SemaTemplate.cpp revision 203955
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Parse/Template.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/StringExtras.h"
24using namespace clang;
25
26/// \brief Determine whether the declaration found is acceptable as the name
27/// of a template and, if so, return that template declaration. Otherwise,
28/// returns NULL.
29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
30  if (!D)
31    return 0;
32
33  if (isa<TemplateDecl>(D))
34    return D;
35
36  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
37    // C++ [temp.local]p1:
38    //   Like normal (non-template) classes, class templates have an
39    //   injected-class-name (Clause 9). The injected-class-name
40    //   can be used with or without a template-argument-list. When
41    //   it is used without a template-argument-list, it is
42    //   equivalent to the injected-class-name followed by the
43    //   template-parameters of the class template enclosed in
44    //   <>. When it is used with a template-argument-list, it
45    //   refers to the specified class template specialization,
46    //   which could be the current specialization or another
47    //   specialization.
48    if (Record->isInjectedClassName()) {
49      Record = cast<CXXRecordDecl>(Record->getDeclContext());
50      if (Record->getDescribedClassTemplate())
51        return Record->getDescribedClassTemplate();
52
53      if (ClassTemplateSpecializationDecl *Spec
54            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
55        return Spec->getSpecializedTemplate();
56    }
57
58    return 0;
59  }
60
61  return 0;
62}
63
64static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
65  LookupResult::Filter filter = R.makeFilter();
66  while (filter.hasNext()) {
67    NamedDecl *Orig = filter.next();
68    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
69    if (!Repl)
70      filter.erase();
71    else if (Repl != Orig)
72      filter.replace(Repl);
73  }
74  filter.done();
75}
76
77TemplateNameKind Sema::isTemplateName(Scope *S,
78                                      const CXXScopeSpec &SS,
79                                      UnqualifiedId &Name,
80                                      TypeTy *ObjectTypePtr,
81                                      bool EnteringContext,
82                                      TemplateTy &TemplateResult) {
83  assert(getLangOptions().CPlusPlus && "No template names in C!");
84
85  DeclarationName TName;
86
87  switch (Name.getKind()) {
88  case UnqualifiedId::IK_Identifier:
89    TName = DeclarationName(Name.Identifier);
90    break;
91
92  case UnqualifiedId::IK_OperatorFunctionId:
93    TName = Context.DeclarationNames.getCXXOperatorName(
94                                              Name.OperatorFunctionId.Operator);
95    break;
96
97  case UnqualifiedId::IK_LiteralOperatorId:
98    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
99    break;
100
101  default:
102    return TNK_Non_template;
103  }
104
105  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
106
107  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
108                 LookupOrdinaryName);
109  R.suppressDiagnostics();
110  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
111  if (R.empty())
112    return TNK_Non_template;
113
114  TemplateName Template;
115  TemplateNameKind TemplateKind;
116
117  unsigned ResultCount = R.end() - R.begin();
118  if (ResultCount > 1) {
119    // We assume that we'll preserve the qualifier from a function
120    // template name in other ways.
121    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
122    TemplateKind = TNK_Function_template;
123  } else {
124    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
125
126    if (SS.isSet() && !SS.isInvalid()) {
127      NestedNameSpecifier *Qualifier
128        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
129      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
130    } else {
131      Template = TemplateName(TD);
132    }
133
134    if (isa<FunctionTemplateDecl>(TD))
135      TemplateKind = TNK_Function_template;
136    else {
137      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
138      TemplateKind = TNK_Type_template;
139    }
140  }
141
142  TemplateResult = TemplateTy::make(Template);
143  return TemplateKind;
144}
145
146bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
147                                       SourceLocation IILoc,
148                                       Scope *S,
149                                       const CXXScopeSpec *SS,
150                                       TemplateTy &SuggestedTemplate,
151                                       TemplateNameKind &SuggestedKind) {
152  // We can't recover unless there's a dependent scope specifier preceding the
153  // template name.
154  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
155      computeDeclContext(*SS))
156    return false;
157
158  // The code is missing a 'template' keyword prior to the dependent template
159  // name.
160  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
161  Diag(IILoc, diag::err_template_kw_missing)
162    << Qualifier << II.getName()
163    << CodeModificationHint::CreateInsertion(IILoc, "template ");
164  SuggestedTemplate
165    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
166  SuggestedKind = TNK_Dependent_template_name;
167  return true;
168}
169
170void Sema::LookupTemplateName(LookupResult &Found,
171                              Scope *S, const CXXScopeSpec &SS,
172                              QualType ObjectType,
173                              bool EnteringContext) {
174  // Determine where to perform name lookup
175  DeclContext *LookupCtx = 0;
176  bool isDependent = false;
177  if (!ObjectType.isNull()) {
178    // This nested-name-specifier occurs in a member access expression, e.g.,
179    // x->B::f, and we are looking into the type of the object.
180    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
181    LookupCtx = computeDeclContext(ObjectType);
182    isDependent = ObjectType->isDependentType();
183    assert((isDependent || !ObjectType->isIncompleteType()) &&
184           "Caller should have completed object type");
185  } else if (SS.isSet()) {
186    // This nested-name-specifier occurs after another nested-name-specifier,
187    // so long into the context associated with the prior nested-name-specifier.
188    LookupCtx = computeDeclContext(SS, EnteringContext);
189    isDependent = isDependentScopeSpecifier(SS);
190
191    // The declaration context must be complete.
192    if (LookupCtx && RequireCompleteDeclContext(SS))
193      return;
194  }
195
196  bool ObjectTypeSearchedInScope = false;
197  if (LookupCtx) {
198    // Perform "qualified" name lookup into the declaration context we
199    // computed, which is either the type of the base of a member access
200    // expression or the declaration context associated with a prior
201    // nested-name-specifier.
202    LookupQualifiedName(Found, LookupCtx);
203
204    if (!ObjectType.isNull() && Found.empty()) {
205      // C++ [basic.lookup.classref]p1:
206      //   In a class member access expression (5.2.5), if the . or -> token is
207      //   immediately followed by an identifier followed by a <, the
208      //   identifier must be looked up to determine whether the < is the
209      //   beginning of a template argument list (14.2) or a less-than operator.
210      //   The identifier is first looked up in the class of the object
211      //   expression. If the identifier is not found, it is then looked up in
212      //   the context of the entire postfix-expression and shall name a class
213      //   or function template.
214      //
215      // FIXME: When we're instantiating a template, do we actually have to
216      // look in the scope of the template? Seems fishy...
217      if (S) LookupName(Found, S);
218      ObjectTypeSearchedInScope = true;
219    }
220  } else if (isDependent) {
221    // We cannot look into a dependent object type or nested nme
222    // specifier.
223    return;
224  } else {
225    // Perform unqualified name lookup in the current scope.
226    LookupName(Found, S);
227  }
228
229  // FIXME: Cope with ambiguous name-lookup results.
230  assert(!Found.isAmbiguous() &&
231         "Cannot handle template name-lookup ambiguities");
232
233  if (Found.empty() && !isDependent) {
234    // If we did not find any names, attempt to correct any typos.
235    DeclarationName Name = Found.getLookupName();
236    if (CorrectTypo(Found, S, &SS, LookupCtx)) {
237      FilterAcceptableTemplateNames(Context, Found);
238      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
239        if (LookupCtx)
240          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
241            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
242            << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
243                                          Found.getLookupName().getAsString());
244        else
245          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
246            << Name << Found.getLookupName()
247            << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
248                                          Found.getLookupName().getAsString());
249        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
250          Diag(Template->getLocation(), diag::note_previous_decl)
251            << Template->getDeclName();
252      } else
253        Found.clear();
254    } else {
255      Found.clear();
256    }
257  }
258
259  FilterAcceptableTemplateNames(Context, Found);
260  if (Found.empty())
261    return;
262
263  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
264    // C++ [basic.lookup.classref]p1:
265    //   [...] If the lookup in the class of the object expression finds a
266    //   template, the name is also looked up in the context of the entire
267    //   postfix-expression and [...]
268    //
269    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
270                            LookupOrdinaryName);
271    LookupName(FoundOuter, S);
272    FilterAcceptableTemplateNames(Context, FoundOuter);
273    // FIXME: Handle ambiguities in this lookup better
274
275    if (FoundOuter.empty()) {
276      //   - if the name is not found, the name found in the class of the
277      //     object expression is used, otherwise
278    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
279      //   - if the name is found in the context of the entire
280      //     postfix-expression and does not name a class template, the name
281      //     found in the class of the object expression is used, otherwise
282    } else {
283      //   - if the name found is a class template, it must refer to the same
284      //     entity as the one found in the class of the object expression,
285      //     otherwise the program is ill-formed.
286      if (!Found.isSingleResult() ||
287          Found.getFoundDecl()->getCanonicalDecl()
288            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
289        Diag(Found.getNameLoc(),
290             diag::err_nested_name_member_ref_lookup_ambiguous)
291          << Found.getLookupName();
292        Diag(Found.getRepresentativeDecl()->getLocation(),
293             diag::note_ambig_member_ref_object_type)
294          << ObjectType;
295        Diag(FoundOuter.getFoundDecl()->getLocation(),
296             diag::note_ambig_member_ref_scope);
297
298        // Recover by taking the template that we found in the object
299        // expression's type.
300      }
301    }
302  }
303}
304
305/// ActOnDependentIdExpression - Handle a dependent id-expression that
306/// was just parsed.  This is only possible with an explicit scope
307/// specifier naming a dependent type.
308Sema::OwningExprResult
309Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
310                                 DeclarationName Name,
311                                 SourceLocation NameLoc,
312                                 bool isAddressOfOperand,
313                           const TemplateArgumentListInfo *TemplateArgs) {
314  NestedNameSpecifier *Qualifier
315    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
316
317  if (!isAddressOfOperand &&
318      isa<CXXMethodDecl>(CurContext) &&
319      cast<CXXMethodDecl>(CurContext)->isInstance()) {
320    QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
321
322    // Since the 'this' expression is synthesized, we don't need to
323    // perform the double-lookup check.
324    NamedDecl *FirstQualifierInScope = 0;
325
326    return Owned(CXXDependentScopeMemberExpr::Create(Context,
327                                                     /*This*/ 0, ThisType,
328                                                     /*IsArrow*/ true,
329                                                     /*Op*/ SourceLocation(),
330                                                     Qualifier, SS.getRange(),
331                                                     FirstQualifierInScope,
332                                                     Name, NameLoc,
333                                                     TemplateArgs));
334  }
335
336  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
337}
338
339Sema::OwningExprResult
340Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
341                                DeclarationName Name,
342                                SourceLocation NameLoc,
343                                const TemplateArgumentListInfo *TemplateArgs) {
344  return Owned(DependentScopeDeclRefExpr::Create(Context,
345               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
346                                                 SS.getRange(),
347                                                 Name, NameLoc,
348                                                 TemplateArgs));
349}
350
351/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
352/// that the template parameter 'PrevDecl' is being shadowed by a new
353/// declaration at location Loc. Returns true to indicate that this is
354/// an error, and false otherwise.
355bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
356  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
357
358  // Microsoft Visual C++ permits template parameters to be shadowed.
359  if (getLangOptions().Microsoft)
360    return false;
361
362  // C++ [temp.local]p4:
363  //   A template-parameter shall not be redeclared within its
364  //   scope (including nested scopes).
365  Diag(Loc, diag::err_template_param_shadow)
366    << cast<NamedDecl>(PrevDecl)->getDeclName();
367  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
368  return true;
369}
370
371/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
372/// the parameter D to reference the templated declaration and return a pointer
373/// to the template declaration. Otherwise, do nothing to D and return null.
374TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
375  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
376    D = DeclPtrTy::make(Temp->getTemplatedDecl());
377    return Temp;
378  }
379  return 0;
380}
381
382static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
383                                            const ParsedTemplateArgument &Arg) {
384
385  switch (Arg.getKind()) {
386  case ParsedTemplateArgument::Type: {
387    TypeSourceInfo *DI;
388    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
389    if (!DI)
390      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
391    return TemplateArgumentLoc(TemplateArgument(T), DI);
392  }
393
394  case ParsedTemplateArgument::NonType: {
395    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
396    return TemplateArgumentLoc(TemplateArgument(E), E);
397  }
398
399  case ParsedTemplateArgument::Template: {
400    TemplateName Template
401      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
402    return TemplateArgumentLoc(TemplateArgument(Template),
403                               Arg.getScopeSpec().getRange(),
404                               Arg.getLocation());
405  }
406  }
407
408  llvm_unreachable("Unhandled parsed template argument");
409  return TemplateArgumentLoc();
410}
411
412/// \brief Translates template arguments as provided by the parser
413/// into template arguments used by semantic analysis.
414void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
415                                      TemplateArgumentListInfo &TemplateArgs) {
416 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
417   TemplateArgs.addArgument(translateTemplateArgument(*this,
418                                                      TemplateArgsIn[I]));
419}
420
421/// ActOnTypeParameter - Called when a C++ template type parameter
422/// (e.g., "typename T") has been parsed. Typename specifies whether
423/// the keyword "typename" was used to declare the type parameter
424/// (otherwise, "class" was used), and KeyLoc is the location of the
425/// "class" or "typename" keyword. ParamName is the name of the
426/// parameter (NULL indicates an unnamed template parameter) and
427/// ParamName is the location of the parameter name (if any).
428/// If the type parameter has a default argument, it will be added
429/// later via ActOnTypeParameterDefault.
430Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
431                                         SourceLocation EllipsisLoc,
432                                         SourceLocation KeyLoc,
433                                         IdentifierInfo *ParamName,
434                                         SourceLocation ParamNameLoc,
435                                         unsigned Depth, unsigned Position) {
436  assert(S->isTemplateParamScope() &&
437         "Template type parameter not in template parameter scope!");
438  bool Invalid = false;
439
440  if (ParamName) {
441    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
442    if (PrevDecl && PrevDecl->isTemplateParameter())
443      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
444                                                           PrevDecl);
445  }
446
447  SourceLocation Loc = ParamNameLoc;
448  if (!ParamName)
449    Loc = KeyLoc;
450
451  TemplateTypeParmDecl *Param
452    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
453                                   Loc, Depth, Position, ParamName, Typename,
454                                   Ellipsis);
455  if (Invalid)
456    Param->setInvalidDecl();
457
458  if (ParamName) {
459    // Add the template parameter into the current scope.
460    S->AddDecl(DeclPtrTy::make(Param));
461    IdResolver.AddDecl(Param);
462  }
463
464  return DeclPtrTy::make(Param);
465}
466
467/// ActOnTypeParameterDefault - Adds a default argument (the type
468/// Default) to the given template type parameter (TypeParam).
469void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
470                                     SourceLocation EqualLoc,
471                                     SourceLocation DefaultLoc,
472                                     TypeTy *DefaultT) {
473  TemplateTypeParmDecl *Parm
474    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
475
476  TypeSourceInfo *DefaultTInfo;
477  GetTypeFromParser(DefaultT, &DefaultTInfo);
478
479  assert(DefaultTInfo && "expected source information for type");
480
481  // C++0x [temp.param]p9:
482  // A default template-argument may be specified for any kind of
483  // template-parameter that is not a template parameter pack.
484  if (Parm->isParameterPack()) {
485    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
486    return;
487  }
488
489  // C++ [temp.param]p14:
490  //   A template-parameter shall not be used in its own default argument.
491  // FIXME: Implement this check! Needs a recursive walk over the types.
492
493  // Check the template argument itself.
494  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
495    Parm->setInvalidDecl();
496    return;
497  }
498
499  Parm->setDefaultArgument(DefaultTInfo, false);
500}
501
502/// \brief Check that the type of a non-type template parameter is
503/// well-formed.
504///
505/// \returns the (possibly-promoted) parameter type if valid;
506/// otherwise, produces a diagnostic and returns a NULL type.
507QualType
508Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
509  // C++ [temp.param]p4:
510  //
511  // A non-type template-parameter shall have one of the following
512  // (optionally cv-qualified) types:
513  //
514  //       -- integral or enumeration type,
515  if (T->isIntegralType() || T->isEnumeralType() ||
516      //   -- pointer to object or pointer to function,
517      (T->isPointerType() &&
518       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
519        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
520      //   -- reference to object or reference to function,
521      T->isReferenceType() ||
522      //   -- pointer to member.
523      T->isMemberPointerType() ||
524      // If T is a dependent type, we can't do the check now, so we
525      // assume that it is well-formed.
526      T->isDependentType())
527    return T;
528  // C++ [temp.param]p8:
529  //
530  //   A non-type template-parameter of type "array of T" or
531  //   "function returning T" is adjusted to be of type "pointer to
532  //   T" or "pointer to function returning T", respectively.
533  else if (T->isArrayType())
534    // FIXME: Keep the type prior to promotion?
535    return Context.getArrayDecayedType(T);
536  else if (T->isFunctionType())
537    // FIXME: Keep the type prior to promotion?
538    return Context.getPointerType(T);
539
540  Diag(Loc, diag::err_template_nontype_parm_bad_type)
541    << T;
542
543  return QualType();
544}
545
546/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
547/// template parameter (e.g., "int Size" in "template<int Size>
548/// class Array") has been parsed. S is the current scope and D is
549/// the parsed declarator.
550Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
551                                                    unsigned Depth,
552                                                    unsigned Position) {
553  TypeSourceInfo *TInfo = 0;
554  QualType T = GetTypeForDeclarator(D, S, &TInfo);
555
556  assert(S->isTemplateParamScope() &&
557         "Non-type template parameter not in template parameter scope!");
558  bool Invalid = false;
559
560  IdentifierInfo *ParamName = D.getIdentifier();
561  if (ParamName) {
562    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
563    if (PrevDecl && PrevDecl->isTemplateParameter())
564      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
565                                                           PrevDecl);
566  }
567
568  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
569  if (T.isNull()) {
570    T = Context.IntTy; // Recover with an 'int' type.
571    Invalid = true;
572  }
573
574  NonTypeTemplateParmDecl *Param
575    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
576                                      D.getIdentifierLoc(),
577                                      Depth, Position, ParamName, T, TInfo);
578  if (Invalid)
579    Param->setInvalidDecl();
580
581  if (D.getIdentifier()) {
582    // Add the template parameter into the current scope.
583    S->AddDecl(DeclPtrTy::make(Param));
584    IdResolver.AddDecl(Param);
585  }
586  return DeclPtrTy::make(Param);
587}
588
589/// \brief Adds a default argument to the given non-type template
590/// parameter.
591void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
592                                                SourceLocation EqualLoc,
593                                                ExprArg DefaultE) {
594  NonTypeTemplateParmDecl *TemplateParm
595    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
596  Expr *Default = static_cast<Expr *>(DefaultE.get());
597
598  // C++ [temp.param]p14:
599  //   A template-parameter shall not be used in its own default argument.
600  // FIXME: Implement this check! Needs a recursive walk over the types.
601
602  // Check the well-formedness of the default template argument.
603  TemplateArgument Converted;
604  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
605                            Converted)) {
606    TemplateParm->setInvalidDecl();
607    return;
608  }
609
610  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
611}
612
613
614/// ActOnTemplateTemplateParameter - Called when a C++ template template
615/// parameter (e.g. T in template <template <typename> class T> class array)
616/// has been parsed. S is the current scope.
617Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
618                                                     SourceLocation TmpLoc,
619                                                     TemplateParamsTy *Params,
620                                                     IdentifierInfo *Name,
621                                                     SourceLocation NameLoc,
622                                                     unsigned Depth,
623                                                     unsigned Position) {
624  assert(S->isTemplateParamScope() &&
625         "Template template parameter not in template parameter scope!");
626
627  // Construct the parameter object.
628  TemplateTemplateParmDecl *Param =
629    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
630                                     TmpLoc, Depth, Position, Name,
631                                     (TemplateParameterList*)Params);
632
633  // Make sure the parameter is valid.
634  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
635  // do anything yet. However, if the template parameter list or (eventual)
636  // default value is ever invalidated, that will propagate here.
637  bool Invalid = false;
638  if (Invalid) {
639    Param->setInvalidDecl();
640  }
641
642  // If the tt-param has a name, then link the identifier into the scope
643  // and lookup mechanisms.
644  if (Name) {
645    S->AddDecl(DeclPtrTy::make(Param));
646    IdResolver.AddDecl(Param);
647  }
648
649  return DeclPtrTy::make(Param);
650}
651
652/// \brief Adds a default argument to the given template template
653/// parameter.
654void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
655                                                 SourceLocation EqualLoc,
656                                        const ParsedTemplateArgument &Default) {
657  TemplateTemplateParmDecl *TemplateParm
658    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
659
660  // C++ [temp.param]p14:
661  //   A template-parameter shall not be used in its own default argument.
662  // FIXME: Implement this check! Needs a recursive walk over the types.
663
664  // Check only that we have a template template argument. We don't want to
665  // try to check well-formedness now, because our template template parameter
666  // might have dependent types in its template parameters, which we wouldn't
667  // be able to match now.
668  //
669  // If none of the template template parameter's template arguments mention
670  // other template parameters, we could actually perform more checking here.
671  // However, it isn't worth doing.
672  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
673  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
674    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
675      << DefaultArg.getSourceRange();
676    return;
677  }
678
679  TemplateParm->setDefaultArgument(DefaultArg);
680}
681
682/// ActOnTemplateParameterList - Builds a TemplateParameterList that
683/// contains the template parameters in Params/NumParams.
684Sema::TemplateParamsTy *
685Sema::ActOnTemplateParameterList(unsigned Depth,
686                                 SourceLocation ExportLoc,
687                                 SourceLocation TemplateLoc,
688                                 SourceLocation LAngleLoc,
689                                 DeclPtrTy *Params, unsigned NumParams,
690                                 SourceLocation RAngleLoc) {
691  if (ExportLoc.isValid())
692    Diag(ExportLoc, diag::warn_template_export_unsupported);
693
694  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
695                                       (NamedDecl**)Params, NumParams,
696                                       RAngleLoc);
697}
698
699Sema::DeclResult
700Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
701                         SourceLocation KWLoc, const CXXScopeSpec &SS,
702                         IdentifierInfo *Name, SourceLocation NameLoc,
703                         AttributeList *Attr,
704                         TemplateParameterList *TemplateParams,
705                         AccessSpecifier AS) {
706  assert(TemplateParams && TemplateParams->size() > 0 &&
707         "No template parameters");
708  assert(TUK != TUK_Reference && "Can only declare or define class templates");
709  bool Invalid = false;
710
711  // Check that we can declare a template here.
712  if (CheckTemplateDeclScope(S, TemplateParams))
713    return true;
714
715  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
716  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
717
718  // There is no such thing as an unnamed class template.
719  if (!Name) {
720    Diag(KWLoc, diag::err_template_unnamed_class);
721    return true;
722  }
723
724  // Find any previous declaration with this name.
725  DeclContext *SemanticContext;
726  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
727                        ForRedeclaration);
728  if (SS.isNotEmpty() && !SS.isInvalid()) {
729    if (RequireCompleteDeclContext(SS))
730      return true;
731
732    SemanticContext = computeDeclContext(SS, true);
733    if (!SemanticContext) {
734      // FIXME: Produce a reasonable diagnostic here
735      return true;
736    }
737
738    LookupQualifiedName(Previous, SemanticContext);
739  } else {
740    SemanticContext = CurContext;
741    LookupName(Previous, S);
742  }
743
744  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
745  NamedDecl *PrevDecl = 0;
746  if (Previous.begin() != Previous.end())
747    PrevDecl = *Previous.begin();
748
749  // If there is a previous declaration with the same name, check
750  // whether this is a valid redeclaration.
751  ClassTemplateDecl *PrevClassTemplate
752    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
753
754  // We may have found the injected-class-name of a class template,
755  // class template partial specialization, or class template specialization.
756  // In these cases, grab the template that is being defined or specialized.
757  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
758      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
759    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
760    PrevClassTemplate
761      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
762    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
763      PrevClassTemplate
764        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
765            ->getSpecializedTemplate();
766    }
767  }
768
769  if (TUK == TUK_Friend) {
770    // C++ [namespace.memdef]p3:
771    //   [...] When looking for a prior declaration of a class or a function
772    //   declared as a friend, and when the name of the friend class or
773    //   function is neither a qualified name nor a template-id, scopes outside
774    //   the innermost enclosing namespace scope are not considered.
775    DeclContext *OutermostContext = CurContext;
776    while (!OutermostContext->isFileContext())
777      OutermostContext = OutermostContext->getLookupParent();
778
779    if (PrevDecl &&
780        (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
781         OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
782      SemanticContext = PrevDecl->getDeclContext();
783    } else {
784      // Declarations in outer scopes don't matter. However, the outermost
785      // context we computed is the semantic context for our new
786      // declaration.
787      PrevDecl = PrevClassTemplate = 0;
788      SemanticContext = OutermostContext;
789    }
790
791    if (CurContext->isDependentContext()) {
792      // If this is a dependent context, we don't want to link the friend
793      // class template to the template in scope, because that would perform
794      // checking of the template parameter lists that can't be performed
795      // until the outer context is instantiated.
796      PrevDecl = PrevClassTemplate = 0;
797    }
798  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
799    PrevDecl = PrevClassTemplate = 0;
800
801  if (PrevClassTemplate) {
802    // Ensure that the template parameter lists are compatible.
803    if (!TemplateParameterListsAreEqual(TemplateParams,
804                                   PrevClassTemplate->getTemplateParameters(),
805                                        /*Complain=*/true,
806                                        TPL_TemplateMatch))
807      return true;
808
809    // C++ [temp.class]p4:
810    //   In a redeclaration, partial specialization, explicit
811    //   specialization or explicit instantiation of a class template,
812    //   the class-key shall agree in kind with the original class
813    //   template declaration (7.1.5.3).
814    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
815    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
816      Diag(KWLoc, diag::err_use_with_wrong_tag)
817        << Name
818        << CodeModificationHint::CreateReplacement(KWLoc,
819                            PrevRecordDecl->getKindName());
820      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
821      Kind = PrevRecordDecl->getTagKind();
822    }
823
824    // Check for redefinition of this class template.
825    if (TUK == TUK_Definition) {
826      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
827        Diag(NameLoc, diag::err_redefinition) << Name;
828        Diag(Def->getLocation(), diag::note_previous_definition);
829        // FIXME: Would it make sense to try to "forget" the previous
830        // definition, as part of error recovery?
831        return true;
832      }
833    }
834  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
835    // Maybe we will complain about the shadowed template parameter.
836    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
837    // Just pretend that we didn't see the previous declaration.
838    PrevDecl = 0;
839  } else if (PrevDecl) {
840    // C++ [temp]p5:
841    //   A class template shall not have the same name as any other
842    //   template, class, function, object, enumeration, enumerator,
843    //   namespace, or type in the same scope (3.3), except as specified
844    //   in (14.5.4).
845    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
846    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
847    return true;
848  }
849
850  // Check the template parameter list of this declaration, possibly
851  // merging in the template parameter list from the previous class
852  // template declaration.
853  if (CheckTemplateParameterList(TemplateParams,
854            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
855                                 TPC_ClassTemplate))
856    Invalid = true;
857
858  // FIXME: If we had a scope specifier, we better have a previous template
859  // declaration!
860
861  CXXRecordDecl *NewClass =
862    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
863                          PrevClassTemplate?
864                            PrevClassTemplate->getTemplatedDecl() : 0,
865                          /*DelayTypeCreation=*/true);
866
867  ClassTemplateDecl *NewTemplate
868    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
869                                DeclarationName(Name), TemplateParams,
870                                NewClass, PrevClassTemplate);
871  NewClass->setDescribedClassTemplate(NewTemplate);
872
873  // Build the type for the class template declaration now.
874  QualType T =
875    Context.getTypeDeclType(NewClass,
876                            PrevClassTemplate?
877                              PrevClassTemplate->getTemplatedDecl() : 0);
878  assert(T->isDependentType() && "Class template type is not dependent?");
879  (void)T;
880
881  // If we are providing an explicit specialization of a member that is a
882  // class template, make a note of that.
883  if (PrevClassTemplate &&
884      PrevClassTemplate->getInstantiatedFromMemberTemplate())
885    PrevClassTemplate->setMemberSpecialization();
886
887  // Set the access specifier.
888  if (!Invalid && TUK != TUK_Friend)
889    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
890
891  // Set the lexical context of these templates
892  NewClass->setLexicalDeclContext(CurContext);
893  NewTemplate->setLexicalDeclContext(CurContext);
894
895  if (TUK == TUK_Definition)
896    NewClass->startDefinition();
897
898  if (Attr)
899    ProcessDeclAttributeList(S, NewClass, Attr);
900
901  if (TUK != TUK_Friend)
902    PushOnScopeChains(NewTemplate, S);
903  else {
904    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
905      NewTemplate->setAccess(PrevClassTemplate->getAccess());
906      NewClass->setAccess(PrevClassTemplate->getAccess());
907    }
908
909    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
910                                       PrevClassTemplate != NULL);
911
912    // Friend templates are visible in fairly strange ways.
913    if (!CurContext->isDependentContext()) {
914      DeclContext *DC = SemanticContext->getLookupContext();
915      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
916      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
917        PushOnScopeChains(NewTemplate, EnclosingScope,
918                          /* AddToContext = */ false);
919    }
920
921    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
922                                            NewClass->getLocation(),
923                                            NewTemplate,
924                                    /*FIXME:*/NewClass->getLocation());
925    Friend->setAccess(AS_public);
926    CurContext->addDecl(Friend);
927  }
928
929  if (Invalid) {
930    NewTemplate->setInvalidDecl();
931    NewClass->setInvalidDecl();
932  }
933  return DeclPtrTy::make(NewTemplate);
934}
935
936/// \brief Diagnose the presence of a default template argument on a
937/// template parameter, which is ill-formed in certain contexts.
938///
939/// \returns true if the default template argument should be dropped.
940static bool DiagnoseDefaultTemplateArgument(Sema &S,
941                                            Sema::TemplateParamListContext TPC,
942                                            SourceLocation ParamLoc,
943                                            SourceRange DefArgRange) {
944  switch (TPC) {
945  case Sema::TPC_ClassTemplate:
946    return false;
947
948  case Sema::TPC_FunctionTemplate:
949    // C++ [temp.param]p9:
950    //   A default template-argument shall not be specified in a
951    //   function template declaration or a function template
952    //   definition [...]
953    // (This sentence is not in C++0x, per DR226).
954    if (!S.getLangOptions().CPlusPlus0x)
955      S.Diag(ParamLoc,
956             diag::err_template_parameter_default_in_function_template)
957        << DefArgRange;
958    return false;
959
960  case Sema::TPC_ClassTemplateMember:
961    // C++0x [temp.param]p9:
962    //   A default template-argument shall not be specified in the
963    //   template-parameter-lists of the definition of a member of a
964    //   class template that appears outside of the member's class.
965    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
966      << DefArgRange;
967    return true;
968
969  case Sema::TPC_FriendFunctionTemplate:
970    // C++ [temp.param]p9:
971    //   A default template-argument shall not be specified in a
972    //   friend template declaration.
973    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
974      << DefArgRange;
975    return true;
976
977    // FIXME: C++0x [temp.param]p9 allows default template-arguments
978    // for friend function templates if there is only a single
979    // declaration (and it is a definition). Strange!
980  }
981
982  return false;
983}
984
985/// \brief Checks the validity of a template parameter list, possibly
986/// considering the template parameter list from a previous
987/// declaration.
988///
989/// If an "old" template parameter list is provided, it must be
990/// equivalent (per TemplateParameterListsAreEqual) to the "new"
991/// template parameter list.
992///
993/// \param NewParams Template parameter list for a new template
994/// declaration. This template parameter list will be updated with any
995/// default arguments that are carried through from the previous
996/// template parameter list.
997///
998/// \param OldParams If provided, template parameter list from a
999/// previous declaration of the same template. Default template
1000/// arguments will be merged from the old template parameter list to
1001/// the new template parameter list.
1002///
1003/// \param TPC Describes the context in which we are checking the given
1004/// template parameter list.
1005///
1006/// \returns true if an error occurred, false otherwise.
1007bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1008                                      TemplateParameterList *OldParams,
1009                                      TemplateParamListContext TPC) {
1010  bool Invalid = false;
1011
1012  // C++ [temp.param]p10:
1013  //   The set of default template-arguments available for use with a
1014  //   template declaration or definition is obtained by merging the
1015  //   default arguments from the definition (if in scope) and all
1016  //   declarations in scope in the same way default function
1017  //   arguments are (8.3.6).
1018  bool SawDefaultArgument = false;
1019  SourceLocation PreviousDefaultArgLoc;
1020
1021  bool SawParameterPack = false;
1022  SourceLocation ParameterPackLoc;
1023
1024  // Dummy initialization to avoid warnings.
1025  TemplateParameterList::iterator OldParam = NewParams->end();
1026  if (OldParams)
1027    OldParam = OldParams->begin();
1028
1029  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1030                                    NewParamEnd = NewParams->end();
1031       NewParam != NewParamEnd; ++NewParam) {
1032    // Variables used to diagnose redundant default arguments
1033    bool RedundantDefaultArg = false;
1034    SourceLocation OldDefaultLoc;
1035    SourceLocation NewDefaultLoc;
1036
1037    // Variables used to diagnose missing default arguments
1038    bool MissingDefaultArg = false;
1039
1040    // C++0x [temp.param]p11:
1041    // If a template parameter of a class template is a template parameter pack,
1042    // it must be the last template parameter.
1043    if (SawParameterPack) {
1044      Diag(ParameterPackLoc,
1045           diag::err_template_param_pack_must_be_last_template_parameter);
1046      Invalid = true;
1047    }
1048
1049    if (TemplateTypeParmDecl *NewTypeParm
1050          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1051      // Check the presence of a default argument here.
1052      if (NewTypeParm->hasDefaultArgument() &&
1053          DiagnoseDefaultTemplateArgument(*this, TPC,
1054                                          NewTypeParm->getLocation(),
1055               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1056                                                       .getFullSourceRange()))
1057        NewTypeParm->removeDefaultArgument();
1058
1059      // Merge default arguments for template type parameters.
1060      TemplateTypeParmDecl *OldTypeParm
1061          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1062
1063      if (NewTypeParm->isParameterPack()) {
1064        assert(!NewTypeParm->hasDefaultArgument() &&
1065               "Parameter packs can't have a default argument!");
1066        SawParameterPack = true;
1067        ParameterPackLoc = NewTypeParm->getLocation();
1068      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1069                 NewTypeParm->hasDefaultArgument()) {
1070        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1071        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1072        SawDefaultArgument = true;
1073        RedundantDefaultArg = true;
1074        PreviousDefaultArgLoc = NewDefaultLoc;
1075      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1076        // Merge the default argument from the old declaration to the
1077        // new declaration.
1078        SawDefaultArgument = true;
1079        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1080                                        true);
1081        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1082      } else if (NewTypeParm->hasDefaultArgument()) {
1083        SawDefaultArgument = true;
1084        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1085      } else if (SawDefaultArgument)
1086        MissingDefaultArg = true;
1087    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1088               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1089      // Check the presence of a default argument here.
1090      if (NewNonTypeParm->hasDefaultArgument() &&
1091          DiagnoseDefaultTemplateArgument(*this, TPC,
1092                                          NewNonTypeParm->getLocation(),
1093                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1094        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1095        NewNonTypeParm->setDefaultArgument(0);
1096      }
1097
1098      // Merge default arguments for non-type template parameters
1099      NonTypeTemplateParmDecl *OldNonTypeParm
1100        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1101      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1102          NewNonTypeParm->hasDefaultArgument()) {
1103        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1104        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1105        SawDefaultArgument = true;
1106        RedundantDefaultArg = true;
1107        PreviousDefaultArgLoc = NewDefaultLoc;
1108      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1109        // Merge the default argument from the old declaration to the
1110        // new declaration.
1111        SawDefaultArgument = true;
1112        // FIXME: We need to create a new kind of "default argument"
1113        // expression that points to a previous template template
1114        // parameter.
1115        NewNonTypeParm->setDefaultArgument(
1116                                        OldNonTypeParm->getDefaultArgument());
1117        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1118      } else if (NewNonTypeParm->hasDefaultArgument()) {
1119        SawDefaultArgument = true;
1120        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1121      } else if (SawDefaultArgument)
1122        MissingDefaultArg = true;
1123    } else {
1124      // Check the presence of a default argument here.
1125      TemplateTemplateParmDecl *NewTemplateParm
1126        = cast<TemplateTemplateParmDecl>(*NewParam);
1127      if (NewTemplateParm->hasDefaultArgument() &&
1128          DiagnoseDefaultTemplateArgument(*this, TPC,
1129                                          NewTemplateParm->getLocation(),
1130                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1131        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1132
1133      // Merge default arguments for template template parameters
1134      TemplateTemplateParmDecl *OldTemplateParm
1135        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1136      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1137          NewTemplateParm->hasDefaultArgument()) {
1138        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1139        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1140        SawDefaultArgument = true;
1141        RedundantDefaultArg = true;
1142        PreviousDefaultArgLoc = NewDefaultLoc;
1143      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1144        // Merge the default argument from the old declaration to the
1145        // new declaration.
1146        SawDefaultArgument = true;
1147        // FIXME: We need to create a new kind of "default argument" expression
1148        // that points to a previous template template parameter.
1149        NewTemplateParm->setDefaultArgument(
1150                                        OldTemplateParm->getDefaultArgument());
1151        PreviousDefaultArgLoc
1152          = OldTemplateParm->getDefaultArgument().getLocation();
1153      } else if (NewTemplateParm->hasDefaultArgument()) {
1154        SawDefaultArgument = true;
1155        PreviousDefaultArgLoc
1156          = NewTemplateParm->getDefaultArgument().getLocation();
1157      } else if (SawDefaultArgument)
1158        MissingDefaultArg = true;
1159    }
1160
1161    if (RedundantDefaultArg) {
1162      // C++ [temp.param]p12:
1163      //   A template-parameter shall not be given default arguments
1164      //   by two different declarations in the same scope.
1165      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1166      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1167      Invalid = true;
1168    } else if (MissingDefaultArg) {
1169      // C++ [temp.param]p11:
1170      //   If a template-parameter has a default template-argument,
1171      //   all subsequent template-parameters shall have a default
1172      //   template-argument supplied.
1173      Diag((*NewParam)->getLocation(),
1174           diag::err_template_param_default_arg_missing);
1175      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1176      Invalid = true;
1177    }
1178
1179    // If we have an old template parameter list that we're merging
1180    // in, move on to the next parameter.
1181    if (OldParams)
1182      ++OldParam;
1183  }
1184
1185  return Invalid;
1186}
1187
1188/// \brief Match the given template parameter lists to the given scope
1189/// specifier, returning the template parameter list that applies to the
1190/// name.
1191///
1192/// \param DeclStartLoc the start of the declaration that has a scope
1193/// specifier or a template parameter list.
1194///
1195/// \param SS the scope specifier that will be matched to the given template
1196/// parameter lists. This scope specifier precedes a qualified name that is
1197/// being declared.
1198///
1199/// \param ParamLists the template parameter lists, from the outermost to the
1200/// innermost template parameter lists.
1201///
1202/// \param NumParamLists the number of template parameter lists in ParamLists.
1203///
1204/// \param IsExplicitSpecialization will be set true if the entity being
1205/// declared is an explicit specialization, false otherwise.
1206///
1207/// \returns the template parameter list, if any, that corresponds to the
1208/// name that is preceded by the scope specifier @p SS. This template
1209/// parameter list may be have template parameters (if we're declaring a
1210/// template) or may have no template parameters (if we're declaring a
1211/// template specialization), or may be NULL (if we were's declaring isn't
1212/// itself a template).
1213TemplateParameterList *
1214Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1215                                              const CXXScopeSpec &SS,
1216                                          TemplateParameterList **ParamLists,
1217                                              unsigned NumParamLists,
1218                                              bool &IsExplicitSpecialization) {
1219  IsExplicitSpecialization = false;
1220
1221  // Find the template-ids that occur within the nested-name-specifier. These
1222  // template-ids will match up with the template parameter lists.
1223  llvm::SmallVector<const TemplateSpecializationType *, 4>
1224    TemplateIdsInSpecifier;
1225  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1226    ExplicitSpecializationsInSpecifier;
1227  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1228       NNS; NNS = NNS->getPrefix()) {
1229    const Type *T = NNS->getAsType();
1230    if (!T) break;
1231
1232    // C++0x [temp.expl.spec]p17:
1233    //   A member or a member template may be nested within many
1234    //   enclosing class templates. In an explicit specialization for
1235    //   such a member, the member declaration shall be preceded by a
1236    //   template<> for each enclosing class template that is
1237    //   explicitly specialized.
1238    //
1239    // Following the existing practice of GNU and EDG, we allow a typedef of a
1240    // template specialization type.
1241    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1242      T = TT->LookThroughTypedefs().getTypePtr();
1243
1244    if (const TemplateSpecializationType *SpecType
1245                                  = dyn_cast<TemplateSpecializationType>(T)) {
1246      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1247      if (!Template)
1248        continue; // FIXME: should this be an error? probably...
1249
1250      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1251        ClassTemplateSpecializationDecl *SpecDecl
1252          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1253        // If the nested name specifier refers to an explicit specialization,
1254        // we don't need a template<> header.
1255        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1256          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1257          continue;
1258        }
1259      }
1260
1261      TemplateIdsInSpecifier.push_back(SpecType);
1262    }
1263  }
1264
1265  // Reverse the list of template-ids in the scope specifier, so that we can
1266  // more easily match up the template-ids and the template parameter lists.
1267  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1268
1269  SourceLocation FirstTemplateLoc = DeclStartLoc;
1270  if (NumParamLists)
1271    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1272
1273  // Match the template-ids found in the specifier to the template parameter
1274  // lists.
1275  unsigned Idx = 0;
1276  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1277       Idx != NumTemplateIds; ++Idx) {
1278    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1279    bool DependentTemplateId = TemplateId->isDependentType();
1280    if (Idx >= NumParamLists) {
1281      // We have a template-id without a corresponding template parameter
1282      // list.
1283      if (DependentTemplateId) {
1284        // FIXME: the location information here isn't great.
1285        Diag(SS.getRange().getBegin(),
1286             diag::err_template_spec_needs_template_parameters)
1287          << TemplateId
1288          << SS.getRange();
1289      } else {
1290        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1291          << SS.getRange()
1292          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1293                                                   "template<> ");
1294        IsExplicitSpecialization = true;
1295      }
1296      return 0;
1297    }
1298
1299    // Check the template parameter list against its corresponding template-id.
1300    if (DependentTemplateId) {
1301      TemplateDecl *Template
1302        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1303
1304      if (ClassTemplateDecl *ClassTemplate
1305            = dyn_cast<ClassTemplateDecl>(Template)) {
1306        TemplateParameterList *ExpectedTemplateParams = 0;
1307        // Is this template-id naming the primary template?
1308        if (Context.hasSameType(TemplateId,
1309                             ClassTemplate->getInjectedClassNameType(Context)))
1310          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1311        // ... or a partial specialization?
1312        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1313                   = ClassTemplate->findPartialSpecialization(TemplateId))
1314          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1315
1316        if (ExpectedTemplateParams)
1317          TemplateParameterListsAreEqual(ParamLists[Idx],
1318                                         ExpectedTemplateParams,
1319                                         true, TPL_TemplateMatch);
1320      }
1321
1322      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1323    } else if (ParamLists[Idx]->size() > 0)
1324      Diag(ParamLists[Idx]->getTemplateLoc(),
1325           diag::err_template_param_list_matches_nontemplate)
1326        << TemplateId
1327        << ParamLists[Idx]->getSourceRange();
1328    else
1329      IsExplicitSpecialization = true;
1330  }
1331
1332  // If there were at least as many template-ids as there were template
1333  // parameter lists, then there are no template parameter lists remaining for
1334  // the declaration itself.
1335  if (Idx >= NumParamLists)
1336    return 0;
1337
1338  // If there were too many template parameter lists, complain about that now.
1339  if (Idx != NumParamLists - 1) {
1340    while (Idx < NumParamLists - 1) {
1341      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1342      Diag(ParamLists[Idx]->getTemplateLoc(),
1343           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1344                               : diag::err_template_spec_extra_headers)
1345        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1346                       ParamLists[Idx]->getRAngleLoc());
1347
1348      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1349        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1350             diag::note_explicit_template_spec_does_not_need_header)
1351          << ExplicitSpecializationsInSpecifier.back();
1352        ExplicitSpecializationsInSpecifier.pop_back();
1353      }
1354
1355      ++Idx;
1356    }
1357  }
1358
1359  // Return the last template parameter list, which corresponds to the
1360  // entity being declared.
1361  return ParamLists[NumParamLists - 1];
1362}
1363
1364QualType Sema::CheckTemplateIdType(TemplateName Name,
1365                                   SourceLocation TemplateLoc,
1366                              const TemplateArgumentListInfo &TemplateArgs) {
1367  TemplateDecl *Template = Name.getAsTemplateDecl();
1368  if (!Template) {
1369    // The template name does not resolve to a template, so we just
1370    // build a dependent template-id type.
1371    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1372  }
1373
1374  // Check that the template argument list is well-formed for this
1375  // template.
1376  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1377                                        TemplateArgs.size());
1378  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1379                                false, Converted))
1380    return QualType();
1381
1382  assert((Converted.structuredSize() ==
1383            Template->getTemplateParameters()->size()) &&
1384         "Converted template argument list is too short!");
1385
1386  QualType CanonType;
1387
1388  if (Name.isDependent() ||
1389      TemplateSpecializationType::anyDependentTemplateArguments(
1390                                                      TemplateArgs)) {
1391    // This class template specialization is a dependent
1392    // type. Therefore, its canonical type is another class template
1393    // specialization type that contains all of the converted
1394    // arguments in canonical form. This ensures that, e.g., A<T> and
1395    // A<T, T> have identical types when A is declared as:
1396    //
1397    //   template<typename T, typename U = T> struct A;
1398    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1399    CanonType = Context.getTemplateSpecializationType(CanonName,
1400                                                   Converted.getFlatArguments(),
1401                                                   Converted.flatSize());
1402
1403    // FIXME: CanonType is not actually the canonical type, and unfortunately
1404    // it is a TemplateSpecializationType that we will never use again.
1405    // In the future, we need to teach getTemplateSpecializationType to only
1406    // build the canonical type and return that to us.
1407    CanonType = Context.getCanonicalType(CanonType);
1408  } else if (ClassTemplateDecl *ClassTemplate
1409               = dyn_cast<ClassTemplateDecl>(Template)) {
1410    // Find the class template specialization declaration that
1411    // corresponds to these arguments.
1412    llvm::FoldingSetNodeID ID;
1413    ClassTemplateSpecializationDecl::Profile(ID,
1414                                             Converted.getFlatArguments(),
1415                                             Converted.flatSize(),
1416                                             Context);
1417    void *InsertPos = 0;
1418    ClassTemplateSpecializationDecl *Decl
1419      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1420    if (!Decl) {
1421      // This is the first time we have referenced this class template
1422      // specialization. Create the canonical declaration and add it to
1423      // the set of specializations.
1424      Decl = ClassTemplateSpecializationDecl::Create(Context,
1425                                    ClassTemplate->getDeclContext(),
1426                                    ClassTemplate->getLocation(),
1427                                    ClassTemplate,
1428                                    Converted, 0);
1429      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1430      Decl->setLexicalDeclContext(CurContext);
1431    }
1432
1433    CanonType = Context.getTypeDeclType(Decl);
1434  }
1435
1436  // Build the fully-sugared type for this class template
1437  // specialization, which refers back to the class template
1438  // specialization we created or found.
1439  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1440}
1441
1442Action::TypeResult
1443Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1444                          SourceLocation LAngleLoc,
1445                          ASTTemplateArgsPtr TemplateArgsIn,
1446                          SourceLocation RAngleLoc) {
1447  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1448
1449  // Translate the parser's template argument list in our AST format.
1450  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1451  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1452
1453  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1454  TemplateArgsIn.release();
1455
1456  if (Result.isNull())
1457    return true;
1458
1459  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1460  TemplateSpecializationTypeLoc TL
1461    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1462  TL.setTemplateNameLoc(TemplateLoc);
1463  TL.setLAngleLoc(LAngleLoc);
1464  TL.setRAngleLoc(RAngleLoc);
1465  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1466    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1467
1468  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1469}
1470
1471Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1472                                              TagUseKind TUK,
1473                                              DeclSpec::TST TagSpec,
1474                                              SourceLocation TagLoc) {
1475  if (TypeResult.isInvalid())
1476    return Sema::TypeResult();
1477
1478  // FIXME: preserve source info, ideally without copying the DI.
1479  TypeSourceInfo *DI;
1480  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1481
1482  // Verify the tag specifier.
1483  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1484
1485  if (const RecordType *RT = Type->getAs<RecordType>()) {
1486    RecordDecl *D = RT->getDecl();
1487
1488    IdentifierInfo *Id = D->getIdentifier();
1489    assert(Id && "templated class must have an identifier");
1490
1491    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1492      Diag(TagLoc, diag::err_use_with_wrong_tag)
1493        << Type
1494        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1495                                                   D->getKindName());
1496      Diag(D->getLocation(), diag::note_previous_use);
1497    }
1498  }
1499
1500  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1501
1502  return ElabType.getAsOpaquePtr();
1503}
1504
1505Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1506                                                 LookupResult &R,
1507                                                 bool RequiresADL,
1508                                 const TemplateArgumentListInfo &TemplateArgs) {
1509  // FIXME: Can we do any checking at this point? I guess we could check the
1510  // template arguments that we have against the template name, if the template
1511  // name refers to a single template. That's not a terribly common case,
1512  // though.
1513
1514  // These should be filtered out by our callers.
1515  assert(!R.empty() && "empty lookup results when building templateid");
1516  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1517
1518  NestedNameSpecifier *Qualifier = 0;
1519  SourceRange QualifierRange;
1520  if (SS.isSet()) {
1521    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1522    QualifierRange = SS.getRange();
1523  }
1524
1525  // We don't want lookup warnings at this point.
1526  R.suppressDiagnostics();
1527
1528  bool Dependent
1529    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1530                                              &TemplateArgs);
1531  UnresolvedLookupExpr *ULE
1532    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1533                                   Qualifier, QualifierRange,
1534                                   R.getLookupName(), R.getNameLoc(),
1535                                   RequiresADL, TemplateArgs);
1536  ULE->addDecls(R.begin(), R.end());
1537
1538  return Owned(ULE);
1539}
1540
1541// We actually only call this from template instantiation.
1542Sema::OwningExprResult
1543Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
1544                                   DeclarationName Name,
1545                                   SourceLocation NameLoc,
1546                             const TemplateArgumentListInfo &TemplateArgs) {
1547  DeclContext *DC;
1548  if (!(DC = computeDeclContext(SS, false)) ||
1549      DC->isDependentContext() ||
1550      RequireCompleteDeclContext(SS))
1551    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1552
1553  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1554  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1555
1556  if (R.isAmbiguous())
1557    return ExprError();
1558
1559  if (R.empty()) {
1560    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1561      << Name << SS.getRange();
1562    return ExprError();
1563  }
1564
1565  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1566    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1567      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1568    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1569    return ExprError();
1570  }
1571
1572  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1573}
1574
1575/// \brief Form a dependent template name.
1576///
1577/// This action forms a dependent template name given the template
1578/// name and its (presumably dependent) scope specifier. For
1579/// example, given "MetaFun::template apply", the scope specifier \p
1580/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1581/// of the "template" keyword, and "apply" is the \p Name.
1582Sema::TemplateTy
1583Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1584                                 const CXXScopeSpec &SS,
1585                                 UnqualifiedId &Name,
1586                                 TypeTy *ObjectType,
1587                                 bool EnteringContext) {
1588  DeclContext *LookupCtx = 0;
1589  if (SS.isSet())
1590    LookupCtx = computeDeclContext(SS, EnteringContext);
1591  if (!LookupCtx && ObjectType)
1592    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1593  if (LookupCtx) {
1594    // C++0x [temp.names]p5:
1595    //   If a name prefixed by the keyword template is not the name of
1596    //   a template, the program is ill-formed. [Note: the keyword
1597    //   template may not be applied to non-template members of class
1598    //   templates. -end note ] [ Note: as is the case with the
1599    //   typename prefix, the template prefix is allowed in cases
1600    //   where it is not strictly necessary; i.e., when the
1601    //   nested-name-specifier or the expression on the left of the ->
1602    //   or . is not dependent on a template-parameter, or the use
1603    //   does not appear in the scope of a template. -end note]
1604    //
1605    // Note: C++03 was more strict here, because it banned the use of
1606    // the "template" keyword prior to a template-name that was not a
1607    // dependent name. C++ DR468 relaxed this requirement (the
1608    // "template" keyword is now permitted). We follow the C++0x
1609    // rules, even in C++03 mode, retroactively applying the DR.
1610    TemplateTy Template;
1611    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1612                                          EnteringContext, Template);
1613    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1614        isa<CXXRecordDecl>(LookupCtx) &&
1615        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1616      // This is a dependent template.
1617    } else if (TNK == TNK_Non_template) {
1618      Diag(Name.getSourceRange().getBegin(),
1619           diag::err_template_kw_refers_to_non_template)
1620        << GetNameFromUnqualifiedId(Name)
1621        << Name.getSourceRange();
1622      return TemplateTy();
1623    } else {
1624      // We found something; return it.
1625      return Template;
1626    }
1627  }
1628
1629  NestedNameSpecifier *Qualifier
1630    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1631
1632  switch (Name.getKind()) {
1633  case UnqualifiedId::IK_Identifier:
1634    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1635                                                             Name.Identifier));
1636
1637  case UnqualifiedId::IK_OperatorFunctionId:
1638    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1639                                             Name.OperatorFunctionId.Operator));
1640
1641  case UnqualifiedId::IK_LiteralOperatorId:
1642    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1643
1644  default:
1645    break;
1646  }
1647
1648  Diag(Name.getSourceRange().getBegin(),
1649       diag::err_template_kw_refers_to_non_template)
1650    << GetNameFromUnqualifiedId(Name)
1651    << Name.getSourceRange();
1652  return TemplateTy();
1653}
1654
1655bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1656                                     const TemplateArgumentLoc &AL,
1657                                     TemplateArgumentListBuilder &Converted) {
1658  const TemplateArgument &Arg = AL.getArgument();
1659
1660  // Check template type parameter.
1661  if (Arg.getKind() != TemplateArgument::Type) {
1662    // C++ [temp.arg.type]p1:
1663    //   A template-argument for a template-parameter which is a
1664    //   type shall be a type-id.
1665
1666    // We have a template type parameter but the template argument
1667    // is not a type.
1668    SourceRange SR = AL.getSourceRange();
1669    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1670    Diag(Param->getLocation(), diag::note_template_param_here);
1671
1672    return true;
1673  }
1674
1675  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1676    return true;
1677
1678  // Add the converted template type argument.
1679  Converted.Append(
1680                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1681  return false;
1682}
1683
1684/// \brief Substitute template arguments into the default template argument for
1685/// the given template type parameter.
1686///
1687/// \param SemaRef the semantic analysis object for which we are performing
1688/// the substitution.
1689///
1690/// \param Template the template that we are synthesizing template arguments
1691/// for.
1692///
1693/// \param TemplateLoc the location of the template name that started the
1694/// template-id we are checking.
1695///
1696/// \param RAngleLoc the location of the right angle bracket ('>') that
1697/// terminates the template-id.
1698///
1699/// \param Param the template template parameter whose default we are
1700/// substituting into.
1701///
1702/// \param Converted the list of template arguments provided for template
1703/// parameters that precede \p Param in the template parameter list.
1704///
1705/// \returns the substituted template argument, or NULL if an error occurred.
1706static TypeSourceInfo *
1707SubstDefaultTemplateArgument(Sema &SemaRef,
1708                             TemplateDecl *Template,
1709                             SourceLocation TemplateLoc,
1710                             SourceLocation RAngleLoc,
1711                             TemplateTypeParmDecl *Param,
1712                             TemplateArgumentListBuilder &Converted) {
1713  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1714
1715  // If the argument type is dependent, instantiate it now based
1716  // on the previously-computed template arguments.
1717  if (ArgType->getType()->isDependentType()) {
1718    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1719                                      /*TakeArgs=*/false);
1720
1721    MultiLevelTemplateArgumentList AllTemplateArgs
1722      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1723
1724    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1725                                     Template, Converted.getFlatArguments(),
1726                                     Converted.flatSize(),
1727                                     SourceRange(TemplateLoc, RAngleLoc));
1728
1729    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1730                                Param->getDefaultArgumentLoc(),
1731                                Param->getDeclName());
1732  }
1733
1734  return ArgType;
1735}
1736
1737/// \brief Substitute template arguments into the default template argument for
1738/// the given non-type template parameter.
1739///
1740/// \param SemaRef the semantic analysis object for which we are performing
1741/// the substitution.
1742///
1743/// \param Template the template that we are synthesizing template arguments
1744/// for.
1745///
1746/// \param TemplateLoc the location of the template name that started the
1747/// template-id we are checking.
1748///
1749/// \param RAngleLoc the location of the right angle bracket ('>') that
1750/// terminates the template-id.
1751///
1752/// \param Param the non-type template parameter whose default we are
1753/// substituting into.
1754///
1755/// \param Converted the list of template arguments provided for template
1756/// parameters that precede \p Param in the template parameter list.
1757///
1758/// \returns the substituted template argument, or NULL if an error occurred.
1759static Sema::OwningExprResult
1760SubstDefaultTemplateArgument(Sema &SemaRef,
1761                             TemplateDecl *Template,
1762                             SourceLocation TemplateLoc,
1763                             SourceLocation RAngleLoc,
1764                             NonTypeTemplateParmDecl *Param,
1765                             TemplateArgumentListBuilder &Converted) {
1766  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1767                                    /*TakeArgs=*/false);
1768
1769  MultiLevelTemplateArgumentList AllTemplateArgs
1770    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1771
1772  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1773                                   Template, Converted.getFlatArguments(),
1774                                   Converted.flatSize(),
1775                                   SourceRange(TemplateLoc, RAngleLoc));
1776
1777  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1778}
1779
1780/// \brief Substitute template arguments into the default template argument for
1781/// the given template template parameter.
1782///
1783/// \param SemaRef the semantic analysis object for which we are performing
1784/// the substitution.
1785///
1786/// \param Template the template that we are synthesizing template arguments
1787/// for.
1788///
1789/// \param TemplateLoc the location of the template name that started the
1790/// template-id we are checking.
1791///
1792/// \param RAngleLoc the location of the right angle bracket ('>') that
1793/// terminates the template-id.
1794///
1795/// \param Param the template template parameter whose default we are
1796/// substituting into.
1797///
1798/// \param Converted the list of template arguments provided for template
1799/// parameters that precede \p Param in the template parameter list.
1800///
1801/// \returns the substituted template argument, or NULL if an error occurred.
1802static TemplateName
1803SubstDefaultTemplateArgument(Sema &SemaRef,
1804                             TemplateDecl *Template,
1805                             SourceLocation TemplateLoc,
1806                             SourceLocation RAngleLoc,
1807                             TemplateTemplateParmDecl *Param,
1808                             TemplateArgumentListBuilder &Converted) {
1809  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1810                                    /*TakeArgs=*/false);
1811
1812  MultiLevelTemplateArgumentList AllTemplateArgs
1813    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1814
1815  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1816                                   Template, Converted.getFlatArguments(),
1817                                   Converted.flatSize(),
1818                                   SourceRange(TemplateLoc, RAngleLoc));
1819
1820  return SemaRef.SubstTemplateName(
1821                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1822                              Param->getDefaultArgument().getTemplateNameLoc(),
1823                                   AllTemplateArgs);
1824}
1825
1826/// \brief If the given template parameter has a default template
1827/// argument, substitute into that default template argument and
1828/// return the corresponding template argument.
1829TemplateArgumentLoc
1830Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1831                                              SourceLocation TemplateLoc,
1832                                              SourceLocation RAngleLoc,
1833                                              Decl *Param,
1834                                     TemplateArgumentListBuilder &Converted) {
1835  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1836    if (!TypeParm->hasDefaultArgument())
1837      return TemplateArgumentLoc();
1838
1839    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1840                                                      TemplateLoc,
1841                                                      RAngleLoc,
1842                                                      TypeParm,
1843                                                      Converted);
1844    if (DI)
1845      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1846
1847    return TemplateArgumentLoc();
1848  }
1849
1850  if (NonTypeTemplateParmDecl *NonTypeParm
1851        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1852    if (!NonTypeParm->hasDefaultArgument())
1853      return TemplateArgumentLoc();
1854
1855    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1856                                                        TemplateLoc,
1857                                                        RAngleLoc,
1858                                                        NonTypeParm,
1859                                                        Converted);
1860    if (Arg.isInvalid())
1861      return TemplateArgumentLoc();
1862
1863    Expr *ArgE = Arg.takeAs<Expr>();
1864    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1865  }
1866
1867  TemplateTemplateParmDecl *TempTempParm
1868    = cast<TemplateTemplateParmDecl>(Param);
1869  if (!TempTempParm->hasDefaultArgument())
1870    return TemplateArgumentLoc();
1871
1872  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1873                                                    TemplateLoc,
1874                                                    RAngleLoc,
1875                                                    TempTempParm,
1876                                                    Converted);
1877  if (TName.isNull())
1878    return TemplateArgumentLoc();
1879
1880  return TemplateArgumentLoc(TemplateArgument(TName),
1881                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1882                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1883}
1884
1885/// \brief Check that the given template argument corresponds to the given
1886/// template parameter.
1887bool Sema::CheckTemplateArgument(NamedDecl *Param,
1888                                 const TemplateArgumentLoc &Arg,
1889                                 TemplateDecl *Template,
1890                                 SourceLocation TemplateLoc,
1891                                 SourceLocation RAngleLoc,
1892                                 TemplateArgumentListBuilder &Converted) {
1893  // Check template type parameters.
1894  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1895    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1896
1897  // Check non-type template parameters.
1898  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1899    // Do substitution on the type of the non-type template parameter
1900    // with the template arguments we've seen thus far.
1901    QualType NTTPType = NTTP->getType();
1902    if (NTTPType->isDependentType()) {
1903      // Do substitution on the type of the non-type template parameter.
1904      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1905                                 NTTP, Converted.getFlatArguments(),
1906                                 Converted.flatSize(),
1907                                 SourceRange(TemplateLoc, RAngleLoc));
1908
1909      TemplateArgumentList TemplateArgs(Context, Converted,
1910                                        /*TakeArgs=*/false);
1911      NTTPType = SubstType(NTTPType,
1912                           MultiLevelTemplateArgumentList(TemplateArgs),
1913                           NTTP->getLocation(),
1914                           NTTP->getDeclName());
1915      // If that worked, check the non-type template parameter type
1916      // for validity.
1917      if (!NTTPType.isNull())
1918        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1919                                                     NTTP->getLocation());
1920      if (NTTPType.isNull())
1921        return true;
1922    }
1923
1924    switch (Arg.getArgument().getKind()) {
1925    case TemplateArgument::Null:
1926      assert(false && "Should never see a NULL template argument here");
1927      return true;
1928
1929    case TemplateArgument::Expression: {
1930      Expr *E = Arg.getArgument().getAsExpr();
1931      TemplateArgument Result;
1932      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1933        return true;
1934
1935      Converted.Append(Result);
1936      break;
1937    }
1938
1939    case TemplateArgument::Declaration:
1940    case TemplateArgument::Integral:
1941      // We've already checked this template argument, so just copy
1942      // it to the list of converted arguments.
1943      Converted.Append(Arg.getArgument());
1944      break;
1945
1946    case TemplateArgument::Template:
1947      // We were given a template template argument. It may not be ill-formed;
1948      // see below.
1949      if (DependentTemplateName *DTN
1950            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1951        // We have a template argument such as \c T::template X, which we
1952        // parsed as a template template argument. However, since we now
1953        // know that we need a non-type template argument, convert this
1954        // template name into an expression.
1955        Expr *E = DependentScopeDeclRefExpr::Create(Context,
1956                                                    DTN->getQualifier(),
1957                                               Arg.getTemplateQualifierRange(),
1958                                                    DTN->getIdentifier(),
1959                                                    Arg.getTemplateNameLoc());
1960
1961        TemplateArgument Result;
1962        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1963          return true;
1964
1965        Converted.Append(Result);
1966        break;
1967      }
1968
1969      // We have a template argument that actually does refer to a class
1970      // template, template alias, or template template parameter, and
1971      // therefore cannot be a non-type template argument.
1972      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1973        << Arg.getSourceRange();
1974
1975      Diag(Param->getLocation(), diag::note_template_param_here);
1976      return true;
1977
1978    case TemplateArgument::Type: {
1979      // We have a non-type template parameter but the template
1980      // argument is a type.
1981
1982      // C++ [temp.arg]p2:
1983      //   In a template-argument, an ambiguity between a type-id and
1984      //   an expression is resolved to a type-id, regardless of the
1985      //   form of the corresponding template-parameter.
1986      //
1987      // We warn specifically about this case, since it can be rather
1988      // confusing for users.
1989      QualType T = Arg.getArgument().getAsType();
1990      SourceRange SR = Arg.getSourceRange();
1991      if (T->isFunctionType())
1992        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1993      else
1994        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1995      Diag(Param->getLocation(), diag::note_template_param_here);
1996      return true;
1997    }
1998
1999    case TemplateArgument::Pack:
2000      llvm_unreachable("Caller must expand template argument packs");
2001      break;
2002    }
2003
2004    return false;
2005  }
2006
2007
2008  // Check template template parameters.
2009  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2010
2011  // Substitute into the template parameter list of the template
2012  // template parameter, since previously-supplied template arguments
2013  // may appear within the template template parameter.
2014  {
2015    // Set up a template instantiation context.
2016    LocalInstantiationScope Scope(*this);
2017    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2018                               TempParm, Converted.getFlatArguments(),
2019                               Converted.flatSize(),
2020                               SourceRange(TemplateLoc, RAngleLoc));
2021
2022    TemplateArgumentList TemplateArgs(Context, Converted,
2023                                      /*TakeArgs=*/false);
2024    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2025                      SubstDecl(TempParm, CurContext,
2026                                MultiLevelTemplateArgumentList(TemplateArgs)));
2027    if (!TempParm)
2028      return true;
2029
2030    // FIXME: TempParam is leaked.
2031  }
2032
2033  switch (Arg.getArgument().getKind()) {
2034  case TemplateArgument::Null:
2035    assert(false && "Should never see a NULL template argument here");
2036    return true;
2037
2038  case TemplateArgument::Template:
2039    if (CheckTemplateArgument(TempParm, Arg))
2040      return true;
2041
2042    Converted.Append(Arg.getArgument());
2043    break;
2044
2045  case TemplateArgument::Expression:
2046  case TemplateArgument::Type:
2047    // We have a template template parameter but the template
2048    // argument does not refer to a template.
2049    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2050    return true;
2051
2052  case TemplateArgument::Declaration:
2053    llvm_unreachable(
2054                       "Declaration argument with template template parameter");
2055    break;
2056  case TemplateArgument::Integral:
2057    llvm_unreachable(
2058                          "Integral argument with template template parameter");
2059    break;
2060
2061  case TemplateArgument::Pack:
2062    llvm_unreachable("Caller must expand template argument packs");
2063    break;
2064  }
2065
2066  return false;
2067}
2068
2069/// \brief Check that the given template argument list is well-formed
2070/// for specializing the given template.
2071bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2072                                     SourceLocation TemplateLoc,
2073                                const TemplateArgumentListInfo &TemplateArgs,
2074                                     bool PartialTemplateArgs,
2075                                     TemplateArgumentListBuilder &Converted) {
2076  TemplateParameterList *Params = Template->getTemplateParameters();
2077  unsigned NumParams = Params->size();
2078  unsigned NumArgs = TemplateArgs.size();
2079  bool Invalid = false;
2080
2081  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2082
2083  bool HasParameterPack =
2084    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2085
2086  if ((NumArgs > NumParams && !HasParameterPack) ||
2087      (NumArgs < Params->getMinRequiredArguments() &&
2088       !PartialTemplateArgs)) {
2089    // FIXME: point at either the first arg beyond what we can handle,
2090    // or the '>', depending on whether we have too many or too few
2091    // arguments.
2092    SourceRange Range;
2093    if (NumArgs > NumParams)
2094      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2095    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2096      << (NumArgs > NumParams)
2097      << (isa<ClassTemplateDecl>(Template)? 0 :
2098          isa<FunctionTemplateDecl>(Template)? 1 :
2099          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2100      << Template << Range;
2101    Diag(Template->getLocation(), diag::note_template_decl_here)
2102      << Params->getSourceRange();
2103    Invalid = true;
2104  }
2105
2106  // C++ [temp.arg]p1:
2107  //   [...] The type and form of each template-argument specified in
2108  //   a template-id shall match the type and form specified for the
2109  //   corresponding parameter declared by the template in its
2110  //   template-parameter-list.
2111  unsigned ArgIdx = 0;
2112  for (TemplateParameterList::iterator Param = Params->begin(),
2113                                       ParamEnd = Params->end();
2114       Param != ParamEnd; ++Param, ++ArgIdx) {
2115    if (ArgIdx > NumArgs && PartialTemplateArgs)
2116      break;
2117
2118    // If we have a template parameter pack, check every remaining template
2119    // argument against that template parameter pack.
2120    if ((*Param)->isTemplateParameterPack()) {
2121      Converted.BeginPack();
2122      for (; ArgIdx < NumArgs; ++ArgIdx) {
2123        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2124                                  TemplateLoc, RAngleLoc, Converted)) {
2125          Invalid = true;
2126          break;
2127        }
2128      }
2129      Converted.EndPack();
2130      continue;
2131    }
2132
2133    if (ArgIdx < NumArgs) {
2134      // Check the template argument we were given.
2135      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2136                                TemplateLoc, RAngleLoc, Converted))
2137        return true;
2138
2139      continue;
2140    }
2141
2142    // We have a default template argument that we will use.
2143    TemplateArgumentLoc Arg;
2144
2145    // Retrieve the default template argument from the template
2146    // parameter. For each kind of template parameter, we substitute the
2147    // template arguments provided thus far and any "outer" template arguments
2148    // (when the template parameter was part of a nested template) into
2149    // the default argument.
2150    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2151      if (!TTP->hasDefaultArgument()) {
2152        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2153        break;
2154      }
2155
2156      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2157                                                             Template,
2158                                                             TemplateLoc,
2159                                                             RAngleLoc,
2160                                                             TTP,
2161                                                             Converted);
2162      if (!ArgType)
2163        return true;
2164
2165      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2166                                ArgType);
2167    } else if (NonTypeTemplateParmDecl *NTTP
2168                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2169      if (!NTTP->hasDefaultArgument()) {
2170        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2171        break;
2172      }
2173
2174      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2175                                                              TemplateLoc,
2176                                                              RAngleLoc,
2177                                                              NTTP,
2178                                                              Converted);
2179      if (E.isInvalid())
2180        return true;
2181
2182      Expr *Ex = E.takeAs<Expr>();
2183      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2184    } else {
2185      TemplateTemplateParmDecl *TempParm
2186        = cast<TemplateTemplateParmDecl>(*Param);
2187
2188      if (!TempParm->hasDefaultArgument()) {
2189        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2190        break;
2191      }
2192
2193      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2194                                                       TemplateLoc,
2195                                                       RAngleLoc,
2196                                                       TempParm,
2197                                                       Converted);
2198      if (Name.isNull())
2199        return true;
2200
2201      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2202                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2203                  TempParm->getDefaultArgument().getTemplateNameLoc());
2204    }
2205
2206    // Introduce an instantiation record that describes where we are using
2207    // the default template argument.
2208    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2209                                        Converted.getFlatArguments(),
2210                                        Converted.flatSize(),
2211                                        SourceRange(TemplateLoc, RAngleLoc));
2212
2213    // Check the default template argument.
2214    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2215                              RAngleLoc, Converted))
2216      return true;
2217  }
2218
2219  return Invalid;
2220}
2221
2222/// \brief Check a template argument against its corresponding
2223/// template type parameter.
2224///
2225/// This routine implements the semantics of C++ [temp.arg.type]. It
2226/// returns true if an error occurred, and false otherwise.
2227bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2228                                 TypeSourceInfo *ArgInfo) {
2229  assert(ArgInfo && "invalid TypeSourceInfo");
2230  QualType Arg = ArgInfo->getType();
2231
2232  // C++ [temp.arg.type]p2:
2233  //   A local type, a type with no linkage, an unnamed type or a type
2234  //   compounded from any of these types shall not be used as a
2235  //   template-argument for a template type-parameter.
2236  //
2237  // FIXME: Perform the recursive and no-linkage type checks.
2238  const TagType *Tag = 0;
2239  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2240    Tag = EnumT;
2241  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2242    Tag = RecordT;
2243  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2244    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2245    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2246      << QualType(Tag, 0) << SR;
2247  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2248           !Tag->getDecl()->getTypedefForAnonDecl()) {
2249    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2250    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2251    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2252    return true;
2253  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2254    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2255    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2256  }
2257
2258  return false;
2259}
2260
2261/// \brief Checks whether the given template argument is the address
2262/// of an object or function according to C++ [temp.arg.nontype]p1.
2263bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
2264                                                          NamedDecl *&Entity) {
2265  bool Invalid = false;
2266
2267  // See through any implicit casts we added to fix the type.
2268  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2269    Arg = Cast->getSubExpr();
2270
2271  // C++0x allows nullptr, and there's no further checking to be done for that.
2272  if (Arg->getType()->isNullPtrType())
2273    return false;
2274
2275  // C++ [temp.arg.nontype]p1:
2276  //
2277  //   A template-argument for a non-type, non-template
2278  //   template-parameter shall be one of: [...]
2279  //
2280  //     -- the address of an object or function with external
2281  //        linkage, including function templates and function
2282  //        template-ids but excluding non-static class members,
2283  //        expressed as & id-expression where the & is optional if
2284  //        the name refers to a function or array, or if the
2285  //        corresponding template-parameter is a reference; or
2286  DeclRefExpr *DRE = 0;
2287
2288  // Ignore (and complain about) any excess parentheses.
2289  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2290    if (!Invalid) {
2291      Diag(Arg->getSourceRange().getBegin(),
2292           diag::err_template_arg_extra_parens)
2293        << Arg->getSourceRange();
2294      Invalid = true;
2295    }
2296
2297    Arg = Parens->getSubExpr();
2298  }
2299
2300  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2301    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2302      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2303  } else
2304    DRE = dyn_cast<DeclRefExpr>(Arg);
2305
2306  if (!DRE)
2307    return Diag(Arg->getSourceRange().getBegin(),
2308                diag::err_template_arg_not_decl_ref)
2309      << Arg->getSourceRange();
2310
2311  // Stop checking the precise nature of the argument if it is value dependent,
2312  // it should be checked when instantiated.
2313  if (Arg->isValueDependent())
2314    return false;
2315
2316  if (!isa<ValueDecl>(DRE->getDecl()))
2317    return Diag(Arg->getSourceRange().getBegin(),
2318                diag::err_template_arg_not_object_or_func_form)
2319      << Arg->getSourceRange();
2320
2321  // Cannot refer to non-static data members
2322  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2323    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2324      << Field << Arg->getSourceRange();
2325
2326  // Cannot refer to non-static member functions
2327  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2328    if (!Method->isStatic())
2329      return Diag(Arg->getSourceRange().getBegin(),
2330                  diag::err_template_arg_method)
2331        << Method << Arg->getSourceRange();
2332
2333  // Functions must have external linkage.
2334  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2335    if (!isExternalLinkage(Func->getLinkage())) {
2336      Diag(Arg->getSourceRange().getBegin(),
2337           diag::err_template_arg_function_not_extern)
2338        << Func << Arg->getSourceRange();
2339      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2340        << true;
2341      return true;
2342    }
2343
2344    // Okay: we've named a function with external linkage.
2345    Entity = Func;
2346    return Invalid;
2347  }
2348
2349  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2350    if (!isExternalLinkage(Var->getLinkage())) {
2351      Diag(Arg->getSourceRange().getBegin(),
2352           diag::err_template_arg_object_not_extern)
2353        << Var << Arg->getSourceRange();
2354      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2355        << true;
2356      return true;
2357    }
2358
2359    // Okay: we've named an object with external linkage
2360    Entity = Var;
2361    return Invalid;
2362  }
2363
2364  // We found something else, but we don't know specifically what it is.
2365  Diag(Arg->getSourceRange().getBegin(),
2366       diag::err_template_arg_not_object_or_func)
2367      << Arg->getSourceRange();
2368  Diag(DRE->getDecl()->getLocation(),
2369       diag::note_template_arg_refers_here);
2370  return true;
2371}
2372
2373/// \brief Checks whether the given template argument is a pointer to
2374/// member constant according to C++ [temp.arg.nontype]p1.
2375bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2376                                                TemplateArgument &Converted) {
2377  bool Invalid = false;
2378
2379  // See through any implicit casts we added to fix the type.
2380  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2381    Arg = Cast->getSubExpr();
2382
2383  // C++0x allows nullptr, and there's no further checking to be done for that.
2384  if (Arg->getType()->isNullPtrType())
2385    return false;
2386
2387  // C++ [temp.arg.nontype]p1:
2388  //
2389  //   A template-argument for a non-type, non-template
2390  //   template-parameter shall be one of: [...]
2391  //
2392  //     -- a pointer to member expressed as described in 5.3.1.
2393  DeclRefExpr *DRE = 0;
2394
2395  // Ignore (and complain about) any excess parentheses.
2396  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2397    if (!Invalid) {
2398      Diag(Arg->getSourceRange().getBegin(),
2399           diag::err_template_arg_extra_parens)
2400        << Arg->getSourceRange();
2401      Invalid = true;
2402    }
2403
2404    Arg = Parens->getSubExpr();
2405  }
2406
2407  // A pointer-to-member constant written &Class::member.
2408  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2409    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2410      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2411      if (DRE && !DRE->getQualifier())
2412        DRE = 0;
2413    }
2414  }
2415  // A constant of pointer-to-member type.
2416  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2417    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2418      if (VD->getType()->isMemberPointerType()) {
2419        if (isa<NonTypeTemplateParmDecl>(VD) ||
2420            (isa<VarDecl>(VD) &&
2421             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2422          if (Arg->isTypeDependent() || Arg->isValueDependent())
2423            Converted = TemplateArgument(Arg->Retain());
2424          else
2425            Converted = TemplateArgument(VD->getCanonicalDecl());
2426          return Invalid;
2427        }
2428      }
2429    }
2430
2431    DRE = 0;
2432  }
2433
2434  if (!DRE)
2435    return Diag(Arg->getSourceRange().getBegin(),
2436                diag::err_template_arg_not_pointer_to_member_form)
2437      << Arg->getSourceRange();
2438
2439  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2440    assert((isa<FieldDecl>(DRE->getDecl()) ||
2441            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2442           "Only non-static member pointers can make it here");
2443
2444    // Okay: this is the address of a non-static member, and therefore
2445    // a member pointer constant.
2446    if (Arg->isTypeDependent() || Arg->isValueDependent())
2447      Converted = TemplateArgument(Arg->Retain());
2448    else
2449      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2450    return Invalid;
2451  }
2452
2453  // We found something else, but we don't know specifically what it is.
2454  Diag(Arg->getSourceRange().getBegin(),
2455       diag::err_template_arg_not_pointer_to_member_form)
2456      << Arg->getSourceRange();
2457  Diag(DRE->getDecl()->getLocation(),
2458       diag::note_template_arg_refers_here);
2459  return true;
2460}
2461
2462/// \brief Check a template argument against its corresponding
2463/// non-type template parameter.
2464///
2465/// This routine implements the semantics of C++ [temp.arg.nontype].
2466/// It returns true if an error occurred, and false otherwise. \p
2467/// InstantiatedParamType is the type of the non-type template
2468/// parameter after it has been instantiated.
2469///
2470/// If no error was detected, Converted receives the converted template argument.
2471bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2472                                 QualType InstantiatedParamType, Expr *&Arg,
2473                                 TemplateArgument &Converted) {
2474  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2475
2476  // If either the parameter has a dependent type or the argument is
2477  // type-dependent, there's nothing we can check now.
2478  // FIXME: Add template argument to Converted!
2479  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2480    // FIXME: Produce a cloned, canonical expression?
2481    Converted = TemplateArgument(Arg);
2482    return false;
2483  }
2484
2485  // C++ [temp.arg.nontype]p5:
2486  //   The following conversions are performed on each expression used
2487  //   as a non-type template-argument. If a non-type
2488  //   template-argument cannot be converted to the type of the
2489  //   corresponding template-parameter then the program is
2490  //   ill-formed.
2491  //
2492  //     -- for a non-type template-parameter of integral or
2493  //        enumeration type, integral promotions (4.5) and integral
2494  //        conversions (4.7) are applied.
2495  QualType ParamType = InstantiatedParamType;
2496  QualType ArgType = Arg->getType();
2497  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2498    // C++ [temp.arg.nontype]p1:
2499    //   A template-argument for a non-type, non-template
2500    //   template-parameter shall be one of:
2501    //
2502    //     -- an integral constant-expression of integral or enumeration
2503    //        type; or
2504    //     -- the name of a non-type template-parameter; or
2505    SourceLocation NonConstantLoc;
2506    llvm::APSInt Value;
2507    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2508      Diag(Arg->getSourceRange().getBegin(),
2509           diag::err_template_arg_not_integral_or_enumeral)
2510        << ArgType << Arg->getSourceRange();
2511      Diag(Param->getLocation(), diag::note_template_param_here);
2512      return true;
2513    } else if (!Arg->isValueDependent() &&
2514               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2515      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2516        << ArgType << Arg->getSourceRange();
2517      return true;
2518    }
2519
2520    // FIXME: We need some way to more easily get the unqualified form
2521    // of the types without going all the way to the
2522    // canonical type.
2523    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2524      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2525    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2526      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2527
2528    // Try to convert the argument to the parameter's type.
2529    if (Context.hasSameType(ParamType, ArgType)) {
2530      // Okay: no conversion necessary
2531    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2532               !ParamType->isEnumeralType()) {
2533      // This is an integral promotion or conversion.
2534      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2535    } else {
2536      // We can't perform this conversion.
2537      Diag(Arg->getSourceRange().getBegin(),
2538           diag::err_template_arg_not_convertible)
2539        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2540      Diag(Param->getLocation(), diag::note_template_param_here);
2541      return true;
2542    }
2543
2544    QualType IntegerType = Context.getCanonicalType(ParamType);
2545    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2546      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2547
2548    if (!Arg->isValueDependent()) {
2549      // Check that an unsigned parameter does not receive a negative
2550      // value.
2551      if (IntegerType->isUnsignedIntegerType()
2552          && (Value.isSigned() && Value.isNegative())) {
2553        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2554          << Value.toString(10) << Param->getType()
2555          << Arg->getSourceRange();
2556        Diag(Param->getLocation(), diag::note_template_param_here);
2557        return true;
2558      }
2559
2560      // Check that we don't overflow the template parameter type.
2561      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2562      unsigned RequiredBits;
2563      if (IntegerType->isUnsignedIntegerType())
2564        RequiredBits = Value.getActiveBits();
2565      else if (Value.isUnsigned())
2566        RequiredBits = Value.getActiveBits() + 1;
2567      else
2568        RequiredBits = Value.getMinSignedBits();
2569      if (RequiredBits > AllowedBits) {
2570        Diag(Arg->getSourceRange().getBegin(),
2571             diag::err_template_arg_too_large)
2572          << Value.toString(10) << Param->getType()
2573          << Arg->getSourceRange();
2574        Diag(Param->getLocation(), diag::note_template_param_here);
2575        return true;
2576      }
2577
2578      if (Value.getBitWidth() != AllowedBits)
2579        Value.extOrTrunc(AllowedBits);
2580      Value.setIsSigned(IntegerType->isSignedIntegerType());
2581    }
2582
2583    // Add the value of this argument to the list of converted
2584    // arguments. We use the bitwidth and signedness of the template
2585    // parameter.
2586    if (Arg->isValueDependent()) {
2587      // The argument is value-dependent. Create a new
2588      // TemplateArgument with the converted expression.
2589      Converted = TemplateArgument(Arg);
2590      return false;
2591    }
2592
2593    Converted = TemplateArgument(Value,
2594                                 ParamType->isEnumeralType() ? ParamType
2595                                                             : IntegerType);
2596    return false;
2597  }
2598
2599  // Handle pointer-to-function, reference-to-function, and
2600  // pointer-to-member-function all in (roughly) the same way.
2601  if (// -- For a non-type template-parameter of type pointer to
2602      //    function, only the function-to-pointer conversion (4.3) is
2603      //    applied. If the template-argument represents a set of
2604      //    overloaded functions (or a pointer to such), the matching
2605      //    function is selected from the set (13.4).
2606      // In C++0x, any std::nullptr_t value can be converted.
2607      (ParamType->isPointerType() &&
2608       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2609      // -- For a non-type template-parameter of type reference to
2610      //    function, no conversions apply. If the template-argument
2611      //    represents a set of overloaded functions, the matching
2612      //    function is selected from the set (13.4).
2613      (ParamType->isReferenceType() &&
2614       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2615      // -- For a non-type template-parameter of type pointer to
2616      //    member function, no conversions apply. If the
2617      //    template-argument represents a set of overloaded member
2618      //    functions, the matching member function is selected from
2619      //    the set (13.4).
2620      // Again, C++0x allows a std::nullptr_t value.
2621      (ParamType->isMemberPointerType() &&
2622       ParamType->getAs<MemberPointerType>()->getPointeeType()
2623         ->isFunctionType())) {
2624    if (Context.hasSameUnqualifiedType(ArgType,
2625                                       ParamType.getNonReferenceType())) {
2626      // We don't have to do anything: the types already match.
2627    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2628                 ParamType->isMemberPointerType())) {
2629      ArgType = ParamType;
2630      if (ParamType->isMemberPointerType())
2631        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2632      else
2633        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2634    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2635      ArgType = Context.getPointerType(ArgType);
2636      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2637    } else if (FunctionDecl *Fn
2638                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2639      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2640        return true;
2641
2642      Arg = FixOverloadedFunctionReference(Arg, Fn);
2643      ArgType = Arg->getType();
2644      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2645        ArgType = Context.getPointerType(Arg->getType());
2646        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2647      }
2648    }
2649
2650    if (!Context.hasSameUnqualifiedType(ArgType,
2651                                        ParamType.getNonReferenceType())) {
2652      // We can't perform this conversion.
2653      Diag(Arg->getSourceRange().getBegin(),
2654           diag::err_template_arg_not_convertible)
2655        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2656      Diag(Param->getLocation(), diag::note_template_param_here);
2657      return true;
2658    }
2659
2660    if (ParamType->isMemberPointerType())
2661      return CheckTemplateArgumentPointerToMember(Arg, Converted);
2662
2663    NamedDecl *Entity = 0;
2664    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2665      return true;
2666
2667    if (Arg->isValueDependent()) {
2668      Converted = TemplateArgument(Arg);
2669    } else {
2670      if (Entity)
2671        Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2672      Converted = TemplateArgument(Entity);
2673    }
2674    return false;
2675  }
2676
2677  if (ParamType->isPointerType()) {
2678    //   -- for a non-type template-parameter of type pointer to
2679    //      object, qualification conversions (4.4) and the
2680    //      array-to-pointer conversion (4.2) are applied.
2681    // C++0x also allows a value of std::nullptr_t.
2682    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2683           "Only object pointers allowed here");
2684
2685    if (ArgType->isNullPtrType()) {
2686      ArgType = ParamType;
2687      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2688    } else if (ArgType->isArrayType()) {
2689      ArgType = Context.getArrayDecayedType(ArgType);
2690      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2691    }
2692
2693    if (IsQualificationConversion(ArgType, ParamType)) {
2694      ArgType = ParamType;
2695      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2696    }
2697
2698    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2699      // We can't perform this conversion.
2700      Diag(Arg->getSourceRange().getBegin(),
2701           diag::err_template_arg_not_convertible)
2702        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2703      Diag(Param->getLocation(), diag::note_template_param_here);
2704      return true;
2705    }
2706
2707    NamedDecl *Entity = 0;
2708    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2709      return true;
2710
2711    if (Arg->isValueDependent()) {
2712      Converted = TemplateArgument(Arg);
2713    } else {
2714      if (Entity)
2715        Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2716      Converted = TemplateArgument(Entity);
2717    }
2718    return false;
2719  }
2720
2721  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2722    //   -- For a non-type template-parameter of type reference to
2723    //      object, no conversions apply. The type referred to by the
2724    //      reference may be more cv-qualified than the (otherwise
2725    //      identical) type of the template-argument. The
2726    //      template-parameter is bound directly to the
2727    //      template-argument, which must be an lvalue.
2728    assert(ParamRefType->getPointeeType()->isObjectType() &&
2729           "Only object references allowed here");
2730
2731    QualType ReferredType = ParamRefType->getPointeeType();
2732    if (!Context.hasSameUnqualifiedType(ReferredType, ArgType)) {
2733      Diag(Arg->getSourceRange().getBegin(),
2734           diag::err_template_arg_no_ref_bind)
2735        << InstantiatedParamType << Arg->getType()
2736        << Arg->getSourceRange();
2737      Diag(Param->getLocation(), diag::note_template_param_here);
2738      return true;
2739    }
2740
2741    unsigned ParamQuals
2742      = Context.getCanonicalType(ReferredType).getCVRQualifiers();
2743    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2744
2745    if ((ParamQuals | ArgQuals) != ParamQuals) {
2746      Diag(Arg->getSourceRange().getBegin(),
2747           diag::err_template_arg_ref_bind_ignores_quals)
2748        << InstantiatedParamType << Arg->getType()
2749        << Arg->getSourceRange();
2750      Diag(Param->getLocation(), diag::note_template_param_here);
2751      return true;
2752    }
2753
2754    NamedDecl *Entity = 0;
2755    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2756      return true;
2757
2758    if (Arg->isValueDependent()) {
2759      Converted = TemplateArgument(Arg);
2760    } else {
2761      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2762      Converted = TemplateArgument(Entity);
2763    }
2764    return false;
2765  }
2766
2767  //     -- For a non-type template-parameter of type pointer to data
2768  //        member, qualification conversions (4.4) are applied.
2769  // C++0x allows std::nullptr_t values.
2770  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2771
2772  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2773    // Types match exactly: nothing more to do here.
2774  } else if (ArgType->isNullPtrType()) {
2775    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2776  } else if (IsQualificationConversion(ArgType, ParamType)) {
2777    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2778  } else {
2779    // We can't perform this conversion.
2780    Diag(Arg->getSourceRange().getBegin(),
2781         diag::err_template_arg_not_convertible)
2782      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2783    Diag(Param->getLocation(), diag::note_template_param_here);
2784    return true;
2785  }
2786
2787  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2788}
2789
2790/// \brief Check a template argument against its corresponding
2791/// template template parameter.
2792///
2793/// This routine implements the semantics of C++ [temp.arg.template].
2794/// It returns true if an error occurred, and false otherwise.
2795bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2796                                 const TemplateArgumentLoc &Arg) {
2797  TemplateName Name = Arg.getArgument().getAsTemplate();
2798  TemplateDecl *Template = Name.getAsTemplateDecl();
2799  if (!Template) {
2800    // Any dependent template name is fine.
2801    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2802    return false;
2803  }
2804
2805  // C++ [temp.arg.template]p1:
2806  //   A template-argument for a template template-parameter shall be
2807  //   the name of a class template, expressed as id-expression. Only
2808  //   primary class templates are considered when matching the
2809  //   template template argument with the corresponding parameter;
2810  //   partial specializations are not considered even if their
2811  //   parameter lists match that of the template template parameter.
2812  //
2813  // Note that we also allow template template parameters here, which
2814  // will happen when we are dealing with, e.g., class template
2815  // partial specializations.
2816  if (!isa<ClassTemplateDecl>(Template) &&
2817      !isa<TemplateTemplateParmDecl>(Template)) {
2818    assert(isa<FunctionTemplateDecl>(Template) &&
2819           "Only function templates are possible here");
2820    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2821    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2822      << Template;
2823  }
2824
2825  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2826                                         Param->getTemplateParameters(),
2827                                         true,
2828                                         TPL_TemplateTemplateArgumentMatch,
2829                                         Arg.getLocation());
2830}
2831
2832/// \brief Determine whether the given template parameter lists are
2833/// equivalent.
2834///
2835/// \param New  The new template parameter list, typically written in the
2836/// source code as part of a new template declaration.
2837///
2838/// \param Old  The old template parameter list, typically found via
2839/// name lookup of the template declared with this template parameter
2840/// list.
2841///
2842/// \param Complain  If true, this routine will produce a diagnostic if
2843/// the template parameter lists are not equivalent.
2844///
2845/// \param Kind describes how we are to match the template parameter lists.
2846///
2847/// \param TemplateArgLoc If this source location is valid, then we
2848/// are actually checking the template parameter list of a template
2849/// argument (New) against the template parameter list of its
2850/// corresponding template template parameter (Old). We produce
2851/// slightly different diagnostics in this scenario.
2852///
2853/// \returns True if the template parameter lists are equal, false
2854/// otherwise.
2855bool
2856Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2857                                     TemplateParameterList *Old,
2858                                     bool Complain,
2859                                     TemplateParameterListEqualKind Kind,
2860                                     SourceLocation TemplateArgLoc) {
2861  if (Old->size() != New->size()) {
2862    if (Complain) {
2863      unsigned NextDiag = diag::err_template_param_list_different_arity;
2864      if (TemplateArgLoc.isValid()) {
2865        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2866        NextDiag = diag::note_template_param_list_different_arity;
2867      }
2868      Diag(New->getTemplateLoc(), NextDiag)
2869          << (New->size() > Old->size())
2870          << (Kind != TPL_TemplateMatch)
2871          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2872      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2873        << (Kind != TPL_TemplateMatch)
2874        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2875    }
2876
2877    return false;
2878  }
2879
2880  for (TemplateParameterList::iterator OldParm = Old->begin(),
2881         OldParmEnd = Old->end(), NewParm = New->begin();
2882       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2883    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2884      if (Complain) {
2885        unsigned NextDiag = diag::err_template_param_different_kind;
2886        if (TemplateArgLoc.isValid()) {
2887          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2888          NextDiag = diag::note_template_param_different_kind;
2889        }
2890        Diag((*NewParm)->getLocation(), NextDiag)
2891          << (Kind != TPL_TemplateMatch);
2892        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2893          << (Kind != TPL_TemplateMatch);
2894      }
2895      return false;
2896    }
2897
2898    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2899      // Okay; all template type parameters are equivalent (since we
2900      // know we're at the same index).
2901    } else if (NonTypeTemplateParmDecl *OldNTTP
2902                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2903      // The types of non-type template parameters must agree.
2904      NonTypeTemplateParmDecl *NewNTTP
2905        = cast<NonTypeTemplateParmDecl>(*NewParm);
2906
2907      // If we are matching a template template argument to a template
2908      // template parameter and one of the non-type template parameter types
2909      // is dependent, then we must wait until template instantiation time
2910      // to actually compare the arguments.
2911      if (Kind == TPL_TemplateTemplateArgumentMatch &&
2912          (OldNTTP->getType()->isDependentType() ||
2913           NewNTTP->getType()->isDependentType()))
2914        continue;
2915
2916      if (Context.getCanonicalType(OldNTTP->getType()) !=
2917            Context.getCanonicalType(NewNTTP->getType())) {
2918        if (Complain) {
2919          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2920          if (TemplateArgLoc.isValid()) {
2921            Diag(TemplateArgLoc,
2922                 diag::err_template_arg_template_params_mismatch);
2923            NextDiag = diag::note_template_nontype_parm_different_type;
2924          }
2925          Diag(NewNTTP->getLocation(), NextDiag)
2926            << NewNTTP->getType()
2927            << (Kind != TPL_TemplateMatch);
2928          Diag(OldNTTP->getLocation(),
2929               diag::note_template_nontype_parm_prev_declaration)
2930            << OldNTTP->getType();
2931        }
2932        return false;
2933      }
2934    } else {
2935      // The template parameter lists of template template
2936      // parameters must agree.
2937      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2938             "Only template template parameters handled here");
2939      TemplateTemplateParmDecl *OldTTP
2940        = cast<TemplateTemplateParmDecl>(*OldParm);
2941      TemplateTemplateParmDecl *NewTTP
2942        = cast<TemplateTemplateParmDecl>(*NewParm);
2943      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2944                                          OldTTP->getTemplateParameters(),
2945                                          Complain,
2946              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
2947                                          TemplateArgLoc))
2948        return false;
2949    }
2950  }
2951
2952  return true;
2953}
2954
2955/// \brief Check whether a template can be declared within this scope.
2956///
2957/// If the template declaration is valid in this scope, returns
2958/// false. Otherwise, issues a diagnostic and returns true.
2959bool
2960Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2961  // Find the nearest enclosing declaration scope.
2962  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2963         (S->getFlags() & Scope::TemplateParamScope) != 0)
2964    S = S->getParent();
2965
2966  // C++ [temp]p2:
2967  //   A template-declaration can appear only as a namespace scope or
2968  //   class scope declaration.
2969  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2970  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2971      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2972    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2973             << TemplateParams->getSourceRange();
2974
2975  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2976    Ctx = Ctx->getParent();
2977
2978  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2979    return false;
2980
2981  return Diag(TemplateParams->getTemplateLoc(),
2982              diag::err_template_outside_namespace_or_class_scope)
2983    << TemplateParams->getSourceRange();
2984}
2985
2986/// \brief Determine what kind of template specialization the given declaration
2987/// is.
2988static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2989  if (!D)
2990    return TSK_Undeclared;
2991
2992  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2993    return Record->getTemplateSpecializationKind();
2994  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2995    return Function->getTemplateSpecializationKind();
2996  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2997    return Var->getTemplateSpecializationKind();
2998
2999  return TSK_Undeclared;
3000}
3001
3002/// \brief Check whether a specialization is well-formed in the current
3003/// context.
3004///
3005/// This routine determines whether a template specialization can be declared
3006/// in the current context (C++ [temp.expl.spec]p2).
3007///
3008/// \param S the semantic analysis object for which this check is being
3009/// performed.
3010///
3011/// \param Specialized the entity being specialized or instantiated, which
3012/// may be a kind of template (class template, function template, etc.) or
3013/// a member of a class template (member function, static data member,
3014/// member class).
3015///
3016/// \param PrevDecl the previous declaration of this entity, if any.
3017///
3018/// \param Loc the location of the explicit specialization or instantiation of
3019/// this entity.
3020///
3021/// \param IsPartialSpecialization whether this is a partial specialization of
3022/// a class template.
3023///
3024/// \returns true if there was an error that we cannot recover from, false
3025/// otherwise.
3026static bool CheckTemplateSpecializationScope(Sema &S,
3027                                             NamedDecl *Specialized,
3028                                             NamedDecl *PrevDecl,
3029                                             SourceLocation Loc,
3030                                             bool IsPartialSpecialization) {
3031  // Keep these "kind" numbers in sync with the %select statements in the
3032  // various diagnostics emitted by this routine.
3033  int EntityKind = 0;
3034  bool isTemplateSpecialization = false;
3035  if (isa<ClassTemplateDecl>(Specialized)) {
3036    EntityKind = IsPartialSpecialization? 1 : 0;
3037    isTemplateSpecialization = true;
3038  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3039    EntityKind = 2;
3040    isTemplateSpecialization = true;
3041  } else if (isa<CXXMethodDecl>(Specialized))
3042    EntityKind = 3;
3043  else if (isa<VarDecl>(Specialized))
3044    EntityKind = 4;
3045  else if (isa<RecordDecl>(Specialized))
3046    EntityKind = 5;
3047  else {
3048    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3049    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3050    return true;
3051  }
3052
3053  // C++ [temp.expl.spec]p2:
3054  //   An explicit specialization shall be declared in the namespace
3055  //   of which the template is a member, or, for member templates, in
3056  //   the namespace of which the enclosing class or enclosing class
3057  //   template is a member. An explicit specialization of a member
3058  //   function, member class or static data member of a class
3059  //   template shall be declared in the namespace of which the class
3060  //   template is a member. Such a declaration may also be a
3061  //   definition. If the declaration is not a definition, the
3062  //   specialization may be defined later in the name- space in which
3063  //   the explicit specialization was declared, or in a namespace
3064  //   that encloses the one in which the explicit specialization was
3065  //   declared.
3066  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3067    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3068      << Specialized;
3069    return true;
3070  }
3071
3072  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3073    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3074      << Specialized;
3075    return true;
3076  }
3077
3078  // C++ [temp.class.spec]p6:
3079  //   A class template partial specialization may be declared or redeclared
3080  //   in any namespace scope in which its definition may be defined (14.5.1
3081  //   and 14.5.2).
3082  bool ComplainedAboutScope = false;
3083  DeclContext *SpecializedContext
3084    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3085  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3086  if ((!PrevDecl ||
3087       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3088       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3089    // There is no prior declaration of this entity, so this
3090    // specialization must be in the same context as the template
3091    // itself.
3092    if (!DC->Equals(SpecializedContext)) {
3093      if (isa<TranslationUnitDecl>(SpecializedContext))
3094        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3095        << EntityKind << Specialized;
3096      else if (isa<NamespaceDecl>(SpecializedContext))
3097        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3098        << EntityKind << Specialized
3099        << cast<NamedDecl>(SpecializedContext);
3100
3101      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3102      ComplainedAboutScope = true;
3103    }
3104  }
3105
3106  // Make sure that this redeclaration (or definition) occurs in an enclosing
3107  // namespace.
3108  // Note that HandleDeclarator() performs this check for explicit
3109  // specializations of function templates, static data members, and member
3110  // functions, so we skip the check here for those kinds of entities.
3111  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3112  // Should we refactor that check, so that it occurs later?
3113  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3114      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3115        isa<FunctionDecl>(Specialized))) {
3116    if (isa<TranslationUnitDecl>(SpecializedContext))
3117      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3118        << EntityKind << Specialized;
3119    else if (isa<NamespaceDecl>(SpecializedContext))
3120      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3121        << EntityKind << Specialized
3122        << cast<NamedDecl>(SpecializedContext);
3123
3124    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3125  }
3126
3127  // FIXME: check for specialization-after-instantiation errors and such.
3128
3129  return false;
3130}
3131
3132/// \brief Check the non-type template arguments of a class template
3133/// partial specialization according to C++ [temp.class.spec]p9.
3134///
3135/// \param TemplateParams the template parameters of the primary class
3136/// template.
3137///
3138/// \param TemplateArg the template arguments of the class template
3139/// partial specialization.
3140///
3141/// \param MirrorsPrimaryTemplate will be set true if the class
3142/// template partial specialization arguments are identical to the
3143/// implicit template arguments of the primary template. This is not
3144/// necessarily an error (C++0x), and it is left to the caller to diagnose
3145/// this condition when it is an error.
3146///
3147/// \returns true if there was an error, false otherwise.
3148bool Sema::CheckClassTemplatePartialSpecializationArgs(
3149                                        TemplateParameterList *TemplateParams,
3150                             const TemplateArgumentListBuilder &TemplateArgs,
3151                                        bool &MirrorsPrimaryTemplate) {
3152  // FIXME: the interface to this function will have to change to
3153  // accommodate variadic templates.
3154  MirrorsPrimaryTemplate = true;
3155
3156  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3157
3158  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3159    // Determine whether the template argument list of the partial
3160    // specialization is identical to the implicit argument list of
3161    // the primary template. The caller may need to diagnostic this as
3162    // an error per C++ [temp.class.spec]p9b3.
3163    if (MirrorsPrimaryTemplate) {
3164      if (TemplateTypeParmDecl *TTP
3165            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3166        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3167              Context.getCanonicalType(ArgList[I].getAsType()))
3168          MirrorsPrimaryTemplate = false;
3169      } else if (TemplateTemplateParmDecl *TTP
3170                   = dyn_cast<TemplateTemplateParmDecl>(
3171                                                 TemplateParams->getParam(I))) {
3172        TemplateName Name = ArgList[I].getAsTemplate();
3173        TemplateTemplateParmDecl *ArgDecl
3174          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3175        if (!ArgDecl ||
3176            ArgDecl->getIndex() != TTP->getIndex() ||
3177            ArgDecl->getDepth() != TTP->getDepth())
3178          MirrorsPrimaryTemplate = false;
3179      }
3180    }
3181
3182    NonTypeTemplateParmDecl *Param
3183      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3184    if (!Param) {
3185      continue;
3186    }
3187
3188    Expr *ArgExpr = ArgList[I].getAsExpr();
3189    if (!ArgExpr) {
3190      MirrorsPrimaryTemplate = false;
3191      continue;
3192    }
3193
3194    // C++ [temp.class.spec]p8:
3195    //   A non-type argument is non-specialized if it is the name of a
3196    //   non-type parameter. All other non-type arguments are
3197    //   specialized.
3198    //
3199    // Below, we check the two conditions that only apply to
3200    // specialized non-type arguments, so skip any non-specialized
3201    // arguments.
3202    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3203      if (NonTypeTemplateParmDecl *NTTP
3204            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3205        if (MirrorsPrimaryTemplate &&
3206            (Param->getIndex() != NTTP->getIndex() ||
3207             Param->getDepth() != NTTP->getDepth()))
3208          MirrorsPrimaryTemplate = false;
3209
3210        continue;
3211      }
3212
3213    // C++ [temp.class.spec]p9:
3214    //   Within the argument list of a class template partial
3215    //   specialization, the following restrictions apply:
3216    //     -- A partially specialized non-type argument expression
3217    //        shall not involve a template parameter of the partial
3218    //        specialization except when the argument expression is a
3219    //        simple identifier.
3220    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3221      Diag(ArgExpr->getLocStart(),
3222           diag::err_dependent_non_type_arg_in_partial_spec)
3223        << ArgExpr->getSourceRange();
3224      return true;
3225    }
3226
3227    //     -- The type of a template parameter corresponding to a
3228    //        specialized non-type argument shall not be dependent on a
3229    //        parameter of the specialization.
3230    if (Param->getType()->isDependentType()) {
3231      Diag(ArgExpr->getLocStart(),
3232           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3233        << Param->getType()
3234        << ArgExpr->getSourceRange();
3235      Diag(Param->getLocation(), diag::note_template_param_here);
3236      return true;
3237    }
3238
3239    MirrorsPrimaryTemplate = false;
3240  }
3241
3242  return false;
3243}
3244
3245Sema::DeclResult
3246Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3247                                       TagUseKind TUK,
3248                                       SourceLocation KWLoc,
3249                                       const CXXScopeSpec &SS,
3250                                       TemplateTy TemplateD,
3251                                       SourceLocation TemplateNameLoc,
3252                                       SourceLocation LAngleLoc,
3253                                       ASTTemplateArgsPtr TemplateArgsIn,
3254                                       SourceLocation RAngleLoc,
3255                                       AttributeList *Attr,
3256                               MultiTemplateParamsArg TemplateParameterLists) {
3257  assert(TUK != TUK_Reference && "References are not specializations");
3258
3259  // Find the class template we're specializing
3260  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3261  ClassTemplateDecl *ClassTemplate
3262    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3263
3264  if (!ClassTemplate) {
3265    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3266      << (Name.getAsTemplateDecl() &&
3267          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3268    return true;
3269  }
3270
3271  bool isExplicitSpecialization = false;
3272  bool isPartialSpecialization = false;
3273
3274  // Check the validity of the template headers that introduce this
3275  // template.
3276  // FIXME: We probably shouldn't complain about these headers for
3277  // friend declarations.
3278  TemplateParameterList *TemplateParams
3279    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3280                        (TemplateParameterList**)TemplateParameterLists.get(),
3281                                              TemplateParameterLists.size(),
3282                                              isExplicitSpecialization);
3283  if (TemplateParams && TemplateParams->size() > 0) {
3284    isPartialSpecialization = true;
3285
3286    // C++ [temp.class.spec]p10:
3287    //   The template parameter list of a specialization shall not
3288    //   contain default template argument values.
3289    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3290      Decl *Param = TemplateParams->getParam(I);
3291      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3292        if (TTP->hasDefaultArgument()) {
3293          Diag(TTP->getDefaultArgumentLoc(),
3294               diag::err_default_arg_in_partial_spec);
3295          TTP->removeDefaultArgument();
3296        }
3297      } else if (NonTypeTemplateParmDecl *NTTP
3298                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3299        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3300          Diag(NTTP->getDefaultArgumentLoc(),
3301               diag::err_default_arg_in_partial_spec)
3302            << DefArg->getSourceRange();
3303          NTTP->setDefaultArgument(0);
3304          DefArg->Destroy(Context);
3305        }
3306      } else {
3307        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3308        if (TTP->hasDefaultArgument()) {
3309          Diag(TTP->getDefaultArgument().getLocation(),
3310               diag::err_default_arg_in_partial_spec)
3311            << TTP->getDefaultArgument().getSourceRange();
3312          TTP->setDefaultArgument(TemplateArgumentLoc());
3313        }
3314      }
3315    }
3316  } else if (TemplateParams) {
3317    if (TUK == TUK_Friend)
3318      Diag(KWLoc, diag::err_template_spec_friend)
3319        << CodeModificationHint::CreateRemoval(
3320                                SourceRange(TemplateParams->getTemplateLoc(),
3321                                            TemplateParams->getRAngleLoc()))
3322        << SourceRange(LAngleLoc, RAngleLoc);
3323    else
3324      isExplicitSpecialization = true;
3325  } else if (TUK != TUK_Friend) {
3326    Diag(KWLoc, diag::err_template_spec_needs_header)
3327      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
3328    isExplicitSpecialization = true;
3329  }
3330
3331  // Check that the specialization uses the same tag kind as the
3332  // original template.
3333  TagDecl::TagKind Kind;
3334  switch (TagSpec) {
3335  default: assert(0 && "Unknown tag type!");
3336  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3337  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3338  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3339  }
3340  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3341                                    Kind, KWLoc,
3342                                    *ClassTemplate->getIdentifier())) {
3343    Diag(KWLoc, diag::err_use_with_wrong_tag)
3344      << ClassTemplate
3345      << CodeModificationHint::CreateReplacement(KWLoc,
3346                            ClassTemplate->getTemplatedDecl()->getKindName());
3347    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3348         diag::note_previous_use);
3349    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3350  }
3351
3352  // Translate the parser's template argument list in our AST format.
3353  TemplateArgumentListInfo TemplateArgs;
3354  TemplateArgs.setLAngleLoc(LAngleLoc);
3355  TemplateArgs.setRAngleLoc(RAngleLoc);
3356  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3357
3358  // Check that the template argument list is well-formed for this
3359  // template.
3360  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3361                                        TemplateArgs.size());
3362  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3363                                TemplateArgs, false, Converted))
3364    return true;
3365
3366  assert((Converted.structuredSize() ==
3367            ClassTemplate->getTemplateParameters()->size()) &&
3368         "Converted template argument list is too short!");
3369
3370  // Find the class template (partial) specialization declaration that
3371  // corresponds to these arguments.
3372  llvm::FoldingSetNodeID ID;
3373  if (isPartialSpecialization) {
3374    bool MirrorsPrimaryTemplate;
3375    if (CheckClassTemplatePartialSpecializationArgs(
3376                                         ClassTemplate->getTemplateParameters(),
3377                                         Converted, MirrorsPrimaryTemplate))
3378      return true;
3379
3380    if (MirrorsPrimaryTemplate) {
3381      // C++ [temp.class.spec]p9b3:
3382      //
3383      //   -- The argument list of the specialization shall not be identical
3384      //      to the implicit argument list of the primary template.
3385      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3386        << (TUK == TUK_Definition)
3387        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3388                                                           RAngleLoc));
3389      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3390                                ClassTemplate->getIdentifier(),
3391                                TemplateNameLoc,
3392                                Attr,
3393                                TemplateParams,
3394                                AS_none);
3395    }
3396
3397    // FIXME: Diagnose friend partial specializations
3398
3399    if (!Name.isDependent() &&
3400        !TemplateSpecializationType::anyDependentTemplateArguments(
3401                                             TemplateArgs.getArgumentArray(),
3402                                                         TemplateArgs.size())) {
3403      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3404        << ClassTemplate->getDeclName();
3405      isPartialSpecialization = false;
3406    } else {
3407      // FIXME: Template parameter list matters, too
3408      ClassTemplatePartialSpecializationDecl::Profile(ID,
3409                                                  Converted.getFlatArguments(),
3410                                                      Converted.flatSize(),
3411                                                      Context);
3412    }
3413  }
3414
3415  if (!isPartialSpecialization)
3416    ClassTemplateSpecializationDecl::Profile(ID,
3417                                             Converted.getFlatArguments(),
3418                                             Converted.flatSize(),
3419                                             Context);
3420  void *InsertPos = 0;
3421  ClassTemplateSpecializationDecl *PrevDecl = 0;
3422
3423  if (isPartialSpecialization)
3424    PrevDecl
3425      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3426                                                                    InsertPos);
3427  else
3428    PrevDecl
3429      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3430
3431  ClassTemplateSpecializationDecl *Specialization = 0;
3432
3433  // Check whether we can declare a class template specialization in
3434  // the current scope.
3435  if (TUK != TUK_Friend &&
3436      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3437                                       TemplateNameLoc,
3438                                       isPartialSpecialization))
3439    return true;
3440
3441  // The canonical type
3442  QualType CanonType;
3443  if (PrevDecl &&
3444      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3445               TUK == TUK_Friend)) {
3446    // Since the only prior class template specialization with these
3447    // arguments was referenced but not declared, or we're only
3448    // referencing this specialization as a friend, reuse that
3449    // declaration node as our own, updating its source location to
3450    // reflect our new declaration.
3451    Specialization = PrevDecl;
3452    Specialization->setLocation(TemplateNameLoc);
3453    PrevDecl = 0;
3454    CanonType = Context.getTypeDeclType(Specialization);
3455  } else if (isPartialSpecialization) {
3456    // Build the canonical type that describes the converted template
3457    // arguments of the class template partial specialization.
3458    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3459    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3460                                                  Converted.getFlatArguments(),
3461                                                  Converted.flatSize());
3462
3463    // Create a new class template partial specialization declaration node.
3464    ClassTemplatePartialSpecializationDecl *PrevPartial
3465      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3466    ClassTemplatePartialSpecializationDecl *Partial
3467      = ClassTemplatePartialSpecializationDecl::Create(Context,
3468                                             ClassTemplate->getDeclContext(),
3469                                                       TemplateNameLoc,
3470                                                       TemplateParams,
3471                                                       ClassTemplate,
3472                                                       Converted,
3473                                                       TemplateArgs,
3474                                                       PrevPartial);
3475
3476    if (PrevPartial) {
3477      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3478      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3479    } else {
3480      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3481    }
3482    Specialization = Partial;
3483
3484    // If we are providing an explicit specialization of a member class
3485    // template specialization, make a note of that.
3486    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3487      PrevPartial->setMemberSpecialization();
3488
3489    // Check that all of the template parameters of the class template
3490    // partial specialization are deducible from the template
3491    // arguments. If not, this class template partial specialization
3492    // will never be used.
3493    llvm::SmallVector<bool, 8> DeducibleParams;
3494    DeducibleParams.resize(TemplateParams->size());
3495    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3496                               TemplateParams->getDepth(),
3497                               DeducibleParams);
3498    unsigned NumNonDeducible = 0;
3499    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3500      if (!DeducibleParams[I])
3501        ++NumNonDeducible;
3502
3503    if (NumNonDeducible) {
3504      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3505        << (NumNonDeducible > 1)
3506        << SourceRange(TemplateNameLoc, RAngleLoc);
3507      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3508        if (!DeducibleParams[I]) {
3509          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3510          if (Param->getDeclName())
3511            Diag(Param->getLocation(),
3512                 diag::note_partial_spec_unused_parameter)
3513              << Param->getDeclName();
3514          else
3515            Diag(Param->getLocation(),
3516                 diag::note_partial_spec_unused_parameter)
3517              << std::string("<anonymous>");
3518        }
3519      }
3520    }
3521  } else {
3522    // Create a new class template specialization declaration node for
3523    // this explicit specialization or friend declaration.
3524    Specialization
3525      = ClassTemplateSpecializationDecl::Create(Context,
3526                                             ClassTemplate->getDeclContext(),
3527                                                TemplateNameLoc,
3528                                                ClassTemplate,
3529                                                Converted,
3530                                                PrevDecl);
3531
3532    if (PrevDecl) {
3533      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3534      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3535    } else {
3536      ClassTemplate->getSpecializations().InsertNode(Specialization,
3537                                                     InsertPos);
3538    }
3539
3540    CanonType = Context.getTypeDeclType(Specialization);
3541  }
3542
3543  // C++ [temp.expl.spec]p6:
3544  //   If a template, a member template or the member of a class template is
3545  //   explicitly specialized then that specialization shall be declared
3546  //   before the first use of that specialization that would cause an implicit
3547  //   instantiation to take place, in every translation unit in which such a
3548  //   use occurs; no diagnostic is required.
3549  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3550    SourceRange Range(TemplateNameLoc, RAngleLoc);
3551    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3552      << Context.getTypeDeclType(Specialization) << Range;
3553
3554    Diag(PrevDecl->getPointOfInstantiation(),
3555         diag::note_instantiation_required_here)
3556      << (PrevDecl->getTemplateSpecializationKind()
3557                                                != TSK_ImplicitInstantiation);
3558    return true;
3559  }
3560
3561  // If this is not a friend, note that this is an explicit specialization.
3562  if (TUK != TUK_Friend)
3563    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3564
3565  // Check that this isn't a redefinition of this specialization.
3566  if (TUK == TUK_Definition) {
3567    if (RecordDecl *Def = Specialization->getDefinition()) {
3568      SourceRange Range(TemplateNameLoc, RAngleLoc);
3569      Diag(TemplateNameLoc, diag::err_redefinition)
3570        << Context.getTypeDeclType(Specialization) << Range;
3571      Diag(Def->getLocation(), diag::note_previous_definition);
3572      Specialization->setInvalidDecl();
3573      return true;
3574    }
3575  }
3576
3577  // Build the fully-sugared type for this class template
3578  // specialization as the user wrote in the specialization
3579  // itself. This means that we'll pretty-print the type retrieved
3580  // from the specialization's declaration the way that the user
3581  // actually wrote the specialization, rather than formatting the
3582  // name based on the "canonical" representation used to store the
3583  // template arguments in the specialization.
3584  QualType WrittenTy
3585    = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3586  if (TUK != TUK_Friend)
3587    Specialization->setTypeAsWritten(WrittenTy);
3588  TemplateArgsIn.release();
3589
3590  // C++ [temp.expl.spec]p9:
3591  //   A template explicit specialization is in the scope of the
3592  //   namespace in which the template was defined.
3593  //
3594  // We actually implement this paragraph where we set the semantic
3595  // context (in the creation of the ClassTemplateSpecializationDecl),
3596  // but we also maintain the lexical context where the actual
3597  // definition occurs.
3598  Specialization->setLexicalDeclContext(CurContext);
3599
3600  // We may be starting the definition of this specialization.
3601  if (TUK == TUK_Definition)
3602    Specialization->startDefinition();
3603
3604  if (TUK == TUK_Friend) {
3605    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3606                                            TemplateNameLoc,
3607                                            WrittenTy.getTypePtr(),
3608                                            /*FIXME:*/KWLoc);
3609    Friend->setAccess(AS_public);
3610    CurContext->addDecl(Friend);
3611  } else {
3612    // Add the specialization into its lexical context, so that it can
3613    // be seen when iterating through the list of declarations in that
3614    // context. However, specializations are not found by name lookup.
3615    CurContext->addDecl(Specialization);
3616  }
3617  return DeclPtrTy::make(Specialization);
3618}
3619
3620Sema::DeclPtrTy
3621Sema::ActOnTemplateDeclarator(Scope *S,
3622                              MultiTemplateParamsArg TemplateParameterLists,
3623                              Declarator &D) {
3624  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3625}
3626
3627Sema::DeclPtrTy
3628Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3629                               MultiTemplateParamsArg TemplateParameterLists,
3630                                      Declarator &D) {
3631  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3632  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3633         "Not a function declarator!");
3634  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3635
3636  if (FTI.hasPrototype) {
3637    // FIXME: Diagnose arguments without names in C.
3638  }
3639
3640  Scope *ParentScope = FnBodyScope->getParent();
3641
3642  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3643                                  move(TemplateParameterLists),
3644                                  /*IsFunctionDefinition=*/true);
3645  if (FunctionTemplateDecl *FunctionTemplate
3646        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3647    return ActOnStartOfFunctionDef(FnBodyScope,
3648                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3649  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3650    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3651  return DeclPtrTy();
3652}
3653
3654/// \brief Strips various properties off an implicit instantiation
3655/// that has just been explicitly specialized.
3656static void StripImplicitInstantiation(NamedDecl *D) {
3657  D->invalidateAttrs();
3658
3659  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3660    FD->setInlineSpecified(false);
3661  }
3662}
3663
3664/// \brief Diagnose cases where we have an explicit template specialization
3665/// before/after an explicit template instantiation, producing diagnostics
3666/// for those cases where they are required and determining whether the
3667/// new specialization/instantiation will have any effect.
3668///
3669/// \param NewLoc the location of the new explicit specialization or
3670/// instantiation.
3671///
3672/// \param NewTSK the kind of the new explicit specialization or instantiation.
3673///
3674/// \param PrevDecl the previous declaration of the entity.
3675///
3676/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3677///
3678/// \param PrevPointOfInstantiation if valid, indicates where the previus
3679/// declaration was instantiated (either implicitly or explicitly).
3680///
3681/// \param SuppressNew will be set to true to indicate that the new
3682/// specialization or instantiation has no effect and should be ignored.
3683///
3684/// \returns true if there was an error that should prevent the introduction of
3685/// the new declaration into the AST, false otherwise.
3686bool
3687Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3688                                             TemplateSpecializationKind NewTSK,
3689                                             NamedDecl *PrevDecl,
3690                                             TemplateSpecializationKind PrevTSK,
3691                                        SourceLocation PrevPointOfInstantiation,
3692                                             bool &SuppressNew) {
3693  SuppressNew = false;
3694
3695  switch (NewTSK) {
3696  case TSK_Undeclared:
3697  case TSK_ImplicitInstantiation:
3698    assert(false && "Don't check implicit instantiations here");
3699    return false;
3700
3701  case TSK_ExplicitSpecialization:
3702    switch (PrevTSK) {
3703    case TSK_Undeclared:
3704    case TSK_ExplicitSpecialization:
3705      // Okay, we're just specializing something that is either already
3706      // explicitly specialized or has merely been mentioned without any
3707      // instantiation.
3708      return false;
3709
3710    case TSK_ImplicitInstantiation:
3711      if (PrevPointOfInstantiation.isInvalid()) {
3712        // The declaration itself has not actually been instantiated, so it is
3713        // still okay to specialize it.
3714        StripImplicitInstantiation(PrevDecl);
3715        return false;
3716      }
3717      // Fall through
3718
3719    case TSK_ExplicitInstantiationDeclaration:
3720    case TSK_ExplicitInstantiationDefinition:
3721      assert((PrevTSK == TSK_ImplicitInstantiation ||
3722              PrevPointOfInstantiation.isValid()) &&
3723             "Explicit instantiation without point of instantiation?");
3724
3725      // C++ [temp.expl.spec]p6:
3726      //   If a template, a member template or the member of a class template
3727      //   is explicitly specialized then that specialization shall be declared
3728      //   before the first use of that specialization that would cause an
3729      //   implicit instantiation to take place, in every translation unit in
3730      //   which such a use occurs; no diagnostic is required.
3731      Diag(NewLoc, diag::err_specialization_after_instantiation)
3732        << PrevDecl;
3733      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3734        << (PrevTSK != TSK_ImplicitInstantiation);
3735
3736      return true;
3737    }
3738    break;
3739
3740  case TSK_ExplicitInstantiationDeclaration:
3741    switch (PrevTSK) {
3742    case TSK_ExplicitInstantiationDeclaration:
3743      // This explicit instantiation declaration is redundant (that's okay).
3744      SuppressNew = true;
3745      return false;
3746
3747    case TSK_Undeclared:
3748    case TSK_ImplicitInstantiation:
3749      // We're explicitly instantiating something that may have already been
3750      // implicitly instantiated; that's fine.
3751      return false;
3752
3753    case TSK_ExplicitSpecialization:
3754      // C++0x [temp.explicit]p4:
3755      //   For a given set of template parameters, if an explicit instantiation
3756      //   of a template appears after a declaration of an explicit
3757      //   specialization for that template, the explicit instantiation has no
3758      //   effect.
3759      return false;
3760
3761    case TSK_ExplicitInstantiationDefinition:
3762      // C++0x [temp.explicit]p10:
3763      //   If an entity is the subject of both an explicit instantiation
3764      //   declaration and an explicit instantiation definition in the same
3765      //   translation unit, the definition shall follow the declaration.
3766      Diag(NewLoc,
3767           diag::err_explicit_instantiation_declaration_after_definition);
3768      Diag(PrevPointOfInstantiation,
3769           diag::note_explicit_instantiation_definition_here);
3770      assert(PrevPointOfInstantiation.isValid() &&
3771             "Explicit instantiation without point of instantiation?");
3772      SuppressNew = true;
3773      return false;
3774    }
3775    break;
3776
3777  case TSK_ExplicitInstantiationDefinition:
3778    switch (PrevTSK) {
3779    case TSK_Undeclared:
3780    case TSK_ImplicitInstantiation:
3781      // We're explicitly instantiating something that may have already been
3782      // implicitly instantiated; that's fine.
3783      return false;
3784
3785    case TSK_ExplicitSpecialization:
3786      // C++ DR 259, C++0x [temp.explicit]p4:
3787      //   For a given set of template parameters, if an explicit
3788      //   instantiation of a template appears after a declaration of
3789      //   an explicit specialization for that template, the explicit
3790      //   instantiation has no effect.
3791      //
3792      // In C++98/03 mode, we only give an extension warning here, because it
3793      // is not not harmful to try to explicitly instantiate something that
3794      // has been explicitly specialized.
3795      if (!getLangOptions().CPlusPlus0x) {
3796        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3797          << PrevDecl;
3798        Diag(PrevDecl->getLocation(),
3799             diag::note_previous_template_specialization);
3800      }
3801      SuppressNew = true;
3802      return false;
3803
3804    case TSK_ExplicitInstantiationDeclaration:
3805      // We're explicity instantiating a definition for something for which we
3806      // were previously asked to suppress instantiations. That's fine.
3807      return false;
3808
3809    case TSK_ExplicitInstantiationDefinition:
3810      // C++0x [temp.spec]p5:
3811      //   For a given template and a given set of template-arguments,
3812      //     - an explicit instantiation definition shall appear at most once
3813      //       in a program,
3814      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3815        << PrevDecl;
3816      Diag(PrevPointOfInstantiation,
3817           diag::note_previous_explicit_instantiation);
3818      SuppressNew = true;
3819      return false;
3820    }
3821    break;
3822  }
3823
3824  assert(false && "Missing specialization/instantiation case?");
3825
3826  return false;
3827}
3828
3829/// \brief Perform semantic analysis for the given function template
3830/// specialization.
3831///
3832/// This routine performs all of the semantic analysis required for an
3833/// explicit function template specialization. On successful completion,
3834/// the function declaration \p FD will become a function template
3835/// specialization.
3836///
3837/// \param FD the function declaration, which will be updated to become a
3838/// function template specialization.
3839///
3840/// \param HasExplicitTemplateArgs whether any template arguments were
3841/// explicitly provided.
3842///
3843/// \param LAngleLoc the location of the left angle bracket ('<'), if
3844/// template arguments were explicitly provided.
3845///
3846/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3847/// if any.
3848///
3849/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3850/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3851/// true as in, e.g., \c void sort<>(char*, char*);
3852///
3853/// \param RAngleLoc the location of the right angle bracket ('>'), if
3854/// template arguments were explicitly provided.
3855///
3856/// \param PrevDecl the set of declarations that
3857bool
3858Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3859                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3860                                          LookupResult &Previous) {
3861  // The set of function template specializations that could match this
3862  // explicit function template specialization.
3863  UnresolvedSet<8> Candidates;
3864
3865  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3866  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3867         I != E; ++I) {
3868    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
3869    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
3870      // Only consider templates found within the same semantic lookup scope as
3871      // FD.
3872      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3873        continue;
3874
3875      // C++ [temp.expl.spec]p11:
3876      //   A trailing template-argument can be left unspecified in the
3877      //   template-id naming an explicit function template specialization
3878      //   provided it can be deduced from the function argument type.
3879      // Perform template argument deduction to determine whether we may be
3880      // specializing this template.
3881      // FIXME: It is somewhat wasteful to build
3882      TemplateDeductionInfo Info(Context, FD->getLocation());
3883      FunctionDecl *Specialization = 0;
3884      if (TemplateDeductionResult TDK
3885            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
3886                                      FD->getType(),
3887                                      Specialization,
3888                                      Info)) {
3889        // FIXME: Template argument deduction failed; record why it failed, so
3890        // that we can provide nifty diagnostics.
3891        (void)TDK;
3892        continue;
3893      }
3894
3895      // Record this candidate.
3896      Candidates.addDecl(Specialization, I.getAccess());
3897    }
3898  }
3899
3900  // Find the most specialized function template.
3901  UnresolvedSetIterator Result
3902    = getMostSpecialized(Candidates.begin(), Candidates.end(),
3903                         TPOC_Other, FD->getLocation(),
3904                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3905                    << FD->getDeclName(),
3906                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3907                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
3908                  PartialDiagnostic(diag::note_function_template_spec_matched));
3909  if (Result == Candidates.end())
3910    return true;
3911
3912  // Ignore access information;  it doesn't figure into redeclaration checking.
3913  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
3914
3915  // FIXME: Check if the prior specialization has a point of instantiation.
3916  // If so, we have run afoul of .
3917
3918  // Check the scope of this explicit specialization.
3919  if (CheckTemplateSpecializationScope(*this,
3920                                       Specialization->getPrimaryTemplate(),
3921                                       Specialization, FD->getLocation(),
3922                                       false))
3923    return true;
3924
3925  // C++ [temp.expl.spec]p6:
3926  //   If a template, a member template or the member of a class template is
3927  //   explicitly specialized then that specialization shall be declared
3928  //   before the first use of that specialization that would cause an implicit
3929  //   instantiation to take place, in every translation unit in which such a
3930  //   use occurs; no diagnostic is required.
3931  FunctionTemplateSpecializationInfo *SpecInfo
3932    = Specialization->getTemplateSpecializationInfo();
3933  assert(SpecInfo && "Function template specialization info missing?");
3934
3935  bool SuppressNew = false;
3936  if (CheckSpecializationInstantiationRedecl(FD->getLocation(),
3937                                             TSK_ExplicitSpecialization,
3938                                             Specialization,
3939                                   SpecInfo->getTemplateSpecializationKind(),
3940                                         SpecInfo->getPointOfInstantiation(),
3941                                             SuppressNew))
3942    return true;
3943
3944  // Mark the prior declaration as an explicit specialization, so that later
3945  // clients know that this is an explicit specialization.
3946  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3947
3948  // Turn the given function declaration into a function template
3949  // specialization, with the template arguments from the previous
3950  // specialization.
3951  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
3952                         new (Context) TemplateArgumentList(
3953                             *Specialization->getTemplateSpecializationArgs()),
3954                                        /*InsertPos=*/0,
3955                                        TSK_ExplicitSpecialization);
3956
3957  // The "previous declaration" for this function template specialization is
3958  // the prior function template specialization.
3959  Previous.clear();
3960  Previous.addDecl(Specialization);
3961  return false;
3962}
3963
3964/// \brief Perform semantic analysis for the given non-template member
3965/// specialization.
3966///
3967/// This routine performs all of the semantic analysis required for an
3968/// explicit member function specialization. On successful completion,
3969/// the function declaration \p FD will become a member function
3970/// specialization.
3971///
3972/// \param Member the member declaration, which will be updated to become a
3973/// specialization.
3974///
3975/// \param Previous the set of declarations, one of which may be specialized
3976/// by this function specialization;  the set will be modified to contain the
3977/// redeclared member.
3978bool
3979Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
3980  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3981
3982  // Try to find the member we are instantiating.
3983  NamedDecl *Instantiation = 0;
3984  NamedDecl *InstantiatedFrom = 0;
3985  MemberSpecializationInfo *MSInfo = 0;
3986
3987  if (Previous.empty()) {
3988    // Nowhere to look anyway.
3989  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3990    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3991           I != E; ++I) {
3992      NamedDecl *D = (*I)->getUnderlyingDecl();
3993      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
3994        if (Context.hasSameType(Function->getType(), Method->getType())) {
3995          Instantiation = Method;
3996          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3997          MSInfo = Method->getMemberSpecializationInfo();
3998          break;
3999        }
4000      }
4001    }
4002  } else if (isa<VarDecl>(Member)) {
4003    VarDecl *PrevVar;
4004    if (Previous.isSingleResult() &&
4005        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4006      if (PrevVar->isStaticDataMember()) {
4007        Instantiation = PrevVar;
4008        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4009        MSInfo = PrevVar->getMemberSpecializationInfo();
4010      }
4011  } else if (isa<RecordDecl>(Member)) {
4012    CXXRecordDecl *PrevRecord;
4013    if (Previous.isSingleResult() &&
4014        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4015      Instantiation = PrevRecord;
4016      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4017      MSInfo = PrevRecord->getMemberSpecializationInfo();
4018    }
4019  }
4020
4021  if (!Instantiation) {
4022    // There is no previous declaration that matches. Since member
4023    // specializations are always out-of-line, the caller will complain about
4024    // this mismatch later.
4025    return false;
4026  }
4027
4028  // Make sure that this is a specialization of a member.
4029  if (!InstantiatedFrom) {
4030    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4031      << Member;
4032    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4033    return true;
4034  }
4035
4036  // C++ [temp.expl.spec]p6:
4037  //   If a template, a member template or the member of a class template is
4038  //   explicitly specialized then that spe- cialization shall be declared
4039  //   before the first use of that specialization that would cause an implicit
4040  //   instantiation to take place, in every translation unit in which such a
4041  //   use occurs; no diagnostic is required.
4042  assert(MSInfo && "Member specialization info missing?");
4043
4044  bool SuppressNew = false;
4045  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4046                                             TSK_ExplicitSpecialization,
4047                                             Instantiation,
4048                                     MSInfo->getTemplateSpecializationKind(),
4049                                           MSInfo->getPointOfInstantiation(),
4050                                             SuppressNew))
4051    return true;
4052
4053  // Check the scope of this explicit specialization.
4054  if (CheckTemplateSpecializationScope(*this,
4055                                       InstantiatedFrom,
4056                                       Instantiation, Member->getLocation(),
4057                                       false))
4058    return true;
4059
4060  // Note that this is an explicit instantiation of a member.
4061  // the original declaration to note that it is an explicit specialization
4062  // (if it was previously an implicit instantiation). This latter step
4063  // makes bookkeeping easier.
4064  if (isa<FunctionDecl>(Member)) {
4065    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4066    if (InstantiationFunction->getTemplateSpecializationKind() ==
4067          TSK_ImplicitInstantiation) {
4068      InstantiationFunction->setTemplateSpecializationKind(
4069                                                  TSK_ExplicitSpecialization);
4070      InstantiationFunction->setLocation(Member->getLocation());
4071    }
4072
4073    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4074                                        cast<CXXMethodDecl>(InstantiatedFrom),
4075                                                  TSK_ExplicitSpecialization);
4076  } else if (isa<VarDecl>(Member)) {
4077    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4078    if (InstantiationVar->getTemplateSpecializationKind() ==
4079          TSK_ImplicitInstantiation) {
4080      InstantiationVar->setTemplateSpecializationKind(
4081                                                  TSK_ExplicitSpecialization);
4082      InstantiationVar->setLocation(Member->getLocation());
4083    }
4084
4085    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4086                                                cast<VarDecl>(InstantiatedFrom),
4087                                                TSK_ExplicitSpecialization);
4088  } else {
4089    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4090    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4091    if (InstantiationClass->getTemplateSpecializationKind() ==
4092          TSK_ImplicitInstantiation) {
4093      InstantiationClass->setTemplateSpecializationKind(
4094                                                   TSK_ExplicitSpecialization);
4095      InstantiationClass->setLocation(Member->getLocation());
4096    }
4097
4098    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4099                                        cast<CXXRecordDecl>(InstantiatedFrom),
4100                                                   TSK_ExplicitSpecialization);
4101  }
4102
4103  // Save the caller the trouble of having to figure out which declaration
4104  // this specialization matches.
4105  Previous.clear();
4106  Previous.addDecl(Instantiation);
4107  return false;
4108}
4109
4110/// \brief Check the scope of an explicit instantiation.
4111static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4112                                            SourceLocation InstLoc,
4113                                            bool WasQualifiedName) {
4114  DeclContext *ExpectedContext
4115    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4116  DeclContext *CurContext = S.CurContext->getLookupContext();
4117
4118  // C++0x [temp.explicit]p2:
4119  //   An explicit instantiation shall appear in an enclosing namespace of its
4120  //   template.
4121  //
4122  // This is DR275, which we do not retroactively apply to C++98/03.
4123  if (S.getLangOptions().CPlusPlus0x &&
4124      !CurContext->Encloses(ExpectedContext)) {
4125    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4126      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4127        << D << NS;
4128    else
4129      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4130        << D;
4131    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4132    return;
4133  }
4134
4135  // C++0x [temp.explicit]p2:
4136  //   If the name declared in the explicit instantiation is an unqualified
4137  //   name, the explicit instantiation shall appear in the namespace where
4138  //   its template is declared or, if that namespace is inline (7.3.1), any
4139  //   namespace from its enclosing namespace set.
4140  if (WasQualifiedName)
4141    return;
4142
4143  if (CurContext->Equals(ExpectedContext))
4144    return;
4145
4146  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4147    << D << ExpectedContext;
4148  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4149}
4150
4151/// \brief Determine whether the given scope specifier has a template-id in it.
4152static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4153  if (!SS.isSet())
4154    return false;
4155
4156  // C++0x [temp.explicit]p2:
4157  //   If the explicit instantiation is for a member function, a member class
4158  //   or a static data member of a class template specialization, the name of
4159  //   the class template specialization in the qualified-id for the member
4160  //   name shall be a simple-template-id.
4161  //
4162  // C++98 has the same restriction, just worded differently.
4163  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4164       NNS; NNS = NNS->getPrefix())
4165    if (Type *T = NNS->getAsType())
4166      if (isa<TemplateSpecializationType>(T))
4167        return true;
4168
4169  return false;
4170}
4171
4172// Explicit instantiation of a class template specialization
4173// FIXME: Implement extern template semantics
4174Sema::DeclResult
4175Sema::ActOnExplicitInstantiation(Scope *S,
4176                                 SourceLocation ExternLoc,
4177                                 SourceLocation TemplateLoc,
4178                                 unsigned TagSpec,
4179                                 SourceLocation KWLoc,
4180                                 const CXXScopeSpec &SS,
4181                                 TemplateTy TemplateD,
4182                                 SourceLocation TemplateNameLoc,
4183                                 SourceLocation LAngleLoc,
4184                                 ASTTemplateArgsPtr TemplateArgsIn,
4185                                 SourceLocation RAngleLoc,
4186                                 AttributeList *Attr) {
4187  // Find the class template we're specializing
4188  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4189  ClassTemplateDecl *ClassTemplate
4190    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4191
4192  // Check that the specialization uses the same tag kind as the
4193  // original template.
4194  TagDecl::TagKind Kind;
4195  switch (TagSpec) {
4196  default: assert(0 && "Unknown tag type!");
4197  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4198  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4199  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4200  }
4201  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4202                                    Kind, KWLoc,
4203                                    *ClassTemplate->getIdentifier())) {
4204    Diag(KWLoc, diag::err_use_with_wrong_tag)
4205      << ClassTemplate
4206      << CodeModificationHint::CreateReplacement(KWLoc,
4207                            ClassTemplate->getTemplatedDecl()->getKindName());
4208    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4209         diag::note_previous_use);
4210    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4211  }
4212
4213  // C++0x [temp.explicit]p2:
4214  //   There are two forms of explicit instantiation: an explicit instantiation
4215  //   definition and an explicit instantiation declaration. An explicit
4216  //   instantiation declaration begins with the extern keyword. [...]
4217  TemplateSpecializationKind TSK
4218    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4219                           : TSK_ExplicitInstantiationDeclaration;
4220
4221  // Translate the parser's template argument list in our AST format.
4222  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4223  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4224
4225  // Check that the template argument list is well-formed for this
4226  // template.
4227  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4228                                        TemplateArgs.size());
4229  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4230                                TemplateArgs, false, Converted))
4231    return true;
4232
4233  assert((Converted.structuredSize() ==
4234            ClassTemplate->getTemplateParameters()->size()) &&
4235         "Converted template argument list is too short!");
4236
4237  // Find the class template specialization declaration that
4238  // corresponds to these arguments.
4239  llvm::FoldingSetNodeID ID;
4240  ClassTemplateSpecializationDecl::Profile(ID,
4241                                           Converted.getFlatArguments(),
4242                                           Converted.flatSize(),
4243                                           Context);
4244  void *InsertPos = 0;
4245  ClassTemplateSpecializationDecl *PrevDecl
4246    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4247
4248  // C++0x [temp.explicit]p2:
4249  //   [...] An explicit instantiation shall appear in an enclosing
4250  //   namespace of its template. [...]
4251  //
4252  // This is C++ DR 275.
4253  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4254                                  SS.isSet());
4255
4256  ClassTemplateSpecializationDecl *Specialization = 0;
4257
4258  bool ReusedDecl = false;
4259  if (PrevDecl) {
4260    bool SuppressNew = false;
4261    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4262                                               PrevDecl,
4263                                              PrevDecl->getSpecializationKind(),
4264                                            PrevDecl->getPointOfInstantiation(),
4265                                               SuppressNew))
4266      return DeclPtrTy::make(PrevDecl);
4267
4268    if (SuppressNew)
4269      return DeclPtrTy::make(PrevDecl);
4270
4271    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4272        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4273      // Since the only prior class template specialization with these
4274      // arguments was referenced but not declared, reuse that
4275      // declaration node as our own, updating its source location to
4276      // reflect our new declaration.
4277      Specialization = PrevDecl;
4278      Specialization->setLocation(TemplateNameLoc);
4279      PrevDecl = 0;
4280      ReusedDecl = true;
4281    }
4282  }
4283
4284  if (!Specialization) {
4285    // Create a new class template specialization declaration node for
4286    // this explicit specialization.
4287    Specialization
4288      = ClassTemplateSpecializationDecl::Create(Context,
4289                                             ClassTemplate->getDeclContext(),
4290                                                TemplateNameLoc,
4291                                                ClassTemplate,
4292                                                Converted, PrevDecl);
4293
4294    if (PrevDecl) {
4295      // Remove the previous declaration from the folding set, since we want
4296      // to introduce a new declaration.
4297      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4298      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4299    }
4300
4301    // Insert the new specialization.
4302    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4303  }
4304
4305  // Build the fully-sugared type for this explicit instantiation as
4306  // the user wrote in the explicit instantiation itself. This means
4307  // that we'll pretty-print the type retrieved from the
4308  // specialization's declaration the way that the user actually wrote
4309  // the explicit instantiation, rather than formatting the name based
4310  // on the "canonical" representation used to store the template
4311  // arguments in the specialization.
4312  QualType WrittenTy
4313    = Context.getTemplateSpecializationType(Name, TemplateArgs,
4314                                  Context.getTypeDeclType(Specialization));
4315  Specialization->setTypeAsWritten(WrittenTy);
4316  TemplateArgsIn.release();
4317
4318  if (!ReusedDecl) {
4319    // Add the explicit instantiation into its lexical context. However,
4320    // since explicit instantiations are never found by name lookup, we
4321    // just put it into the declaration context directly.
4322    Specialization->setLexicalDeclContext(CurContext);
4323    CurContext->addDecl(Specialization);
4324  }
4325
4326  // C++ [temp.explicit]p3:
4327  //   A definition of a class template or class member template
4328  //   shall be in scope at the point of the explicit instantiation of
4329  //   the class template or class member template.
4330  //
4331  // This check comes when we actually try to perform the
4332  // instantiation.
4333  ClassTemplateSpecializationDecl *Def
4334    = cast_or_null<ClassTemplateSpecializationDecl>(
4335                                              Specialization->getDefinition());
4336  if (!Def)
4337    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4338
4339  // Instantiate the members of this class template specialization.
4340  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4341                                       Specialization->getDefinition());
4342  if (Def)
4343    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4344
4345  return DeclPtrTy::make(Specialization);
4346}
4347
4348// Explicit instantiation of a member class of a class template.
4349Sema::DeclResult
4350Sema::ActOnExplicitInstantiation(Scope *S,
4351                                 SourceLocation ExternLoc,
4352                                 SourceLocation TemplateLoc,
4353                                 unsigned TagSpec,
4354                                 SourceLocation KWLoc,
4355                                 const CXXScopeSpec &SS,
4356                                 IdentifierInfo *Name,
4357                                 SourceLocation NameLoc,
4358                                 AttributeList *Attr) {
4359
4360  bool Owned = false;
4361  bool IsDependent = false;
4362  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4363                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4364                            MultiTemplateParamsArg(*this, 0, 0),
4365                            Owned, IsDependent);
4366  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4367
4368  if (!TagD)
4369    return true;
4370
4371  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4372  if (Tag->isEnum()) {
4373    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4374      << Context.getTypeDeclType(Tag);
4375    return true;
4376  }
4377
4378  if (Tag->isInvalidDecl())
4379    return true;
4380
4381  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4382  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4383  if (!Pattern) {
4384    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4385      << Context.getTypeDeclType(Record);
4386    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4387    return true;
4388  }
4389
4390  // C++0x [temp.explicit]p2:
4391  //   If the explicit instantiation is for a class or member class, the
4392  //   elaborated-type-specifier in the declaration shall include a
4393  //   simple-template-id.
4394  //
4395  // C++98 has the same restriction, just worded differently.
4396  if (!ScopeSpecifierHasTemplateId(SS))
4397    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4398      << Record << SS.getRange();
4399
4400  // C++0x [temp.explicit]p2:
4401  //   There are two forms of explicit instantiation: an explicit instantiation
4402  //   definition and an explicit instantiation declaration. An explicit
4403  //   instantiation declaration begins with the extern keyword. [...]
4404  TemplateSpecializationKind TSK
4405    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4406                           : TSK_ExplicitInstantiationDeclaration;
4407
4408  // C++0x [temp.explicit]p2:
4409  //   [...] An explicit instantiation shall appear in an enclosing
4410  //   namespace of its template. [...]
4411  //
4412  // This is C++ DR 275.
4413  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4414
4415  // Verify that it is okay to explicitly instantiate here.
4416  CXXRecordDecl *PrevDecl
4417    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4418  if (!PrevDecl && Record->getDefinition())
4419    PrevDecl = Record;
4420  if (PrevDecl) {
4421    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4422    bool SuppressNew = false;
4423    assert(MSInfo && "No member specialization information?");
4424    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4425                                               PrevDecl,
4426                                        MSInfo->getTemplateSpecializationKind(),
4427                                             MSInfo->getPointOfInstantiation(),
4428                                               SuppressNew))
4429      return true;
4430    if (SuppressNew)
4431      return TagD;
4432  }
4433
4434  CXXRecordDecl *RecordDef
4435    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4436  if (!RecordDef) {
4437    // C++ [temp.explicit]p3:
4438    //   A definition of a member class of a class template shall be in scope
4439    //   at the point of an explicit instantiation of the member class.
4440    CXXRecordDecl *Def
4441      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4442    if (!Def) {
4443      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4444        << 0 << Record->getDeclName() << Record->getDeclContext();
4445      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4446        << Pattern;
4447      return true;
4448    } else {
4449      if (InstantiateClass(NameLoc, Record, Def,
4450                           getTemplateInstantiationArgs(Record),
4451                           TSK))
4452        return true;
4453
4454      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4455      if (!RecordDef)
4456        return true;
4457    }
4458  }
4459
4460  // Instantiate all of the members of the class.
4461  InstantiateClassMembers(NameLoc, RecordDef,
4462                          getTemplateInstantiationArgs(Record), TSK);
4463
4464  // FIXME: We don't have any representation for explicit instantiations of
4465  // member classes. Such a representation is not needed for compilation, but it
4466  // should be available for clients that want to see all of the declarations in
4467  // the source code.
4468  return TagD;
4469}
4470
4471Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4472                                                  SourceLocation ExternLoc,
4473                                                  SourceLocation TemplateLoc,
4474                                                  Declarator &D) {
4475  // Explicit instantiations always require a name.
4476  DeclarationName Name = GetNameForDeclarator(D);
4477  if (!Name) {
4478    if (!D.isInvalidType())
4479      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4480           diag::err_explicit_instantiation_requires_name)
4481        << D.getDeclSpec().getSourceRange()
4482        << D.getSourceRange();
4483
4484    return true;
4485  }
4486
4487  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4488  // we find one that is.
4489  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4490         (S->getFlags() & Scope::TemplateParamScope) != 0)
4491    S = S->getParent();
4492
4493  // Determine the type of the declaration.
4494  QualType R = GetTypeForDeclarator(D, S, 0);
4495  if (R.isNull())
4496    return true;
4497
4498  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4499    // Cannot explicitly instantiate a typedef.
4500    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4501      << Name;
4502    return true;
4503  }
4504
4505  // C++0x [temp.explicit]p1:
4506  //   [...] An explicit instantiation of a function template shall not use the
4507  //   inline or constexpr specifiers.
4508  // Presumably, this also applies to member functions of class templates as
4509  // well.
4510  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4511    Diag(D.getDeclSpec().getInlineSpecLoc(),
4512         diag::err_explicit_instantiation_inline)
4513      <<CodeModificationHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4514
4515  // FIXME: check for constexpr specifier.
4516
4517  // C++0x [temp.explicit]p2:
4518  //   There are two forms of explicit instantiation: an explicit instantiation
4519  //   definition and an explicit instantiation declaration. An explicit
4520  //   instantiation declaration begins with the extern keyword. [...]
4521  TemplateSpecializationKind TSK
4522    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4523                           : TSK_ExplicitInstantiationDeclaration;
4524
4525  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4526  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4527
4528  if (!R->isFunctionType()) {
4529    // C++ [temp.explicit]p1:
4530    //   A [...] static data member of a class template can be explicitly
4531    //   instantiated from the member definition associated with its class
4532    //   template.
4533    if (Previous.isAmbiguous())
4534      return true;
4535
4536    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4537    if (!Prev || !Prev->isStaticDataMember()) {
4538      // We expect to see a data data member here.
4539      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4540        << Name;
4541      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4542           P != PEnd; ++P)
4543        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4544      return true;
4545    }
4546
4547    if (!Prev->getInstantiatedFromStaticDataMember()) {
4548      // FIXME: Check for explicit specialization?
4549      Diag(D.getIdentifierLoc(),
4550           diag::err_explicit_instantiation_data_member_not_instantiated)
4551        << Prev;
4552      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4553      // FIXME: Can we provide a note showing where this was declared?
4554      return true;
4555    }
4556
4557    // C++0x [temp.explicit]p2:
4558    //   If the explicit instantiation is for a member function, a member class
4559    //   or a static data member of a class template specialization, the name of
4560    //   the class template specialization in the qualified-id for the member
4561    //   name shall be a simple-template-id.
4562    //
4563    // C++98 has the same restriction, just worded differently.
4564    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4565      Diag(D.getIdentifierLoc(),
4566           diag::err_explicit_instantiation_without_qualified_id)
4567        << Prev << D.getCXXScopeSpec().getRange();
4568
4569    // Check the scope of this explicit instantiation.
4570    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4571
4572    // Verify that it is okay to explicitly instantiate here.
4573    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4574    assert(MSInfo && "Missing static data member specialization info?");
4575    bool SuppressNew = false;
4576    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4577                                        MSInfo->getTemplateSpecializationKind(),
4578                                              MSInfo->getPointOfInstantiation(),
4579                                               SuppressNew))
4580      return true;
4581    if (SuppressNew)
4582      return DeclPtrTy();
4583
4584    // Instantiate static data member.
4585    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4586    if (TSK == TSK_ExplicitInstantiationDefinition)
4587      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4588                                            /*DefinitionRequired=*/true);
4589
4590    // FIXME: Create an ExplicitInstantiation node?
4591    return DeclPtrTy();
4592  }
4593
4594  // If the declarator is a template-id, translate the parser's template
4595  // argument list into our AST format.
4596  bool HasExplicitTemplateArgs = false;
4597  TemplateArgumentListInfo TemplateArgs;
4598  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4599    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4600    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4601    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4602    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4603                                       TemplateId->getTemplateArgs(),
4604                                       TemplateId->NumArgs);
4605    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4606    HasExplicitTemplateArgs = true;
4607    TemplateArgsPtr.release();
4608  }
4609
4610  // C++ [temp.explicit]p1:
4611  //   A [...] function [...] can be explicitly instantiated from its template.
4612  //   A member function [...] of a class template can be explicitly
4613  //  instantiated from the member definition associated with its class
4614  //  template.
4615  UnresolvedSet<8> Matches;
4616  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4617       P != PEnd; ++P) {
4618    NamedDecl *Prev = *P;
4619    if (!HasExplicitTemplateArgs) {
4620      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4621        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4622          Matches.clear();
4623
4624          Matches.addDecl(Method, P.getAccess());
4625          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
4626            break;
4627        }
4628      }
4629    }
4630
4631    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4632    if (!FunTmpl)
4633      continue;
4634
4635    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
4636    FunctionDecl *Specialization = 0;
4637    if (TemplateDeductionResult TDK
4638          = DeduceTemplateArguments(FunTmpl,
4639                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4640                                    R, Specialization, Info)) {
4641      // FIXME: Keep track of almost-matches?
4642      (void)TDK;
4643      continue;
4644    }
4645
4646    Matches.addDecl(Specialization, P.getAccess());
4647  }
4648
4649  // Find the most specialized function template specialization.
4650  UnresolvedSetIterator Result
4651    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
4652                         D.getIdentifierLoc(),
4653          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4654          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4655                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4656
4657  if (Result == Matches.end())
4658    return true;
4659
4660  // Ignore access control bits, we don't need them for redeclaration checking.
4661  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4662
4663  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4664    Diag(D.getIdentifierLoc(),
4665         diag::err_explicit_instantiation_member_function_not_instantiated)
4666      << Specialization
4667      << (Specialization->getTemplateSpecializationKind() ==
4668          TSK_ExplicitSpecialization);
4669    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4670    return true;
4671  }
4672
4673  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4674  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4675    PrevDecl = Specialization;
4676
4677  if (PrevDecl) {
4678    bool SuppressNew = false;
4679    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4680                                               PrevDecl,
4681                                     PrevDecl->getTemplateSpecializationKind(),
4682                                          PrevDecl->getPointOfInstantiation(),
4683                                               SuppressNew))
4684      return true;
4685
4686    // FIXME: We may still want to build some representation of this
4687    // explicit specialization.
4688    if (SuppressNew)
4689      return DeclPtrTy();
4690  }
4691
4692  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4693
4694  if (TSK == TSK_ExplicitInstantiationDefinition)
4695    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4696                                  false, /*DefinitionRequired=*/true);
4697
4698  // C++0x [temp.explicit]p2:
4699  //   If the explicit instantiation is for a member function, a member class
4700  //   or a static data member of a class template specialization, the name of
4701  //   the class template specialization in the qualified-id for the member
4702  //   name shall be a simple-template-id.
4703  //
4704  // C++98 has the same restriction, just worded differently.
4705  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4706  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4707      D.getCXXScopeSpec().isSet() &&
4708      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4709    Diag(D.getIdentifierLoc(),
4710         diag::err_explicit_instantiation_without_qualified_id)
4711    << Specialization << D.getCXXScopeSpec().getRange();
4712
4713  CheckExplicitInstantiationScope(*this,
4714                   FunTmpl? (NamedDecl *)FunTmpl
4715                          : Specialization->getInstantiatedFromMemberFunction(),
4716                                  D.getIdentifierLoc(),
4717                                  D.getCXXScopeSpec().isSet());
4718
4719  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4720  return DeclPtrTy();
4721}
4722
4723Sema::TypeResult
4724Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4725                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4726                        SourceLocation TagLoc, SourceLocation NameLoc) {
4727  // This has to hold, because SS is expected to be defined.
4728  assert(Name && "Expected a name in a dependent tag");
4729
4730  NestedNameSpecifier *NNS
4731    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4732  if (!NNS)
4733    return true;
4734
4735  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4736  if (T.isNull())
4737    return true;
4738
4739  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4740  QualType ElabType = Context.getElaboratedType(T, TagKind);
4741
4742  return ElabType.getAsOpaquePtr();
4743}
4744
4745Sema::TypeResult
4746Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4747                        const IdentifierInfo &II, SourceLocation IdLoc) {
4748  NestedNameSpecifier *NNS
4749    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4750  if (!NNS)
4751    return true;
4752
4753  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4754  if (T.isNull())
4755    return true;
4756  return T.getAsOpaquePtr();
4757}
4758
4759Sema::TypeResult
4760Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4761                        SourceLocation TemplateLoc, TypeTy *Ty) {
4762  QualType T = GetTypeFromParser(Ty);
4763  NestedNameSpecifier *NNS
4764    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4765  const TemplateSpecializationType *TemplateId
4766    = T->getAs<TemplateSpecializationType>();
4767  assert(TemplateId && "Expected a template specialization type");
4768
4769  if (computeDeclContext(SS, false)) {
4770    // If we can compute a declaration context, then the "typename"
4771    // keyword was superfluous. Just build a QualifiedNameType to keep
4772    // track of the nested-name-specifier.
4773
4774    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4775    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4776  }
4777
4778  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4779}
4780
4781/// \brief Build the type that describes a C++ typename specifier,
4782/// e.g., "typename T::type".
4783QualType
4784Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4785                        SourceRange Range) {
4786  CXXRecordDecl *CurrentInstantiation = 0;
4787  if (NNS->isDependent()) {
4788    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4789
4790    // If the nested-name-specifier does not refer to the current
4791    // instantiation, then build a typename type.
4792    if (!CurrentInstantiation)
4793      return Context.getTypenameType(NNS, &II);
4794
4795    // The nested-name-specifier refers to the current instantiation, so the
4796    // "typename" keyword itself is superfluous. In C++03, the program is
4797    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4798    // extraneous "typename" keywords, and we retroactively apply this DR to
4799    // C++03 code.
4800  }
4801
4802  DeclContext *Ctx = 0;
4803
4804  if (CurrentInstantiation)
4805    Ctx = CurrentInstantiation;
4806  else {
4807    CXXScopeSpec SS;
4808    SS.setScopeRep(NNS);
4809    SS.setRange(Range);
4810    if (RequireCompleteDeclContext(SS))
4811      return QualType();
4812
4813    Ctx = computeDeclContext(SS);
4814  }
4815  assert(Ctx && "No declaration context?");
4816
4817  DeclarationName Name(&II);
4818  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
4819  LookupQualifiedName(Result, Ctx);
4820  unsigned DiagID = 0;
4821  Decl *Referenced = 0;
4822  switch (Result.getResultKind()) {
4823  case LookupResult::NotFound:
4824    DiagID = diag::err_typename_nested_not_found;
4825    break;
4826
4827  case LookupResult::NotFoundInCurrentInstantiation:
4828    // Okay, it's a member of an unknown instantiation.
4829    return Context.getTypenameType(NNS, &II);
4830
4831  case LookupResult::Found:
4832    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4833      // We found a type. Build a QualifiedNameType, since the
4834      // typename-specifier was just sugar. FIXME: Tell
4835      // QualifiedNameType that it has a "typename" prefix.
4836      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4837    }
4838
4839    DiagID = diag::err_typename_nested_not_type;
4840    Referenced = Result.getFoundDecl();
4841    break;
4842
4843  case LookupResult::FoundUnresolvedValue:
4844    llvm_unreachable("unresolved using decl in non-dependent context");
4845    return QualType();
4846
4847  case LookupResult::FoundOverloaded:
4848    DiagID = diag::err_typename_nested_not_type;
4849    Referenced = *Result.begin();
4850    break;
4851
4852  case LookupResult::Ambiguous:
4853    return QualType();
4854  }
4855
4856  // If we get here, it's because name lookup did not find a
4857  // type. Emit an appropriate diagnostic and return an error.
4858  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4859  if (Referenced)
4860    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4861      << Name;
4862  return QualType();
4863}
4864
4865namespace {
4866  // See Sema::RebuildTypeInCurrentInstantiation
4867  class CurrentInstantiationRebuilder
4868    : public TreeTransform<CurrentInstantiationRebuilder> {
4869    SourceLocation Loc;
4870    DeclarationName Entity;
4871
4872  public:
4873    CurrentInstantiationRebuilder(Sema &SemaRef,
4874                                  SourceLocation Loc,
4875                                  DeclarationName Entity)
4876    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4877      Loc(Loc), Entity(Entity) { }
4878
4879    /// \brief Determine whether the given type \p T has already been
4880    /// transformed.
4881    ///
4882    /// For the purposes of type reconstruction, a type has already been
4883    /// transformed if it is NULL or if it is not dependent.
4884    bool AlreadyTransformed(QualType T) {
4885      return T.isNull() || !T->isDependentType();
4886    }
4887
4888    /// \brief Returns the location of the entity whose type is being
4889    /// rebuilt.
4890    SourceLocation getBaseLocation() { return Loc; }
4891
4892    /// \brief Returns the name of the entity whose type is being rebuilt.
4893    DeclarationName getBaseEntity() { return Entity; }
4894
4895    /// \brief Sets the "base" location and entity when that
4896    /// information is known based on another transformation.
4897    void setBase(SourceLocation Loc, DeclarationName Entity) {
4898      this->Loc = Loc;
4899      this->Entity = Entity;
4900    }
4901
4902    /// \brief Transforms an expression by returning the expression itself
4903    /// (an identity function).
4904    ///
4905    /// FIXME: This is completely unsafe; we will need to actually clone the
4906    /// expressions.
4907    Sema::OwningExprResult TransformExpr(Expr *E) {
4908      return getSema().Owned(E);
4909    }
4910
4911    /// \brief Transforms a typename type by determining whether the type now
4912    /// refers to a member of the current instantiation, and then
4913    /// type-checking and building a QualifiedNameType (when possible).
4914    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4915  };
4916}
4917
4918QualType
4919CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4920                                                     TypenameTypeLoc TL) {
4921  TypenameType *T = TL.getTypePtr();
4922
4923  NestedNameSpecifier *NNS
4924    = TransformNestedNameSpecifier(T->getQualifier(),
4925                              /*FIXME:*/SourceRange(getBaseLocation()));
4926  if (!NNS)
4927    return QualType();
4928
4929  // If the nested-name-specifier did not change, and we cannot compute the
4930  // context corresponding to the nested-name-specifier, then this
4931  // typename type will not change; exit early.
4932  CXXScopeSpec SS;
4933  SS.setRange(SourceRange(getBaseLocation()));
4934  SS.setScopeRep(NNS);
4935
4936  QualType Result;
4937  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4938    Result = QualType(T, 0);
4939
4940  // Rebuild the typename type, which will probably turn into a
4941  // QualifiedNameType.
4942  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4943    QualType NewTemplateId
4944      = TransformType(QualType(TemplateId, 0));
4945    if (NewTemplateId.isNull())
4946      return QualType();
4947
4948    if (NNS == T->getQualifier() &&
4949        NewTemplateId == QualType(TemplateId, 0))
4950      Result = QualType(T, 0);
4951    else
4952      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4953  } else
4954    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4955                                              SourceRange(TL.getNameLoc()));
4956
4957  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4958  NewTL.setNameLoc(TL.getNameLoc());
4959  return Result;
4960}
4961
4962/// \brief Rebuilds a type within the context of the current instantiation.
4963///
4964/// The type \p T is part of the type of an out-of-line member definition of
4965/// a class template (or class template partial specialization) that was parsed
4966/// and constructed before we entered the scope of the class template (or
4967/// partial specialization thereof). This routine will rebuild that type now
4968/// that we have entered the declarator's scope, which may produce different
4969/// canonical types, e.g.,
4970///
4971/// \code
4972/// template<typename T>
4973/// struct X {
4974///   typedef T* pointer;
4975///   pointer data();
4976/// };
4977///
4978/// template<typename T>
4979/// typename X<T>::pointer X<T>::data() { ... }
4980/// \endcode
4981///
4982/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4983/// since we do not know that we can look into X<T> when we parsed the type.
4984/// This function will rebuild the type, performing the lookup of "pointer"
4985/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4986/// as the canonical type of T*, allowing the return types of the out-of-line
4987/// definition and the declaration to match.
4988QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4989                                                 DeclarationName Name) {
4990  if (T.isNull() || !T->isDependentType())
4991    return T;
4992
4993  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4994  return Rebuilder.TransformType(T);
4995}
4996
4997/// \brief Produces a formatted string that describes the binding of
4998/// template parameters to template arguments.
4999std::string
5000Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5001                                      const TemplateArgumentList &Args) {
5002  // FIXME: For variadic templates, we'll need to get the structured list.
5003  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5004                                         Args.flat_size());
5005}
5006
5007std::string
5008Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5009                                      const TemplateArgument *Args,
5010                                      unsigned NumArgs) {
5011  std::string Result;
5012
5013  if (!Params || Params->size() == 0 || NumArgs == 0)
5014    return Result;
5015
5016  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5017    if (I >= NumArgs)
5018      break;
5019
5020    if (I == 0)
5021      Result += "[with ";
5022    else
5023      Result += ", ";
5024
5025    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5026      Result += Id->getName();
5027    } else {
5028      Result += '$';
5029      Result += llvm::utostr(I);
5030    }
5031
5032    Result += " = ";
5033
5034    switch (Args[I].getKind()) {
5035      case TemplateArgument::Null:
5036        Result += "<no value>";
5037        break;
5038
5039      case TemplateArgument::Type: {
5040        std::string TypeStr;
5041        Args[I].getAsType().getAsStringInternal(TypeStr,
5042                                                Context.PrintingPolicy);
5043        Result += TypeStr;
5044        break;
5045      }
5046
5047      case TemplateArgument::Declaration: {
5048        bool Unnamed = true;
5049        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5050          if (ND->getDeclName()) {
5051            Unnamed = false;
5052            Result += ND->getNameAsString();
5053          }
5054        }
5055
5056        if (Unnamed) {
5057          Result += "<anonymous>";
5058        }
5059        break;
5060      }
5061
5062      case TemplateArgument::Template: {
5063        std::string Str;
5064        llvm::raw_string_ostream OS(Str);
5065        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5066        Result += OS.str();
5067        break;
5068      }
5069
5070      case TemplateArgument::Integral: {
5071        Result += Args[I].getAsIntegral()->toString(10);
5072        break;
5073      }
5074
5075      case TemplateArgument::Expression: {
5076        assert(false && "No expressions in deduced template arguments!");
5077        Result += "<expression>";
5078        break;
5079      }
5080
5081      case TemplateArgument::Pack:
5082        // FIXME: Format template argument packs
5083        Result += "<template argument pack>";
5084        break;
5085    }
5086  }
5087
5088  Result += ']';
5089  return Result;
5090}
5091