SemaTemplate.cpp revision 210299
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
31                                           NamedDecl *Orig) {
32  NamedDecl *D = Orig->getUnderlyingDecl();
33
34  if (isa<TemplateDecl>(D))
35    return Orig;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  // The set of class templates we've already seen.
67  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
68  LookupResult::Filter filter = R.makeFilter();
69  while (filter.hasNext()) {
70    NamedDecl *Orig = filter.next();
71    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
72    if (!Repl)
73      filter.erase();
74    else if (Repl != Orig) {
75
76      // C++ [temp.local]p3:
77      //   A lookup that finds an injected-class-name (10.2) can result in an
78      //   ambiguity in certain cases (for example, if it is found in more than
79      //   one base class). If all of the injected-class-names that are found
80      //   refer to specializations of the same class template, and if the name
81      //   is followed by a template-argument-list, the reference refers to the
82      //   class template itself and not a specialization thereof, and is not
83      //   ambiguous.
84      //
85      // FIXME: Will we eventually have to do the same for alias templates?
86      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
87        if (!ClassTemplates.insert(ClassTmpl)) {
88          filter.erase();
89          continue;
90        }
91
92      filter.replace(Repl);
93    }
94  }
95  filter.done();
96}
97
98TemplateNameKind Sema::isTemplateName(Scope *S,
99                                      CXXScopeSpec &SS,
100                                      UnqualifiedId &Name,
101                                      TypeTy *ObjectTypePtr,
102                                      bool EnteringContext,
103                                      TemplateTy &TemplateResult,
104                                      bool &MemberOfUnknownSpecialization) {
105  assert(getLangOptions().CPlusPlus && "No template names in C!");
106
107  DeclarationName TName;
108  MemberOfUnknownSpecialization = false;
109
110  switch (Name.getKind()) {
111  case UnqualifiedId::IK_Identifier:
112    TName = DeclarationName(Name.Identifier);
113    break;
114
115  case UnqualifiedId::IK_OperatorFunctionId:
116    TName = Context.DeclarationNames.getCXXOperatorName(
117                                              Name.OperatorFunctionId.Operator);
118    break;
119
120  case UnqualifiedId::IK_LiteralOperatorId:
121    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
122    break;
123
124  default:
125    return TNK_Non_template;
126  }
127
128  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
129
130  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
131                 LookupOrdinaryName);
132  R.suppressDiagnostics();
133  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
134                     MemberOfUnknownSpecialization);
135  if (R.empty() || R.isAmbiguous())
136    return TNK_Non_template;
137
138  TemplateName Template;
139  TemplateNameKind TemplateKind;
140
141  unsigned ResultCount = R.end() - R.begin();
142  if (ResultCount > 1) {
143    // We assume that we'll preserve the qualifier from a function
144    // template name in other ways.
145    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
146    TemplateKind = TNK_Function_template;
147  } else {
148    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
149
150    if (SS.isSet() && !SS.isInvalid()) {
151      NestedNameSpecifier *Qualifier
152        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
153      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
154    } else {
155      Template = TemplateName(TD);
156    }
157
158    if (isa<FunctionTemplateDecl>(TD))
159      TemplateKind = TNK_Function_template;
160    else {
161      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
162      TemplateKind = TNK_Type_template;
163    }
164  }
165
166  TemplateResult = TemplateTy::make(Template);
167  return TemplateKind;
168}
169
170bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
171                                       SourceLocation IILoc,
172                                       Scope *S,
173                                       const CXXScopeSpec *SS,
174                                       TemplateTy &SuggestedTemplate,
175                                       TemplateNameKind &SuggestedKind) {
176  // We can't recover unless there's a dependent scope specifier preceding the
177  // template name.
178  // FIXME: Typo correction?
179  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
180      computeDeclContext(*SS))
181    return false;
182
183  // The code is missing a 'template' keyword prior to the dependent template
184  // name.
185  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
186  Diag(IILoc, diag::err_template_kw_missing)
187    << Qualifier << II.getName()
188    << FixItHint::CreateInsertion(IILoc, "template ");
189  SuggestedTemplate
190    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
191  SuggestedKind = TNK_Dependent_template_name;
192  return true;
193}
194
195void Sema::LookupTemplateName(LookupResult &Found,
196                              Scope *S, CXXScopeSpec &SS,
197                              QualType ObjectType,
198                              bool EnteringContext,
199                              bool &MemberOfUnknownSpecialization) {
200  // Determine where to perform name lookup
201  MemberOfUnknownSpecialization = false;
202  DeclContext *LookupCtx = 0;
203  bool isDependent = false;
204  if (!ObjectType.isNull()) {
205    // This nested-name-specifier occurs in a member access expression, e.g.,
206    // x->B::f, and we are looking into the type of the object.
207    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
208    LookupCtx = computeDeclContext(ObjectType);
209    isDependent = ObjectType->isDependentType();
210    assert((isDependent || !ObjectType->isIncompleteType()) &&
211           "Caller should have completed object type");
212  } else if (SS.isSet()) {
213    // This nested-name-specifier occurs after another nested-name-specifier,
214    // so long into the context associated with the prior nested-name-specifier.
215    LookupCtx = computeDeclContext(SS, EnteringContext);
216    isDependent = isDependentScopeSpecifier(SS);
217
218    // The declaration context must be complete.
219    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
220      return;
221  }
222
223  bool ObjectTypeSearchedInScope = false;
224  if (LookupCtx) {
225    // Perform "qualified" name lookup into the declaration context we
226    // computed, which is either the type of the base of a member access
227    // expression or the declaration context associated with a prior
228    // nested-name-specifier.
229    LookupQualifiedName(Found, LookupCtx);
230
231    if (!ObjectType.isNull() && Found.empty()) {
232      // C++ [basic.lookup.classref]p1:
233      //   In a class member access expression (5.2.5), if the . or -> token is
234      //   immediately followed by an identifier followed by a <, the
235      //   identifier must be looked up to determine whether the < is the
236      //   beginning of a template argument list (14.2) or a less-than operator.
237      //   The identifier is first looked up in the class of the object
238      //   expression. If the identifier is not found, it is then looked up in
239      //   the context of the entire postfix-expression and shall name a class
240      //   or function template.
241      //
242      // FIXME: When we're instantiating a template, do we actually have to
243      // look in the scope of the template? Seems fishy...
244      if (S) LookupName(Found, S);
245      ObjectTypeSearchedInScope = true;
246    }
247  } else if (isDependent) {
248    // We cannot look into a dependent object type or nested nme
249    // specifier.
250    MemberOfUnknownSpecialization = true;
251    return;
252  } else {
253    // Perform unqualified name lookup in the current scope.
254    LookupName(Found, S);
255  }
256
257  if (Found.empty() && !isDependent) {
258    // If we did not find any names, attempt to correct any typos.
259    DeclarationName Name = Found.getLookupName();
260    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
261                                                false, CTC_CXXCasts)) {
262      FilterAcceptableTemplateNames(Context, Found);
263      if (!Found.empty()) {
264        if (LookupCtx)
265          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
266            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
267            << FixItHint::CreateReplacement(Found.getNameLoc(),
268                                          Found.getLookupName().getAsString());
269        else
270          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
271            << Name << Found.getLookupName()
272            << FixItHint::CreateReplacement(Found.getNameLoc(),
273                                          Found.getLookupName().getAsString());
274        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
275          Diag(Template->getLocation(), diag::note_previous_decl)
276            << Template->getDeclName();
277      }
278    } else {
279      Found.clear();
280      Found.setLookupName(Name);
281    }
282  }
283
284  FilterAcceptableTemplateNames(Context, Found);
285  if (Found.empty())
286    return;
287
288  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
289    // C++ [basic.lookup.classref]p1:
290    //   [...] If the lookup in the class of the object expression finds a
291    //   template, the name is also looked up in the context of the entire
292    //   postfix-expression and [...]
293    //
294    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
295                            LookupOrdinaryName);
296    LookupName(FoundOuter, S);
297    FilterAcceptableTemplateNames(Context, FoundOuter);
298
299    if (FoundOuter.empty()) {
300      //   - if the name is not found, the name found in the class of the
301      //     object expression is used, otherwise
302    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
303      //   - if the name is found in the context of the entire
304      //     postfix-expression and does not name a class template, the name
305      //     found in the class of the object expression is used, otherwise
306    } else if (!Found.isSuppressingDiagnostics()) {
307      //   - if the name found is a class template, it must refer to the same
308      //     entity as the one found in the class of the object expression,
309      //     otherwise the program is ill-formed.
310      if (!Found.isSingleResult() ||
311          Found.getFoundDecl()->getCanonicalDecl()
312            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
313        Diag(Found.getNameLoc(),
314             diag::ext_nested_name_member_ref_lookup_ambiguous)
315          << Found.getLookupName()
316          << ObjectType;
317        Diag(Found.getRepresentativeDecl()->getLocation(),
318             diag::note_ambig_member_ref_object_type)
319          << ObjectType;
320        Diag(FoundOuter.getFoundDecl()->getLocation(),
321             diag::note_ambig_member_ref_scope);
322
323        // Recover by taking the template that we found in the object
324        // expression's type.
325      }
326    }
327  }
328}
329
330/// ActOnDependentIdExpression - Handle a dependent id-expression that
331/// was just parsed.  This is only possible with an explicit scope
332/// specifier naming a dependent type.
333Sema::OwningExprResult
334Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
335                                 DeclarationName Name,
336                                 SourceLocation NameLoc,
337                                 bool isAddressOfOperand,
338                           const TemplateArgumentListInfo *TemplateArgs) {
339  NestedNameSpecifier *Qualifier
340    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
341
342  DeclContext *DC = getFunctionLevelDeclContext();
343
344  if (!isAddressOfOperand &&
345      isa<CXXMethodDecl>(DC) &&
346      cast<CXXMethodDecl>(DC)->isInstance()) {
347    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
348
349    // Since the 'this' expression is synthesized, we don't need to
350    // perform the double-lookup check.
351    NamedDecl *FirstQualifierInScope = 0;
352
353    return Owned(CXXDependentScopeMemberExpr::Create(Context,
354                                                     /*This*/ 0, ThisType,
355                                                     /*IsArrow*/ true,
356                                                     /*Op*/ SourceLocation(),
357                                                     Qualifier, SS.getRange(),
358                                                     FirstQualifierInScope,
359                                                     Name, NameLoc,
360                                                     TemplateArgs));
361  }
362
363  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
364}
365
366Sema::OwningExprResult
367Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
368                                DeclarationName Name,
369                                SourceLocation NameLoc,
370                                const TemplateArgumentListInfo *TemplateArgs) {
371  return Owned(DependentScopeDeclRefExpr::Create(Context,
372               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
373                                                 SS.getRange(),
374                                                 Name, NameLoc,
375                                                 TemplateArgs));
376}
377
378/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
379/// that the template parameter 'PrevDecl' is being shadowed by a new
380/// declaration at location Loc. Returns true to indicate that this is
381/// an error, and false otherwise.
382bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
383  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
384
385  // Microsoft Visual C++ permits template parameters to be shadowed.
386  if (getLangOptions().Microsoft)
387    return false;
388
389  // C++ [temp.local]p4:
390  //   A template-parameter shall not be redeclared within its
391  //   scope (including nested scopes).
392  Diag(Loc, diag::err_template_param_shadow)
393    << cast<NamedDecl>(PrevDecl)->getDeclName();
394  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
395  return true;
396}
397
398/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
399/// the parameter D to reference the templated declaration and return a pointer
400/// to the template declaration. Otherwise, do nothing to D and return null.
401TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
402  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
403    D = DeclPtrTy::make(Temp->getTemplatedDecl());
404    return Temp;
405  }
406  return 0;
407}
408
409static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
410                                            const ParsedTemplateArgument &Arg) {
411
412  switch (Arg.getKind()) {
413  case ParsedTemplateArgument::Type: {
414    TypeSourceInfo *DI;
415    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
416    if (!DI)
417      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
418    return TemplateArgumentLoc(TemplateArgument(T), DI);
419  }
420
421  case ParsedTemplateArgument::NonType: {
422    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
423    return TemplateArgumentLoc(TemplateArgument(E), E);
424  }
425
426  case ParsedTemplateArgument::Template: {
427    TemplateName Template
428      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
429    return TemplateArgumentLoc(TemplateArgument(Template),
430                               Arg.getScopeSpec().getRange(),
431                               Arg.getLocation());
432  }
433  }
434
435  llvm_unreachable("Unhandled parsed template argument");
436  return TemplateArgumentLoc();
437}
438
439/// \brief Translates template arguments as provided by the parser
440/// into template arguments used by semantic analysis.
441void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
442                                      TemplateArgumentListInfo &TemplateArgs) {
443 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
444   TemplateArgs.addArgument(translateTemplateArgument(*this,
445                                                      TemplateArgsIn[I]));
446}
447
448/// ActOnTypeParameter - Called when a C++ template type parameter
449/// (e.g., "typename T") has been parsed. Typename specifies whether
450/// the keyword "typename" was used to declare the type parameter
451/// (otherwise, "class" was used), and KeyLoc is the location of the
452/// "class" or "typename" keyword. ParamName is the name of the
453/// parameter (NULL indicates an unnamed template parameter) and
454/// ParamName is the location of the parameter name (if any).
455/// If the type parameter has a default argument, it will be added
456/// later via ActOnTypeParameterDefault.
457Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
458                                         SourceLocation EllipsisLoc,
459                                         SourceLocation KeyLoc,
460                                         IdentifierInfo *ParamName,
461                                         SourceLocation ParamNameLoc,
462                                         unsigned Depth, unsigned Position,
463                                         SourceLocation EqualLoc,
464                                         TypeTy *DefaultArg) {
465  assert(S->isTemplateParamScope() &&
466         "Template type parameter not in template parameter scope!");
467  bool Invalid = false;
468
469  if (ParamName) {
470    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
471                                           LookupOrdinaryName,
472                                           ForRedeclaration);
473    if (PrevDecl && PrevDecl->isTemplateParameter())
474      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
475                                                           PrevDecl);
476  }
477
478  SourceLocation Loc = ParamNameLoc;
479  if (!ParamName)
480    Loc = KeyLoc;
481
482  TemplateTypeParmDecl *Param
483    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
484                                   Loc, Depth, Position, ParamName, Typename,
485                                   Ellipsis);
486  if (Invalid)
487    Param->setInvalidDecl();
488
489  if (ParamName) {
490    // Add the template parameter into the current scope.
491    S->AddDecl(DeclPtrTy::make(Param));
492    IdResolver.AddDecl(Param);
493  }
494
495  // Handle the default argument, if provided.
496  if (DefaultArg) {
497    TypeSourceInfo *DefaultTInfo;
498    GetTypeFromParser(DefaultArg, &DefaultTInfo);
499
500    assert(DefaultTInfo && "expected source information for type");
501
502    // C++0x [temp.param]p9:
503    // A default template-argument may be specified for any kind of
504    // template-parameter that is not a template parameter pack.
505    if (Ellipsis) {
506      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
507      return DeclPtrTy::make(Param);
508    }
509
510    // Check the template argument itself.
511    if (CheckTemplateArgument(Param, DefaultTInfo)) {
512      Param->setInvalidDecl();
513      return DeclPtrTy::make(Param);;
514    }
515
516    Param->setDefaultArgument(DefaultTInfo, false);
517  }
518
519  return DeclPtrTy::make(Param);
520}
521
522/// \brief Check that the type of a non-type template parameter is
523/// well-formed.
524///
525/// \returns the (possibly-promoted) parameter type if valid;
526/// otherwise, produces a diagnostic and returns a NULL type.
527QualType
528Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
529  // We don't allow variably-modified types as the type of non-type template
530  // parameters.
531  if (T->isVariablyModifiedType()) {
532    Diag(Loc, diag::err_variably_modified_nontype_template_param)
533      << T;
534    return QualType();
535  }
536
537  // C++ [temp.param]p4:
538  //
539  // A non-type template-parameter shall have one of the following
540  // (optionally cv-qualified) types:
541  //
542  //       -- integral or enumeration type,
543  if (T->isIntegralOrEnumerationType() ||
544      //   -- pointer to object or pointer to function,
545      (T->isPointerType() &&
546       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
547        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
548      //   -- reference to object or reference to function,
549      T->isReferenceType() ||
550      //   -- pointer to member.
551      T->isMemberPointerType() ||
552      // If T is a dependent type, we can't do the check now, so we
553      // assume that it is well-formed.
554      T->isDependentType())
555    return T;
556  // C++ [temp.param]p8:
557  //
558  //   A non-type template-parameter of type "array of T" or
559  //   "function returning T" is adjusted to be of type "pointer to
560  //   T" or "pointer to function returning T", respectively.
561  else if (T->isArrayType())
562    // FIXME: Keep the type prior to promotion?
563    return Context.getArrayDecayedType(T);
564  else if (T->isFunctionType())
565    // FIXME: Keep the type prior to promotion?
566    return Context.getPointerType(T);
567
568  Diag(Loc, diag::err_template_nontype_parm_bad_type)
569    << T;
570
571  return QualType();
572}
573
574Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
575                                                    unsigned Depth,
576                                                    unsigned Position,
577                                                    SourceLocation EqualLoc,
578                                                    ExprArg DefaultArg) {
579  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
580  QualType T = TInfo->getType();
581
582  assert(S->isTemplateParamScope() &&
583         "Non-type template parameter not in template parameter scope!");
584  bool Invalid = false;
585
586  IdentifierInfo *ParamName = D.getIdentifier();
587  if (ParamName) {
588    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
589                                           LookupOrdinaryName,
590                                           ForRedeclaration);
591    if (PrevDecl && PrevDecl->isTemplateParameter())
592      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
593                                                           PrevDecl);
594  }
595
596  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
597  if (T.isNull()) {
598    T = Context.IntTy; // Recover with an 'int' type.
599    Invalid = true;
600  }
601
602  NonTypeTemplateParmDecl *Param
603    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
604                                      D.getIdentifierLoc(),
605                                      Depth, Position, ParamName, T, TInfo);
606  if (Invalid)
607    Param->setInvalidDecl();
608
609  if (D.getIdentifier()) {
610    // Add the template parameter into the current scope.
611    S->AddDecl(DeclPtrTy::make(Param));
612    IdResolver.AddDecl(Param);
613  }
614
615  // Check the well-formedness of the default template argument, if provided.
616  if (Expr *Default = static_cast<Expr *>(DefaultArg.get())) {
617    TemplateArgument Converted;
618    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
619      Param->setInvalidDecl();
620      return DeclPtrTy::make(Param);;
621    }
622
623    Param->setDefaultArgument(DefaultArg.takeAs<Expr>(), false);
624  }
625
626  return DeclPtrTy::make(Param);
627}
628
629/// ActOnTemplateTemplateParameter - Called when a C++ template template
630/// parameter (e.g. T in template <template <typename> class T> class array)
631/// has been parsed. S is the current scope.
632Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
633                                                     SourceLocation TmpLoc,
634                                                     TemplateParamsTy *Params,
635                                                     IdentifierInfo *Name,
636                                                     SourceLocation NameLoc,
637                                                     unsigned Depth,
638                                                     unsigned Position,
639                                                     SourceLocation EqualLoc,
640                                       const ParsedTemplateArgument &Default) {
641  assert(S->isTemplateParamScope() &&
642         "Template template parameter not in template parameter scope!");
643
644  // Construct the parameter object.
645  TemplateTemplateParmDecl *Param =
646    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
647                                     TmpLoc, Depth, Position, Name,
648                                     (TemplateParameterList*)Params);
649
650  // If the template template parameter has a name, then link the identifier
651  // into the scope and lookup mechanisms.
652  if (Name) {
653    S->AddDecl(DeclPtrTy::make(Param));
654    IdResolver.AddDecl(Param);
655  }
656
657  if (!Default.isInvalid()) {
658    // Check only that we have a template template argument. We don't want to
659    // try to check well-formedness now, because our template template parameter
660    // might have dependent types in its template parameters, which we wouldn't
661    // be able to match now.
662    //
663    // If none of the template template parameter's template arguments mention
664    // other template parameters, we could actually perform more checking here.
665    // However, it isn't worth doing.
666    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
667    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
668      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
669        << DefaultArg.getSourceRange();
670      return DeclPtrTy::make(Param);
671    }
672
673    Param->setDefaultArgument(DefaultArg, false);
674  }
675
676  return DeclPtrTy::make(Param);
677}
678
679/// ActOnTemplateParameterList - Builds a TemplateParameterList that
680/// contains the template parameters in Params/NumParams.
681Sema::TemplateParamsTy *
682Sema::ActOnTemplateParameterList(unsigned Depth,
683                                 SourceLocation ExportLoc,
684                                 SourceLocation TemplateLoc,
685                                 SourceLocation LAngleLoc,
686                                 DeclPtrTy *Params, unsigned NumParams,
687                                 SourceLocation RAngleLoc) {
688  if (ExportLoc.isValid())
689    Diag(ExportLoc, diag::warn_template_export_unsupported);
690
691  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
692                                       (NamedDecl**)Params, NumParams,
693                                       RAngleLoc);
694}
695
696static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
697  if (SS.isSet())
698    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
699                        SS.getRange());
700}
701
702Sema::DeclResult
703Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
704                         SourceLocation KWLoc, CXXScopeSpec &SS,
705                         IdentifierInfo *Name, SourceLocation NameLoc,
706                         AttributeList *Attr,
707                         TemplateParameterList *TemplateParams,
708                         AccessSpecifier AS) {
709  assert(TemplateParams && TemplateParams->size() > 0 &&
710         "No template parameters");
711  assert(TUK != TUK_Reference && "Can only declare or define class templates");
712  bool Invalid = false;
713
714  // Check that we can declare a template here.
715  if (CheckTemplateDeclScope(S, TemplateParams))
716    return true;
717
718  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
719  assert(Kind != TTK_Enum && "can't build template of enumerated type");
720
721  // There is no such thing as an unnamed class template.
722  if (!Name) {
723    Diag(KWLoc, diag::err_template_unnamed_class);
724    return true;
725  }
726
727  // Find any previous declaration with this name.
728  DeclContext *SemanticContext;
729  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
730                        ForRedeclaration);
731  if (SS.isNotEmpty() && !SS.isInvalid()) {
732    SemanticContext = computeDeclContext(SS, true);
733    if (!SemanticContext) {
734      // FIXME: Produce a reasonable diagnostic here
735      return true;
736    }
737
738    if (RequireCompleteDeclContext(SS, SemanticContext))
739      return true;
740
741    LookupQualifiedName(Previous, SemanticContext);
742  } else {
743    SemanticContext = CurContext;
744    LookupName(Previous, S);
745  }
746
747  if (Previous.isAmbiguous())
748    return true;
749
750  NamedDecl *PrevDecl = 0;
751  if (Previous.begin() != Previous.end())
752    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
753
754  // If there is a previous declaration with the same name, check
755  // whether this is a valid redeclaration.
756  ClassTemplateDecl *PrevClassTemplate
757    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
758
759  // We may have found the injected-class-name of a class template,
760  // class template partial specialization, or class template specialization.
761  // In these cases, grab the template that is being defined or specialized.
762  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
763      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
764    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
765    PrevClassTemplate
766      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
767    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
768      PrevClassTemplate
769        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
770            ->getSpecializedTemplate();
771    }
772  }
773
774  if (TUK == TUK_Friend) {
775    // C++ [namespace.memdef]p3:
776    //   [...] When looking for a prior declaration of a class or a function
777    //   declared as a friend, and when the name of the friend class or
778    //   function is neither a qualified name nor a template-id, scopes outside
779    //   the innermost enclosing namespace scope are not considered.
780    if (!SS.isSet()) {
781      DeclContext *OutermostContext = CurContext;
782      while (!OutermostContext->isFileContext())
783        OutermostContext = OutermostContext->getLookupParent();
784
785      if (PrevDecl &&
786          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
787           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
788        SemanticContext = PrevDecl->getDeclContext();
789      } else {
790        // Declarations in outer scopes don't matter. However, the outermost
791        // context we computed is the semantic context for our new
792        // declaration.
793        PrevDecl = PrevClassTemplate = 0;
794        SemanticContext = OutermostContext;
795      }
796    }
797
798    if (CurContext->isDependentContext()) {
799      // If this is a dependent context, we don't want to link the friend
800      // class template to the template in scope, because that would perform
801      // checking of the template parameter lists that can't be performed
802      // until the outer context is instantiated.
803      PrevDecl = PrevClassTemplate = 0;
804    }
805  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
806    PrevDecl = PrevClassTemplate = 0;
807
808  if (PrevClassTemplate) {
809    // Ensure that the template parameter lists are compatible.
810    if (!TemplateParameterListsAreEqual(TemplateParams,
811                                   PrevClassTemplate->getTemplateParameters(),
812                                        /*Complain=*/true,
813                                        TPL_TemplateMatch))
814      return true;
815
816    // C++ [temp.class]p4:
817    //   In a redeclaration, partial specialization, explicit
818    //   specialization or explicit instantiation of a class template,
819    //   the class-key shall agree in kind with the original class
820    //   template declaration (7.1.5.3).
821    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
822    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
823      Diag(KWLoc, diag::err_use_with_wrong_tag)
824        << Name
825        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
826      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
827      Kind = PrevRecordDecl->getTagKind();
828    }
829
830    // Check for redefinition of this class template.
831    if (TUK == TUK_Definition) {
832      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
833        Diag(NameLoc, diag::err_redefinition) << Name;
834        Diag(Def->getLocation(), diag::note_previous_definition);
835        // FIXME: Would it make sense to try to "forget" the previous
836        // definition, as part of error recovery?
837        return true;
838      }
839    }
840  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
841    // Maybe we will complain about the shadowed template parameter.
842    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
843    // Just pretend that we didn't see the previous declaration.
844    PrevDecl = 0;
845  } else if (PrevDecl) {
846    // C++ [temp]p5:
847    //   A class template shall not have the same name as any other
848    //   template, class, function, object, enumeration, enumerator,
849    //   namespace, or type in the same scope (3.3), except as specified
850    //   in (14.5.4).
851    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
852    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
853    return true;
854  }
855
856  // Check the template parameter list of this declaration, possibly
857  // merging in the template parameter list from the previous class
858  // template declaration.
859  if (CheckTemplateParameterList(TemplateParams,
860            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
861                                 TPC_ClassTemplate))
862    Invalid = true;
863
864  if (SS.isSet()) {
865    // If the name of the template was qualified, we must be defining the
866    // template out-of-line.
867    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
868        !(TUK == TUK_Friend && CurContext->isDependentContext()))
869      Diag(NameLoc, diag::err_member_def_does_not_match)
870        << Name << SemanticContext << SS.getRange();
871  }
872
873  CXXRecordDecl *NewClass =
874    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
875                          PrevClassTemplate?
876                            PrevClassTemplate->getTemplatedDecl() : 0,
877                          /*DelayTypeCreation=*/true);
878  SetNestedNameSpecifier(NewClass, SS);
879
880  ClassTemplateDecl *NewTemplate
881    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
882                                DeclarationName(Name), TemplateParams,
883                                NewClass, PrevClassTemplate);
884  NewClass->setDescribedClassTemplate(NewTemplate);
885
886  // Build the type for the class template declaration now.
887  QualType T = NewTemplate->getInjectedClassNameSpecialization();
888  T = Context.getInjectedClassNameType(NewClass, T);
889  assert(T->isDependentType() && "Class template type is not dependent?");
890  (void)T;
891
892  // If we are providing an explicit specialization of a member that is a
893  // class template, make a note of that.
894  if (PrevClassTemplate &&
895      PrevClassTemplate->getInstantiatedFromMemberTemplate())
896    PrevClassTemplate->setMemberSpecialization();
897
898  // Set the access specifier.
899  if (!Invalid && TUK != TUK_Friend)
900    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
901
902  // Set the lexical context of these templates
903  NewClass->setLexicalDeclContext(CurContext);
904  NewTemplate->setLexicalDeclContext(CurContext);
905
906  if (TUK == TUK_Definition)
907    NewClass->startDefinition();
908
909  if (Attr)
910    ProcessDeclAttributeList(S, NewClass, Attr);
911
912  if (TUK != TUK_Friend)
913    PushOnScopeChains(NewTemplate, S);
914  else {
915    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
916      NewTemplate->setAccess(PrevClassTemplate->getAccess());
917      NewClass->setAccess(PrevClassTemplate->getAccess());
918    }
919
920    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
921                                       PrevClassTemplate != NULL);
922
923    // Friend templates are visible in fairly strange ways.
924    if (!CurContext->isDependentContext()) {
925      DeclContext *DC = SemanticContext->getLookupContext();
926      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
927      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
928        PushOnScopeChains(NewTemplate, EnclosingScope,
929                          /* AddToContext = */ false);
930    }
931
932    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
933                                            NewClass->getLocation(),
934                                            NewTemplate,
935                                    /*FIXME:*/NewClass->getLocation());
936    Friend->setAccess(AS_public);
937    CurContext->addDecl(Friend);
938  }
939
940  if (Invalid) {
941    NewTemplate->setInvalidDecl();
942    NewClass->setInvalidDecl();
943  }
944  return DeclPtrTy::make(NewTemplate);
945}
946
947/// \brief Diagnose the presence of a default template argument on a
948/// template parameter, which is ill-formed in certain contexts.
949///
950/// \returns true if the default template argument should be dropped.
951static bool DiagnoseDefaultTemplateArgument(Sema &S,
952                                            Sema::TemplateParamListContext TPC,
953                                            SourceLocation ParamLoc,
954                                            SourceRange DefArgRange) {
955  switch (TPC) {
956  case Sema::TPC_ClassTemplate:
957    return false;
958
959  case Sema::TPC_FunctionTemplate:
960    // C++ [temp.param]p9:
961    //   A default template-argument shall not be specified in a
962    //   function template declaration or a function template
963    //   definition [...]
964    // (This sentence is not in C++0x, per DR226).
965    if (!S.getLangOptions().CPlusPlus0x)
966      S.Diag(ParamLoc,
967             diag::err_template_parameter_default_in_function_template)
968        << DefArgRange;
969    return false;
970
971  case Sema::TPC_ClassTemplateMember:
972    // C++0x [temp.param]p9:
973    //   A default template-argument shall not be specified in the
974    //   template-parameter-lists of the definition of a member of a
975    //   class template that appears outside of the member's class.
976    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
977      << DefArgRange;
978    return true;
979
980  case Sema::TPC_FriendFunctionTemplate:
981    // C++ [temp.param]p9:
982    //   A default template-argument shall not be specified in a
983    //   friend template declaration.
984    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
985      << DefArgRange;
986    return true;
987
988    // FIXME: C++0x [temp.param]p9 allows default template-arguments
989    // for friend function templates if there is only a single
990    // declaration (and it is a definition). Strange!
991  }
992
993  return false;
994}
995
996/// \brief Checks the validity of a template parameter list, possibly
997/// considering the template parameter list from a previous
998/// declaration.
999///
1000/// If an "old" template parameter list is provided, it must be
1001/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1002/// template parameter list.
1003///
1004/// \param NewParams Template parameter list for a new template
1005/// declaration. This template parameter list will be updated with any
1006/// default arguments that are carried through from the previous
1007/// template parameter list.
1008///
1009/// \param OldParams If provided, template parameter list from a
1010/// previous declaration of the same template. Default template
1011/// arguments will be merged from the old template parameter list to
1012/// the new template parameter list.
1013///
1014/// \param TPC Describes the context in which we are checking the given
1015/// template parameter list.
1016///
1017/// \returns true if an error occurred, false otherwise.
1018bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1019                                      TemplateParameterList *OldParams,
1020                                      TemplateParamListContext TPC) {
1021  bool Invalid = false;
1022
1023  // C++ [temp.param]p10:
1024  //   The set of default template-arguments available for use with a
1025  //   template declaration or definition is obtained by merging the
1026  //   default arguments from the definition (if in scope) and all
1027  //   declarations in scope in the same way default function
1028  //   arguments are (8.3.6).
1029  bool SawDefaultArgument = false;
1030  SourceLocation PreviousDefaultArgLoc;
1031
1032  bool SawParameterPack = false;
1033  SourceLocation ParameterPackLoc;
1034
1035  // Dummy initialization to avoid warnings.
1036  TemplateParameterList::iterator OldParam = NewParams->end();
1037  if (OldParams)
1038    OldParam = OldParams->begin();
1039
1040  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1041                                    NewParamEnd = NewParams->end();
1042       NewParam != NewParamEnd; ++NewParam) {
1043    // Variables used to diagnose redundant default arguments
1044    bool RedundantDefaultArg = false;
1045    SourceLocation OldDefaultLoc;
1046    SourceLocation NewDefaultLoc;
1047
1048    // Variables used to diagnose missing default arguments
1049    bool MissingDefaultArg = false;
1050
1051    // C++0x [temp.param]p11:
1052    // If a template parameter of a class template is a template parameter pack,
1053    // it must be the last template parameter.
1054    if (SawParameterPack) {
1055      Diag(ParameterPackLoc,
1056           diag::err_template_param_pack_must_be_last_template_parameter);
1057      Invalid = true;
1058    }
1059
1060    if (TemplateTypeParmDecl *NewTypeParm
1061          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1062      // Check the presence of a default argument here.
1063      if (NewTypeParm->hasDefaultArgument() &&
1064          DiagnoseDefaultTemplateArgument(*this, TPC,
1065                                          NewTypeParm->getLocation(),
1066               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1067                                                       .getSourceRange()))
1068        NewTypeParm->removeDefaultArgument();
1069
1070      // Merge default arguments for template type parameters.
1071      TemplateTypeParmDecl *OldTypeParm
1072          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1073
1074      if (NewTypeParm->isParameterPack()) {
1075        assert(!NewTypeParm->hasDefaultArgument() &&
1076               "Parameter packs can't have a default argument!");
1077        SawParameterPack = true;
1078        ParameterPackLoc = NewTypeParm->getLocation();
1079      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1080                 NewTypeParm->hasDefaultArgument()) {
1081        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1082        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1083        SawDefaultArgument = true;
1084        RedundantDefaultArg = true;
1085        PreviousDefaultArgLoc = NewDefaultLoc;
1086      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1087        // Merge the default argument from the old declaration to the
1088        // new declaration.
1089        SawDefaultArgument = true;
1090        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1091                                        true);
1092        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1093      } else if (NewTypeParm->hasDefaultArgument()) {
1094        SawDefaultArgument = true;
1095        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1096      } else if (SawDefaultArgument)
1097        MissingDefaultArg = true;
1098    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1099               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1100      // Check the presence of a default argument here.
1101      if (NewNonTypeParm->hasDefaultArgument() &&
1102          DiagnoseDefaultTemplateArgument(*this, TPC,
1103                                          NewNonTypeParm->getLocation(),
1104                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1105        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1106        NewNonTypeParm->removeDefaultArgument();
1107      }
1108
1109      // Merge default arguments for non-type template parameters
1110      NonTypeTemplateParmDecl *OldNonTypeParm
1111        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1112      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1113          NewNonTypeParm->hasDefaultArgument()) {
1114        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1115        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1116        SawDefaultArgument = true;
1117        RedundantDefaultArg = true;
1118        PreviousDefaultArgLoc = NewDefaultLoc;
1119      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1120        // Merge the default argument from the old declaration to the
1121        // new declaration.
1122        SawDefaultArgument = true;
1123        // FIXME: We need to create a new kind of "default argument"
1124        // expression that points to a previous template template
1125        // parameter.
1126        NewNonTypeParm->setDefaultArgument(
1127                                         OldNonTypeParm->getDefaultArgument(),
1128                                         /*Inherited=*/ true);
1129        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1130      } else if (NewNonTypeParm->hasDefaultArgument()) {
1131        SawDefaultArgument = true;
1132        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1133      } else if (SawDefaultArgument)
1134        MissingDefaultArg = true;
1135    } else {
1136      // Check the presence of a default argument here.
1137      TemplateTemplateParmDecl *NewTemplateParm
1138        = cast<TemplateTemplateParmDecl>(*NewParam);
1139      if (NewTemplateParm->hasDefaultArgument() &&
1140          DiagnoseDefaultTemplateArgument(*this, TPC,
1141                                          NewTemplateParm->getLocation(),
1142                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1143        NewTemplateParm->removeDefaultArgument();
1144
1145      // Merge default arguments for template template parameters
1146      TemplateTemplateParmDecl *OldTemplateParm
1147        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1148      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1149          NewTemplateParm->hasDefaultArgument()) {
1150        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1151        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1152        SawDefaultArgument = true;
1153        RedundantDefaultArg = true;
1154        PreviousDefaultArgLoc = NewDefaultLoc;
1155      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1156        // Merge the default argument from the old declaration to the
1157        // new declaration.
1158        SawDefaultArgument = true;
1159        // FIXME: We need to create a new kind of "default argument" expression
1160        // that points to a previous template template parameter.
1161        NewTemplateParm->setDefaultArgument(
1162                                          OldTemplateParm->getDefaultArgument(),
1163                                          /*Inherited=*/ true);
1164        PreviousDefaultArgLoc
1165          = OldTemplateParm->getDefaultArgument().getLocation();
1166      } else if (NewTemplateParm->hasDefaultArgument()) {
1167        SawDefaultArgument = true;
1168        PreviousDefaultArgLoc
1169          = NewTemplateParm->getDefaultArgument().getLocation();
1170      } else if (SawDefaultArgument)
1171        MissingDefaultArg = true;
1172    }
1173
1174    if (RedundantDefaultArg) {
1175      // C++ [temp.param]p12:
1176      //   A template-parameter shall not be given default arguments
1177      //   by two different declarations in the same scope.
1178      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1179      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1180      Invalid = true;
1181    } else if (MissingDefaultArg) {
1182      // C++ [temp.param]p11:
1183      //   If a template-parameter has a default template-argument,
1184      //   all subsequent template-parameters shall have a default
1185      //   template-argument supplied.
1186      Diag((*NewParam)->getLocation(),
1187           diag::err_template_param_default_arg_missing);
1188      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1189      Invalid = true;
1190    }
1191
1192    // If we have an old template parameter list that we're merging
1193    // in, move on to the next parameter.
1194    if (OldParams)
1195      ++OldParam;
1196  }
1197
1198  return Invalid;
1199}
1200
1201/// \brief Match the given template parameter lists to the given scope
1202/// specifier, returning the template parameter list that applies to the
1203/// name.
1204///
1205/// \param DeclStartLoc the start of the declaration that has a scope
1206/// specifier or a template parameter list.
1207///
1208/// \param SS the scope specifier that will be matched to the given template
1209/// parameter lists. This scope specifier precedes a qualified name that is
1210/// being declared.
1211///
1212/// \param ParamLists the template parameter lists, from the outermost to the
1213/// innermost template parameter lists.
1214///
1215/// \param NumParamLists the number of template parameter lists in ParamLists.
1216///
1217/// \param IsFriend Whether to apply the slightly different rules for
1218/// matching template parameters to scope specifiers in friend
1219/// declarations.
1220///
1221/// \param IsExplicitSpecialization will be set true if the entity being
1222/// declared is an explicit specialization, false otherwise.
1223///
1224/// \returns the template parameter list, if any, that corresponds to the
1225/// name that is preceded by the scope specifier @p SS. This template
1226/// parameter list may be have template parameters (if we're declaring a
1227/// template) or may have no template parameters (if we're declaring a
1228/// template specialization), or may be NULL (if we were's declaring isn't
1229/// itself a template).
1230TemplateParameterList *
1231Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1232                                              const CXXScopeSpec &SS,
1233                                          TemplateParameterList **ParamLists,
1234                                              unsigned NumParamLists,
1235                                              bool IsFriend,
1236                                              bool &IsExplicitSpecialization,
1237                                              bool &Invalid) {
1238  IsExplicitSpecialization = false;
1239
1240  // Find the template-ids that occur within the nested-name-specifier. These
1241  // template-ids will match up with the template parameter lists.
1242  llvm::SmallVector<const TemplateSpecializationType *, 4>
1243    TemplateIdsInSpecifier;
1244  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1245    ExplicitSpecializationsInSpecifier;
1246  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1247       NNS; NNS = NNS->getPrefix()) {
1248    const Type *T = NNS->getAsType();
1249    if (!T) break;
1250
1251    // C++0x [temp.expl.spec]p17:
1252    //   A member or a member template may be nested within many
1253    //   enclosing class templates. In an explicit specialization for
1254    //   such a member, the member declaration shall be preceded by a
1255    //   template<> for each enclosing class template that is
1256    //   explicitly specialized.
1257    //
1258    // Following the existing practice of GNU and EDG, we allow a typedef of a
1259    // template specialization type.
1260    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1261      T = TT->LookThroughTypedefs().getTypePtr();
1262
1263    if (const TemplateSpecializationType *SpecType
1264                                  = dyn_cast<TemplateSpecializationType>(T)) {
1265      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1266      if (!Template)
1267        continue; // FIXME: should this be an error? probably...
1268
1269      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1270        ClassTemplateSpecializationDecl *SpecDecl
1271          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1272        // If the nested name specifier refers to an explicit specialization,
1273        // we don't need a template<> header.
1274        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1275          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1276          continue;
1277        }
1278      }
1279
1280      TemplateIdsInSpecifier.push_back(SpecType);
1281    }
1282  }
1283
1284  // Reverse the list of template-ids in the scope specifier, so that we can
1285  // more easily match up the template-ids and the template parameter lists.
1286  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1287
1288  SourceLocation FirstTemplateLoc = DeclStartLoc;
1289  if (NumParamLists)
1290    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1291
1292  // Match the template-ids found in the specifier to the template parameter
1293  // lists.
1294  unsigned Idx = 0;
1295  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1296       Idx != NumTemplateIds; ++Idx) {
1297    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1298    bool DependentTemplateId = TemplateId->isDependentType();
1299    if (Idx >= NumParamLists) {
1300      // We have a template-id without a corresponding template parameter
1301      // list.
1302
1303      // ...which is fine if this is a friend declaration.
1304      if (IsFriend) {
1305        IsExplicitSpecialization = true;
1306        break;
1307      }
1308
1309      if (DependentTemplateId) {
1310        // FIXME: the location information here isn't great.
1311        Diag(SS.getRange().getBegin(),
1312             diag::err_template_spec_needs_template_parameters)
1313          << TemplateId
1314          << SS.getRange();
1315        Invalid = true;
1316      } else {
1317        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1318          << SS.getRange()
1319          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1320        IsExplicitSpecialization = true;
1321      }
1322      return 0;
1323    }
1324
1325    // Check the template parameter list against its corresponding template-id.
1326    if (DependentTemplateId) {
1327      TemplateParameterList *ExpectedTemplateParams = 0;
1328
1329      // Are there cases in (e.g.) friends where this won't match?
1330      if (const InjectedClassNameType *Injected
1331            = TemplateId->getAs<InjectedClassNameType>()) {
1332        CXXRecordDecl *Record = Injected->getDecl();
1333        if (ClassTemplatePartialSpecializationDecl *Partial =
1334              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1335          ExpectedTemplateParams = Partial->getTemplateParameters();
1336        else
1337          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1338            ->getTemplateParameters();
1339      }
1340
1341      if (ExpectedTemplateParams)
1342        TemplateParameterListsAreEqual(ParamLists[Idx],
1343                                       ExpectedTemplateParams,
1344                                       true, TPL_TemplateMatch);
1345
1346      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1347    } else if (ParamLists[Idx]->size() > 0)
1348      Diag(ParamLists[Idx]->getTemplateLoc(),
1349           diag::err_template_param_list_matches_nontemplate)
1350        << TemplateId
1351        << ParamLists[Idx]->getSourceRange();
1352    else
1353      IsExplicitSpecialization = true;
1354  }
1355
1356  // If there were at least as many template-ids as there were template
1357  // parameter lists, then there are no template parameter lists remaining for
1358  // the declaration itself.
1359  if (Idx >= NumParamLists)
1360    return 0;
1361
1362  // If there were too many template parameter lists, complain about that now.
1363  if (Idx != NumParamLists - 1) {
1364    while (Idx < NumParamLists - 1) {
1365      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1366      Diag(ParamLists[Idx]->getTemplateLoc(),
1367           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1368                               : diag::err_template_spec_extra_headers)
1369        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1370                       ParamLists[Idx]->getRAngleLoc());
1371
1372      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1373        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1374             diag::note_explicit_template_spec_does_not_need_header)
1375          << ExplicitSpecializationsInSpecifier.back();
1376        ExplicitSpecializationsInSpecifier.pop_back();
1377      }
1378
1379      // We have a template parameter list with no corresponding scope, which
1380      // means that the resulting template declaration can't be instantiated
1381      // properly (we'll end up with dependent nodes when we shouldn't).
1382      if (!isExplicitSpecHeader)
1383        Invalid = true;
1384
1385      ++Idx;
1386    }
1387  }
1388
1389  // Return the last template parameter list, which corresponds to the
1390  // entity being declared.
1391  return ParamLists[NumParamLists - 1];
1392}
1393
1394QualType Sema::CheckTemplateIdType(TemplateName Name,
1395                                   SourceLocation TemplateLoc,
1396                              const TemplateArgumentListInfo &TemplateArgs) {
1397  TemplateDecl *Template = Name.getAsTemplateDecl();
1398  if (!Template) {
1399    // The template name does not resolve to a template, so we just
1400    // build a dependent template-id type.
1401    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1402  }
1403
1404  // Check that the template argument list is well-formed for this
1405  // template.
1406  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1407                                        TemplateArgs.size());
1408  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1409                                false, Converted))
1410    return QualType();
1411
1412  assert((Converted.structuredSize() ==
1413            Template->getTemplateParameters()->size()) &&
1414         "Converted template argument list is too short!");
1415
1416  QualType CanonType;
1417
1418  if (Name.isDependent() ||
1419      TemplateSpecializationType::anyDependentTemplateArguments(
1420                                                      TemplateArgs)) {
1421    // This class template specialization is a dependent
1422    // type. Therefore, its canonical type is another class template
1423    // specialization type that contains all of the converted
1424    // arguments in canonical form. This ensures that, e.g., A<T> and
1425    // A<T, T> have identical types when A is declared as:
1426    //
1427    //   template<typename T, typename U = T> struct A;
1428    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1429    CanonType = Context.getTemplateSpecializationType(CanonName,
1430                                                   Converted.getFlatArguments(),
1431                                                   Converted.flatSize());
1432
1433    // FIXME: CanonType is not actually the canonical type, and unfortunately
1434    // it is a TemplateSpecializationType that we will never use again.
1435    // In the future, we need to teach getTemplateSpecializationType to only
1436    // build the canonical type and return that to us.
1437    CanonType = Context.getCanonicalType(CanonType);
1438
1439    // This might work out to be a current instantiation, in which
1440    // case the canonical type needs to be the InjectedClassNameType.
1441    //
1442    // TODO: in theory this could be a simple hashtable lookup; most
1443    // changes to CurContext don't change the set of current
1444    // instantiations.
1445    if (isa<ClassTemplateDecl>(Template)) {
1446      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1447        // If we get out to a namespace, we're done.
1448        if (Ctx->isFileContext()) break;
1449
1450        // If this isn't a record, keep looking.
1451        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1452        if (!Record) continue;
1453
1454        // Look for one of the two cases with InjectedClassNameTypes
1455        // and check whether it's the same template.
1456        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1457            !Record->getDescribedClassTemplate())
1458          continue;
1459
1460        // Fetch the injected class name type and check whether its
1461        // injected type is equal to the type we just built.
1462        QualType ICNT = Context.getTypeDeclType(Record);
1463        QualType Injected = cast<InjectedClassNameType>(ICNT)
1464          ->getInjectedSpecializationType();
1465
1466        if (CanonType != Injected->getCanonicalTypeInternal())
1467          continue;
1468
1469        // If so, the canonical type of this TST is the injected
1470        // class name type of the record we just found.
1471        assert(ICNT.isCanonical());
1472        CanonType = ICNT;
1473        break;
1474      }
1475    }
1476  } else if (ClassTemplateDecl *ClassTemplate
1477               = dyn_cast<ClassTemplateDecl>(Template)) {
1478    // Find the class template specialization declaration that
1479    // corresponds to these arguments.
1480    llvm::FoldingSetNodeID ID;
1481    ClassTemplateSpecializationDecl::Profile(ID,
1482                                             Converted.getFlatArguments(),
1483                                             Converted.flatSize(),
1484                                             Context);
1485    void *InsertPos = 0;
1486    ClassTemplateSpecializationDecl *Decl
1487      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1488    if (!Decl) {
1489      // This is the first time we have referenced this class template
1490      // specialization. Create the canonical declaration and add it to
1491      // the set of specializations.
1492      Decl = ClassTemplateSpecializationDecl::Create(Context,
1493                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1494                                                ClassTemplate->getDeclContext(),
1495                                                ClassTemplate->getLocation(),
1496                                                ClassTemplate,
1497                                                Converted, 0);
1498      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1499      Decl->setLexicalDeclContext(CurContext);
1500    }
1501
1502    CanonType = Context.getTypeDeclType(Decl);
1503    assert(isa<RecordType>(CanonType) &&
1504           "type of non-dependent specialization is not a RecordType");
1505  }
1506
1507  // Build the fully-sugared type for this class template
1508  // specialization, which refers back to the class template
1509  // specialization we created or found.
1510  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1511}
1512
1513Action::TypeResult
1514Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1515                          SourceLocation LAngleLoc,
1516                          ASTTemplateArgsPtr TemplateArgsIn,
1517                          SourceLocation RAngleLoc) {
1518  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1519
1520  // Translate the parser's template argument list in our AST format.
1521  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1522  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1523
1524  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1525  TemplateArgsIn.release();
1526
1527  if (Result.isNull())
1528    return true;
1529
1530  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1531  TemplateSpecializationTypeLoc TL
1532    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1533  TL.setTemplateNameLoc(TemplateLoc);
1534  TL.setLAngleLoc(LAngleLoc);
1535  TL.setRAngleLoc(RAngleLoc);
1536  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1537    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1538
1539  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1540}
1541
1542Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1543                                              TagUseKind TUK,
1544                                              DeclSpec::TST TagSpec,
1545                                              SourceLocation TagLoc) {
1546  if (TypeResult.isInvalid())
1547    return Sema::TypeResult();
1548
1549  // FIXME: preserve source info, ideally without copying the DI.
1550  TypeSourceInfo *DI;
1551  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1552
1553  // Verify the tag specifier.
1554  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1555
1556  if (const RecordType *RT = Type->getAs<RecordType>()) {
1557    RecordDecl *D = RT->getDecl();
1558
1559    IdentifierInfo *Id = D->getIdentifier();
1560    assert(Id && "templated class must have an identifier");
1561
1562    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1563      Diag(TagLoc, diag::err_use_with_wrong_tag)
1564        << Type
1565        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1566      Diag(D->getLocation(), diag::note_previous_use);
1567    }
1568  }
1569
1570  ElaboratedTypeKeyword Keyword
1571    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1572  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1573
1574  return ElabType.getAsOpaquePtr();
1575}
1576
1577Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1578                                                 LookupResult &R,
1579                                                 bool RequiresADL,
1580                                 const TemplateArgumentListInfo &TemplateArgs) {
1581  // FIXME: Can we do any checking at this point? I guess we could check the
1582  // template arguments that we have against the template name, if the template
1583  // name refers to a single template. That's not a terribly common case,
1584  // though.
1585
1586  // These should be filtered out by our callers.
1587  assert(!R.empty() && "empty lookup results when building templateid");
1588  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1589
1590  NestedNameSpecifier *Qualifier = 0;
1591  SourceRange QualifierRange;
1592  if (SS.isSet()) {
1593    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1594    QualifierRange = SS.getRange();
1595  }
1596
1597  // We don't want lookup warnings at this point.
1598  R.suppressDiagnostics();
1599
1600  bool Dependent
1601    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1602                                              &TemplateArgs);
1603  UnresolvedLookupExpr *ULE
1604    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1605                                   Qualifier, QualifierRange,
1606                                   R.getLookupName(), R.getNameLoc(),
1607                                   RequiresADL, TemplateArgs,
1608                                   R.begin(), R.end());
1609
1610  return Owned(ULE);
1611}
1612
1613// We actually only call this from template instantiation.
1614Sema::OwningExprResult
1615Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1616                                   DeclarationName Name,
1617                                   SourceLocation NameLoc,
1618                             const TemplateArgumentListInfo &TemplateArgs) {
1619  DeclContext *DC;
1620  if (!(DC = computeDeclContext(SS, false)) ||
1621      DC->isDependentContext() ||
1622      RequireCompleteDeclContext(SS, DC))
1623    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1624
1625  bool MemberOfUnknownSpecialization;
1626  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1627  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1628                     MemberOfUnknownSpecialization);
1629
1630  if (R.isAmbiguous())
1631    return ExprError();
1632
1633  if (R.empty()) {
1634    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1635      << Name << SS.getRange();
1636    return ExprError();
1637  }
1638
1639  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1640    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1641      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1642    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1643    return ExprError();
1644  }
1645
1646  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1647}
1648
1649/// \brief Form a dependent template name.
1650///
1651/// This action forms a dependent template name given the template
1652/// name and its (presumably dependent) scope specifier. For
1653/// example, given "MetaFun::template apply", the scope specifier \p
1654/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1655/// of the "template" keyword, and "apply" is the \p Name.
1656TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1657                                                  SourceLocation TemplateKWLoc,
1658                                                  CXXScopeSpec &SS,
1659                                                  UnqualifiedId &Name,
1660                                                  TypeTy *ObjectType,
1661                                                  bool EnteringContext,
1662                                                  TemplateTy &Result) {
1663  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1664      !getLangOptions().CPlusPlus0x)
1665    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1666      << FixItHint::CreateRemoval(TemplateKWLoc);
1667
1668  DeclContext *LookupCtx = 0;
1669  if (SS.isSet())
1670    LookupCtx = computeDeclContext(SS, EnteringContext);
1671  if (!LookupCtx && ObjectType)
1672    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1673  if (LookupCtx) {
1674    // C++0x [temp.names]p5:
1675    //   If a name prefixed by the keyword template is not the name of
1676    //   a template, the program is ill-formed. [Note: the keyword
1677    //   template may not be applied to non-template members of class
1678    //   templates. -end note ] [ Note: as is the case with the
1679    //   typename prefix, the template prefix is allowed in cases
1680    //   where it is not strictly necessary; i.e., when the
1681    //   nested-name-specifier or the expression on the left of the ->
1682    //   or . is not dependent on a template-parameter, or the use
1683    //   does not appear in the scope of a template. -end note]
1684    //
1685    // Note: C++03 was more strict here, because it banned the use of
1686    // the "template" keyword prior to a template-name that was not a
1687    // dependent name. C++ DR468 relaxed this requirement (the
1688    // "template" keyword is now permitted). We follow the C++0x
1689    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1690    bool MemberOfUnknownSpecialization;
1691    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1692                                          EnteringContext, Result,
1693                                          MemberOfUnknownSpecialization);
1694    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1695        isa<CXXRecordDecl>(LookupCtx) &&
1696        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1697      // This is a dependent template. Handle it below.
1698    } else if (TNK == TNK_Non_template) {
1699      Diag(Name.getSourceRange().getBegin(),
1700           diag::err_template_kw_refers_to_non_template)
1701        << GetNameFromUnqualifiedId(Name)
1702        << Name.getSourceRange()
1703        << TemplateKWLoc;
1704      return TNK_Non_template;
1705    } else {
1706      // We found something; return it.
1707      return TNK;
1708    }
1709  }
1710
1711  NestedNameSpecifier *Qualifier
1712    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1713
1714  switch (Name.getKind()) {
1715  case UnqualifiedId::IK_Identifier:
1716    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1717                                                              Name.Identifier));
1718    return TNK_Dependent_template_name;
1719
1720  case UnqualifiedId::IK_OperatorFunctionId:
1721    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1722                                             Name.OperatorFunctionId.Operator));
1723    return TNK_Dependent_template_name;
1724
1725  case UnqualifiedId::IK_LiteralOperatorId:
1726    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1727
1728  default:
1729    break;
1730  }
1731
1732  Diag(Name.getSourceRange().getBegin(),
1733       diag::err_template_kw_refers_to_non_template)
1734    << GetNameFromUnqualifiedId(Name)
1735    << Name.getSourceRange()
1736    << TemplateKWLoc;
1737  return TNK_Non_template;
1738}
1739
1740bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1741                                     const TemplateArgumentLoc &AL,
1742                                     TemplateArgumentListBuilder &Converted) {
1743  const TemplateArgument &Arg = AL.getArgument();
1744
1745  // Check template type parameter.
1746  switch(Arg.getKind()) {
1747  case TemplateArgument::Type:
1748    // C++ [temp.arg.type]p1:
1749    //   A template-argument for a template-parameter which is a
1750    //   type shall be a type-id.
1751    break;
1752  case TemplateArgument::Template: {
1753    // We have a template type parameter but the template argument
1754    // is a template without any arguments.
1755    SourceRange SR = AL.getSourceRange();
1756    TemplateName Name = Arg.getAsTemplate();
1757    Diag(SR.getBegin(), diag::err_template_missing_args)
1758      << Name << SR;
1759    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1760      Diag(Decl->getLocation(), diag::note_template_decl_here);
1761
1762    return true;
1763  }
1764  default: {
1765    // We have a template type parameter but the template argument
1766    // is not a type.
1767    SourceRange SR = AL.getSourceRange();
1768    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1769    Diag(Param->getLocation(), diag::note_template_param_here);
1770
1771    return true;
1772  }
1773  }
1774
1775  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1776    return true;
1777
1778  // Add the converted template type argument.
1779  Converted.Append(
1780                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1781  return false;
1782}
1783
1784/// \brief Substitute template arguments into the default template argument for
1785/// the given template type parameter.
1786///
1787/// \param SemaRef the semantic analysis object for which we are performing
1788/// the substitution.
1789///
1790/// \param Template the template that we are synthesizing template arguments
1791/// for.
1792///
1793/// \param TemplateLoc the location of the template name that started the
1794/// template-id we are checking.
1795///
1796/// \param RAngleLoc the location of the right angle bracket ('>') that
1797/// terminates the template-id.
1798///
1799/// \param Param the template template parameter whose default we are
1800/// substituting into.
1801///
1802/// \param Converted the list of template arguments provided for template
1803/// parameters that precede \p Param in the template parameter list.
1804///
1805/// \returns the substituted template argument, or NULL if an error occurred.
1806static TypeSourceInfo *
1807SubstDefaultTemplateArgument(Sema &SemaRef,
1808                             TemplateDecl *Template,
1809                             SourceLocation TemplateLoc,
1810                             SourceLocation RAngleLoc,
1811                             TemplateTypeParmDecl *Param,
1812                             TemplateArgumentListBuilder &Converted) {
1813  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1814
1815  // If the argument type is dependent, instantiate it now based
1816  // on the previously-computed template arguments.
1817  if (ArgType->getType()->isDependentType()) {
1818    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1819                                      /*TakeArgs=*/false);
1820
1821    MultiLevelTemplateArgumentList AllTemplateArgs
1822      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1823
1824    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1825                                     Template, Converted.getFlatArguments(),
1826                                     Converted.flatSize(),
1827                                     SourceRange(TemplateLoc, RAngleLoc));
1828
1829    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1830                                Param->getDefaultArgumentLoc(),
1831                                Param->getDeclName());
1832  }
1833
1834  return ArgType;
1835}
1836
1837/// \brief Substitute template arguments into the default template argument for
1838/// the given non-type template parameter.
1839///
1840/// \param SemaRef the semantic analysis object for which we are performing
1841/// the substitution.
1842///
1843/// \param Template the template that we are synthesizing template arguments
1844/// for.
1845///
1846/// \param TemplateLoc the location of the template name that started the
1847/// template-id we are checking.
1848///
1849/// \param RAngleLoc the location of the right angle bracket ('>') that
1850/// terminates the template-id.
1851///
1852/// \param Param the non-type template parameter whose default we are
1853/// substituting into.
1854///
1855/// \param Converted the list of template arguments provided for template
1856/// parameters that precede \p Param in the template parameter list.
1857///
1858/// \returns the substituted template argument, or NULL if an error occurred.
1859static Sema::OwningExprResult
1860SubstDefaultTemplateArgument(Sema &SemaRef,
1861                             TemplateDecl *Template,
1862                             SourceLocation TemplateLoc,
1863                             SourceLocation RAngleLoc,
1864                             NonTypeTemplateParmDecl *Param,
1865                             TemplateArgumentListBuilder &Converted) {
1866  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1867                                    /*TakeArgs=*/false);
1868
1869  MultiLevelTemplateArgumentList AllTemplateArgs
1870    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1871
1872  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1873                                   Template, Converted.getFlatArguments(),
1874                                   Converted.flatSize(),
1875                                   SourceRange(TemplateLoc, RAngleLoc));
1876
1877  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1878}
1879
1880/// \brief Substitute template arguments into the default template argument for
1881/// the given template template parameter.
1882///
1883/// \param SemaRef the semantic analysis object for which we are performing
1884/// the substitution.
1885///
1886/// \param Template the template that we are synthesizing template arguments
1887/// for.
1888///
1889/// \param TemplateLoc the location of the template name that started the
1890/// template-id we are checking.
1891///
1892/// \param RAngleLoc the location of the right angle bracket ('>') that
1893/// terminates the template-id.
1894///
1895/// \param Param the template template parameter whose default we are
1896/// substituting into.
1897///
1898/// \param Converted the list of template arguments provided for template
1899/// parameters that precede \p Param in the template parameter list.
1900///
1901/// \returns the substituted template argument, or NULL if an error occurred.
1902static TemplateName
1903SubstDefaultTemplateArgument(Sema &SemaRef,
1904                             TemplateDecl *Template,
1905                             SourceLocation TemplateLoc,
1906                             SourceLocation RAngleLoc,
1907                             TemplateTemplateParmDecl *Param,
1908                             TemplateArgumentListBuilder &Converted) {
1909  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1910                                    /*TakeArgs=*/false);
1911
1912  MultiLevelTemplateArgumentList AllTemplateArgs
1913    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1914
1915  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1916                                   Template, Converted.getFlatArguments(),
1917                                   Converted.flatSize(),
1918                                   SourceRange(TemplateLoc, RAngleLoc));
1919
1920  return SemaRef.SubstTemplateName(
1921                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1922                              Param->getDefaultArgument().getTemplateNameLoc(),
1923                                   AllTemplateArgs);
1924}
1925
1926/// \brief If the given template parameter has a default template
1927/// argument, substitute into that default template argument and
1928/// return the corresponding template argument.
1929TemplateArgumentLoc
1930Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1931                                              SourceLocation TemplateLoc,
1932                                              SourceLocation RAngleLoc,
1933                                              Decl *Param,
1934                                     TemplateArgumentListBuilder &Converted) {
1935  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1936    if (!TypeParm->hasDefaultArgument())
1937      return TemplateArgumentLoc();
1938
1939    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1940                                                      TemplateLoc,
1941                                                      RAngleLoc,
1942                                                      TypeParm,
1943                                                      Converted);
1944    if (DI)
1945      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1946
1947    return TemplateArgumentLoc();
1948  }
1949
1950  if (NonTypeTemplateParmDecl *NonTypeParm
1951        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1952    if (!NonTypeParm->hasDefaultArgument())
1953      return TemplateArgumentLoc();
1954
1955    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1956                                                        TemplateLoc,
1957                                                        RAngleLoc,
1958                                                        NonTypeParm,
1959                                                        Converted);
1960    if (Arg.isInvalid())
1961      return TemplateArgumentLoc();
1962
1963    Expr *ArgE = Arg.takeAs<Expr>();
1964    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1965  }
1966
1967  TemplateTemplateParmDecl *TempTempParm
1968    = cast<TemplateTemplateParmDecl>(Param);
1969  if (!TempTempParm->hasDefaultArgument())
1970    return TemplateArgumentLoc();
1971
1972  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1973                                                    TemplateLoc,
1974                                                    RAngleLoc,
1975                                                    TempTempParm,
1976                                                    Converted);
1977  if (TName.isNull())
1978    return TemplateArgumentLoc();
1979
1980  return TemplateArgumentLoc(TemplateArgument(TName),
1981                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1982                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1983}
1984
1985/// \brief Check that the given template argument corresponds to the given
1986/// template parameter.
1987bool Sema::CheckTemplateArgument(NamedDecl *Param,
1988                                 const TemplateArgumentLoc &Arg,
1989                                 TemplateDecl *Template,
1990                                 SourceLocation TemplateLoc,
1991                                 SourceLocation RAngleLoc,
1992                                 TemplateArgumentListBuilder &Converted,
1993                                 CheckTemplateArgumentKind CTAK) {
1994  // Check template type parameters.
1995  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1996    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1997
1998  // Check non-type template parameters.
1999  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2000    // Do substitution on the type of the non-type template parameter
2001    // with the template arguments we've seen thus far.
2002    QualType NTTPType = NTTP->getType();
2003    if (NTTPType->isDependentType()) {
2004      // Do substitution on the type of the non-type template parameter.
2005      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2006                                 NTTP, Converted.getFlatArguments(),
2007                                 Converted.flatSize(),
2008                                 SourceRange(TemplateLoc, RAngleLoc));
2009
2010      TemplateArgumentList TemplateArgs(Context, Converted,
2011                                        /*TakeArgs=*/false);
2012      NTTPType = SubstType(NTTPType,
2013                           MultiLevelTemplateArgumentList(TemplateArgs),
2014                           NTTP->getLocation(),
2015                           NTTP->getDeclName());
2016      // If that worked, check the non-type template parameter type
2017      // for validity.
2018      if (!NTTPType.isNull())
2019        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2020                                                     NTTP->getLocation());
2021      if (NTTPType.isNull())
2022        return true;
2023    }
2024
2025    switch (Arg.getArgument().getKind()) {
2026    case TemplateArgument::Null:
2027      assert(false && "Should never see a NULL template argument here");
2028      return true;
2029
2030    case TemplateArgument::Expression: {
2031      Expr *E = Arg.getArgument().getAsExpr();
2032      TemplateArgument Result;
2033      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2034        return true;
2035
2036      Converted.Append(Result);
2037      break;
2038    }
2039
2040    case TemplateArgument::Declaration:
2041    case TemplateArgument::Integral:
2042      // We've already checked this template argument, so just copy
2043      // it to the list of converted arguments.
2044      Converted.Append(Arg.getArgument());
2045      break;
2046
2047    case TemplateArgument::Template:
2048      // We were given a template template argument. It may not be ill-formed;
2049      // see below.
2050      if (DependentTemplateName *DTN
2051            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2052        // We have a template argument such as \c T::template X, which we
2053        // parsed as a template template argument. However, since we now
2054        // know that we need a non-type template argument, convert this
2055        // template name into an expression.
2056        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2057                                                    DTN->getQualifier(),
2058                                               Arg.getTemplateQualifierRange(),
2059                                                    DTN->getIdentifier(),
2060                                                    Arg.getTemplateNameLoc());
2061
2062        TemplateArgument Result;
2063        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2064          return true;
2065
2066        Converted.Append(Result);
2067        break;
2068      }
2069
2070      // We have a template argument that actually does refer to a class
2071      // template, template alias, or template template parameter, and
2072      // therefore cannot be a non-type template argument.
2073      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2074        << Arg.getSourceRange();
2075
2076      Diag(Param->getLocation(), diag::note_template_param_here);
2077      return true;
2078
2079    case TemplateArgument::Type: {
2080      // We have a non-type template parameter but the template
2081      // argument is a type.
2082
2083      // C++ [temp.arg]p2:
2084      //   In a template-argument, an ambiguity between a type-id and
2085      //   an expression is resolved to a type-id, regardless of the
2086      //   form of the corresponding template-parameter.
2087      //
2088      // We warn specifically about this case, since it can be rather
2089      // confusing for users.
2090      QualType T = Arg.getArgument().getAsType();
2091      SourceRange SR = Arg.getSourceRange();
2092      if (T->isFunctionType())
2093        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2094      else
2095        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2096      Diag(Param->getLocation(), diag::note_template_param_here);
2097      return true;
2098    }
2099
2100    case TemplateArgument::Pack:
2101      llvm_unreachable("Caller must expand template argument packs");
2102      break;
2103    }
2104
2105    return false;
2106  }
2107
2108
2109  // Check template template parameters.
2110  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2111
2112  // Substitute into the template parameter list of the template
2113  // template parameter, since previously-supplied template arguments
2114  // may appear within the template template parameter.
2115  {
2116    // Set up a template instantiation context.
2117    LocalInstantiationScope Scope(*this);
2118    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2119                               TempParm, Converted.getFlatArguments(),
2120                               Converted.flatSize(),
2121                               SourceRange(TemplateLoc, RAngleLoc));
2122
2123    TemplateArgumentList TemplateArgs(Context, Converted,
2124                                      /*TakeArgs=*/false);
2125    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2126                      SubstDecl(TempParm, CurContext,
2127                                MultiLevelTemplateArgumentList(TemplateArgs)));
2128    if (!TempParm)
2129      return true;
2130
2131    // FIXME: TempParam is leaked.
2132  }
2133
2134  switch (Arg.getArgument().getKind()) {
2135  case TemplateArgument::Null:
2136    assert(false && "Should never see a NULL template argument here");
2137    return true;
2138
2139  case TemplateArgument::Template:
2140    if (CheckTemplateArgument(TempParm, Arg))
2141      return true;
2142
2143    Converted.Append(Arg.getArgument());
2144    break;
2145
2146  case TemplateArgument::Expression:
2147  case TemplateArgument::Type:
2148    // We have a template template parameter but the template
2149    // argument does not refer to a template.
2150    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2151    return true;
2152
2153  case TemplateArgument::Declaration:
2154    llvm_unreachable(
2155                       "Declaration argument with template template parameter");
2156    break;
2157  case TemplateArgument::Integral:
2158    llvm_unreachable(
2159                          "Integral argument with template template parameter");
2160    break;
2161
2162  case TemplateArgument::Pack:
2163    llvm_unreachable("Caller must expand template argument packs");
2164    break;
2165  }
2166
2167  return false;
2168}
2169
2170/// \brief Check that the given template argument list is well-formed
2171/// for specializing the given template.
2172bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2173                                     SourceLocation TemplateLoc,
2174                                const TemplateArgumentListInfo &TemplateArgs,
2175                                     bool PartialTemplateArgs,
2176                                     TemplateArgumentListBuilder &Converted) {
2177  TemplateParameterList *Params = Template->getTemplateParameters();
2178  unsigned NumParams = Params->size();
2179  unsigned NumArgs = TemplateArgs.size();
2180  bool Invalid = false;
2181
2182  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2183
2184  bool HasParameterPack =
2185    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2186
2187  if ((NumArgs > NumParams && !HasParameterPack) ||
2188      (NumArgs < Params->getMinRequiredArguments() &&
2189       !PartialTemplateArgs)) {
2190    // FIXME: point at either the first arg beyond what we can handle,
2191    // or the '>', depending on whether we have too many or too few
2192    // arguments.
2193    SourceRange Range;
2194    if (NumArgs > NumParams)
2195      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2196    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2197      << (NumArgs > NumParams)
2198      << (isa<ClassTemplateDecl>(Template)? 0 :
2199          isa<FunctionTemplateDecl>(Template)? 1 :
2200          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2201      << Template << Range;
2202    Diag(Template->getLocation(), diag::note_template_decl_here)
2203      << Params->getSourceRange();
2204    Invalid = true;
2205  }
2206
2207  // C++ [temp.arg]p1:
2208  //   [...] The type and form of each template-argument specified in
2209  //   a template-id shall match the type and form specified for the
2210  //   corresponding parameter declared by the template in its
2211  //   template-parameter-list.
2212  unsigned ArgIdx = 0;
2213  for (TemplateParameterList::iterator Param = Params->begin(),
2214                                       ParamEnd = Params->end();
2215       Param != ParamEnd; ++Param, ++ArgIdx) {
2216    if (ArgIdx > NumArgs && PartialTemplateArgs)
2217      break;
2218
2219    // If we have a template parameter pack, check every remaining template
2220    // argument against that template parameter pack.
2221    if ((*Param)->isTemplateParameterPack()) {
2222      Converted.BeginPack();
2223      for (; ArgIdx < NumArgs; ++ArgIdx) {
2224        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2225                                  TemplateLoc, RAngleLoc, Converted)) {
2226          Invalid = true;
2227          break;
2228        }
2229      }
2230      Converted.EndPack();
2231      continue;
2232    }
2233
2234    if (ArgIdx < NumArgs) {
2235      // Check the template argument we were given.
2236      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2237                                TemplateLoc, RAngleLoc, Converted))
2238        return true;
2239
2240      continue;
2241    }
2242
2243    // We have a default template argument that we will use.
2244    TemplateArgumentLoc Arg;
2245
2246    // Retrieve the default template argument from the template
2247    // parameter. For each kind of template parameter, we substitute the
2248    // template arguments provided thus far and any "outer" template arguments
2249    // (when the template parameter was part of a nested template) into
2250    // the default argument.
2251    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2252      if (!TTP->hasDefaultArgument()) {
2253        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2254        break;
2255      }
2256
2257      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2258                                                             Template,
2259                                                             TemplateLoc,
2260                                                             RAngleLoc,
2261                                                             TTP,
2262                                                             Converted);
2263      if (!ArgType)
2264        return true;
2265
2266      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2267                                ArgType);
2268    } else if (NonTypeTemplateParmDecl *NTTP
2269                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2270      if (!NTTP->hasDefaultArgument()) {
2271        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2272        break;
2273      }
2274
2275      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2276                                                              TemplateLoc,
2277                                                              RAngleLoc,
2278                                                              NTTP,
2279                                                              Converted);
2280      if (E.isInvalid())
2281        return true;
2282
2283      Expr *Ex = E.takeAs<Expr>();
2284      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2285    } else {
2286      TemplateTemplateParmDecl *TempParm
2287        = cast<TemplateTemplateParmDecl>(*Param);
2288
2289      if (!TempParm->hasDefaultArgument()) {
2290        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2291        break;
2292      }
2293
2294      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2295                                                       TemplateLoc,
2296                                                       RAngleLoc,
2297                                                       TempParm,
2298                                                       Converted);
2299      if (Name.isNull())
2300        return true;
2301
2302      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2303                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2304                  TempParm->getDefaultArgument().getTemplateNameLoc());
2305    }
2306
2307    // Introduce an instantiation record that describes where we are using
2308    // the default template argument.
2309    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2310                                        Converted.getFlatArguments(),
2311                                        Converted.flatSize(),
2312                                        SourceRange(TemplateLoc, RAngleLoc));
2313
2314    // Check the default template argument.
2315    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2316                              RAngleLoc, Converted))
2317      return true;
2318  }
2319
2320  return Invalid;
2321}
2322
2323/// \brief Check a template argument against its corresponding
2324/// template type parameter.
2325///
2326/// This routine implements the semantics of C++ [temp.arg.type]. It
2327/// returns true if an error occurred, and false otherwise.
2328bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2329                                 TypeSourceInfo *ArgInfo) {
2330  assert(ArgInfo && "invalid TypeSourceInfo");
2331  QualType Arg = ArgInfo->getType();
2332
2333  // C++ [temp.arg.type]p2:
2334  //   A local type, a type with no linkage, an unnamed type or a type
2335  //   compounded from any of these types shall not be used as a
2336  //   template-argument for a template type-parameter.
2337  //
2338  // FIXME: Perform the unnamed type check.
2339  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2340  const TagType *Tag = 0;
2341  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2342    Tag = EnumT;
2343  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2344    Tag = RecordT;
2345  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2346    SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2347    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2348      << QualType(Tag, 0) << SR;
2349  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2350           !Tag->getDecl()->getTypedefForAnonDecl()) {
2351    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2352    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2353    return true;
2354  } else if (Arg->isVariablyModifiedType()) {
2355    Diag(SR.getBegin(), diag::err_variably_modified_template_arg)
2356      << Arg;
2357    return true;
2358  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2359    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2360  }
2361
2362  return false;
2363}
2364
2365/// \brief Checks whether the given template argument is the address
2366/// of an object or function according to C++ [temp.arg.nontype]p1.
2367static bool
2368CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2369                                               NonTypeTemplateParmDecl *Param,
2370                                               QualType ParamType,
2371                                               Expr *ArgIn,
2372                                               TemplateArgument &Converted) {
2373  bool Invalid = false;
2374  Expr *Arg = ArgIn;
2375  QualType ArgType = Arg->getType();
2376
2377  // See through any implicit casts we added to fix the type.
2378  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2379    Arg = Cast->getSubExpr();
2380
2381  // C++ [temp.arg.nontype]p1:
2382  //
2383  //   A template-argument for a non-type, non-template
2384  //   template-parameter shall be one of: [...]
2385  //
2386  //     -- the address of an object or function with external
2387  //        linkage, including function templates and function
2388  //        template-ids but excluding non-static class members,
2389  //        expressed as & id-expression where the & is optional if
2390  //        the name refers to a function or array, or if the
2391  //        corresponding template-parameter is a reference; or
2392  DeclRefExpr *DRE = 0;
2393
2394  // Ignore (and complain about) any excess parentheses.
2395  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2396    if (!Invalid) {
2397      S.Diag(Arg->getSourceRange().getBegin(),
2398             diag::err_template_arg_extra_parens)
2399        << Arg->getSourceRange();
2400      Invalid = true;
2401    }
2402
2403    Arg = Parens->getSubExpr();
2404  }
2405
2406  bool AddressTaken = false;
2407  SourceLocation AddrOpLoc;
2408  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2409    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2410      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2411      AddressTaken = true;
2412      AddrOpLoc = UnOp->getOperatorLoc();
2413    }
2414  } else
2415    DRE = dyn_cast<DeclRefExpr>(Arg);
2416
2417  if (!DRE) {
2418    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2419      << Arg->getSourceRange();
2420    S.Diag(Param->getLocation(), diag::note_template_param_here);
2421    return true;
2422  }
2423
2424  // Stop checking the precise nature of the argument if it is value dependent,
2425  // it should be checked when instantiated.
2426  if (Arg->isValueDependent()) {
2427    Converted = TemplateArgument(ArgIn->Retain());
2428    return false;
2429  }
2430
2431  if (!isa<ValueDecl>(DRE->getDecl())) {
2432    S.Diag(Arg->getSourceRange().getBegin(),
2433           diag::err_template_arg_not_object_or_func_form)
2434      << Arg->getSourceRange();
2435    S.Diag(Param->getLocation(), diag::note_template_param_here);
2436    return true;
2437  }
2438
2439  NamedDecl *Entity = 0;
2440
2441  // Cannot refer to non-static data members
2442  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2443    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2444      << Field << Arg->getSourceRange();
2445    S.Diag(Param->getLocation(), diag::note_template_param_here);
2446    return true;
2447  }
2448
2449  // Cannot refer to non-static member functions
2450  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2451    if (!Method->isStatic()) {
2452      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2453        << Method << Arg->getSourceRange();
2454      S.Diag(Param->getLocation(), diag::note_template_param_here);
2455      return true;
2456    }
2457
2458  // Functions must have external linkage.
2459  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2460    if (!isExternalLinkage(Func->getLinkage())) {
2461      S.Diag(Arg->getSourceRange().getBegin(),
2462             diag::err_template_arg_function_not_extern)
2463        << Func << Arg->getSourceRange();
2464      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2465        << true;
2466      return true;
2467    }
2468
2469    // Okay: we've named a function with external linkage.
2470    Entity = Func;
2471
2472    // If the template parameter has pointer type, the function decays.
2473    if (ParamType->isPointerType() && !AddressTaken)
2474      ArgType = S.Context.getPointerType(Func->getType());
2475    else if (AddressTaken && ParamType->isReferenceType()) {
2476      // If we originally had an address-of operator, but the
2477      // parameter has reference type, complain and (if things look
2478      // like they will work) drop the address-of operator.
2479      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2480                                            ParamType.getNonReferenceType())) {
2481        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2482          << ParamType;
2483        S.Diag(Param->getLocation(), diag::note_template_param_here);
2484        return true;
2485      }
2486
2487      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2488        << ParamType
2489        << FixItHint::CreateRemoval(AddrOpLoc);
2490      S.Diag(Param->getLocation(), diag::note_template_param_here);
2491
2492      ArgType = Func->getType();
2493    }
2494  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2495    if (!isExternalLinkage(Var->getLinkage())) {
2496      S.Diag(Arg->getSourceRange().getBegin(),
2497             diag::err_template_arg_object_not_extern)
2498        << Var << Arg->getSourceRange();
2499      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2500        << true;
2501      return true;
2502    }
2503
2504    // A value of reference type is not an object.
2505    if (Var->getType()->isReferenceType()) {
2506      S.Diag(Arg->getSourceRange().getBegin(),
2507             diag::err_template_arg_reference_var)
2508        << Var->getType() << Arg->getSourceRange();
2509      S.Diag(Param->getLocation(), diag::note_template_param_here);
2510      return true;
2511    }
2512
2513    // Okay: we've named an object with external linkage
2514    Entity = Var;
2515
2516    // If the template parameter has pointer type, we must have taken
2517    // the address of this object.
2518    if (ParamType->isReferenceType()) {
2519      if (AddressTaken) {
2520        // If we originally had an address-of operator, but the
2521        // parameter has reference type, complain and (if things look
2522        // like they will work) drop the address-of operator.
2523        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2524                                            ParamType.getNonReferenceType())) {
2525          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2526            << ParamType;
2527          S.Diag(Param->getLocation(), diag::note_template_param_here);
2528          return true;
2529        }
2530
2531        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2532          << ParamType
2533          << FixItHint::CreateRemoval(AddrOpLoc);
2534        S.Diag(Param->getLocation(), diag::note_template_param_here);
2535
2536        ArgType = Var->getType();
2537      }
2538    } else if (!AddressTaken && ParamType->isPointerType()) {
2539      if (Var->getType()->isArrayType()) {
2540        // Array-to-pointer decay.
2541        ArgType = S.Context.getArrayDecayedType(Var->getType());
2542      } else {
2543        // If the template parameter has pointer type but the address of
2544        // this object was not taken, complain and (possibly) recover by
2545        // taking the address of the entity.
2546        ArgType = S.Context.getPointerType(Var->getType());
2547        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2548          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2549            << ParamType;
2550          S.Diag(Param->getLocation(), diag::note_template_param_here);
2551          return true;
2552        }
2553
2554        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2555          << ParamType
2556          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2557
2558        S.Diag(Param->getLocation(), diag::note_template_param_here);
2559      }
2560    }
2561  } else {
2562    // We found something else, but we don't know specifically what it is.
2563    S.Diag(Arg->getSourceRange().getBegin(),
2564           diag::err_template_arg_not_object_or_func)
2565      << Arg->getSourceRange();
2566    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2567    return true;
2568  }
2569
2570  if (ParamType->isPointerType() &&
2571      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2572      S.IsQualificationConversion(ArgType, ParamType)) {
2573    // For pointer-to-object types, qualification conversions are
2574    // permitted.
2575  } else {
2576    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2577      if (!ParamRef->getPointeeType()->isFunctionType()) {
2578        // C++ [temp.arg.nontype]p5b3:
2579        //   For a non-type template-parameter of type reference to
2580        //   object, no conversions apply. The type referred to by the
2581        //   reference may be more cv-qualified than the (otherwise
2582        //   identical) type of the template- argument. The
2583        //   template-parameter is bound directly to the
2584        //   template-argument, which shall be an lvalue.
2585
2586        // FIXME: Other qualifiers?
2587        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2588        unsigned ArgQuals = ArgType.getCVRQualifiers();
2589
2590        if ((ParamQuals | ArgQuals) != ParamQuals) {
2591          S.Diag(Arg->getSourceRange().getBegin(),
2592                 diag::err_template_arg_ref_bind_ignores_quals)
2593            << ParamType << Arg->getType()
2594            << Arg->getSourceRange();
2595          S.Diag(Param->getLocation(), diag::note_template_param_here);
2596          return true;
2597        }
2598      }
2599    }
2600
2601    // At this point, the template argument refers to an object or
2602    // function with external linkage. We now need to check whether the
2603    // argument and parameter types are compatible.
2604    if (!S.Context.hasSameUnqualifiedType(ArgType,
2605                                          ParamType.getNonReferenceType())) {
2606      // We can't perform this conversion or binding.
2607      if (ParamType->isReferenceType())
2608        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2609          << ParamType << Arg->getType() << Arg->getSourceRange();
2610      else
2611        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2612          << Arg->getType() << ParamType << Arg->getSourceRange();
2613      S.Diag(Param->getLocation(), diag::note_template_param_here);
2614      return true;
2615    }
2616  }
2617
2618  // Create the template argument.
2619  Converted = TemplateArgument(Entity->getCanonicalDecl());
2620  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2621  return false;
2622}
2623
2624/// \brief Checks whether the given template argument is a pointer to
2625/// member constant according to C++ [temp.arg.nontype]p1.
2626bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2627                                                TemplateArgument &Converted) {
2628  bool Invalid = false;
2629
2630  // See through any implicit casts we added to fix the type.
2631  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2632    Arg = Cast->getSubExpr();
2633
2634  // C++ [temp.arg.nontype]p1:
2635  //
2636  //   A template-argument for a non-type, non-template
2637  //   template-parameter shall be one of: [...]
2638  //
2639  //     -- a pointer to member expressed as described in 5.3.1.
2640  DeclRefExpr *DRE = 0;
2641
2642  // Ignore (and complain about) any excess parentheses.
2643  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2644    if (!Invalid) {
2645      Diag(Arg->getSourceRange().getBegin(),
2646           diag::err_template_arg_extra_parens)
2647        << Arg->getSourceRange();
2648      Invalid = true;
2649    }
2650
2651    Arg = Parens->getSubExpr();
2652  }
2653
2654  // A pointer-to-member constant written &Class::member.
2655  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2656    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2657      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2658      if (DRE && !DRE->getQualifier())
2659        DRE = 0;
2660    }
2661  }
2662  // A constant of pointer-to-member type.
2663  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2664    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2665      if (VD->getType()->isMemberPointerType()) {
2666        if (isa<NonTypeTemplateParmDecl>(VD) ||
2667            (isa<VarDecl>(VD) &&
2668             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2669          if (Arg->isTypeDependent() || Arg->isValueDependent())
2670            Converted = TemplateArgument(Arg->Retain());
2671          else
2672            Converted = TemplateArgument(VD->getCanonicalDecl());
2673          return Invalid;
2674        }
2675      }
2676    }
2677
2678    DRE = 0;
2679  }
2680
2681  if (!DRE)
2682    return Diag(Arg->getSourceRange().getBegin(),
2683                diag::err_template_arg_not_pointer_to_member_form)
2684      << Arg->getSourceRange();
2685
2686  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2687    assert((isa<FieldDecl>(DRE->getDecl()) ||
2688            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2689           "Only non-static member pointers can make it here");
2690
2691    // Okay: this is the address of a non-static member, and therefore
2692    // a member pointer constant.
2693    if (Arg->isTypeDependent() || Arg->isValueDependent())
2694      Converted = TemplateArgument(Arg->Retain());
2695    else
2696      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2697    return Invalid;
2698  }
2699
2700  // We found something else, but we don't know specifically what it is.
2701  Diag(Arg->getSourceRange().getBegin(),
2702       diag::err_template_arg_not_pointer_to_member_form)
2703      << Arg->getSourceRange();
2704  Diag(DRE->getDecl()->getLocation(),
2705       diag::note_template_arg_refers_here);
2706  return true;
2707}
2708
2709/// \brief Check a template argument against its corresponding
2710/// non-type template parameter.
2711///
2712/// This routine implements the semantics of C++ [temp.arg.nontype].
2713/// It returns true if an error occurred, and false otherwise. \p
2714/// InstantiatedParamType is the type of the non-type template
2715/// parameter after it has been instantiated.
2716///
2717/// If no error was detected, Converted receives the converted template argument.
2718bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2719                                 QualType InstantiatedParamType, Expr *&Arg,
2720                                 TemplateArgument &Converted,
2721                                 CheckTemplateArgumentKind CTAK) {
2722  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2723
2724  // If either the parameter has a dependent type or the argument is
2725  // type-dependent, there's nothing we can check now.
2726  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2727    // FIXME: Produce a cloned, canonical expression?
2728    Converted = TemplateArgument(Arg);
2729    return false;
2730  }
2731
2732  // C++ [temp.arg.nontype]p5:
2733  //   The following conversions are performed on each expression used
2734  //   as a non-type template-argument. If a non-type
2735  //   template-argument cannot be converted to the type of the
2736  //   corresponding template-parameter then the program is
2737  //   ill-formed.
2738  //
2739  //     -- for a non-type template-parameter of integral or
2740  //        enumeration type, integral promotions (4.5) and integral
2741  //        conversions (4.7) are applied.
2742  QualType ParamType = InstantiatedParamType;
2743  QualType ArgType = Arg->getType();
2744  if (ParamType->isIntegralOrEnumerationType()) {
2745    // C++ [temp.arg.nontype]p1:
2746    //   A template-argument for a non-type, non-template
2747    //   template-parameter shall be one of:
2748    //
2749    //     -- an integral constant-expression of integral or enumeration
2750    //        type; or
2751    //     -- the name of a non-type template-parameter; or
2752    SourceLocation NonConstantLoc;
2753    llvm::APSInt Value;
2754    if (!ArgType->isIntegralOrEnumerationType()) {
2755      Diag(Arg->getSourceRange().getBegin(),
2756           diag::err_template_arg_not_integral_or_enumeral)
2757        << ArgType << Arg->getSourceRange();
2758      Diag(Param->getLocation(), diag::note_template_param_here);
2759      return true;
2760    } else if (!Arg->isValueDependent() &&
2761               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2762      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2763        << ArgType << Arg->getSourceRange();
2764      return true;
2765    }
2766
2767    // From here on out, all we care about are the unqualified forms
2768    // of the parameter and argument types.
2769    ParamType = ParamType.getUnqualifiedType();
2770    ArgType = ArgType.getUnqualifiedType();
2771
2772    // Try to convert the argument to the parameter's type.
2773    if (Context.hasSameType(ParamType, ArgType)) {
2774      // Okay: no conversion necessary
2775    } else if (CTAK == CTAK_Deduced) {
2776      // C++ [temp.deduct.type]p17:
2777      //   If, in the declaration of a function template with a non-type
2778      //   template-parameter, the non-type template- parameter is used
2779      //   in an expression in the function parameter-list and, if the
2780      //   corresponding template-argument is deduced, the
2781      //   template-argument type shall match the type of the
2782      //   template-parameter exactly, except that a template-argument
2783      //   deduced from an array bound may be of any integral type.
2784      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2785        << ArgType << ParamType;
2786      Diag(Param->getLocation(), diag::note_template_param_here);
2787      return true;
2788    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2789               !ParamType->isEnumeralType()) {
2790      // This is an integral promotion or conversion.
2791      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2792    } else {
2793      // We can't perform this conversion.
2794      Diag(Arg->getSourceRange().getBegin(),
2795           diag::err_template_arg_not_convertible)
2796        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2797      Diag(Param->getLocation(), diag::note_template_param_here);
2798      return true;
2799    }
2800
2801    QualType IntegerType = Context.getCanonicalType(ParamType);
2802    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2803      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2804
2805    if (!Arg->isValueDependent()) {
2806      llvm::APSInt OldValue = Value;
2807
2808      // Coerce the template argument's value to the value it will have
2809      // based on the template parameter's type.
2810      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2811      if (Value.getBitWidth() != AllowedBits)
2812        Value.extOrTrunc(AllowedBits);
2813      Value.setIsSigned(IntegerType->isSignedIntegerType());
2814
2815      // Complain if an unsigned parameter received a negative value.
2816      if (IntegerType->isUnsignedIntegerType()
2817          && (OldValue.isSigned() && OldValue.isNegative())) {
2818        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2819          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2820          << Arg->getSourceRange();
2821        Diag(Param->getLocation(), diag::note_template_param_here);
2822      }
2823
2824      // Complain if we overflowed the template parameter's type.
2825      unsigned RequiredBits;
2826      if (IntegerType->isUnsignedIntegerType())
2827        RequiredBits = OldValue.getActiveBits();
2828      else if (OldValue.isUnsigned())
2829        RequiredBits = OldValue.getActiveBits() + 1;
2830      else
2831        RequiredBits = OldValue.getMinSignedBits();
2832      if (RequiredBits > AllowedBits) {
2833        Diag(Arg->getSourceRange().getBegin(),
2834             diag::warn_template_arg_too_large)
2835          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2836          << Arg->getSourceRange();
2837        Diag(Param->getLocation(), diag::note_template_param_here);
2838      }
2839    }
2840
2841    // Add the value of this argument to the list of converted
2842    // arguments. We use the bitwidth and signedness of the template
2843    // parameter.
2844    if (Arg->isValueDependent()) {
2845      // The argument is value-dependent. Create a new
2846      // TemplateArgument with the converted expression.
2847      Converted = TemplateArgument(Arg);
2848      return false;
2849    }
2850
2851    Converted = TemplateArgument(Value,
2852                                 ParamType->isEnumeralType() ? ParamType
2853                                                             : IntegerType);
2854    return false;
2855  }
2856
2857  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2858
2859  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2860  // from a template argument of type std::nullptr_t to a non-type
2861  // template parameter of type pointer to object, pointer to
2862  // function, or pointer-to-member, respectively.
2863  if (ArgType->isNullPtrType() &&
2864      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2865    Converted = TemplateArgument((NamedDecl *)0);
2866    return false;
2867  }
2868
2869  // Handle pointer-to-function, reference-to-function, and
2870  // pointer-to-member-function all in (roughly) the same way.
2871  if (// -- For a non-type template-parameter of type pointer to
2872      //    function, only the function-to-pointer conversion (4.3) is
2873      //    applied. If the template-argument represents a set of
2874      //    overloaded functions (or a pointer to such), the matching
2875      //    function is selected from the set (13.4).
2876      (ParamType->isPointerType() &&
2877       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2878      // -- For a non-type template-parameter of type reference to
2879      //    function, no conversions apply. If the template-argument
2880      //    represents a set of overloaded functions, the matching
2881      //    function is selected from the set (13.4).
2882      (ParamType->isReferenceType() &&
2883       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2884      // -- For a non-type template-parameter of type pointer to
2885      //    member function, no conversions apply. If the
2886      //    template-argument represents a set of overloaded member
2887      //    functions, the matching member function is selected from
2888      //    the set (13.4).
2889      (ParamType->isMemberPointerType() &&
2890       ParamType->getAs<MemberPointerType>()->getPointeeType()
2891         ->isFunctionType())) {
2892
2893    if (Arg->getType() == Context.OverloadTy) {
2894      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2895                                                                true,
2896                                                                FoundResult)) {
2897        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2898          return true;
2899
2900        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2901        ArgType = Arg->getType();
2902      } else
2903        return true;
2904    }
2905
2906    if (!ParamType->isMemberPointerType())
2907      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2908                                                            ParamType,
2909                                                            Arg, Converted);
2910
2911    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2912      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2913                        Arg->isLvalue(Context) == Expr::LV_Valid);
2914    } else if (!Context.hasSameUnqualifiedType(ArgType,
2915                                           ParamType.getNonReferenceType())) {
2916      // We can't perform this conversion.
2917      Diag(Arg->getSourceRange().getBegin(),
2918           diag::err_template_arg_not_convertible)
2919        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2920      Diag(Param->getLocation(), diag::note_template_param_here);
2921      return true;
2922    }
2923
2924    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2925  }
2926
2927  if (ParamType->isPointerType()) {
2928    //   -- for a non-type template-parameter of type pointer to
2929    //      object, qualification conversions (4.4) and the
2930    //      array-to-pointer conversion (4.2) are applied.
2931    // C++0x also allows a value of std::nullptr_t.
2932    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2933           "Only object pointers allowed here");
2934
2935    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2936                                                          ParamType,
2937                                                          Arg, Converted);
2938  }
2939
2940  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2941    //   -- For a non-type template-parameter of type reference to
2942    //      object, no conversions apply. The type referred to by the
2943    //      reference may be more cv-qualified than the (otherwise
2944    //      identical) type of the template-argument. The
2945    //      template-parameter is bound directly to the
2946    //      template-argument, which must be an lvalue.
2947    assert(ParamRefType->getPointeeType()->isObjectType() &&
2948           "Only object references allowed here");
2949
2950    if (Arg->getType() == Context.OverloadTy) {
2951      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2952                                                 ParamRefType->getPointeeType(),
2953                                                                true,
2954                                                                FoundResult)) {
2955        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2956          return true;
2957
2958        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2959        ArgType = Arg->getType();
2960      } else
2961        return true;
2962    }
2963
2964    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2965                                                          ParamType,
2966                                                          Arg, Converted);
2967  }
2968
2969  //     -- For a non-type template-parameter of type pointer to data
2970  //        member, qualification conversions (4.4) are applied.
2971  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2972
2973  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2974    // Types match exactly: nothing more to do here.
2975  } else if (IsQualificationConversion(ArgType, ParamType)) {
2976    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2977                      Arg->isLvalue(Context) == Expr::LV_Valid);
2978  } else {
2979    // We can't perform this conversion.
2980    Diag(Arg->getSourceRange().getBegin(),
2981         diag::err_template_arg_not_convertible)
2982      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2983    Diag(Param->getLocation(), diag::note_template_param_here);
2984    return true;
2985  }
2986
2987  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2988}
2989
2990/// \brief Check a template argument against its corresponding
2991/// template template parameter.
2992///
2993/// This routine implements the semantics of C++ [temp.arg.template].
2994/// It returns true if an error occurred, and false otherwise.
2995bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2996                                 const TemplateArgumentLoc &Arg) {
2997  TemplateName Name = Arg.getArgument().getAsTemplate();
2998  TemplateDecl *Template = Name.getAsTemplateDecl();
2999  if (!Template) {
3000    // Any dependent template name is fine.
3001    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3002    return false;
3003  }
3004
3005  // C++ [temp.arg.template]p1:
3006  //   A template-argument for a template template-parameter shall be
3007  //   the name of a class template, expressed as id-expression. Only
3008  //   primary class templates are considered when matching the
3009  //   template template argument with the corresponding parameter;
3010  //   partial specializations are not considered even if their
3011  //   parameter lists match that of the template template parameter.
3012  //
3013  // Note that we also allow template template parameters here, which
3014  // will happen when we are dealing with, e.g., class template
3015  // partial specializations.
3016  if (!isa<ClassTemplateDecl>(Template) &&
3017      !isa<TemplateTemplateParmDecl>(Template)) {
3018    assert(isa<FunctionTemplateDecl>(Template) &&
3019           "Only function templates are possible here");
3020    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3021    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3022      << Template;
3023  }
3024
3025  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3026                                         Param->getTemplateParameters(),
3027                                         true,
3028                                         TPL_TemplateTemplateArgumentMatch,
3029                                         Arg.getLocation());
3030}
3031
3032/// \brief Given a non-type template argument that refers to a
3033/// declaration and the type of its corresponding non-type template
3034/// parameter, produce an expression that properly refers to that
3035/// declaration.
3036Sema::OwningExprResult
3037Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3038                                              QualType ParamType,
3039                                              SourceLocation Loc) {
3040  assert(Arg.getKind() == TemplateArgument::Declaration &&
3041         "Only declaration template arguments permitted here");
3042  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3043
3044  if (VD->getDeclContext()->isRecord() &&
3045      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3046    // If the value is a class member, we might have a pointer-to-member.
3047    // Determine whether the non-type template template parameter is of
3048    // pointer-to-member type. If so, we need to build an appropriate
3049    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3050    // would refer to the member itself.
3051    if (ParamType->isMemberPointerType()) {
3052      QualType ClassType
3053        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3054      NestedNameSpecifier *Qualifier
3055        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
3056      CXXScopeSpec SS;
3057      SS.setScopeRep(Qualifier);
3058      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
3059                                           VD->getType().getNonReferenceType(),
3060                                                  Loc,
3061                                                  &SS);
3062      if (RefExpr.isInvalid())
3063        return ExprError();
3064
3065      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3066
3067      // We might need to perform a trailing qualification conversion, since
3068      // the element type on the parameter could be more qualified than the
3069      // element type in the expression we constructed.
3070      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3071                                    ParamType.getUnqualifiedType())) {
3072        Expr *RefE = RefExpr.takeAs<Expr>();
3073        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(),
3074                          CastExpr::CK_NoOp);
3075        RefExpr = Owned(RefE);
3076      }
3077
3078      assert(!RefExpr.isInvalid() &&
3079             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3080                                 ParamType.getUnqualifiedType()));
3081      return move(RefExpr);
3082    }
3083  }
3084
3085  QualType T = VD->getType().getNonReferenceType();
3086  if (ParamType->isPointerType()) {
3087    // When the non-type template parameter is a pointer, take the
3088    // address of the declaration.
3089    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3090    if (RefExpr.isInvalid())
3091      return ExprError();
3092
3093    if (T->isFunctionType() || T->isArrayType()) {
3094      // Decay functions and arrays.
3095      Expr *RefE = (Expr *)RefExpr.get();
3096      DefaultFunctionArrayConversion(RefE);
3097      if (RefE != RefExpr.get()) {
3098        RefExpr.release();
3099        RefExpr = Owned(RefE);
3100      }
3101
3102      return move(RefExpr);
3103    }
3104
3105    // Take the address of everything else
3106    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3107  }
3108
3109  // If the non-type template parameter has reference type, qualify the
3110  // resulting declaration reference with the extra qualifiers on the
3111  // type that the reference refers to.
3112  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3113    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3114
3115  return BuildDeclRefExpr(VD, T, Loc);
3116}
3117
3118/// \brief Construct a new expression that refers to the given
3119/// integral template argument with the given source-location
3120/// information.
3121///
3122/// This routine takes care of the mapping from an integral template
3123/// argument (which may have any integral type) to the appropriate
3124/// literal value.
3125Sema::OwningExprResult
3126Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3127                                                  SourceLocation Loc) {
3128  assert(Arg.getKind() == TemplateArgument::Integral &&
3129         "Operation is only value for integral template arguments");
3130  QualType T = Arg.getIntegralType();
3131  if (T->isCharType() || T->isWideCharType())
3132    return Owned(new (Context) CharacterLiteral(
3133                                             Arg.getAsIntegral()->getZExtValue(),
3134                                             T->isWideCharType(),
3135                                             T,
3136                                             Loc));
3137  if (T->isBooleanType())
3138    return Owned(new (Context) CXXBoolLiteralExpr(
3139                                            Arg.getAsIntegral()->getBoolValue(),
3140                                            T,
3141                                            Loc));
3142
3143  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3144}
3145
3146
3147/// \brief Determine whether the given template parameter lists are
3148/// equivalent.
3149///
3150/// \param New  The new template parameter list, typically written in the
3151/// source code as part of a new template declaration.
3152///
3153/// \param Old  The old template parameter list, typically found via
3154/// name lookup of the template declared with this template parameter
3155/// list.
3156///
3157/// \param Complain  If true, this routine will produce a diagnostic if
3158/// the template parameter lists are not equivalent.
3159///
3160/// \param Kind describes how we are to match the template parameter lists.
3161///
3162/// \param TemplateArgLoc If this source location is valid, then we
3163/// are actually checking the template parameter list of a template
3164/// argument (New) against the template parameter list of its
3165/// corresponding template template parameter (Old). We produce
3166/// slightly different diagnostics in this scenario.
3167///
3168/// \returns True if the template parameter lists are equal, false
3169/// otherwise.
3170bool
3171Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3172                                     TemplateParameterList *Old,
3173                                     bool Complain,
3174                                     TemplateParameterListEqualKind Kind,
3175                                     SourceLocation TemplateArgLoc) {
3176  if (Old->size() != New->size()) {
3177    if (Complain) {
3178      unsigned NextDiag = diag::err_template_param_list_different_arity;
3179      if (TemplateArgLoc.isValid()) {
3180        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3181        NextDiag = diag::note_template_param_list_different_arity;
3182      }
3183      Diag(New->getTemplateLoc(), NextDiag)
3184          << (New->size() > Old->size())
3185          << (Kind != TPL_TemplateMatch)
3186          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3187      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3188        << (Kind != TPL_TemplateMatch)
3189        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3190    }
3191
3192    return false;
3193  }
3194
3195  for (TemplateParameterList::iterator OldParm = Old->begin(),
3196         OldParmEnd = Old->end(), NewParm = New->begin();
3197       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3198    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3199      if (Complain) {
3200        unsigned NextDiag = diag::err_template_param_different_kind;
3201        if (TemplateArgLoc.isValid()) {
3202          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3203          NextDiag = diag::note_template_param_different_kind;
3204        }
3205        Diag((*NewParm)->getLocation(), NextDiag)
3206          << (Kind != TPL_TemplateMatch);
3207        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3208          << (Kind != TPL_TemplateMatch);
3209      }
3210      return false;
3211    }
3212
3213    if (TemplateTypeParmDecl *OldTTP
3214                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3215      // Template type parameters are equivalent if either both are template
3216      // type parameter packs or neither are (since we know we're at the same
3217      // index).
3218      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3219      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3220        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3221        // allow one to match a template parameter pack in the template
3222        // parameter list of a template template parameter to one or more
3223        // template parameters in the template parameter list of the
3224        // corresponding template template argument.
3225        if (Complain) {
3226          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3227          if (TemplateArgLoc.isValid()) {
3228            Diag(TemplateArgLoc,
3229                 diag::err_template_arg_template_params_mismatch);
3230            NextDiag = diag::note_template_parameter_pack_non_pack;
3231          }
3232          Diag(NewTTP->getLocation(), NextDiag)
3233            << 0 << NewTTP->isParameterPack();
3234          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3235            << 0 << OldTTP->isParameterPack();
3236        }
3237        return false;
3238      }
3239    } else if (NonTypeTemplateParmDecl *OldNTTP
3240                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3241      // The types of non-type template parameters must agree.
3242      NonTypeTemplateParmDecl *NewNTTP
3243        = cast<NonTypeTemplateParmDecl>(*NewParm);
3244
3245      // If we are matching a template template argument to a template
3246      // template parameter and one of the non-type template parameter types
3247      // is dependent, then we must wait until template instantiation time
3248      // to actually compare the arguments.
3249      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3250          (OldNTTP->getType()->isDependentType() ||
3251           NewNTTP->getType()->isDependentType()))
3252        continue;
3253
3254      if (Context.getCanonicalType(OldNTTP->getType()) !=
3255            Context.getCanonicalType(NewNTTP->getType())) {
3256        if (Complain) {
3257          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3258          if (TemplateArgLoc.isValid()) {
3259            Diag(TemplateArgLoc,
3260                 diag::err_template_arg_template_params_mismatch);
3261            NextDiag = diag::note_template_nontype_parm_different_type;
3262          }
3263          Diag(NewNTTP->getLocation(), NextDiag)
3264            << NewNTTP->getType()
3265            << (Kind != TPL_TemplateMatch);
3266          Diag(OldNTTP->getLocation(),
3267               diag::note_template_nontype_parm_prev_declaration)
3268            << OldNTTP->getType();
3269        }
3270        return false;
3271      }
3272    } else {
3273      // The template parameter lists of template template
3274      // parameters must agree.
3275      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3276             "Only template template parameters handled here");
3277      TemplateTemplateParmDecl *OldTTP
3278        = cast<TemplateTemplateParmDecl>(*OldParm);
3279      TemplateTemplateParmDecl *NewTTP
3280        = cast<TemplateTemplateParmDecl>(*NewParm);
3281      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3282                                          OldTTP->getTemplateParameters(),
3283                                          Complain,
3284              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3285                                          TemplateArgLoc))
3286        return false;
3287    }
3288  }
3289
3290  return true;
3291}
3292
3293/// \brief Check whether a template can be declared within this scope.
3294///
3295/// If the template declaration is valid in this scope, returns
3296/// false. Otherwise, issues a diagnostic and returns true.
3297bool
3298Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3299  // Find the nearest enclosing declaration scope.
3300  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3301         (S->getFlags() & Scope::TemplateParamScope) != 0)
3302    S = S->getParent();
3303
3304  // C++ [temp]p2:
3305  //   A template-declaration can appear only as a namespace scope or
3306  //   class scope declaration.
3307  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3308  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3309      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3310    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3311             << TemplateParams->getSourceRange();
3312
3313  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3314    Ctx = Ctx->getParent();
3315
3316  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3317    return false;
3318
3319  return Diag(TemplateParams->getTemplateLoc(),
3320              diag::err_template_outside_namespace_or_class_scope)
3321    << TemplateParams->getSourceRange();
3322}
3323
3324/// \brief Determine what kind of template specialization the given declaration
3325/// is.
3326static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3327  if (!D)
3328    return TSK_Undeclared;
3329
3330  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3331    return Record->getTemplateSpecializationKind();
3332  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3333    return Function->getTemplateSpecializationKind();
3334  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3335    return Var->getTemplateSpecializationKind();
3336
3337  return TSK_Undeclared;
3338}
3339
3340/// \brief Check whether a specialization is well-formed in the current
3341/// context.
3342///
3343/// This routine determines whether a template specialization can be declared
3344/// in the current context (C++ [temp.expl.spec]p2).
3345///
3346/// \param S the semantic analysis object for which this check is being
3347/// performed.
3348///
3349/// \param Specialized the entity being specialized or instantiated, which
3350/// may be a kind of template (class template, function template, etc.) or
3351/// a member of a class template (member function, static data member,
3352/// member class).
3353///
3354/// \param PrevDecl the previous declaration of this entity, if any.
3355///
3356/// \param Loc the location of the explicit specialization or instantiation of
3357/// this entity.
3358///
3359/// \param IsPartialSpecialization whether this is a partial specialization of
3360/// a class template.
3361///
3362/// \returns true if there was an error that we cannot recover from, false
3363/// otherwise.
3364static bool CheckTemplateSpecializationScope(Sema &S,
3365                                             NamedDecl *Specialized,
3366                                             NamedDecl *PrevDecl,
3367                                             SourceLocation Loc,
3368                                             bool IsPartialSpecialization) {
3369  // Keep these "kind" numbers in sync with the %select statements in the
3370  // various diagnostics emitted by this routine.
3371  int EntityKind = 0;
3372  bool isTemplateSpecialization = false;
3373  if (isa<ClassTemplateDecl>(Specialized)) {
3374    EntityKind = IsPartialSpecialization? 1 : 0;
3375    isTemplateSpecialization = true;
3376  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3377    EntityKind = 2;
3378    isTemplateSpecialization = true;
3379  } else if (isa<CXXMethodDecl>(Specialized))
3380    EntityKind = 3;
3381  else if (isa<VarDecl>(Specialized))
3382    EntityKind = 4;
3383  else if (isa<RecordDecl>(Specialized))
3384    EntityKind = 5;
3385  else {
3386    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3387    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3388    return true;
3389  }
3390
3391  // C++ [temp.expl.spec]p2:
3392  //   An explicit specialization shall be declared in the namespace
3393  //   of which the template is a member, or, for member templates, in
3394  //   the namespace of which the enclosing class or enclosing class
3395  //   template is a member. An explicit specialization of a member
3396  //   function, member class or static data member of a class
3397  //   template shall be declared in the namespace of which the class
3398  //   template is a member. Such a declaration may also be a
3399  //   definition. If the declaration is not a definition, the
3400  //   specialization may be defined later in the name- space in which
3401  //   the explicit specialization was declared, or in a namespace
3402  //   that encloses the one in which the explicit specialization was
3403  //   declared.
3404  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3405    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3406      << Specialized;
3407    return true;
3408  }
3409
3410  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3411    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3412      << Specialized;
3413    return true;
3414  }
3415
3416  // C++ [temp.class.spec]p6:
3417  //   A class template partial specialization may be declared or redeclared
3418  //   in any namespace scope in which its definition may be defined (14.5.1
3419  //   and 14.5.2).
3420  bool ComplainedAboutScope = false;
3421  DeclContext *SpecializedContext
3422    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3423  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3424  if ((!PrevDecl ||
3425       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3426       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3427    // There is no prior declaration of this entity, so this
3428    // specialization must be in the same context as the template
3429    // itself.
3430    if (!DC->Equals(SpecializedContext)) {
3431      if (isa<TranslationUnitDecl>(SpecializedContext))
3432        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3433        << EntityKind << Specialized;
3434      else if (isa<NamespaceDecl>(SpecializedContext))
3435        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3436        << EntityKind << Specialized
3437        << cast<NamedDecl>(SpecializedContext);
3438
3439      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3440      ComplainedAboutScope = true;
3441    }
3442  }
3443
3444  // Make sure that this redeclaration (or definition) occurs in an enclosing
3445  // namespace.
3446  // Note that HandleDeclarator() performs this check for explicit
3447  // specializations of function templates, static data members, and member
3448  // functions, so we skip the check here for those kinds of entities.
3449  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3450  // Should we refactor that check, so that it occurs later?
3451  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3452      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3453        isa<FunctionDecl>(Specialized))) {
3454    if (isa<TranslationUnitDecl>(SpecializedContext))
3455      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3456        << EntityKind << Specialized;
3457    else if (isa<NamespaceDecl>(SpecializedContext))
3458      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3459        << EntityKind << Specialized
3460        << cast<NamedDecl>(SpecializedContext);
3461
3462    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3463  }
3464
3465  // FIXME: check for specialization-after-instantiation errors and such.
3466
3467  return false;
3468}
3469
3470/// \brief Check the non-type template arguments of a class template
3471/// partial specialization according to C++ [temp.class.spec]p9.
3472///
3473/// \param TemplateParams the template parameters of the primary class
3474/// template.
3475///
3476/// \param TemplateArg the template arguments of the class template
3477/// partial specialization.
3478///
3479/// \param MirrorsPrimaryTemplate will be set true if the class
3480/// template partial specialization arguments are identical to the
3481/// implicit template arguments of the primary template. This is not
3482/// necessarily an error (C++0x), and it is left to the caller to diagnose
3483/// this condition when it is an error.
3484///
3485/// \returns true if there was an error, false otherwise.
3486bool Sema::CheckClassTemplatePartialSpecializationArgs(
3487                                        TemplateParameterList *TemplateParams,
3488                             const TemplateArgumentListBuilder &TemplateArgs,
3489                                        bool &MirrorsPrimaryTemplate) {
3490  // FIXME: the interface to this function will have to change to
3491  // accommodate variadic templates.
3492  MirrorsPrimaryTemplate = true;
3493
3494  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3495
3496  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3497    // Determine whether the template argument list of the partial
3498    // specialization is identical to the implicit argument list of
3499    // the primary template. The caller may need to diagnostic this as
3500    // an error per C++ [temp.class.spec]p9b3.
3501    if (MirrorsPrimaryTemplate) {
3502      if (TemplateTypeParmDecl *TTP
3503            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3504        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3505              Context.getCanonicalType(ArgList[I].getAsType()))
3506          MirrorsPrimaryTemplate = false;
3507      } else if (TemplateTemplateParmDecl *TTP
3508                   = dyn_cast<TemplateTemplateParmDecl>(
3509                                                 TemplateParams->getParam(I))) {
3510        TemplateName Name = ArgList[I].getAsTemplate();
3511        TemplateTemplateParmDecl *ArgDecl
3512          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3513        if (!ArgDecl ||
3514            ArgDecl->getIndex() != TTP->getIndex() ||
3515            ArgDecl->getDepth() != TTP->getDepth())
3516          MirrorsPrimaryTemplate = false;
3517      }
3518    }
3519
3520    NonTypeTemplateParmDecl *Param
3521      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3522    if (!Param) {
3523      continue;
3524    }
3525
3526    Expr *ArgExpr = ArgList[I].getAsExpr();
3527    if (!ArgExpr) {
3528      MirrorsPrimaryTemplate = false;
3529      continue;
3530    }
3531
3532    // C++ [temp.class.spec]p8:
3533    //   A non-type argument is non-specialized if it is the name of a
3534    //   non-type parameter. All other non-type arguments are
3535    //   specialized.
3536    //
3537    // Below, we check the two conditions that only apply to
3538    // specialized non-type arguments, so skip any non-specialized
3539    // arguments.
3540    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3541      if (NonTypeTemplateParmDecl *NTTP
3542            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3543        if (MirrorsPrimaryTemplate &&
3544            (Param->getIndex() != NTTP->getIndex() ||
3545             Param->getDepth() != NTTP->getDepth()))
3546          MirrorsPrimaryTemplate = false;
3547
3548        continue;
3549      }
3550
3551    // C++ [temp.class.spec]p9:
3552    //   Within the argument list of a class template partial
3553    //   specialization, the following restrictions apply:
3554    //     -- A partially specialized non-type argument expression
3555    //        shall not involve a template parameter of the partial
3556    //        specialization except when the argument expression is a
3557    //        simple identifier.
3558    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3559      Diag(ArgExpr->getLocStart(),
3560           diag::err_dependent_non_type_arg_in_partial_spec)
3561        << ArgExpr->getSourceRange();
3562      return true;
3563    }
3564
3565    //     -- The type of a template parameter corresponding to a
3566    //        specialized non-type argument shall not be dependent on a
3567    //        parameter of the specialization.
3568    if (Param->getType()->isDependentType()) {
3569      Diag(ArgExpr->getLocStart(),
3570           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3571        << Param->getType()
3572        << ArgExpr->getSourceRange();
3573      Diag(Param->getLocation(), diag::note_template_param_here);
3574      return true;
3575    }
3576
3577    MirrorsPrimaryTemplate = false;
3578  }
3579
3580  return false;
3581}
3582
3583/// \brief Retrieve the previous declaration of the given declaration.
3584static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3585  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3586    return VD->getPreviousDeclaration();
3587  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3588    return FD->getPreviousDeclaration();
3589  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3590    return TD->getPreviousDeclaration();
3591  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3592    return TD->getPreviousDeclaration();
3593  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3594    return FTD->getPreviousDeclaration();
3595  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3596    return CTD->getPreviousDeclaration();
3597  return 0;
3598}
3599
3600Sema::DeclResult
3601Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3602                                       TagUseKind TUK,
3603                                       SourceLocation KWLoc,
3604                                       CXXScopeSpec &SS,
3605                                       TemplateTy TemplateD,
3606                                       SourceLocation TemplateNameLoc,
3607                                       SourceLocation LAngleLoc,
3608                                       ASTTemplateArgsPtr TemplateArgsIn,
3609                                       SourceLocation RAngleLoc,
3610                                       AttributeList *Attr,
3611                               MultiTemplateParamsArg TemplateParameterLists) {
3612  assert(TUK != TUK_Reference && "References are not specializations");
3613
3614  // Find the class template we're specializing
3615  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3616  ClassTemplateDecl *ClassTemplate
3617    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3618
3619  if (!ClassTemplate) {
3620    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3621      << (Name.getAsTemplateDecl() &&
3622          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3623    return true;
3624  }
3625
3626  bool isExplicitSpecialization = false;
3627  bool isPartialSpecialization = false;
3628
3629  // Check the validity of the template headers that introduce this
3630  // template.
3631  // FIXME: We probably shouldn't complain about these headers for
3632  // friend declarations.
3633  bool Invalid = false;
3634  TemplateParameterList *TemplateParams
3635    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3636                        (TemplateParameterList**)TemplateParameterLists.get(),
3637                                              TemplateParameterLists.size(),
3638                                              TUK == TUK_Friend,
3639                                              isExplicitSpecialization,
3640                                              Invalid);
3641  if (Invalid)
3642    return true;
3643
3644  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3645  if (TemplateParams)
3646    --NumMatchedTemplateParamLists;
3647
3648  if (TemplateParams && TemplateParams->size() > 0) {
3649    isPartialSpecialization = true;
3650
3651    // C++ [temp.class.spec]p10:
3652    //   The template parameter list of a specialization shall not
3653    //   contain default template argument values.
3654    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3655      Decl *Param = TemplateParams->getParam(I);
3656      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3657        if (TTP->hasDefaultArgument()) {
3658          Diag(TTP->getDefaultArgumentLoc(),
3659               diag::err_default_arg_in_partial_spec);
3660          TTP->removeDefaultArgument();
3661        }
3662      } else if (NonTypeTemplateParmDecl *NTTP
3663                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3664        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3665          Diag(NTTP->getDefaultArgumentLoc(),
3666               diag::err_default_arg_in_partial_spec)
3667            << DefArg->getSourceRange();
3668          NTTP->removeDefaultArgument();
3669          DefArg->Destroy(Context);
3670        }
3671      } else {
3672        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3673        if (TTP->hasDefaultArgument()) {
3674          Diag(TTP->getDefaultArgument().getLocation(),
3675               diag::err_default_arg_in_partial_spec)
3676            << TTP->getDefaultArgument().getSourceRange();
3677          TTP->removeDefaultArgument();
3678        }
3679      }
3680    }
3681  } else if (TemplateParams) {
3682    if (TUK == TUK_Friend)
3683      Diag(KWLoc, diag::err_template_spec_friend)
3684        << FixItHint::CreateRemoval(
3685                                SourceRange(TemplateParams->getTemplateLoc(),
3686                                            TemplateParams->getRAngleLoc()))
3687        << SourceRange(LAngleLoc, RAngleLoc);
3688    else
3689      isExplicitSpecialization = true;
3690  } else if (TUK != TUK_Friend) {
3691    Diag(KWLoc, diag::err_template_spec_needs_header)
3692      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3693    isExplicitSpecialization = true;
3694  }
3695
3696  // Check that the specialization uses the same tag kind as the
3697  // original template.
3698  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3699  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3700  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3701                                    Kind, KWLoc,
3702                                    *ClassTemplate->getIdentifier())) {
3703    Diag(KWLoc, diag::err_use_with_wrong_tag)
3704      << ClassTemplate
3705      << FixItHint::CreateReplacement(KWLoc,
3706                            ClassTemplate->getTemplatedDecl()->getKindName());
3707    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3708         diag::note_previous_use);
3709    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3710  }
3711
3712  // Translate the parser's template argument list in our AST format.
3713  TemplateArgumentListInfo TemplateArgs;
3714  TemplateArgs.setLAngleLoc(LAngleLoc);
3715  TemplateArgs.setRAngleLoc(RAngleLoc);
3716  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3717
3718  // Check that the template argument list is well-formed for this
3719  // template.
3720  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3721                                        TemplateArgs.size());
3722  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3723                                TemplateArgs, false, Converted))
3724    return true;
3725
3726  assert((Converted.structuredSize() ==
3727            ClassTemplate->getTemplateParameters()->size()) &&
3728         "Converted template argument list is too short!");
3729
3730  // Find the class template (partial) specialization declaration that
3731  // corresponds to these arguments.
3732  llvm::FoldingSetNodeID ID;
3733  if (isPartialSpecialization) {
3734    bool MirrorsPrimaryTemplate;
3735    if (CheckClassTemplatePartialSpecializationArgs(
3736                                         ClassTemplate->getTemplateParameters(),
3737                                         Converted, MirrorsPrimaryTemplate))
3738      return true;
3739
3740    if (MirrorsPrimaryTemplate) {
3741      // C++ [temp.class.spec]p9b3:
3742      //
3743      //   -- The argument list of the specialization shall not be identical
3744      //      to the implicit argument list of the primary template.
3745      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3746        << (TUK == TUK_Definition)
3747        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3748      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3749                                ClassTemplate->getIdentifier(),
3750                                TemplateNameLoc,
3751                                Attr,
3752                                TemplateParams,
3753                                AS_none);
3754    }
3755
3756    // FIXME: Diagnose friend partial specializations
3757
3758    if (!Name.isDependent() &&
3759        !TemplateSpecializationType::anyDependentTemplateArguments(
3760                                             TemplateArgs.getArgumentArray(),
3761                                                         TemplateArgs.size())) {
3762      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3763        << ClassTemplate->getDeclName();
3764      isPartialSpecialization = false;
3765    } else {
3766      // FIXME: Template parameter list matters, too
3767      ClassTemplatePartialSpecializationDecl::Profile(ID,
3768                                                  Converted.getFlatArguments(),
3769                                                      Converted.flatSize(),
3770                                                      Context);
3771    }
3772  }
3773
3774  if (!isPartialSpecialization)
3775    ClassTemplateSpecializationDecl::Profile(ID,
3776                                             Converted.getFlatArguments(),
3777                                             Converted.flatSize(),
3778                                             Context);
3779  void *InsertPos = 0;
3780  ClassTemplateSpecializationDecl *PrevDecl = 0;
3781
3782  if (isPartialSpecialization)
3783    PrevDecl
3784      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3785                                                                    InsertPos);
3786  else
3787    PrevDecl
3788      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3789
3790  ClassTemplateSpecializationDecl *Specialization = 0;
3791
3792  // Check whether we can declare a class template specialization in
3793  // the current scope.
3794  if (TUK != TUK_Friend &&
3795      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3796                                       TemplateNameLoc,
3797                                       isPartialSpecialization))
3798    return true;
3799
3800  // The canonical type
3801  QualType CanonType;
3802  if (PrevDecl &&
3803      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3804               TUK == TUK_Friend)) {
3805    // Since the only prior class template specialization with these
3806    // arguments was referenced but not declared, or we're only
3807    // referencing this specialization as a friend, reuse that
3808    // declaration node as our own, updating its source location to
3809    // reflect our new declaration.
3810    Specialization = PrevDecl;
3811    Specialization->setLocation(TemplateNameLoc);
3812    PrevDecl = 0;
3813    CanonType = Context.getTypeDeclType(Specialization);
3814  } else if (isPartialSpecialization) {
3815    // Build the canonical type that describes the converted template
3816    // arguments of the class template partial specialization.
3817    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3818    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3819                                                  Converted.getFlatArguments(),
3820                                                  Converted.flatSize());
3821
3822    // Create a new class template partial specialization declaration node.
3823    ClassTemplatePartialSpecializationDecl *PrevPartial
3824      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3825    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3826                            : ClassTemplate->getPartialSpecializations().size();
3827    ClassTemplatePartialSpecializationDecl *Partial
3828      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3829                                             ClassTemplate->getDeclContext(),
3830                                                       TemplateNameLoc,
3831                                                       TemplateParams,
3832                                                       ClassTemplate,
3833                                                       Converted,
3834                                                       TemplateArgs,
3835                                                       CanonType,
3836                                                       PrevPartial,
3837                                                       SequenceNumber);
3838    SetNestedNameSpecifier(Partial, SS);
3839    if (NumMatchedTemplateParamLists > 0) {
3840      Partial->setTemplateParameterListsInfo(Context,
3841                                             NumMatchedTemplateParamLists,
3842                    (TemplateParameterList**) TemplateParameterLists.release());
3843    }
3844
3845    if (PrevPartial) {
3846      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3847      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3848    } else {
3849      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3850    }
3851    Specialization = Partial;
3852
3853    // If we are providing an explicit specialization of a member class
3854    // template specialization, make a note of that.
3855    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3856      PrevPartial->setMemberSpecialization();
3857
3858    // Check that all of the template parameters of the class template
3859    // partial specialization are deducible from the template
3860    // arguments. If not, this class template partial specialization
3861    // will never be used.
3862    llvm::SmallVector<bool, 8> DeducibleParams;
3863    DeducibleParams.resize(TemplateParams->size());
3864    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3865                               TemplateParams->getDepth(),
3866                               DeducibleParams);
3867    unsigned NumNonDeducible = 0;
3868    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3869      if (!DeducibleParams[I])
3870        ++NumNonDeducible;
3871
3872    if (NumNonDeducible) {
3873      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3874        << (NumNonDeducible > 1)
3875        << SourceRange(TemplateNameLoc, RAngleLoc);
3876      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3877        if (!DeducibleParams[I]) {
3878          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3879          if (Param->getDeclName())
3880            Diag(Param->getLocation(),
3881                 diag::note_partial_spec_unused_parameter)
3882              << Param->getDeclName();
3883          else
3884            Diag(Param->getLocation(),
3885                 diag::note_partial_spec_unused_parameter)
3886              << std::string("<anonymous>");
3887        }
3888      }
3889    }
3890  } else {
3891    // Create a new class template specialization declaration node for
3892    // this explicit specialization or friend declaration.
3893    Specialization
3894      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3895                                             ClassTemplate->getDeclContext(),
3896                                                TemplateNameLoc,
3897                                                ClassTemplate,
3898                                                Converted,
3899                                                PrevDecl);
3900    SetNestedNameSpecifier(Specialization, SS);
3901    if (NumMatchedTemplateParamLists > 0) {
3902      Specialization->setTemplateParameterListsInfo(Context,
3903                                                  NumMatchedTemplateParamLists,
3904                    (TemplateParameterList**) TemplateParameterLists.release());
3905    }
3906
3907    if (PrevDecl) {
3908      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3909      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3910    } else {
3911      ClassTemplate->getSpecializations().InsertNode(Specialization,
3912                                                     InsertPos);
3913    }
3914
3915    CanonType = Context.getTypeDeclType(Specialization);
3916  }
3917
3918  // C++ [temp.expl.spec]p6:
3919  //   If a template, a member template or the member of a class template is
3920  //   explicitly specialized then that specialization shall be declared
3921  //   before the first use of that specialization that would cause an implicit
3922  //   instantiation to take place, in every translation unit in which such a
3923  //   use occurs; no diagnostic is required.
3924  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3925    bool Okay = false;
3926    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3927      // Is there any previous explicit specialization declaration?
3928      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3929        Okay = true;
3930        break;
3931      }
3932    }
3933
3934    if (!Okay) {
3935      SourceRange Range(TemplateNameLoc, RAngleLoc);
3936      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3937        << Context.getTypeDeclType(Specialization) << Range;
3938
3939      Diag(PrevDecl->getPointOfInstantiation(),
3940           diag::note_instantiation_required_here)
3941        << (PrevDecl->getTemplateSpecializationKind()
3942                                                != TSK_ImplicitInstantiation);
3943      return true;
3944    }
3945  }
3946
3947  // If this is not a friend, note that this is an explicit specialization.
3948  if (TUK != TUK_Friend)
3949    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3950
3951  // Check that this isn't a redefinition of this specialization.
3952  if (TUK == TUK_Definition) {
3953    if (RecordDecl *Def = Specialization->getDefinition()) {
3954      SourceRange Range(TemplateNameLoc, RAngleLoc);
3955      Diag(TemplateNameLoc, diag::err_redefinition)
3956        << Context.getTypeDeclType(Specialization) << Range;
3957      Diag(Def->getLocation(), diag::note_previous_definition);
3958      Specialization->setInvalidDecl();
3959      return true;
3960    }
3961  }
3962
3963  // Build the fully-sugared type for this class template
3964  // specialization as the user wrote in the specialization
3965  // itself. This means that we'll pretty-print the type retrieved
3966  // from the specialization's declaration the way that the user
3967  // actually wrote the specialization, rather than formatting the
3968  // name based on the "canonical" representation used to store the
3969  // template arguments in the specialization.
3970  TypeSourceInfo *WrittenTy
3971    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3972                                                TemplateArgs, CanonType);
3973  if (TUK != TUK_Friend) {
3974    Specialization->setTypeAsWritten(WrittenTy);
3975    if (TemplateParams)
3976      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
3977  }
3978  TemplateArgsIn.release();
3979
3980  // C++ [temp.expl.spec]p9:
3981  //   A template explicit specialization is in the scope of the
3982  //   namespace in which the template was defined.
3983  //
3984  // We actually implement this paragraph where we set the semantic
3985  // context (in the creation of the ClassTemplateSpecializationDecl),
3986  // but we also maintain the lexical context where the actual
3987  // definition occurs.
3988  Specialization->setLexicalDeclContext(CurContext);
3989
3990  // We may be starting the definition of this specialization.
3991  if (TUK == TUK_Definition)
3992    Specialization->startDefinition();
3993
3994  if (TUK == TUK_Friend) {
3995    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3996                                            TemplateNameLoc,
3997                                            WrittenTy,
3998                                            /*FIXME:*/KWLoc);
3999    Friend->setAccess(AS_public);
4000    CurContext->addDecl(Friend);
4001  } else {
4002    // Add the specialization into its lexical context, so that it can
4003    // be seen when iterating through the list of declarations in that
4004    // context. However, specializations are not found by name lookup.
4005    CurContext->addDecl(Specialization);
4006  }
4007  return DeclPtrTy::make(Specialization);
4008}
4009
4010Sema::DeclPtrTy
4011Sema::ActOnTemplateDeclarator(Scope *S,
4012                              MultiTemplateParamsArg TemplateParameterLists,
4013                              Declarator &D) {
4014  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4015}
4016
4017Sema::DeclPtrTy
4018Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4019                               MultiTemplateParamsArg TemplateParameterLists,
4020                                      Declarator &D) {
4021  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4022  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4023         "Not a function declarator!");
4024  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4025
4026  if (FTI.hasPrototype) {
4027    // FIXME: Diagnose arguments without names in C.
4028  }
4029
4030  Scope *ParentScope = FnBodyScope->getParent();
4031
4032  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4033                                  move(TemplateParameterLists),
4034                                  /*IsFunctionDefinition=*/true);
4035  if (FunctionTemplateDecl *FunctionTemplate
4036        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
4037    return ActOnStartOfFunctionDef(FnBodyScope,
4038                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
4039  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
4040    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
4041  return DeclPtrTy();
4042}
4043
4044/// \brief Strips various properties off an implicit instantiation
4045/// that has just been explicitly specialized.
4046static void StripImplicitInstantiation(NamedDecl *D) {
4047  D->invalidateAttrs();
4048
4049  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4050    FD->setInlineSpecified(false);
4051  }
4052}
4053
4054/// \brief Diagnose cases where we have an explicit template specialization
4055/// before/after an explicit template instantiation, producing diagnostics
4056/// for those cases where they are required and determining whether the
4057/// new specialization/instantiation will have any effect.
4058///
4059/// \param NewLoc the location of the new explicit specialization or
4060/// instantiation.
4061///
4062/// \param NewTSK the kind of the new explicit specialization or instantiation.
4063///
4064/// \param PrevDecl the previous declaration of the entity.
4065///
4066/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4067///
4068/// \param PrevPointOfInstantiation if valid, indicates where the previus
4069/// declaration was instantiated (either implicitly or explicitly).
4070///
4071/// \param HasNoEffect will be set to true to indicate that the new
4072/// specialization or instantiation has no effect and should be ignored.
4073///
4074/// \returns true if there was an error that should prevent the introduction of
4075/// the new declaration into the AST, false otherwise.
4076bool
4077Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4078                                             TemplateSpecializationKind NewTSK,
4079                                             NamedDecl *PrevDecl,
4080                                             TemplateSpecializationKind PrevTSK,
4081                                        SourceLocation PrevPointOfInstantiation,
4082                                             bool &HasNoEffect) {
4083  HasNoEffect = false;
4084
4085  switch (NewTSK) {
4086  case TSK_Undeclared:
4087  case TSK_ImplicitInstantiation:
4088    assert(false && "Don't check implicit instantiations here");
4089    return false;
4090
4091  case TSK_ExplicitSpecialization:
4092    switch (PrevTSK) {
4093    case TSK_Undeclared:
4094    case TSK_ExplicitSpecialization:
4095      // Okay, we're just specializing something that is either already
4096      // explicitly specialized or has merely been mentioned without any
4097      // instantiation.
4098      return false;
4099
4100    case TSK_ImplicitInstantiation:
4101      if (PrevPointOfInstantiation.isInvalid()) {
4102        // The declaration itself has not actually been instantiated, so it is
4103        // still okay to specialize it.
4104        StripImplicitInstantiation(PrevDecl);
4105        return false;
4106      }
4107      // Fall through
4108
4109    case TSK_ExplicitInstantiationDeclaration:
4110    case TSK_ExplicitInstantiationDefinition:
4111      assert((PrevTSK == TSK_ImplicitInstantiation ||
4112              PrevPointOfInstantiation.isValid()) &&
4113             "Explicit instantiation without point of instantiation?");
4114
4115      // C++ [temp.expl.spec]p6:
4116      //   If a template, a member template or the member of a class template
4117      //   is explicitly specialized then that specialization shall be declared
4118      //   before the first use of that specialization that would cause an
4119      //   implicit instantiation to take place, in every translation unit in
4120      //   which such a use occurs; no diagnostic is required.
4121      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4122        // Is there any previous explicit specialization declaration?
4123        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4124          return false;
4125      }
4126
4127      Diag(NewLoc, diag::err_specialization_after_instantiation)
4128        << PrevDecl;
4129      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4130        << (PrevTSK != TSK_ImplicitInstantiation);
4131
4132      return true;
4133    }
4134    break;
4135
4136  case TSK_ExplicitInstantiationDeclaration:
4137    switch (PrevTSK) {
4138    case TSK_ExplicitInstantiationDeclaration:
4139      // This explicit instantiation declaration is redundant (that's okay).
4140      HasNoEffect = true;
4141      return false;
4142
4143    case TSK_Undeclared:
4144    case TSK_ImplicitInstantiation:
4145      // We're explicitly instantiating something that may have already been
4146      // implicitly instantiated; that's fine.
4147      return false;
4148
4149    case TSK_ExplicitSpecialization:
4150      // C++0x [temp.explicit]p4:
4151      //   For a given set of template parameters, if an explicit instantiation
4152      //   of a template appears after a declaration of an explicit
4153      //   specialization for that template, the explicit instantiation has no
4154      //   effect.
4155      HasNoEffect = true;
4156      return false;
4157
4158    case TSK_ExplicitInstantiationDefinition:
4159      // C++0x [temp.explicit]p10:
4160      //   If an entity is the subject of both an explicit instantiation
4161      //   declaration and an explicit instantiation definition in the same
4162      //   translation unit, the definition shall follow the declaration.
4163      Diag(NewLoc,
4164           diag::err_explicit_instantiation_declaration_after_definition);
4165      Diag(PrevPointOfInstantiation,
4166           diag::note_explicit_instantiation_definition_here);
4167      assert(PrevPointOfInstantiation.isValid() &&
4168             "Explicit instantiation without point of instantiation?");
4169      HasNoEffect = true;
4170      return false;
4171    }
4172    break;
4173
4174  case TSK_ExplicitInstantiationDefinition:
4175    switch (PrevTSK) {
4176    case TSK_Undeclared:
4177    case TSK_ImplicitInstantiation:
4178      // We're explicitly instantiating something that may have already been
4179      // implicitly instantiated; that's fine.
4180      return false;
4181
4182    case TSK_ExplicitSpecialization:
4183      // C++ DR 259, C++0x [temp.explicit]p4:
4184      //   For a given set of template parameters, if an explicit
4185      //   instantiation of a template appears after a declaration of
4186      //   an explicit specialization for that template, the explicit
4187      //   instantiation has no effect.
4188      //
4189      // In C++98/03 mode, we only give an extension warning here, because it
4190      // is not harmful to try to explicitly instantiate something that
4191      // has been explicitly specialized.
4192      if (!getLangOptions().CPlusPlus0x) {
4193        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4194          << PrevDecl;
4195        Diag(PrevDecl->getLocation(),
4196             diag::note_previous_template_specialization);
4197      }
4198      HasNoEffect = true;
4199      return false;
4200
4201    case TSK_ExplicitInstantiationDeclaration:
4202      // We're explicity instantiating a definition for something for which we
4203      // were previously asked to suppress instantiations. That's fine.
4204      return false;
4205
4206    case TSK_ExplicitInstantiationDefinition:
4207      // C++0x [temp.spec]p5:
4208      //   For a given template and a given set of template-arguments,
4209      //     - an explicit instantiation definition shall appear at most once
4210      //       in a program,
4211      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4212        << PrevDecl;
4213      Diag(PrevPointOfInstantiation,
4214           diag::note_previous_explicit_instantiation);
4215      HasNoEffect = true;
4216      return false;
4217    }
4218    break;
4219  }
4220
4221  assert(false && "Missing specialization/instantiation case?");
4222
4223  return false;
4224}
4225
4226/// \brief Perform semantic analysis for the given dependent function
4227/// template specialization.  The only possible way to get a dependent
4228/// function template specialization is with a friend declaration,
4229/// like so:
4230///
4231///   template <class T> void foo(T);
4232///   template <class T> class A {
4233///     friend void foo<>(T);
4234///   };
4235///
4236/// There really isn't any useful analysis we can do here, so we
4237/// just store the information.
4238bool
4239Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4240                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4241                                                   LookupResult &Previous) {
4242  // Remove anything from Previous that isn't a function template in
4243  // the correct context.
4244  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4245  LookupResult::Filter F = Previous.makeFilter();
4246  while (F.hasNext()) {
4247    NamedDecl *D = F.next()->getUnderlyingDecl();
4248    if (!isa<FunctionTemplateDecl>(D) ||
4249        !FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
4250      F.erase();
4251  }
4252  F.done();
4253
4254  // Should this be diagnosed here?
4255  if (Previous.empty()) return true;
4256
4257  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4258                                         ExplicitTemplateArgs);
4259  return false;
4260}
4261
4262/// \brief Perform semantic analysis for the given function template
4263/// specialization.
4264///
4265/// This routine performs all of the semantic analysis required for an
4266/// explicit function template specialization. On successful completion,
4267/// the function declaration \p FD will become a function template
4268/// specialization.
4269///
4270/// \param FD the function declaration, which will be updated to become a
4271/// function template specialization.
4272///
4273/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4274/// if any. Note that this may be valid info even when 0 arguments are
4275/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4276/// as it anyway contains info on the angle brackets locations.
4277///
4278/// \param PrevDecl the set of declarations that may be specialized by
4279/// this function specialization.
4280bool
4281Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4282                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4283                                          LookupResult &Previous) {
4284  // The set of function template specializations that could match this
4285  // explicit function template specialization.
4286  UnresolvedSet<8> Candidates;
4287
4288  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4289  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4290         I != E; ++I) {
4291    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4292    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4293      // Only consider templates found within the same semantic lookup scope as
4294      // FD.
4295      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4296        continue;
4297
4298      // C++ [temp.expl.spec]p11:
4299      //   A trailing template-argument can be left unspecified in the
4300      //   template-id naming an explicit function template specialization
4301      //   provided it can be deduced from the function argument type.
4302      // Perform template argument deduction to determine whether we may be
4303      // specializing this template.
4304      // FIXME: It is somewhat wasteful to build
4305      TemplateDeductionInfo Info(Context, FD->getLocation());
4306      FunctionDecl *Specialization = 0;
4307      if (TemplateDeductionResult TDK
4308            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4309                                      FD->getType(),
4310                                      Specialization,
4311                                      Info)) {
4312        // FIXME: Template argument deduction failed; record why it failed, so
4313        // that we can provide nifty diagnostics.
4314        (void)TDK;
4315        continue;
4316      }
4317
4318      // Record this candidate.
4319      Candidates.addDecl(Specialization, I.getAccess());
4320    }
4321  }
4322
4323  // Find the most specialized function template.
4324  UnresolvedSetIterator Result
4325    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4326                         TPOC_Other, FD->getLocation(),
4327                  PDiag(diag::err_function_template_spec_no_match)
4328                    << FD->getDeclName(),
4329                  PDiag(diag::err_function_template_spec_ambiguous)
4330                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4331                  PDiag(diag::note_function_template_spec_matched));
4332  if (Result == Candidates.end())
4333    return true;
4334
4335  // Ignore access information;  it doesn't figure into redeclaration checking.
4336  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4337  Specialization->setLocation(FD->getLocation());
4338
4339  // FIXME: Check if the prior specialization has a point of instantiation.
4340  // If so, we have run afoul of .
4341
4342  // If this is a friend declaration, then we're not really declaring
4343  // an explicit specialization.
4344  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4345
4346  // Check the scope of this explicit specialization.
4347  if (!isFriend &&
4348      CheckTemplateSpecializationScope(*this,
4349                                       Specialization->getPrimaryTemplate(),
4350                                       Specialization, FD->getLocation(),
4351                                       false))
4352    return true;
4353
4354  // C++ [temp.expl.spec]p6:
4355  //   If a template, a member template or the member of a class template is
4356  //   explicitly specialized then that specialization shall be declared
4357  //   before the first use of that specialization that would cause an implicit
4358  //   instantiation to take place, in every translation unit in which such a
4359  //   use occurs; no diagnostic is required.
4360  FunctionTemplateSpecializationInfo *SpecInfo
4361    = Specialization->getTemplateSpecializationInfo();
4362  assert(SpecInfo && "Function template specialization info missing?");
4363
4364  bool HasNoEffect = false;
4365  if (!isFriend &&
4366      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4367                                             TSK_ExplicitSpecialization,
4368                                             Specialization,
4369                                   SpecInfo->getTemplateSpecializationKind(),
4370                                         SpecInfo->getPointOfInstantiation(),
4371                                             HasNoEffect))
4372    return true;
4373
4374  // Mark the prior declaration as an explicit specialization, so that later
4375  // clients know that this is an explicit specialization.
4376  if (!isFriend)
4377    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4378
4379  // Turn the given function declaration into a function template
4380  // specialization, with the template arguments from the previous
4381  // specialization.
4382  // Take copies of (semantic and syntactic) template argument lists.
4383  const TemplateArgumentList* TemplArgs = new (Context)
4384    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4385  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4386    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4387  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4388                                        TemplArgs, /*InsertPos=*/0,
4389                                    SpecInfo->getTemplateSpecializationKind(),
4390                                        TemplArgsAsWritten);
4391
4392  // The "previous declaration" for this function template specialization is
4393  // the prior function template specialization.
4394  Previous.clear();
4395  Previous.addDecl(Specialization);
4396  return false;
4397}
4398
4399/// \brief Perform semantic analysis for the given non-template member
4400/// specialization.
4401///
4402/// This routine performs all of the semantic analysis required for an
4403/// explicit member function specialization. On successful completion,
4404/// the function declaration \p FD will become a member function
4405/// specialization.
4406///
4407/// \param Member the member declaration, which will be updated to become a
4408/// specialization.
4409///
4410/// \param Previous the set of declarations, one of which may be specialized
4411/// by this function specialization;  the set will be modified to contain the
4412/// redeclared member.
4413bool
4414Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4415  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4416
4417  // Try to find the member we are instantiating.
4418  NamedDecl *Instantiation = 0;
4419  NamedDecl *InstantiatedFrom = 0;
4420  MemberSpecializationInfo *MSInfo = 0;
4421
4422  if (Previous.empty()) {
4423    // Nowhere to look anyway.
4424  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4425    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4426           I != E; ++I) {
4427      NamedDecl *D = (*I)->getUnderlyingDecl();
4428      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4429        if (Context.hasSameType(Function->getType(), Method->getType())) {
4430          Instantiation = Method;
4431          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4432          MSInfo = Method->getMemberSpecializationInfo();
4433          break;
4434        }
4435      }
4436    }
4437  } else if (isa<VarDecl>(Member)) {
4438    VarDecl *PrevVar;
4439    if (Previous.isSingleResult() &&
4440        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4441      if (PrevVar->isStaticDataMember()) {
4442        Instantiation = PrevVar;
4443        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4444        MSInfo = PrevVar->getMemberSpecializationInfo();
4445      }
4446  } else if (isa<RecordDecl>(Member)) {
4447    CXXRecordDecl *PrevRecord;
4448    if (Previous.isSingleResult() &&
4449        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4450      Instantiation = PrevRecord;
4451      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4452      MSInfo = PrevRecord->getMemberSpecializationInfo();
4453    }
4454  }
4455
4456  if (!Instantiation) {
4457    // There is no previous declaration that matches. Since member
4458    // specializations are always out-of-line, the caller will complain about
4459    // this mismatch later.
4460    return false;
4461  }
4462
4463  // If this is a friend, just bail out here before we start turning
4464  // things into explicit specializations.
4465  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4466    // Preserve instantiation information.
4467    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4468      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4469                                      cast<CXXMethodDecl>(InstantiatedFrom),
4470        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4471    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4472      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4473                                      cast<CXXRecordDecl>(InstantiatedFrom),
4474        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4475    }
4476
4477    Previous.clear();
4478    Previous.addDecl(Instantiation);
4479    return false;
4480  }
4481
4482  // Make sure that this is a specialization of a member.
4483  if (!InstantiatedFrom) {
4484    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4485      << Member;
4486    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4487    return true;
4488  }
4489
4490  // C++ [temp.expl.spec]p6:
4491  //   If a template, a member template or the member of a class template is
4492  //   explicitly specialized then that spe- cialization shall be declared
4493  //   before the first use of that specialization that would cause an implicit
4494  //   instantiation to take place, in every translation unit in which such a
4495  //   use occurs; no diagnostic is required.
4496  assert(MSInfo && "Member specialization info missing?");
4497
4498  bool HasNoEffect = false;
4499  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4500                                             TSK_ExplicitSpecialization,
4501                                             Instantiation,
4502                                     MSInfo->getTemplateSpecializationKind(),
4503                                           MSInfo->getPointOfInstantiation(),
4504                                             HasNoEffect))
4505    return true;
4506
4507  // Check the scope of this explicit specialization.
4508  if (CheckTemplateSpecializationScope(*this,
4509                                       InstantiatedFrom,
4510                                       Instantiation, Member->getLocation(),
4511                                       false))
4512    return true;
4513
4514  // Note that this is an explicit instantiation of a member.
4515  // the original declaration to note that it is an explicit specialization
4516  // (if it was previously an implicit instantiation). This latter step
4517  // makes bookkeeping easier.
4518  if (isa<FunctionDecl>(Member)) {
4519    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4520    if (InstantiationFunction->getTemplateSpecializationKind() ==
4521          TSK_ImplicitInstantiation) {
4522      InstantiationFunction->setTemplateSpecializationKind(
4523                                                  TSK_ExplicitSpecialization);
4524      InstantiationFunction->setLocation(Member->getLocation());
4525    }
4526
4527    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4528                                        cast<CXXMethodDecl>(InstantiatedFrom),
4529                                                  TSK_ExplicitSpecialization);
4530  } else if (isa<VarDecl>(Member)) {
4531    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4532    if (InstantiationVar->getTemplateSpecializationKind() ==
4533          TSK_ImplicitInstantiation) {
4534      InstantiationVar->setTemplateSpecializationKind(
4535                                                  TSK_ExplicitSpecialization);
4536      InstantiationVar->setLocation(Member->getLocation());
4537    }
4538
4539    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4540                                                cast<VarDecl>(InstantiatedFrom),
4541                                                TSK_ExplicitSpecialization);
4542  } else {
4543    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4544    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4545    if (InstantiationClass->getTemplateSpecializationKind() ==
4546          TSK_ImplicitInstantiation) {
4547      InstantiationClass->setTemplateSpecializationKind(
4548                                                   TSK_ExplicitSpecialization);
4549      InstantiationClass->setLocation(Member->getLocation());
4550    }
4551
4552    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4553                                        cast<CXXRecordDecl>(InstantiatedFrom),
4554                                                   TSK_ExplicitSpecialization);
4555  }
4556
4557  // Save the caller the trouble of having to figure out which declaration
4558  // this specialization matches.
4559  Previous.clear();
4560  Previous.addDecl(Instantiation);
4561  return false;
4562}
4563
4564/// \brief Check the scope of an explicit instantiation.
4565///
4566/// \returns true if a serious error occurs, false otherwise.
4567static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4568                                            SourceLocation InstLoc,
4569                                            bool WasQualifiedName) {
4570  DeclContext *ExpectedContext
4571    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4572  DeclContext *CurContext = S.CurContext->getLookupContext();
4573
4574  if (CurContext->isRecord()) {
4575    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4576      << D;
4577    return true;
4578  }
4579
4580  // C++0x [temp.explicit]p2:
4581  //   An explicit instantiation shall appear in an enclosing namespace of its
4582  //   template.
4583  //
4584  // This is DR275, which we do not retroactively apply to C++98/03.
4585  if (S.getLangOptions().CPlusPlus0x &&
4586      !CurContext->Encloses(ExpectedContext)) {
4587    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4588      S.Diag(InstLoc,
4589             S.getLangOptions().CPlusPlus0x?
4590                 diag::err_explicit_instantiation_out_of_scope
4591               : diag::warn_explicit_instantiation_out_of_scope_0x)
4592        << D << NS;
4593    else
4594      S.Diag(InstLoc,
4595             S.getLangOptions().CPlusPlus0x?
4596                 diag::err_explicit_instantiation_must_be_global
4597               : diag::warn_explicit_instantiation_out_of_scope_0x)
4598        << D;
4599    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4600    return false;
4601  }
4602
4603  // C++0x [temp.explicit]p2:
4604  //   If the name declared in the explicit instantiation is an unqualified
4605  //   name, the explicit instantiation shall appear in the namespace where
4606  //   its template is declared or, if that namespace is inline (7.3.1), any
4607  //   namespace from its enclosing namespace set.
4608  if (WasQualifiedName)
4609    return false;
4610
4611  if (CurContext->Equals(ExpectedContext))
4612    return false;
4613
4614  S.Diag(InstLoc,
4615         S.getLangOptions().CPlusPlus0x?
4616             diag::err_explicit_instantiation_unqualified_wrong_namespace
4617           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4618    << D << ExpectedContext;
4619  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4620  return false;
4621}
4622
4623/// \brief Determine whether the given scope specifier has a template-id in it.
4624static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4625  if (!SS.isSet())
4626    return false;
4627
4628  // C++0x [temp.explicit]p2:
4629  //   If the explicit instantiation is for a member function, a member class
4630  //   or a static data member of a class template specialization, the name of
4631  //   the class template specialization in the qualified-id for the member
4632  //   name shall be a simple-template-id.
4633  //
4634  // C++98 has the same restriction, just worded differently.
4635  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4636       NNS; NNS = NNS->getPrefix())
4637    if (Type *T = NNS->getAsType())
4638      if (isa<TemplateSpecializationType>(T))
4639        return true;
4640
4641  return false;
4642}
4643
4644// Explicit instantiation of a class template specialization
4645Sema::DeclResult
4646Sema::ActOnExplicitInstantiation(Scope *S,
4647                                 SourceLocation ExternLoc,
4648                                 SourceLocation TemplateLoc,
4649                                 unsigned TagSpec,
4650                                 SourceLocation KWLoc,
4651                                 const CXXScopeSpec &SS,
4652                                 TemplateTy TemplateD,
4653                                 SourceLocation TemplateNameLoc,
4654                                 SourceLocation LAngleLoc,
4655                                 ASTTemplateArgsPtr TemplateArgsIn,
4656                                 SourceLocation RAngleLoc,
4657                                 AttributeList *Attr) {
4658  // Find the class template we're specializing
4659  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4660  ClassTemplateDecl *ClassTemplate
4661    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4662
4663  // Check that the specialization uses the same tag kind as the
4664  // original template.
4665  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4666  assert(Kind != TTK_Enum &&
4667         "Invalid enum tag in class template explicit instantiation!");
4668  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4669                                    Kind, KWLoc,
4670                                    *ClassTemplate->getIdentifier())) {
4671    Diag(KWLoc, diag::err_use_with_wrong_tag)
4672      << ClassTemplate
4673      << FixItHint::CreateReplacement(KWLoc,
4674                            ClassTemplate->getTemplatedDecl()->getKindName());
4675    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4676         diag::note_previous_use);
4677    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4678  }
4679
4680  // C++0x [temp.explicit]p2:
4681  //   There are two forms of explicit instantiation: an explicit instantiation
4682  //   definition and an explicit instantiation declaration. An explicit
4683  //   instantiation declaration begins with the extern keyword. [...]
4684  TemplateSpecializationKind TSK
4685    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4686                           : TSK_ExplicitInstantiationDeclaration;
4687
4688  // Translate the parser's template argument list in our AST format.
4689  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4690  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4691
4692  // Check that the template argument list is well-formed for this
4693  // template.
4694  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4695                                        TemplateArgs.size());
4696  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4697                                TemplateArgs, false, Converted))
4698    return true;
4699
4700  assert((Converted.structuredSize() ==
4701            ClassTemplate->getTemplateParameters()->size()) &&
4702         "Converted template argument list is too short!");
4703
4704  // Find the class template specialization declaration that
4705  // corresponds to these arguments.
4706  llvm::FoldingSetNodeID ID;
4707  ClassTemplateSpecializationDecl::Profile(ID,
4708                                           Converted.getFlatArguments(),
4709                                           Converted.flatSize(),
4710                                           Context);
4711  void *InsertPos = 0;
4712  ClassTemplateSpecializationDecl *PrevDecl
4713    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4714
4715  TemplateSpecializationKind PrevDecl_TSK
4716    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4717
4718  // C++0x [temp.explicit]p2:
4719  //   [...] An explicit instantiation shall appear in an enclosing
4720  //   namespace of its template. [...]
4721  //
4722  // This is C++ DR 275.
4723  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4724                                      SS.isSet()))
4725    return true;
4726
4727  ClassTemplateSpecializationDecl *Specialization = 0;
4728
4729  bool ReusedDecl = false;
4730  bool HasNoEffect = false;
4731  if (PrevDecl) {
4732    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4733                                               PrevDecl, PrevDecl_TSK,
4734                                            PrevDecl->getPointOfInstantiation(),
4735                                               HasNoEffect))
4736      return DeclPtrTy::make(PrevDecl);
4737
4738    // Even though HasNoEffect == true means that this explicit instantiation
4739    // has no effect on semantics, we go on to put its syntax in the AST.
4740
4741    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4742        PrevDecl_TSK == TSK_Undeclared) {
4743      // Since the only prior class template specialization with these
4744      // arguments was referenced but not declared, reuse that
4745      // declaration node as our own, updating the source location
4746      // for the template name to reflect our new declaration.
4747      // (Other source locations will be updated later.)
4748      Specialization = PrevDecl;
4749      Specialization->setLocation(TemplateNameLoc);
4750      PrevDecl = 0;
4751      ReusedDecl = true;
4752    }
4753  }
4754
4755  if (!Specialization) {
4756    // Create a new class template specialization declaration node for
4757    // this explicit specialization.
4758    Specialization
4759      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4760                                             ClassTemplate->getDeclContext(),
4761                                                TemplateNameLoc,
4762                                                ClassTemplate,
4763                                                Converted, PrevDecl);
4764    SetNestedNameSpecifier(Specialization, SS);
4765
4766    if (!HasNoEffect) {
4767      if (PrevDecl) {
4768        // Remove the previous declaration from the folding set, since we want
4769        // to introduce a new declaration.
4770        ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4771        ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4772      }
4773      // Insert the new specialization.
4774      ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4775    }
4776  }
4777
4778  // Build the fully-sugared type for this explicit instantiation as
4779  // the user wrote in the explicit instantiation itself. This means
4780  // that we'll pretty-print the type retrieved from the
4781  // specialization's declaration the way that the user actually wrote
4782  // the explicit instantiation, rather than formatting the name based
4783  // on the "canonical" representation used to store the template
4784  // arguments in the specialization.
4785  TypeSourceInfo *WrittenTy
4786    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4787                                                TemplateArgs,
4788                                  Context.getTypeDeclType(Specialization));
4789  Specialization->setTypeAsWritten(WrittenTy);
4790  TemplateArgsIn.release();
4791
4792  // Set source locations for keywords.
4793  Specialization->setExternLoc(ExternLoc);
4794  Specialization->setTemplateKeywordLoc(TemplateLoc);
4795
4796  // Add the explicit instantiation into its lexical context. However,
4797  // since explicit instantiations are never found by name lookup, we
4798  // just put it into the declaration context directly.
4799  Specialization->setLexicalDeclContext(CurContext);
4800  CurContext->addDecl(Specialization);
4801
4802  // Syntax is now OK, so return if it has no other effect on semantics.
4803  if (HasNoEffect) {
4804    // Set the template specialization kind.
4805    Specialization->setTemplateSpecializationKind(TSK);
4806    return DeclPtrTy::make(Specialization);
4807  }
4808
4809  // C++ [temp.explicit]p3:
4810  //   A definition of a class template or class member template
4811  //   shall be in scope at the point of the explicit instantiation of
4812  //   the class template or class member template.
4813  //
4814  // This check comes when we actually try to perform the
4815  // instantiation.
4816  ClassTemplateSpecializationDecl *Def
4817    = cast_or_null<ClassTemplateSpecializationDecl>(
4818                                              Specialization->getDefinition());
4819  if (!Def)
4820    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4821  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4822    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4823    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4824  }
4825
4826  // Instantiate the members of this class template specialization.
4827  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4828                                       Specialization->getDefinition());
4829  if (Def) {
4830    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4831
4832    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4833    // TSK_ExplicitInstantiationDefinition
4834    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4835        TSK == TSK_ExplicitInstantiationDefinition)
4836      Def->setTemplateSpecializationKind(TSK);
4837
4838    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4839  }
4840
4841  // Set the template specialization kind.
4842  Specialization->setTemplateSpecializationKind(TSK);
4843  return DeclPtrTy::make(Specialization);
4844}
4845
4846// Explicit instantiation of a member class of a class template.
4847Sema::DeclResult
4848Sema::ActOnExplicitInstantiation(Scope *S,
4849                                 SourceLocation ExternLoc,
4850                                 SourceLocation TemplateLoc,
4851                                 unsigned TagSpec,
4852                                 SourceLocation KWLoc,
4853                                 CXXScopeSpec &SS,
4854                                 IdentifierInfo *Name,
4855                                 SourceLocation NameLoc,
4856                                 AttributeList *Attr) {
4857
4858  bool Owned = false;
4859  bool IsDependent = false;
4860  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4861                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4862                            MultiTemplateParamsArg(*this, 0, 0),
4863                            Owned, IsDependent);
4864  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4865
4866  if (!TagD)
4867    return true;
4868
4869  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4870  if (Tag->isEnum()) {
4871    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4872      << Context.getTypeDeclType(Tag);
4873    return true;
4874  }
4875
4876  if (Tag->isInvalidDecl())
4877    return true;
4878
4879  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4880  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4881  if (!Pattern) {
4882    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4883      << Context.getTypeDeclType(Record);
4884    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4885    return true;
4886  }
4887
4888  // C++0x [temp.explicit]p2:
4889  //   If the explicit instantiation is for a class or member class, the
4890  //   elaborated-type-specifier in the declaration shall include a
4891  //   simple-template-id.
4892  //
4893  // C++98 has the same restriction, just worded differently.
4894  if (!ScopeSpecifierHasTemplateId(SS))
4895    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
4896      << Record << SS.getRange();
4897
4898  // C++0x [temp.explicit]p2:
4899  //   There are two forms of explicit instantiation: an explicit instantiation
4900  //   definition and an explicit instantiation declaration. An explicit
4901  //   instantiation declaration begins with the extern keyword. [...]
4902  TemplateSpecializationKind TSK
4903    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4904                           : TSK_ExplicitInstantiationDeclaration;
4905
4906  // C++0x [temp.explicit]p2:
4907  //   [...] An explicit instantiation shall appear in an enclosing
4908  //   namespace of its template. [...]
4909  //
4910  // This is C++ DR 275.
4911  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4912
4913  // Verify that it is okay to explicitly instantiate here.
4914  CXXRecordDecl *PrevDecl
4915    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4916  if (!PrevDecl && Record->getDefinition())
4917    PrevDecl = Record;
4918  if (PrevDecl) {
4919    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4920    bool HasNoEffect = false;
4921    assert(MSInfo && "No member specialization information?");
4922    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4923                                               PrevDecl,
4924                                        MSInfo->getTemplateSpecializationKind(),
4925                                             MSInfo->getPointOfInstantiation(),
4926                                               HasNoEffect))
4927      return true;
4928    if (HasNoEffect)
4929      return TagD;
4930  }
4931
4932  CXXRecordDecl *RecordDef
4933    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4934  if (!RecordDef) {
4935    // C++ [temp.explicit]p3:
4936    //   A definition of a member class of a class template shall be in scope
4937    //   at the point of an explicit instantiation of the member class.
4938    CXXRecordDecl *Def
4939      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4940    if (!Def) {
4941      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4942        << 0 << Record->getDeclName() << Record->getDeclContext();
4943      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4944        << Pattern;
4945      return true;
4946    } else {
4947      if (InstantiateClass(NameLoc, Record, Def,
4948                           getTemplateInstantiationArgs(Record),
4949                           TSK))
4950        return true;
4951
4952      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4953      if (!RecordDef)
4954        return true;
4955    }
4956  }
4957
4958  // Instantiate all of the members of the class.
4959  InstantiateClassMembers(NameLoc, RecordDef,
4960                          getTemplateInstantiationArgs(Record), TSK);
4961
4962  if (TSK == TSK_ExplicitInstantiationDefinition)
4963    MarkVTableUsed(NameLoc, RecordDef, true);
4964
4965  // FIXME: We don't have any representation for explicit instantiations of
4966  // member classes. Such a representation is not needed for compilation, but it
4967  // should be available for clients that want to see all of the declarations in
4968  // the source code.
4969  return TagD;
4970}
4971
4972Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4973                                                  SourceLocation ExternLoc,
4974                                                  SourceLocation TemplateLoc,
4975                                                  Declarator &D) {
4976  // Explicit instantiations always require a name.
4977  DeclarationName Name = GetNameForDeclarator(D);
4978  if (!Name) {
4979    if (!D.isInvalidType())
4980      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4981           diag::err_explicit_instantiation_requires_name)
4982        << D.getDeclSpec().getSourceRange()
4983        << D.getSourceRange();
4984
4985    return true;
4986  }
4987
4988  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4989  // we find one that is.
4990  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4991         (S->getFlags() & Scope::TemplateParamScope) != 0)
4992    S = S->getParent();
4993
4994  // Determine the type of the declaration.
4995  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
4996  QualType R = T->getType();
4997  if (R.isNull())
4998    return true;
4999
5000  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5001    // Cannot explicitly instantiate a typedef.
5002    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5003      << Name;
5004    return true;
5005  }
5006
5007  // C++0x [temp.explicit]p1:
5008  //   [...] An explicit instantiation of a function template shall not use the
5009  //   inline or constexpr specifiers.
5010  // Presumably, this also applies to member functions of class templates as
5011  // well.
5012  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5013    Diag(D.getDeclSpec().getInlineSpecLoc(),
5014         diag::err_explicit_instantiation_inline)
5015      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5016
5017  // FIXME: check for constexpr specifier.
5018
5019  // C++0x [temp.explicit]p2:
5020  //   There are two forms of explicit instantiation: an explicit instantiation
5021  //   definition and an explicit instantiation declaration. An explicit
5022  //   instantiation declaration begins with the extern keyword. [...]
5023  TemplateSpecializationKind TSK
5024    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5025                           : TSK_ExplicitInstantiationDeclaration;
5026
5027  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
5028  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5029
5030  if (!R->isFunctionType()) {
5031    // C++ [temp.explicit]p1:
5032    //   A [...] static data member of a class template can be explicitly
5033    //   instantiated from the member definition associated with its class
5034    //   template.
5035    if (Previous.isAmbiguous())
5036      return true;
5037
5038    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5039    if (!Prev || !Prev->isStaticDataMember()) {
5040      // We expect to see a data data member here.
5041      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5042        << Name;
5043      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5044           P != PEnd; ++P)
5045        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5046      return true;
5047    }
5048
5049    if (!Prev->getInstantiatedFromStaticDataMember()) {
5050      // FIXME: Check for explicit specialization?
5051      Diag(D.getIdentifierLoc(),
5052           diag::err_explicit_instantiation_data_member_not_instantiated)
5053        << Prev;
5054      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5055      // FIXME: Can we provide a note showing where this was declared?
5056      return true;
5057    }
5058
5059    // C++0x [temp.explicit]p2:
5060    //   If the explicit instantiation is for a member function, a member class
5061    //   or a static data member of a class template specialization, the name of
5062    //   the class template specialization in the qualified-id for the member
5063    //   name shall be a simple-template-id.
5064    //
5065    // C++98 has the same restriction, just worded differently.
5066    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5067      Diag(D.getIdentifierLoc(),
5068           diag::ext_explicit_instantiation_without_qualified_id)
5069        << Prev << D.getCXXScopeSpec().getRange();
5070
5071    // Check the scope of this explicit instantiation.
5072    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5073
5074    // Verify that it is okay to explicitly instantiate here.
5075    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5076    assert(MSInfo && "Missing static data member specialization info?");
5077    bool HasNoEffect = false;
5078    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5079                                        MSInfo->getTemplateSpecializationKind(),
5080                                              MSInfo->getPointOfInstantiation(),
5081                                               HasNoEffect))
5082      return true;
5083    if (HasNoEffect)
5084      return DeclPtrTy();
5085
5086    // Instantiate static data member.
5087    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5088    if (TSK == TSK_ExplicitInstantiationDefinition)
5089      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
5090                                            /*DefinitionRequired=*/true);
5091
5092    // FIXME: Create an ExplicitInstantiation node?
5093    return DeclPtrTy();
5094  }
5095
5096  // If the declarator is a template-id, translate the parser's template
5097  // argument list into our AST format.
5098  bool HasExplicitTemplateArgs = false;
5099  TemplateArgumentListInfo TemplateArgs;
5100  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5101    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5102    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5103    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5104    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5105                                       TemplateId->getTemplateArgs(),
5106                                       TemplateId->NumArgs);
5107    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5108    HasExplicitTemplateArgs = true;
5109    TemplateArgsPtr.release();
5110  }
5111
5112  // C++ [temp.explicit]p1:
5113  //   A [...] function [...] can be explicitly instantiated from its template.
5114  //   A member function [...] of a class template can be explicitly
5115  //  instantiated from the member definition associated with its class
5116  //  template.
5117  UnresolvedSet<8> Matches;
5118  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5119       P != PEnd; ++P) {
5120    NamedDecl *Prev = *P;
5121    if (!HasExplicitTemplateArgs) {
5122      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5123        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5124          Matches.clear();
5125
5126          Matches.addDecl(Method, P.getAccess());
5127          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5128            break;
5129        }
5130      }
5131    }
5132
5133    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5134    if (!FunTmpl)
5135      continue;
5136
5137    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5138    FunctionDecl *Specialization = 0;
5139    if (TemplateDeductionResult TDK
5140          = DeduceTemplateArguments(FunTmpl,
5141                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5142                                    R, Specialization, Info)) {
5143      // FIXME: Keep track of almost-matches?
5144      (void)TDK;
5145      continue;
5146    }
5147
5148    Matches.addDecl(Specialization, P.getAccess());
5149  }
5150
5151  // Find the most specialized function template specialization.
5152  UnresolvedSetIterator Result
5153    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5154                         D.getIdentifierLoc(),
5155                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5156                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5157                         PDiag(diag::note_explicit_instantiation_candidate));
5158
5159  if (Result == Matches.end())
5160    return true;
5161
5162  // Ignore access control bits, we don't need them for redeclaration checking.
5163  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5164
5165  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5166    Diag(D.getIdentifierLoc(),
5167         diag::err_explicit_instantiation_member_function_not_instantiated)
5168      << Specialization
5169      << (Specialization->getTemplateSpecializationKind() ==
5170          TSK_ExplicitSpecialization);
5171    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5172    return true;
5173  }
5174
5175  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5176  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5177    PrevDecl = Specialization;
5178
5179  if (PrevDecl) {
5180    bool HasNoEffect = false;
5181    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5182                                               PrevDecl,
5183                                     PrevDecl->getTemplateSpecializationKind(),
5184                                          PrevDecl->getPointOfInstantiation(),
5185                                               HasNoEffect))
5186      return true;
5187
5188    // FIXME: We may still want to build some representation of this
5189    // explicit specialization.
5190    if (HasNoEffect)
5191      return DeclPtrTy();
5192  }
5193
5194  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5195
5196  if (TSK == TSK_ExplicitInstantiationDefinition)
5197    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
5198                                  false, /*DefinitionRequired=*/true);
5199
5200  // C++0x [temp.explicit]p2:
5201  //   If the explicit instantiation is for a member function, a member class
5202  //   or a static data member of a class template specialization, the name of
5203  //   the class template specialization in the qualified-id for the member
5204  //   name shall be a simple-template-id.
5205  //
5206  // C++98 has the same restriction, just worded differently.
5207  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5208  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5209      D.getCXXScopeSpec().isSet() &&
5210      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5211    Diag(D.getIdentifierLoc(),
5212         diag::ext_explicit_instantiation_without_qualified_id)
5213    << Specialization << D.getCXXScopeSpec().getRange();
5214
5215  CheckExplicitInstantiationScope(*this,
5216                   FunTmpl? (NamedDecl *)FunTmpl
5217                          : Specialization->getInstantiatedFromMemberFunction(),
5218                                  D.getIdentifierLoc(),
5219                                  D.getCXXScopeSpec().isSet());
5220
5221  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5222  return DeclPtrTy();
5223}
5224
5225Sema::TypeResult
5226Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5227                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5228                        SourceLocation TagLoc, SourceLocation NameLoc) {
5229  // This has to hold, because SS is expected to be defined.
5230  assert(Name && "Expected a name in a dependent tag");
5231
5232  NestedNameSpecifier *NNS
5233    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5234  if (!NNS)
5235    return true;
5236
5237  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5238
5239  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5240    Diag(NameLoc, diag::err_dependent_tag_decl)
5241      << (TUK == TUK_Definition) << Kind << SS.getRange();
5242    return true;
5243  }
5244
5245  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5246  return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr();
5247}
5248
5249Sema::TypeResult
5250Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5251                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5252                        SourceLocation IdLoc) {
5253  NestedNameSpecifier *NNS
5254    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5255  if (!NNS)
5256    return true;
5257
5258  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5259      !getLangOptions().CPlusPlus0x)
5260    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5261      << FixItHint::CreateRemoval(TypenameLoc);
5262
5263  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5264                                 TypenameLoc, SS.getRange(), IdLoc);
5265  if (T.isNull())
5266    return true;
5267
5268  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5269  if (isa<DependentNameType>(T)) {
5270    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5271    TL.setKeywordLoc(TypenameLoc);
5272    TL.setQualifierRange(SS.getRange());
5273    TL.setNameLoc(IdLoc);
5274  } else {
5275    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5276    TL.setKeywordLoc(TypenameLoc);
5277    TL.setQualifierRange(SS.getRange());
5278    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5279  }
5280
5281  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5282}
5283
5284Sema::TypeResult
5285Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5286                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5287                        TypeTy *Ty) {
5288  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5289      !getLangOptions().CPlusPlus0x)
5290    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5291      << FixItHint::CreateRemoval(TypenameLoc);
5292
5293  TypeSourceInfo *InnerTSI = 0;
5294  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5295  NestedNameSpecifier *NNS
5296    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5297
5298  assert(isa<TemplateSpecializationType>(T) &&
5299         "Expected a template specialization type");
5300
5301  if (computeDeclContext(SS, false)) {
5302    // If we can compute a declaration context, then the "typename"
5303    // keyword was superfluous. Just build an ElaboratedType to keep
5304    // track of the nested-name-specifier.
5305
5306    // Push the inner type, preserving its source locations if possible.
5307    TypeLocBuilder Builder;
5308    if (InnerTSI)
5309      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5310    else
5311      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5312
5313    T = Context.getElaboratedType(ETK_Typename, NNS, T);
5314    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5315    TL.setKeywordLoc(TypenameLoc);
5316    TL.setQualifierRange(SS.getRange());
5317
5318    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5319    return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5320  }
5321
5322  // TODO: it's really silly that we make a template specialization
5323  // type earlier only to drop it again here.
5324  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5325  DependentTemplateName *DTN =
5326    TST->getTemplateName().getAsDependentTemplateName();
5327  assert(DTN && "dependent template has non-dependent name?");
5328  T = Context.getDependentTemplateSpecializationType(ETK_Typename, NNS,
5329                                                     DTN->getIdentifier(),
5330                                                     TST->getNumArgs(),
5331                                                     TST->getArgs());
5332  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5333  DependentTemplateSpecializationTypeLoc TL =
5334    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5335  if (InnerTSI) {
5336    TemplateSpecializationTypeLoc TSTL =
5337      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5338    TL.setLAngleLoc(TSTL.getLAngleLoc());
5339    TL.setRAngleLoc(TSTL.getRAngleLoc());
5340    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5341      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5342  } else {
5343    TL.initializeLocal(SourceLocation());
5344  }
5345  TL.setKeywordLoc(TypenameLoc);
5346  TL.setQualifierRange(SS.getRange());
5347  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5348}
5349
5350/// \brief Build the type that describes a C++ typename specifier,
5351/// e.g., "typename T::type".
5352QualType
5353Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5354                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5355                        SourceLocation KeywordLoc, SourceRange NNSRange,
5356                        SourceLocation IILoc) {
5357  CXXScopeSpec SS;
5358  SS.setScopeRep(NNS);
5359  SS.setRange(NNSRange);
5360
5361  DeclContext *Ctx = computeDeclContext(SS);
5362  if (!Ctx) {
5363    // If the nested-name-specifier is dependent and couldn't be
5364    // resolved to a type, build a typename type.
5365    assert(NNS->isDependent());
5366    return Context.getDependentNameType(Keyword, NNS, &II);
5367  }
5368
5369  // If the nested-name-specifier refers to the current instantiation,
5370  // the "typename" keyword itself is superfluous. In C++03, the
5371  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5372  // allows such extraneous "typename" keywords, and we retroactively
5373  // apply this DR to C++03 code with only a warning. In any case we continue.
5374
5375  if (RequireCompleteDeclContext(SS, Ctx))
5376    return QualType();
5377
5378  DeclarationName Name(&II);
5379  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5380  LookupQualifiedName(Result, Ctx);
5381  unsigned DiagID = 0;
5382  Decl *Referenced = 0;
5383  switch (Result.getResultKind()) {
5384  case LookupResult::NotFound:
5385    DiagID = diag::err_typename_nested_not_found;
5386    break;
5387
5388  case LookupResult::NotFoundInCurrentInstantiation:
5389    // Okay, it's a member of an unknown instantiation.
5390    return Context.getDependentNameType(Keyword, NNS, &II);
5391
5392  case LookupResult::Found:
5393    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5394      // We found a type. Build an ElaboratedType, since the
5395      // typename-specifier was just sugar.
5396      return Context.getElaboratedType(ETK_Typename, NNS,
5397                                       Context.getTypeDeclType(Type));
5398    }
5399
5400    DiagID = diag::err_typename_nested_not_type;
5401    Referenced = Result.getFoundDecl();
5402    break;
5403
5404  case LookupResult::FoundUnresolvedValue:
5405    llvm_unreachable("unresolved using decl in non-dependent context");
5406    return QualType();
5407
5408  case LookupResult::FoundOverloaded:
5409    DiagID = diag::err_typename_nested_not_type;
5410    Referenced = *Result.begin();
5411    break;
5412
5413  case LookupResult::Ambiguous:
5414    return QualType();
5415  }
5416
5417  // If we get here, it's because name lookup did not find a
5418  // type. Emit an appropriate diagnostic and return an error.
5419  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5420                        IILoc);
5421  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5422  if (Referenced)
5423    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5424      << Name;
5425  return QualType();
5426}
5427
5428namespace {
5429  // See Sema::RebuildTypeInCurrentInstantiation
5430  class CurrentInstantiationRebuilder
5431    : public TreeTransform<CurrentInstantiationRebuilder> {
5432    SourceLocation Loc;
5433    DeclarationName Entity;
5434
5435  public:
5436    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5437
5438    CurrentInstantiationRebuilder(Sema &SemaRef,
5439                                  SourceLocation Loc,
5440                                  DeclarationName Entity)
5441    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5442      Loc(Loc), Entity(Entity) { }
5443
5444    /// \brief Determine whether the given type \p T has already been
5445    /// transformed.
5446    ///
5447    /// For the purposes of type reconstruction, a type has already been
5448    /// transformed if it is NULL or if it is not dependent.
5449    bool AlreadyTransformed(QualType T) {
5450      return T.isNull() || !T->isDependentType();
5451    }
5452
5453    /// \brief Returns the location of the entity whose type is being
5454    /// rebuilt.
5455    SourceLocation getBaseLocation() { return Loc; }
5456
5457    /// \brief Returns the name of the entity whose type is being rebuilt.
5458    DeclarationName getBaseEntity() { return Entity; }
5459
5460    /// \brief Sets the "base" location and entity when that
5461    /// information is known based on another transformation.
5462    void setBase(SourceLocation Loc, DeclarationName Entity) {
5463      this->Loc = Loc;
5464      this->Entity = Entity;
5465    }
5466
5467    /// \brief Transforms an expression by returning the expression itself
5468    /// (an identity function).
5469    ///
5470    /// FIXME: This is completely unsafe; we will need to actually clone the
5471    /// expressions.
5472    Sema::OwningExprResult TransformExpr(Expr *E) {
5473      return getSema().Owned(E->Retain());
5474    }
5475  };
5476}
5477
5478/// \brief Rebuilds a type within the context of the current instantiation.
5479///
5480/// The type \p T is part of the type of an out-of-line member definition of
5481/// a class template (or class template partial specialization) that was parsed
5482/// and constructed before we entered the scope of the class template (or
5483/// partial specialization thereof). This routine will rebuild that type now
5484/// that we have entered the declarator's scope, which may produce different
5485/// canonical types, e.g.,
5486///
5487/// \code
5488/// template<typename T>
5489/// struct X {
5490///   typedef T* pointer;
5491///   pointer data();
5492/// };
5493///
5494/// template<typename T>
5495/// typename X<T>::pointer X<T>::data() { ... }
5496/// \endcode
5497///
5498/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5499/// since we do not know that we can look into X<T> when we parsed the type.
5500/// This function will rebuild the type, performing the lookup of "pointer"
5501/// in X<T> and returning an ElaboratedType whose canonical type is the same
5502/// as the canonical type of T*, allowing the return types of the out-of-line
5503/// definition and the declaration to match.
5504TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5505                                                        SourceLocation Loc,
5506                                                        DeclarationName Name) {
5507  if (!T || !T->getType()->isDependentType())
5508    return T;
5509
5510  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5511  return Rebuilder.TransformType(T);
5512}
5513
5514bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5515  if (SS.isInvalid()) return true;
5516
5517  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5518  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5519                                          DeclarationName());
5520  NestedNameSpecifier *Rebuilt =
5521    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5522  if (!Rebuilt) return true;
5523
5524  SS.setScopeRep(Rebuilt);
5525  return false;
5526}
5527
5528/// \brief Produces a formatted string that describes the binding of
5529/// template parameters to template arguments.
5530std::string
5531Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5532                                      const TemplateArgumentList &Args) {
5533  // FIXME: For variadic templates, we'll need to get the structured list.
5534  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5535                                         Args.flat_size());
5536}
5537
5538std::string
5539Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5540                                      const TemplateArgument *Args,
5541                                      unsigned NumArgs) {
5542  std::string Result;
5543
5544  if (!Params || Params->size() == 0 || NumArgs == 0)
5545    return Result;
5546
5547  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5548    if (I >= NumArgs)
5549      break;
5550
5551    if (I == 0)
5552      Result += "[with ";
5553    else
5554      Result += ", ";
5555
5556    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5557      Result += Id->getName();
5558    } else {
5559      Result += '$';
5560      Result += llvm::utostr(I);
5561    }
5562
5563    Result += " = ";
5564
5565    switch (Args[I].getKind()) {
5566      case TemplateArgument::Null:
5567        Result += "<no value>";
5568        break;
5569
5570      case TemplateArgument::Type: {
5571        std::string TypeStr;
5572        Args[I].getAsType().getAsStringInternal(TypeStr,
5573                                                Context.PrintingPolicy);
5574        Result += TypeStr;
5575        break;
5576      }
5577
5578      case TemplateArgument::Declaration: {
5579        bool Unnamed = true;
5580        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5581          if (ND->getDeclName()) {
5582            Unnamed = false;
5583            Result += ND->getNameAsString();
5584          }
5585        }
5586
5587        if (Unnamed) {
5588          Result += "<anonymous>";
5589        }
5590        break;
5591      }
5592
5593      case TemplateArgument::Template: {
5594        std::string Str;
5595        llvm::raw_string_ostream OS(Str);
5596        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5597        Result += OS.str();
5598        break;
5599      }
5600
5601      case TemplateArgument::Integral: {
5602        Result += Args[I].getAsIntegral()->toString(10);
5603        break;
5604      }
5605
5606      case TemplateArgument::Expression: {
5607        // FIXME: This is non-optimal, since we're regurgitating the
5608        // expression we were given.
5609        std::string Str;
5610        {
5611          llvm::raw_string_ostream OS(Str);
5612          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5613                                           Context.PrintingPolicy);
5614        }
5615        Result += Str;
5616        break;
5617      }
5618
5619      case TemplateArgument::Pack:
5620        // FIXME: Format template argument packs
5621        Result += "<template argument pack>";
5622        break;
5623    }
5624  }
5625
5626  Result += ']';
5627  return Result;
5628}
5629