simple_coder.c revision 207842
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file       simple_coder.c
4/// \brief      Wrapper for simple filters
5///
6/// Simple filters don't change the size of the data i.e. number of bytes
7/// in equals the number of bytes out.
8//
9//  Author:     Lasse Collin
10//
11//  This file has been put into the public domain.
12//  You can do whatever you want with this file.
13//
14///////////////////////////////////////////////////////////////////////////////
15
16#include "simple_private.h"
17
18
19/// Copied or encodes/decodes more data to out[].
20static lzma_ret
21copy_or_code(lzma_coder *coder, lzma_allocator *allocator,
22		const uint8_t *restrict in, size_t *restrict in_pos,
23		size_t in_size, uint8_t *restrict out,
24		size_t *restrict out_pos, size_t out_size, lzma_action action)
25{
26	assert(!coder->end_was_reached);
27
28	if (coder->next.code == NULL) {
29		lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
30
31		// Check if end of stream was reached.
32		if (coder->is_encoder && action == LZMA_FINISH
33				&& *in_pos == in_size)
34			coder->end_was_reached = true;
35
36	} else {
37		// Call the next coder in the chain to provide us some data.
38		// We don't care about uncompressed_size here, because
39		// the next filter in the chain will do it for us (since
40		// we don't change the size of the data).
41		const lzma_ret ret = coder->next.code(
42				coder->next.coder, allocator,
43				in, in_pos, in_size,
44				out, out_pos, out_size, action);
45
46		if (ret == LZMA_STREAM_END) {
47			assert(!coder->is_encoder
48					|| action == LZMA_FINISH);
49			coder->end_was_reached = true;
50
51		} else if (ret != LZMA_OK) {
52			return ret;
53		}
54	}
55
56	return LZMA_OK;
57}
58
59
60static size_t
61call_filter(lzma_coder *coder, uint8_t *buffer, size_t size)
62{
63	const size_t filtered = coder->filter(coder->simple,
64			coder->now_pos, coder->is_encoder,
65			buffer, size);
66	coder->now_pos += filtered;
67	return filtered;
68}
69
70
71static lzma_ret
72simple_code(lzma_coder *coder, lzma_allocator *allocator,
73		const uint8_t *restrict in, size_t *restrict in_pos,
74		size_t in_size, uint8_t *restrict out,
75		size_t *restrict out_pos, size_t out_size, lzma_action action)
76{
77	// TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
78	// in cases when the filter is able to filter everything. With most
79	// simple filters it can be done at offset that is a multiple of 2,
80	// 4, or 16. With x86 filter, it needs good luck, and thus cannot
81	// be made to work predictably.
82	if (action == LZMA_SYNC_FLUSH)
83		return LZMA_OPTIONS_ERROR;
84
85	// Flush already filtered data from coder->buffer[] to out[].
86	if (coder->pos < coder->filtered) {
87		lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
88				out, out_pos, out_size);
89
90		// If we couldn't flush all the filtered data, return to
91		// application immediately.
92		if (coder->pos < coder->filtered)
93			return LZMA_OK;
94
95		if (coder->end_was_reached) {
96			assert(coder->filtered == coder->size);
97			return LZMA_STREAM_END;
98		}
99	}
100
101	// If we get here, there is no filtered data left in the buffer.
102	coder->filtered = 0;
103
104	assert(!coder->end_was_reached);
105
106	// If there is more output space left than there is unfiltered data
107	// in coder->buffer[], flush coder->buffer[] to out[], and copy/code
108	// more data to out[] hopefully filling it completely. Then filter
109	// the data in out[]. This step is where most of the data gets
110	// filtered if the buffer sizes used by the application are reasonable.
111	const size_t out_avail = out_size - *out_pos;
112	const size_t buf_avail = coder->size - coder->pos;
113	if (out_avail > buf_avail) {
114		// Store the old position so that we know from which byte
115		// to start filtering.
116		const size_t out_start = *out_pos;
117
118		// Flush data from coder->buffer[] to out[], but don't reset
119		// coder->pos and coder->size yet. This way the coder can be
120		// restarted if the next filter in the chain returns e.g.
121		// LZMA_MEM_ERROR.
122		memcpy(out + *out_pos, coder->buffer + coder->pos, buf_avail);
123		*out_pos += buf_avail;
124
125		// Copy/Encode/Decode more data to out[].
126		{
127			const lzma_ret ret = copy_or_code(coder, allocator,
128					in, in_pos, in_size,
129					out, out_pos, out_size, action);
130			assert(ret != LZMA_STREAM_END);
131			if (ret != LZMA_OK)
132				return ret;
133		}
134
135		// Filter out[].
136		const size_t size = *out_pos - out_start;
137		const size_t filtered = call_filter(
138				coder, out + out_start, size);
139
140		const size_t unfiltered = size - filtered;
141		assert(unfiltered <= coder->allocated / 2);
142
143		// Now we can update coder->pos and coder->size, because
144		// the next coder in the chain (if any) was successful.
145		coder->pos = 0;
146		coder->size = unfiltered;
147
148		if (coder->end_was_reached) {
149			// The last byte has been copied to out[] already.
150			// They are left as is.
151			coder->size = 0;
152
153		} else if (unfiltered > 0) {
154			// There is unfiltered data left in out[]. Copy it to
155			// coder->buffer[] and rewind *out_pos appropriately.
156			*out_pos -= unfiltered;
157			memcpy(coder->buffer, out + *out_pos, unfiltered);
158		}
159	} else if (coder->pos > 0) {
160		memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
161		coder->size -= coder->pos;
162		coder->pos = 0;
163	}
164
165	assert(coder->pos == 0);
166
167	// If coder->buffer[] isn't empty, try to fill it by copying/decoding
168	// more data. Then filter coder->buffer[] and copy the successfully
169	// filtered data to out[]. It is probable, that some filtered and
170	// unfiltered data will be left to coder->buffer[].
171	if (coder->size > 0) {
172		{
173			const lzma_ret ret = copy_or_code(coder, allocator,
174					in, in_pos, in_size,
175					coder->buffer, &coder->size,
176					coder->allocated, action);
177			assert(ret != LZMA_STREAM_END);
178			if (ret != LZMA_OK)
179				return ret;
180		}
181
182		coder->filtered = call_filter(
183				coder, coder->buffer, coder->size);
184
185		// Everything is considered to be filtered if coder->buffer[]
186		// contains the last bytes of the data.
187		if (coder->end_was_reached)
188			coder->filtered = coder->size;
189
190		// Flush as much as possible.
191		lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
192				out, out_pos, out_size);
193	}
194
195	// Check if we got everything done.
196	if (coder->end_was_reached && coder->pos == coder->size)
197		return LZMA_STREAM_END;
198
199	return LZMA_OK;
200}
201
202
203static void
204simple_coder_end(lzma_coder *coder, lzma_allocator *allocator)
205{
206	lzma_next_end(&coder->next, allocator);
207	lzma_free(coder->simple, allocator);
208	lzma_free(coder, allocator);
209	return;
210}
211
212
213static lzma_ret
214simple_coder_update(lzma_coder *coder, lzma_allocator *allocator,
215		const lzma_filter *filters_null lzma_attribute((unused)),
216		const lzma_filter *reversed_filters)
217{
218	// No update support, just call the next filter in the chain.
219	return lzma_next_filter_update(
220			&coder->next, allocator, reversed_filters + 1);
221}
222
223
224extern lzma_ret
225lzma_simple_coder_init(lzma_next_coder *next, lzma_allocator *allocator,
226		const lzma_filter_info *filters,
227		size_t (*filter)(lzma_simple *simple, uint32_t now_pos,
228			bool is_encoder, uint8_t *buffer, size_t size),
229		size_t simple_size, size_t unfiltered_max,
230		uint32_t alignment, bool is_encoder)
231{
232	// Allocate memory for the lzma_coder structure if needed.
233	if (next->coder == NULL) {
234		// Here we allocate space also for the temporary buffer. We
235		// need twice the size of unfiltered_max, because then it
236		// is always possible to filter at least unfiltered_max bytes
237		// more data in coder->buffer[] if it can be filled completely.
238		next->coder = lzma_alloc(sizeof(lzma_coder)
239				+ 2 * unfiltered_max, allocator);
240		if (next->coder == NULL)
241			return LZMA_MEM_ERROR;
242
243		next->code = &simple_code;
244		next->end = &simple_coder_end;
245		next->update = &simple_coder_update;
246
247		next->coder->next = LZMA_NEXT_CODER_INIT;
248		next->coder->filter = filter;
249		next->coder->allocated = 2 * unfiltered_max;
250
251		// Allocate memory for filter-specific data structure.
252		if (simple_size > 0) {
253			next->coder->simple = lzma_alloc(
254					simple_size, allocator);
255			if (next->coder->simple == NULL)
256				return LZMA_MEM_ERROR;
257		} else {
258			next->coder->simple = NULL;
259		}
260	}
261
262	if (filters[0].options != NULL) {
263		const lzma_options_bcj *simple = filters[0].options;
264		next->coder->now_pos = simple->start_offset;
265		if (next->coder->now_pos & (alignment - 1))
266			return LZMA_OPTIONS_ERROR;
267	} else {
268		next->coder->now_pos = 0;
269	}
270
271	// Reset variables.
272	next->coder->is_encoder = is_encoder;
273	next->coder->end_was_reached = false;
274	next->coder->pos = 0;
275	next->coder->filtered = 0;
276	next->coder->size = 0;
277
278	return lzma_next_filter_init(
279			&next->coder->next, allocator, filters + 1);
280}
281