SemaExprMember.cpp revision 251662
1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/SemaInternal.h"
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Sema/Lookup.h"
21#include "clang/Sema/Scope.h"
22#include "clang/Sema/ScopeInfo.h"
23
24using namespace clang;
25using namespace sema;
26
27typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
28static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
29  const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
30  return !Bases.count(Base->getCanonicalDecl());
31}
32
33/// Determines if the given class is provably not derived from all of
34/// the prospective base classes.
35static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
36                                     const BaseSet &Bases) {
37  void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
38  return BaseIsNotInSet(Record, BasesPtr) &&
39         Record->forallBases(BaseIsNotInSet, BasesPtr);
40}
41
42enum IMAKind {
43  /// The reference is definitely not an instance member access.
44  IMA_Static,
45
46  /// The reference may be an implicit instance member access.
47  IMA_Mixed,
48
49  /// The reference may be to an instance member, but it might be invalid if
50  /// so, because the context is not an instance method.
51  IMA_Mixed_StaticContext,
52
53  /// The reference may be to an instance member, but it is invalid if
54  /// so, because the context is from an unrelated class.
55  IMA_Mixed_Unrelated,
56
57  /// The reference is definitely an implicit instance member access.
58  IMA_Instance,
59
60  /// The reference may be to an unresolved using declaration.
61  IMA_Unresolved,
62
63  /// The reference is a contextually-permitted abstract member reference.
64  IMA_Abstract,
65
66  /// The reference may be to an unresolved using declaration and the
67  /// context is not an instance method.
68  IMA_Unresolved_StaticContext,
69
70  // The reference refers to a field which is not a member of the containing
71  // class, which is allowed because we're in C++11 mode and the context is
72  // unevaluated.
73  IMA_Field_Uneval_Context,
74
75  /// All possible referrents are instance members and the current
76  /// context is not an instance method.
77  IMA_Error_StaticContext,
78
79  /// All possible referrents are instance members of an unrelated
80  /// class.
81  IMA_Error_Unrelated
82};
83
84/// The given lookup names class member(s) and is not being used for
85/// an address-of-member expression.  Classify the type of access
86/// according to whether it's possible that this reference names an
87/// instance member.  This is best-effort in dependent contexts; it is okay to
88/// conservatively answer "yes", in which case some errors will simply
89/// not be caught until template-instantiation.
90static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
91                                            Scope *CurScope,
92                                            const LookupResult &R) {
93  assert(!R.empty() && (*R.begin())->isCXXClassMember());
94
95  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
96
97  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
98    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
99
100  if (R.isUnresolvableResult())
101    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
102
103  // Collect all the declaring classes of instance members we find.
104  bool hasNonInstance = false;
105  bool isField = false;
106  BaseSet Classes;
107  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
108    NamedDecl *D = *I;
109
110    if (D->isCXXInstanceMember()) {
111      if (dyn_cast<FieldDecl>(D) || dyn_cast<MSPropertyDecl>(D)
112          || dyn_cast<IndirectFieldDecl>(D))
113        isField = true;
114
115      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
116      Classes.insert(R->getCanonicalDecl());
117    }
118    else
119      hasNonInstance = true;
120  }
121
122  // If we didn't find any instance members, it can't be an implicit
123  // member reference.
124  if (Classes.empty())
125    return IMA_Static;
126
127  // C++11 [expr.prim.general]p12:
128  //   An id-expression that denotes a non-static data member or non-static
129  //   member function of a class can only be used:
130  //   (...)
131  //   - if that id-expression denotes a non-static data member and it
132  //     appears in an unevaluated operand.
133  //
134  // This rule is specific to C++11.  However, we also permit this form
135  // in unevaluated inline assembly operands, like the operand to a SIZE.
136  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
137  assert(!AbstractInstanceResult);
138  switch (SemaRef.ExprEvalContexts.back().Context) {
139  case Sema::Unevaluated:
140    if (isField && SemaRef.getLangOpts().CPlusPlus11)
141      AbstractInstanceResult = IMA_Field_Uneval_Context;
142    break;
143
144  case Sema::UnevaluatedAbstract:
145    AbstractInstanceResult = IMA_Abstract;
146    break;
147
148  case Sema::ConstantEvaluated:
149  case Sema::PotentiallyEvaluated:
150  case Sema::PotentiallyEvaluatedIfUsed:
151    break;
152  }
153
154  // If the current context is not an instance method, it can't be
155  // an implicit member reference.
156  if (isStaticContext) {
157    if (hasNonInstance)
158      return IMA_Mixed_StaticContext;
159
160    return AbstractInstanceResult ? AbstractInstanceResult
161                                  : IMA_Error_StaticContext;
162  }
163
164  CXXRecordDecl *contextClass;
165  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
166    contextClass = MD->getParent()->getCanonicalDecl();
167  else
168    contextClass = cast<CXXRecordDecl>(DC);
169
170  // [class.mfct.non-static]p3:
171  // ...is used in the body of a non-static member function of class X,
172  // if name lookup (3.4.1) resolves the name in the id-expression to a
173  // non-static non-type member of some class C [...]
174  // ...if C is not X or a base class of X, the class member access expression
175  // is ill-formed.
176  if (R.getNamingClass() &&
177      contextClass->getCanonicalDecl() !=
178        R.getNamingClass()->getCanonicalDecl()) {
179    // If the naming class is not the current context, this was a qualified
180    // member name lookup, and it's sufficient to check that we have the naming
181    // class as a base class.
182    Classes.clear();
183    Classes.insert(R.getNamingClass()->getCanonicalDecl());
184  }
185
186  // If we can prove that the current context is unrelated to all the
187  // declaring classes, it can't be an implicit member reference (in
188  // which case it's an error if any of those members are selected).
189  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
190    return hasNonInstance ? IMA_Mixed_Unrelated :
191           AbstractInstanceResult ? AbstractInstanceResult :
192                                    IMA_Error_Unrelated;
193
194  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
195}
196
197/// Diagnose a reference to a field with no object available.
198static void diagnoseInstanceReference(Sema &SemaRef,
199                                      const CXXScopeSpec &SS,
200                                      NamedDecl *Rep,
201                                      const DeclarationNameInfo &nameInfo) {
202  SourceLocation Loc = nameInfo.getLoc();
203  SourceRange Range(Loc);
204  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
205
206  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
207  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
208  CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0;
209  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
210
211  bool InStaticMethod = Method && Method->isStatic();
212  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
213
214  if (IsField && InStaticMethod)
215    // "invalid use of member 'x' in static member function"
216    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
217        << Range << nameInfo.getName();
218  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
219           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
220    // Unqualified lookup in a non-static member function found a member of an
221    // enclosing class.
222    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
223      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
224  else if (IsField)
225    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
226      << nameInfo.getName() << Range;
227  else
228    SemaRef.Diag(Loc, diag::err_member_call_without_object)
229      << Range;
230}
231
232/// Builds an expression which might be an implicit member expression.
233ExprResult
234Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
235                                      SourceLocation TemplateKWLoc,
236                                      LookupResult &R,
237                                const TemplateArgumentListInfo *TemplateArgs) {
238  switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
239  case IMA_Instance:
240    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
241
242  case IMA_Mixed:
243  case IMA_Mixed_Unrelated:
244  case IMA_Unresolved:
245    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
246
247  case IMA_Field_Uneval_Context:
248    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
249      << R.getLookupNameInfo().getName();
250    // Fall through.
251  case IMA_Static:
252  case IMA_Abstract:
253  case IMA_Mixed_StaticContext:
254  case IMA_Unresolved_StaticContext:
255    if (TemplateArgs || TemplateKWLoc.isValid())
256      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
257    return BuildDeclarationNameExpr(SS, R, false);
258
259  case IMA_Error_StaticContext:
260  case IMA_Error_Unrelated:
261    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
262                              R.getLookupNameInfo());
263    return ExprError();
264  }
265
266  llvm_unreachable("unexpected instance member access kind");
267}
268
269/// Check an ext-vector component access expression.
270///
271/// VK should be set in advance to the value kind of the base
272/// expression.
273static QualType
274CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
275                        SourceLocation OpLoc, const IdentifierInfo *CompName,
276                        SourceLocation CompLoc) {
277  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
278  // see FIXME there.
279  //
280  // FIXME: This logic can be greatly simplified by splitting it along
281  // halving/not halving and reworking the component checking.
282  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
283
284  // The vector accessor can't exceed the number of elements.
285  const char *compStr = CompName->getNameStart();
286
287  // This flag determines whether or not the component is one of the four
288  // special names that indicate a subset of exactly half the elements are
289  // to be selected.
290  bool HalvingSwizzle = false;
291
292  // This flag determines whether or not CompName has an 's' char prefix,
293  // indicating that it is a string of hex values to be used as vector indices.
294  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
295
296  bool HasRepeated = false;
297  bool HasIndex[16] = {};
298
299  int Idx;
300
301  // Check that we've found one of the special components, or that the component
302  // names must come from the same set.
303  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
304      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
305    HalvingSwizzle = true;
306  } else if (!HexSwizzle &&
307             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
308    do {
309      if (HasIndex[Idx]) HasRepeated = true;
310      HasIndex[Idx] = true;
311      compStr++;
312    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
313  } else {
314    if (HexSwizzle) compStr++;
315    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
316      if (HasIndex[Idx]) HasRepeated = true;
317      HasIndex[Idx] = true;
318      compStr++;
319    }
320  }
321
322  if (!HalvingSwizzle && *compStr) {
323    // We didn't get to the end of the string. This means the component names
324    // didn't come from the same set *or* we encountered an illegal name.
325    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
326      << StringRef(compStr, 1) << SourceRange(CompLoc);
327    return QualType();
328  }
329
330  // Ensure no component accessor exceeds the width of the vector type it
331  // operates on.
332  if (!HalvingSwizzle) {
333    compStr = CompName->getNameStart();
334
335    if (HexSwizzle)
336      compStr++;
337
338    while (*compStr) {
339      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
340        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
341          << baseType << SourceRange(CompLoc);
342        return QualType();
343      }
344    }
345  }
346
347  // The component accessor looks fine - now we need to compute the actual type.
348  // The vector type is implied by the component accessor. For example,
349  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
350  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
351  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
352  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
353                                     : CompName->getLength();
354  if (HexSwizzle)
355    CompSize--;
356
357  if (CompSize == 1)
358    return vecType->getElementType();
359
360  if (HasRepeated) VK = VK_RValue;
361
362  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
363  // Now look up the TypeDefDecl from the vector type. Without this,
364  // diagostics look bad. We want extended vector types to appear built-in.
365  for (Sema::ExtVectorDeclsType::iterator
366         I = S.ExtVectorDecls.begin(S.getExternalSource()),
367         E = S.ExtVectorDecls.end();
368       I != E; ++I) {
369    if ((*I)->getUnderlyingType() == VT)
370      return S.Context.getTypedefType(*I);
371  }
372
373  return VT; // should never get here (a typedef type should always be found).
374}
375
376static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
377                                                IdentifierInfo *Member,
378                                                const Selector &Sel,
379                                                ASTContext &Context) {
380  if (Member)
381    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
382      return PD;
383  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
384    return OMD;
385
386  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
387       E = PDecl->protocol_end(); I != E; ++I) {
388    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
389                                                           Context))
390      return D;
391  }
392  return 0;
393}
394
395static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
396                                      IdentifierInfo *Member,
397                                      const Selector &Sel,
398                                      ASTContext &Context) {
399  // Check protocols on qualified interfaces.
400  Decl *GDecl = 0;
401  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
402       E = QIdTy->qual_end(); I != E; ++I) {
403    if (Member)
404      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
405        GDecl = PD;
406        break;
407      }
408    // Also must look for a getter or setter name which uses property syntax.
409    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
410      GDecl = OMD;
411      break;
412    }
413  }
414  if (!GDecl) {
415    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
416         E = QIdTy->qual_end(); I != E; ++I) {
417      // Search in the protocol-qualifier list of current protocol.
418      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
419                                                       Context);
420      if (GDecl)
421        return GDecl;
422    }
423  }
424  return GDecl;
425}
426
427ExprResult
428Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
429                               bool IsArrow, SourceLocation OpLoc,
430                               const CXXScopeSpec &SS,
431                               SourceLocation TemplateKWLoc,
432                               NamedDecl *FirstQualifierInScope,
433                               const DeclarationNameInfo &NameInfo,
434                               const TemplateArgumentListInfo *TemplateArgs) {
435  // Even in dependent contexts, try to diagnose base expressions with
436  // obviously wrong types, e.g.:
437  //
438  // T* t;
439  // t.f;
440  //
441  // In Obj-C++, however, the above expression is valid, since it could be
442  // accessing the 'f' property if T is an Obj-C interface. The extra check
443  // allows this, while still reporting an error if T is a struct pointer.
444  if (!IsArrow) {
445    const PointerType *PT = BaseType->getAs<PointerType>();
446    if (PT && (!getLangOpts().ObjC1 ||
447               PT->getPointeeType()->isRecordType())) {
448      assert(BaseExpr && "cannot happen with implicit member accesses");
449      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
450        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
451      return ExprError();
452    }
453  }
454
455  assert(BaseType->isDependentType() ||
456         NameInfo.getName().isDependentName() ||
457         isDependentScopeSpecifier(SS));
458
459  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
460  // must have pointer type, and the accessed type is the pointee.
461  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
462                                                   IsArrow, OpLoc,
463                                               SS.getWithLocInContext(Context),
464                                                   TemplateKWLoc,
465                                                   FirstQualifierInScope,
466                                                   NameInfo, TemplateArgs));
467}
468
469/// We know that the given qualified member reference points only to
470/// declarations which do not belong to the static type of the base
471/// expression.  Diagnose the problem.
472static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
473                                             Expr *BaseExpr,
474                                             QualType BaseType,
475                                             const CXXScopeSpec &SS,
476                                             NamedDecl *rep,
477                                       const DeclarationNameInfo &nameInfo) {
478  // If this is an implicit member access, use a different set of
479  // diagnostics.
480  if (!BaseExpr)
481    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
482
483  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
484    << SS.getRange() << rep << BaseType;
485}
486
487// Check whether the declarations we found through a nested-name
488// specifier in a member expression are actually members of the base
489// type.  The restriction here is:
490//
491//   C++ [expr.ref]p2:
492//     ... In these cases, the id-expression shall name a
493//     member of the class or of one of its base classes.
494//
495// So it's perfectly legitimate for the nested-name specifier to name
496// an unrelated class, and for us to find an overload set including
497// decls from classes which are not superclasses, as long as the decl
498// we actually pick through overload resolution is from a superclass.
499bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
500                                         QualType BaseType,
501                                         const CXXScopeSpec &SS,
502                                         const LookupResult &R) {
503  CXXRecordDecl *BaseRecord =
504    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
505  if (!BaseRecord) {
506    // We can't check this yet because the base type is still
507    // dependent.
508    assert(BaseType->isDependentType());
509    return false;
510  }
511
512  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
513    // If this is an implicit member reference and we find a
514    // non-instance member, it's not an error.
515    if (!BaseExpr && !(*I)->isCXXInstanceMember())
516      return false;
517
518    // Note that we use the DC of the decl, not the underlying decl.
519    DeclContext *DC = (*I)->getDeclContext();
520    while (DC->isTransparentContext())
521      DC = DC->getParent();
522
523    if (!DC->isRecord())
524      continue;
525
526    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
527    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
528        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
529      return false;
530  }
531
532  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
533                                   R.getRepresentativeDecl(),
534                                   R.getLookupNameInfo());
535  return true;
536}
537
538namespace {
539
540// Callback to only accept typo corrections that are either a ValueDecl or a
541// FunctionTemplateDecl.
542class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
543 public:
544  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
545    NamedDecl *ND = candidate.getCorrectionDecl();
546    return ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND));
547  }
548};
549
550}
551
552static bool
553LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
554                         SourceRange BaseRange, const RecordType *RTy,
555                         SourceLocation OpLoc, CXXScopeSpec &SS,
556                         bool HasTemplateArgs) {
557  RecordDecl *RDecl = RTy->getDecl();
558  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
559      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
560                                  diag::err_typecheck_incomplete_tag,
561                                  BaseRange))
562    return true;
563
564  if (HasTemplateArgs) {
565    // LookupTemplateName doesn't expect these both to exist simultaneously.
566    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
567
568    bool MOUS;
569    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
570    return false;
571  }
572
573  DeclContext *DC = RDecl;
574  if (SS.isSet()) {
575    // If the member name was a qualified-id, look into the
576    // nested-name-specifier.
577    DC = SemaRef.computeDeclContext(SS, false);
578
579    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
580      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
581        << SS.getRange() << DC;
582      return true;
583    }
584
585    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
586
587    if (!isa<TypeDecl>(DC)) {
588      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
589        << DC << SS.getRange();
590      return true;
591    }
592  }
593
594  // The record definition is complete, now look up the member.
595  SemaRef.LookupQualifiedName(R, DC);
596
597  if (!R.empty())
598    return false;
599
600  // We didn't find anything with the given name, so try to correct
601  // for typos.
602  DeclarationName Name = R.getLookupName();
603  RecordMemberExprValidatorCCC Validator;
604  TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
605                                                 R.getLookupKind(), NULL,
606                                                 &SS, Validator, DC);
607  R.clear();
608  if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
609    std::string CorrectedStr(
610        Corrected.getAsString(SemaRef.getLangOpts()));
611    std::string CorrectedQuotedStr(
612        Corrected.getQuoted(SemaRef.getLangOpts()));
613    R.setLookupName(Corrected.getCorrection());
614    R.addDecl(ND);
615    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
616      << Name << DC << CorrectedQuotedStr << SS.getRange()
617      << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
618                                      CorrectedStr);
619    SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
620      << ND->getDeclName();
621  }
622
623  return false;
624}
625
626ExprResult
627Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
628                               SourceLocation OpLoc, bool IsArrow,
629                               CXXScopeSpec &SS,
630                               SourceLocation TemplateKWLoc,
631                               NamedDecl *FirstQualifierInScope,
632                               const DeclarationNameInfo &NameInfo,
633                               const TemplateArgumentListInfo *TemplateArgs) {
634  if (BaseType->isDependentType() ||
635      (SS.isSet() && isDependentScopeSpecifier(SS)))
636    return ActOnDependentMemberExpr(Base, BaseType,
637                                    IsArrow, OpLoc,
638                                    SS, TemplateKWLoc, FirstQualifierInScope,
639                                    NameInfo, TemplateArgs);
640
641  LookupResult R(*this, NameInfo, LookupMemberName);
642
643  // Implicit member accesses.
644  if (!Base) {
645    QualType RecordTy = BaseType;
646    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
647    if (LookupMemberExprInRecord(*this, R, SourceRange(),
648                                 RecordTy->getAs<RecordType>(),
649                                 OpLoc, SS, TemplateArgs != 0))
650      return ExprError();
651
652  // Explicit member accesses.
653  } else {
654    ExprResult BaseResult = Owned(Base);
655    ExprResult Result =
656      LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
657                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
658
659    if (BaseResult.isInvalid())
660      return ExprError();
661    Base = BaseResult.take();
662
663    if (Result.isInvalid()) {
664      Owned(Base);
665      return ExprError();
666    }
667
668    if (Result.get())
669      return Result;
670
671    // LookupMemberExpr can modify Base, and thus change BaseType
672    BaseType = Base->getType();
673  }
674
675  return BuildMemberReferenceExpr(Base, BaseType,
676                                  OpLoc, IsArrow, SS, TemplateKWLoc,
677                                  FirstQualifierInScope, R, TemplateArgs);
678}
679
680static ExprResult
681BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
682                        const CXXScopeSpec &SS, FieldDecl *Field,
683                        DeclAccessPair FoundDecl,
684                        const DeclarationNameInfo &MemberNameInfo);
685
686ExprResult
687Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
688                                               SourceLocation loc,
689                                               IndirectFieldDecl *indirectField,
690                                               Expr *baseObjectExpr,
691                                               SourceLocation opLoc) {
692  // First, build the expression that refers to the base object.
693
694  bool baseObjectIsPointer = false;
695  Qualifiers baseQuals;
696
697  // Case 1:  the base of the indirect field is not a field.
698  VarDecl *baseVariable = indirectField->getVarDecl();
699  CXXScopeSpec EmptySS;
700  if (baseVariable) {
701    assert(baseVariable->getType()->isRecordType());
702
703    // In principle we could have a member access expression that
704    // accesses an anonymous struct/union that's a static member of
705    // the base object's class.  However, under the current standard,
706    // static data members cannot be anonymous structs or unions.
707    // Supporting this is as easy as building a MemberExpr here.
708    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
709
710    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
711
712    ExprResult result
713      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
714    if (result.isInvalid()) return ExprError();
715
716    baseObjectExpr = result.take();
717    baseObjectIsPointer = false;
718    baseQuals = baseObjectExpr->getType().getQualifiers();
719
720    // Case 2: the base of the indirect field is a field and the user
721    // wrote a member expression.
722  } else if (baseObjectExpr) {
723    // The caller provided the base object expression. Determine
724    // whether its a pointer and whether it adds any qualifiers to the
725    // anonymous struct/union fields we're looking into.
726    QualType objectType = baseObjectExpr->getType();
727
728    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
729      baseObjectIsPointer = true;
730      objectType = ptr->getPointeeType();
731    } else {
732      baseObjectIsPointer = false;
733    }
734    baseQuals = objectType.getQualifiers();
735
736    // Case 3: the base of the indirect field is a field and we should
737    // build an implicit member access.
738  } else {
739    // We've found a member of an anonymous struct/union that is
740    // inside a non-anonymous struct/union, so in a well-formed
741    // program our base object expression is "this".
742    QualType ThisTy = getCurrentThisType();
743    if (ThisTy.isNull()) {
744      Diag(loc, diag::err_invalid_member_use_in_static_method)
745        << indirectField->getDeclName();
746      return ExprError();
747    }
748
749    // Our base object expression is "this".
750    CheckCXXThisCapture(loc);
751    baseObjectExpr
752      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
753    baseObjectIsPointer = true;
754    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
755  }
756
757  // Build the implicit member references to the field of the
758  // anonymous struct/union.
759  Expr *result = baseObjectExpr;
760  IndirectFieldDecl::chain_iterator
761  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
762
763  // Build the first member access in the chain with full information.
764  if (!baseVariable) {
765    FieldDecl *field = cast<FieldDecl>(*FI);
766
767    // FIXME: use the real found-decl info!
768    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
769
770    // Make a nameInfo that properly uses the anonymous name.
771    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
772
773    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
774                                     EmptySS, field, foundDecl,
775                                     memberNameInfo).take();
776    baseObjectIsPointer = false;
777
778    // FIXME: check qualified member access
779  }
780
781  // In all cases, we should now skip the first declaration in the chain.
782  ++FI;
783
784  while (FI != FEnd) {
785    FieldDecl *field = cast<FieldDecl>(*FI++);
786
787    // FIXME: these are somewhat meaningless
788    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
789    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
790
791    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
792                                     (FI == FEnd? SS : EmptySS), field,
793                                     foundDecl, memberNameInfo).take();
794  }
795
796  return Owned(result);
797}
798
799static ExprResult
800BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
801                       const CXXScopeSpec &SS,
802                       MSPropertyDecl *PD,
803                       const DeclarationNameInfo &NameInfo) {
804  // Property names are always simple identifiers and therefore never
805  // require any interesting additional storage.
806  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
807                                           S.Context.PseudoObjectTy, VK_LValue,
808                                           SS.getWithLocInContext(S.Context),
809                                           NameInfo.getLoc());
810}
811
812/// \brief Build a MemberExpr AST node.
813static MemberExpr *BuildMemberExpr(Sema &SemaRef,
814                                   ASTContext &C, Expr *Base, bool isArrow,
815                                   const CXXScopeSpec &SS,
816                                   SourceLocation TemplateKWLoc,
817                                   ValueDecl *Member,
818                                   DeclAccessPair FoundDecl,
819                                   const DeclarationNameInfo &MemberNameInfo,
820                                   QualType Ty,
821                                   ExprValueKind VK, ExprObjectKind OK,
822                                   const TemplateArgumentListInfo *TemplateArgs = 0) {
823  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
824  MemberExpr *E =
825      MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
826                         TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
827                         TemplateArgs, Ty, VK, OK);
828  SemaRef.MarkMemberReferenced(E);
829  return E;
830}
831
832ExprResult
833Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
834                               SourceLocation OpLoc, bool IsArrow,
835                               const CXXScopeSpec &SS,
836                               SourceLocation TemplateKWLoc,
837                               NamedDecl *FirstQualifierInScope,
838                               LookupResult &R,
839                               const TemplateArgumentListInfo *TemplateArgs,
840                               bool SuppressQualifierCheck,
841                               ActOnMemberAccessExtraArgs *ExtraArgs) {
842  QualType BaseType = BaseExprType;
843  if (IsArrow) {
844    assert(BaseType->isPointerType());
845    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
846  }
847  R.setBaseObjectType(BaseType);
848
849  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
850  DeclarationName MemberName = MemberNameInfo.getName();
851  SourceLocation MemberLoc = MemberNameInfo.getLoc();
852
853  if (R.isAmbiguous())
854    return ExprError();
855
856  if (R.empty()) {
857    // Rederive where we looked up.
858    DeclContext *DC = (SS.isSet()
859                       ? computeDeclContext(SS, false)
860                       : BaseType->getAs<RecordType>()->getDecl());
861
862    if (ExtraArgs) {
863      ExprResult RetryExpr;
864      if (!IsArrow && BaseExpr) {
865        SFINAETrap Trap(*this, true);
866        ParsedType ObjectType;
867        bool MayBePseudoDestructor = false;
868        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
869                                                 OpLoc, tok::arrow, ObjectType,
870                                                 MayBePseudoDestructor);
871        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
872          CXXScopeSpec TempSS(SS);
873          RetryExpr = ActOnMemberAccessExpr(
874              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
875              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
876              ExtraArgs->HasTrailingLParen);
877        }
878        if (Trap.hasErrorOccurred())
879          RetryExpr = ExprError();
880      }
881      if (RetryExpr.isUsable()) {
882        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
883          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
884        return RetryExpr;
885      }
886    }
887
888    Diag(R.getNameLoc(), diag::err_no_member)
889      << MemberName << DC
890      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
891    return ExprError();
892  }
893
894  // Diagnose lookups that find only declarations from a non-base
895  // type.  This is possible for either qualified lookups (which may
896  // have been qualified with an unrelated type) or implicit member
897  // expressions (which were found with unqualified lookup and thus
898  // may have come from an enclosing scope).  Note that it's okay for
899  // lookup to find declarations from a non-base type as long as those
900  // aren't the ones picked by overload resolution.
901  if ((SS.isSet() || !BaseExpr ||
902       (isa<CXXThisExpr>(BaseExpr) &&
903        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
904      !SuppressQualifierCheck &&
905      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
906    return ExprError();
907
908  // Construct an unresolved result if we in fact got an unresolved
909  // result.
910  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
911    // Suppress any lookup-related diagnostics; we'll do these when we
912    // pick a member.
913    R.suppressDiagnostics();
914
915    UnresolvedMemberExpr *MemExpr
916      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
917                                     BaseExpr, BaseExprType,
918                                     IsArrow, OpLoc,
919                                     SS.getWithLocInContext(Context),
920                                     TemplateKWLoc, MemberNameInfo,
921                                     TemplateArgs, R.begin(), R.end());
922
923    return Owned(MemExpr);
924  }
925
926  assert(R.isSingleResult());
927  DeclAccessPair FoundDecl = R.begin().getPair();
928  NamedDecl *MemberDecl = R.getFoundDecl();
929
930  // FIXME: diagnose the presence of template arguments now.
931
932  // If the decl being referenced had an error, return an error for this
933  // sub-expr without emitting another error, in order to avoid cascading
934  // error cases.
935  if (MemberDecl->isInvalidDecl())
936    return ExprError();
937
938  // Handle the implicit-member-access case.
939  if (!BaseExpr) {
940    // If this is not an instance member, convert to a non-member access.
941    if (!MemberDecl->isCXXInstanceMember())
942      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
943
944    SourceLocation Loc = R.getNameLoc();
945    if (SS.getRange().isValid())
946      Loc = SS.getRange().getBegin();
947    CheckCXXThisCapture(Loc);
948    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
949  }
950
951  bool ShouldCheckUse = true;
952  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
953    // Don't diagnose the use of a virtual member function unless it's
954    // explicitly qualified.
955    if (MD->isVirtual() && !SS.isSet())
956      ShouldCheckUse = false;
957  }
958
959  // Check the use of this member.
960  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
961    Owned(BaseExpr);
962    return ExprError();
963  }
964
965  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
966    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
967                                   SS, FD, FoundDecl, MemberNameInfo);
968
969  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
970    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
971                                  MemberNameInfo);
972
973  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
974    // We may have found a field within an anonymous union or struct
975    // (C++ [class.union]).
976    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
977                                                    BaseExpr, OpLoc);
978
979  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
980    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
981                                 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
982                                 Var->getType().getNonReferenceType(),
983                                 VK_LValue, OK_Ordinary));
984  }
985
986  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
987    ExprValueKind valueKind;
988    QualType type;
989    if (MemberFn->isInstance()) {
990      valueKind = VK_RValue;
991      type = Context.BoundMemberTy;
992    } else {
993      valueKind = VK_LValue;
994      type = MemberFn->getType();
995    }
996
997    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
998                                 TemplateKWLoc, MemberFn, FoundDecl,
999                                 MemberNameInfo, type, valueKind,
1000                                 OK_Ordinary));
1001  }
1002  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1003
1004  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1005    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
1006                                 TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
1007                                 Enum->getType(), VK_RValue, OK_Ordinary));
1008  }
1009
1010  Owned(BaseExpr);
1011
1012  // We found something that we didn't expect. Complain.
1013  if (isa<TypeDecl>(MemberDecl))
1014    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1015      << MemberName << BaseType << int(IsArrow);
1016  else
1017    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1018      << MemberName << BaseType << int(IsArrow);
1019
1020  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1021    << MemberName;
1022  R.suppressDiagnostics();
1023  return ExprError();
1024}
1025
1026/// Given that normal member access failed on the given expression,
1027/// and given that the expression's type involves builtin-id or
1028/// builtin-Class, decide whether substituting in the redefinition
1029/// types would be profitable.  The redefinition type is whatever
1030/// this translation unit tried to typedef to id/Class;  we store
1031/// it to the side and then re-use it in places like this.
1032static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1033  const ObjCObjectPointerType *opty
1034    = base.get()->getType()->getAs<ObjCObjectPointerType>();
1035  if (!opty) return false;
1036
1037  const ObjCObjectType *ty = opty->getObjectType();
1038
1039  QualType redef;
1040  if (ty->isObjCId()) {
1041    redef = S.Context.getObjCIdRedefinitionType();
1042  } else if (ty->isObjCClass()) {
1043    redef = S.Context.getObjCClassRedefinitionType();
1044  } else {
1045    return false;
1046  }
1047
1048  // Do the substitution as long as the redefinition type isn't just a
1049  // possibly-qualified pointer to builtin-id or builtin-Class again.
1050  opty = redef->getAs<ObjCObjectPointerType>();
1051  if (opty && !opty->getObjectType()->getInterface())
1052    return false;
1053
1054  base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
1055  return true;
1056}
1057
1058static bool isRecordType(QualType T) {
1059  return T->isRecordType();
1060}
1061static bool isPointerToRecordType(QualType T) {
1062  if (const PointerType *PT = T->getAs<PointerType>())
1063    return PT->getPointeeType()->isRecordType();
1064  return false;
1065}
1066
1067/// Perform conversions on the LHS of a member access expression.
1068ExprResult
1069Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1070  if (IsArrow && !Base->getType()->isFunctionType())
1071    return DefaultFunctionArrayLvalueConversion(Base);
1072
1073  return CheckPlaceholderExpr(Base);
1074}
1075
1076/// Look up the given member of the given non-type-dependent
1077/// expression.  This can return in one of two ways:
1078///  * If it returns a sentinel null-but-valid result, the caller will
1079///    assume that lookup was performed and the results written into
1080///    the provided structure.  It will take over from there.
1081///  * Otherwise, the returned expression will be produced in place of
1082///    an ordinary member expression.
1083///
1084/// The ObjCImpDecl bit is a gross hack that will need to be properly
1085/// fixed for ObjC++.
1086ExprResult
1087Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
1088                       bool &IsArrow, SourceLocation OpLoc,
1089                       CXXScopeSpec &SS,
1090                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
1091  assert(BaseExpr.get() && "no base expression");
1092
1093  // Perform default conversions.
1094  BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
1095  if (BaseExpr.isInvalid())
1096    return ExprError();
1097
1098  QualType BaseType = BaseExpr.get()->getType();
1099  assert(!BaseType->isDependentType());
1100
1101  DeclarationName MemberName = R.getLookupName();
1102  SourceLocation MemberLoc = R.getNameLoc();
1103
1104  // For later type-checking purposes, turn arrow accesses into dot
1105  // accesses.  The only access type we support that doesn't follow
1106  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1107  // and those never use arrows, so this is unaffected.
1108  if (IsArrow) {
1109    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1110      BaseType = Ptr->getPointeeType();
1111    else if (const ObjCObjectPointerType *Ptr
1112               = BaseType->getAs<ObjCObjectPointerType>())
1113      BaseType = Ptr->getPointeeType();
1114    else if (BaseType->isRecordType()) {
1115      // Recover from arrow accesses to records, e.g.:
1116      //   struct MyRecord foo;
1117      //   foo->bar
1118      // This is actually well-formed in C++ if MyRecord has an
1119      // overloaded operator->, but that should have been dealt with
1120      // by now.
1121      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1122        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1123        << FixItHint::CreateReplacement(OpLoc, ".");
1124      IsArrow = false;
1125    } else if (BaseType->isFunctionType()) {
1126      goto fail;
1127    } else {
1128      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1129        << BaseType << BaseExpr.get()->getSourceRange();
1130      return ExprError();
1131    }
1132  }
1133
1134  // Handle field access to simple records.
1135  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1136    if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
1137                                 RTy, OpLoc, SS, HasTemplateArgs))
1138      return ExprError();
1139
1140    // Returning valid-but-null is how we indicate to the caller that
1141    // the lookup result was filled in.
1142    return Owned((Expr*) 0);
1143  }
1144
1145  // Handle ivar access to Objective-C objects.
1146  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1147    if (!SS.isEmpty() && !SS.isInvalid()) {
1148      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1149        << 1 << SS.getScopeRep()
1150        << FixItHint::CreateRemoval(SS.getRange());
1151      SS.clear();
1152    }
1153
1154    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1155
1156    // There are three cases for the base type:
1157    //   - builtin id (qualified or unqualified)
1158    //   - builtin Class (qualified or unqualified)
1159    //   - an interface
1160    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1161    if (!IDecl) {
1162      if (getLangOpts().ObjCAutoRefCount &&
1163          (OTy->isObjCId() || OTy->isObjCClass()))
1164        goto fail;
1165      // There's an implicit 'isa' ivar on all objects.
1166      // But we only actually find it this way on objects of type 'id',
1167      // apparently.
1168      if (OTy->isObjCId() && Member->isStr("isa"))
1169        return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
1170                                               OpLoc,
1171                                               Context.getObjCClassType()));
1172      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1173        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1174                                ObjCImpDecl, HasTemplateArgs);
1175      goto fail;
1176    }
1177
1178    if (RequireCompleteType(OpLoc, BaseType, diag::err_typecheck_incomplete_tag,
1179                            BaseExpr.get()))
1180      return ExprError();
1181
1182    ObjCInterfaceDecl *ClassDeclared = 0;
1183    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1184
1185    if (!IV) {
1186      // Attempt to correct for typos in ivar names.
1187      DeclFilterCCC<ObjCIvarDecl> Validator;
1188      Validator.IsObjCIvarLookup = IsArrow;
1189      if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
1190                                                 LookupMemberName, NULL, NULL,
1191                                                 Validator, IDecl)) {
1192        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1193        Diag(R.getNameLoc(),
1194             diag::err_typecheck_member_reference_ivar_suggest)
1195          << IDecl->getDeclName() << MemberName << IV->getDeclName()
1196          << FixItHint::CreateReplacement(R.getNameLoc(),
1197                                          IV->getNameAsString());
1198        Diag(IV->getLocation(), diag::note_previous_decl)
1199          << IV->getDeclName();
1200
1201        // Figure out the class that declares the ivar.
1202        assert(!ClassDeclared);
1203        Decl *D = cast<Decl>(IV->getDeclContext());
1204        if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1205          D = CAT->getClassInterface();
1206        ClassDeclared = cast<ObjCInterfaceDecl>(D);
1207      } else {
1208        if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1209          Diag(MemberLoc,
1210          diag::err_property_found_suggest)
1211          << Member << BaseExpr.get()->getType()
1212          << FixItHint::CreateReplacement(OpLoc, ".");
1213          return ExprError();
1214        }
1215
1216        Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1217          << IDecl->getDeclName() << MemberName
1218          << BaseExpr.get()->getSourceRange();
1219        return ExprError();
1220      }
1221    }
1222
1223    assert(ClassDeclared);
1224
1225    // If the decl being referenced had an error, return an error for this
1226    // sub-expr without emitting another error, in order to avoid cascading
1227    // error cases.
1228    if (IV->isInvalidDecl())
1229      return ExprError();
1230
1231    // Check whether we can reference this field.
1232    if (DiagnoseUseOfDecl(IV, MemberLoc))
1233      return ExprError();
1234    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1235        IV->getAccessControl() != ObjCIvarDecl::Package) {
1236      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1237      if (ObjCMethodDecl *MD = getCurMethodDecl())
1238        ClassOfMethodDecl =  MD->getClassInterface();
1239      else if (ObjCImpDecl && getCurFunctionDecl()) {
1240        // Case of a c-function declared inside an objc implementation.
1241        // FIXME: For a c-style function nested inside an objc implementation
1242        // class, there is no implementation context available, so we pass
1243        // down the context as argument to this routine. Ideally, this context
1244        // need be passed down in the AST node and somehow calculated from the
1245        // AST for a function decl.
1246        if (ObjCImplementationDecl *IMPD =
1247              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1248          ClassOfMethodDecl = IMPD->getClassInterface();
1249        else if (ObjCCategoryImplDecl* CatImplClass =
1250                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1251          ClassOfMethodDecl = CatImplClass->getClassInterface();
1252      }
1253      if (!getLangOpts().DebuggerSupport) {
1254        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1255          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1256              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1257            Diag(MemberLoc, diag::error_private_ivar_access)
1258              << IV->getDeclName();
1259        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1260          // @protected
1261          Diag(MemberLoc, diag::error_protected_ivar_access)
1262            << IV->getDeclName();
1263      }
1264    }
1265    bool warn = true;
1266    if (getLangOpts().ObjCAutoRefCount) {
1267      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1268      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1269        if (UO->getOpcode() == UO_Deref)
1270          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1271
1272      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1273        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1274          Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1275          warn = false;
1276        }
1277    }
1278    if (warn) {
1279      if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1280        ObjCMethodFamily MF = MD->getMethodFamily();
1281        warn = (MF != OMF_init && MF != OMF_dealloc &&
1282                MF != OMF_finalize &&
1283                !IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1284      }
1285      if (warn)
1286        Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1287    }
1288
1289    ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1290                                                            MemberLoc, OpLoc,
1291                                                            BaseExpr.take(),
1292                                                            IsArrow);
1293
1294    if (getLangOpts().ObjCAutoRefCount) {
1295      if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1296        DiagnosticsEngine::Level Level =
1297          Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1298                                   MemberLoc);
1299        if (Level != DiagnosticsEngine::Ignored)
1300          getCurFunction()->recordUseOfWeak(Result);
1301      }
1302    }
1303
1304    return Owned(Result);
1305  }
1306
1307  // Objective-C property access.
1308  const ObjCObjectPointerType *OPT;
1309  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1310    if (!SS.isEmpty() && !SS.isInvalid()) {
1311      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1312        << 0 << SS.getScopeRep()
1313        << FixItHint::CreateRemoval(SS.getRange());
1314      SS.clear();
1315    }
1316
1317    // This actually uses the base as an r-value.
1318    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1319    if (BaseExpr.isInvalid())
1320      return ExprError();
1321
1322    assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
1323
1324    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1325
1326    const ObjCObjectType *OT = OPT->getObjectType();
1327
1328    // id, with and without qualifiers.
1329    if (OT->isObjCId()) {
1330      // Check protocols on qualified interfaces.
1331      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1332      if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
1333        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1334          // Check the use of this declaration
1335          if (DiagnoseUseOfDecl(PD, MemberLoc))
1336            return ExprError();
1337
1338          return Owned(new (Context) ObjCPropertyRefExpr(PD,
1339                                                         Context.PseudoObjectTy,
1340                                                         VK_LValue,
1341                                                         OK_ObjCProperty,
1342                                                         MemberLoc,
1343                                                         BaseExpr.take()));
1344        }
1345
1346        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1347          // Check the use of this method.
1348          if (DiagnoseUseOfDecl(OMD, MemberLoc))
1349            return ExprError();
1350          Selector SetterSel =
1351            SelectorTable::constructSetterName(PP.getIdentifierTable(),
1352                                               PP.getSelectorTable(), Member);
1353          ObjCMethodDecl *SMD = 0;
1354          if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
1355                                                     SetterSel, Context))
1356            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1357
1358          return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
1359                                                         Context.PseudoObjectTy,
1360                                                         VK_LValue, OK_ObjCProperty,
1361                                                         MemberLoc, BaseExpr.take()));
1362        }
1363      }
1364      // Use of id.member can only be for a property reference. Do not
1365      // use the 'id' redefinition in this case.
1366      if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1367        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1368                                ObjCImpDecl, HasTemplateArgs);
1369
1370      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1371                         << MemberName << BaseType);
1372    }
1373
1374    // 'Class', unqualified only.
1375    if (OT->isObjCClass()) {
1376      // Only works in a method declaration (??!).
1377      ObjCMethodDecl *MD = getCurMethodDecl();
1378      if (!MD) {
1379        if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1380          return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1381                                  ObjCImpDecl, HasTemplateArgs);
1382
1383        goto fail;
1384      }
1385
1386      // Also must look for a getter name which uses property syntax.
1387      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1388      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1389      ObjCMethodDecl *Getter;
1390      if ((Getter = IFace->lookupClassMethod(Sel))) {
1391        // Check the use of this method.
1392        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1393          return ExprError();
1394      } else
1395        Getter = IFace->lookupPrivateMethod(Sel, false);
1396      // If we found a getter then this may be a valid dot-reference, we
1397      // will look for the matching setter, in case it is needed.
1398      Selector SetterSel =
1399        SelectorTable::constructSetterName(PP.getIdentifierTable(),
1400                                           PP.getSelectorTable(), Member);
1401      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1402      if (!Setter) {
1403        // If this reference is in an @implementation, also check for 'private'
1404        // methods.
1405        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1406      }
1407
1408      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1409        return ExprError();
1410
1411      if (Getter || Setter) {
1412        return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1413                                                       Context.PseudoObjectTy,
1414                                                       VK_LValue, OK_ObjCProperty,
1415                                                       MemberLoc, BaseExpr.take()));
1416      }
1417
1418      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1419        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1420                                ObjCImpDecl, HasTemplateArgs);
1421
1422      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1423                         << MemberName << BaseType);
1424    }
1425
1426    // Normal property access.
1427    return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
1428                                     MemberName, MemberLoc,
1429                                     SourceLocation(), QualType(), false);
1430  }
1431
1432  // Handle 'field access' to vectors, such as 'V.xx'.
1433  if (BaseType->isExtVectorType()) {
1434    // FIXME: this expr should store IsArrow.
1435    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1436    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1437    QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
1438                                           Member, MemberLoc);
1439    if (ret.isNull())
1440      return ExprError();
1441
1442    return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
1443                                                    *Member, MemberLoc));
1444  }
1445
1446  // Adjust builtin-sel to the appropriate redefinition type if that's
1447  // not just a pointer to builtin-sel again.
1448  if (IsArrow &&
1449      BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1450      !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1451    BaseExpr = ImpCastExprToType(BaseExpr.take(),
1452                                 Context.getObjCSelRedefinitionType(),
1453                                 CK_BitCast);
1454    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1455                            ObjCImpDecl, HasTemplateArgs);
1456  }
1457
1458  // Failure cases.
1459 fail:
1460
1461  // Recover from dot accesses to pointers, e.g.:
1462  //   type *foo;
1463  //   foo.bar
1464  // This is actually well-formed in two cases:
1465  //   - 'type' is an Objective C type
1466  //   - 'bar' is a pseudo-destructor name which happens to refer to
1467  //     the appropriate pointer type
1468  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1469    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1470        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1471      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1472        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1473          << FixItHint::CreateReplacement(OpLoc, "->");
1474
1475      // Recurse as an -> access.
1476      IsArrow = true;
1477      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1478                              ObjCImpDecl, HasTemplateArgs);
1479    }
1480  }
1481
1482  // If the user is trying to apply -> or . to a function name, it's probably
1483  // because they forgot parentheses to call that function.
1484  if (tryToRecoverWithCall(BaseExpr,
1485                           PDiag(diag::err_member_reference_needs_call),
1486                           /*complain*/ false,
1487                           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1488    if (BaseExpr.isInvalid())
1489      return ExprError();
1490    BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1491    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1492                            ObjCImpDecl, HasTemplateArgs);
1493  }
1494
1495  Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1496    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1497
1498  return ExprError();
1499}
1500
1501/// The main callback when the parser finds something like
1502///   expression . [nested-name-specifier] identifier
1503///   expression -> [nested-name-specifier] identifier
1504/// where 'identifier' encompasses a fairly broad spectrum of
1505/// possibilities, including destructor and operator references.
1506///
1507/// \param OpKind either tok::arrow or tok::period
1508/// \param HasTrailingLParen whether the next token is '(', which
1509///   is used to diagnose mis-uses of special members that can
1510///   only be called
1511/// \param ObjCImpDecl the current Objective-C \@implementation
1512///   decl; this is an ugly hack around the fact that Objective-C
1513///   \@implementations aren't properly put in the context chain
1514ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1515                                       SourceLocation OpLoc,
1516                                       tok::TokenKind OpKind,
1517                                       CXXScopeSpec &SS,
1518                                       SourceLocation TemplateKWLoc,
1519                                       UnqualifiedId &Id,
1520                                       Decl *ObjCImpDecl,
1521                                       bool HasTrailingLParen) {
1522  if (SS.isSet() && SS.isInvalid())
1523    return ExprError();
1524
1525  // Warn about the explicit constructor calls Microsoft extension.
1526  if (getLangOpts().MicrosoftExt &&
1527      Id.getKind() == UnqualifiedId::IK_ConstructorName)
1528    Diag(Id.getSourceRange().getBegin(),
1529         diag::ext_ms_explicit_constructor_call);
1530
1531  TemplateArgumentListInfo TemplateArgsBuffer;
1532
1533  // Decompose the name into its component parts.
1534  DeclarationNameInfo NameInfo;
1535  const TemplateArgumentListInfo *TemplateArgs;
1536  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1537                         NameInfo, TemplateArgs);
1538
1539  DeclarationName Name = NameInfo.getName();
1540  bool IsArrow = (OpKind == tok::arrow);
1541
1542  NamedDecl *FirstQualifierInScope
1543    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
1544                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
1545
1546  // This is a postfix expression, so get rid of ParenListExprs.
1547  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1548  if (Result.isInvalid()) return ExprError();
1549  Base = Result.take();
1550
1551  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1552      isDependentScopeSpecifier(SS)) {
1553    Result = ActOnDependentMemberExpr(Base, Base->getType(),
1554                                      IsArrow, OpLoc,
1555                                      SS, TemplateKWLoc, FirstQualifierInScope,
1556                                      NameInfo, TemplateArgs);
1557  } else {
1558    LookupResult R(*this, NameInfo, LookupMemberName);
1559    ExprResult BaseResult = Owned(Base);
1560    Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
1561                              SS, ObjCImpDecl, TemplateArgs != 0);
1562    if (BaseResult.isInvalid())
1563      return ExprError();
1564    Base = BaseResult.take();
1565
1566    if (Result.isInvalid()) {
1567      Owned(Base);
1568      return ExprError();
1569    }
1570
1571    if (Result.get()) {
1572      // The only way a reference to a destructor can be used is to
1573      // immediately call it, which falls into this case.  If the
1574      // next token is not a '(', produce a diagnostic and build the
1575      // call now.
1576      if (!HasTrailingLParen &&
1577          Id.getKind() == UnqualifiedId::IK_DestructorName)
1578        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
1579
1580      return Result;
1581    }
1582
1583    ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl, HasTrailingLParen};
1584    Result = BuildMemberReferenceExpr(Base, Base->getType(),
1585                                      OpLoc, IsArrow, SS, TemplateKWLoc,
1586                                      FirstQualifierInScope, R, TemplateArgs,
1587                                      false, &ExtraArgs);
1588  }
1589
1590  return Result;
1591}
1592
1593static ExprResult
1594BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1595                        const CXXScopeSpec &SS, FieldDecl *Field,
1596                        DeclAccessPair FoundDecl,
1597                        const DeclarationNameInfo &MemberNameInfo) {
1598  // x.a is an l-value if 'a' has a reference type. Otherwise:
1599  // x.a is an l-value/x-value/pr-value if the base is (and note
1600  //   that *x is always an l-value), except that if the base isn't
1601  //   an ordinary object then we must have an rvalue.
1602  ExprValueKind VK = VK_LValue;
1603  ExprObjectKind OK = OK_Ordinary;
1604  if (!IsArrow) {
1605    if (BaseExpr->getObjectKind() == OK_Ordinary)
1606      VK = BaseExpr->getValueKind();
1607    else
1608      VK = VK_RValue;
1609  }
1610  if (VK != VK_RValue && Field->isBitField())
1611    OK = OK_BitField;
1612
1613  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1614  QualType MemberType = Field->getType();
1615  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1616    MemberType = Ref->getPointeeType();
1617    VK = VK_LValue;
1618  } else {
1619    QualType BaseType = BaseExpr->getType();
1620    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1621
1622    Qualifiers BaseQuals = BaseType.getQualifiers();
1623
1624    // GC attributes are never picked up by members.
1625    BaseQuals.removeObjCGCAttr();
1626
1627    // CVR attributes from the base are picked up by members,
1628    // except that 'mutable' members don't pick up 'const'.
1629    if (Field->isMutable()) BaseQuals.removeConst();
1630
1631    Qualifiers MemberQuals
1632    = S.Context.getCanonicalType(MemberType).getQualifiers();
1633
1634    assert(!MemberQuals.hasAddressSpace());
1635
1636
1637    Qualifiers Combined = BaseQuals + MemberQuals;
1638    if (Combined != MemberQuals)
1639      MemberType = S.Context.getQualifiedType(MemberType, Combined);
1640  }
1641
1642  S.UnusedPrivateFields.remove(Field);
1643
1644  ExprResult Base =
1645  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1646                                  FoundDecl, Field);
1647  if (Base.isInvalid())
1648    return ExprError();
1649  return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
1650                                 /*TemplateKWLoc=*/SourceLocation(),
1651                                 Field, FoundDecl, MemberNameInfo,
1652                                 MemberType, VK, OK));
1653}
1654
1655/// Builds an implicit member access expression.  The current context
1656/// is known to be an instance method, and the given unqualified lookup
1657/// set is known to contain only instance members, at least one of which
1658/// is from an appropriate type.
1659ExprResult
1660Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1661                              SourceLocation TemplateKWLoc,
1662                              LookupResult &R,
1663                              const TemplateArgumentListInfo *TemplateArgs,
1664                              bool IsKnownInstance) {
1665  assert(!R.empty() && !R.isAmbiguous());
1666
1667  SourceLocation loc = R.getNameLoc();
1668
1669  // We may have found a field within an anonymous union or struct
1670  // (C++ [class.union]).
1671  // FIXME: template-ids inside anonymous structs?
1672  if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
1673    return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
1674
1675  // If this is known to be an instance access, go ahead and build an
1676  // implicit 'this' expression now.
1677  // 'this' expression now.
1678  QualType ThisTy = getCurrentThisType();
1679  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1680
1681  Expr *baseExpr = 0; // null signifies implicit access
1682  if (IsKnownInstance) {
1683    SourceLocation Loc = R.getNameLoc();
1684    if (SS.getRange().isValid())
1685      Loc = SS.getRange().getBegin();
1686    CheckCXXThisCapture(Loc);
1687    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1688  }
1689
1690  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1691                                  /*OpLoc*/ SourceLocation(),
1692                                  /*IsArrow*/ true,
1693                                  SS, TemplateKWLoc,
1694                                  /*FirstQualifierInScope*/ 0,
1695                                  R, TemplateArgs);
1696}
1697