = BN_new()) == NULL)
109			fatal("key_new: BN_new failed");
110		if ((dsa->pub_key = BN_new()) == NULL)
111			fatal("key_new: BN_new failed");
112		k->dsa = dsa;
113		break;
114#ifdef OPENSSL_HAS_ECC
115	case KEY_ECDSA:
116	case KEY_ECDSA_CERT:
117		/* Cannot do anything until we know the group */
118		break;
119#endif
120	case KEY_UNSPEC:
121		break;
122	default:
123		fatal("key_new: bad key type %d", k->type);
124		break;
125	}
126
127	if (key_is_cert(k))
128		k->cert = cert_new();
129
130	return k;
131}
132
133void
134key_add_private(Key *k)
135{
136	switch (k->type) {
137	case KEY_RSA1:
138	case KEY_RSA:
139	case KEY_RSA_CERT_V00:
140	case KEY_RSA_CERT:
141		if ((k->rsa->d = BN_new()) == NULL)
142			fatal("key_new_private: BN_new failed");
143		if ((k->rsa->iqmp = BN_new()) == NULL)
144			fatal("key_new_private: BN_new failed");
145		if ((k->rsa->q = BN_new()) == NULL)
146			fatal("key_new_private: BN_new failed");
147		if ((k->rsa->p = BN_new()) == NULL)
148			fatal("key_new_private: BN_new failed");
149		if ((k->rsa->dmq1 = BN_new()) == NULL)
150			fatal("key_new_private: BN_new failed");
151		if ((k->rsa->dmp1 = BN_new()) == NULL)
152			fatal("key_new_private: BN_new failed");
153		break;
154	case KEY_DSA:
155	case KEY_DSA_CERT_V00:
156	case KEY_DSA_CERT:
157		if ((k->dsa->priv_key = BN_new()) == NULL)
158			fatal("key_new_private: BN_new failed");
159		break;
160	case KEY_ECDSA:
161	case KEY_ECDSA_CERT:
162		/* Cannot do anything until we know the group */
163		break;
164	case KEY_UNSPEC:
165		break;
166	default:
167		break;
168	}
169}
170
171Key *
172key_new_private(int type)
173{
174	Key *k = key_new(type);
175
176	key_add_private(k);
177	return k;
178}
179
180static void
181cert_free(struct KeyCert *cert)
182{
183	u_int i;
184
185	buffer_free(&cert->certblob);
186	buffer_free(&cert->critical);
187	buffer_free(&cert->extensions);
188	if (cert->key_id != NULL)
189		xfree(cert->key_id);
190	for (i = 0; i < cert->nprincipals; i++)
191		xfree(cert->principals[i]);
192	if (cert->principals != NULL)
193		xfree(cert->principals);
194	if (cert->signature_key != NULL)
195		key_free(cert->signature_key);
196}
197
198void
199key_free(Key *k)
200{
201	if (k == NULL)
202		fatal("key_free: key is NULL");
203	switch (k->type) {
204	case KEY_RSA1:
205	case KEY_RSA:
206	case KEY_RSA_CERT_V00:
207	case KEY_RSA_CERT:
208		if (k->rsa != NULL)
209			RSA_free(k->rsa);
210		k->rsa = NULL;
211		break;
212	case KEY_DSA:
213	case KEY_DSA_CERT_V00:
214	case KEY_DSA_CERT:
215		if (k->dsa != NULL)
216			DSA_free(k->dsa);
217		k->dsa = NULL;
218		break;
219#ifdef OPENSSL_HAS_ECC
220	case KEY_ECDSA:
221	case KEY_ECDSA_CERT:
222		if (k->ecdsa != NULL)
223			EC_KEY_free(k->ecdsa);
224		k->ecdsa = NULL;
225		break;
226#endif
227	case KEY_UNSPEC:
228		break;
229	default:
230		fatal("key_free: bad key type %d", k->type);
231		break;
232	}
233	if (key_is_cert(k)) {
234		if (k->cert != NULL)
235			cert_free(k->cert);
236		k->cert = NULL;
237	}
238
239	xfree(k);
240}
241
242static int
243cert_compare(struct KeyCert *a, struct KeyCert *b)
244{
245	if (a == NULL && b == NULL)
246		return 1;
247	if (a == NULL || b == NULL)
248		return 0;
249	if (buffer_len(&a->certblob) != buffer_len(&b->certblob))
250		return 0;
251	if (timingsafe_bcmp(buffer_ptr(&a->certblob), buffer_ptr(&b->certblob),
252	    buffer_len(&a->certblob)) != 0)
253		return 0;
254	return 1;
255}
256
257/*
258 * Compare public portions of key only, allowing comparisons between
259 * certificates and plain keys too.
260 */
261int
262key_equal_public(const Key *a, const Key *b)
263{
264#ifdef OPENSSL_HAS_ECC
265	BN_CTX *bnctx;
266#endif
267
268	if (a == NULL || b == NULL ||
269	    key_type_plain(a->type) != key_type_plain(b->type))
270		return 0;
271
272	switch (a->type) {
273	case KEY_RSA1:
274	case KEY_RSA_CERT_V00:
275	case KEY_RSA_CERT:
276	case KEY_RSA:
277		return a->rsa != NULL && b->rsa != NULL &&
278		    BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
279		    BN_cmp(a->rsa->n, b->rsa->n) == 0;
280	case KEY_DSA_CERT_V00:
281	case KEY_DSA_CERT:
282	case KEY_DSA:
283		return a->dsa != NULL && b->dsa != NULL &&
284		    BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
285		    BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
286		    BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
287		    BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
288#ifdef OPENSSL_HAS_ECC
289	case KEY_ECDSA_CERT:
290	case KEY_ECDSA:
291		if (a->ecdsa == NULL || b->ecdsa == NULL ||
292		    EC_KEY_get0_public_key(a->ecdsa) == NULL ||
293		    EC_KEY_get0_public_key(b->ecdsa) == NULL)
294			return 0;
295		if ((bnctx = BN_CTX_new()) == NULL)
296			fatal("%s: BN_CTX_new failed", __func__);
297		if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa),
298		    EC_KEY_get0_group(b->ecdsa), bnctx) != 0 ||
299		    EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa),
300		    EC_KEY_get0_public_key(a->ecdsa),
301		    EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) {
302			BN_CTX_free(bnctx);
303			return 0;
304		}
305		BN_CTX_free(bnctx);
306		return 1;
307#endif /* OPENSSL_HAS_ECC */
308	default:
309		fatal("key_equal: bad key type %d", a->type);
310	}
311	/* NOTREACHED */
312}
313
314int
315key_equal(const Key *a, const Key *b)
316{
317	if (a == NULL || b == NULL || a->type != b->type)
318		return 0;
319	if (key_is_cert(a)) {
320		if (!cert_compare(a->cert, b->cert))
321			return 0;
322	}
323	return key_equal_public(a, b);
324}
325
326u_char*
327key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length)
328{
329	const EVP_MD *md = NULL;
330	EVP_MD_CTX ctx;
331	u_char *blob = NULL;
332	u_char *retval = NULL;
333	u_int len = 0;
334	int nlen, elen, otype;
335
336	*dgst_raw_length = 0;
337
338	switch (dgst_type) {
339	case SSH_FP_MD5:
340		md = EVP_md5();
341		break;
342	case SSH_FP_SHA1:
343		md = EVP_sha1();
344		break;
345#ifdef HAVE_EVP_SHA256
346	case SSH_FP_SHA256:
347		md = EVP_sha256();
348		break;
349#endif
350	default:
351		fatal("key_fingerprint_raw: bad digest type %d",
352		    dgst_type);
353	}
354	switch (k->type) {
355	case KEY_RSA1:
356		nlen = BN_num_bytes(k->rsa->n);
357		elen = BN_num_bytes(k->rsa->e);
358		len = nlen + elen;
359		blob = xmalloc(len);
360		BN_bn2bin(k->rsa->n, blob);
361		BN_bn2bin(k->rsa->e, blob + nlen);
362		break;
363	case KEY_DSA:
364	case KEY_ECDSA:
365	case KEY_RSA:
366		key_to_blob(k, &blob, &len);
367		break;
368	case KEY_DSA_CERT_V00:
369	case KEY_RSA_CERT_V00:
370	case KEY_DSA_CERT:
371	case KEY_ECDSA_CERT:
372	case KEY_RSA_CERT:
373		/* We want a fingerprint of the _key_ not of the cert */
374		otype = k->type;
375		k->type = key_type_plain(k->type);
376		key_to_blob(k, &blob, &len);
377		k->type = otype;
378		break;
379	case KEY_UNSPEC:
380		return retval;
381	default:
382		fatal("key_fingerprint_raw: bad key type %d", k->type);
383		break;
384	}
385	if (blob != NULL) {
386		retval = xmalloc(EVP_MAX_MD_SIZE);
387		EVP_DigestInit(&ctx, md);
388		EVP_DigestUpdate(&ctx, blob, len);
389		EVP_DigestFinal(&ctx, retval, dgst_raw_length);
390		memset(blob, 0, len);
391		xfree(blob);
392	} else {
393		fatal("key_fingerprint_raw: blob is null");
394	}
395	return retval;
396}
397
398static char *
399key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
400{
401	char *retval;
402	u_int i;
403
404	retval = xcalloc(1, dgst_raw_len * 3 + 1);
405	for (i = 0; i < dgst_raw_len; i++) {
406		char hex[4];
407		snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
408		strlcat(retval, hex, dgst_raw_len * 3 + 1);
409	}
410
411	/* Remove the trailing ':' character */
412	retval[(dgst_raw_len * 3) - 1] = '\0';
413	return retval;
414}
415
416static char *
417key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
418{
419	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
420	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
421	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
422	u_int i, j = 0, rounds, seed = 1;
423	char *retval;
424
425	rounds = (dgst_raw_len / 2) + 1;
426	retval = xcalloc((rounds * 6), sizeof(char));
427	retval[j++] = 'x';
428	for (i = 0; i < rounds; i++) {
429		u_int idx0, idx1, idx2, idx3, idx4;
430		if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
431			idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
432			    seed) % 6;
433			idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
434			idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
435			    (seed / 6)) % 6;
436			retval[j++] = vowels[idx0];
437			retval[j++] = consonants[idx1];
438			retval[j++] = vowels[idx2];
439			if ((i + 1) < rounds) {
440				idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
441				idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
442				retval[j++] = consonants[idx3];
443				retval[j++] = '-';
444				retval[j++] = consonants[idx4];
445				seed = ((seed * 5) +
446				    ((((u_int)(dgst_raw[2 * i])) * 7) +
447				    ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
448			}
449		} else {
450			idx0 = seed % 6;
451			idx1 = 16;
452			idx2 = seed / 6;
453			retval[j++] = vowels[idx0];
454			retval[j++] = consonants[idx1];
455			retval[j++] = vowels[idx2];
456		}
457	}
458	retval[j++] = 'x';
459	retval[j++] = '\0';
460	return retval;
461}
462
463/*
464 * Draw an ASCII-Art representing the fingerprint so human brain can
465 * profit from its built-in pattern recognition ability.
466 * This technique is called "random art" and can be found in some
467 * scientific publications like this original paper:
468 *
469 * "Hash Visualization: a New Technique to improve Real-World Security",
470 * Perrig A. and Song D., 1999, International Workshop on Cryptographic
471 * Techniques and E-Commerce (CrypTEC '99)
472 * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
473 *
474 * The subject came up in a talk by Dan Kaminsky, too.
475 *
476 * If you see the picture is different, the key is different.
477 * If the picture looks the same, you still know nothing.
478 *
479 * The algorithm used here is a worm crawling over a discrete plane,
480 * leaving a trace (augmenting the field) everywhere it goes.
481 * Movement is taken from dgst_raw 2bit-wise.  Bumping into walls
482 * makes the respective movement vector be ignored for this turn.
483 * Graphs are not unambiguous, because circles in graphs can be
484 * walked in either direction.
485 */
486
487/*
488 * Field sizes for the random art.  Have to be odd, so the starting point
489 * can be in the exact middle of the picture, and FLDBASE should be >=8 .
490 * Else pictures would be too dense, and drawing the frame would
491 * fail, too, because the key type would not fit in anymore.
492 */
493#define	FLDBASE		8
494#define	FLDSIZE_Y	(FLDBASE + 1)
495#define	FLDSIZE_X	(FLDBASE * 2 + 1)
496static char *
497key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k)
498{
499	/*
500	 * Chars to be used after each other every time the worm
501	 * intersects with itself.  Matter of taste.
502	 */
503	char	*augmentation_string = " .o+=*BOX@%&#/^SE";
504	char	*retval, *p;
505	u_char	 field[FLDSIZE_X][FLDSIZE_Y];
506	u_int	 i, b;
507	int	 x, y;
508	size_t	 len = strlen(augmentation_string) - 1;
509
510	retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
511
512	/* initialize field */
513	memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
514	x = FLDSIZE_X / 2;
515	y = FLDSIZE_Y / 2;
516
517	/* process raw key */
518	for (i = 0; i < dgst_raw_len; i++) {
519		int input;
520		/* each byte conveys four 2-bit move commands */
521		input = dgst_raw[i];
522		for (b = 0; b < 4; b++) {
523			/* evaluate 2 bit, rest is shifted later */
524			x += (input & 0x1) ? 1 : -1;
525			y += (input & 0x2) ? 1 : -1;
526
527			/* assure we are still in bounds */
528			x = MAX(x, 0);
529			y = MAX(y, 0);
530			x = MIN(x, FLDSIZE_X - 1);
531			y = MIN(y, FLDSIZE_Y - 1);
532
533			/* augment the field */
534			if (field[x][y] < len - 2)
535				field[x][y]++;
536			input = input >> 2;
537		}
538	}
539
540	/* mark starting point and end point*/
541	field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
542	field[x][y] = len;
543
544	/* fill in retval */
545	snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k));
546	p = strchr(retval, '\0');
547
548	/* output upper border */
549	for (i = p - retval - 1; i < FLDSIZE_X; i++)
550		*p++ = '-';
551	*p++ = '+';
552	*p++ = '\n';
553
554	/* output content */
555	for (y = 0; y < FLDSIZE_Y; y++) {
556		*p++ = '|';
557		for (x = 0; x < FLDSIZE_X; x++)
558			*p++ = augmentation_string[MIN(field[x][y], len)];
559		*p++ = '|';
560		*p++ = '\n';
561	}
562
563	/* output lower border */
564	*p++ = '+';
565	for (i = 0; i < FLDSIZE_X; i++)
566		*p++ = '-';
567	*p++ = '+';
568
569	return retval;
570}
571
572char *
573key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
574{
575	char *retval = NULL;
576	u_char *dgst_raw;
577	u_int dgst_raw_len;
578
579	dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
580	if (!dgst_raw)
581		fatal("key_fingerprint: null from key_fingerprint_raw()");
582	switch (dgst_rep) {
583	case SSH_FP_HEX:
584		retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
585		break;
586	case SSH_FP_BUBBLEBABBLE:
587		retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
588		break;
589	case SSH_FP_RANDOMART:
590		retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k);
591		break;
592	default:
593		fatal("key_fingerprint: bad digest representation %d",
594		    dgst_rep);
595		break;
596	}
597	memset(dgst_raw, 0, dgst_raw_len);
598	xfree(dgst_raw);
599	return retval;
600}
601
602/*
603 * Reads a multiple-precision integer in decimal from the buffer, and advances
604 * the pointer.  The integer must already be initialized.  This function is
605 * permitted to modify the buffer.  This leaves *cpp to point just beyond the
606 * last processed (and maybe modified) character.  Note that this may modify
607 * the buffer containing the number.
608 */
609static int
610read_bignum(char **cpp, BIGNUM * value)
611{
612	char *cp = *cpp;
613	int old;
614
615	/* Skip any leading whitespace. */
616	for (; *cp == ' ' || *cp == '\t'; cp++)
617		;
618
619	/* Check that it begins with a decimal digit. */
620	if (*cp < '0' || *cp > '9')
621		return 0;
622
623	/* Save starting position. */
624	*cpp = cp;
625
626	/* Move forward until all decimal digits skipped. */
627	for (; *cp >= '0' && *cp <= '9'; cp++)
628		;
629
630	/* Save the old terminating character, and replace it by \0. */
631	old = *cp;
632	*cp = 0;
633
634	/* Parse the number. */
635	if (BN_dec2bn(&value, *cpp) == 0)
636		return 0;
637
638	/* Restore old terminating character. */
639	*cp = old;
640
641	/* Move beyond the number and return success. */
642	*cpp = cp;
643	return 1;
644}
645
646static int
647write_bignum(FILE *f, BIGNUM *num)
648{
649	char *buf = BN_bn2dec(num);
650	if (buf == NULL) {
651		error("write_bignum: BN_bn2dec() failed");
652		return 0;
653	}
654	fprintf(f, " %s", buf);
655	OPENSSL_free(buf);
656	return 1;
657}
658
659/* returns 1 ok, -1 error */
660int
661key_read(Key *ret, char **cpp)
662{
663	Key *k;
664	int success = -1;
665	char *cp, *space;
666	int len, n, type;
667	u_int bits;
668	u_char *blob;
669#ifdef OPENSSL_HAS_ECC
670	int curve_nid = -1;
671#endif
672
673	cp = *cpp;
674
675	switch (ret->type) {
676	case KEY_RSA1:
677		/* Get number of bits. */
678		if (*cp < '0' || *cp > '9')
679			return -1;	/* Bad bit count... */
680		for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
681			bits = 10 * bits + *cp - '0';
682		if (bits == 0)
683			return -1;
684		*cpp = cp;
685		/* Get public exponent, public modulus. */
686		if (!read_bignum(cpp, ret->rsa->e))
687			return -1;
688		if (!read_bignum(cpp, ret->rsa->n))
689			return -1;
690		/* validate the claimed number of bits */
691		if ((u_int)BN_num_bits(ret->rsa->n) != bits) {
692			verbose("key_read: claimed key size %d does not match "
693			   "actual %d", bits, BN_num_bits(ret->rsa->n));
694			return -1;
695		}
696		success = 1;
697		break;
698	case KEY_UNSPEC:
699	case KEY_RSA:
700	case KEY_DSA:
701	case KEY_ECDSA:
702	case KEY_DSA_CERT_V00:
703	case KEY_RSA_CERT_V00:
704	case KEY_DSA_CERT:
705	case KEY_ECDSA_CERT:
706	case KEY_RSA_CERT:
707		space = strchr(cp, ' ');
708		if (space == NULL) {
709			debug3("key_read: missing whitespace");
710			return -1;
711		}
712		*space = '\0';
713		type = key_type_from_name(cp);
714#ifdef OPENSSL_HAS_ECC
715		if (key_type_plain(type) == KEY_ECDSA &&
716		    (curve_nid = key_ecdsa_nid_from_name(cp)) == -1) {
717			debug("key_read: invalid curve");
718			return -1;
719		}
720#endif
721		*space = ' ';
722		if (type == KEY_UNSPEC) {
723			debug3("key_read: missing keytype");
724			return -1;
725		}
726		cp = space+1;
727		if (*cp == '\0') {
728			debug3("key_read: short string");
729			return -1;
730		}
731		if (ret->type == KEY_UNSPEC) {
732			ret->type = type;
733		} else if (ret->type != type) {
734			/* is a key, but different type */
735			debug3("key_read: type mismatch");
736			return -1;
737		}
738		len = 2*strlen(cp);
739		blob = xmalloc(len);
740		n = uudecode(cp, blob, len);
741		if (n < 0) {
742			error("key_read: uudecode %s failed", cp);
743			xfree(blob);
744			return -1;
745		}
746		k = key_from_blob(blob, (u_int)n);
747		xfree(blob);
748		if (k == NULL) {
749			error("key_read: key_from_blob %s failed", cp);
750			return -1;
751		}
752		if (k->type != type) {
753			error("key_read: type mismatch: encoding error");
754			key_free(k);
755			return -1;
756		}
757#ifdef OPENSSL_HAS_ECC
758		if (key_type_plain(type) == KEY_ECDSA &&
759		    curve_nid != k->ecdsa_nid) {
760			error("key_read: type mismatch: EC curve mismatch");
761			key_free(k);
762			return -1;
763		}
764#endif
765/*XXXX*/
766		if (key_is_cert(ret)) {
767			if (!key_is_cert(k)) {
768				error("key_read: loaded key is not a cert");
769				key_free(k);
770				return -1;
771			}
772			if (ret->cert != NULL)
773				cert_free(ret->cert);
774			ret->cert = k->cert;
775			k->cert = NULL;
776		}
777		if (key_type_plain(ret->type) == KEY_RSA) {
778			if (ret->rsa != NULL)
779				RSA_free(ret->rsa);
780			ret->rsa = k->rsa;
781			k->rsa = NULL;
782#ifdef DEBUG_PK
783			RSA_print_fp(stderr, ret->rsa, 8);
784#endif
785		}
786		if (key_type_plain(ret->type) == KEY_DSA) {
787			if (ret->dsa != NULL)
788				DSA_free(ret->dsa);
789			ret->dsa = k->dsa;
790			k->dsa = NULL;
791#ifdef DEBUG_PK
792			DSA_print_fp(stderr, ret->dsa, 8);
793#endif
794		}
795#ifdef OPENSSL_HAS_ECC
796		if (key_type_plain(ret->type) == KEY_ECDSA) {
797			if (ret->ecdsa != NULL)
798				EC_KEY_free(ret->ecdsa);
799			ret->ecdsa = k->ecdsa;
800			ret->ecdsa_nid = k->ecdsa_nid;
801			k->ecdsa = NULL;
802			k->ecdsa_nid = -1;
803#ifdef DEBUG_PK
804			key_dump_ec_key(ret->ecdsa);
805#endif
806		}
807#endif
808		success = 1;
809/*XXXX*/
810		key_free(k);
811		if (success != 1)
812			break;
813		/* advance cp: skip whitespace and data */
814		while (*cp == ' ' || *cp == '\t')
815			cp++;
816		while (*cp != '\0' && *cp != ' ' && *cp != '\t')
817			cp++;
818		*cpp = cp;
819		break;
820	default:
821		fatal("key_read: bad key type: %d", ret->type);
822		break;
823	}
824	return success;
825}
826
827int
828key_write(const Key *key, FILE *f)
829{
830	int n, success = 0;
831	u_int len, bits = 0;
832	u_char *blob;
833	char *uu;
834
835	if (key_is_cert(key)) {
836		if (key->cert == NULL) {
837			error("%s: no cert data", __func__);
838			return 0;
839		}
840		if (buffer_len(&key->cert->certblob) == 0) {
841			error("%s: no signed certificate blob", __func__);
842			return 0;
843		}
844	}
845
846	switch (key->type) {
847	case KEY_RSA1:
848		if (key->rsa == NULL)
849			return 0;
850		/* size of modulus 'n' */
851		bits = BN_num_bits(key->rsa->n);
852		fprintf(f, "%u", bits);
853		if (write_bignum(f, key->rsa->e) &&
854		    write_bignum(f, key->rsa->n))
855			return 1;
856		error("key_write: failed for RSA key");
857		return 0;
858	case KEY_DSA:
859	case KEY_DSA_CERT_V00:
860	case KEY_DSA_CERT:
861		if (key->dsa == NULL)
862			return 0;
863		break;
864#ifdef OPENSSL_HAS_ECC
865	case KEY_ECDSA:
866	case KEY_ECDSA_CERT:
867		if (key->ecdsa == NULL)
868			return 0;
869		break;
870#endif
871	case KEY_RSA:
872	case KEY_RSA_CERT_V00:
873	case KEY_RSA_CERT:
874		if (key->rsa == NULL)
875			return 0;
876		break;
877	default:
878		return 0;
879	}
880
881	key_to_blob(key, &blob, &len);
882	uu = xmalloc(2*len);
883	n = uuencode(blob, len, uu, 2*len);
884	if (n > 0) {
885		fprintf(f, "%s %s", key_ssh_name(key), uu);
886		success = 1;
887	}
888	xfree(blob);
889	xfree(uu);
890
891	return success;
892}
893
894const char *
895key_type(const Key *k)
896{
897	switch (k->type) {
898	case KEY_RSA1:
899		return "RSA1";
900	case KEY_RSA:
901		return "RSA";
902	case KEY_DSA:
903		return "DSA";
904#ifdef OPENSSL_HAS_ECC
905	case KEY_ECDSA:
906		return "ECDSA";
907#endif
908	case KEY_RSA_CERT_V00:
909		return "RSA-CERT-V00";
910	case KEY_DSA_CERT_V00:
911		return "DSA-CERT-V00";
912	case KEY_RSA_CERT:
913		return "RSA-CERT";
914	case KEY_DSA_CERT:
915		return "DSA-CERT";
916#ifdef OPENSSL_HAS_ECC
917	case KEY_ECDSA_CERT:
918		return "ECDSA-CERT";
919#endif
920	}
921	return "unknown";
922}
923
924const char *
925key_cert_type(const Key *k)
926{
927	switch (k->cert->type) {
928	case SSH2_CERT_TYPE_USER:
929		return "user";
930	case SSH2_CERT_TYPE_HOST:
931		return "host";
932	default:
933		return "unknown";
934	}
935}
936
937static const char *
938key_ssh_name_from_type_nid(int type, int nid)
939{
940	switch (type) {
941	case KEY_RSA:
942		return "ssh-rsa";
943	case KEY_DSA:
944		return "ssh-dss";
945	case KEY_RSA_CERT_V00:
946		return "ssh-rsa-cert-v00@openssh.com";
947	case KEY_DSA_CERT_V00:
948		return "ssh-dss-cert-v00@openssh.com";
949	case KEY_RSA_CERT:
950		return "ssh-rsa-cert-v01@openssh.com";
951	case KEY_DSA_CERT:
952		return "ssh-dss-cert-v01@openssh.com";
953#ifdef OPENSSL_HAS_ECC
954	case KEY_ECDSA:
955		switch (nid) {
956		case NID_X9_62_prime256v1:
957			return "ecdsa-sha2-nistp256";
958		case NID_secp384r1:
959			return "ecdsa-sha2-nistp384";
960		case NID_secp521r1:
961			return "ecdsa-sha2-nistp521";
962		default:
963			break;
964		}
965		break;
966	case KEY_ECDSA_CERT:
967		switch (nid) {
968		case NID_X9_62_prime256v1:
969			return "ecdsa-sha2-nistp256-cert-v01@openssh.com";
970		case NID_secp384r1:
971			return "ecdsa-sha2-nistp384-cert-v01@openssh.com";
972		case NID_secp521r1:
973			return "ecdsa-sha2-nistp521-cert-v01@openssh.com";
974		default:
975			break;
976		}
977		break;
978#endif /* OPENSSL_HAS_ECC */
979	}
980	return "ssh-unknown";
981}
982
983const char *
984key_ssh_name(const Key *k)
985{
986	return key_ssh_name_from_type_nid(k->type, k->ecdsa_nid);
987}
988
989const char *
990key_ssh_name_plain(const Key *k)
991{
992	return key_ssh_name_from_type_nid(key_type_plain(k->type),
993	    k->ecdsa_nid);
994}
995
996u_int
997key_size(const Key *k)
998{
999	switch (k->type) {
1000	case KEY_RSA1:
1001	case KEY_RSA:
1002	case KEY_RSA_CERT_V00:
1003	case KEY_RSA_CERT:
1004		return BN_num_bits(k->rsa->n);
1005	case KEY_DSA:
1006	case KEY_DSA_CERT_V00:
1007	case KEY_DSA_CERT:
1008		return BN_num_bits(k->dsa->p);
1009#ifdef OPENSSL_HAS_ECC
1010	case KEY_ECDSA:
1011	case KEY_ECDSA_CERT:
1012		return key_curve_nid_to_bits(k->ecdsa_nid);
1013#endif
1014	}
1015	return 0;
1016}
1017
1018static RSA *
1019rsa_generate_private_key(u_int bits)
1020{
1021	RSA *private = RSA_new();
1022	BIGNUM *f4 = BN_new();
1023
1024	if (private == NULL)
1025		fatal("%s: RSA_new failed", __func__);
1026	if (f4 == NULL)
1027		fatal("%s: BN_new failed", __func__);
1028	if (!BN_set_word(f4, RSA_F4))
1029		fatal("%s: BN_new failed", __func__);
1030	if (!RSA_generate_key_ex(private, bits, f4, NULL))
1031		fatal("%s: key generation failed.", __func__);
1032	BN_free(f4);
1033	return private;
1034}
1035
1036static DSA*
1037dsa_generate_private_key(u_int bits)
1038{
1039	DSA *private = DSA_new();
1040
1041	if (private == NULL)
1042		fatal("%s: DSA_new failed", __func__);
1043	if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL,
1044	    NULL, NULL))
1045		fatal("%s: DSA_generate_parameters failed", __func__);
1046	if (!DSA_generate_key(private))
1047		fatal("%s: DSA_generate_key failed.", __func__);
1048	return private;
1049}
1050
1051int
1052key_ecdsa_bits_to_nid(int bits)
1053{
1054	switch (bits) {
1055#ifdef OPENSSL_HAS_ECC
1056	case 256:
1057		return NID_X9_62_prime256v1;
1058	case 384:
1059		return NID_secp384r1;
1060	case 521:
1061		return NID_secp521r1;
1062#endif
1063	default:
1064		return -1;
1065	}
1066}
1067
1068#ifdef OPENSSL_HAS_ECC
1069int
1070key_ecdsa_key_to_nid(EC_KEY *k)
1071{
1072	EC_GROUP *eg;
1073	int nids[] = {
1074		NID_X9_62_prime256v1,
1075		NID_secp384r1,
1076		NID_secp521r1,
1077		-1
1078	};
1079	int nid;
1080	u_int i;
1081	BN_CTX *bnctx;
1082	const EC_GROUP *g = EC_KEY_get0_group(k);
1083
1084	/*
1085	 * The group may be stored in a ASN.1 encoded private key in one of two
1086	 * ways: as a "named group", which is reconstituted by ASN.1 object ID
1087	 * or explicit group parameters encoded into the key blob. Only the
1088	 * "named group" case sets the group NID for us, but we can figure
1089	 * it out for the other case by comparing against all the groups that
1090	 * are supported.
1091	 */
1092	if ((nid = EC_GROUP_get_curve_name(g)) > 0)
1093		return nid;
1094	if ((bnctx = BN_CTX_new()) == NULL)
1095		fatal("%s: BN_CTX_new() failed", __func__);
1096	for (i = 0; nids[i] != -1; i++) {
1097		if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL)
1098			fatal("%s: EC_GROUP_new_by_curve_name failed",
1099			    __func__);
1100		if (EC_GROUP_cmp(g, eg, bnctx) == 0)
1101			break;
1102		EC_GROUP_free(eg);
1103	}
1104	BN_CTX_free(bnctx);
1105	debug3("%s: nid = %d", __func__, nids[i]);
1106	if (nids[i] != -1) {
1107		/* Use the group with the NID attached */
1108		EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE);
1109		if (EC_KEY_set_group(k, eg) != 1)
1110			fatal("%s: EC_KEY_set_group", __func__);
1111	}
1112	return nids[i];
1113}
1114
1115static EC_KEY*
1116ecdsa_generate_private_key(u_int bits, int *nid)
1117{
1118	EC_KEY *private;
1119
1120	if ((*nid = key_ecdsa_bits_to_nid(bits)) == -1)
1121		fatal("%s: invalid key length", __func__);
1122	if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL)
1123		fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1124	if (EC_KEY_generate_key(private) != 1)
1125		fatal("%s: EC_KEY_generate_key failed", __func__);
1126	EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE);
1127	return private;
1128}
1129#endif /* OPENSSL_HAS_ECC */
1130
1131Key *
1132key_generate(int type, u_int bits)
1133{
1134	Key *k = key_new(KEY_UNSPEC);
1135	switch (type) {
1136	case KEY_DSA:
1137		k->dsa = dsa_generate_private_key(bits);
1138		break;
1139#ifdef OPENSSL_HAS_ECC
1140	case KEY_ECDSA:
1141		k->ecdsa = ecdsa_generate_private_key(bits, &k->ecdsa_nid);
1142		break;
1143#endif
1144	case KEY_RSA:
1145	case KEY_RSA1:
1146		k->rsa = rsa_generate_private_key(bits);
1147		break;
1148	case KEY_RSA_CERT_V00:
1149	case KEY_DSA_CERT_V00:
1150	case KEY_RSA_CERT:
1151	case KEY_DSA_CERT:
1152		fatal("key_generate: cert keys cannot be generated directly");
1153	default:
1154		fatal("key_generate: unknown type %d", type);
1155	}
1156	k->type = type;
1157	return k;
1158}
1159
1160void
1161key_cert_copy(const Key *from_key, struct Key *to_key)
1162{
1163	u_int i;
1164	const struct KeyCert *from;
1165	struct KeyCert *to;
1166
1167	if (to_key->cert != NULL) {
1168		cert_free(to_key->cert);
1169		to_key->cert = NULL;
1170	}
1171
1172	if ((from = from_key->cert) == NULL)
1173		return;
1174
1175	to = to_key->cert = cert_new();
1176
1177	buffer_append(&to->certblob, buffer_ptr(&from->certblob),
1178	    buffer_len(&from->certblob));
1179
1180	buffer_append(&to->critical,
1181	    buffer_ptr(&from->critical), buffer_len(&from->critical));
1182	buffer_append(&to->extensions,
1183	    buffer_ptr(&from->extensions), buffer_len(&from->extensions));
1184
1185	to->serial = from->serial;
1186	to->type = from->type;
1187	to->key_id = from->key_id == NULL ? NULL : xstrdup(from->key_id);
1188	to->valid_after = from->valid_after;
1189	to->valid_before = from->valid_before;
1190	to->signature_key = from->signature_key == NULL ?
1191	    NULL : key_from_private(from->signature_key);
1192
1193	to->nprincipals = from->nprincipals;
1194	if (to->nprincipals > CERT_MAX_PRINCIPALS)
1195		fatal("%s: nprincipals (%u) > CERT_MAX_PRINCIPALS (%u)",
1196		    __func__, to->nprincipals, CERT_MAX_PRINCIPALS);
1197	if (to->nprincipals > 0) {
1198		to->principals = xcalloc(from->nprincipals,
1199		    sizeof(*to->principals));
1200		for (i = 0; i < to->nprincipals; i++)
1201			to->principals[i] = xstrdup(from->principals[i]);
1202	}
1203}
1204
1205Key *
1206key_from_private(const Key *k)
1207{
1208	Key *n = NULL;
1209	switch (k->type) {
1210	case KEY_DSA:
1211	case KEY_DSA_CERT_V00:
1212	case KEY_DSA_CERT:
1213		n = key_new(k->type);
1214		if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
1215		    (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
1216		    (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
1217		    (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL))
1218			fatal("key_from_private: BN_copy failed");
1219		break;
1220#ifdef OPENSSL_HAS_ECC
1221	case KEY_ECDSA:
1222	case KEY_ECDSA_CERT:
1223		n = key_new(k->type);
1224		n->ecdsa_nid = k->ecdsa_nid;
1225		if ((n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid)) == NULL)
1226			fatal("%s: EC_KEY_new_by_curve_name failed", __func__);
1227		if (EC_KEY_set_public_key(n->ecdsa,
1228		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1229			fatal("%s: EC_KEY_set_public_key failed", __func__);
1230		break;
1231#endif
1232	case KEY_RSA:
1233	case KEY_RSA1:
1234	case KEY_RSA_CERT_V00:
1235	case KEY_RSA_CERT:
1236		n = key_new(k->type);
1237		if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
1238		    (BN_copy(n->rsa->e, k->rsa->e) == NULL))
1239			fatal("key_from_private: BN_copy failed");
1240		break;
1241	default:
1242		fatal("key_from_private: unknown type %d", k->type);
1243		break;
1244	}
1245	if (key_is_cert(k))
1246		key_cert_copy(k, n);
1247	return n;
1248}
1249
1250int
1251key_type_from_name(char *name)
1252{
1253	if (strcmp(name, "rsa1") == 0) {
1254		return KEY_RSA1;
1255	} else if (strcmp(name, "rsa") == 0) {
1256		return KEY_RSA;
1257	} else if (strcmp(name, "dsa") == 0) {
1258		return KEY_DSA;
1259	} else if (strcmp(name, "ssh-rsa") == 0) {
1260		return KEY_RSA;
1261	} else if (strcmp(name, "ssh-dss") == 0) {
1262		return KEY_DSA;
1263#ifdef OPENSSL_HAS_ECC
1264	} else if (strcmp(name, "ecdsa") == 0 ||
1265	    strcmp(name, "ecdsa-sha2-nistp256") == 0 ||
1266	    strcmp(name, "ecdsa-sha2-nistp384") == 0 ||
1267	    strcmp(name, "ecdsa-sha2-nistp521") == 0) {
1268		return KEY_ECDSA;
1269#endif
1270	} else if (strcmp(name, "ssh-rsa-cert-v00@openssh.com") == 0) {
1271		return KEY_RSA_CERT_V00;
1272	} else if (strcmp(name, "ssh-dss-cert-v00@openssh.com") == 0) {
1273		return KEY_DSA_CERT_V00;
1274	} else if (strcmp(name, "ssh-rsa-cert-v01@openssh.com") == 0) {
1275		return KEY_RSA_CERT;
1276	} else if (strcmp(name, "ssh-dss-cert-v01@openssh.com") == 0) {
1277		return KEY_DSA_CERT;
1278#ifdef OPENSSL_HAS_ECC
1279	} else if (strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0 ||
1280	    strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0 ||
1281	    strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0) {
1282		return KEY_ECDSA_CERT;
1283#endif
1284	}
1285
1286	debug2("key_type_from_name: unknown key type '%s'", name);
1287	return KEY_UNSPEC;
1288}
1289
1290int
1291key_ecdsa_nid_from_name(const char *name)
1292{
1293#ifdef OPENSSL_HAS_ECC
1294	if (strcmp(name, "ecdsa-sha2-nistp256") == 0 ||
1295	    strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0)
1296		return NID_X9_62_prime256v1;
1297	if (strcmp(name, "ecdsa-sha2-nistp384") == 0 ||
1298	    strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0)
1299		return NID_secp384r1;
1300	if (strcmp(name, "ecdsa-sha2-nistp521") == 0 ||
1301	    strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0)
1302		return NID_secp521r1;
1303#endif /* OPENSSL_HAS_ECC */
1304
1305	debug2("%s: unknown/non-ECDSA key type '%s'", __func__, name);
1306	return -1;
1307}
1308
1309int
1310key_names_valid2(const char *names)
1311{
1312	char *s, *cp, *p;
1313
1314	if (names == NULL || strcmp(names, "") == 0)
1315		return 0;
1316	s = cp = xstrdup(names);
1317	for ((p = strsep(&cp, ",")); p && *p != '\0';
1318	    (p = strsep(&cp, ","))) {
1319		switch (key_type_from_name(p)) {
1320		case KEY_RSA1:
1321		case KEY_UNSPEC:
1322			xfree(s);
1323			return 0;
1324		}
1325	}
1326	debug3("key names ok: [%s]", names);
1327	xfree(s);
1328	return 1;
1329}
1330
1331static int
1332cert_parse(Buffer *b, Key *key, const u_char *blob, u_int blen)
1333{
1334	u_char *principals, *critical, *exts, *sig_key, *sig;
1335	u_int signed_len, plen, clen, sklen, slen, kidlen, elen;
1336	Buffer tmp;
1337	char *principal;
1338	int ret = -1;
1339	int v00 = key->type == KEY_DSA_CERT_V00 ||
1340	    key->type == KEY_RSA_CERT_V00;
1341
1342	buffer_init(&tmp);
1343
1344	/* Copy the entire key blob for verification and later serialisation */
1345	buffer_append(&key->cert->certblob, blob, blen);
1346
1347	elen = 0; /* Not touched for v00 certs */
1348	principals = exts = critical = sig_key = sig = NULL;
1349	if ((!v00 && buffer_get_int64_ret(&key->cert->serial, b) != 0) ||
1350	    buffer_get_int_ret(&key->cert->type, b) != 0 ||
1351	    (key->cert->key_id = buffer_get_cstring_ret(b, &kidlen)) == NULL ||
1352	    (principals = buffer_get_string_ret(b, &plen)) == NULL ||
1353	    buffer_get_int64_ret(&key->cert->valid_after, b) != 0 ||
1354	    buffer_get_int64_ret(&key->cert->valid_before, b) != 0 ||
1355	    (critical = buffer_get_string_ret(b, &clen)) == NULL ||
1356	    (!v00 && (exts = buffer_get_string_ret(b, &elen)) == NULL) ||
1357	    (v00 && buffer_get_string_ptr_ret(b, NULL) == NULL) || /* nonce */
1358	    buffer_get_string_ptr_ret(b, NULL) == NULL || /* reserved */
1359	    (sig_key = buffer_get_string_ret(b, &sklen)) == NULL) {
1360		error("%s: parse error", __func__);
1361		goto out;
1362	}
1363
1364	/* Signature is left in the buffer so we can calculate this length */
1365	signed_len = buffer_len(&key->cert->certblob) - buffer_len(b);
1366
1367	if ((sig = buffer_get_string_ret(b, &slen)) == NULL) {
1368		error("%s: parse error", __func__);
1369		goto out;
1370	}
1371
1372	if (key->cert->type != SSH2_CERT_TYPE_USER &&
1373	    key->cert->type != SSH2_CERT_TYPE_HOST) {
1374		error("Unknown certificate type %u", key->cert->type);
1375		goto out;
1376	}
1377
1378	buffer_append(&tmp, principals, plen);
1379	while (buffer_len(&tmp) > 0) {
1380		if (key->cert->nprincipals >= CERT_MAX_PRINCIPALS) {
1381			error("%s: Too many principals", __func__);
1382			goto out;
1383		}
1384		if ((principal = buffer_get_cstring_ret(&tmp, &plen)) == NULL) {
1385			error("%s: Principals data invalid", __func__);
1386			goto out;
1387		}
1388		key->cert->principals = xrealloc(key->cert->principals,
1389		    key->cert->nprincipals + 1, sizeof(*key->cert->principals));
1390		key->cert->principals[key->cert->nprincipals++] = principal;
1391	}
1392
1393	buffer_clear(&tmp);
1394
1395	buffer_append(&key->cert->critical, critical, clen);
1396	buffer_append(&tmp, critical, clen);
1397	/* validate structure */
1398	while (buffer_len(&tmp) != 0) {
1399		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1400		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1401			error("%s: critical option data invalid", __func__);
1402			goto out;
1403		}
1404	}
1405	buffer_clear(&tmp);
1406
1407	buffer_append(&key->cert->extensions, exts, elen);
1408	buffer_append(&tmp, exts, elen);
1409	/* validate structure */
1410	while (buffer_len(&tmp) != 0) {
1411		if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL ||
1412		    buffer_get_string_ptr_ret(&tmp, NULL) == NULL) {
1413			error("%s: extension data invalid", __func__);
1414			goto out;
1415		}
1416	}
1417	buffer_clear(&tmp);
1418
1419	if ((key->cert->signature_key = key_from_blob(sig_key,
1420	    sklen)) == NULL) {
1421		error("%s: Signature key invalid", __func__);
1422		goto out;
1423	}
1424	if (key->cert->signature_key->type != KEY_RSA &&
1425	    key->cert->signature_key->type != KEY_DSA &&
1426	    key->cert->signature_key->type != KEY_ECDSA) {
1427		error("%s: Invalid signature key type %s (%d)", __func__,
1428		    key_type(key->cert->signature_key),
1429		    key->cert->signature_key->type);
1430		goto out;
1431	}
1432
1433	switch (key_verify(key->cert->signature_key, sig, slen,
1434	    buffer_ptr(&key->cert->certblob), signed_len)) {
1435	case 1:
1436		ret = 0;
1437		break; /* Good signature */
1438	case 0:
1439		error("%s: Invalid signature on certificate", __func__);
1440		goto out;
1441	case -1:
1442		error("%s: Certificate signature verification failed",
1443		    __func__);
1444		goto out;
1445	}
1446
1447 out:
1448	buffer_free(&tmp);
1449	if (principals != NULL)
1450		xfree(principals);
1451	if (critical != NULL)
1452		xfree(critical);
1453	if (exts != NULL)
1454		xfree(exts);
1455	if (sig_key != NULL)
1456		xfree(sig_key);
1457	if (sig != NULL)
1458		xfree(sig);
1459	return ret;
1460}
1461
1462Key *
1463key_from_blob(const u_char *blob, u_int blen)
1464{
1465	Buffer b;
1466	int rlen, type;
1467	char *ktype = NULL, *curve = NULL;
1468	Key *key = NULL;
1469#ifdef OPENSSL_HAS_ECC
1470	EC_POINT *q = NULL;
1471	int nid = -1;
1472#endif
1473
1474#ifdef DEBUG_PK
1475	dump_base64(stderr, blob, blen);
1476#endif
1477	buffer_init(&b);
1478	buffer_append(&b, blob, blen);
1479	if ((ktype = buffer_get_cstring_ret(&b, NULL)) == NULL) {
1480		error("key_from_blob: can't read key type");
1481		goto out;
1482	}
1483
1484	type = key_type_from_name(ktype);
1485#ifdef OPENSSL_HAS_ECC
1486	if (key_type_plain(type) == KEY_ECDSA)
1487		nid = key_ecdsa_nid_from_name(ktype);
1488#endif
1489
1490	switch (type) {
1491	case KEY_RSA_CERT:
1492		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1493		/* FALLTHROUGH */
1494	case KEY_RSA:
1495	case KEY_RSA_CERT_V00:
1496		key = key_new(type);
1497		if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
1498		    buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
1499			error("key_from_blob: can't read rsa key");
1500 badkey:
1501			key_free(key);
1502			key = NULL;
1503			goto out;
1504		}
1505#ifdef DEBUG_PK
1506		RSA_print_fp(stderr, key->rsa, 8);
1507#endif
1508		break;
1509	case KEY_DSA_CERT:
1510		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1511		/* FALLTHROUGH */
1512	case KEY_DSA:
1513	case KEY_DSA_CERT_V00:
1514		key = key_new(type);
1515		if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
1516		    buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
1517		    buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
1518		    buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
1519			error("key_from_blob: can't read dsa key");
1520			goto badkey;
1521		}
1522#ifdef DEBUG_PK
1523		DSA_print_fp(stderr, key->dsa, 8);
1524#endif
1525		break;
1526#ifdef OPENSSL_HAS_ECC
1527	case KEY_ECDSA_CERT:
1528		(void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */
1529		/* FALLTHROUGH */
1530	case KEY_ECDSA:
1531		key = key_new(type);
1532		key->ecdsa_nid = nid;
1533		if ((curve = buffer_get_string_ret(&b, NULL)) == NULL) {
1534			error("key_from_blob: can't read ecdsa curve");
1535			goto badkey;
1536		}
1537		if (key->ecdsa_nid != key_curve_name_to_nid(curve)) {
1538			error("key_from_blob: ecdsa curve doesn't match type");
1539			goto badkey;
1540		}
1541		if (key->ecdsa != NULL)
1542			EC_KEY_free(key->ecdsa);
1543		if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid))
1544		    == NULL)
1545			fatal("key_from_blob: EC_KEY_new_by_curve_name failed");
1546		if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL)
1547			fatal("key_from_blob: EC_POINT_new failed");
1548		if (buffer_get_ecpoint_ret(&b, EC_KEY_get0_group(key->ecdsa),
1549		    q) == -1) {
1550			error("key_from_blob: can't read ecdsa key point");
1551			goto badkey;
1552		}
1553		if (key_ec_validate_public(EC_KEY_get0_group(key->ecdsa),
1554		    q) != 0)
1555			goto badkey;
1556		if (EC_KEY_set_public_key(key->ecdsa, q) != 1)
1557			fatal("key_from_blob: EC_KEY_set_public_key failed");
1558#ifdef DEBUG_PK
1559		key_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q);
1560#endif
1561		break;
1562#endif /* OPENSSL_HAS_ECC */
1563	case KEY_UNSPEC:
1564		key = key_new(type);
1565		break;
1566	default:
1567		error("key_from_blob: cannot handle type %s", ktype);
1568		goto out;
1569	}
1570	if (key_is_cert(key) && cert_parse(&b, key, blob, blen) == -1) {
1571		error("key_from_blob: can't parse cert data");
1572		goto badkey;
1573	}
1574	rlen = buffer_len(&b);
1575	if (key != NULL && rlen != 0)
1576		error("key_from_blob: remaining bytes in key blob %d", rlen);
1577 out:
1578	if (ktype != NULL)
1579		xfree(ktype);
1580	if (curve != NULL)
1581		xfree(curve);
1582#ifdef OPENSSL_HAS_ECC
1583	if (q != NULL)
1584		EC_POINT_free(q);
1585#endif
1586	buffer_free(&b);
1587	return key;
1588}
1589
1590int
1591key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
1592{
1593	Buffer b;
1594	int len;
1595
1596	if (key == NULL) {
1597		error("key_to_blob: key == NULL");
1598		return 0;
1599	}
1600	buffer_init(&b);
1601	switch (key->type) {
1602	case KEY_DSA_CERT_V00:
1603	case KEY_RSA_CERT_V00:
1604	case KEY_DSA_CERT:
1605	case KEY_ECDSA_CERT:
1606	case KEY_RSA_CERT:
1607		/* Use the existing blob */
1608		buffer_append(&b, buffer_ptr(&key->cert->certblob),
1609		    buffer_len(&key->cert->certblob));
1610		break;
1611	case KEY_DSA:
1612		buffer_put_cstring(&b, key_ssh_name(key));
1613		buffer_put_bignum2(&b, key->dsa->p);
1614		buffer_put_bignum2(&b, key->dsa->q);
1615		buffer_put_bignum2(&b, key->dsa->g);
1616		buffer_put_bignum2(&b, key->dsa->pub_key);
1617		break;
1618#ifdef OPENSSL_HAS_ECC
1619	case KEY_ECDSA:
1620		buffer_put_cstring(&b, key_ssh_name(key));
1621		buffer_put_cstring(&b, key_curve_nid_to_name(key->ecdsa_nid));
1622		buffer_put_ecpoint(&b, EC_KEY_get0_group(key->ecdsa),
1623		    EC_KEY_get0_public_key(key->ecdsa));
1624		break;
1625#endif
1626	case KEY_RSA:
1627		buffer_put_cstring(&b, key_ssh_name(key));
1628		buffer_put_bignum2(&b, key->rsa->e);
1629		buffer_put_bignum2(&b, key->rsa->n);
1630		break;
1631	default:
1632		error("key_to_blob: unsupported key type %d", key->type);
1633		buffer_free(&b);
1634		return 0;
1635	}
1636	len = buffer_len(&b);
1637	if (lenp != NULL)
1638		*lenp = len;
1639	if (blobp != NULL) {
1640		*blobp = xmalloc(len);
1641		memcpy(*blobp, buffer_ptr(&b), len);
1642	}
1643	memset(buffer_ptr(&b), 0, len);
1644	buffer_free(&b);
1645	return len;
1646}
1647
1648int
1649key_sign(
1650    const Key *key,
1651    u_char **sigp, u_int *lenp,
1652    const u_char *data, u_int datalen)
1653{
1654	switch (key->type) {
1655	case KEY_DSA_CERT_V00:
1656	case KEY_DSA_CERT:
1657	case KEY_DSA:
1658		return ssh_dss_sign(key, sigp, lenp, data, datalen);
1659#ifdef OPENSSL_HAS_ECC
1660	case KEY_ECDSA_CERT:
1661	case KEY_ECDSA:
1662		return ssh_ecdsa_sign(key, sigp, lenp, data, datalen);
1663#endif
1664	case KEY_RSA_CERT_V00:
1665	case KEY_RSA_CERT:
1666	case KEY_RSA:
1667		return ssh_rsa_sign(key, sigp, lenp, data, datalen);
1668	default:
1669		error("key_sign: invalid key type %d", key->type);
1670		return -1;
1671	}
1672}
1673
1674/*
1675 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
1676 * and -1 on error.
1677 */
1678int
1679key_verify(
1680    const Key *key,
1681    const u_char *signature, u_int signaturelen,
1682    const u_char *data, u_int datalen)
1683{
1684	if (signaturelen == 0)
1685		return -1;
1686
1687	switch (key->type) {
1688	case KEY_DSA_CERT_V00:
1689	case KEY_DSA_CERT:
1690	case KEY_DSA:
1691		return ssh_dss_verify(key, signature, signaturelen, data, datalen);
1692#ifdef OPENSSL_HAS_ECC
1693	case KEY_ECDSA_CERT:
1694	case KEY_ECDSA:
1695		return ssh_ecdsa_verify(key, signature, signaturelen, data, datalen);
1696#endif
1697	case KEY_RSA_CERT_V00:
1698	case KEY_RSA_CERT:
1699	case KEY_RSA:
1700		return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
1701	default:
1702		error("key_verify: invalid key type %d", key->type);
1703		return -1;
1704	}
1705}
1706
1707/* Converts a private to a public key */
1708Key *
1709key_demote(const Key *k)
1710{
1711	Key *pk;
1712
1713	pk = xcalloc(1, sizeof(*pk));
1714	pk->type = k->type;
1715	pk->flags = k->flags;
1716	pk->ecdsa_nid = k->ecdsa_nid;
1717	pk->dsa = NULL;
1718	pk->ecdsa = NULL;
1719	pk->rsa = NULL;
1720
1721	switch (k->type) {
1722	case KEY_RSA_CERT_V00:
1723	case KEY_RSA_CERT:
1724		key_cert_copy(k, pk);
1725		/* FALLTHROUGH */
1726	case KEY_RSA1:
1727	case KEY_RSA:
1728		if ((pk->rsa = RSA_new()) == NULL)
1729			fatal("key_demote: RSA_new failed");
1730		if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
1731			fatal("key_demote: BN_dup failed");
1732		if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
1733			fatal("key_demote: BN_dup failed");
1734		break;
1735	case KEY_DSA_CERT_V00:
1736	case KEY_DSA_CERT:
1737		key_cert_copy(k, pk);
1738		/* FALLTHROUGH */
1739	case KEY_DSA:
1740		if ((pk->dsa = DSA_new()) == NULL)
1741			fatal("key_demote: DSA_new failed");
1742		if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
1743			fatal("key_demote: BN_dup failed");
1744		if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
1745			fatal("key_demote: BN_dup failed");
1746		if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
1747			fatal("key_demote: BN_dup failed");
1748		if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
1749			fatal("key_demote: BN_dup failed");
1750		break;
1751#ifdef OPENSSL_HAS_ECC
1752	case KEY_ECDSA_CERT:
1753		key_cert_copy(k, pk);
1754		/* FALLTHROUGH */
1755	case KEY_ECDSA:
1756		if ((pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid)) == NULL)
1757			fatal("key_demote: EC_KEY_new_by_curve_name failed");
1758		if (EC_KEY_set_public_key(pk->ecdsa,
1759		    EC_KEY_get0_public_key(k->ecdsa)) != 1)
1760			fatal("key_demote: EC_KEY_set_public_key failed");
1761		break;
1762#endif
1763	default:
1764		fatal("key_free: bad key type %d", k->type);
1765		break;
1766	}
1767
1768	return (pk);
1769}
1770
1771int
1772key_is_cert(const Key *k)
1773{
1774	if (k == NULL)
1775		return 0;
1776	switch (k->type) {
1777	case KEY_RSA_CERT_V00:
1778	case KEY_DSA_CERT_V00:
1779	case KEY_RSA_CERT:
1780	case KEY_DSA_CERT:
1781	case KEY_ECDSA_CERT:
1782		return 1;
1783	default:
1784		return 0;
1785	}
1786}
1787
1788/* Return the cert-less equivalent to a certified key type */
1789int
1790key_type_plain(int type)
1791{
1792	switch (type) {
1793	case KEY_RSA_CERT_V00:
1794	case KEY_RSA_CERT:
1795		return KEY_RSA;
1796	case KEY_DSA_CERT_V00:
1797	case KEY_DSA_CERT:
1798		return KEY_DSA;
1799	case KEY_ECDSA_CERT:
1800		return KEY_ECDSA;
1801	default:
1802		return type;
1803	}
1804}
1805
1806/* Convert a KEY_RSA or KEY_DSA to their _CERT equivalent */
1807int
1808key_to_certified(Key *k, int legacy)
1809{
1810	switch (k->type) {
1811	case KEY_RSA:
1812		k->cert = cert_new();
1813		k->type = legacy ? KEY_RSA_CERT_V00 : KEY_RSA_CERT;
1814		return 0;
1815	case KEY_DSA:
1816		k->cert = cert_new();
1817		k->type = legacy ? KEY_DSA_CERT_V00 : KEY_DSA_CERT;
1818		return 0;
1819	case KEY_ECDSA:
1820		if (legacy)
1821			fatal("%s: legacy ECDSA certificates are not supported",
1822			    __func__);
1823		k->cert = cert_new();
1824		k->type = KEY_ECDSA_CERT;
1825		return 0;
1826	default:
1827		error("%s: key has incorrect type %s", __func__, key_type(k));
1828		return -1;
1829	}
1830}
1831
1832/* Convert a KEY_RSA_CERT or KEY_DSA_CERT to their raw key equivalent */
1833int
1834key_drop_cert(Key *k)
1835{
1836	switch (k->type) {
1837	case KEY_RSA_CERT_V00:
1838	case KEY_RSA_CERT:
1839		cert_free(k->cert);
1840		k->type = KEY_RSA;
1841		return 0;
1842	case KEY_DSA_CERT_V00:
1843	case KEY_DSA_CERT:
1844		cert_free(k->cert);
1845		k->type = KEY_DSA;
1846		return 0;
1847	case KEY_ECDSA_CERT:
1848		cert_free(k->cert);
1849		k->type = KEY_ECDSA;
1850		return 0;
1851	default:
1852		error("%s: key has incorrect type %s", __func__, key_type(k));
1853		return -1;
1854	}
1855}
1856
1857/*
1858 * Sign a KEY_RSA_CERT, KEY_DSA_CERT or KEY_ECDSA_CERT, (re-)generating
1859 * the signed certblob
1860 */
1861int
1862key_certify(Key *k, Key *ca)
1863{
1864	Buffer principals;
1865	u_char *ca_blob, *sig_blob, nonce[32];
1866	u_int i, ca_len, sig_len;
1867
1868	if (k->cert == NULL) {
1869		error("%s: key lacks cert info", __func__);
1870		return -1;
1871	}
1872
1873	if (!key_is_cert(k)) {
1874		error("%s: certificate has unknown type %d", __func__,
1875		    k->cert->type);
1876		return -1;
1877	}
1878
1879	if (ca->type != KEY_RSA && ca->type != KEY_DSA &&
1880	    ca->type != KEY_ECDSA) {
1881		error("%s: CA key has unsupported type %s", __func__,
1882		    key_type(ca));
1883		return -1;
1884	}
1885
1886	key_to_blob(ca, &ca_blob, &ca_len);
1887
1888	buffer_clear(&k->cert->certblob);
1889	buffer_put_cstring(&k->cert->certblob, key_ssh_name(k));
1890
1891	/* -v01 certs put nonce first */
1892	arc4random_buf(&nonce, sizeof(nonce));
1893	if (!key_cert_is_legacy(k))
1894		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1895
1896	switch (k->type) {
1897	case KEY_DSA_CERT_V00:
1898	case KEY_DSA_CERT:
1899		buffer_put_bignum2(&k->cert->certblob, k->dsa->p);
1900		buffer_put_bignum2(&k->cert->certblob, k->dsa->q);
1901		buffer_put_bignum2(&k->cert->certblob, k->dsa->g);
1902		buffer_put_bignum2(&k->cert->certblob, k->dsa->pub_key);
1903		break;
1904#ifdef OPENSSL_HAS_ECC
1905	case KEY_ECDSA_CERT:
1906		buffer_put_cstring(&k->cert->certblob,
1907		    key_curve_nid_to_name(k->ecdsa_nid));
1908		buffer_put_ecpoint(&k->cert->certblob,
1909		    EC_KEY_get0_group(k->ecdsa),
1910		    EC_KEY_get0_public_key(k->ecdsa));
1911		break;
1912#endif
1913	case KEY_RSA_CERT_V00:
1914	case KEY_RSA_CERT:
1915		buffer_put_bignum2(&k->cert->certblob, k->rsa->e);
1916		buffer_put_bignum2(&k->cert->certblob, k->rsa->n);
1917		break;
1918	default:
1919		error("%s: key has incorrect type %s", __func__, key_type(k));
1920		buffer_clear(&k->cert->certblob);
1921		xfree(ca_blob);
1922		return -1;
1923	}
1924
1925	/* -v01 certs have a serial number next */
1926	if (!key_cert_is_legacy(k))
1927		buffer_put_int64(&k->cert->certblob, k->cert->serial);
1928
1929	buffer_put_int(&k->cert->certblob, k->cert->type);
1930	buffer_put_cstring(&k->cert->certblob, k->cert->key_id);
1931
1932	buffer_init(&principals);
1933	for (i = 0; i < k->cert->nprincipals; i++)
1934		buffer_put_cstring(&principals, k->cert->principals[i]);
1935	buffer_put_string(&k->cert->certblob, buffer_ptr(&principals),
1936	    buffer_len(&principals));
1937	buffer_free(&principals);
1938
1939	buffer_put_int64(&k->cert->certblob, k->cert->valid_after);
1940	buffer_put_int64(&k->cert->certblob, k->cert->valid_before);
1941	buffer_put_string(&k->cert->certblob,
1942	    buffer_ptr(&k->cert->critical), buffer_len(&k->cert->critical));
1943
1944	/* -v01 certs have non-critical options here */
1945	if (!key_cert_is_legacy(k)) {
1946		buffer_put_string(&k->cert->certblob,
1947		    buffer_ptr(&k->cert->extensions),
1948		    buffer_len(&k->cert->extensions));
1949	}
1950
1951	/* -v00 certs put the nonce at the end */
1952	if (key_cert_is_legacy(k))
1953		buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce));
1954
1955	buffer_put_string(&k->cert->certblob, NULL, 0); /* reserved */
1956	buffer_put_string(&k->cert->certblob, ca_blob, ca_len);
1957	xfree(ca_blob);
1958
1959	/* Sign the whole mess */
1960	if (key_sign(ca, &sig_blob, &sig_len, buffer_ptr(&k->cert->certblob),
1961	    buffer_len(&k->cert->certblob)) != 0) {
1962		error("%s: signature operation failed", __func__);
1963		buffer_clear(&k->cert->certblob);
1964		return -1;
1965	}
1966	/* Append signature and we are done */
1967	buffer_put_string(&k->cert->certblob, sig_blob, sig_len);
1968	xfree(sig_blob);
1969
1970	return 0;
1971}
1972
1973int
1974key_cert_check_authority(const Key *k, int want_host, int require_principal,
1975    const char *name, const char **reason)
1976{
1977	u_int i, principal_matches;
1978	time_t now = time(NULL);
1979
1980	if (want_host) {
1981		if (k->cert->type != SSH2_CERT_TYPE_HOST) {
1982			*reason = "Certificate invalid: not a host certificate";
1983			return -1;
1984		}
1985	} else {
1986		if (k->cert->type != SSH2_CERT_TYPE_USER) {
1987			*reason = "Certificate invalid: not a user certificate";
1988			return -1;
1989		}
1990	}
1991	if (now < 0) {
1992		error("%s: system clock lies before epoch", __func__);
1993		*reason = "Certificate invalid: not yet valid";
1994		return -1;
1995	}
1996	if ((u_int64_t)now < k->cert->valid_after) {
1997		*reason = "Certificate invalid: not yet valid";
1998		return -1;
1999	}
2000	if ((u_int64_t)now >= k->cert->valid_before) {
2001		*reason = "Certificate invalid: expired";
2002		return -1;
2003	}
2004	if (k->cert->nprincipals == 0) {
2005		if (require_principal) {
2006			*reason = "Certificate lacks principal list";
2007			return -1;
2008		}
2009	} else if (name != NULL) {
2010		principal_matches = 0;
2011		for (i = 0; i < k->cert->nprincipals; i++) {
2012			if (strcmp(name, k->cert->principals[i]) == 0) {
2013				principal_matches = 1;
2014				break;
2015			}
2016		}
2017		if (!principal_matches) {
2018			*reason = "Certificate invalid: name is not a listed "
2019			    "principal";
2020			return -1;
2021		}
2022	}
2023	return 0;
2024}
2025
2026int
2027key_cert_is_legacy(Key *k)
2028{
2029	switch (k->type) {
2030	case KEY_DSA_CERT_V00:
2031	case KEY_RSA_CERT_V00:
2032		return 1;
2033	default:
2034		return 0;
2035	}
2036}
2037
2038/* XXX: these are really begging for a table-driven approach */
2039int
2040key_curve_name_to_nid(const char *name)
2041{
2042#ifdef OPENSSL_HAS_ECC
2043	if (strcmp(name, "nistp256") == 0)
2044		return NID_X9_62_prime256v1;
2045	else if (strcmp(name, "nistp384") == 0)
2046		return NID_secp384r1;
2047	else if (strcmp(name, "nistp521") == 0)
2048		return NID_secp521r1;
2049#endif
2050
2051	debug("%s: unsupported EC curve name \"%.100s\"", __func__, name);
2052	return -1;
2053}
2054
2055u_int
2056key_curve_nid_to_bits(int nid)
2057{
2058	switch (nid) {
2059#ifdef OPENSSL_HAS_ECC
2060	case NID_X9_62_prime256v1:
2061		return 256;
2062	case NID_secp384r1:
2063		return 384;
2064	case NID_secp521r1:
2065		return 521;
2066#endif
2067	default:
2068		error("%s: unsupported EC curve nid %d", __func__, nid);
2069		return 0;
2070	}
2071}
2072
2073const char *
2074key_curve_nid_to_name(int nid)
2075{
2076#ifdef OPENSSL_HAS_ECC
2077	if (nid == NID_X9_62_prime256v1)
2078		return "nistp256";
2079	else if (nid == NID_secp384r1)
2080		return "nistp384";
2081	else if (nid == NID_secp521r1)
2082		return "nistp521";
2083#endif
2084	error("%s: unsupported EC curve nid %d", __func__, nid);
2085	return NULL;
2086}
2087
2088#ifdef OPENSSL_HAS_ECC
2089const EVP_MD *
2090key_ec_nid_to_evpmd(int nid)
2091{
2092	int kbits = key_curve_nid_to_bits(nid);
2093
2094	if (kbits == 0)
2095		fatal("%s: invalid nid %d", __func__, nid);
2096	/* RFC5656 section 6.2.1 */
2097	if (kbits <= 256)
2098		return EVP_sha256();
2099	else if (kbits <= 384)
2100		return EVP_sha384();
2101	else
2102		return EVP_sha512();
2103}
2104
2105int
2106key_ec_validate_public(const EC_GROUP *group, const EC_POINT *public)
2107{
2108	BN_CTX *bnctx;
2109	EC_POINT *nq = NULL;
2110	BIGNUM *order, *x, *y, *tmp;
2111	int ret = -1;
2112
2113	if ((bnctx = BN_CTX_new()) == NULL)
2114		fatal("%s: BN_CTX_new failed", __func__);
2115	BN_CTX_start(bnctx);
2116
2117	/*
2118	 * We shouldn't ever hit this case because bignum_get_ecpoint()
2119	 * refuses to load GF2m points.
2120	 */
2121	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2122	    NID_X9_62_prime_field) {
2123		error("%s: group is not a prime field", __func__);
2124		goto out;
2125	}
2126
2127	/* Q != infinity */
2128	if (EC_POINT_is_at_infinity(group, public)) {
2129		error("%s: received degenerate public key (infinity)",
2130		    __func__);
2131		goto out;
2132	}
2133
2134	if ((x = BN_CTX_get(bnctx)) == NULL ||
2135	    (y = BN_CTX_get(bnctx)) == NULL ||
2136	    (order = BN_CTX_get(bnctx)) == NULL ||
2137	    (tmp = BN_CTX_get(bnctx)) == NULL)
2138		fatal("%s: BN_CTX_get failed", __func__);
2139
2140	/* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */
2141	if (EC_GROUP_get_order(group, order, bnctx) != 1)
2142		fatal("%s: EC_GROUP_get_order failed", __func__);
2143	if (EC_POINT_get_affine_coordinates_GFp(group, public,
2144	    x, y, bnctx) != 1)
2145		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2146	if (BN_num_bits(x) <= BN_num_bits(order) / 2) {
2147		error("%s: public key x coordinate too small: "
2148		    "bits(x) = %d, bits(order)/2 = %d", __func__,
2149		    BN_num_bits(x), BN_num_bits(order) / 2);
2150		goto out;
2151	}
2152	if (BN_num_bits(y) <= BN_num_bits(order) / 2) {
2153		error("%s: public key y coordinate too small: "
2154		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2155		    BN_num_bits(x), BN_num_bits(order) / 2);
2156		goto out;
2157	}
2158
2159	/* nQ == infinity (n == order of subgroup) */
2160	if ((nq = EC_POINT_new(group)) == NULL)
2161		fatal("%s: BN_CTX_tmp failed", __func__);
2162	if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1)
2163		fatal("%s: EC_GROUP_mul failed", __func__);
2164	if (EC_POINT_is_at_infinity(group, nq) != 1) {
2165		error("%s: received degenerate public key (nQ != infinity)",
2166		    __func__);
2167		goto out;
2168	}
2169
2170	/* x < order - 1, y < order - 1 */
2171	if (!BN_sub(tmp, order, BN_value_one()))
2172		fatal("%s: BN_sub failed", __func__);
2173	if (BN_cmp(x, tmp) >= 0) {
2174		error("%s: public key x coordinate >= group order - 1",
2175		    __func__);
2176		goto out;
2177	}
2178	if (BN_cmp(y, tmp) >= 0) {
2179		error("%s: public key y coordinate >= group order - 1",
2180		    __func__);
2181		goto out;
2182	}
2183	ret = 0;
2184 out:
2185	BN_CTX_free(bnctx);
2186	EC_POINT_free(nq);
2187	return ret;
2188}
2189
2190int
2191key_ec_validate_private(const EC_KEY *key)
2192{
2193	BN_CTX *bnctx;
2194	BIGNUM *order, *tmp;
2195	int ret = -1;
2196
2197	if ((bnctx = BN_CTX_new()) == NULL)
2198		fatal("%s: BN_CTX_new failed", __func__);
2199	BN_CTX_start(bnctx);
2200
2201	if ((order = BN_CTX_get(bnctx)) == NULL ||
2202	    (tmp = BN_CTX_get(bnctx)) == NULL)
2203		fatal("%s: BN_CTX_get failed", __func__);
2204
2205	/* log2(private) > log2(order)/2 */
2206	if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1)
2207		fatal("%s: EC_GROUP_get_order failed", __func__);
2208	if (BN_num_bits(EC_KEY_get0_private_key(key)) <=
2209	    BN_num_bits(order) / 2) {
2210		error("%s: private key too small: "
2211		    "bits(y) = %d, bits(order)/2 = %d", __func__,
2212		    BN_num_bits(EC_KEY_get0_private_key(key)),
2213		    BN_num_bits(order) / 2);
2214		goto out;
2215	}
2216
2217	/* private < order - 1 */
2218	if (!BN_sub(tmp, order, BN_value_one()))
2219		fatal("%s: BN_sub failed", __func__);
2220	if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) {
2221		error("%s: private key >= group order - 1", __func__);
2222		goto out;
2223	}
2224	ret = 0;
2225 out:
2226	BN_CTX_free(bnctx);
2227	return ret;
2228}
2229
2230#if defined(DEBUG_KEXECDH) || defined(DEBUG_PK)
2231void
2232key_dump_ec_point(const EC_GROUP *group, const EC_POINT *point)
2233{
2234	BIGNUM *x, *y;
2235	BN_CTX *bnctx;
2236
2237	if (point == NULL) {
2238		fputs("point=(NULL)\n", stderr);
2239		return;
2240	}
2241	if ((bnctx = BN_CTX_new()) == NULL)
2242		fatal("%s: BN_CTX_new failed", __func__);
2243	BN_CTX_start(bnctx);
2244	if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL)
2245		fatal("%s: BN_CTX_get failed", __func__);
2246	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
2247	    NID_X9_62_prime_field)
2248		fatal("%s: group is not a prime field", __func__);
2249	if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1)
2250		fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__);
2251	fputs("x=", stderr);
2252	BN_print_fp(stderr, x);
2253	fputs("\ny=", stderr);
2254	BN_print_fp(stderr, y);
2255	fputs("\n", stderr);
2256	BN_CTX_free(bnctx);
2257}
2258
2259void
2260key_dump_ec_key(const EC_KEY *key)
2261{
2262	const BIGNUM *exponent;
2263
2264	key_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key));
2265	fputs("exponent=", stderr);
2266	if ((exponent = EC_KEY_get0_private_key(key)) == NULL)
2267		fputs("(NULL)", stderr);
2268	else
2269		BN_print_fp(stderr, EC_KEY_get0_private_key(key));
2270	fputs("\n", stderr);
2271}
2272#endif /* defined(DEBUG_KEXECDH) || defined(DEBUG_PK) */
2273#endif /* OPENSSL_HAS_ECC */
2274