ntp_proto.c revision 310419
1/*
2 * ntp_proto.c - NTP version 4 protocol machinery
3 *
4 * ATTENTION: Get approval from Dave Mills on all changes to this file!
5 *
6 */
7#ifdef HAVE_CONFIG_H
8#include <config.h>
9#endif
10
11#include "ntpd.h"
12#include "ntp_stdlib.h"
13#include "ntp_unixtime.h"
14#include "ntp_control.h"
15#include "ntp_string.h"
16#include "ntp_leapsec.h"
17#include "refidsmear.h"
18#include "lib_strbuf.h"
19
20#include <stdio.h>
21#ifdef HAVE_LIBSCF_H
22#include <libscf.h>
23#endif
24#ifdef HAVE_UNISTD_H
25#include <unistd.h>
26#endif
27
28/* [Bug 3031] define automatic broadcastdelay cutoff preset */
29#ifndef BDELAY_DEFAULT
30# define BDELAY_DEFAULT (-0.050)
31#endif
32
33/*
34 * This macro defines the authentication state. If x is 1 authentication
35 * is required; othewise it is optional.
36 */
37#define	AUTH(x, y)	((x) ? (y) == AUTH_OK \
38			     : (y) == AUTH_OK || (y) == AUTH_NONE)
39
40#define	AUTH_NONE	0	/* authentication not required */
41#define	AUTH_OK		1	/* authentication OK */
42#define	AUTH_ERROR	2	/* authentication error */
43#define	AUTH_CRYPTO	3	/* crypto_NAK */
44
45/*
46 * Set up Kiss Code values
47 */
48
49enum kiss_codes {
50	NOKISS,				/* No Kiss Code */
51	RATEKISS,			/* Rate limit Kiss Code */
52	DENYKISS,			/* Deny Kiss */
53	RSTRKISS,			/* Restricted Kiss */
54	XKISS,				/* Experimental Kiss */
55	UNKNOWNKISS			/* Unknown Kiss Code */
56};
57
58enum nak_error_codes {
59	NONAK,				/* No NAK seen */
60	INVALIDNAK,			/* NAK cannot be used */
61	VALIDNAK			/* NAK is valid */
62};
63
64/*
65 * traffic shaping parameters
66 */
67#define	NTP_IBURST	6	/* packets in iburst */
68#define	RESP_DELAY	1	/* refclock burst delay (s) */
69
70/*
71 * pool soliciting restriction duration (s)
72 */
73#define	POOL_SOLICIT_WINDOW	8
74
75/*
76 * peer_select groups statistics for a peer used by clock_select() and
77 * clock_cluster().
78 */
79typedef struct peer_select_tag {
80	struct peer *	peer;
81	double		synch;	/* sync distance */
82	double		error;	/* jitter */
83	double		seljit;	/* selection jitter */
84} peer_select;
85
86/*
87 * System variables are declared here. Unless specified otherwise, all
88 * times are in seconds.
89 */
90u_char	sys_leap;		/* system leap indicator, use set_sys_leap() to change this */
91u_char	xmt_leap;		/* leap indicator sent in client requests, set up by set_sys_leap() */
92u_char	sys_stratum;		/* system stratum */
93s_char	sys_precision;		/* local clock precision (log2 s) */
94double	sys_rootdelay;		/* roundtrip delay to primary source */
95double	sys_rootdisp;		/* dispersion to primary source */
96u_int32 sys_refid;		/* reference id (network byte order) */
97l_fp	sys_reftime;		/* last update time */
98struct	peer *sys_peer;		/* current peer */
99
100#ifdef LEAP_SMEAR
101struct leap_smear_info leap_smear;
102#endif
103int leap_sec_in_progress;
104
105/*
106 * Rate controls. Leaky buckets are used to throttle the packet
107 * transmission rates in order to protect busy servers such as at NIST
108 * and USNO. There is a counter for each association and another for KoD
109 * packets. The association counter decrements each second, but not
110 * below zero. Each time a packet is sent the counter is incremented by
111 * a configurable value representing the average interval between
112 * packets. A packet is delayed as long as the counter is greater than
113 * zero. Note this does not affect the time value computations.
114 */
115/*
116 * Nonspecified system state variables
117 */
118int	sys_bclient;		/* broadcast client enable */
119double	sys_bdelay;		/* broadcast client default delay */
120int	sys_authenticate;	/* requre authentication for config */
121l_fp	sys_authdelay;		/* authentication delay */
122double	sys_offset;	/* current local clock offset */
123double	sys_mindisp = MINDISPERSE; /* minimum distance (s) */
124double	sys_maxdist = MAXDISTANCE; /* selection threshold */
125double	sys_jitter;		/* system jitter */
126u_long	sys_epoch;		/* last clock update time */
127static	double sys_clockhop;	/* clockhop threshold */
128static int leap_vote_ins;	/* leap consensus for insert */
129static int leap_vote_del;	/* leap consensus for delete */
130keyid_t	sys_private;		/* private value for session seed */
131int	sys_manycastserver;	/* respond to manycast client pkts */
132int	ntp_mode7;		/* respond to ntpdc (mode7) */
133int	peer_ntpdate;		/* active peers in ntpdate mode */
134int	sys_survivors;		/* truest of the truechimers */
135char	*sys_ident = NULL;	/* identity scheme */
136
137/*
138 * TOS and multicast mapping stuff
139 */
140int	sys_floor = 0;		/* cluster stratum floor */
141u_char	sys_bcpollbstep = 0;	/* Broadcast Poll backstep gate */
142int	sys_ceiling = STRATUM_UNSPEC - 1; /* cluster stratum ceiling */
143int	sys_minsane = 1;	/* minimum candidates */
144int	sys_minclock = NTP_MINCLOCK; /* minimum candidates */
145int	sys_maxclock = NTP_MAXCLOCK; /* maximum candidates */
146int	sys_cohort = 0;		/* cohort switch */
147int	sys_orphan = STRATUM_UNSPEC + 1; /* orphan stratum */
148int	sys_orphwait = NTP_ORPHWAIT; /* orphan wait */
149int	sys_beacon = BEACON;	/* manycast beacon interval */
150int	sys_ttlmax;		/* max ttl mapping vector index */
151u_char	sys_ttl[MAX_TTL];	/* ttl mapping vector */
152
153/*
154 * Statistics counters - first the good, then the bad
155 */
156u_long	sys_stattime;		/* elapsed time */
157u_long	sys_received;		/* packets received */
158u_long	sys_processed;		/* packets for this host */
159u_long	sys_newversion;		/* current version */
160u_long	sys_oldversion;		/* old version */
161u_long	sys_restricted;		/* access denied */
162u_long	sys_badlength;		/* bad length or format */
163u_long	sys_badauth;		/* bad authentication */
164u_long	sys_declined;		/* declined */
165u_long	sys_limitrejected;	/* rate exceeded */
166u_long	sys_kodsent;		/* KoD sent */
167
168/*
169 * Mechanism knobs: how soon do we peer_clear() or unpeer()?
170 *
171 * The default way is "on-receipt".  If this was a packet from a
172 * well-behaved source, on-receipt will offer the fastest recovery.
173 * If this was from a DoS attack, the default way makes it easier
174 * for a bad-guy to DoS us.  So look and see what bites you harder
175 * and choose according to your environment.
176 */
177int peer_clear_digest_early	= 1;	/* bad digest (TEST5) and Autokey */
178int unpeer_crypto_early		= 1;	/* bad crypto (TEST9) */
179int unpeer_crypto_nak_early	= 1;	/* crypto_NAK (TEST5) */
180int unpeer_digest_early		= 1;	/* bad digest (TEST5) */
181
182int dynamic_interleave = DYNAMIC_INTERLEAVE;	/* Bug 2978 mitigation */
183
184int kiss_code_check(u_char hisleap, u_char hisstratum, u_char hismode, u_int32 refid);
185enum nak_error_codes valid_NAK(struct peer *peer, struct recvbuf *rbufp, u_char hismode);
186static	double	root_distance	(struct peer *);
187static	void	clock_combine	(peer_select *, int, int);
188static	void	peer_xmit	(struct peer *);
189static	void	fast_xmit	(struct recvbuf *, int, keyid_t, int);
190static	void	pool_xmit	(struct peer *);
191static	void	clock_update	(struct peer *);
192static	void	measure_precision(void);
193static	double	measure_tick_fuzz(void);
194static	int	local_refid	(struct peer *);
195static	int	peer_unfit	(struct peer *);
196#ifdef AUTOKEY
197static	int	group_test	(char *, char *);
198#endif /* AUTOKEY */
199#ifdef WORKER
200void	pool_name_resolved	(int, int, void *, const char *,
201				 const char *, const struct addrinfo *,
202				 const struct addrinfo *);
203#endif /* WORKER */
204
205const char *	amtoa		(int am);
206
207
208void
209set_sys_leap(
210	u_char new_sys_leap
211	)
212{
213	sys_leap = new_sys_leap;
214	xmt_leap = sys_leap;
215
216	/*
217	 * Under certain conditions we send faked leap bits to clients, so
218	 * eventually change xmt_leap below, but never change LEAP_NOTINSYNC.
219	 */
220	if (xmt_leap != LEAP_NOTINSYNC) {
221		if (leap_sec_in_progress) {
222			/* always send "not sync" */
223			xmt_leap = LEAP_NOTINSYNC;
224		}
225#ifdef LEAP_SMEAR
226		else {
227			/*
228			 * If leap smear is enabled in general we must
229			 * never send a leap second warning to clients,
230			 * so make sure we only send "in sync".
231			 */
232			if (leap_smear.enabled)
233				xmt_leap = LEAP_NOWARNING;
234		}
235#endif	/* LEAP_SMEAR */
236	}
237}
238
239
240/*
241 * Kiss Code check
242 */
243int
244kiss_code_check(
245	u_char hisleap,
246	u_char hisstratum,
247	u_char hismode,
248	u_int32 refid
249	)
250{
251
252	if (   hismode == MODE_SERVER
253	    && hisleap == LEAP_NOTINSYNC
254	    && hisstratum == STRATUM_UNSPEC) {
255		if(memcmp(&refid,"RATE", 4) == 0) {
256			return (RATEKISS);
257		} else if(memcmp(&refid,"DENY", 4) == 0) {
258			return (DENYKISS);
259		} else if(memcmp(&refid,"RSTR", 4) == 0) {
260			return (RSTRKISS);
261		} else if(memcmp(&refid,"X", 1) == 0) {
262			return (XKISS);
263		} else {
264			return (UNKNOWNKISS);
265		}
266	} else {
267		return (NOKISS);
268	}
269}
270
271
272/*
273 * Check that NAK is valid
274 */
275enum nak_error_codes
276valid_NAK(
277	  struct peer *peer,
278	  struct recvbuf *rbufp,
279	  u_char hismode
280	  )
281{
282	int		base_packet_length = MIN_V4_PKT_LEN;
283	int		remainder_size;
284	struct pkt *	rpkt;
285	int		keyid;
286	l_fp		p_org;	/* origin timestamp */
287	const l_fp *	myorg;	/* selected peer origin */
288
289	/*
290	 * Check to see if there is something beyond the basic packet
291	 */
292	if (rbufp->recv_length == base_packet_length) {
293		return NONAK;
294	}
295
296	remainder_size = rbufp->recv_length - base_packet_length;
297	/*
298	 * Is this a potential NAK?
299	 */
300	if (remainder_size != 4) {
301		return NONAK;
302	}
303
304	/*
305	 * Only server responses can contain NAK's
306	 */
307
308	if (hismode != MODE_SERVER &&
309	    hismode != MODE_ACTIVE &&
310	    hismode != MODE_PASSIVE
311	    ) {
312		return INVALIDNAK;
313	}
314
315	/*
316	 * Make sure that the extra field in the packet is all zeros
317	 */
318	rpkt = &rbufp->recv_pkt;
319	keyid = ntohl(((u_int32 *)rpkt)[base_packet_length / 4]);
320	if (keyid != 0) {
321		return INVALIDNAK;
322	}
323
324	/*
325	 * Only valid if peer uses a key
326	 */
327	if (!peer || !peer->keyid || !(peer->flags & FLAG_SKEY)) {
328		return INVALIDNAK;
329	}
330
331	/*
332	 * The ORIGIN must match, or this cannot be a valid NAK, either.
333	 */
334	NTOHL_FP(&rpkt->org, &p_org);
335	if (peer->flip > 0)
336		myorg = &peer->borg;
337	else
338		myorg = &peer->aorg;
339
340	if (L_ISZERO(&p_org) ||
341	    L_ISZERO( myorg) ||
342	    !L_ISEQU(&p_org, myorg)) {
343		return INVALIDNAK;
344	}
345
346	/* If we ever passed all that checks, we should be safe. Well,
347	 * as safe as we can ever be with an unauthenticated crypto-nak.
348	 */
349	return VALIDNAK;
350}
351
352
353/*
354 * transmit - transmit procedure called by poll timeout
355 */
356void
357transmit(
358	struct peer *peer	/* peer structure pointer */
359	)
360{
361	u_char	hpoll;
362
363	/*
364	 * The polling state machine. There are two kinds of machines,
365	 * those that never expect a reply (broadcast and manycast
366	 * server modes) and those that do (all other modes). The dance
367	 * is intricate...
368	 */
369	hpoll = peer->hpoll;
370
371	/*
372	 * In broadcast mode the poll interval is never changed from
373	 * minpoll.
374	 */
375	if (peer->cast_flags & (MDF_BCAST | MDF_MCAST)) {
376		peer->outdate = current_time;
377		if (sys_leap != LEAP_NOTINSYNC)
378			peer_xmit(peer);
379		poll_update(peer, hpoll);
380		return;
381	}
382
383	/*
384	 * In manycast mode we start with unity ttl. The ttl is
385	 * increased by one for each poll until either sys_maxclock
386	 * servers have been found or the maximum ttl is reached. When
387	 * sys_maxclock servers are found we stop polling until one or
388	 * more servers have timed out or until less than sys_minclock
389	 * associations turn up. In this case additional better servers
390	 * are dragged in and preempt the existing ones.  Once every
391	 * sys_beacon seconds we are to transmit unconditionally, but
392	 * this code is not quite right -- peer->unreach counts polls
393	 * and is being compared with sys_beacon, so the beacons happen
394	 * every sys_beacon polls.
395	 */
396	if (peer->cast_flags & MDF_ACAST) {
397		peer->outdate = current_time;
398		if (peer->unreach > sys_beacon) {
399			peer->unreach = 0;
400			peer->ttl = 0;
401			peer_xmit(peer);
402		} else if (   sys_survivors < sys_minclock
403			   || peer_associations < sys_maxclock) {
404			if (peer->ttl < (u_int32)sys_ttlmax)
405				peer->ttl++;
406			peer_xmit(peer);
407		}
408		peer->unreach++;
409		poll_update(peer, hpoll);
410		return;
411	}
412
413	/*
414	 * Pool associations transmit unicast solicitations when there
415	 * are less than a hard limit of 2 * sys_maxclock associations,
416	 * and either less than sys_minclock survivors or less than
417	 * sys_maxclock associations.  The hard limit prevents unbounded
418	 * growth in associations if the system clock or network quality
419	 * result in survivor count dipping below sys_minclock often.
420	 * This was observed testing with pool, where sys_maxclock == 12
421	 * resulted in 60 associations without the hard limit.  A
422	 * similar hard limit on manycastclient ephemeral associations
423	 * may be appropriate.
424	 */
425	if (peer->cast_flags & MDF_POOL) {
426		peer->outdate = current_time;
427		if (   (peer_associations <= 2 * sys_maxclock)
428		    && (   peer_associations < sys_maxclock
429			|| sys_survivors < sys_minclock))
430			pool_xmit(peer);
431		poll_update(peer, hpoll);
432		return;
433	}
434
435	/*
436	 * In unicast modes the dance is much more intricate. It is
437	 * designed to back off whenever possible to minimize network
438	 * traffic.
439	 */
440	if (peer->burst == 0) {
441		u_char oreach;
442
443		/*
444		 * Update the reachability status. If not heard for
445		 * three consecutive polls, stuff infinity in the clock
446		 * filter.
447		 */
448		oreach = peer->reach;
449		peer->outdate = current_time;
450		peer->unreach++;
451		peer->reach <<= 1;
452		if (!peer->reach) {
453
454			/*
455			 * Here the peer is unreachable. If it was
456			 * previously reachable raise a trap. Send a
457			 * burst if enabled.
458			 */
459			clock_filter(peer, 0., 0., MAXDISPERSE);
460			if (oreach) {
461				peer_unfit(peer);
462				report_event(PEVNT_UNREACH, peer, NULL);
463			}
464			if (   (peer->flags & FLAG_IBURST)
465			    && peer->retry == 0)
466				peer->retry = NTP_RETRY;
467		} else {
468
469			/*
470			 * Here the peer is reachable. Send a burst if
471			 * enabled and the peer is fit.  Reset unreach
472			 * for persistent and ephemeral associations.
473			 * Unreach is also reset for survivors in
474			 * clock_select().
475			 */
476			hpoll = sys_poll;
477			if (!(peer->flags & FLAG_PREEMPT))
478				peer->unreach = 0;
479			if (   (peer->flags & FLAG_BURST)
480			    && peer->retry == 0
481			    && !peer_unfit(peer))
482				peer->retry = NTP_RETRY;
483		}
484
485		/*
486		 * Watch for timeout.  If ephemeral, toss the rascal;
487		 * otherwise, bump the poll interval. Note the
488		 * poll_update() routine will clamp it to maxpoll.
489		 * If preemptible and we have more peers than maxclock,
490		 * and this peer has the minimum score of preemptibles,
491		 * demobilize.
492		 */
493		if (peer->unreach >= NTP_UNREACH) {
494			hpoll++;
495			/* ephemeral: no FLAG_CONFIG nor FLAG_PREEMPT */
496			if (!(peer->flags & (FLAG_CONFIG | FLAG_PREEMPT))) {
497				report_event(PEVNT_RESTART, peer, "timeout");
498				peer_clear(peer, "TIME");
499				unpeer(peer);
500				return;
501			}
502			if (   (peer->flags & FLAG_PREEMPT)
503			    && (peer_associations > sys_maxclock)
504			    && score_all(peer)) {
505				report_event(PEVNT_RESTART, peer, "timeout");
506				peer_clear(peer, "TIME");
507				unpeer(peer);
508				return;
509			}
510		}
511	} else {
512		peer->burst--;
513		if (peer->burst == 0) {
514
515			/*
516			 * If ntpdate mode and the clock has not been
517			 * set and all peers have completed the burst,
518			 * we declare a successful failure.
519			 */
520			if (mode_ntpdate) {
521				peer_ntpdate--;
522				if (peer_ntpdate == 0) {
523					msyslog(LOG_NOTICE,
524					    "ntpd: no servers found");
525					if (!msyslog_term)
526						printf(
527						    "ntpd: no servers found\n");
528					exit (0);
529				}
530			}
531		}
532	}
533	if (peer->retry > 0)
534		peer->retry--;
535
536	/*
537	 * Do not transmit if in broadcast client mode.
538	 */
539	if (peer->hmode != MODE_BCLIENT)
540		peer_xmit(peer);
541	poll_update(peer, hpoll);
542
543	return;
544}
545
546
547const char *
548amtoa(
549	int am
550	)
551{
552	char *bp;
553
554	switch(am) {
555	    case AM_ERR:	return "AM_ERR";
556	    case AM_NOMATCH:	return "AM_NOMATCH";
557	    case AM_PROCPKT:	return "AM_PROCPKT";
558	    case AM_BCST:	return "AM_BCST";
559	    case AM_FXMIT:	return "AM_FXMIT";
560	    case AM_MANYCAST:	return "AM_MANYCAST";
561	    case AM_NEWPASS:	return "AM_NEWPASS";
562	    case AM_NEWBCL:	return "AM_NEWBCL";
563	    case AM_POSSBCL:	return "AM_POSSBCL";
564	    default:
565		LIB_GETBUF(bp);
566		snprintf(bp, LIB_BUFLENGTH, "AM_#%d", am);
567		return bp;
568	}
569}
570
571
572/*
573 * receive - receive procedure called for each packet received
574 */
575void
576receive(
577	struct recvbuf *rbufp
578	)
579{
580	register struct peer *peer;	/* peer structure pointer */
581	register struct pkt *pkt;	/* receive packet pointer */
582	u_char	hisversion;		/* packet version */
583	u_char	hisleap;		/* packet leap indicator */
584	u_char	hismode;		/* packet mode */
585	u_char	hisstratum;		/* packet stratum */
586	u_short	restrict_mask;		/* restrict bits */
587	const char *hm_str;		/* hismode string */
588	const char *am_str;		/* association match string */
589	int	kissCode = NOKISS;	/* Kiss Code */
590	int	has_mac;		/* length of MAC field */
591	int	authlen;		/* offset of MAC field */
592	int	is_authentic = AUTH_NONE;	/* cryptosum ok */
593	int	crypto_nak_test;	/* result of crypto-NAK check */
594	int	retcode = AM_NOMATCH;	/* match code */
595	keyid_t	skeyid = 0;		/* key IDs */
596	u_int32	opcode = 0;		/* extension field opcode */
597	sockaddr_u *dstadr_sin;		/* active runway */
598	struct peer *peer2;		/* aux peer structure pointer */
599	endpt	*match_ep;		/* newpeer() local address */
600	l_fp	p_org;			/* origin timestamp */
601	l_fp	p_rec;			/* receive timestamp */
602	l_fp	p_xmt;			/* transmit timestamp */
603#ifdef AUTOKEY
604	char	hostname[NTP_MAXSTRLEN + 1];
605	char	*groupname = NULL;
606	struct autokey *ap;		/* autokey structure pointer */
607	int	rval;			/* cookie snatcher */
608	keyid_t	pkeyid = 0, tkeyid = 0;	/* key IDs */
609#endif	/* AUTOKEY */
610#ifdef HAVE_NTP_SIGND
611	static unsigned char zero_key[16];
612#endif /* HAVE_NTP_SIGND */
613
614	/*
615	 * Monitor the packet and get restrictions. Note that the packet
616	 * length for control and private mode packets must be checked
617	 * by the service routines. Some restrictions have to be handled
618	 * later in order to generate a kiss-o'-death packet.
619	 */
620	/*
621	 * Bogus port check is before anything, since it probably
622	 * reveals a clogging attack.
623	 */
624	sys_received++;
625	if (0 == SRCPORT(&rbufp->recv_srcadr)) {
626		sys_badlength++;
627		return;				/* bogus port */
628	}
629	restrict_mask = restrictions(&rbufp->recv_srcadr);
630	pkt = &rbufp->recv_pkt;
631	DPRINTF(2, ("receive: at %ld %s<-%s flags %x restrict %03x org %#010x.%08x xmt %#010x.%08x\n",
632		    current_time, stoa(&rbufp->dstadr->sin),
633		    stoa(&rbufp->recv_srcadr), rbufp->dstadr->flags,
634		    restrict_mask, ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
635		    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
636	hisversion = PKT_VERSION(pkt->li_vn_mode);
637	hisleap = PKT_LEAP(pkt->li_vn_mode);
638	hismode = (int)PKT_MODE(pkt->li_vn_mode);
639	hisstratum = PKT_TO_STRATUM(pkt->stratum);
640	INSIST(0 != hisstratum);
641
642	if (restrict_mask & RES_IGNORE) {
643		sys_restricted++;
644		return;				/* ignore everything */
645	}
646	if (hismode == MODE_PRIVATE) {
647		if (!ntp_mode7 || (restrict_mask & RES_NOQUERY)) {
648			sys_restricted++;
649			return;			/* no query private */
650		}
651		process_private(rbufp, ((restrict_mask &
652		    RES_NOMODIFY) == 0));
653		return;
654	}
655	if (hismode == MODE_CONTROL) {
656		if (restrict_mask & RES_NOQUERY) {
657			sys_restricted++;
658			return;			/* no query control */
659		}
660		process_control(rbufp, restrict_mask);
661		return;
662	}
663	if (restrict_mask & RES_DONTSERVE) {
664		sys_restricted++;
665		return;				/* no time serve */
666	}
667
668	/*
669	 * This is for testing. If restricted drop ten percent of
670	 * surviving packets.
671	 */
672	if (restrict_mask & RES_FLAKE) {
673		if ((double)ntp_random() / 0x7fffffff < .1) {
674			sys_restricted++;
675			return;			/* no flakeway */
676		}
677	}
678
679	/*
680	 * Version check must be after the query packets, since they
681	 * intentionally use an early version.
682	 */
683	if (hisversion == NTP_VERSION) {
684		sys_newversion++;		/* new version */
685	} else if (   !(restrict_mask & RES_VERSION)
686		   && hisversion >= NTP_OLDVERSION) {
687		sys_oldversion++;		/* previous version */
688	} else {
689		sys_badlength++;
690		return;				/* old version */
691	}
692
693	/*
694	 * Figure out his mode and validate the packet. This has some
695	 * legacy raunch that probably should be removed. In very early
696	 * NTP versions mode 0 was equivalent to what later versions
697	 * would interpret as client mode.
698	 */
699	if (hismode == MODE_UNSPEC) {
700		if (hisversion == NTP_OLDVERSION) {
701			hismode = MODE_CLIENT;
702		} else {
703			sys_badlength++;
704			return;                 /* invalid mode */
705		}
706	}
707
708	/*
709	 * Parse the extension field if present. We figure out whether
710	 * an extension field is present by measuring the MAC size. If
711	 * the number of words following the packet header is 0, no MAC
712	 * is present and the packet is not authenticated. If 1, the
713	 * packet is a crypto-NAK; if 3, the packet is authenticated
714	 * with DES; if 5, the packet is authenticated with MD5; if 6,
715	 * the packet is authenticated with SHA. If 2 or * 4, the packet
716	 * is a runt and discarded forthwith. If greater than 6, an
717	 * extension field is present, so we subtract the length of the
718	 * field and go around again.
719	 */
720
721	authlen = LEN_PKT_NOMAC;
722	has_mac = rbufp->recv_length - authlen;
723	while (has_mac > 0) {
724		u_int32	len;
725#ifdef AUTOKEY
726		u_int32	hostlen;
727		struct exten *ep;
728#endif /*AUTOKEY */
729
730		if (has_mac % 4 != 0 || has_mac < (int)MIN_MAC_LEN) {
731			sys_badlength++;
732			return;			/* bad length */
733		}
734		if (has_mac <= (int)MAX_MAC_LEN) {
735			skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]);
736			break;
737
738		} else {
739			opcode = ntohl(((u_int32 *)pkt)[authlen / 4]);
740			len = opcode & 0xffff;
741			if (   len % 4 != 0
742			    || len < 4
743			    || (int)len + authlen > rbufp->recv_length) {
744				sys_badlength++;
745				return;		/* bad length */
746			}
747#ifdef AUTOKEY
748			/*
749			 * Extract calling group name for later.  If
750			 * sys_groupname is non-NULL, there must be
751			 * a group name provided to elicit a response.
752			 */
753			if (   (opcode & 0x3fff0000) == CRYPTO_ASSOC
754			    && sys_groupname != NULL) {
755				ep = (struct exten *)&((u_int32 *)pkt)[authlen / 4];
756				hostlen = ntohl(ep->vallen);
757				if (   hostlen >= sizeof(hostname)
758				    || hostlen > len -
759						offsetof(struct exten, pkt)) {
760					sys_badlength++;
761					return;		/* bad length */
762				}
763				memcpy(hostname, &ep->pkt, hostlen);
764				hostname[hostlen] = '\0';
765				groupname = strchr(hostname, '@');
766				if (groupname == NULL) {
767					sys_declined++;
768					return;
769				}
770				groupname++;
771			}
772#endif /* AUTOKEY */
773			authlen += len;
774			has_mac -= len;
775		}
776	}
777
778	/*
779	 * If has_mac is < 0 we had a malformed packet.
780	 */
781	if (has_mac < 0) {
782		sys_badlength++;
783		return;		/* bad length */
784	}
785
786	/*
787	 * If authentication required, a MAC must be present.
788	 */
789	if (restrict_mask & RES_DONTTRUST && has_mac == 0) {
790		sys_restricted++;
791		return;				/* access denied */
792	}
793
794	/*
795	 * Update the MRU list and finger the cloggers. It can be a
796	 * little expensive, so turn it off for production use.
797	 * RES_LIMITED and RES_KOD will be cleared in the returned
798	 * restrict_mask unless one or both actions are warranted.
799	 */
800	restrict_mask = ntp_monitor(rbufp, restrict_mask);
801	if (restrict_mask & RES_LIMITED) {
802		sys_limitrejected++;
803		if (   !(restrict_mask & RES_KOD)
804		    || MODE_BROADCAST == hismode
805		    || MODE_SERVER == hismode) {
806			if (MODE_SERVER == hismode)
807				DPRINTF(1, ("Possibly self-induced rate limiting of MODE_SERVER from %s\n",
808					stoa(&rbufp->recv_srcadr)));
809			return;			/* rate exceeded */
810		}
811		if (hismode == MODE_CLIENT)
812			fast_xmit(rbufp, MODE_SERVER, skeyid,
813			    restrict_mask);
814		else
815			fast_xmit(rbufp, MODE_ACTIVE, skeyid,
816			    restrict_mask);
817		return;				/* rate exceeded */
818	}
819	restrict_mask &= ~RES_KOD;
820
821	/*
822	 * We have tossed out as many buggy packets as possible early in
823	 * the game to reduce the exposure to a clogging attack. Now we
824	 * have to burn some cycles to find the association and
825	 * authenticate the packet if required. Note that we burn only
826	 * digest cycles, again to reduce exposure. There may be no
827	 * matching association and that's okay.
828	 *
829	 * More on the autokey mambo. Normally the local interface is
830	 * found when the association was mobilized with respect to a
831	 * designated remote address. We assume packets arriving from
832	 * the remote address arrive via this interface and the local
833	 * address used to construct the autokey is the unicast address
834	 * of the interface. However, if the sender is a broadcaster,
835	 * the interface broadcast address is used instead.
836	 * Notwithstanding this technobabble, if the sender is a
837	 * multicaster, the broadcast address is null, so we use the
838	 * unicast address anyway. Don't ask.
839	 */
840	peer = findpeer(rbufp,  hismode, &retcode);
841	dstadr_sin = &rbufp->dstadr->sin;
842	NTOHL_FP(&pkt->org, &p_org);
843	NTOHL_FP(&pkt->rec, &p_rec);
844	NTOHL_FP(&pkt->xmt, &p_xmt);
845	hm_str = modetoa(hismode);
846	am_str = amtoa(retcode);
847
848	/*
849	 * Authentication is conditioned by three switches:
850	 *
851	 * NOPEER  (RES_NOPEER) do not mobilize an association unless
852	 *         authenticated
853	 * NOTRUST (RES_DONTTRUST) do not allow access unless
854	 *         authenticated (implies NOPEER)
855	 * enable  (sys_authenticate) master NOPEER switch, by default
856	 *         on
857	 *
858	 * The NOPEER and NOTRUST can be specified on a per-client basis
859	 * using the restrict command. The enable switch if on implies
860	 * NOPEER for all clients. There are four outcomes:
861	 *
862	 * NONE    The packet has no MAC.
863	 * OK      the packet has a MAC and authentication succeeds
864	 * ERROR   the packet has a MAC and authentication fails
865	 * CRYPTO  crypto-NAK. The MAC has four octets only.
866	 *
867	 * Note: The AUTH(x, y) macro is used to filter outcomes. If x
868	 * is zero, acceptable outcomes of y are NONE and OK. If x is
869	 * one, the only acceptable outcome of y is OK.
870	 */
871	crypto_nak_test = valid_NAK(peer, rbufp, hismode);
872
873	/*
874	 * Drop any invalid crypto-NAKs
875	 */
876	if (crypto_nak_test == INVALIDNAK) {
877		report_event(PEVNT_AUTH, peer, "Invalid_NAK");
878		if (0 != peer) {
879			peer->badNAK++;
880		}
881		msyslog(LOG_ERR, "Invalid-NAK error at %ld %s<-%s",
882			current_time, stoa(dstadr_sin), stoa(&rbufp->recv_srcadr));
883		return;
884	}
885
886	if (has_mac == 0) {
887		restrict_mask &= ~RES_MSSNTP;
888		is_authentic = AUTH_NONE; /* not required */
889		DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s len %d org %#010x.%08x xmt %#010x.%08x NOMAC\n",
890			    current_time, stoa(dstadr_sin),
891			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
892			    authlen,
893			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
894			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
895	} else if (crypto_nak_test == VALIDNAK) {
896		restrict_mask &= ~RES_MSSNTP;
897		is_authentic = AUTH_CRYPTO; /* crypto-NAK */
898		DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x MAC4\n",
899			    current_time, stoa(dstadr_sin),
900			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
901			    skeyid, authlen + has_mac, is_authentic,
902			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
903			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
904
905#ifdef HAVE_NTP_SIGND
906		/*
907		 * If the signature is 20 bytes long, the last 16 of
908		 * which are zero, then this is a Microsoft client
909		 * wanting AD-style authentication of the server's
910		 * reply.
911		 *
912		 * This is described in Microsoft's WSPP docs, in MS-SNTP:
913		 * http://msdn.microsoft.com/en-us/library/cc212930.aspx
914		 */
915	} else if (   has_mac == MAX_MD5_LEN
916		   && (restrict_mask & RES_MSSNTP)
917		   && (retcode == AM_FXMIT || retcode == AM_NEWPASS)
918		   && (memcmp(zero_key, (char *)pkt + authlen + 4,
919			      MAX_MD5_LEN - 4) == 0)) {
920		is_authentic = AUTH_NONE;
921#endif /* HAVE_NTP_SIGND */
922
923	} else {
924		restrict_mask &= ~RES_MSSNTP;
925#ifdef AUTOKEY
926		/*
927		 * For autokey modes, generate the session key
928		 * and install in the key cache. Use the socket
929		 * broadcast or unicast address as appropriate.
930		 */
931		if (crypto_flags && skeyid > NTP_MAXKEY) {
932
933			/*
934			 * More on the autokey dance (AKD). A cookie is
935			 * constructed from public and private values.
936			 * For broadcast packets, the cookie is public
937			 * (zero). For packets that match no
938			 * association, the cookie is hashed from the
939			 * addresses and private value. For server
940			 * packets, the cookie was previously obtained
941			 * from the server. For symmetric modes, the
942			 * cookie was previously constructed using an
943			 * agreement protocol; however, should PKI be
944			 * unavailable, we construct a fake agreement as
945			 * the EXOR of the peer and host cookies.
946			 *
947			 * hismode	ephemeral	persistent
948			 * =======================================
949			 * active	0		cookie#
950			 * passive	0%		cookie#
951			 * client	sys cookie	0%
952			 * server	0%		sys cookie
953			 * broadcast	0		0
954			 *
955			 * # if unsync, 0
956			 * % can't happen
957			 */
958			if (has_mac < (int)MAX_MD5_LEN) {
959				sys_badauth++;
960				return;
961			}
962			if (hismode == MODE_BROADCAST) {
963
964				/*
965				 * For broadcaster, use the interface
966				 * broadcast address when available;
967				 * otherwise, use the unicast address
968				 * found when the association was
969				 * mobilized. However, if this is from
970				 * the wildcard interface, game over.
971				 */
972				if (   crypto_flags
973				    && rbufp->dstadr ==
974				       ANY_INTERFACE_CHOOSE(&rbufp->recv_srcadr)) {
975					sys_restricted++;
976					return;	     /* no wildcard */
977				}
978				pkeyid = 0;
979				if (!SOCK_UNSPEC(&rbufp->dstadr->bcast))
980					dstadr_sin =
981					    &rbufp->dstadr->bcast;
982			} else if (peer == NULL) {
983				pkeyid = session_key(
984				    &rbufp->recv_srcadr, dstadr_sin, 0,
985				    sys_private, 0);
986			} else {
987				pkeyid = peer->pcookie;
988			}
989
990			/*
991			 * The session key includes both the public
992			 * values and cookie. In case of an extension
993			 * field, the cookie used for authentication
994			 * purposes is zero. Note the hash is saved for
995			 * use later in the autokey mambo.
996			 */
997			if (authlen > (int)LEN_PKT_NOMAC && pkeyid != 0) {
998				session_key(&rbufp->recv_srcadr,
999				    dstadr_sin, skeyid, 0, 2);
1000				tkeyid = session_key(
1001				    &rbufp->recv_srcadr, dstadr_sin,
1002				    skeyid, pkeyid, 0);
1003			} else {
1004				tkeyid = session_key(
1005				    &rbufp->recv_srcadr, dstadr_sin,
1006				    skeyid, pkeyid, 2);
1007			}
1008
1009		}
1010#endif	/* AUTOKEY */
1011
1012		/*
1013		 * Compute the cryptosum. Note a clogging attack may
1014		 * succeed in bloating the key cache. If an autokey,
1015		 * purge it immediately, since we won't be needing it
1016		 * again. If the packet is authentic, it can mobilize an
1017		 * association. Note that there is no key zero.
1018		 */
1019		if (!authdecrypt(skeyid, (u_int32 *)pkt, authlen,
1020		    has_mac))
1021			is_authentic = AUTH_ERROR;
1022		else
1023			is_authentic = AUTH_OK;
1024#ifdef AUTOKEY
1025		if (crypto_flags && skeyid > NTP_MAXKEY)
1026			authtrust(skeyid, 0);
1027#endif	/* AUTOKEY */
1028		DPRINTF(2, ("receive: at %ld %s<-%s mode %d/%s:%s keyid %08x len %d auth %d org %#010x.%08x xmt %#010x.%08x\n",
1029			    current_time, stoa(dstadr_sin),
1030			    stoa(&rbufp->recv_srcadr), hismode, hm_str, am_str,
1031			    skeyid, authlen + has_mac, is_authentic,
1032			    ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
1033			    ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf)));
1034	}
1035
1036	/*
1037	 * The association matching rules are implemented by a set of
1038	 * routines and an association table. A packet matching an
1039	 * association is processed by the peer process for that
1040	 * association. If there are no errors, an ephemeral association
1041	 * is mobilized: a broadcast packet mobilizes a broadcast client
1042	 * aassociation; a manycast server packet mobilizes a manycast
1043	 * client association; a symmetric active packet mobilizes a
1044	 * symmetric passive association.
1045	 */
1046	switch (retcode) {
1047
1048	/*
1049	 * This is a client mode packet not matching any association. If
1050	 * an ordinary client, simply toss a server mode packet back
1051	 * over the fence. If a manycast client, we have to work a
1052	 * little harder.
1053	 */
1054	case AM_FXMIT:
1055
1056		/*
1057		 * If authentication OK, send a server reply; otherwise,
1058		 * send a crypto-NAK.
1059		 */
1060		if (!(rbufp->dstadr->flags & INT_MCASTOPEN)) {
1061			if (AUTH(restrict_mask & RES_DONTTRUST,
1062			   is_authentic)) {
1063				fast_xmit(rbufp, MODE_SERVER, skeyid,
1064				    restrict_mask);
1065			} else if (is_authentic == AUTH_ERROR) {
1066				fast_xmit(rbufp, MODE_SERVER, 0,
1067				    restrict_mask);
1068				sys_badauth++;
1069			} else {
1070				sys_restricted++;
1071			}
1072			return;			/* hooray */
1073		}
1074
1075		/*
1076		 * This must be manycast. Do not respond if not
1077		 * configured as a manycast server.
1078		 */
1079		if (!sys_manycastserver) {
1080			sys_restricted++;
1081			return;			/* not enabled */
1082		}
1083
1084#ifdef AUTOKEY
1085		/*
1086		 * Do not respond if not the same group.
1087		 */
1088		if (group_test(groupname, NULL)) {
1089			sys_declined++;
1090			return;
1091		}
1092#endif /* AUTOKEY */
1093
1094		/*
1095		 * Do not respond if we are not synchronized or our
1096		 * stratum is greater than the manycaster or the
1097		 * manycaster has already synchronized to us.
1098		 */
1099		if (   sys_leap == LEAP_NOTINSYNC
1100		    || sys_stratum >= hisstratum
1101		    || (!sys_cohort && sys_stratum == hisstratum + 1)
1102		    || rbufp->dstadr->addr_refid == pkt->refid) {
1103			sys_declined++;
1104			return;			/* no help */
1105		}
1106
1107		/*
1108		 * Respond only if authentication succeeds. Don't do a
1109		 * crypto-NAK, as that would not be useful.
1110		 */
1111		if (AUTH(restrict_mask & RES_DONTTRUST, is_authentic))
1112			fast_xmit(rbufp, MODE_SERVER, skeyid,
1113			    restrict_mask);
1114		return;				/* hooray */
1115
1116	/*
1117	 * This is a server mode packet returned in response to a client
1118	 * mode packet sent to a multicast group address (for
1119	 * manycastclient) or to a unicast address (for pool). The
1120	 * origin timestamp is a good nonce to reliably associate the
1121	 * reply with what was sent. If there is no match, that's
1122	 * curious and could be an intruder attempting to clog, so we
1123	 * just ignore it.
1124	 *
1125	 * If the packet is authentic and the manycastclient or pool
1126	 * association is found, we mobilize a client association and
1127	 * copy pertinent variables from the manycastclient or pool
1128	 * association to the new client association. If not, just
1129	 * ignore the packet.
1130	 *
1131	 * There is an implosion hazard at the manycast client, since
1132	 * the manycast servers send the server packet immediately. If
1133	 * the guy is already here, don't fire up a duplicate.
1134	 */
1135	case AM_MANYCAST:
1136
1137#ifdef AUTOKEY
1138		/*
1139		 * Do not respond if not the same group.
1140		 */
1141		if (group_test(groupname, NULL)) {
1142			sys_declined++;
1143			return;
1144		}
1145#endif /* AUTOKEY */
1146		if ((peer2 = findmanycastpeer(rbufp)) == NULL) {
1147			sys_restricted++;
1148			return;			/* not enabled */
1149		}
1150		if (!AUTH(  (!(peer2->cast_flags & MDF_POOL)
1151			     && sys_authenticate)
1152			  || (restrict_mask & (RES_NOPEER |
1153			      RES_DONTTRUST)), is_authentic)) {
1154			sys_restricted++;
1155			return;			/* access denied */
1156		}
1157
1158		/*
1159		 * Do not respond if unsynchronized or stratum is below
1160		 * the floor or at or above the ceiling.
1161		 */
1162		if (   hisleap == LEAP_NOTINSYNC
1163		    || hisstratum < sys_floor
1164		    || hisstratum >= sys_ceiling) {
1165			sys_declined++;
1166			return;			/* no help */
1167		}
1168		peer = newpeer(&rbufp->recv_srcadr, NULL, rbufp->dstadr,
1169			       MODE_CLIENT, hisversion, peer2->minpoll,
1170			       peer2->maxpoll, FLAG_PREEMPT |
1171			       (FLAG_IBURST & peer2->flags), MDF_UCAST |
1172			       MDF_UCLNT, 0, skeyid, sys_ident);
1173		if (NULL == peer) {
1174			sys_declined++;
1175			return;			/* ignore duplicate  */
1176		}
1177
1178		/*
1179		 * After each ephemeral pool association is spun,
1180		 * accelerate the next poll for the pool solicitor so
1181		 * the pool will fill promptly.
1182		 */
1183		if (peer2->cast_flags & MDF_POOL)
1184			peer2->nextdate = current_time + 1;
1185
1186		/*
1187		 * Further processing of the solicitation response would
1188		 * simply detect its origin timestamp as bogus for the
1189		 * brand-new association (it matches the prototype
1190		 * association) and tinker with peer->nextdate delaying
1191		 * first sync.
1192		 */
1193		return;		/* solicitation response handled */
1194
1195	/*
1196	 * This is the first packet received from a broadcast server. If
1197	 * the packet is authentic and we are enabled as broadcast
1198	 * client, mobilize a broadcast client association. We don't
1199	 * kiss any frogs here.
1200	 */
1201	case AM_NEWBCL:
1202
1203#ifdef AUTOKEY
1204		/*
1205		 * Do not respond if not the same group.
1206		 */
1207		if (group_test(groupname, sys_ident)) {
1208			sys_declined++;
1209			return;
1210		}
1211#endif /* AUTOKEY */
1212		if (sys_bclient == 0) {
1213			sys_restricted++;
1214			return;			/* not enabled */
1215		}
1216		if (!AUTH(sys_authenticate | (restrict_mask &
1217		    (RES_NOPEER | RES_DONTTRUST)), is_authentic)) {
1218			sys_restricted++;
1219			return;			/* access denied */
1220		}
1221
1222		/*
1223		 * Do not respond if unsynchronized or stratum is below
1224		 * the floor or at or above the ceiling.
1225		 */
1226		if (   hisleap == LEAP_NOTINSYNC
1227		    || hisstratum < sys_floor
1228		    || hisstratum >= sys_ceiling) {
1229			sys_declined++;
1230			return;			/* no help */
1231		}
1232
1233#ifdef AUTOKEY
1234		/*
1235		 * Do not respond if Autokey and the opcode is not a
1236		 * CRYPTO_ASSOC response with association ID.
1237		 */
1238		if (   crypto_flags && skeyid > NTP_MAXKEY
1239		    && (opcode & 0xffff0000) != (CRYPTO_ASSOC | CRYPTO_RESP)) {
1240			sys_declined++;
1241			return;			/* protocol error */
1242		}
1243#endif	/* AUTOKEY */
1244
1245		/*
1246		 * Broadcasts received via a multicast address may
1247		 * arrive after a unicast volley has begun
1248		 * with the same remote address.  newpeer() will not
1249		 * find duplicate associations on other local endpoints
1250		 * if a non-NULL endpoint is supplied.  multicastclient
1251		 * ephemeral associations are unique across all local
1252		 * endpoints.
1253		 */
1254		if (!(INT_MCASTOPEN & rbufp->dstadr->flags))
1255			match_ep = rbufp->dstadr;
1256		else
1257			match_ep = NULL;
1258
1259		/*
1260		 * Determine whether to execute the initial volley.
1261		 */
1262		if (sys_bdelay > 0.0) {
1263#ifdef AUTOKEY
1264			/*
1265			 * If a two-way exchange is not possible,
1266			 * neither is Autokey.
1267			 */
1268			if (crypto_flags && skeyid > NTP_MAXKEY) {
1269				sys_restricted++;
1270				return;		/* no autokey */
1271			}
1272#endif	/* AUTOKEY */
1273
1274			/*
1275			 * Do not execute the volley. Start out in
1276			 * broadcast client mode.
1277			 */
1278			peer = newpeer(&rbufp->recv_srcadr, NULL,
1279			    match_ep, MODE_BCLIENT, hisversion,
1280			    pkt->ppoll, pkt->ppoll, FLAG_PREEMPT,
1281			    MDF_BCLNT, 0, skeyid, sys_ident);
1282			if (NULL == peer) {
1283				sys_restricted++;
1284				return;		/* ignore duplicate */
1285
1286			} else {
1287				peer->delay = sys_bdelay;
1288				peer->bxmt = p_xmt;
1289			}
1290			break;
1291		}
1292
1293		/*
1294		 * Execute the initial volley in order to calibrate the
1295		 * propagation delay and run the Autokey protocol.
1296		 *
1297		 * Note that the minpoll is taken from the broadcast
1298		 * packet, normally 6 (64 s) and that the poll interval
1299		 * is fixed at this value.
1300		 */
1301		peer = newpeer(&rbufp->recv_srcadr, NULL, match_ep,
1302		    MODE_CLIENT, hisversion, pkt->ppoll, pkt->ppoll,
1303		    FLAG_BC_VOL | FLAG_IBURST | FLAG_PREEMPT, MDF_BCLNT,
1304		    0, skeyid, sys_ident);
1305		if (NULL == peer) {
1306			sys_restricted++;
1307			return;			/* ignore duplicate */
1308		}
1309		peer->bxmt = p_xmt;
1310#ifdef AUTOKEY
1311		if (skeyid > NTP_MAXKEY)
1312			crypto_recv(peer, rbufp);
1313#endif	/* AUTOKEY */
1314
1315		return;				/* hooray */
1316
1317	/*
1318	 * This is the first packet received from a symmetric active
1319	 * peer. If the packet is authentic and the first he sent,
1320	 * mobilize a passive association. If not, kiss the frog.
1321	 */
1322	case AM_NEWPASS:
1323
1324#ifdef AUTOKEY
1325		/*
1326		 * Do not respond if not the same group.
1327		 */
1328		if (group_test(groupname, sys_ident)) {
1329			sys_declined++;
1330			return;
1331		}
1332#endif /* AUTOKEY */
1333		if (!AUTH(sys_authenticate | (restrict_mask &
1334		    (RES_NOPEER | RES_DONTTRUST)), is_authentic)) {
1335
1336			/*
1337			 * If authenticated but cannot mobilize an
1338			 * association, send a symmetric passive
1339			 * response without mobilizing an association.
1340			 * This is for drat broken Windows clients. See
1341			 * Microsoft KB 875424 for preferred workaround.
1342			 */
1343			if (AUTH(restrict_mask & RES_DONTTRUST,
1344			    is_authentic)) {
1345				fast_xmit(rbufp, MODE_PASSIVE, skeyid,
1346				    restrict_mask);
1347				return;			/* hooray */
1348			}
1349			if (is_authentic == AUTH_ERROR) {
1350				fast_xmit(rbufp, MODE_ACTIVE, 0,
1351				    restrict_mask);
1352				sys_restricted++;
1353				return;
1354			}
1355			/* [Bug 2941]
1356			 * If we got here, the packet isn't part of an
1357			 * existing association, it isn't correctly
1358			 * authenticated, and it didn't meet either of
1359			 * the previous two special cases so we should
1360			 * just drop it on the floor.  For example,
1361			 * crypto-NAKs (is_authentic == AUTH_CRYPTO)
1362			 * will make it this far.  This is just
1363			 * debug-printed and not logged to avoid log
1364			 * flooding.
1365			 */
1366			DPRINTF(2, ("receive: at %ld refusing to mobilize passive association"
1367				    " with unknown peer %s mode %d/%s:%s keyid %08x len %d auth %d\n",
1368				    current_time, stoa(&rbufp->recv_srcadr),
1369				    hismode, hm_str, am_str, skeyid,
1370				    (authlen + has_mac), is_authentic));
1371			sys_declined++;
1372			return;
1373		}
1374
1375		/*
1376		 * Do not respond if synchronized and if stratum is
1377		 * below the floor or at or above the ceiling. Note,
1378		 * this allows an unsynchronized peer to synchronize to
1379		 * us. It would be very strange if he did and then was
1380		 * nipped, but that could only happen if we were
1381		 * operating at the top end of the range.  It also means
1382		 * we will spin an ephemeral association in response to
1383		 * MODE_ACTIVE KoDs, which will time out eventually.
1384		 */
1385		if (   hisleap != LEAP_NOTINSYNC
1386		    && (hisstratum < sys_floor || hisstratum >= sys_ceiling)) {
1387			sys_declined++;
1388			return;			/* no help */
1389		}
1390
1391		/*
1392		 * The message is correctly authenticated and allowed.
1393		 * Mobilize a symmetric passive association.
1394		 */
1395		if ((peer = newpeer(&rbufp->recv_srcadr, NULL,
1396		    rbufp->dstadr, MODE_PASSIVE, hisversion, pkt->ppoll,
1397		    NTP_MAXDPOLL, 0, MDF_UCAST, 0, skeyid,
1398		    sys_ident)) == NULL) {
1399			sys_declined++;
1400			return;			/* ignore duplicate */
1401		}
1402		break;
1403
1404
1405	/*
1406	 * Process regular packet. Nothing special.
1407	 */
1408	case AM_PROCPKT:
1409
1410#ifdef AUTOKEY
1411		/*
1412		 * Do not respond if not the same group.
1413		 */
1414		if (group_test(groupname, peer->ident)) {
1415			sys_declined++;
1416			return;
1417		}
1418#endif /* AUTOKEY */
1419
1420		if (MODE_BROADCAST == hismode) {
1421			int	bail = 0;
1422			l_fp	tdiff;
1423			u_long	deadband;
1424
1425			DPRINTF(2, ("receive: PROCPKT/BROADCAST: prev pkt %ld seconds ago, ppoll: %d, %d secs\n",
1426				    (current_time - peer->timelastrec),
1427				    peer->ppoll, (1 << peer->ppoll)
1428				    ));
1429			/* Things we can check:
1430			 *
1431			 * Did the poll interval change?
1432			 * Is the poll interval in the packet in-range?
1433			 * Did this packet arrive too soon?
1434			 * Is the timestamp in this packet monotonic
1435			 *  with respect to the previous packet?
1436			 */
1437
1438			/* This is noteworthy, not error-worthy */
1439			if (pkt->ppoll != peer->ppoll) {
1440				msyslog(LOG_INFO, "receive: broadcast poll from %s changed from %ud to %ud",
1441					stoa(&rbufp->recv_srcadr),
1442					peer->ppoll, pkt->ppoll);
1443			}
1444
1445			/* This is error-worthy */
1446			if (pkt->ppoll < peer->minpoll ||
1447			    pkt->ppoll > peer->maxpoll  ) {
1448				msyslog(LOG_INFO, "receive: broadcast poll of %ud from %s is out-of-range (%d to %d)!",
1449					pkt->ppoll, stoa(&rbufp->recv_srcadr),
1450					peer->minpoll, peer->maxpoll);
1451				++bail;
1452			}
1453
1454			/* too early? worth an error, too!
1455			 *
1456			 * [Bug 3113] Ensure that at least one poll
1457			 * interval has elapsed since the last **clean**
1458			 * packet was received.  We limit the check to
1459			 * **clean** packets to prevent replayed packets
1460			 * and incorrectly authenticated packets, which
1461			 * we'll discard, from being used to create a
1462			 * denial of service condition.
1463			 */
1464			deadband = (1u << pkt->ppoll);
1465			if (FLAG_BC_VOL & peer->flags)
1466				deadband -= 3;	/* allow greater fuzz after volley */
1467			if ((current_time - peer->timereceived) < deadband) {
1468				msyslog(LOG_INFO, "receive: broadcast packet from %s arrived after %lu, not %lu seconds!",
1469					stoa(&rbufp->recv_srcadr),
1470					(current_time - peer->timereceived),
1471					deadband);
1472				++bail;
1473			}
1474
1475			/* Alert if time from the server is non-monotonic.
1476			 *
1477			 * [Bug 3114] is about Broadcast mode replay DoS.
1478			 *
1479			 * Broadcast mode *assumes* a trusted network.
1480			 * Even so, it's nice to be robust in the face
1481			 * of attacks.
1482			 *
1483			 * If we get an authenticated broadcast packet
1484			 * with an "earlier" timestamp, it means one of
1485			 * two things:
1486			 *
1487			 * - the broadcast server had a backward step.
1488			 *
1489			 * - somebody is trying a replay attack.
1490			 *
1491			 * deadband: By default, we assume the broadcast
1492			 * network is trustable, so we take our accepted
1493			 * broadcast packets as we receive them.  But
1494			 * some folks might want to take additional poll
1495			 * delays before believing a backward step.
1496			 */
1497			if (sys_bcpollbstep) {
1498				/* pkt->ppoll or peer->ppoll ? */
1499				deadband = (1u << pkt->ppoll)
1500					   * sys_bcpollbstep + 2;
1501			} else {
1502				deadband = 0;
1503			}
1504
1505			if (L_ISZERO(&peer->bxmt)) {
1506				tdiff.l_ui = tdiff.l_uf = 0;
1507			} else {
1508				tdiff = p_xmt;
1509				L_SUB(&tdiff, &peer->bxmt);
1510			}
1511			if (tdiff.l_i < 0 &&
1512			    (current_time - peer->timereceived) < deadband)
1513			{
1514				msyslog(LOG_INFO, "receive: broadcast packet from %s contains non-monotonic timestamp: %#010x.%08x -> %#010x.%08x",
1515					stoa(&rbufp->recv_srcadr),
1516					peer->bxmt.l_ui, peer->bxmt.l_uf,
1517					p_xmt.l_ui, p_xmt.l_uf
1518					);
1519				++bail;
1520			}
1521
1522			if (bail) {
1523				peer->timelastrec = current_time;
1524				sys_declined++;
1525				return;
1526			}
1527		}
1528
1529		break;
1530
1531	/*
1532	 * A passive packet matches a passive association. This is
1533	 * usually the result of reconfiguring a client on the fly. As
1534	 * this association might be legitimate and this packet an
1535	 * attempt to deny service, just ignore it.
1536	 */
1537	case AM_ERR:
1538		sys_declined++;
1539		return;
1540
1541	/*
1542	 * For everything else there is the bit bucket.
1543	 */
1544	default:
1545		sys_declined++;
1546		return;
1547	}
1548
1549#ifdef AUTOKEY
1550	/*
1551	 * If the association is configured for Autokey, the packet must
1552	 * have a public key ID; if not, the packet must have a
1553	 * symmetric key ID.
1554	 */
1555	if (   is_authentic != AUTH_CRYPTO
1556	    && (   ((peer->flags & FLAG_SKEY) && skeyid <= NTP_MAXKEY)
1557	        || (!(peer->flags & FLAG_SKEY) && skeyid > NTP_MAXKEY))) {
1558		sys_badauth++;
1559		return;
1560	}
1561#endif	/* AUTOKEY */
1562
1563	peer->received++;
1564	peer->flash &= ~PKT_TEST_MASK;
1565	if (peer->flags & FLAG_XBOGUS) {
1566		peer->flags &= ~FLAG_XBOGUS;
1567		peer->flash |= TEST3;
1568	}
1569
1570	/*
1571	 * Next comes a rigorous schedule of timestamp checking. If the
1572	 * transmit timestamp is zero, the server has not initialized in
1573	 * interleaved modes or is horribly broken.
1574	 *
1575	 * A KoD packet we pay attention to cannot have a 0 transmit
1576	 * timestamp.
1577	 */
1578	if (L_ISZERO(&p_xmt)) {
1579		peer->flash |= TEST3;			/* unsynch */
1580		if (STRATUM_UNSPEC == hisstratum) {	/* KoD packet */
1581			peer->bogusorg++;		/* for TEST2 or TEST3 */
1582			msyslog(LOG_INFO,
1583				"receive: Unexpected zero transmit timestamp in KoD from %s",
1584				ntoa(&peer->srcadr));
1585			return;
1586		}
1587
1588	/*
1589	 * If the transmit timestamp duplicates our previous one, the
1590	 * packet is a replay. This prevents the bad guys from replaying
1591	 * the most recent packet, authenticated or not.
1592	 */
1593	} else if (L_ISEQU(&peer->xmt, &p_xmt)) {
1594		peer->flash |= TEST1;			/* duplicate */
1595		peer->oldpkt++;
1596		return;
1597
1598	/*
1599	 * If this is a broadcast mode packet, make sure hisstratum
1600	 * is appropriate.  Don't do anything else here - we wait to
1601	 * see if this is an interleave broadcast packet until after
1602	 * we've validated the MAC that SHOULD be provided.
1603	 *
1604	 * hisstratum should never be 0.
1605	 * If hisstratum is 15, then we'll advertise as UNSPEC but
1606	 * at least we'll be able to sync with the broadcast server.
1607	 */
1608	} else if (hismode == MODE_BROADCAST) {
1609		if (   0 == hisstratum
1610		    || STRATUM_UNSPEC <= hisstratum) {
1611			/* Is this a ++sys_declined or ??? */
1612			msyslog(LOG_INFO,
1613				"receive: Unexpected stratum (%d) in broadcast from %s",
1614				hisstratum, ntoa(&peer->srcadr));
1615			return;
1616		}
1617
1618	/*
1619	 * Basic KoD validation checking:
1620	 *
1621	 * KoD packets are a mixed-blessing.  Forged KoD packets
1622	 * are DoS attacks.  There are rare situations where we might
1623	 * get a valid KoD response, though.  Since KoD packets are
1624	 * a special case that complicate the checks we do next, we
1625	 * handle the basic KoD checks here.
1626	 *
1627	 * Note that we expect the incoming KoD packet to have its
1628	 * (nonzero) org, rec, and xmt timestamps set to the xmt timestamp
1629	 * that we have previously sent out.  Watch interleave mode.
1630	 */
1631	} else if (STRATUM_UNSPEC == hisstratum) {
1632		DEBUG_INSIST(!L_ISZERO(&p_xmt));
1633		if (   L_ISZERO(&p_org)		/* We checked p_xmt above */
1634		    || L_ISZERO(&p_rec)) {
1635			peer->bogusorg++;
1636			msyslog(LOG_INFO,
1637				"receive: KoD packet from %s has a zero org or rec timestamp.  Ignoring.",
1638				ntoa(&peer->srcadr));
1639			return;
1640		}
1641
1642		if (   !L_ISEQU(&p_xmt, &p_org)
1643		    || !L_ISEQU(&p_xmt, &p_rec)) {
1644			peer->bogusorg++;
1645			msyslog(LOG_INFO,
1646				"receive: KoD packet from %s has inconsistent xmt/org/rec timestamps.  Ignoring.",
1647				ntoa(&peer->srcadr));
1648			return;
1649		}
1650
1651		/* Be conservative */
1652		if (peer->flip == 0 && !L_ISEQU(&p_org, &peer->aorg)) {
1653			peer->bogusorg++;
1654			msyslog(LOG_INFO,
1655				"receive: flip 0 KoD origin timestamp %#010x.%08x from %s does not match %#010x.%08x - ignoring.",
1656				p_org.l_ui, p_org.l_uf,
1657				ntoa(&peer->srcadr),
1658				peer->aorg.l_ui, peer->aorg.l_uf);
1659			return;
1660		} else if (peer->flip == 1 && !L_ISEQU(&p_org, &peer->borg)) {
1661			peer->bogusorg++;
1662			msyslog(LOG_INFO,
1663				"receive: flip 1 KoD origin timestamp %#010x.%08x from %s does not match interleave %#010x.%08x - ignoring.",
1664				p_org.l_ui, p_org.l_uf,
1665				ntoa(&peer->srcadr),
1666				peer->borg.l_ui, peer->borg.l_uf);
1667			return;
1668		}
1669
1670	/*
1671	 * Basic mode checks:
1672	 *
1673	 * If there is no origin timestamp, it's either an initial packet
1674	 * or we've already received a response to our query.  Of course,
1675	 * should 'aorg' be all-zero because this really was the original
1676	 * transmit timestamp, we'll ignore this reply.  There is a window
1677	 * of one nanosecond once every 136 years' time where this is
1678	 * possible.  We currently ignore this situation.
1679	 *
1680	 * Otherwise, check for bogus packet in basic mode.
1681	 * If it is bogus, switch to interleaved mode and resynchronize,
1682	 * but only after confirming the packet is not bogus in
1683	 * symmetric interleaved mode.
1684	 *
1685	 * This could also mean somebody is forging packets claiming to
1686	 * be from us, attempting to cause our server to KoD us.
1687	 */
1688	} else if (peer->flip == 0) {
1689		INSIST(0 != hisstratum);
1690		INSIST(STRATUM_UNSPEC != hisstratum);
1691
1692		if (0) {
1693		} else if (L_ISZERO(&p_org)) {
1694			char *action;
1695
1696			L_CLR(&peer->aorg);
1697			/**/
1698			switch (hismode) {
1699			/* We allow 0org for: */
1700			    case UCHAR_MAX:
1701				action = "Allow";
1702				break;
1703			/* We disallow 0org for: */
1704			    case MODE_UNSPEC:
1705			    case MODE_ACTIVE:
1706			    case MODE_PASSIVE:
1707			    case MODE_CLIENT:
1708			    case MODE_SERVER:
1709			    case MODE_BROADCAST:
1710				action = "Drop";
1711				peer->bogusorg++;
1712				peer->flash |= TEST2;	/* bogus */
1713				break;
1714			    default:
1715				INSIST(!"receive(): impossible hismode");
1716				break;
1717			}
1718			/**/
1719			msyslog(LOG_INFO,
1720				"receive: %s 0 origin timestamp from %s@%s xmt %#010x.%08x",
1721				action, hm_str, ntoa(&peer->srcadr),
1722				ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf));
1723		} else if (!L_ISEQU(&p_org, &peer->aorg)) {
1724			/* are there cases here where we should bail? */
1725			/* Should we set TEST2 if we decide to try xleave? */
1726			peer->bogusorg++;
1727			peer->flash |= TEST2;	/* bogus */
1728			msyslog(LOG_INFO,
1729				"receive: Unexpected origin timestamp %#010x.%08x does not match aorg %#010x.%08x from %s@%s xmt %#010x.%08x",
1730				ntohl(pkt->org.l_ui), ntohl(pkt->org.l_uf),
1731				peer->aorg.l_ui, peer->aorg.l_uf,
1732				hm_str, ntoa(&peer->srcadr),
1733				ntohl(pkt->xmt.l_ui), ntohl(pkt->xmt.l_uf));
1734			if (  !L_ISZERO(&peer->dst)
1735			    && L_ISEQU(&p_org, &peer->dst)) {
1736				/* Might be the start of an interleave */
1737				if (dynamic_interleave) {
1738					peer->flip = 1;
1739					report_event(PEVNT_XLEAVE, peer, NULL);
1740				} else {
1741					msyslog(LOG_INFO,
1742						"receive: Dynamic interleave from %s@%s denied",
1743						hm_str, ntoa(&peer->srcadr));
1744				}
1745			}
1746		} else {
1747			L_CLR(&peer->aorg);
1748		}
1749
1750	/*
1751	 * Check for valid nonzero timestamp fields.
1752	 */
1753	} else if (   L_ISZERO(&p_org)
1754		   || L_ISZERO(&p_rec)
1755		   || L_ISZERO(&peer->dst)) {
1756		peer->flash |= TEST3;		/* unsynch */
1757
1758	/*
1759	 * Check for bogus packet in interleaved symmetric mode. This
1760	 * can happen if a packet is lost, duplicated or crossed. If
1761	 * found, flip and resynchronize.
1762	 */
1763	} else if (   !L_ISZERO(&peer->dst)
1764		   && !L_ISEQU(&p_org, &peer->dst)) {
1765		peer->bogusorg++;
1766		peer->flags |= FLAG_XBOGUS;
1767		peer->flash |= TEST2;		/* bogus */
1768		return; /* Bogus packet, we are done */
1769	}
1770
1771	/**/
1772
1773	/*
1774	 * If this is a crypto_NAK, the server cannot authenticate a
1775	 * client packet. The server might have just changed keys. Clear
1776	 * the association and restart the protocol.
1777	 */
1778	if (crypto_nak_test == VALIDNAK) {
1779		report_event(PEVNT_AUTH, peer, "crypto_NAK");
1780		peer->flash |= TEST5;		/* bad auth */
1781		peer->badauth++;
1782		if (peer->flags & FLAG_PREEMPT) {
1783			if (unpeer_crypto_nak_early) {
1784				unpeer(peer);
1785			}
1786			return;
1787		}
1788#ifdef AUTOKEY
1789		if (peer->crypto) {
1790			peer_clear(peer, "AUTH");
1791		}
1792#endif	/* AUTOKEY */
1793		return;
1794
1795	/*
1796	 * If the digest fails or it's missing for authenticated
1797	 * associations, the client cannot authenticate a server
1798	 * reply to a client packet previously sent. The loopback check
1799	 * is designed to avoid a bait-and-switch attack, which was
1800	 * possible in past versions. If symmetric modes, return a
1801	 * crypto-NAK. The peer should restart the protocol.
1802	 */
1803	} else if (!AUTH(peer->keyid || has_mac ||
1804			 (restrict_mask & RES_DONTTRUST), is_authentic)) {
1805
1806		if (peer->flash & PKT_TEST_MASK) {
1807			msyslog(LOG_INFO,
1808				"receive: Bad auth in packet with bad timestamps from %s denied - spoof?",
1809				ntoa(&peer->srcadr));
1810			return;
1811		}
1812
1813		report_event(PEVNT_AUTH, peer, "digest");
1814		peer->flash |= TEST5;		/* bad auth */
1815		peer->badauth++;
1816		if (   has_mac
1817		    && (   hismode == MODE_ACTIVE
1818			|| hismode == MODE_PASSIVE))
1819			fast_xmit(rbufp, MODE_ACTIVE, 0, restrict_mask);
1820		if (peer->flags & FLAG_PREEMPT) {
1821			if (unpeer_digest_early) {
1822				unpeer(peer);
1823			}
1824		}
1825#ifdef AUTOKEY
1826		else if (peer_clear_digest_early && peer->crypto) {
1827			peer_clear(peer, "AUTH");
1828		}
1829#endif	/* AUTOKEY */
1830		return;
1831	}
1832
1833	/*
1834	 * For broadcast packets:
1835	 *
1836	 * HMS: This next line never made much sense to me, even
1837	 * when it was up higher:
1838	 *   If an initial volley, bail out now and let the
1839	 *   client do its stuff.
1840	 *
1841	 * If the packet has not failed authentication, then
1842	 * - if the origin timestamp is nonzero this is an
1843	 *   interleaved broadcast, so restart the protocol.
1844	 * - else, this is not an interleaved broadcast packet.
1845	 */
1846	if (hismode == MODE_BROADCAST) {
1847		if (   is_authentic == AUTH_OK
1848		    || is_authentic == AUTH_NONE) {
1849			if (!L_ISZERO(&p_org)) {
1850				if (!(peer->flags & FLAG_XB)) {
1851					msyslog(LOG_INFO,
1852						"receive: Broadcast server at %s is in interleave mode",
1853						ntoa(&peer->srcadr));
1854					peer->flags |= FLAG_XB;
1855					peer->aorg = p_xmt;
1856					peer->borg = rbufp->recv_time;
1857					report_event(PEVNT_XLEAVE, peer, NULL);
1858					return;
1859				}
1860			} else if (peer->flags & FLAG_XB) {
1861				msyslog(LOG_INFO,
1862					"receive: Broadcast server at %s is no longer in interleave mode",
1863					ntoa(&peer->srcadr));
1864				peer->flags &= ~FLAG_XB;
1865			}
1866		} else {
1867			msyslog(LOG_INFO,
1868				"receive: Bad broadcast auth (%d) from %s",
1869				is_authentic, ntoa(&peer->srcadr));
1870		}
1871
1872		/*
1873		 * Now that we know the packet is correctly authenticated,
1874		 * update peer->bxmt.
1875		 */
1876		peer->bxmt = p_xmt;
1877	}
1878
1879
1880	/*
1881	** Update the state variables.
1882	*/
1883	if (peer->flip == 0) {
1884		if (hismode != MODE_BROADCAST)
1885			peer->rec = p_xmt;
1886		peer->dst = rbufp->recv_time;
1887	}
1888	peer->xmt = p_xmt;
1889
1890	/*
1891	 * Set the peer ppoll to the maximum of the packet ppoll and the
1892	 * peer minpoll. If a kiss-o'-death, set the peer minpoll to
1893	 * this maximum and advance the headway to give the sender some
1894	 * headroom. Very intricate.
1895	 */
1896
1897	/*
1898	 * Check for any kiss codes. Note this is only used when a server
1899	 * responds to a packet request
1900	 */
1901
1902	kissCode = kiss_code_check(hisleap, hisstratum, hismode, pkt->refid);
1903
1904	/*
1905	 * Check to see if this is a RATE Kiss Code
1906	 * Currently this kiss code will accept whatever poll
1907	 * rate that the server sends
1908	 */
1909	peer->ppoll = max(peer->minpoll, pkt->ppoll);
1910	if (kissCode == RATEKISS) {
1911		peer->selbroken++;	/* Increment the KoD count */
1912		report_event(PEVNT_RATE, peer, NULL);
1913		if (pkt->ppoll > peer->minpoll)
1914			peer->minpoll = peer->ppoll;
1915		peer->burst = peer->retry = 0;
1916		peer->throttle = (NTP_SHIFT + 1) * (1 << peer->minpoll);
1917		poll_update(peer, pkt->ppoll);
1918		return;				/* kiss-o'-death */
1919	}
1920	if (kissCode != NOKISS) {
1921		peer->selbroken++;	/* Increment the KoD count */
1922		return;		/* Drop any other kiss code packets */
1923	}
1924
1925
1926	/*
1927	 * XXX
1928	 */
1929
1930
1931	/*
1932	 * If:
1933	 *	- this is a *cast (uni-, broad-, or m-) server packet
1934	 *	- and it's symmetric-key authenticated
1935	 * then see if the sender's IP is trusted for this keyid.
1936	 * If it is, great - nothing special to do here.
1937	 * Otherwise, we should report and bail.
1938	 *
1939	 * Autokey-authenticated packets are accepted.
1940	 */
1941
1942	switch (hismode) {
1943	    case MODE_SERVER:		/* server mode */
1944	    case MODE_BROADCAST:	/* broadcast mode */
1945	    case MODE_ACTIVE:		/* symmetric active mode */
1946	    case MODE_PASSIVE:		/* symmetric passive mode */
1947		if (   is_authentic == AUTH_OK
1948		    && skeyid
1949		    && skeyid <= NTP_MAXKEY
1950		    && !authistrustedip(skeyid, &peer->srcadr)) {
1951			report_event(PEVNT_AUTH, peer, "authIP");
1952			peer->badauth++;
1953			return;
1954		}
1955		break;
1956
1957	    case MODE_CLIENT:		/* client mode */
1958#if 0		/* At this point, MODE_CONTROL is overloaded by MODE_BCLIENT */
1959	    case MODE_CONTROL:		/* control mode */
1960#endif
1961	    case MODE_PRIVATE:		/* private mode */
1962	    case MODE_BCLIENT:		/* broadcast client mode */
1963		break;
1964
1965	    case MODE_UNSPEC:		/* unspecified (old version) */
1966	    default:
1967		msyslog(LOG_INFO,
1968			"receive: Unexpected mode (%d) in packet from %s",
1969			hismode, ntoa(&peer->srcadr));
1970		break;
1971	}
1972
1973
1974	/*
1975	 * That was hard and I am sweaty, but the packet is squeaky
1976	 * clean. Get on with real work.
1977	 */
1978	peer->timereceived = current_time;
1979	peer->timelastrec = current_time;
1980	if (is_authentic == AUTH_OK)
1981		peer->flags |= FLAG_AUTHENTIC;
1982	else
1983		peer->flags &= ~FLAG_AUTHENTIC;
1984
1985#ifdef AUTOKEY
1986	/*
1987	 * More autokey dance. The rules of the cha-cha are as follows:
1988	 *
1989	 * 1. If there is no key or the key is not auto, do nothing.
1990	 *
1991	 * 2. If this packet is in response to the one just previously
1992	 *    sent or from a broadcast server, do the extension fields.
1993	 *    Otherwise, assume bogosity and bail out.
1994	 *
1995	 * 3. If an extension field contains a verified signature, it is
1996	 *    self-authenticated and we sit the dance.
1997	 *
1998	 * 4. If this is a server reply, check only to see that the
1999	 *    transmitted key ID matches the received key ID.
2000	 *
2001	 * 5. Check to see that one or more hashes of the current key ID
2002	 *    matches the previous key ID or ultimate original key ID
2003	 *    obtained from the broadcaster or symmetric peer. If no
2004	 *    match, sit the dance and call for new autokey values.
2005	 *
2006	 * In case of crypto error, fire the orchestra, stop dancing and
2007	 * restart the protocol.
2008	 */
2009	if (peer->flags & FLAG_SKEY) {
2010		/*
2011		 * Decrement remaining autokey hashes. This isn't
2012		 * perfect if a packet is lost, but results in no harm.
2013		 */
2014		ap = (struct autokey *)peer->recval.ptr;
2015		if (ap != NULL) {
2016			if (ap->seq > 0)
2017				ap->seq--;
2018		}
2019		peer->flash |= TEST8;
2020		rval = crypto_recv(peer, rbufp);
2021		if (rval == XEVNT_OK) {
2022			peer->unreach = 0;
2023		} else {
2024			if (rval == XEVNT_ERR) {
2025				report_event(PEVNT_RESTART, peer,
2026				    "crypto error");
2027				peer_clear(peer, "CRYP");
2028				peer->flash |= TEST9;	/* bad crypt */
2029				if (peer->flags & FLAG_PREEMPT) {
2030					if (unpeer_crypto_early) {
2031						unpeer(peer);
2032					}
2033				}
2034			}
2035			return;
2036		}
2037
2038		/*
2039		 * If server mode, verify the receive key ID matches
2040		 * the transmit key ID.
2041		 */
2042		if (hismode == MODE_SERVER) {
2043			if (skeyid == peer->keyid)
2044				peer->flash &= ~TEST8;
2045
2046		/*
2047		 * If an extension field is present, verify only that it
2048		 * has been correctly signed. We don't need a sequence
2049		 * check here, but the sequence continues.
2050		 */
2051		} else if (!(peer->flash & TEST8)) {
2052			peer->pkeyid = skeyid;
2053
2054		/*
2055		 * Now the fun part. Here, skeyid is the current ID in
2056		 * the packet, pkeyid is the ID in the last packet and
2057		 * tkeyid is the hash of skeyid. If the autokey values
2058		 * have not been received, this is an automatic error.
2059		 * If so, check that the tkeyid matches pkeyid. If not,
2060		 * hash tkeyid and try again. If the number of hashes
2061		 * exceeds the number remaining in the sequence, declare
2062		 * a successful failure and refresh the autokey values.
2063		 */
2064		} else if (ap != NULL) {
2065			int i;
2066
2067			for (i = 0; ; i++) {
2068				if (   tkeyid == peer->pkeyid
2069				    || tkeyid == ap->key) {
2070					peer->flash &= ~TEST8;
2071					peer->pkeyid = skeyid;
2072					ap->seq -= i;
2073					break;
2074				}
2075				if (i > ap->seq) {
2076					peer->crypto &=
2077					    ~CRYPTO_FLAG_AUTO;
2078					break;
2079				}
2080				tkeyid = session_key(
2081				    &rbufp->recv_srcadr, dstadr_sin,
2082				    tkeyid, pkeyid, 0);
2083			}
2084			if (peer->flash & TEST8)
2085				report_event(PEVNT_AUTH, peer, "keylist");
2086		}
2087		if (!(peer->crypto & CRYPTO_FLAG_PROV)) /* test 9 */
2088			peer->flash |= TEST8;	/* bad autokey */
2089
2090		/*
2091		 * The maximum lifetime of the protocol is about one
2092		 * week before restarting the Autokey protocol to
2093		 * refresh certificates and leapseconds values.
2094		 */
2095		if (current_time > peer->refresh) {
2096			report_event(PEVNT_RESTART, peer,
2097			    "crypto refresh");
2098			peer_clear(peer, "TIME");
2099			return;
2100		}
2101	}
2102#endif	/* AUTOKEY */
2103
2104	/*
2105	 * The dance is complete and the flash bits have been lit. Toss
2106	 * the packet over the fence for processing, which may light up
2107	 * more flashers.
2108	 */
2109	process_packet(peer, pkt, rbufp->recv_length);
2110
2111	/*
2112	 * In interleaved mode update the state variables. Also adjust the
2113	 * transmit phase to avoid crossover.
2114	 */
2115	if (peer->flip != 0) {
2116		peer->rec = p_rec;
2117		peer->dst = rbufp->recv_time;
2118		if (peer->nextdate - current_time < (1U << min(peer->ppoll,
2119		    peer->hpoll)) / 2)
2120			peer->nextdate++;
2121		else
2122			peer->nextdate--;
2123	}
2124}
2125
2126
2127/*
2128 * process_packet - Packet Procedure, a la Section 3.4.4 of RFC-1305
2129 *	Or almost, at least.  If we're in here we have a reasonable
2130 *	expectation that we will be having a long term
2131 *	relationship with this host.
2132 */
2133void
2134process_packet(
2135	register struct peer *peer,
2136	register struct pkt *pkt,
2137	u_int	len
2138	)
2139{
2140	double	t34, t21;
2141	double	p_offset, p_del, p_disp;
2142	l_fp	p_rec, p_xmt, p_org, p_reftime, ci;
2143	u_char	pmode, pleap, pversion, pstratum;
2144	char	statstr[NTP_MAXSTRLEN];
2145#ifdef ASSYM
2146	int	itemp;
2147	double	etemp, ftemp, td;
2148#endif /* ASSYM */
2149
2150#if 0
2151	sys_processed++;
2152	peer->processed++;
2153#endif
2154	p_del = FPTOD(NTOHS_FP(pkt->rootdelay));
2155	p_offset = 0;
2156	p_disp = FPTOD(NTOHS_FP(pkt->rootdisp));
2157	NTOHL_FP(&pkt->reftime, &p_reftime);
2158	NTOHL_FP(&pkt->org, &p_org);
2159	NTOHL_FP(&pkt->rec, &p_rec);
2160	NTOHL_FP(&pkt->xmt, &p_xmt);
2161	pmode = PKT_MODE(pkt->li_vn_mode);
2162	pleap = PKT_LEAP(pkt->li_vn_mode);
2163	pversion = PKT_VERSION(pkt->li_vn_mode);
2164	pstratum = PKT_TO_STRATUM(pkt->stratum);
2165
2166	/**/
2167
2168	/**/
2169
2170	/*
2171	 * Verify the server is synchronized; that is, the leap bits,
2172	 * stratum and root distance are valid.
2173	 */
2174	if (   pleap == LEAP_NOTINSYNC		/* test 6 */
2175	    || pstratum < sys_floor || pstratum >= sys_ceiling)
2176		peer->flash |= TEST6;		/* bad synch or strat */
2177	if (p_del / 2 + p_disp >= MAXDISPERSE)	/* test 7 */
2178		peer->flash |= TEST7;		/* bad header */
2179
2180	/*
2181	 * If any tests fail at this point, the packet is discarded.
2182	 * Note that some flashers may have already been set in the
2183	 * receive() routine.
2184	 */
2185	if (peer->flash & PKT_TEST_MASK) {
2186		peer->seldisptoolarge++;
2187		DPRINTF(1, ("packet: flash header %04x\n",
2188			    peer->flash));
2189		return;
2190	}
2191
2192	/**/
2193
2194#if 1
2195	sys_processed++;
2196	peer->processed++;
2197#endif
2198
2199	/*
2200	 * Capture the header values in the client/peer association..
2201	 */
2202	record_raw_stats(&peer->srcadr, peer->dstadr ?
2203	    &peer->dstadr->sin : NULL,
2204	    &p_org, &p_rec, &p_xmt, &peer->dst,
2205	    pleap, pversion, pmode, pstratum, pkt->ppoll, pkt->precision,
2206	    p_del, p_disp, pkt->refid);
2207	peer->leap = pleap;
2208	peer->stratum = min(pstratum, STRATUM_UNSPEC);
2209	peer->pmode = pmode;
2210	peer->precision = pkt->precision;
2211	peer->rootdelay = p_del;
2212	peer->rootdisp = p_disp;
2213	peer->refid = pkt->refid;		/* network byte order */
2214	peer->reftime = p_reftime;
2215
2216	/*
2217	 * First, if either burst mode is armed, enable the burst.
2218	 * Compute the headway for the next packet and delay if
2219	 * necessary to avoid exceeding the threshold.
2220	 */
2221	if (peer->retry > 0) {
2222		peer->retry = 0;
2223		if (peer->reach)
2224			peer->burst = min(1 << (peer->hpoll -
2225			    peer->minpoll), NTP_SHIFT) - 1;
2226		else
2227			peer->burst = NTP_IBURST - 1;
2228		if (peer->burst > 0)
2229			peer->nextdate = current_time;
2230	}
2231	poll_update(peer, peer->hpoll);
2232
2233	/**/
2234
2235	/*
2236	 * If the peer was previously unreachable, raise a trap. In any
2237	 * case, mark it reachable.
2238	 */
2239	if (!peer->reach) {
2240		report_event(PEVNT_REACH, peer, NULL);
2241		peer->timereachable = current_time;
2242	}
2243	peer->reach |= 1;
2244
2245	/*
2246	 * For a client/server association, calculate the clock offset,
2247	 * roundtrip delay and dispersion. The equations are reordered
2248	 * from the spec for more efficient use of temporaries. For a
2249	 * broadcast association, offset the last measurement by the
2250	 * computed delay during the client/server volley. Note the
2251	 * computation of dispersion includes the system precision plus
2252	 * that due to the frequency error since the origin time.
2253	 *
2254	 * It is very important to respect the hazards of overflow. The
2255	 * only permitted operation on raw timestamps is subtraction,
2256	 * where the result is a signed quantity spanning from 68 years
2257	 * in the past to 68 years in the future. To avoid loss of
2258	 * precision, these calculations are done using 64-bit integer
2259	 * arithmetic. However, the offset and delay calculations are
2260	 * sums and differences of these first-order differences, which
2261	 * if done using 64-bit integer arithmetic, would be valid over
2262	 * only half that span. Since the typical first-order
2263	 * differences are usually very small, they are converted to 64-
2264	 * bit doubles and all remaining calculations done in floating-
2265	 * double arithmetic. This preserves the accuracy while
2266	 * retaining the 68-year span.
2267	 *
2268	 * There are three interleaving schemes, basic, interleaved
2269	 * symmetric and interleaved broadcast. The timestamps are
2270	 * idioscyncratically different. See the onwire briefing/white
2271	 * paper at www.eecis.udel.edu/~mills for details.
2272	 *
2273	 * Interleaved symmetric mode
2274	 * t1 = peer->aorg/borg, t2 = peer->rec, t3 = p_xmt,
2275	 * t4 = peer->dst
2276	 */
2277	if (peer->flip != 0) {
2278		ci = p_xmt;				/* t3 - t4 */
2279		L_SUB(&ci, &peer->dst);
2280		LFPTOD(&ci, t34);
2281		ci = p_rec;				/* t2 - t1 */
2282		if (peer->flip > 0)
2283			L_SUB(&ci, &peer->borg);
2284		else
2285			L_SUB(&ci, &peer->aorg);
2286		LFPTOD(&ci, t21);
2287		p_del = t21 - t34;
2288		p_offset = (t21 + t34) / 2.;
2289		if (p_del < 0 || p_del > 1.) {
2290			snprintf(statstr, sizeof(statstr),
2291			    "t21 %.6f t34 %.6f", t21, t34);
2292			report_event(PEVNT_XERR, peer, statstr);
2293			return;
2294		}
2295
2296	/*
2297	 * Broadcast modes
2298	 */
2299	} else if (peer->pmode == MODE_BROADCAST) {
2300
2301		/*
2302		 * Interleaved broadcast mode. Use interleaved timestamps.
2303		 * t1 = peer->borg, t2 = p_org, t3 = p_org, t4 = aorg
2304		 */
2305		if (peer->flags & FLAG_XB) {
2306			ci = p_org;			/* delay */
2307			L_SUB(&ci, &peer->aorg);
2308			LFPTOD(&ci, t34);
2309			ci = p_org;			/* t2 - t1 */
2310			L_SUB(&ci, &peer->borg);
2311			LFPTOD(&ci, t21);
2312			peer->aorg = p_xmt;
2313			peer->borg = peer->dst;
2314			if (t34 < 0 || t34 > 1.) {
2315				/* drop all if in the initial volley */
2316				if (FLAG_BC_VOL & peer->flags)
2317					goto bcc_init_volley_fail;
2318				snprintf(statstr, sizeof(statstr),
2319				    "offset %.6f delay %.6f", t21, t34);
2320				report_event(PEVNT_XERR, peer, statstr);
2321				return;
2322			}
2323			p_offset = t21;
2324			peer->xleave = t34;
2325
2326		/*
2327		 * Basic broadcast - use direct timestamps.
2328		 * t3 = p_xmt, t4 = peer->dst
2329		 */
2330		} else {
2331			ci = p_xmt;		/* t3 - t4 */
2332			L_SUB(&ci, &peer->dst);
2333			LFPTOD(&ci, t34);
2334			p_offset = t34;
2335		}
2336
2337		/*
2338		 * When calibration is complete and the clock is
2339		 * synchronized, the bias is calculated as the difference
2340		 * between the unicast timestamp and the broadcast
2341		 * timestamp. This works for both basic and interleaved
2342		 * modes.
2343		 * [Bug 3031] Don't keep this peer when the delay
2344		 * calculation gives reason to suspect clock steps.
2345		 * This is assumed for delays > 50ms.
2346		 */
2347		if (FLAG_BC_VOL & peer->flags) {
2348			peer->flags &= ~FLAG_BC_VOL;
2349			peer->delay = fabs(peer->offset - p_offset) * 2;
2350			DPRINTF(2, ("broadcast volley: initial delay=%.6f\n",
2351				peer->delay));
2352			if (peer->delay > fabs(sys_bdelay)) {
2353		bcc_init_volley_fail:
2354				DPRINTF(2, ("%s", "broadcast volley: initial delay exceeds limit\n"));
2355				unpeer(peer);
2356				return;
2357			}
2358		}
2359		peer->nextdate = current_time + (1u << peer->ppoll) - 2u;
2360		p_del = peer->delay;
2361		p_offset += p_del / 2;
2362
2363
2364	/*
2365	 * Basic mode, otherwise known as the old fashioned way.
2366	 *
2367	 * t1 = p_org, t2 = p_rec, t3 = p_xmt, t4 = peer->dst
2368	 */
2369	} else {
2370		ci = p_xmt;				/* t3 - t4 */
2371		L_SUB(&ci, &peer->dst);
2372		LFPTOD(&ci, t34);
2373		ci = p_rec;				/* t2 - t1 */
2374		L_SUB(&ci, &p_org);
2375		LFPTOD(&ci, t21);
2376		p_del = fabs(t21 - t34);
2377		p_offset = (t21 + t34) / 2.;
2378	}
2379	p_del = max(p_del, LOGTOD(sys_precision));
2380	p_disp = LOGTOD(sys_precision) + LOGTOD(peer->precision) +
2381	    clock_phi * p_del;
2382
2383#if ASSYM
2384	/*
2385	 * This code calculates the outbound and inbound data rates by
2386	 * measuring the differences between timestamps at different
2387	 * packet lengths. This is helpful in cases of large asymmetric
2388	 * delays commonly experienced on deep space communication
2389	 * links.
2390	 */
2391	if (peer->t21_last > 0 && peer->t34_bytes > 0) {
2392		itemp = peer->t21_bytes - peer->t21_last;
2393		if (itemp > 25) {
2394			etemp = t21 - peer->t21;
2395			if (fabs(etemp) > 1e-6) {
2396				ftemp = itemp / etemp;
2397				if (ftemp > 1000.)
2398					peer->r21 = ftemp;
2399			}
2400		}
2401		itemp = len - peer->t34_bytes;
2402		if (itemp > 25) {
2403			etemp = -t34 - peer->t34;
2404			if (fabs(etemp) > 1e-6) {
2405				ftemp = itemp / etemp;
2406				if (ftemp > 1000.)
2407					peer->r34 = ftemp;
2408			}
2409		}
2410	}
2411
2412	/*
2413	 * The following section compensates for different data rates on
2414	 * the outbound (d21) and inbound (t34) directions. To do this,
2415	 * it finds t such that r21 * t - r34 * (d - t) = 0, where d is
2416	 * the roundtrip delay. Then it calculates the correction as a
2417	 * fraction of d.
2418	 */
2419	peer->t21 = t21;
2420	peer->t21_last = peer->t21_bytes;
2421	peer->t34 = -t34;
2422	peer->t34_bytes = len;
2423	DPRINTF(2, ("packet: t21 %.9lf %d t34 %.9lf %d\n", peer->t21,
2424		    peer->t21_bytes, peer->t34, peer->t34_bytes));
2425	if (peer->r21 > 0 && peer->r34 > 0 && p_del > 0) {
2426		if (peer->pmode != MODE_BROADCAST)
2427			td = (peer->r34 / (peer->r21 + peer->r34) -
2428			    .5) * p_del;
2429		else
2430			td = 0;
2431
2432		/*
2433		 * Unfortunately, in many cases the errors are
2434		 * unacceptable, so for the present the rates are not
2435		 * used. In future, we might find conditions where the
2436		 * calculations are useful, so this should be considered
2437		 * a work in progress.
2438		 */
2439		t21 -= td;
2440		t34 -= td;
2441		DPRINTF(2, ("packet: del %.6lf r21 %.1lf r34 %.1lf %.6lf\n",
2442			    p_del, peer->r21 / 1e3, peer->r34 / 1e3,
2443			    td));
2444	}
2445#endif /* ASSYM */
2446
2447	/*
2448	 * That was awesome. Now hand off to the clock filter.
2449	 */
2450	clock_filter(peer, p_offset + peer->bias, p_del, p_disp);
2451
2452	/*
2453	 * If we are in broadcast calibrate mode, return to broadcast
2454	 * client mode when the client is fit and the autokey dance is
2455	 * complete.
2456	 */
2457	if (   (FLAG_BC_VOL & peer->flags)
2458	    && MODE_CLIENT == peer->hmode
2459	    && !(TEST11 & peer_unfit(peer))) {	/* distance exceeded */
2460#ifdef AUTOKEY
2461		if (peer->flags & FLAG_SKEY) {
2462			if (!(~peer->crypto & CRYPTO_FLAG_ALL))
2463				peer->hmode = MODE_BCLIENT;
2464		} else {
2465			peer->hmode = MODE_BCLIENT;
2466		}
2467#else	/* !AUTOKEY follows */
2468		peer->hmode = MODE_BCLIENT;
2469#endif	/* !AUTOKEY */
2470	}
2471}
2472
2473
2474/*
2475 * clock_update - Called at system process update intervals.
2476 */
2477static void
2478clock_update(
2479	struct peer *peer	/* peer structure pointer */
2480	)
2481{
2482	double	dtemp;
2483	l_fp	now;
2484#ifdef HAVE_LIBSCF_H
2485	char	*fmri;
2486#endif /* HAVE_LIBSCF_H */
2487
2488	/*
2489	 * Update the system state variables. We do this very carefully,
2490	 * as the poll interval might need to be clamped differently.
2491	 */
2492	sys_peer = peer;
2493	sys_epoch = peer->epoch;
2494	if (sys_poll < peer->minpoll)
2495		sys_poll = peer->minpoll;
2496	if (sys_poll > peer->maxpoll)
2497		sys_poll = peer->maxpoll;
2498	poll_update(peer, sys_poll);
2499	sys_stratum = min(peer->stratum + 1, STRATUM_UNSPEC);
2500	if (   peer->stratum == STRATUM_REFCLOCK
2501	    || peer->stratum == STRATUM_UNSPEC)
2502		sys_refid = peer->refid;
2503	else
2504		sys_refid = addr2refid(&peer->srcadr);
2505	/*
2506	 * Root Dispersion (E) is defined (in RFC 5905) as:
2507	 *
2508	 * E = p.epsilon_r + p.epsilon + p.psi + PHI*(s.t - p.t) + |THETA|
2509	 *
2510	 * where:
2511	 *  p.epsilon_r is the PollProc's root dispersion
2512	 *  p.epsilon   is the PollProc's dispersion
2513	 *  p.psi       is the PollProc's jitter
2514	 *  THETA       is the combined offset
2515	 *
2516	 * NB: Think Hard about where these numbers come from and
2517	 * what they mean.  When did peer->update happen?  Has anything
2518	 * interesting happened since then?  What values are the most
2519	 * defensible?  Why?
2520	 *
2521	 * DLM thinks this equation is probably the best of all worse choices.
2522	 */
2523	dtemp	= peer->rootdisp
2524		+ peer->disp
2525		+ sys_jitter
2526		+ clock_phi * (current_time - peer->update)
2527		+ fabs(sys_offset);
2528
2529	if (dtemp > sys_mindisp)
2530		sys_rootdisp = dtemp;
2531	else
2532		sys_rootdisp = sys_mindisp;
2533	sys_rootdelay = peer->delay + peer->rootdelay;
2534	sys_reftime = peer->dst;
2535
2536	DPRINTF(1, ("clock_update: at %lu sample %lu associd %d\n",
2537		    current_time, peer->epoch, peer->associd));
2538
2539	/*
2540	 * Comes now the moment of truth. Crank the clock discipline and
2541	 * see what comes out.
2542	 */
2543	switch (local_clock(peer, sys_offset)) {
2544
2545	/*
2546	 * Clock exceeds panic threshold. Life as we know it ends.
2547	 */
2548	case -1:
2549#ifdef HAVE_LIBSCF_H
2550		/*
2551		 * For Solaris enter the maintenance mode.
2552		 */
2553		if ((fmri = getenv("SMF_FMRI")) != NULL) {
2554			if (smf_maintain_instance(fmri, 0) < 0) {
2555				printf("smf_maintain_instance: %s\n",
2556				    scf_strerror(scf_error()));
2557				exit(1);
2558			}
2559			/*
2560			 * Sleep until SMF kills us.
2561			 */
2562			for (;;)
2563				pause();
2564		}
2565#endif /* HAVE_LIBSCF_H */
2566		exit (-1);
2567		/* not reached */
2568
2569	/*
2570	 * Clock was stepped. Flush all time values of all peers.
2571	 */
2572	case 2:
2573		clear_all();
2574		set_sys_leap(LEAP_NOTINSYNC);
2575		sys_stratum = STRATUM_UNSPEC;
2576		memcpy(&sys_refid, "STEP", 4);
2577		sys_rootdelay = 0;
2578		sys_rootdisp = 0;
2579		L_CLR(&sys_reftime);
2580		sys_jitter = LOGTOD(sys_precision);
2581		leapsec_reset_frame();
2582		break;
2583
2584	/*
2585	 * Clock was slewed. Handle the leapsecond stuff.
2586	 */
2587	case 1:
2588
2589		/*
2590		 * If this is the first time the clock is set, reset the
2591		 * leap bits. If crypto, the timer will goose the setup
2592		 * process.
2593		 */
2594		if (sys_leap == LEAP_NOTINSYNC) {
2595			set_sys_leap(LEAP_NOWARNING);
2596#ifdef AUTOKEY
2597			if (crypto_flags)
2598				crypto_update();
2599#endif	/* AUTOKEY */
2600			/*
2601			 * If our parent process is waiting for the
2602			 * first clock sync, send them home satisfied.
2603			 */
2604#ifdef HAVE_WORKING_FORK
2605			if (waitsync_fd_to_close != -1) {
2606				close(waitsync_fd_to_close);
2607				waitsync_fd_to_close = -1;
2608				DPRINTF(1, ("notified parent --wait-sync is done\n"));
2609			}
2610#endif /* HAVE_WORKING_FORK */
2611
2612		}
2613
2614		/*
2615		 * If there is no leap second pending and the number of
2616		 * survivor leap bits is greater than half the number of
2617		 * survivors, try to schedule a leap for the end of the
2618		 * current month. (This only works if no leap second for
2619		 * that range is in the table, so doing this more than
2620		 * once is mostly harmless.)
2621		 */
2622		if (leapsec == LSPROX_NOWARN) {
2623			if (   leap_vote_ins > leap_vote_del
2624			    && leap_vote_ins > sys_survivors / 2) {
2625				get_systime(&now);
2626				leapsec_add_dyn(TRUE, now.l_ui, NULL);
2627			}
2628			if (   leap_vote_del > leap_vote_ins
2629			    && leap_vote_del > sys_survivors / 2) {
2630				get_systime(&now);
2631				leapsec_add_dyn(FALSE, now.l_ui, NULL);
2632			}
2633		}
2634		break;
2635
2636	/*
2637	 * Popcorn spike or step threshold exceeded. Pretend it never
2638	 * happened.
2639	 */
2640	default:
2641		break;
2642	}
2643}
2644
2645
2646/*
2647 * poll_update - update peer poll interval
2648 */
2649void
2650poll_update(
2651	struct peer *peer,	/* peer structure pointer */
2652	u_char	mpoll
2653	)
2654{
2655	u_long	next, utemp;
2656	u_char	hpoll;
2657
2658	/*
2659	 * This routine figures out when the next poll should be sent.
2660	 * That turns out to be wickedly complicated. One problem is
2661	 * that sometimes the time for the next poll is in the past when
2662	 * the poll interval is reduced. We watch out for races here
2663	 * between the receive process and the poll process.
2664	 *
2665	 * Clamp the poll interval between minpoll and maxpoll.
2666	 */
2667	hpoll = max(min(peer->maxpoll, mpoll), peer->minpoll);
2668
2669#ifdef AUTOKEY
2670	/*
2671	 * If during the crypto protocol the poll interval has changed,
2672	 * the lifetimes in the key list are probably bogus. Purge the
2673	 * the key list and regenerate it later.
2674	 */
2675	if ((peer->flags & FLAG_SKEY) && hpoll != peer->hpoll)
2676		key_expire(peer);
2677#endif	/* AUTOKEY */
2678	peer->hpoll = hpoll;
2679
2680	/*
2681	 * There are three variables important for poll scheduling, the
2682	 * current time (current_time), next scheduled time (nextdate)
2683	 * and the earliest time (utemp). The earliest time is 2 s
2684	 * seconds, but could be more due to rate management. When
2685	 * sending in a burst, use the earliest time. When not in a
2686	 * burst but with a reply pending, send at the earliest time
2687	 * unless the next scheduled time has not advanced. This can
2688	 * only happen if multiple replies are pending in the same
2689	 * response interval. Otherwise, send at the later of the next
2690	 * scheduled time and the earliest time.
2691	 *
2692	 * Now we figure out if there is an override. If a burst is in
2693	 * progress and we get called from the receive process, just
2694	 * slink away. If called from the poll process, delay 1 s for a
2695	 * reference clock, otherwise 2 s.
2696	 */
2697	utemp = current_time + max(peer->throttle - (NTP_SHIFT - 1) *
2698	    (1 << peer->minpoll), ntp_minpkt);
2699	if (peer->burst > 0) {
2700		if (peer->nextdate > current_time)
2701			return;
2702#ifdef REFCLOCK
2703		else if (peer->flags & FLAG_REFCLOCK)
2704			peer->nextdate = current_time + RESP_DELAY;
2705#endif /* REFCLOCK */
2706		else
2707			peer->nextdate = utemp;
2708
2709#ifdef AUTOKEY
2710	/*
2711	 * If a burst is not in progress and a crypto response message
2712	 * is pending, delay 2 s, but only if this is a new interval.
2713	 */
2714	} else if (peer->cmmd != NULL) {
2715		if (peer->nextdate > current_time) {
2716			if (peer->nextdate + ntp_minpkt != utemp)
2717				peer->nextdate = utemp;
2718		} else {
2719			peer->nextdate = utemp;
2720		}
2721#endif	/* AUTOKEY */
2722
2723	/*
2724	 * The ordinary case. If a retry, use minpoll; if unreachable,
2725	 * use host poll; otherwise, use the minimum of host and peer
2726	 * polls; In other words, oversampling is okay but
2727	 * understampling is evil. Use the maximum of this value and the
2728	 * headway. If the average headway is greater than the headway
2729	 * threshold, increase the headway by the minimum interval.
2730	 */
2731	} else {
2732		if (peer->retry > 0)
2733			hpoll = peer->minpoll;
2734		else if (!(peer->reach))
2735			hpoll = peer->hpoll;
2736		else
2737			hpoll = min(peer->ppoll, peer->hpoll);
2738#ifdef REFCLOCK
2739		if (peer->flags & FLAG_REFCLOCK)
2740			next = 1 << hpoll;
2741		else
2742#endif /* REFCLOCK */
2743			next = ((0x1000UL | (ntp_random() & 0x0ff)) <<
2744			    hpoll) >> 12;
2745		next += peer->outdate;
2746		if (next > utemp)
2747			peer->nextdate = next;
2748		else
2749			peer->nextdate = utemp;
2750		if (peer->throttle > (1 << peer->minpoll))
2751			peer->nextdate += ntp_minpkt;
2752	}
2753	DPRINTF(2, ("poll_update: at %lu %s poll %d burst %d retry %d head %d early %lu next %lu\n",
2754		    current_time, ntoa(&peer->srcadr), peer->hpoll,
2755		    peer->burst, peer->retry, peer->throttle,
2756		    utemp - current_time, peer->nextdate -
2757		    current_time));
2758}
2759
2760
2761/*
2762 * peer_clear - clear peer filter registers.  See Section 3.4.8 of the
2763 * spec.
2764 */
2765void
2766peer_clear(
2767	struct peer *peer,		/* peer structure */
2768	const char *ident		/* tally lights */
2769	)
2770{
2771	u_char	u;
2772	l_fp	bxmt = peer->bxmt;	/* bcast clients retain this! */
2773
2774#ifdef AUTOKEY
2775	/*
2776	 * If cryptographic credentials have been acquired, toss them to
2777	 * Valhalla. Note that autokeys are ephemeral, in that they are
2778	 * tossed immediately upon use. Therefore, the keylist can be
2779	 * purged anytime without needing to preserve random keys. Note
2780	 * that, if the peer is purged, the cryptographic variables are
2781	 * purged, too. This makes it much harder to sneak in some
2782	 * unauthenticated data in the clock filter.
2783	 */
2784	key_expire(peer);
2785	if (peer->iffval != NULL)
2786		BN_free(peer->iffval);
2787	value_free(&peer->cookval);
2788	value_free(&peer->recval);
2789	value_free(&peer->encrypt);
2790	value_free(&peer->sndval);
2791	if (peer->cmmd != NULL)
2792		free(peer->cmmd);
2793	if (peer->subject != NULL)
2794		free(peer->subject);
2795	if (peer->issuer != NULL)
2796		free(peer->issuer);
2797#endif /* AUTOKEY */
2798
2799	/*
2800	 * Clear all values, including the optional crypto values above.
2801	 */
2802	memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO(peer));
2803	peer->ppoll = peer->maxpoll;
2804	peer->hpoll = peer->minpoll;
2805	peer->disp = MAXDISPERSE;
2806	peer->flash = peer_unfit(peer);
2807	peer->jitter = LOGTOD(sys_precision);
2808
2809	/* Don't throw away our broadcast replay protection */
2810	if (peer->hmode == MODE_BCLIENT)
2811		peer->bxmt = bxmt;
2812
2813	/*
2814	 * If interleave mode, initialize the alternate origin switch.
2815	 */
2816	if (peer->flags & FLAG_XLEAVE)
2817		peer->flip = 1;
2818	for (u = 0; u < NTP_SHIFT; u++) {
2819		peer->filter_order[u] = u;
2820		peer->filter_disp[u] = MAXDISPERSE;
2821	}
2822#ifdef REFCLOCK
2823	if (!(peer->flags & FLAG_REFCLOCK)) {
2824#endif
2825		peer->leap = LEAP_NOTINSYNC;
2826		peer->stratum = STRATUM_UNSPEC;
2827		memcpy(&peer->refid, ident, 4);
2828#ifdef REFCLOCK
2829	}
2830#endif
2831
2832	/*
2833	 * During initialization use the association count to spread out
2834	 * the polls at one-second intervals. Passive associations'
2835	 * first poll is delayed by the "discard minimum" to avoid rate
2836	 * limiting. Other post-startup new or cleared associations
2837	 * randomize the first poll over the minimum poll interval to
2838	 * avoid implosion.
2839	 */
2840	peer->nextdate = peer->update = peer->outdate = current_time;
2841	if (initializing) {
2842		peer->nextdate += peer_associations;
2843	} else if (MODE_PASSIVE == peer->hmode) {
2844		peer->nextdate += ntp_minpkt;
2845	} else {
2846		peer->nextdate += ntp_random() % peer->minpoll;
2847	}
2848#ifdef AUTOKEY
2849	peer->refresh = current_time + (1 << NTP_REFRESH);
2850#endif	/* AUTOKEY */
2851	DPRINTF(1, ("peer_clear: at %ld next %ld associd %d refid %s\n",
2852		    current_time, peer->nextdate, peer->associd,
2853		    ident));
2854}
2855
2856
2857/*
2858 * clock_filter - add incoming clock sample to filter register and run
2859 *		  the filter procedure to find the best sample.
2860 */
2861void
2862clock_filter(
2863	struct peer *peer,		/* peer structure pointer */
2864	double	sample_offset,		/* clock offset */
2865	double	sample_delay,		/* roundtrip delay */
2866	double	sample_disp		/* dispersion */
2867	)
2868{
2869	double	dst[NTP_SHIFT];		/* distance vector */
2870	int	ord[NTP_SHIFT];		/* index vector */
2871	int	i, j, k, m;
2872	double	dtemp, etemp;
2873	char	tbuf[80];
2874
2875	/*
2876	 * A sample consists of the offset, delay, dispersion and epoch
2877	 * of arrival. The offset and delay are determined by the on-
2878	 * wire protocol. The dispersion grows from the last outbound
2879	 * packet to the arrival of this one increased by the sum of the
2880	 * peer precision and the system precision as required by the
2881	 * error budget. First, shift the new arrival into the shift
2882	 * register discarding the oldest one.
2883	 */
2884	j = peer->filter_nextpt;
2885	peer->filter_offset[j] = sample_offset;
2886	peer->filter_delay[j] = sample_delay;
2887	peer->filter_disp[j] = sample_disp;
2888	peer->filter_epoch[j] = current_time;
2889	j = (j + 1) % NTP_SHIFT;
2890	peer->filter_nextpt = j;
2891
2892	/*
2893	 * Update dispersions since the last update and at the same
2894	 * time initialize the distance and index lists. Since samples
2895	 * become increasingly uncorrelated beyond the Allan intercept,
2896	 * only under exceptional cases will an older sample be used.
2897	 * Therefore, the distance list uses a compound metric. If the
2898	 * dispersion is greater than the maximum dispersion, clamp the
2899	 * distance at that value. If the time since the last update is
2900	 * less than the Allan intercept use the delay; otherwise, use
2901	 * the sum of the delay and dispersion.
2902	 */
2903	dtemp = clock_phi * (current_time - peer->update);
2904	peer->update = current_time;
2905	for (i = NTP_SHIFT - 1; i >= 0; i--) {
2906		if (i != 0)
2907			peer->filter_disp[j] += dtemp;
2908		if (peer->filter_disp[j] >= MAXDISPERSE) {
2909			peer->filter_disp[j] = MAXDISPERSE;
2910			dst[i] = MAXDISPERSE;
2911		} else if (peer->update - peer->filter_epoch[j] >
2912		    (u_long)ULOGTOD(allan_xpt)) {
2913			dst[i] = peer->filter_delay[j] +
2914			    peer->filter_disp[j];
2915		} else {
2916			dst[i] = peer->filter_delay[j];
2917		}
2918		ord[i] = j;
2919		j = (j + 1) % NTP_SHIFT;
2920	}
2921
2922	/*
2923	 * If the clock has stabilized, sort the samples by distance.
2924	 */
2925	if (freq_cnt == 0) {
2926		for (i = 1; i < NTP_SHIFT; i++) {
2927			for (j = 0; j < i; j++) {
2928				if (dst[j] > dst[i]) {
2929					k = ord[j];
2930					ord[j] = ord[i];
2931					ord[i] = k;
2932					etemp = dst[j];
2933					dst[j] = dst[i];
2934					dst[i] = etemp;
2935				}
2936			}
2937		}
2938	}
2939
2940	/*
2941	 * Copy the index list to the association structure so ntpq
2942	 * can see it later. Prune the distance list to leave only
2943	 * samples less than the maximum dispersion, which disfavors
2944	 * uncorrelated samples older than the Allan intercept. To
2945	 * further improve the jitter estimate, of the remainder leave
2946	 * only samples less than the maximum distance, but keep at
2947	 * least two samples for jitter calculation.
2948	 */
2949	m = 0;
2950	for (i = 0; i < NTP_SHIFT; i++) {
2951		peer->filter_order[i] = (u_char) ord[i];
2952		if (   dst[i] >= MAXDISPERSE
2953		    || (m >= 2 && dst[i] >= sys_maxdist))
2954			continue;
2955		m++;
2956	}
2957
2958	/*
2959	 * Compute the dispersion and jitter. The dispersion is weighted
2960	 * exponentially by NTP_FWEIGHT (0.5) so it is normalized close
2961	 * to 1.0. The jitter is the RMS differences relative to the
2962	 * lowest delay sample.
2963	 */
2964	peer->disp = peer->jitter = 0;
2965	k = ord[0];
2966	for (i = NTP_SHIFT - 1; i >= 0; i--) {
2967		j = ord[i];
2968		peer->disp = NTP_FWEIGHT * (peer->disp +
2969		    peer->filter_disp[j]);
2970		if (i < m)
2971			peer->jitter += DIFF(peer->filter_offset[j],
2972			    peer->filter_offset[k]);
2973	}
2974
2975	/*
2976	 * If no acceptable samples remain in the shift register,
2977	 * quietly tiptoe home leaving only the dispersion. Otherwise,
2978	 * save the offset, delay and jitter. Note the jitter must not
2979	 * be less than the precision.
2980	 */
2981	if (m == 0) {
2982		clock_select();
2983		return;
2984	}
2985	etemp = fabs(peer->offset - peer->filter_offset[k]);
2986	peer->offset = peer->filter_offset[k];
2987	peer->delay = peer->filter_delay[k];
2988	if (m > 1)
2989		peer->jitter /= m - 1;
2990	peer->jitter = max(SQRT(peer->jitter), LOGTOD(sys_precision));
2991
2992	/*
2993	 * If the the new sample and the current sample are both valid
2994	 * and the difference between their offsets exceeds CLOCK_SGATE
2995	 * (3) times the jitter and the interval between them is less
2996	 * than twice the host poll interval, consider the new sample
2997	 * a popcorn spike and ignore it.
2998	 */
2999	if (   peer->disp < sys_maxdist
3000	    && peer->filter_disp[k] < sys_maxdist
3001	    && etemp > CLOCK_SGATE * peer->jitter
3002	    && peer->filter_epoch[k] - peer->epoch
3003	       < 2. * ULOGTOD(peer->hpoll)) {
3004		snprintf(tbuf, sizeof(tbuf), "%.6f s", etemp);
3005		report_event(PEVNT_POPCORN, peer, tbuf);
3006		return;
3007	}
3008
3009	/*
3010	 * A new minimum sample is useful only if it is later than the
3011	 * last one used. In this design the maximum lifetime of any
3012	 * sample is not greater than eight times the poll interval, so
3013	 * the maximum interval between minimum samples is eight
3014	 * packets.
3015	 */
3016	if (peer->filter_epoch[k] <= peer->epoch) {
3017	DPRINTF(2, ("clock_filter: old sample %lu\n", current_time -
3018		    peer->filter_epoch[k]));
3019		return;
3020	}
3021	peer->epoch = peer->filter_epoch[k];
3022
3023	/*
3024	 * The mitigated sample statistics are saved for later
3025	 * processing. If not synchronized or not in a burst, tickle the
3026	 * clock select algorithm.
3027	 */
3028	record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
3029	    peer->offset, peer->delay, peer->disp, peer->jitter);
3030	DPRINTF(1, ("clock_filter: n %d off %.6f del %.6f dsp %.6f jit %.6f\n",
3031		    m, peer->offset, peer->delay, peer->disp,
3032		    peer->jitter));
3033	if (peer->burst == 0 || sys_leap == LEAP_NOTINSYNC)
3034		clock_select();
3035}
3036
3037
3038/*
3039 * clock_select - find the pick-of-the-litter clock
3040 *
3041 * LOCKCLOCK: (1) If the local clock is the prefer peer, it will always
3042 * be enabled, even if declared falseticker, (2) only the prefer peer
3043 * can be selected as the system peer, (3) if the external source is
3044 * down, the system leap bits are set to 11 and the stratum set to
3045 * infinity.
3046 */
3047void
3048clock_select(void)
3049{
3050	struct peer *peer;
3051	int	i, j, k, n;
3052	int	nlist, nl2;
3053	int	allow;
3054	int	speer;
3055	double	d, e, f, g;
3056	double	high, low;
3057	double	speermet;
3058	double	orphmet = 2.0 * U_INT32_MAX; /* 2x is greater than */
3059	struct endpoint endp;
3060	struct peer *osys_peer;
3061	struct peer *sys_prefer = NULL;	/* prefer peer */
3062	struct peer *typesystem = NULL;
3063	struct peer *typeorphan = NULL;
3064#ifdef REFCLOCK
3065	struct peer *typeacts = NULL;
3066	struct peer *typelocal = NULL;
3067	struct peer *typepps = NULL;
3068#endif /* REFCLOCK */
3069	static struct endpoint *endpoint = NULL;
3070	static int *indx = NULL;
3071	static peer_select *peers = NULL;
3072	static u_int endpoint_size = 0;
3073	static u_int peers_size = 0;
3074	static u_int indx_size = 0;
3075	size_t octets;
3076
3077	/*
3078	 * Initialize and create endpoint, index and peer lists big
3079	 * enough to handle all associations.
3080	 */
3081	osys_peer = sys_peer;
3082	sys_survivors = 0;
3083#ifdef LOCKCLOCK
3084	set_sys_leap(LEAP_NOTINSYNC);
3085	sys_stratum = STRATUM_UNSPEC;
3086	memcpy(&sys_refid, "DOWN", 4);
3087#endif /* LOCKCLOCK */
3088
3089	/*
3090	 * Allocate dynamic space depending on the number of
3091	 * associations.
3092	 */
3093	nlist = 1;
3094	for (peer = peer_list; peer != NULL; peer = peer->p_link)
3095		nlist++;
3096	endpoint_size = ALIGNED_SIZE(nlist * 2 * sizeof(*endpoint));
3097	peers_size = ALIGNED_SIZE(nlist * sizeof(*peers));
3098	indx_size = ALIGNED_SIZE(nlist * 2 * sizeof(*indx));
3099	octets = endpoint_size + peers_size + indx_size;
3100	endpoint = erealloc(endpoint, octets);
3101	peers = INC_ALIGNED_PTR(endpoint, endpoint_size);
3102	indx = INC_ALIGNED_PTR(peers, peers_size);
3103
3104	/*
3105	 * Initially, we populate the island with all the rifraff peers
3106	 * that happen to be lying around. Those with seriously
3107	 * defective clocks are immediately booted off the island. Then,
3108	 * the falsetickers are culled and put to sea. The truechimers
3109	 * remaining are subject to repeated rounds where the most
3110	 * unpopular at each round is kicked off. When the population
3111	 * has dwindled to sys_minclock, the survivors split a million
3112	 * bucks and collectively crank the chimes.
3113	 */
3114	nlist = nl2 = 0;	/* none yet */
3115	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3116		peer->new_status = CTL_PST_SEL_REJECT;
3117
3118		/*
3119		 * Leave the island immediately if the peer is
3120		 * unfit to synchronize.
3121		 */
3122		if (peer_unfit(peer)) {
3123			continue;
3124		}
3125
3126		/*
3127		 * If this peer is an orphan parent, elect the
3128		 * one with the lowest metric defined as the
3129		 * IPv4 address or the first 64 bits of the
3130		 * hashed IPv6 address.  To ensure convergence
3131		 * on the same selected orphan, consider as
3132		 * well that this system may have the lowest
3133		 * metric and be the orphan parent.  If this
3134		 * system wins, sys_peer will be NULL to trigger
3135		 * orphan mode in timer().
3136		 */
3137		if (peer->stratum == sys_orphan) {
3138			u_int32	localmet;
3139			u_int32 peermet;
3140
3141			if (peer->dstadr != NULL)
3142				localmet = ntohl(peer->dstadr->addr_refid);
3143			else
3144				localmet = U_INT32_MAX;
3145			peermet = ntohl(addr2refid(&peer->srcadr));
3146			if (peermet < localmet && peermet < orphmet) {
3147				typeorphan = peer;
3148				orphmet = peermet;
3149			}
3150			continue;
3151		}
3152
3153		/*
3154		 * If this peer could have the orphan parent
3155		 * as a synchronization ancestor, exclude it
3156		 * from selection to avoid forming a
3157		 * synchronization loop within the orphan mesh,
3158		 * triggering stratum climb to infinity
3159		 * instability.  Peers at stratum higher than
3160		 * the orphan stratum could have the orphan
3161		 * parent in ancestry so are excluded.
3162		 * See http://bugs.ntp.org/2050
3163		 */
3164		if (peer->stratum > sys_orphan) {
3165			continue;
3166		}
3167#ifdef REFCLOCK
3168		/*
3169		 * The following are special cases. We deal
3170		 * with them later.
3171		 */
3172		if (!(peer->flags & FLAG_PREFER)) {
3173			switch (peer->refclktype) {
3174			case REFCLK_LOCALCLOCK:
3175				if (   current_time > orphwait
3176				    && typelocal == NULL)
3177					typelocal = peer;
3178				continue;
3179
3180			case REFCLK_ACTS:
3181				if (   current_time > orphwait
3182				    && typeacts == NULL)
3183					typeacts = peer;
3184				continue;
3185			}
3186		}
3187#endif /* REFCLOCK */
3188
3189		/*
3190		 * If we get this far, the peer can stay on the
3191		 * island, but does not yet have the immunity
3192		 * idol.
3193		 */
3194		peer->new_status = CTL_PST_SEL_SANE;
3195		f = root_distance(peer);
3196		peers[nlist].peer = peer;
3197		peers[nlist].error = peer->jitter;
3198		peers[nlist].synch = f;
3199		nlist++;
3200
3201		/*
3202		 * Insert each interval endpoint on the unsorted
3203		 * endpoint[] list.
3204		 */
3205		e = peer->offset;
3206		endpoint[nl2].type = -1;	/* lower end */
3207		endpoint[nl2].val = e - f;
3208		nl2++;
3209		endpoint[nl2].type = 1;		/* upper end */
3210		endpoint[nl2].val = e + f;
3211		nl2++;
3212	}
3213	/*
3214	 * Construct sorted indx[] of endpoint[] indexes ordered by
3215	 * offset.
3216	 */
3217	for (i = 0; i < nl2; i++)
3218		indx[i] = i;
3219	for (i = 0; i < nl2; i++) {
3220		endp = endpoint[indx[i]];
3221		e = endp.val;
3222		k = i;
3223		for (j = i + 1; j < nl2; j++) {
3224			endp = endpoint[indx[j]];
3225			if (endp.val < e) {
3226				e = endp.val;
3227				k = j;
3228			}
3229		}
3230		if (k != i) {
3231			j = indx[k];
3232			indx[k] = indx[i];
3233			indx[i] = j;
3234		}
3235	}
3236	for (i = 0; i < nl2; i++)
3237		DPRINTF(3, ("select: endpoint %2d %.6f\n",
3238			endpoint[indx[i]].type, endpoint[indx[i]].val));
3239
3240	/*
3241	 * This is the actual algorithm that cleaves the truechimers
3242	 * from the falsetickers. The original algorithm was described
3243	 * in Keith Marzullo's dissertation, but has been modified for
3244	 * better accuracy.
3245	 *
3246	 * Briefly put, we first assume there are no falsetickers, then
3247	 * scan the candidate list first from the low end upwards and
3248	 * then from the high end downwards. The scans stop when the
3249	 * number of intersections equals the number of candidates less
3250	 * the number of falsetickers. If this doesn't happen for a
3251	 * given number of falsetickers, we bump the number of
3252	 * falsetickers and try again. If the number of falsetickers
3253	 * becomes equal to or greater than half the number of
3254	 * candidates, the Albanians have won the Byzantine wars and
3255	 * correct synchronization is not possible.
3256	 *
3257	 * Here, nlist is the number of candidates and allow is the
3258	 * number of falsetickers. Upon exit, the truechimers are the
3259	 * survivors with offsets not less than low and not greater than
3260	 * high. There may be none of them.
3261	 */
3262	low = 1e9;
3263	high = -1e9;
3264	for (allow = 0; 2 * allow < nlist; allow++) {
3265
3266		/*
3267		 * Bound the interval (low, high) as the smallest
3268		 * interval containing points from the most sources.
3269		 */
3270		n = 0;
3271		for (i = 0; i < nl2; i++) {
3272			low = endpoint[indx[i]].val;
3273			n -= endpoint[indx[i]].type;
3274			if (n >= nlist - allow)
3275				break;
3276		}
3277		n = 0;
3278		for (j = nl2 - 1; j >= 0; j--) {
3279			high = endpoint[indx[j]].val;
3280			n += endpoint[indx[j]].type;
3281			if (n >= nlist - allow)
3282				break;
3283		}
3284
3285		/*
3286		 * If an interval containing truechimers is found, stop.
3287		 * If not, increase the number of falsetickers and go
3288		 * around again.
3289		 */
3290		if (high > low)
3291			break;
3292	}
3293
3294	/*
3295	 * Clustering algorithm. Whittle candidate list of falsetickers,
3296	 * who leave the island immediately. The TRUE peer is always a
3297	 * truechimer. We must leave at least one peer to collect the
3298	 * million bucks.
3299	 *
3300	 * We assert the correct time is contained in the interval, but
3301	 * the best offset estimate for the interval might not be
3302	 * contained in the interval. For this purpose, a truechimer is
3303	 * defined as the midpoint of an interval that overlaps the
3304	 * intersection interval.
3305	 */
3306	j = 0;
3307	for (i = 0; i < nlist; i++) {
3308		double	h;
3309
3310		peer = peers[i].peer;
3311		h = peers[i].synch;
3312		if ((   high <= low
3313		     || peer->offset + h < low
3314		     || peer->offset - h > high
3315		    ) && !(peer->flags & FLAG_TRUE))
3316			continue;
3317
3318#ifdef REFCLOCK
3319		/*
3320		 * Eligible PPS peers must survive the intersection
3321		 * algorithm. Use the first one found, but don't
3322		 * include any of them in the cluster population.
3323		 */
3324		if (peer->flags & FLAG_PPS) {
3325			if (typepps == NULL)
3326				typepps = peer;
3327			if (!(peer->flags & FLAG_TSTAMP_PPS))
3328				continue;
3329		}
3330#endif /* REFCLOCK */
3331
3332		if (j != i)
3333			peers[j] = peers[i];
3334		j++;
3335	}
3336	nlist = j;
3337
3338	/*
3339	 * If no survivors remain at this point, check if the modem
3340	 * driver, local driver or orphan parent in that order. If so,
3341	 * nominate the first one found as the only survivor.
3342	 * Otherwise, give up and leave the island to the rats.
3343	 */
3344	if (nlist == 0) {
3345		peers[0].error = 0;
3346		peers[0].synch = sys_mindisp;
3347#ifdef REFCLOCK
3348		if (typeacts != NULL) {
3349			peers[0].peer = typeacts;
3350			nlist = 1;
3351		} else if (typelocal != NULL) {
3352			peers[0].peer = typelocal;
3353			nlist = 1;
3354		} else
3355#endif /* REFCLOCK */
3356		if (typeorphan != NULL) {
3357			peers[0].peer = typeorphan;
3358			nlist = 1;
3359		}
3360	}
3361
3362	/*
3363	 * Mark the candidates at this point as truechimers.
3364	 */
3365	for (i = 0; i < nlist; i++) {
3366		peers[i].peer->new_status = CTL_PST_SEL_SELCAND;
3367		DPRINTF(2, ("select: survivor %s %f\n",
3368			stoa(&peers[i].peer->srcadr), peers[i].synch));
3369	}
3370
3371	/*
3372	 * Now, vote outliers off the island by select jitter weighted
3373	 * by root distance. Continue voting as long as there are more
3374	 * than sys_minclock survivors and the select jitter of the peer
3375	 * with the worst metric is greater than the minimum peer
3376	 * jitter. Stop if we are about to discard a TRUE or PREFER
3377	 * peer, who of course have the immunity idol.
3378	 */
3379	while (1) {
3380		d = 1e9;
3381		e = -1e9;
3382		g = 0;
3383		k = 0;
3384		for (i = 0; i < nlist; i++) {
3385			if (peers[i].error < d)
3386				d = peers[i].error;
3387			peers[i].seljit = 0;
3388			if (nlist > 1) {
3389				f = 0;
3390				for (j = 0; j < nlist; j++)
3391					f += DIFF(peers[j].peer->offset,
3392					    peers[i].peer->offset);
3393				peers[i].seljit = SQRT(f / (nlist - 1));
3394			}
3395			if (peers[i].seljit * peers[i].synch > e) {
3396				g = peers[i].seljit;
3397				e = peers[i].seljit * peers[i].synch;
3398				k = i;
3399			}
3400		}
3401		g = max(g, LOGTOD(sys_precision));
3402		if (   nlist <= max(1, sys_minclock)
3403		    || g <= d
3404		    || ((FLAG_TRUE | FLAG_PREFER) & peers[k].peer->flags))
3405			break;
3406
3407		DPRINTF(3, ("select: drop %s seljit %.6f jit %.6f\n",
3408			ntoa(&peers[k].peer->srcadr), g, d));
3409		if (nlist > sys_maxclock)
3410			peers[k].peer->new_status = CTL_PST_SEL_EXCESS;
3411		for (j = k + 1; j < nlist; j++)
3412			peers[j - 1] = peers[j];
3413		nlist--;
3414	}
3415
3416	/*
3417	 * What remains is a list usually not greater than sys_minclock
3418	 * peers. Note that unsynchronized peers cannot survive this
3419	 * far.  Count and mark these survivors.
3420	 *
3421	 * While at it, count the number of leap warning bits found.
3422	 * This will be used later to vote the system leap warning bit.
3423	 * If a leap warning bit is found on a reference clock, the vote
3424	 * is always won.
3425	 *
3426	 * Choose the system peer using a hybrid metric composed of the
3427	 * selection jitter scaled by the root distance augmented by
3428	 * stratum scaled by sys_mindisp (.001 by default). The goal of
3429	 * the small stratum factor is to avoid clockhop between a
3430	 * reference clock and a network peer which has a refclock and
3431	 * is using an older ntpd, which does not floor sys_rootdisp at
3432	 * sys_mindisp.
3433	 *
3434	 * In contrast, ntpd 4.2.6 and earlier used stratum primarily
3435	 * in selecting the system peer, using a weight of 1 second of
3436	 * additional root distance per stratum.  This heavy bias is no
3437	 * longer appropriate, as the scaled root distance provides a
3438	 * more rational metric carrying the cumulative error budget.
3439	 */
3440	e = 1e9;
3441	speer = 0;
3442	leap_vote_ins = 0;
3443	leap_vote_del = 0;
3444	for (i = 0; i < nlist; i++) {
3445		peer = peers[i].peer;
3446		peer->unreach = 0;
3447		peer->new_status = CTL_PST_SEL_SYNCCAND;
3448		sys_survivors++;
3449		if (peer->leap == LEAP_ADDSECOND) {
3450			if (peer->flags & FLAG_REFCLOCK)
3451				leap_vote_ins = nlist;
3452			else if (leap_vote_ins < nlist)
3453				leap_vote_ins++;
3454		}
3455		if (peer->leap == LEAP_DELSECOND) {
3456			if (peer->flags & FLAG_REFCLOCK)
3457				leap_vote_del = nlist;
3458			else if (leap_vote_del < nlist)
3459				leap_vote_del++;
3460		}
3461		if (peer->flags & FLAG_PREFER)
3462			sys_prefer = peer;
3463		speermet = peers[i].seljit * peers[i].synch +
3464		    peer->stratum * sys_mindisp;
3465		if (speermet < e) {
3466			e = speermet;
3467			speer = i;
3468		}
3469	}
3470
3471	/*
3472	 * Unless there are at least sys_misane survivors, leave the
3473	 * building dark. Otherwise, do a clockhop dance. Ordinarily,
3474	 * use the selected survivor speer. However, if the current
3475	 * system peer is not speer, stay with the current system peer
3476	 * as long as it doesn't get too old or too ugly.
3477	 */
3478	if (nlist > 0 && nlist >= sys_minsane) {
3479		double	x;
3480
3481		typesystem = peers[speer].peer;
3482		if (osys_peer == NULL || osys_peer == typesystem) {
3483			sys_clockhop = 0;
3484		} else if ((x = fabs(typesystem->offset -
3485		    osys_peer->offset)) < sys_mindisp) {
3486			if (sys_clockhop == 0)
3487				sys_clockhop = sys_mindisp;
3488			else
3489				sys_clockhop *= .5;
3490			DPRINTF(1, ("select: clockhop %d %.6f %.6f\n",
3491				j, x, sys_clockhop));
3492			if (fabs(x) < sys_clockhop)
3493				typesystem = osys_peer;
3494			else
3495				sys_clockhop = 0;
3496		} else {
3497			sys_clockhop = 0;
3498		}
3499	}
3500
3501	/*
3502	 * Mitigation rules of the game. We have the pick of the
3503	 * litter in typesystem if any survivors are left. If
3504	 * there is a prefer peer, use its offset and jitter.
3505	 * Otherwise, use the combined offset and jitter of all kitters.
3506	 */
3507	if (typesystem != NULL) {
3508		if (sys_prefer == NULL) {
3509			typesystem->new_status = CTL_PST_SEL_SYSPEER;
3510			clock_combine(peers, sys_survivors, speer);
3511		} else {
3512			typesystem = sys_prefer;
3513			sys_clockhop = 0;
3514			typesystem->new_status = CTL_PST_SEL_SYSPEER;
3515			sys_offset = typesystem->offset;
3516			sys_jitter = typesystem->jitter;
3517		}
3518		DPRINTF(1, ("select: combine offset %.9f jitter %.9f\n",
3519			sys_offset, sys_jitter));
3520	}
3521#ifdef REFCLOCK
3522	/*
3523	 * If a PPS driver is lit and the combined offset is less than
3524	 * 0.4 s, select the driver as the PPS peer and use its offset
3525	 * and jitter. However, if this is the atom driver, use it only
3526	 * if there is a prefer peer or there are no survivors and none
3527	 * are required.
3528	 */
3529	if (   typepps != NULL
3530	    && fabs(sys_offset) < 0.4
3531	    && (   typepps->refclktype != REFCLK_ATOM_PPS
3532		|| (   typepps->refclktype == REFCLK_ATOM_PPS
3533		    && (   sys_prefer != NULL
3534			|| (typesystem == NULL && sys_minsane == 0))))) {
3535		typesystem = typepps;
3536		sys_clockhop = 0;
3537		typesystem->new_status = CTL_PST_SEL_PPS;
3538		sys_offset = typesystem->offset;
3539		sys_jitter = typesystem->jitter;
3540		DPRINTF(1, ("select: pps offset %.9f jitter %.9f\n",
3541			sys_offset, sys_jitter));
3542	}
3543#endif /* REFCLOCK */
3544
3545	/*
3546	 * If there are no survivors at this point, there is no
3547	 * system peer. If so and this is an old update, keep the
3548	 * current statistics, but do not update the clock.
3549	 */
3550	if (typesystem == NULL) {
3551		if (osys_peer != NULL) {
3552			if (sys_orphwait > 0)
3553				orphwait = current_time + sys_orphwait;
3554			report_event(EVNT_NOPEER, NULL, NULL);
3555		}
3556		sys_peer = NULL;
3557		for (peer = peer_list; peer != NULL; peer = peer->p_link)
3558			peer->status = peer->new_status;
3559		return;
3560	}
3561
3562	/*
3563	 * Do not use old data, as this may mess up the clock discipline
3564	 * stability.
3565	 */
3566	if (typesystem->epoch <= sys_epoch)
3567		return;
3568
3569	/*
3570	 * We have found the alpha male. Wind the clock.
3571	 */
3572	if (osys_peer != typesystem)
3573		report_event(PEVNT_NEWPEER, typesystem, NULL);
3574	for (peer = peer_list; peer != NULL; peer = peer->p_link)
3575		peer->status = peer->new_status;
3576	clock_update(typesystem);
3577}
3578
3579
3580static void
3581clock_combine(
3582	peer_select *	peers,	/* survivor list */
3583	int		npeers,	/* number of survivors */
3584	int		syspeer	/* index of sys.peer */
3585	)
3586{
3587	int	i;
3588	double	x, y, z, w;
3589
3590	y = z = w = 0;
3591	for (i = 0; i < npeers; i++) {
3592		x = 1. / peers[i].synch;
3593		y += x;
3594		z += x * peers[i].peer->offset;
3595		w += x * DIFF(peers[i].peer->offset,
3596		    peers[syspeer].peer->offset);
3597	}
3598	sys_offset = z / y;
3599	sys_jitter = SQRT(w / y + SQUARE(peers[syspeer].seljit));
3600}
3601
3602
3603/*
3604 * root_distance - compute synchronization distance from peer to root
3605 */
3606static double
3607root_distance(
3608	struct peer *peer	/* peer structure pointer */
3609	)
3610{
3611	double	dtemp;
3612
3613	/*
3614	 * Root Distance (LAMBDA) is defined as:
3615	 * (delta + DELTA)/2 + epsilon + EPSILON + D
3616	 *
3617	 * where:
3618	 *  delta   is the round-trip delay
3619	 *  DELTA   is the root delay
3620	 *  epsilon is the peer dispersion
3621	 *	    + (15 usec each second)
3622	 *  EPSILON is the root dispersion
3623	 *  D       is sys_jitter
3624	 *
3625	 * NB: Think hard about why we are using these values, and what
3626	 * the alternatives are, and the various pros/cons.
3627	 *
3628	 * DLM thinks these are probably the best choices from any of the
3629	 * other worse choices.
3630	 */
3631	dtemp = (peer->delay + peer->rootdelay) / 2
3632		+ peer->disp
3633		  + clock_phi * (current_time - peer->update)
3634		+ peer->rootdisp
3635		+ peer->jitter;
3636	/*
3637	 * Careful squeak here. The value returned must be greater than
3638	 * the minimum root dispersion in order to avoid clockhop with
3639	 * highly precise reference clocks. Note that the root distance
3640	 * cannot exceed the sys_maxdist, as this is the cutoff by the
3641	 * selection algorithm.
3642	 */
3643	if (dtemp < sys_mindisp)
3644		dtemp = sys_mindisp;
3645	return (dtemp);
3646}
3647
3648
3649/*
3650 * peer_xmit - send packet for persistent association.
3651 */
3652static void
3653peer_xmit(
3654	struct peer *peer	/* peer structure pointer */
3655	)
3656{
3657	struct pkt xpkt;	/* transmit packet */
3658	size_t	sendlen, authlen;
3659	keyid_t	xkeyid = 0;	/* transmit key ID */
3660	l_fp	xmt_tx, xmt_ty;
3661
3662	if (!peer->dstadr)	/* drop peers without interface */
3663		return;
3664
3665	xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version,
3666	    peer->hmode);
3667	xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
3668	xpkt.ppoll = peer->hpoll;
3669	xpkt.precision = sys_precision;
3670	xpkt.refid = sys_refid;
3671	xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
3672	xpkt.rootdisp =  HTONS_FP(DTOUFP(sys_rootdisp));
3673	HTONL_FP(&sys_reftime, &xpkt.reftime);
3674	HTONL_FP(&peer->rec, &xpkt.org);
3675	HTONL_FP(&peer->dst, &xpkt.rec);
3676
3677	/*
3678	 * If the received packet contains a MAC, the transmitted packet
3679	 * is authenticated and contains a MAC. If not, the transmitted
3680	 * packet is not authenticated.
3681	 *
3682	 * It is most important when autokey is in use that the local
3683	 * interface IP address be known before the first packet is
3684	 * sent. Otherwise, it is not possible to compute a correct MAC
3685	 * the recipient will accept. Thus, the I/O semantics have to do
3686	 * a little more work. In particular, the wildcard interface
3687	 * might not be usable.
3688	 */
3689	sendlen = LEN_PKT_NOMAC;
3690	if (
3691#ifdef AUTOKEY
3692	    !(peer->flags & FLAG_SKEY) &&
3693#endif	/* !AUTOKEY */
3694	    peer->keyid == 0) {
3695
3696		/*
3697		 * Transmit a-priori timestamps
3698		 */
3699		get_systime(&xmt_tx);
3700		if (peer->flip == 0) {	/* basic mode */
3701			peer->aorg = xmt_tx;
3702			HTONL_FP(&xmt_tx, &xpkt.xmt);
3703		} else {		/* interleaved modes */
3704			if (peer->hmode == MODE_BROADCAST) { /* bcst */
3705				HTONL_FP(&xmt_tx, &xpkt.xmt);
3706				if (peer->flip > 0)
3707					HTONL_FP(&peer->borg,
3708					    &xpkt.org);
3709				else
3710					HTONL_FP(&peer->aorg,
3711					    &xpkt.org);
3712			} else {	/* symmetric */
3713				if (peer->flip > 0)
3714					HTONL_FP(&peer->borg,
3715					    &xpkt.xmt);
3716				else
3717					HTONL_FP(&peer->aorg,
3718					    &xpkt.xmt);
3719			}
3720		}
3721		peer->t21_bytes = sendlen;
3722		sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl],
3723		    &xpkt, sendlen);
3724		peer->sent++;
3725		peer->throttle += (1 << peer->minpoll) - 2;
3726
3727		/*
3728		 * Capture a-posteriori timestamps
3729		 */
3730		get_systime(&xmt_ty);
3731		if (peer->flip != 0) {		/* interleaved modes */
3732			if (peer->flip > 0)
3733				peer->aorg = xmt_ty;
3734			else
3735				peer->borg = xmt_ty;
3736			peer->flip = -peer->flip;
3737		}
3738		L_SUB(&xmt_ty, &xmt_tx);
3739		LFPTOD(&xmt_ty, peer->xleave);
3740		DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d len %zu xmt %#010x.%08x\n",
3741			    current_time,
3742			    peer->dstadr ? stoa(&peer->dstadr->sin) : "-",
3743		            stoa(&peer->srcadr), peer->hmode, sendlen,
3744			    xmt_tx.l_ui, xmt_tx.l_uf));
3745		return;
3746	}
3747
3748	/*
3749	 * Authentication is enabled, so the transmitted packet must be
3750	 * authenticated. If autokey is enabled, fuss with the various
3751	 * modes; otherwise, symmetric key cryptography is used.
3752	 */
3753#ifdef AUTOKEY
3754	if (peer->flags & FLAG_SKEY) {
3755		struct exten *exten;	/* extension field */
3756
3757		/*
3758		 * The Public Key Dance (PKD): Cryptographic credentials
3759		 * are contained in extension fields, each including a
3760		 * 4-octet length/code word followed by a 4-octet
3761		 * association ID and optional additional data. Optional
3762		 * data includes a 4-octet data length field followed by
3763		 * the data itself. Request messages are sent from a
3764		 * configured association; response messages can be sent
3765		 * from a configured association or can take the fast
3766		 * path without ever matching an association. Response
3767		 * messages have the same code as the request, but have
3768		 * a response bit and possibly an error bit set. In this
3769		 * implementation, a message may contain no more than
3770		 * one command and one or more responses.
3771		 *
3772		 * Cryptographic session keys include both a public and
3773		 * a private componet. Request and response messages
3774		 * using extension fields are always sent with the
3775		 * private component set to zero. Packets without
3776		 * extension fields indlude the private component when
3777		 * the session key is generated.
3778		 */
3779		while (1) {
3780
3781			/*
3782			 * Allocate and initialize a keylist if not
3783			 * already done. Then, use the list in inverse
3784			 * order, discarding keys once used. Keep the
3785			 * latest key around until the next one, so
3786			 * clients can use client/server packets to
3787			 * compute propagation delay.
3788			 *
3789			 * Note that once a key is used from the list,
3790			 * it is retained in the key cache until the
3791			 * next key is used. This is to allow a client
3792			 * to retrieve the encrypted session key
3793			 * identifier to verify authenticity.
3794			 *
3795			 * If for some reason a key is no longer in the
3796			 * key cache, a birthday has happened or the key
3797			 * has expired, so the pseudo-random sequence is
3798			 * broken. In that case, purge the keylist and
3799			 * regenerate it.
3800			 */
3801			if (peer->keynumber == 0)
3802				make_keylist(peer, peer->dstadr);
3803			else
3804				peer->keynumber--;
3805			xkeyid = peer->keylist[peer->keynumber];
3806			if (authistrusted(xkeyid))
3807				break;
3808			else
3809				key_expire(peer);
3810		}
3811		peer->keyid = xkeyid;
3812		exten = NULL;
3813		switch (peer->hmode) {
3814
3815		/*
3816		 * In broadcast server mode the autokey values are
3817		 * required by the broadcast clients. Push them when a
3818		 * new keylist is generated; otherwise, push the
3819		 * association message so the client can request them at
3820		 * other times.
3821		 */
3822		case MODE_BROADCAST:
3823			if (peer->flags & FLAG_ASSOC)
3824				exten = crypto_args(peer, CRYPTO_AUTO |
3825				    CRYPTO_RESP, peer->associd, NULL);
3826			else
3827				exten = crypto_args(peer, CRYPTO_ASSOC |
3828				    CRYPTO_RESP, peer->associd, NULL);
3829			break;
3830
3831		/*
3832		 * In symmetric modes the parameter, certificate,
3833		 * identity, cookie and autokey exchanges are
3834		 * required. The leapsecond exchange is optional. But, a
3835		 * peer will not believe the other peer until the other
3836		 * peer has synchronized, so the certificate exchange
3837		 * might loop until then. If a peer finds a broken
3838		 * autokey sequence, it uses the autokey exchange to
3839		 * retrieve the autokey values. In any case, if a new
3840		 * keylist is generated, the autokey values are pushed.
3841		 */
3842		case MODE_ACTIVE:
3843		case MODE_PASSIVE:
3844
3845			/*
3846			 * Parameter, certificate and identity.
3847			 */
3848			if (!peer->crypto)
3849				exten = crypto_args(peer, CRYPTO_ASSOC,
3850				    peer->associd, hostval.ptr);
3851			else if (!(peer->crypto & CRYPTO_FLAG_CERT))
3852				exten = crypto_args(peer, CRYPTO_CERT,
3853				    peer->associd, peer->issuer);
3854			else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
3855				exten = crypto_args(peer,
3856				    crypto_ident(peer), peer->associd,
3857				    NULL);
3858
3859			/*
3860			 * Cookie and autokey. We request the cookie
3861			 * only when the this peer and the other peer
3862			 * are synchronized. But, this peer needs the
3863			 * autokey values when the cookie is zero. Any
3864			 * time we regenerate the key list, we offer the
3865			 * autokey values without being asked. If for
3866			 * some reason either peer finds a broken
3867			 * autokey sequence, the autokey exchange is
3868			 * used to retrieve the autokey values.
3869			 */
3870			else if (   sys_leap != LEAP_NOTINSYNC
3871				 && peer->leap != LEAP_NOTINSYNC
3872				 && !(peer->crypto & CRYPTO_FLAG_COOK))
3873				exten = crypto_args(peer, CRYPTO_COOK,
3874				    peer->associd, NULL);
3875			else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
3876				exten = crypto_args(peer, CRYPTO_AUTO,
3877				    peer->associd, NULL);
3878			else if (   peer->flags & FLAG_ASSOC
3879				 && peer->crypto & CRYPTO_FLAG_SIGN)
3880				exten = crypto_args(peer, CRYPTO_AUTO |
3881				    CRYPTO_RESP, peer->assoc, NULL);
3882
3883			/*
3884			 * Wait for clock sync, then sign the
3885			 * certificate and retrieve the leapsecond
3886			 * values.
3887			 */
3888			else if (sys_leap == LEAP_NOTINSYNC)
3889				break;
3890
3891			else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
3892				exten = crypto_args(peer, CRYPTO_SIGN,
3893				    peer->associd, hostval.ptr);
3894			else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
3895				exten = crypto_args(peer, CRYPTO_LEAP,
3896				    peer->associd, NULL);
3897			break;
3898
3899		/*
3900		 * In client mode the parameter, certificate, identity,
3901		 * cookie and sign exchanges are required. The
3902		 * leapsecond exchange is optional. If broadcast client
3903		 * mode the same exchanges are required, except that the
3904		 * autokey exchange is substitutes for the cookie
3905		 * exchange, since the cookie is always zero. If the
3906		 * broadcast client finds a broken autokey sequence, it
3907		 * uses the autokey exchange to retrieve the autokey
3908		 * values.
3909		 */
3910		case MODE_CLIENT:
3911
3912			/*
3913			 * Parameter, certificate and identity.
3914			 */
3915			if (!peer->crypto)
3916				exten = crypto_args(peer, CRYPTO_ASSOC,
3917				    peer->associd, hostval.ptr);
3918			else if (!(peer->crypto & CRYPTO_FLAG_CERT))
3919				exten = crypto_args(peer, CRYPTO_CERT,
3920				    peer->associd, peer->issuer);
3921			else if (!(peer->crypto & CRYPTO_FLAG_VRFY))
3922				exten = crypto_args(peer,
3923				    crypto_ident(peer), peer->associd,
3924				    NULL);
3925
3926			/*
3927			 * Cookie and autokey. These are requests, but
3928			 * we use the peer association ID with autokey
3929			 * rather than our own.
3930			 */
3931			else if (!(peer->crypto & CRYPTO_FLAG_COOK))
3932				exten = crypto_args(peer, CRYPTO_COOK,
3933				    peer->associd, NULL);
3934			else if (!(peer->crypto & CRYPTO_FLAG_AUTO))
3935				exten = crypto_args(peer, CRYPTO_AUTO,
3936				    peer->assoc, NULL);
3937
3938			/*
3939			 * Wait for clock sync, then sign the
3940			 * certificate and retrieve the leapsecond
3941			 * values.
3942			 */
3943			else if (sys_leap == LEAP_NOTINSYNC)
3944				break;
3945
3946			else if (!(peer->crypto & CRYPTO_FLAG_SIGN))
3947				exten = crypto_args(peer, CRYPTO_SIGN,
3948				    peer->associd, hostval.ptr);
3949			else if (!(peer->crypto & CRYPTO_FLAG_LEAP))
3950				exten = crypto_args(peer, CRYPTO_LEAP,
3951				    peer->associd, NULL);
3952			break;
3953		}
3954
3955		/*
3956		 * Add a queued extension field if present. This is
3957		 * always a request message, so the reply ID is already
3958		 * in the message. If an error occurs, the error bit is
3959		 * lit in the response.
3960		 */
3961		if (peer->cmmd != NULL) {
3962			u_int32 temp32;
3963
3964			temp32 = CRYPTO_RESP;
3965			peer->cmmd->opcode |= htonl(temp32);
3966			sendlen += crypto_xmit(peer, &xpkt, NULL,
3967			    sendlen, peer->cmmd, 0);
3968			free(peer->cmmd);
3969			peer->cmmd = NULL;
3970		}
3971
3972		/*
3973		 * Add an extension field created above. All but the
3974		 * autokey response message are request messages.
3975		 */
3976		if (exten != NULL) {
3977			if (exten->opcode != 0)
3978				sendlen += crypto_xmit(peer, &xpkt,
3979				    NULL, sendlen, exten, 0);
3980			free(exten);
3981		}
3982
3983		/*
3984		 * Calculate the next session key. Since extension
3985		 * fields are present, the cookie value is zero.
3986		 */
3987		if (sendlen > (int)LEN_PKT_NOMAC) {
3988			session_key(&peer->dstadr->sin, &peer->srcadr,
3989			    xkeyid, 0, 2);
3990		}
3991	}
3992#endif	/* AUTOKEY */
3993
3994	/*
3995	 * Transmit a-priori timestamps
3996	 */
3997	get_systime(&xmt_tx);
3998	if (peer->flip == 0) {		/* basic mode */
3999		peer->aorg = xmt_tx;
4000		HTONL_FP(&xmt_tx, &xpkt.xmt);
4001	} else {			/* interleaved modes */
4002		if (peer->hmode == MODE_BROADCAST) { /* bcst */
4003			HTONL_FP(&xmt_tx, &xpkt.xmt);
4004			if (peer->flip > 0)
4005				HTONL_FP(&peer->borg, &xpkt.org);
4006			else
4007				HTONL_FP(&peer->aorg, &xpkt.org);
4008		} else {		/* symmetric */
4009			if (peer->flip > 0)
4010				HTONL_FP(&peer->borg, &xpkt.xmt);
4011			else
4012				HTONL_FP(&peer->aorg, &xpkt.xmt);
4013		}
4014	}
4015	xkeyid = peer->keyid;
4016	authlen = authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
4017	if (authlen == 0) {
4018		report_event(PEVNT_AUTH, peer, "no key");
4019		peer->flash |= TEST5;		/* auth error */
4020		peer->badauth++;
4021		return;
4022	}
4023	sendlen += authlen;
4024#ifdef AUTOKEY
4025	if (xkeyid > NTP_MAXKEY)
4026		authtrust(xkeyid, 0);
4027#endif	/* AUTOKEY */
4028	if (sendlen > sizeof(xpkt)) {
4029		msyslog(LOG_ERR, "peer_xmit: buffer overflow %zu", sendlen);
4030		exit (-1);
4031	}
4032	peer->t21_bytes = sendlen;
4033	sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl], &xpkt,
4034	    sendlen);
4035	peer->sent++;
4036	peer->throttle += (1 << peer->minpoll) - 2;
4037
4038	/*
4039	 * Capture a-posteriori timestamps
4040	 */
4041	get_systime(&xmt_ty);
4042	if (peer->flip != 0) {			/* interleaved modes */
4043		if (peer->flip > 0)
4044			peer->aorg = xmt_ty;
4045		else
4046			peer->borg = xmt_ty;
4047		peer->flip = -peer->flip;
4048	}
4049	L_SUB(&xmt_ty, &xmt_tx);
4050	LFPTOD(&xmt_ty, peer->xleave);
4051#ifdef AUTOKEY
4052	DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %zu index %d\n",
4053		    current_time, latoa(peer->dstadr),
4054		    ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen,
4055		    peer->keynumber));
4056#else	/* !AUTOKEY follows */
4057	DPRINTF(1, ("peer_xmit: at %ld %s->%s mode %d keyid %08x len %d\n",
4058		    current_time, peer->dstadr ?
4059		    ntoa(&peer->dstadr->sin) : "-",
4060		    ntoa(&peer->srcadr), peer->hmode, xkeyid, sendlen));
4061#endif	/* !AUTOKEY */
4062
4063	return;
4064}
4065
4066
4067#ifdef LEAP_SMEAR
4068
4069static void
4070leap_smear_add_offs(
4071	l_fp *t,
4072	l_fp *t_recv
4073	)
4074{
4075
4076	L_ADD(t, &leap_smear.offset);
4077
4078	/*
4079	** XXX: Should the smear be added to the root dispersion?
4080	*/
4081
4082	return;
4083}
4084
4085#endif  /* LEAP_SMEAR */
4086
4087
4088/*
4089 * fast_xmit - Send packet for nonpersistent association. Note that
4090 * neither the source or destination can be a broadcast address.
4091 */
4092static void
4093fast_xmit(
4094	struct recvbuf *rbufp,	/* receive packet pointer */
4095	int	xmode,		/* receive mode */
4096	keyid_t	xkeyid,		/* transmit key ID */
4097	int	flags		/* restrict mask */
4098	)
4099{
4100	struct pkt xpkt;	/* transmit packet structure */
4101	struct pkt *rpkt;	/* receive packet structure */
4102	l_fp	xmt_tx, xmt_ty;
4103	size_t	sendlen;
4104#ifdef AUTOKEY
4105	u_int32	temp32;
4106#endif
4107
4108	/*
4109	 * Initialize transmit packet header fields from the receive
4110	 * buffer provided. We leave the fields intact as received, but
4111	 * set the peer poll at the maximum of the receive peer poll and
4112	 * the system minimum poll (ntp_minpoll). This is for KoD rate
4113	 * control and not strictly specification compliant, but doesn't
4114	 * break anything.
4115	 *
4116	 * If the gazinta was from a multicast address, the gazoutta
4117	 * must go out another way.
4118	 */
4119	rpkt = &rbufp->recv_pkt;
4120	if (rbufp->dstadr->flags & INT_MCASTOPEN)
4121		rbufp->dstadr = findinterface(&rbufp->recv_srcadr);
4122
4123	/*
4124	 * If this is a kiss-o'-death (KoD) packet, show leap
4125	 * unsynchronized, stratum zero, reference ID the four-character
4126	 * kiss code and system root delay. Note we don't reveal the
4127	 * local time, so these packets can't be used for
4128	 * synchronization.
4129	 */
4130	if (flags & RES_KOD) {
4131		sys_kodsent++;
4132		xpkt.li_vn_mode = PKT_LI_VN_MODE(LEAP_NOTINSYNC,
4133		    PKT_VERSION(rpkt->li_vn_mode), xmode);
4134		xpkt.stratum = STRATUM_PKT_UNSPEC;
4135		xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
4136		xpkt.precision = rpkt->precision;
4137		memcpy(&xpkt.refid, "RATE", 4);
4138		xpkt.rootdelay = rpkt->rootdelay;
4139		xpkt.rootdisp = rpkt->rootdisp;
4140		xpkt.reftime = rpkt->reftime;
4141		xpkt.org = rpkt->xmt;
4142		xpkt.rec = rpkt->xmt;
4143		xpkt.xmt = rpkt->xmt;
4144
4145	/*
4146	 * This is a normal packet. Use the system variables.
4147	 */
4148	} else {
4149#ifdef LEAP_SMEAR
4150		/*
4151		 * Make copies of the variables which can be affected by smearing.
4152		 */
4153		l_fp this_ref_time;
4154		l_fp this_recv_time;
4155#endif
4156
4157		/*
4158		 * If we are inside the leap smear interval we add the current smear offset to
4159		 * the packet receive time, to the packet transmit time, and eventually to the
4160		 * reftime to make sure the reftime isn't later than the transmit/receive times.
4161		 */
4162		xpkt.li_vn_mode = PKT_LI_VN_MODE(xmt_leap,
4163		    PKT_VERSION(rpkt->li_vn_mode), xmode);
4164
4165		xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
4166		xpkt.ppoll = max(rpkt->ppoll, ntp_minpoll);
4167		xpkt.precision = sys_precision;
4168		xpkt.refid = sys_refid;
4169		xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
4170		xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
4171
4172#ifdef LEAP_SMEAR
4173		this_ref_time = sys_reftime;
4174		if (leap_smear.in_progress) {
4175			leap_smear_add_offs(&this_ref_time, NULL);
4176			xpkt.refid = convertLFPToRefID(leap_smear.offset);
4177			DPRINTF(2, ("fast_xmit: leap_smear.in_progress: refid %8x, smear %s\n",
4178				ntohl(xpkt.refid),
4179				lfptoa(&leap_smear.offset, 8)
4180				));
4181		}
4182		HTONL_FP(&this_ref_time, &xpkt.reftime);
4183#else
4184		HTONL_FP(&sys_reftime, &xpkt.reftime);
4185#endif
4186
4187		xpkt.org = rpkt->xmt;
4188
4189#ifdef LEAP_SMEAR
4190		this_recv_time = rbufp->recv_time;
4191		if (leap_smear.in_progress)
4192			leap_smear_add_offs(&this_recv_time, NULL);
4193		HTONL_FP(&this_recv_time, &xpkt.rec);
4194#else
4195		HTONL_FP(&rbufp->recv_time, &xpkt.rec);
4196#endif
4197
4198		get_systime(&xmt_tx);
4199#ifdef LEAP_SMEAR
4200		if (leap_smear.in_progress)
4201			leap_smear_add_offs(&xmt_tx, &this_recv_time);
4202#endif
4203		HTONL_FP(&xmt_tx, &xpkt.xmt);
4204	}
4205
4206#ifdef HAVE_NTP_SIGND
4207	if (flags & RES_MSSNTP) {
4208		send_via_ntp_signd(rbufp, xmode, xkeyid, flags, &xpkt);
4209		return;
4210	}
4211#endif /* HAVE_NTP_SIGND */
4212
4213	/*
4214	 * If the received packet contains a MAC, the transmitted packet
4215	 * is authenticated and contains a MAC. If not, the transmitted
4216	 * packet is not authenticated.
4217	 */
4218	sendlen = LEN_PKT_NOMAC;
4219	if (rbufp->recv_length == sendlen) {
4220		sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt,
4221		    sendlen);
4222		DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d len %lu\n",
4223			    current_time, stoa(&rbufp->dstadr->sin),
4224			    stoa(&rbufp->recv_srcadr), xmode,
4225			    (u_long)sendlen));
4226		return;
4227	}
4228
4229	/*
4230	 * The received packet contains a MAC, so the transmitted packet
4231	 * must be authenticated. For symmetric key cryptography, use
4232	 * the predefined and trusted symmetric keys to generate the
4233	 * cryptosum. For autokey cryptography, use the server private
4234	 * value to generate the cookie, which is unique for every
4235	 * source-destination-key ID combination.
4236	 */
4237#ifdef AUTOKEY
4238	if (xkeyid > NTP_MAXKEY) {
4239		keyid_t cookie;
4240
4241		/*
4242		 * The only way to get here is a reply to a legitimate
4243		 * client request message, so the mode must be
4244		 * MODE_SERVER. If an extension field is present, there
4245		 * can be only one and that must be a command. Do what
4246		 * needs, but with private value of zero so the poor
4247		 * jerk can decode it. If no extension field is present,
4248		 * use the cookie to generate the session key.
4249		 */
4250		cookie = session_key(&rbufp->recv_srcadr,
4251		    &rbufp->dstadr->sin, 0, sys_private, 0);
4252		if ((size_t)rbufp->recv_length > sendlen + MAX_MAC_LEN) {
4253			session_key(&rbufp->dstadr->sin,
4254			    &rbufp->recv_srcadr, xkeyid, 0, 2);
4255			temp32 = CRYPTO_RESP;
4256			rpkt->exten[0] |= htonl(temp32);
4257			sendlen += crypto_xmit(NULL, &xpkt, rbufp,
4258			    sendlen, (struct exten *)rpkt->exten,
4259			    cookie);
4260		} else {
4261			session_key(&rbufp->dstadr->sin,
4262			    &rbufp->recv_srcadr, xkeyid, cookie, 2);
4263		}
4264	}
4265#endif	/* AUTOKEY */
4266	get_systime(&xmt_tx);
4267	sendlen += authencrypt(xkeyid, (u_int32 *)&xpkt, sendlen);
4268#ifdef AUTOKEY
4269	if (xkeyid > NTP_MAXKEY)
4270		authtrust(xkeyid, 0);
4271#endif	/* AUTOKEY */
4272	sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, 0, &xpkt, sendlen);
4273	get_systime(&xmt_ty);
4274	L_SUB(&xmt_ty, &xmt_tx);
4275	sys_authdelay = xmt_ty;
4276	DPRINTF(1, ("fast_xmit: at %ld %s->%s mode %d keyid %08x len %lu\n",
4277		    current_time, ntoa(&rbufp->dstadr->sin),
4278		    ntoa(&rbufp->recv_srcadr), xmode, xkeyid,
4279		    (u_long)sendlen));
4280}
4281
4282
4283/*
4284 * pool_xmit - resolve hostname or send unicast solicitation for pool.
4285 */
4286static void
4287pool_xmit(
4288	struct peer *pool	/* pool solicitor association */
4289	)
4290{
4291#ifdef WORKER
4292	struct pkt		xpkt;	/* transmit packet structure */
4293	struct addrinfo		hints;
4294	int			rc;
4295	struct interface *	lcladr;
4296	sockaddr_u *		rmtadr;
4297	int			restrict_mask;
4298	struct peer *		p;
4299	l_fp			xmt_tx;
4300
4301	if (NULL == pool->ai) {
4302		if (pool->addrs != NULL) {
4303			/* free() is used with copy_addrinfo_list() */
4304			free(pool->addrs);
4305			pool->addrs = NULL;
4306		}
4307		ZERO(hints);
4308		hints.ai_family = AF(&pool->srcadr);
4309		hints.ai_socktype = SOCK_DGRAM;
4310		hints.ai_protocol = IPPROTO_UDP;
4311		/* ignore getaddrinfo_sometime() errors, we will retry */
4312		rc = getaddrinfo_sometime(
4313			pool->hostname,
4314			"ntp",
4315			&hints,
4316			0,			/* no retry */
4317			&pool_name_resolved,
4318			(void *)(intptr_t)pool->associd);
4319		if (!rc)
4320			DPRINTF(1, ("pool DNS lookup %s started\n",
4321				pool->hostname));
4322		else
4323			msyslog(LOG_ERR,
4324				"unable to start pool DNS %s: %m",
4325				pool->hostname);
4326		return;
4327	}
4328
4329	do {
4330		/* copy_addrinfo_list ai_addr points to a sockaddr_u */
4331		rmtadr = (sockaddr_u *)(void *)pool->ai->ai_addr;
4332		pool->ai = pool->ai->ai_next;
4333		p = findexistingpeer(rmtadr, NULL, NULL, MODE_CLIENT, 0);
4334	} while (p != NULL && pool->ai != NULL);
4335	if (p != NULL)
4336		return;	/* out of addresses, re-query DNS next poll */
4337	restrict_mask = restrictions(rmtadr);
4338	if (RES_FLAGS & restrict_mask)
4339		restrict_source(rmtadr, 0,
4340				current_time + POOL_SOLICIT_WINDOW + 1);
4341	lcladr = findinterface(rmtadr);
4342	memset(&xpkt, 0, sizeof(xpkt));
4343	xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, pool->version,
4344					 MODE_CLIENT);
4345	xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
4346	xpkt.ppoll = pool->hpoll;
4347	xpkt.precision = sys_precision;
4348	xpkt.refid = sys_refid;
4349	xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
4350	xpkt.rootdisp = HTONS_FP(DTOUFP(sys_rootdisp));
4351	HTONL_FP(&sys_reftime, &xpkt.reftime);
4352	get_systime(&xmt_tx);
4353	pool->aorg = xmt_tx;
4354	HTONL_FP(&xmt_tx, &xpkt.xmt);
4355	sendpkt(rmtadr, lcladr,	sys_ttl[pool->ttl], &xpkt,
4356		LEN_PKT_NOMAC);
4357	pool->sent++;
4358	pool->throttle += (1 << pool->minpoll) - 2;
4359	DPRINTF(1, ("pool_xmit: at %ld %s->%s pool\n",
4360		    current_time, latoa(lcladr), stoa(rmtadr)));
4361	msyslog(LOG_INFO, "Soliciting pool server %s", stoa(rmtadr));
4362#endif	/* WORKER */
4363}
4364
4365
4366#ifdef AUTOKEY
4367	/*
4368	 * group_test - test if this is the same group
4369	 *
4370	 * host		assoc		return		action
4371	 * none		none		0		mobilize *
4372	 * none		group		0		mobilize *
4373	 * group	none		0		mobilize *
4374	 * group	group		1		mobilize
4375	 * group	different	1		ignore
4376	 * * ignore if notrust
4377	 */
4378int
4379group_test(
4380	char	*grp,
4381	char	*ident
4382	)
4383{
4384	if (grp == NULL)
4385		return (0);
4386
4387	if (strcmp(grp, sys_groupname) == 0)
4388		return (0);
4389
4390	if (ident == NULL)
4391		return (1);
4392
4393	if (strcmp(grp, ident) == 0)
4394		return (0);
4395
4396	return (1);
4397}
4398#endif /* AUTOKEY */
4399
4400
4401#ifdef WORKER
4402void
4403pool_name_resolved(
4404	int			rescode,
4405	int			gai_errno,
4406	void *			context,
4407	const char *		name,
4408	const char *		service,
4409	const struct addrinfo *	hints,
4410	const struct addrinfo *	res
4411	)
4412{
4413	struct peer *	pool;	/* pool solicitor association */
4414	associd_t	assoc;
4415
4416	if (rescode) {
4417		msyslog(LOG_ERR,
4418			"error resolving pool %s: %s (%d)",
4419			name, gai_strerror(rescode), rescode);
4420		return;
4421	}
4422
4423	assoc = (associd_t)(intptr_t)context;
4424	pool = findpeerbyassoc(assoc);
4425	if (NULL == pool) {
4426		msyslog(LOG_ERR,
4427			"Could not find assoc %u for pool DNS %s",
4428			assoc, name);
4429		return;
4430	}
4431	DPRINTF(1, ("pool DNS %s completed\n", name));
4432	pool->addrs = copy_addrinfo_list(res);
4433	pool->ai = pool->addrs;
4434	pool_xmit(pool);
4435
4436}
4437#endif	/* WORKER */
4438
4439
4440#ifdef AUTOKEY
4441/*
4442 * key_expire - purge the key list
4443 */
4444void
4445key_expire(
4446	struct peer *peer	/* peer structure pointer */
4447	)
4448{
4449	int i;
4450
4451	if (peer->keylist != NULL) {
4452		for (i = 0; i <= peer->keynumber; i++)
4453			authtrust(peer->keylist[i], 0);
4454		free(peer->keylist);
4455		peer->keylist = NULL;
4456	}
4457	value_free(&peer->sndval);
4458	peer->keynumber = 0;
4459	peer->flags &= ~FLAG_ASSOC;
4460	DPRINTF(1, ("key_expire: at %lu associd %d\n", current_time,
4461		    peer->associd));
4462}
4463#endif	/* AUTOKEY */
4464
4465
4466/*
4467 * local_refid(peer) - check peer refid to avoid selecting peers
4468 *		       currently synced to this ntpd.
4469 */
4470static int
4471local_refid(
4472	struct peer *	p
4473	)
4474{
4475	endpt *	unicast_ep;
4476
4477	if (p->dstadr != NULL && !(INT_MCASTIF & p->dstadr->flags))
4478		unicast_ep = p->dstadr;
4479	else
4480		unicast_ep = findinterface(&p->srcadr);
4481
4482	if (unicast_ep != NULL && p->refid == unicast_ep->addr_refid)
4483		return TRUE;
4484	else
4485		return FALSE;
4486}
4487
4488
4489/*
4490 * Determine if the peer is unfit for synchronization
4491 *
4492 * A peer is unfit for synchronization if
4493 * > TEST10 bad leap or stratum below floor or at or above ceiling
4494 * > TEST11 root distance exceeded for remote peer
4495 * > TEST12 a direct or indirect synchronization loop would form
4496 * > TEST13 unreachable or noselect
4497 */
4498int				/* FALSE if fit, TRUE if unfit */
4499peer_unfit(
4500	struct peer *peer	/* peer structure pointer */
4501	)
4502{
4503	int	rval = 0;
4504
4505	/*
4506	 * A stratum error occurs if (1) the server has never been
4507	 * synchronized, (2) the server stratum is below the floor or
4508	 * greater than or equal to the ceiling.
4509	 */
4510	if (   peer->leap == LEAP_NOTINSYNC
4511	    || peer->stratum < sys_floor
4512	    || peer->stratum >= sys_ceiling) {
4513		rval |= TEST10;		/* bad synch or stratum */
4514	}
4515
4516	/*
4517	 * A distance error for a remote peer occurs if the root
4518	 * distance is greater than or equal to the distance threshold
4519	 * plus the increment due to one host poll interval.
4520	 */
4521	if (   !(peer->flags & FLAG_REFCLOCK)
4522	    && root_distance(peer) >= sys_maxdist
4523				      + clock_phi * ULOGTOD(peer->hpoll)) {
4524		rval |= TEST11;		/* distance exceeded */
4525	}
4526
4527	/*
4528	 * A loop error occurs if the remote peer is synchronized to the
4529	 * local peer or if the remote peer is synchronized to the same
4530	 * server as the local peer but only if the remote peer is
4531	 * neither a reference clock nor an orphan.
4532	 */
4533	if (peer->stratum > 1 && local_refid(peer)) {
4534		rval |= TEST12;		/* synchronization loop */
4535	}
4536
4537	/*
4538	 * An unreachable error occurs if the server is unreachable or
4539	 * the noselect bit is set.
4540	 */
4541	if (!peer->reach || (peer->flags & FLAG_NOSELECT)) {
4542		rval |= TEST13;		/* unreachable */
4543	}
4544
4545	peer->flash &= ~PEER_TEST_MASK;
4546	peer->flash |= rval;
4547	return (rval);
4548}
4549
4550
4551/*
4552 * Find the precision of this particular machine
4553 */
4554#define MINSTEP		20e-9	/* minimum clock increment (s) */
4555#define MAXSTEP		1	/* maximum clock increment (s) */
4556#define MINCHANGES	12	/* minimum number of step samples */
4557#define MAXLOOPS	((int)(1. / MINSTEP))	/* avoid infinite loop */
4558
4559/*
4560 * This routine measures the system precision defined as the minimum of
4561 * a sequence of differences between successive readings of the system
4562 * clock. However, if a difference is less than MINSTEP, the clock has
4563 * been read more than once during a clock tick and the difference is
4564 * ignored. We set MINSTEP greater than zero in case something happens
4565 * like a cache miss, and to tolerate underlying system clocks which
4566 * ensure each reading is strictly greater than prior readings while
4567 * using an underlying stepping (not interpolated) clock.
4568 *
4569 * sys_tick and sys_precision represent the time to read the clock for
4570 * systems with high-precision clocks, and the tick interval or step
4571 * size for lower-precision stepping clocks.
4572 *
4573 * This routine also measures the time to read the clock on stepping
4574 * system clocks by counting the number of readings between changes of
4575 * the underlying clock.  With either type of clock, the minimum time
4576 * to read the clock is saved as sys_fuzz, and used to ensure the
4577 * get_systime() readings always increase and are fuzzed below sys_fuzz.
4578 */
4579void
4580measure_precision(void)
4581{
4582	/*
4583	 * With sys_fuzz set to zero, get_systime() fuzzing of low bits
4584	 * is effectively disabled.  trunc_os_clock is FALSE to disable
4585	 * get_ostime() simulation of a low-precision system clock.
4586	 */
4587	set_sys_fuzz(0.);
4588	trunc_os_clock = FALSE;
4589	measured_tick = measure_tick_fuzz();
4590	set_sys_tick_precision(measured_tick);
4591	msyslog(LOG_INFO, "proto: precision = %.3f usec (%d)",
4592		sys_tick * 1e6, sys_precision);
4593	if (sys_fuzz < sys_tick) {
4594		msyslog(LOG_NOTICE, "proto: fuzz beneath %.3f usec",
4595			sys_fuzz * 1e6);
4596	}
4597}
4598
4599
4600/*
4601 * measure_tick_fuzz()
4602 *
4603 * measures the minimum time to read the clock (stored in sys_fuzz)
4604 * and returns the tick, the larger of the minimum increment observed
4605 * between successive clock readings and the time to read the clock.
4606 */
4607double
4608measure_tick_fuzz(void)
4609{
4610	l_fp	minstep;	/* MINSTEP as l_fp */
4611	l_fp	val;		/* current seconds fraction */
4612	l_fp	last;		/* last seconds fraction */
4613	l_fp	ldiff;		/* val - last */
4614	double	tick;		/* computed tick value */
4615	double	diff;
4616	long	repeats;
4617	long	max_repeats;
4618	int	changes;
4619	int	i;		/* log2 precision */
4620
4621	tick = MAXSTEP;
4622	max_repeats = 0;
4623	repeats = 0;
4624	changes = 0;
4625	DTOLFP(MINSTEP, &minstep);
4626	get_systime(&last);
4627	for (i = 0; i < MAXLOOPS && changes < MINCHANGES; i++) {
4628		get_systime(&val);
4629		ldiff = val;
4630		L_SUB(&ldiff, &last);
4631		last = val;
4632		if (L_ISGT(&ldiff, &minstep)) {
4633			max_repeats = max(repeats, max_repeats);
4634			repeats = 0;
4635			changes++;
4636			LFPTOD(&ldiff, diff);
4637			tick = min(diff, tick);
4638		} else {
4639			repeats++;
4640		}
4641	}
4642	if (changes < MINCHANGES) {
4643		msyslog(LOG_ERR, "Fatal error: precision could not be measured (MINSTEP too large?)");
4644		exit(1);
4645	}
4646
4647	if (0 == max_repeats) {
4648		set_sys_fuzz(tick);
4649	} else {
4650		set_sys_fuzz(tick / max_repeats);
4651	}
4652
4653	return tick;
4654}
4655
4656
4657void
4658set_sys_tick_precision(
4659	double tick
4660	)
4661{
4662	int i;
4663
4664	if (tick > 1.) {
4665		msyslog(LOG_ERR,
4666			"unsupported tick %.3f > 1s ignored", tick);
4667		return;
4668	}
4669	if (tick < measured_tick) {
4670		msyslog(LOG_ERR,
4671			"proto: tick %.3f less than measured tick %.3f, ignored",
4672			tick, measured_tick);
4673		return;
4674	} else if (tick > measured_tick) {
4675		trunc_os_clock = TRUE;
4676		msyslog(LOG_NOTICE,
4677			"proto: truncating system clock to multiples of %.9f",
4678			tick);
4679	}
4680	sys_tick = tick;
4681
4682	/*
4683	 * Find the nearest power of two.
4684	 */
4685	for (i = 0; tick <= 1; i--)
4686		tick *= 2;
4687	if (tick - 1 > 1 - tick / 2)
4688		i++;
4689
4690	sys_precision = (s_char)i;
4691}
4692
4693
4694/*
4695 * init_proto - initialize the protocol module's data
4696 */
4697void
4698init_proto(void)
4699{
4700	l_fp	dummy;
4701	int	i;
4702
4703	/*
4704	 * Fill in the sys_* stuff.  Default is don't listen to
4705	 * broadcasting, require authentication.
4706	 */
4707	set_sys_leap(LEAP_NOTINSYNC);
4708	sys_stratum = STRATUM_UNSPEC;
4709	memcpy(&sys_refid, "INIT", 4);
4710	sys_peer = NULL;
4711	sys_rootdelay = 0;
4712	sys_rootdisp = 0;
4713	L_CLR(&sys_reftime);
4714	sys_jitter = 0;
4715	measure_precision();
4716	get_systime(&dummy);
4717	sys_survivors = 0;
4718	sys_manycastserver = 0;
4719	sys_bclient = 0;
4720	sys_bdelay = BDELAY_DEFAULT;	/*[Bug 3031] delay cutoff */
4721	sys_authenticate = 1;
4722	sys_stattime = current_time;
4723	orphwait = current_time + sys_orphwait;
4724	proto_clr_stats();
4725	for (i = 0; i < MAX_TTL; i++) {
4726		sys_ttl[i] = (u_char)((i * 256) / MAX_TTL);
4727		sys_ttlmax = i;
4728	}
4729	hardpps_enable = 0;
4730	stats_control = 1;
4731}
4732
4733
4734/*
4735 * proto_config - configure the protocol module
4736 */
4737void
4738proto_config(
4739	int	item,
4740	u_long	value,
4741	double	dvalue,
4742	sockaddr_u *svalue
4743	)
4744{
4745	/*
4746	 * Figure out what he wants to change, then do it
4747	 */
4748	DPRINTF(2, ("proto_config: code %d value %lu dvalue %lf\n",
4749		    item, value, dvalue));
4750
4751	switch (item) {
4752
4753	/*
4754	 * enable and disable commands - arguments are Boolean.
4755	 */
4756	case PROTO_AUTHENTICATE: /* authentication (auth) */
4757		sys_authenticate = value;
4758		break;
4759
4760	case PROTO_BROADCLIENT: /* broadcast client (bclient) */
4761		sys_bclient = (int)value;
4762		if (sys_bclient == 0)
4763			io_unsetbclient();
4764		else
4765			io_setbclient();
4766		break;
4767
4768#ifdef REFCLOCK
4769	case PROTO_CAL:		/* refclock calibrate (calibrate) */
4770		cal_enable = value;
4771		break;
4772#endif /* REFCLOCK */
4773
4774	case PROTO_KERNEL:	/* kernel discipline (kernel) */
4775		select_loop(value);
4776		break;
4777
4778	case PROTO_MONITOR:	/* monitoring (monitor) */
4779		if (value)
4780			mon_start(MON_ON);
4781		else {
4782			mon_stop(MON_ON);
4783			if (mon_enabled)
4784				msyslog(LOG_WARNING,
4785					"restrict: 'monitor' cannot be disabled while 'limited' is enabled");
4786		}
4787		break;
4788
4789	case PROTO_NTP:		/* NTP discipline (ntp) */
4790		ntp_enable = value;
4791		break;
4792
4793	case PROTO_MODE7:	/* mode7 management (ntpdc) */
4794		ntp_mode7 = value;
4795		break;
4796
4797	case PROTO_PPS:		/* PPS discipline (pps) */
4798		hardpps_enable = value;
4799		break;
4800
4801	case PROTO_FILEGEN:	/* statistics (stats) */
4802		stats_control = value;
4803		break;
4804
4805	/*
4806	 * tos command - arguments are double, sometimes cast to int
4807	 */
4808
4809	case PROTO_BCPOLLBSTEP:	/* Broadcast Poll Backstep gate (bcpollbstep) */
4810		sys_bcpollbstep = (u_char)dvalue;
4811		break;
4812
4813	case PROTO_BEACON:	/* manycast beacon (beacon) */
4814		sys_beacon = (int)dvalue;
4815		break;
4816
4817	case PROTO_BROADDELAY:	/* default broadcast delay (bdelay) */
4818		sys_bdelay = (dvalue ? dvalue : BDELAY_DEFAULT);
4819		break;
4820
4821	case PROTO_CEILING:	/* stratum ceiling (ceiling) */
4822		sys_ceiling = (int)dvalue;
4823		break;
4824
4825	case PROTO_COHORT:	/* cohort switch (cohort) */
4826		sys_cohort = (int)dvalue;
4827		break;
4828
4829	case PROTO_FLOOR:	/* stratum floor (floor) */
4830		sys_floor = (int)dvalue;
4831		break;
4832
4833	case PROTO_MAXCLOCK:	/* maximum candidates (maxclock) */
4834		sys_maxclock = (int)dvalue;
4835		break;
4836
4837	case PROTO_MAXDIST:	/* select threshold (maxdist) */
4838		sys_maxdist = dvalue;
4839		break;
4840
4841	case PROTO_CALLDELAY:	/* modem call delay (mdelay) */
4842		break;		/* NOT USED */
4843
4844	case PROTO_MINCLOCK:	/* minimum candidates (minclock) */
4845		sys_minclock = (int)dvalue;
4846		break;
4847
4848	case PROTO_MINDISP:	/* minimum distance (mindist) */
4849		sys_mindisp = dvalue;
4850		break;
4851
4852	case PROTO_MINSANE:	/* minimum survivors (minsane) */
4853		sys_minsane = (int)dvalue;
4854		break;
4855
4856	case PROTO_ORPHAN:	/* orphan stratum (orphan) */
4857		sys_orphan = (int)dvalue;
4858		break;
4859
4860	case PROTO_ORPHWAIT:	/* orphan wait (orphwait) */
4861		orphwait -= sys_orphwait;
4862		sys_orphwait = (int)dvalue;
4863		orphwait += sys_orphwait;
4864		break;
4865
4866	/*
4867	 * Miscellaneous commands
4868	 */
4869	case PROTO_MULTICAST_ADD: /* add group address */
4870		if (svalue != NULL)
4871			io_multicast_add(svalue);
4872		sys_bclient = 1;
4873		break;
4874
4875	case PROTO_MULTICAST_DEL: /* delete group address */
4876		if (svalue != NULL)
4877			io_multicast_del(svalue);
4878		break;
4879
4880	/*
4881	 * Peer_clear Early policy choices
4882	 */
4883
4884	case PROTO_PCEDIGEST:	/* Digest */
4885		peer_clear_digest_early = value;
4886		break;
4887
4888	/*
4889	 * Unpeer Early policy choices
4890	 */
4891
4892	case PROTO_UECRYPTO:	/* Crypto */
4893		unpeer_crypto_early = value;
4894		break;
4895
4896	case PROTO_UECRYPTONAK:	/* Crypto_NAK */
4897		unpeer_crypto_nak_early = value;
4898		break;
4899
4900	case PROTO_UEDIGEST:	/* Digest */
4901		unpeer_digest_early = value;
4902		break;
4903
4904	default:
4905		msyslog(LOG_NOTICE,
4906		    "proto: unsupported option %d", item);
4907	}
4908}
4909
4910
4911/*
4912 * proto_clr_stats - clear protocol stat counters
4913 */
4914void
4915proto_clr_stats(void)
4916{
4917	sys_stattime = current_time;
4918	sys_received = 0;
4919	sys_processed = 0;
4920	sys_newversion = 0;
4921	sys_oldversion = 0;
4922	sys_declined = 0;
4923	sys_restricted = 0;
4924	sys_badlength = 0;
4925	sys_badauth = 0;
4926	sys_limitrejected = 0;
4927	sys_kodsent = 0;
4928}
4929