RangeConstraintManager.cpp revision 218887
1//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines RangeConstraintManager, a class that tracks simple
11//  equality and inequality constraints on symbolic values of GRState.
12//
13//===----------------------------------------------------------------------===//
14
15#include "SimpleConstraintManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/GRState.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/GRStateTrait.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/TransferFuncs.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/ADT/FoldingSet.h"
21#include "llvm/ADT/ImmutableSet.h"
22#include "llvm/Support/raw_ostream.h"
23
24using namespace clang;
25using namespace ento;
26
27namespace { class ConstraintRange {}; }
28static int ConstraintRangeIndex = 0;
29
30/// A Range represents the closed range [from, to].  The caller must
31/// guarantee that from <= to.  Note that Range is immutable, so as not
32/// to subvert RangeSet's immutability.
33namespace {
34class Range : public std::pair<const llvm::APSInt*,
35                                                const llvm::APSInt*> {
36public:
37  Range(const llvm::APSInt &from, const llvm::APSInt &to)
38    : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
39    assert(from <= to);
40  }
41  bool Includes(const llvm::APSInt &v) const {
42    return *first <= v && v <= *second;
43  }
44  const llvm::APSInt &From() const {
45    return *first;
46  }
47  const llvm::APSInt &To() const {
48    return *second;
49  }
50  const llvm::APSInt *getConcreteValue() const {
51    return &From() == &To() ? &From() : NULL;
52  }
53
54  void Profile(llvm::FoldingSetNodeID &ID) const {
55    ID.AddPointer(&From());
56    ID.AddPointer(&To());
57  }
58};
59
60
61class RangeTrait : public llvm::ImutContainerInfo<Range> {
62public:
63  // When comparing if one Range is less than another, we should compare
64  // the actual APSInt values instead of their pointers.  This keeps the order
65  // consistent (instead of comparing by pointer values) and can potentially
66  // be used to speed up some of the operations in RangeSet.
67  static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
68    return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
69                                       *lhs.second < *rhs.second);
70  }
71};
72
73/// RangeSet contains a set of ranges. If the set is empty, then
74///  there the value of a symbol is overly constrained and there are no
75///  possible values for that symbol.
76class RangeSet {
77  typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
78  PrimRangeSet ranges; // no need to make const, since it is an
79                       // ImmutableSet - this allows default operator=
80                       // to work.
81public:
82  typedef PrimRangeSet::Factory Factory;
83  typedef PrimRangeSet::iterator iterator;
84
85  RangeSet(PrimRangeSet RS) : ranges(RS) {}
86
87  iterator begin() const { return ranges.begin(); }
88  iterator end() const { return ranges.end(); }
89
90  bool isEmpty() const { return ranges.isEmpty(); }
91
92  /// Construct a new RangeSet representing '{ [from, to] }'.
93  RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
94    : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
95
96  /// Profile - Generates a hash profile of this RangeSet for use
97  ///  by FoldingSet.
98  void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
99
100  /// getConcreteValue - If a symbol is contrained to equal a specific integer
101  ///  constant then this method returns that value.  Otherwise, it returns
102  ///  NULL.
103  const llvm::APSInt* getConcreteValue() const {
104    return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
105  }
106
107private:
108  void IntersectInRange(BasicValueFactory &BV, Factory &F,
109                        const llvm::APSInt &Lower,
110                        const llvm::APSInt &Upper,
111                        PrimRangeSet &newRanges,
112                        PrimRangeSet::iterator &i,
113                        PrimRangeSet::iterator &e) const {
114    // There are six cases for each range R in the set:
115    //   1. R is entirely before the intersection range.
116    //   2. R is entirely after the intersection range.
117    //   3. R contains the entire intersection range.
118    //   4. R starts before the intersection range and ends in the middle.
119    //   5. R starts in the middle of the intersection range and ends after it.
120    //   6. R is entirely contained in the intersection range.
121    // These correspond to each of the conditions below.
122    for (/* i = begin(), e = end() */; i != e; ++i) {
123      if (i->To() < Lower) {
124        continue;
125      }
126      if (i->From() > Upper) {
127        break;
128      }
129
130      if (i->Includes(Lower)) {
131        if (i->Includes(Upper)) {
132          newRanges = F.add(newRanges, Range(BV.getValue(Lower),
133                                             BV.getValue(Upper)));
134          break;
135        } else
136          newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
137      } else {
138        if (i->Includes(Upper)) {
139          newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
140          break;
141        } else
142          newRanges = F.add(newRanges, *i);
143      }
144    }
145  }
146
147public:
148  // Returns a set containing the values in the receiving set, intersected with
149  // the closed range [Lower, Upper]. Unlike the Range type, this range uses
150  // modular arithmetic, corresponding to the common treatment of C integer
151  // overflow. Thus, if the Lower bound is greater than the Upper bound, the
152  // range is taken to wrap around. This is equivalent to taking the
153  // intersection with the two ranges [Min, Upper] and [Lower, Max],
154  // or, alternatively, /removing/ all integers between Upper and Lower.
155  RangeSet Intersect(BasicValueFactory &BV, Factory &F,
156                     const llvm::APSInt &Lower,
157                     const llvm::APSInt &Upper) const {
158    PrimRangeSet newRanges = F.getEmptySet();
159
160    PrimRangeSet::iterator i = begin(), e = end();
161    if (Lower <= Upper)
162      IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
163    else {
164      // The order of the next two statements is important!
165      // IntersectInRange() does not reset the iteration state for i and e.
166      // Therefore, the lower range most be handled first.
167      IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
168      IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
169    }
170    return newRanges;
171  }
172
173  void print(llvm::raw_ostream &os) const {
174    bool isFirst = true;
175    os << "{ ";
176    for (iterator i = begin(), e = end(); i != e; ++i) {
177      if (isFirst)
178        isFirst = false;
179      else
180        os << ", ";
181
182      os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
183         << ']';
184    }
185    os << " }";
186  }
187
188  bool operator==(const RangeSet &other) const {
189    return ranges == other.ranges;
190  }
191};
192} // end anonymous namespace
193
194typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;
195
196namespace clang {
197namespace ento {
198template<>
199struct GRStateTrait<ConstraintRange>
200  : public GRStatePartialTrait<ConstraintRangeTy> {
201  static inline void* GDMIndex() { return &ConstraintRangeIndex; }
202};
203}
204}
205
206namespace {
207class RangeConstraintManager : public SimpleConstraintManager{
208  RangeSet GetRange(const GRState *state, SymbolRef sym);
209public:
210  RangeConstraintManager(SubEngine &subengine)
211    : SimpleConstraintManager(subengine) {}
212
213  const GRState *assumeSymNE(const GRState* state, SymbolRef sym,
214                             const llvm::APSInt& Int,
215                             const llvm::APSInt& Adjustment);
216
217  const GRState *assumeSymEQ(const GRState* state, SymbolRef sym,
218                             const llvm::APSInt& Int,
219                             const llvm::APSInt& Adjustment);
220
221  const GRState *assumeSymLT(const GRState* state, SymbolRef sym,
222                             const llvm::APSInt& Int,
223                             const llvm::APSInt& Adjustment);
224
225  const GRState *assumeSymGT(const GRState* state, SymbolRef sym,
226                             const llvm::APSInt& Int,
227                             const llvm::APSInt& Adjustment);
228
229  const GRState *assumeSymGE(const GRState* state, SymbolRef sym,
230                             const llvm::APSInt& Int,
231                             const llvm::APSInt& Adjustment);
232
233  const GRState *assumeSymLE(const GRState* state, SymbolRef sym,
234                             const llvm::APSInt& Int,
235                             const llvm::APSInt& Adjustment);
236
237  const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym) const;
238
239  // FIXME: Refactor into SimpleConstraintManager?
240  bool isEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const {
241    const llvm::APSInt *i = getSymVal(St, sym);
242    return i ? *i == V : false;
243  }
244
245  const GRState* removeDeadBindings(const GRState* St, SymbolReaper& SymReaper);
246
247  void print(const GRState* St, llvm::raw_ostream& Out,
248             const char* nl, const char *sep);
249
250private:
251  RangeSet::Factory F;
252};
253
254} // end anonymous namespace
255
256ConstraintManager* ento::CreateRangeConstraintManager(GRStateManager&,
257                                                    SubEngine &subeng) {
258  return new RangeConstraintManager(subeng);
259}
260
261const llvm::APSInt* RangeConstraintManager::getSymVal(const GRState* St,
262                                                      SymbolRef sym) const {
263  const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
264  return T ? T->getConcreteValue() : NULL;
265}
266
267/// Scan all symbols referenced by the constraints. If the symbol is not alive
268/// as marked in LSymbols, mark it as dead in DSymbols.
269const GRState*
270RangeConstraintManager::removeDeadBindings(const GRState* state,
271                                           SymbolReaper& SymReaper) {
272
273  ConstraintRangeTy CR = state->get<ConstraintRange>();
274  ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
275
276  for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
277    SymbolRef sym = I.getKey();
278    if (SymReaper.maybeDead(sym))
279      CR = CRFactory.remove(CR, sym);
280  }
281
282  return state->set<ConstraintRange>(CR);
283}
284
285RangeSet
286RangeConstraintManager::GetRange(const GRState *state, SymbolRef sym) {
287  if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
288    return *V;
289
290  // Lazily generate a new RangeSet representing all possible values for the
291  // given symbol type.
292  QualType T = state->getSymbolManager().getType(sym);
293  BasicValueFactory& BV = state->getBasicVals();
294  return RangeSet(F, BV.getMinValue(T), BV.getMaxValue(T));
295}
296
297//===------------------------------------------------------------------------===
298// assumeSymX methods: public interface for RangeConstraintManager.
299//===------------------------------------------------------------------------===/
300
301// The syntax for ranges below is mathematical, using [x, y] for closed ranges
302// and (x, y) for open ranges. These ranges are modular, corresponding with
303// a common treatment of C integer overflow. This means that these methods
304// do not have to worry about overflow; RangeSet::Intersect can handle such a
305// "wraparound" range.
306// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
307// UINT_MAX, 0, 1, and 2.
308
309const GRState*
310RangeConstraintManager::assumeSymNE(const GRState* state, SymbolRef sym,
311                                    const llvm::APSInt& Int,
312                                    const llvm::APSInt& Adjustment) {
313  BasicValueFactory &BV = state->getBasicVals();
314
315  llvm::APSInt Lower = Int-Adjustment;
316  llvm::APSInt Upper = Lower;
317  --Lower;
318  ++Upper;
319
320  // [Int-Adjustment+1, Int-Adjustment-1]
321  // Notice that the lower bound is greater than the upper bound.
322  RangeSet New = GetRange(state, sym).Intersect(BV, F, Upper, Lower);
323  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
324}
325
326const GRState*
327RangeConstraintManager::assumeSymEQ(const GRState* state, SymbolRef sym,
328                                    const llvm::APSInt& Int,
329                                    const llvm::APSInt& Adjustment) {
330  // [Int-Adjustment, Int-Adjustment]
331  BasicValueFactory &BV = state->getBasicVals();
332  llvm::APSInt AdjInt = Int-Adjustment;
333  RangeSet New = GetRange(state, sym).Intersect(BV, F, AdjInt, AdjInt);
334  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
335}
336
337const GRState*
338RangeConstraintManager::assumeSymLT(const GRState* state, SymbolRef sym,
339                                    const llvm::APSInt& Int,
340                                    const llvm::APSInt& Adjustment) {
341  BasicValueFactory &BV = state->getBasicVals();
342
343  QualType T = state->getSymbolManager().getType(sym);
344  const llvm::APSInt &Min = BV.getMinValue(T);
345
346  // Special case for Int == Min. This is always false.
347  if (Int == Min)
348    return NULL;
349
350  llvm::APSInt Lower = Min-Adjustment;
351  llvm::APSInt Upper = Int-Adjustment;
352  --Upper;
353
354  RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
355  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
356}
357
358const GRState*
359RangeConstraintManager::assumeSymGT(const GRState* state, SymbolRef sym,
360                                    const llvm::APSInt& Int,
361                                    const llvm::APSInt& Adjustment) {
362  BasicValueFactory &BV = state->getBasicVals();
363
364  QualType T = state->getSymbolManager().getType(sym);
365  const llvm::APSInt &Max = BV.getMaxValue(T);
366
367  // Special case for Int == Max. This is always false.
368  if (Int == Max)
369    return NULL;
370
371  llvm::APSInt Lower = Int-Adjustment;
372  llvm::APSInt Upper = Max-Adjustment;
373  ++Lower;
374
375  RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
376  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
377}
378
379const GRState*
380RangeConstraintManager::assumeSymGE(const GRState* state, SymbolRef sym,
381                                    const llvm::APSInt& Int,
382                                    const llvm::APSInt& Adjustment) {
383  BasicValueFactory &BV = state->getBasicVals();
384
385  QualType T = state->getSymbolManager().getType(sym);
386  const llvm::APSInt &Min = BV.getMinValue(T);
387
388  // Special case for Int == Min. This is always feasible.
389  if (Int == Min)
390    return state;
391
392  const llvm::APSInt &Max = BV.getMaxValue(T);
393
394  llvm::APSInt Lower = Int-Adjustment;
395  llvm::APSInt Upper = Max-Adjustment;
396
397  RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
398  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
399}
400
401const GRState*
402RangeConstraintManager::assumeSymLE(const GRState* state, SymbolRef sym,
403                                    const llvm::APSInt& Int,
404                                    const llvm::APSInt& Adjustment) {
405  BasicValueFactory &BV = state->getBasicVals();
406
407  QualType T = state->getSymbolManager().getType(sym);
408  const llvm::APSInt &Max = BV.getMaxValue(T);
409
410  // Special case for Int == Max. This is always feasible.
411  if (Int == Max)
412    return state;
413
414  const llvm::APSInt &Min = BV.getMinValue(T);
415
416  llvm::APSInt Lower = Min-Adjustment;
417  llvm::APSInt Upper = Int-Adjustment;
418
419  RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
420  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
421}
422
423//===------------------------------------------------------------------------===
424// Pretty-printing.
425//===------------------------------------------------------------------------===/
426
427void RangeConstraintManager::print(const GRState* St, llvm::raw_ostream& Out,
428                                   const char* nl, const char *sep) {
429
430  ConstraintRangeTy Ranges = St->get<ConstraintRange>();
431
432  if (Ranges.isEmpty())
433    return;
434
435  Out << nl << sep << "ranges of symbol values:";
436
437  for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
438    Out << nl << ' ' << I.getKey() << " : ";
439    I.getData().print(Out);
440  }
441}
442