ParseExpr.cpp revision 234982
1//===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation.  Expressions in
11// C99 basically consist of a bunch of binary operators with unary operators and
12// other random stuff at the leaves.
13//
14// In the C99 grammar, these unary operators bind tightest and are represented
15// as the 'cast-expression' production.  Everything else is either a binary
16// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
17// handled by ParseCastExpression, the higher level pieces are handled by
18// ParseBinaryExpression.
19//
20//===----------------------------------------------------------------------===//
21
22#include "clang/Parse/Parser.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Scope.h"
25#include "clang/Sema/ParsedTemplate.h"
26#include "clang/Sema/TypoCorrection.h"
27#include "clang/Basic/PrettyStackTrace.h"
28#include "RAIIObjectsForParser.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/SmallString.h"
31using namespace clang;
32
33/// getBinOpPrecedence - Return the precedence of the specified binary operator
34/// token.
35static prec::Level getBinOpPrecedence(tok::TokenKind Kind,
36                                      bool GreaterThanIsOperator,
37                                      bool CPlusPlus0x) {
38  switch (Kind) {
39  case tok::greater:
40    // C++ [temp.names]p3:
41    //   [...] When parsing a template-argument-list, the first
42    //   non-nested > is taken as the ending delimiter rather than a
43    //   greater-than operator. [...]
44    if (GreaterThanIsOperator)
45      return prec::Relational;
46    return prec::Unknown;
47
48  case tok::greatergreater:
49    // C++0x [temp.names]p3:
50    //
51    //   [...] Similarly, the first non-nested >> is treated as two
52    //   consecutive but distinct > tokens, the first of which is
53    //   taken as the end of the template-argument-list and completes
54    //   the template-id. [...]
55    if (GreaterThanIsOperator || !CPlusPlus0x)
56      return prec::Shift;
57    return prec::Unknown;
58
59  default:                        return prec::Unknown;
60  case tok::comma:                return prec::Comma;
61  case tok::equal:
62  case tok::starequal:
63  case tok::slashequal:
64  case tok::percentequal:
65  case tok::plusequal:
66  case tok::minusequal:
67  case tok::lesslessequal:
68  case tok::greatergreaterequal:
69  case tok::ampequal:
70  case tok::caretequal:
71  case tok::pipeequal:            return prec::Assignment;
72  case tok::question:             return prec::Conditional;
73  case tok::pipepipe:             return prec::LogicalOr;
74  case tok::ampamp:               return prec::LogicalAnd;
75  case tok::pipe:                 return prec::InclusiveOr;
76  case tok::caret:                return prec::ExclusiveOr;
77  case tok::amp:                  return prec::And;
78  case tok::exclaimequal:
79  case tok::equalequal:           return prec::Equality;
80  case tok::lessequal:
81  case tok::less:
82  case tok::greaterequal:         return prec::Relational;
83  case tok::lessless:             return prec::Shift;
84  case tok::plus:
85  case tok::minus:                return prec::Additive;
86  case tok::percent:
87  case tok::slash:
88  case tok::star:                 return prec::Multiplicative;
89  case tok::periodstar:
90  case tok::arrowstar:            return prec::PointerToMember;
91  }
92}
93
94
95/// ParseExpression - Simple precedence-based parser for binary/ternary
96/// operators.
97///
98/// Note: we diverge from the C99 grammar when parsing the assignment-expression
99/// production.  C99 specifies that the LHS of an assignment operator should be
100/// parsed as a unary-expression, but consistency dictates that it be a
101/// conditional-expession.  In practice, the important thing here is that the
102/// LHS of an assignment has to be an l-value, which productions between
103/// unary-expression and conditional-expression don't produce.  Because we want
104/// consistency, we parse the LHS as a conditional-expression, then check for
105/// l-value-ness in semantic analysis stages.
106///
107///       pm-expression: [C++ 5.5]
108///         cast-expression
109///         pm-expression '.*' cast-expression
110///         pm-expression '->*' cast-expression
111///
112///       multiplicative-expression: [C99 6.5.5]
113///     Note: in C++, apply pm-expression instead of cast-expression
114///         cast-expression
115///         multiplicative-expression '*' cast-expression
116///         multiplicative-expression '/' cast-expression
117///         multiplicative-expression '%' cast-expression
118///
119///       additive-expression: [C99 6.5.6]
120///         multiplicative-expression
121///         additive-expression '+' multiplicative-expression
122///         additive-expression '-' multiplicative-expression
123///
124///       shift-expression: [C99 6.5.7]
125///         additive-expression
126///         shift-expression '<<' additive-expression
127///         shift-expression '>>' additive-expression
128///
129///       relational-expression: [C99 6.5.8]
130///         shift-expression
131///         relational-expression '<' shift-expression
132///         relational-expression '>' shift-expression
133///         relational-expression '<=' shift-expression
134///         relational-expression '>=' shift-expression
135///
136///       equality-expression: [C99 6.5.9]
137///         relational-expression
138///         equality-expression '==' relational-expression
139///         equality-expression '!=' relational-expression
140///
141///       AND-expression: [C99 6.5.10]
142///         equality-expression
143///         AND-expression '&' equality-expression
144///
145///       exclusive-OR-expression: [C99 6.5.11]
146///         AND-expression
147///         exclusive-OR-expression '^' AND-expression
148///
149///       inclusive-OR-expression: [C99 6.5.12]
150///         exclusive-OR-expression
151///         inclusive-OR-expression '|' exclusive-OR-expression
152///
153///       logical-AND-expression: [C99 6.5.13]
154///         inclusive-OR-expression
155///         logical-AND-expression '&&' inclusive-OR-expression
156///
157///       logical-OR-expression: [C99 6.5.14]
158///         logical-AND-expression
159///         logical-OR-expression '||' logical-AND-expression
160///
161///       conditional-expression: [C99 6.5.15]
162///         logical-OR-expression
163///         logical-OR-expression '?' expression ':' conditional-expression
164/// [GNU]   logical-OR-expression '?' ':' conditional-expression
165/// [C++] the third operand is an assignment-expression
166///
167///       assignment-expression: [C99 6.5.16]
168///         conditional-expression
169///         unary-expression assignment-operator assignment-expression
170/// [C++]   throw-expression [C++ 15]
171///
172///       assignment-operator: one of
173///         = *= /= %= += -= <<= >>= &= ^= |=
174///
175///       expression: [C99 6.5.17]
176///         assignment-expression ...[opt]
177///         expression ',' assignment-expression ...[opt]
178ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
179  ExprResult LHS(ParseAssignmentExpression(isTypeCast));
180  return ParseRHSOfBinaryExpression(move(LHS), prec::Comma);
181}
182
183/// This routine is called when the '@' is seen and consumed.
184/// Current token is an Identifier and is not a 'try'. This
185/// routine is necessary to disambiguate @try-statement from,
186/// for example, @encode-expression.
187///
188ExprResult
189Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
190  ExprResult LHS(ParseObjCAtExpression(AtLoc));
191  return ParseRHSOfBinaryExpression(move(LHS), prec::Comma);
192}
193
194/// This routine is called when a leading '__extension__' is seen and
195/// consumed.  This is necessary because the token gets consumed in the
196/// process of disambiguating between an expression and a declaration.
197ExprResult
198Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
199  ExprResult LHS(true);
200  {
201    // Silence extension warnings in the sub-expression
202    ExtensionRAIIObject O(Diags);
203
204    LHS = ParseCastExpression(false);
205  }
206
207  if (!LHS.isInvalid())
208    LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
209                               LHS.take());
210
211  return ParseRHSOfBinaryExpression(move(LHS), prec::Comma);
212}
213
214/// ParseAssignmentExpression - Parse an expr that doesn't include commas.
215ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
216  if (Tok.is(tok::code_completion)) {
217    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
218    cutOffParsing();
219    return ExprError();
220  }
221
222  if (Tok.is(tok::kw_throw))
223    return ParseThrowExpression();
224
225  ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
226                                       /*isAddressOfOperand=*/false,
227                                       isTypeCast);
228  return ParseRHSOfBinaryExpression(move(LHS), prec::Assignment);
229}
230
231/// ParseAssignmentExprWithObjCMessageExprStart - Parse an assignment expression
232/// where part of an objc message send has already been parsed.  In this case
233/// LBracLoc indicates the location of the '[' of the message send, and either
234/// ReceiverName or ReceiverExpr is non-null indicating the receiver of the
235/// message.
236///
237/// Since this handles full assignment-expression's, it handles postfix
238/// expressions and other binary operators for these expressions as well.
239ExprResult
240Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
241                                                    SourceLocation SuperLoc,
242                                                    ParsedType ReceiverType,
243                                                    Expr *ReceiverExpr) {
244  ExprResult R
245    = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
246                                     ReceiverType, ReceiverExpr);
247  R = ParsePostfixExpressionSuffix(R);
248  return ParseRHSOfBinaryExpression(R, prec::Assignment);
249}
250
251
252ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
253  // C++03 [basic.def.odr]p2:
254  //   An expression is potentially evaluated unless it appears where an
255  //   integral constant expression is required (see 5.19) [...].
256  // C++98 and C++11 have no such rule, but this is only a defect in C++98.
257  EnterExpressionEvaluationContext Unevaluated(Actions,
258                                               Sema::ConstantEvaluated);
259
260  ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
261  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
262  return Actions.ActOnConstantExpression(Res);
263}
264
265/// ParseRHSOfBinaryExpression - Parse a binary expression that starts with
266/// LHS and has a precedence of at least MinPrec.
267ExprResult
268Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
269  prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
270                                               GreaterThanIsOperator,
271                                               getLangOpts().CPlusPlus0x);
272  SourceLocation ColonLoc;
273
274  while (1) {
275    // If this token has a lower precedence than we are allowed to parse (e.g.
276    // because we are called recursively, or because the token is not a binop),
277    // then we are done!
278    if (NextTokPrec < MinPrec)
279      return move(LHS);
280
281    // Consume the operator, saving the operator token for error reporting.
282    Token OpToken = Tok;
283    ConsumeToken();
284
285    // Special case handling for the ternary operator.
286    ExprResult TernaryMiddle(true);
287    if (NextTokPrec == prec::Conditional) {
288      if (Tok.isNot(tok::colon)) {
289        // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
290        ColonProtectionRAIIObject X(*this);
291
292        // Handle this production specially:
293        //   logical-OR-expression '?' expression ':' conditional-expression
294        // In particular, the RHS of the '?' is 'expression', not
295        // 'logical-OR-expression' as we might expect.
296        TernaryMiddle = ParseExpression();
297        if (TernaryMiddle.isInvalid()) {
298          LHS = ExprError();
299          TernaryMiddle = 0;
300        }
301      } else {
302        // Special case handling of "X ? Y : Z" where Y is empty:
303        //   logical-OR-expression '?' ':' conditional-expression   [GNU]
304        TernaryMiddle = 0;
305        Diag(Tok, diag::ext_gnu_conditional_expr);
306      }
307
308      if (Tok.is(tok::colon)) {
309        // Eat the colon.
310        ColonLoc = ConsumeToken();
311      } else {
312        // Otherwise, we're missing a ':'.  Assume that this was a typo that
313        // the user forgot. If we're not in a macro expansion, we can suggest
314        // a fixit hint. If there were two spaces before the current token,
315        // suggest inserting the colon in between them, otherwise insert ": ".
316        SourceLocation FILoc = Tok.getLocation();
317        const char *FIText = ": ";
318        const SourceManager &SM = PP.getSourceManager();
319        if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
320          assert(FILoc.isFileID());
321          bool IsInvalid = false;
322          const char *SourcePtr =
323            SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
324          if (!IsInvalid && *SourcePtr == ' ') {
325            SourcePtr =
326              SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
327            if (!IsInvalid && *SourcePtr == ' ') {
328              FILoc = FILoc.getLocWithOffset(-1);
329              FIText = ":";
330            }
331          }
332        }
333
334        Diag(Tok, diag::err_expected_colon)
335          << FixItHint::CreateInsertion(FILoc, FIText);
336        Diag(OpToken, diag::note_matching) << "?";
337        ColonLoc = Tok.getLocation();
338      }
339    }
340
341    // Code completion for the right-hand side of an assignment expression
342    // goes through a special hook that takes the left-hand side into account.
343    if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
344      Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
345      cutOffParsing();
346      return ExprError();
347    }
348
349    // Parse another leaf here for the RHS of the operator.
350    // ParseCastExpression works here because all RHS expressions in C have it
351    // as a prefix, at least. However, in C++, an assignment-expression could
352    // be a throw-expression, which is not a valid cast-expression.
353    // Therefore we need some special-casing here.
354    // Also note that the third operand of the conditional operator is
355    // an assignment-expression in C++, and in C++11, we can have a
356    // braced-init-list on the RHS of an assignment. For better diagnostics,
357    // parse as if we were allowed braced-init-lists everywhere, and check that
358    // they only appear on the RHS of assignments later.
359    ExprResult RHS;
360    bool RHSIsInitList = false;
361    if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
362      RHS = ParseBraceInitializer();
363      RHSIsInitList = true;
364    } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
365      RHS = ParseAssignmentExpression();
366    else
367      RHS = ParseCastExpression(false);
368
369    if (RHS.isInvalid())
370      LHS = ExprError();
371
372    // Remember the precedence of this operator and get the precedence of the
373    // operator immediately to the right of the RHS.
374    prec::Level ThisPrec = NextTokPrec;
375    NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
376                                     getLangOpts().CPlusPlus0x);
377
378    // Assignment and conditional expressions are right-associative.
379    bool isRightAssoc = ThisPrec == prec::Conditional ||
380                        ThisPrec == prec::Assignment;
381
382    // Get the precedence of the operator to the right of the RHS.  If it binds
383    // more tightly with RHS than we do, evaluate it completely first.
384    if (ThisPrec < NextTokPrec ||
385        (ThisPrec == NextTokPrec && isRightAssoc)) {
386      if (!RHS.isInvalid() && RHSIsInitList) {
387        Diag(Tok, diag::err_init_list_bin_op)
388          << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
389        RHS = ExprError();
390      }
391      // If this is left-associative, only parse things on the RHS that bind
392      // more tightly than the current operator.  If it is left-associative, it
393      // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
394      // A=(B=(C=D)), where each paren is a level of recursion here.
395      // The function takes ownership of the RHS.
396      RHS = ParseRHSOfBinaryExpression(RHS,
397                            static_cast<prec::Level>(ThisPrec + !isRightAssoc));
398      RHSIsInitList = false;
399
400      if (RHS.isInvalid())
401        LHS = ExprError();
402
403      NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
404                                       getLangOpts().CPlusPlus0x);
405    }
406    assert(NextTokPrec <= ThisPrec && "Recursion didn't work!");
407
408    if (!RHS.isInvalid() && RHSIsInitList) {
409      if (ThisPrec == prec::Assignment) {
410        Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
411          << Actions.getExprRange(RHS.get());
412      } else {
413        Diag(OpToken, diag::err_init_list_bin_op)
414          << /*RHS*/1 << PP.getSpelling(OpToken)
415          << Actions.getExprRange(RHS.get());
416        LHS = ExprError();
417      }
418    }
419
420    if (!LHS.isInvalid()) {
421      // Combine the LHS and RHS into the LHS (e.g. build AST).
422      if (TernaryMiddle.isInvalid()) {
423        // If we're using '>>' as an operator within a template
424        // argument list (in C++98), suggest the addition of
425        // parentheses so that the code remains well-formed in C++0x.
426        if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
427          SuggestParentheses(OpToken.getLocation(),
428                             diag::warn_cxx0x_right_shift_in_template_arg,
429                         SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
430                                     Actions.getExprRange(RHS.get()).getEnd()));
431
432        LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
433                                 OpToken.getKind(), LHS.take(), RHS.take());
434      } else
435        LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
436                                         LHS.take(), TernaryMiddle.take(),
437                                         RHS.take());
438    }
439  }
440}
441
442/// ParseCastExpression - Parse a cast-expression, or, if isUnaryExpression is
443/// true, parse a unary-expression. isAddressOfOperand exists because an
444/// id-expression that is the operand of address-of gets special treatment
445/// due to member pointers.
446///
447ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
448                                       bool isAddressOfOperand,
449                                       TypeCastState isTypeCast) {
450  bool NotCastExpr;
451  ExprResult Res = ParseCastExpression(isUnaryExpression,
452                                       isAddressOfOperand,
453                                       NotCastExpr,
454                                       isTypeCast);
455  if (NotCastExpr)
456    Diag(Tok, diag::err_expected_expression);
457  return move(Res);
458}
459
460namespace {
461class CastExpressionIdValidator : public CorrectionCandidateCallback {
462 public:
463  CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes)
464      : AllowNonTypes(AllowNonTypes) {
465    WantTypeSpecifiers = AllowTypes;
466  }
467
468  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
469    NamedDecl *ND = candidate.getCorrectionDecl();
470    if (!ND)
471      return candidate.isKeyword();
472
473    if (isa<TypeDecl>(ND))
474      return WantTypeSpecifiers;
475    return AllowNonTypes;
476  }
477
478 private:
479  bool AllowNonTypes;
480};
481}
482
483/// ParseCastExpression - Parse a cast-expression, or, if isUnaryExpression is
484/// true, parse a unary-expression. isAddressOfOperand exists because an
485/// id-expression that is the operand of address-of gets special treatment
486/// due to member pointers. NotCastExpr is set to true if the token is not the
487/// start of a cast-expression, and no diagnostic is emitted in this case.
488///
489///       cast-expression: [C99 6.5.4]
490///         unary-expression
491///         '(' type-name ')' cast-expression
492///
493///       unary-expression:  [C99 6.5.3]
494///         postfix-expression
495///         '++' unary-expression
496///         '--' unary-expression
497///         unary-operator cast-expression
498///         'sizeof' unary-expression
499///         'sizeof' '(' type-name ')'
500/// [C++11] 'sizeof' '...' '(' identifier ')'
501/// [GNU]   '__alignof' unary-expression
502/// [GNU]   '__alignof' '(' type-name ')'
503/// [C++11] 'alignof' '(' type-id ')'
504/// [GNU]   '&&' identifier
505/// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
506/// [C++]   new-expression
507/// [C++]   delete-expression
508///
509///       unary-operator: one of
510///         '&'  '*'  '+'  '-'  '~'  '!'
511/// [GNU]   '__extension__'  '__real'  '__imag'
512///
513///       primary-expression: [C99 6.5.1]
514/// [C99]   identifier
515/// [C++]   id-expression
516///         constant
517///         string-literal
518/// [C++]   boolean-literal  [C++ 2.13.5]
519/// [C++11] 'nullptr'        [C++11 2.14.7]
520/// [C++11] user-defined-literal
521///         '(' expression ')'
522/// [C11]   generic-selection
523///         '__func__'        [C99 6.4.2.2]
524/// [GNU]   '__FUNCTION__'
525/// [GNU]   '__PRETTY_FUNCTION__'
526/// [GNU]   '(' compound-statement ')'
527/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
528/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
529/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
530///                                     assign-expr ')'
531/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
532/// [GNU]   '__null'
533/// [OBJC]  '[' objc-message-expr ']'
534/// [OBJC]  '@selector' '(' objc-selector-arg ')'
535/// [OBJC]  '@protocol' '(' identifier ')'
536/// [OBJC]  '@encode' '(' type-name ')'
537/// [OBJC]  objc-string-literal
538/// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
539/// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
540/// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
541/// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
542/// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
543/// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
544/// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
545/// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
546/// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
547/// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
548/// [C++]   'this'          [C++ 9.3.2]
549/// [G++]   unary-type-trait '(' type-id ')'
550/// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
551/// [EMBT]  array-type-trait '(' type-id ',' integer ')'
552/// [clang] '^' block-literal
553///
554///       constant: [C99 6.4.4]
555///         integer-constant
556///         floating-constant
557///         enumeration-constant -> identifier
558///         character-constant
559///
560///       id-expression: [C++ 5.1]
561///                   unqualified-id
562///                   qualified-id
563///
564///       unqualified-id: [C++ 5.1]
565///                   identifier
566///                   operator-function-id
567///                   conversion-function-id
568///                   '~' class-name
569///                   template-id
570///
571///       new-expression: [C++ 5.3.4]
572///                   '::'[opt] 'new' new-placement[opt] new-type-id
573///                                     new-initializer[opt]
574///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
575///                                     new-initializer[opt]
576///
577///       delete-expression: [C++ 5.3.5]
578///                   '::'[opt] 'delete' cast-expression
579///                   '::'[opt] 'delete' '[' ']' cast-expression
580///
581/// [GNU/Embarcadero] unary-type-trait:
582///                   '__is_arithmetic'
583///                   '__is_floating_point'
584///                   '__is_integral'
585///                   '__is_lvalue_expr'
586///                   '__is_rvalue_expr'
587///                   '__is_complete_type'
588///                   '__is_void'
589///                   '__is_array'
590///                   '__is_function'
591///                   '__is_reference'
592///                   '__is_lvalue_reference'
593///                   '__is_rvalue_reference'
594///                   '__is_fundamental'
595///                   '__is_object'
596///                   '__is_scalar'
597///                   '__is_compound'
598///                   '__is_pointer'
599///                   '__is_member_object_pointer'
600///                   '__is_member_function_pointer'
601///                   '__is_member_pointer'
602///                   '__is_const'
603///                   '__is_volatile'
604///                   '__is_trivial'
605///                   '__is_standard_layout'
606///                   '__is_signed'
607///                   '__is_unsigned'
608///
609/// [GNU] unary-type-trait:
610///                   '__has_nothrow_assign'
611///                   '__has_nothrow_copy'
612///                   '__has_nothrow_constructor'
613///                   '__has_trivial_assign'                  [TODO]
614///                   '__has_trivial_copy'                    [TODO]
615///                   '__has_trivial_constructor'
616///                   '__has_trivial_destructor'
617///                   '__has_virtual_destructor'
618///                   '__is_abstract'                         [TODO]
619///                   '__is_class'
620///                   '__is_empty'                            [TODO]
621///                   '__is_enum'
622///                   '__is_final'
623///                   '__is_pod'
624///                   '__is_polymorphic'
625///                   '__is_trivial'
626///                   '__is_union'
627///
628/// [Clang] unary-type-trait:
629///                   '__trivially_copyable'
630///
631///       binary-type-trait:
632/// [GNU]             '__is_base_of'
633/// [MS]              '__is_convertible_to'
634///                   '__is_convertible'
635///                   '__is_same'
636///
637/// [Embarcadero] array-type-trait:
638///                   '__array_rank'
639///                   '__array_extent'
640///
641/// [Embarcadero] expression-trait:
642///                   '__is_lvalue_expr'
643///                   '__is_rvalue_expr'
644///
645ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
646                                       bool isAddressOfOperand,
647                                       bool &NotCastExpr,
648                                       TypeCastState isTypeCast) {
649  ExprResult Res;
650  tok::TokenKind SavedKind = Tok.getKind();
651  NotCastExpr = false;
652
653  // This handles all of cast-expression, unary-expression, postfix-expression,
654  // and primary-expression.  We handle them together like this for efficiency
655  // and to simplify handling of an expression starting with a '(' token: which
656  // may be one of a parenthesized expression, cast-expression, compound literal
657  // expression, or statement expression.
658  //
659  // If the parsed tokens consist of a primary-expression, the cases below
660  // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
661  // to handle the postfix expression suffixes.  Cases that cannot be followed
662  // by postfix exprs should return without invoking
663  // ParsePostfixExpressionSuffix.
664  switch (SavedKind) {
665  case tok::l_paren: {
666    // If this expression is limited to being a unary-expression, the parent can
667    // not start a cast expression.
668    ParenParseOption ParenExprType =
669      (isUnaryExpression && !getLangOpts().CPlusPlus)? CompoundLiteral : CastExpr;
670    ParsedType CastTy;
671    SourceLocation RParenLoc;
672
673    {
674      // The inside of the parens don't need to be a colon protected scope, and
675      // isn't immediately a message send.
676      ColonProtectionRAIIObject X(*this, false);
677
678      Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
679                                 isTypeCast == IsTypeCast, CastTy, RParenLoc);
680    }
681
682    switch (ParenExprType) {
683    case SimpleExpr:   break;    // Nothing else to do.
684    case CompoundStmt: break;  // Nothing else to do.
685    case CompoundLiteral:
686      // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
687      // postfix-expression exist, parse them now.
688      break;
689    case CastExpr:
690      // We have parsed the cast-expression and no postfix-expr pieces are
691      // following.
692      return move(Res);
693    }
694
695    break;
696  }
697
698    // primary-expression
699  case tok::numeric_constant:
700    // constant: integer-constant
701    // constant: floating-constant
702
703    Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
704    ConsumeToken();
705    break;
706
707  case tok::kw_true:
708  case tok::kw_false:
709    return ParseCXXBoolLiteral();
710
711  case tok::kw___objc_yes:
712  case tok::kw___objc_no:
713      return ParseObjCBoolLiteral();
714
715  case tok::kw_nullptr:
716    Diag(Tok, diag::warn_cxx98_compat_nullptr);
717    return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
718
719  case tok::annot_primary_expr:
720    assert(Res.get() == 0 && "Stray primary-expression annotation?");
721    Res = getExprAnnotation(Tok);
722    ConsumeToken();
723    break;
724
725  case tok::kw_decltype:
726  case tok::identifier: {      // primary-expression: identifier
727                               // unqualified-id: identifier
728                               // constant: enumeration-constant
729    // Turn a potentially qualified name into a annot_typename or
730    // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
731    if (getLangOpts().CPlusPlus) {
732      // Avoid the unnecessary parse-time lookup in the common case
733      // where the syntax forbids a type.
734      const Token &Next = NextToken();
735      if (Next.is(tok::coloncolon) ||
736          (!ColonIsSacred && Next.is(tok::colon)) ||
737          Next.is(tok::less) ||
738          Next.is(tok::l_paren) ||
739          Next.is(tok::l_brace)) {
740        // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
741        if (TryAnnotateTypeOrScopeToken())
742          return ExprError();
743        if (!Tok.is(tok::identifier))
744          return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
745      }
746    }
747
748    // Consume the identifier so that we can see if it is followed by a '(' or
749    // '.'.
750    IdentifierInfo &II = *Tok.getIdentifierInfo();
751    SourceLocation ILoc = ConsumeToken();
752
753    // Support 'Class.property' and 'super.property' notation.
754    if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
755        (Actions.getTypeName(II, ILoc, getCurScope()) ||
756         // Allow the base to be 'super' if in an objc-method.
757         (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
758      ConsumeToken();
759
760      // Allow either an identifier or the keyword 'class' (in C++).
761      if (Tok.isNot(tok::identifier) &&
762          !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
763        Diag(Tok, diag::err_expected_property_name);
764        return ExprError();
765      }
766      IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
767      SourceLocation PropertyLoc = ConsumeToken();
768
769      Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
770                                              ILoc, PropertyLoc);
771      break;
772    }
773
774    // In an Objective-C method, if we have "super" followed by an identifier,
775    // the token sequence is ill-formed. However, if there's a ':' or ']' after
776    // that identifier, this is probably a message send with a missing open
777    // bracket. Treat it as such.
778    if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
779        getCurScope()->isInObjcMethodScope() &&
780        ((Tok.is(tok::identifier) &&
781         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
782         Tok.is(tok::code_completion))) {
783      Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
784                                           0);
785      break;
786    }
787
788    // If we have an Objective-C class name followed by an identifier
789    // and either ':' or ']', this is an Objective-C class message
790    // send that's missing the opening '['. Recovery
791    // appropriately. Also take this path if we're performing code
792    // completion after an Objective-C class name.
793    if (getLangOpts().ObjC1 &&
794        ((Tok.is(tok::identifier) && !InMessageExpression) ||
795         Tok.is(tok::code_completion))) {
796      const Token& Next = NextToken();
797      if (Tok.is(tok::code_completion) ||
798          Next.is(tok::colon) || Next.is(tok::r_square))
799        if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
800          if (Typ.get()->isObjCObjectOrInterfaceType()) {
801            // Fake up a Declarator to use with ActOnTypeName.
802            DeclSpec DS(AttrFactory);
803            DS.SetRangeStart(ILoc);
804            DS.SetRangeEnd(ILoc);
805            const char *PrevSpec = 0;
806            unsigned DiagID;
807            DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ);
808
809            Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
810            TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
811                                                  DeclaratorInfo);
812            if (Ty.isInvalid())
813              break;
814
815            Res = ParseObjCMessageExpressionBody(SourceLocation(),
816                                                 SourceLocation(),
817                                                 Ty.get(), 0);
818            break;
819          }
820    }
821
822    // Make sure to pass down the right value for isAddressOfOperand.
823    if (isAddressOfOperand && isPostfixExpressionSuffixStart())
824      isAddressOfOperand = false;
825
826    // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
827    // need to know whether or not this identifier is a function designator or
828    // not.
829    UnqualifiedId Name;
830    CXXScopeSpec ScopeSpec;
831    SourceLocation TemplateKWLoc;
832    CastExpressionIdValidator Validator(isTypeCast != NotTypeCast,
833                                        isTypeCast != IsTypeCast);
834    Name.setIdentifier(&II, ILoc);
835    Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
836                                    Name, Tok.is(tok::l_paren),
837                                    isAddressOfOperand, &Validator);
838    break;
839  }
840  case tok::char_constant:     // constant: character-constant
841  case tok::wide_char_constant:
842  case tok::utf16_char_constant:
843  case tok::utf32_char_constant:
844    Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
845    ConsumeToken();
846    break;
847  case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
848  case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
849  case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
850    Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
851    ConsumeToken();
852    break;
853  case tok::string_literal:    // primary-expression: string-literal
854  case tok::wide_string_literal:
855  case tok::utf8_string_literal:
856  case tok::utf16_string_literal:
857  case tok::utf32_string_literal:
858    Res = ParseStringLiteralExpression(true);
859    break;
860  case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
861    Res = ParseGenericSelectionExpression();
862    break;
863  case tok::kw___builtin_va_arg:
864  case tok::kw___builtin_offsetof:
865  case tok::kw___builtin_choose_expr:
866  case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
867    return ParseBuiltinPrimaryExpression();
868  case tok::kw___null:
869    return Actions.ActOnGNUNullExpr(ConsumeToken());
870
871  case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
872  case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
873    // C++ [expr.unary] has:
874    //   unary-expression:
875    //     ++ cast-expression
876    //     -- cast-expression
877    SourceLocation SavedLoc = ConsumeToken();
878    Res = ParseCastExpression(!getLangOpts().CPlusPlus);
879    if (!Res.isInvalid())
880      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
881    return move(Res);
882  }
883  case tok::amp: {         // unary-expression: '&' cast-expression
884    // Special treatment because of member pointers
885    SourceLocation SavedLoc = ConsumeToken();
886    Res = ParseCastExpression(false, true);
887    if (!Res.isInvalid())
888      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
889    return move(Res);
890  }
891
892  case tok::star:          // unary-expression: '*' cast-expression
893  case tok::plus:          // unary-expression: '+' cast-expression
894  case tok::minus:         // unary-expression: '-' cast-expression
895  case tok::tilde:         // unary-expression: '~' cast-expression
896  case tok::exclaim:       // unary-expression: '!' cast-expression
897  case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
898  case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
899    SourceLocation SavedLoc = ConsumeToken();
900    Res = ParseCastExpression(false);
901    if (!Res.isInvalid())
902      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
903    return move(Res);
904  }
905
906  case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
907    // __extension__ silences extension warnings in the subexpression.
908    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
909    SourceLocation SavedLoc = ConsumeToken();
910    Res = ParseCastExpression(false);
911    if (!Res.isInvalid())
912      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
913    return move(Res);
914  }
915  case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
916                           // unary-expression: 'sizeof' '(' type-name ')'
917  case tok::kw_alignof:
918  case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
919                           // unary-expression: '__alignof' '(' type-name ')'
920                           // unary-expression: 'alignof' '(' type-id ')'
921  case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
922    return ParseUnaryExprOrTypeTraitExpression();
923  case tok::ampamp: {      // unary-expression: '&&' identifier
924    SourceLocation AmpAmpLoc = ConsumeToken();
925    if (Tok.isNot(tok::identifier))
926      return ExprError(Diag(Tok, diag::err_expected_ident));
927
928    if (getCurScope()->getFnParent() == 0)
929      return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
930
931    Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
932    LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
933                                                Tok.getLocation());
934    Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
935    ConsumeToken();
936    return move(Res);
937  }
938  case tok::kw_const_cast:
939  case tok::kw_dynamic_cast:
940  case tok::kw_reinterpret_cast:
941  case tok::kw_static_cast:
942    Res = ParseCXXCasts();
943    break;
944  case tok::kw_typeid:
945    Res = ParseCXXTypeid();
946    break;
947  case tok::kw___uuidof:
948    Res = ParseCXXUuidof();
949    break;
950  case tok::kw_this:
951    Res = ParseCXXThis();
952    break;
953
954  case tok::annot_typename:
955    if (isStartOfObjCClassMessageMissingOpenBracket()) {
956      ParsedType Type = getTypeAnnotation(Tok);
957
958      // Fake up a Declarator to use with ActOnTypeName.
959      DeclSpec DS(AttrFactory);
960      DS.SetRangeStart(Tok.getLocation());
961      DS.SetRangeEnd(Tok.getLastLoc());
962
963      const char *PrevSpec = 0;
964      unsigned DiagID;
965      DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
966                         PrevSpec, DiagID, Type);
967
968      Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
969      TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
970      if (Ty.isInvalid())
971        break;
972
973      ConsumeToken();
974      Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
975                                           Ty.get(), 0);
976      break;
977    }
978    // Fall through
979
980  case tok::annot_decltype:
981  case tok::kw_char:
982  case tok::kw_wchar_t:
983  case tok::kw_char16_t:
984  case tok::kw_char32_t:
985  case tok::kw_bool:
986  case tok::kw_short:
987  case tok::kw_int:
988  case tok::kw_long:
989  case tok::kw___int64:
990  case tok::kw___int128:
991  case tok::kw_signed:
992  case tok::kw_unsigned:
993  case tok::kw_half:
994  case tok::kw_float:
995  case tok::kw_double:
996  case tok::kw_void:
997  case tok::kw_typename:
998  case tok::kw_typeof:
999  case tok::kw___vector: {
1000    if (!getLangOpts().CPlusPlus) {
1001      Diag(Tok, diag::err_expected_expression);
1002      return ExprError();
1003    }
1004
1005    if (SavedKind == tok::kw_typename) {
1006      // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1007      //                     typename-specifier braced-init-list
1008      if (TryAnnotateTypeOrScopeToken())
1009        return ExprError();
1010    }
1011
1012    // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1013    //                     simple-type-specifier braced-init-list
1014    //
1015    DeclSpec DS(AttrFactory);
1016    ParseCXXSimpleTypeSpecifier(DS);
1017    if (Tok.isNot(tok::l_paren) &&
1018        (!getLangOpts().CPlusPlus0x || Tok.isNot(tok::l_brace)))
1019      return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1020                         << DS.getSourceRange());
1021
1022    if (Tok.is(tok::l_brace))
1023      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1024
1025    Res = ParseCXXTypeConstructExpression(DS);
1026    break;
1027  }
1028
1029  case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1030    // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1031    // (We can end up in this situation after tentative parsing.)
1032    if (TryAnnotateTypeOrScopeToken())
1033      return ExprError();
1034    if (!Tok.is(tok::annot_cxxscope))
1035      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1036                                 NotCastExpr, isTypeCast);
1037
1038    Token Next = NextToken();
1039    if (Next.is(tok::annot_template_id)) {
1040      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1041      if (TemplateId->Kind == TNK_Type_template) {
1042        // We have a qualified template-id that we know refers to a
1043        // type, translate it into a type and continue parsing as a
1044        // cast expression.
1045        CXXScopeSpec SS;
1046        ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1047                                       /*EnteringContext=*/false);
1048        AnnotateTemplateIdTokenAsType();
1049        return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1050                                   NotCastExpr, isTypeCast);
1051      }
1052    }
1053
1054    // Parse as an id-expression.
1055    Res = ParseCXXIdExpression(isAddressOfOperand);
1056    break;
1057  }
1058
1059  case tok::annot_template_id: { // [C++]          template-id
1060    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1061    if (TemplateId->Kind == TNK_Type_template) {
1062      // We have a template-id that we know refers to a type,
1063      // translate it into a type and continue parsing as a cast
1064      // expression.
1065      AnnotateTemplateIdTokenAsType();
1066      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1067                                 NotCastExpr, isTypeCast);
1068    }
1069
1070    // Fall through to treat the template-id as an id-expression.
1071  }
1072
1073  case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1074    Res = ParseCXXIdExpression(isAddressOfOperand);
1075    break;
1076
1077  case tok::coloncolon: {
1078    // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1079    // annotates the token, tail recurse.
1080    if (TryAnnotateTypeOrScopeToken())
1081      return ExprError();
1082    if (!Tok.is(tok::coloncolon))
1083      return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1084
1085    // ::new -> [C++] new-expression
1086    // ::delete -> [C++] delete-expression
1087    SourceLocation CCLoc = ConsumeToken();
1088    if (Tok.is(tok::kw_new))
1089      return ParseCXXNewExpression(true, CCLoc);
1090    if (Tok.is(tok::kw_delete))
1091      return ParseCXXDeleteExpression(true, CCLoc);
1092
1093    // This is not a type name or scope specifier, it is an invalid expression.
1094    Diag(CCLoc, diag::err_expected_expression);
1095    return ExprError();
1096  }
1097
1098  case tok::kw_new: // [C++] new-expression
1099    return ParseCXXNewExpression(false, Tok.getLocation());
1100
1101  case tok::kw_delete: // [C++] delete-expression
1102    return ParseCXXDeleteExpression(false, Tok.getLocation());
1103
1104  case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1105    Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1106    SourceLocation KeyLoc = ConsumeToken();
1107    BalancedDelimiterTracker T(*this, tok::l_paren);
1108
1109    if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1110      return ExprError();
1111    // C++11 [expr.unary.noexcept]p1:
1112    //   The noexcept operator determines whether the evaluation of its operand,
1113    //   which is an unevaluated operand, can throw an exception.
1114    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1115    ExprResult Result = ParseExpression();
1116
1117    T.consumeClose();
1118
1119    if (!Result.isInvalid())
1120      Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1121                                         Result.take(), T.getCloseLocation());
1122    return move(Result);
1123  }
1124
1125  case tok::kw___is_abstract: // [GNU] unary-type-trait
1126  case tok::kw___is_class:
1127  case tok::kw___is_empty:
1128  case tok::kw___is_enum:
1129  case tok::kw___is_literal:
1130  case tok::kw___is_arithmetic:
1131  case tok::kw___is_integral:
1132  case tok::kw___is_floating_point:
1133  case tok::kw___is_complete_type:
1134  case tok::kw___is_void:
1135  case tok::kw___is_array:
1136  case tok::kw___is_function:
1137  case tok::kw___is_reference:
1138  case tok::kw___is_lvalue_reference:
1139  case tok::kw___is_rvalue_reference:
1140  case tok::kw___is_fundamental:
1141  case tok::kw___is_object:
1142  case tok::kw___is_scalar:
1143  case tok::kw___is_compound:
1144  case tok::kw___is_pointer:
1145  case tok::kw___is_member_object_pointer:
1146  case tok::kw___is_member_function_pointer:
1147  case tok::kw___is_member_pointer:
1148  case tok::kw___is_const:
1149  case tok::kw___is_volatile:
1150  case tok::kw___is_standard_layout:
1151  case tok::kw___is_signed:
1152  case tok::kw___is_unsigned:
1153  case tok::kw___is_literal_type:
1154  case tok::kw___is_pod:
1155  case tok::kw___is_polymorphic:
1156  case tok::kw___is_trivial:
1157  case tok::kw___is_trivially_copyable:
1158  case tok::kw___is_union:
1159  case tok::kw___is_final:
1160  case tok::kw___has_trivial_constructor:
1161  case tok::kw___has_trivial_copy:
1162  case tok::kw___has_trivial_assign:
1163  case tok::kw___has_trivial_destructor:
1164  case tok::kw___has_nothrow_assign:
1165  case tok::kw___has_nothrow_copy:
1166  case tok::kw___has_nothrow_constructor:
1167  case tok::kw___has_virtual_destructor:
1168    return ParseUnaryTypeTrait();
1169
1170  case tok::kw___builtin_types_compatible_p:
1171  case tok::kw___is_base_of:
1172  case tok::kw___is_same:
1173  case tok::kw___is_convertible:
1174  case tok::kw___is_convertible_to:
1175  case tok::kw___is_trivially_assignable:
1176    return ParseBinaryTypeTrait();
1177
1178  case tok::kw___is_trivially_constructible:
1179    return ParseTypeTrait();
1180
1181  case tok::kw___array_rank:
1182  case tok::kw___array_extent:
1183    return ParseArrayTypeTrait();
1184
1185  case tok::kw___is_lvalue_expr:
1186  case tok::kw___is_rvalue_expr:
1187    return ParseExpressionTrait();
1188
1189  case tok::at: {
1190    SourceLocation AtLoc = ConsumeToken();
1191    return ParseObjCAtExpression(AtLoc);
1192  }
1193  case tok::caret:
1194    Res = ParseBlockLiteralExpression();
1195    break;
1196  case tok::code_completion: {
1197    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1198    cutOffParsing();
1199    return ExprError();
1200  }
1201  case tok::l_square:
1202    if (getLangOpts().CPlusPlus0x) {
1203      if (getLangOpts().ObjC1) {
1204        // C++11 lambda expressions and Objective-C message sends both start with a
1205        // square bracket.  There are three possibilities here:
1206        // we have a valid lambda expression, we have an invalid lambda
1207        // expression, or we have something that doesn't appear to be a lambda.
1208        // If we're in the last case, we fall back to ParseObjCMessageExpression.
1209        Res = TryParseLambdaExpression();
1210        if (!Res.isInvalid() && !Res.get())
1211          Res = ParseObjCMessageExpression();
1212        break;
1213      }
1214      Res = ParseLambdaExpression();
1215      break;
1216    }
1217    if (getLangOpts().ObjC1) {
1218      Res = ParseObjCMessageExpression();
1219      break;
1220    }
1221    // FALL THROUGH.
1222  default:
1223    NotCastExpr = true;
1224    return ExprError();
1225  }
1226
1227  // These can be followed by postfix-expr pieces.
1228  return ParsePostfixExpressionSuffix(Res);
1229}
1230
1231/// ParsePostfixExpressionSuffix - Once the leading part of a postfix-expression
1232/// is parsed, this method parses any suffixes that apply.
1233///
1234///       postfix-expression: [C99 6.5.2]
1235///         primary-expression
1236///         postfix-expression '[' expression ']'
1237///         postfix-expression '[' braced-init-list ']'
1238///         postfix-expression '(' argument-expression-list[opt] ')'
1239///         postfix-expression '.' identifier
1240///         postfix-expression '->' identifier
1241///         postfix-expression '++'
1242///         postfix-expression '--'
1243///         '(' type-name ')' '{' initializer-list '}'
1244///         '(' type-name ')' '{' initializer-list ',' '}'
1245///
1246///       argument-expression-list: [C99 6.5.2]
1247///         argument-expression ...[opt]
1248///         argument-expression-list ',' assignment-expression ...[opt]
1249///
1250ExprResult
1251Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1252  // Now that the primary-expression piece of the postfix-expression has been
1253  // parsed, see if there are any postfix-expression pieces here.
1254  SourceLocation Loc;
1255  while (1) {
1256    switch (Tok.getKind()) {
1257    case tok::code_completion:
1258      if (InMessageExpression)
1259        return move(LHS);
1260
1261      Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1262      cutOffParsing();
1263      return ExprError();
1264
1265    case tok::identifier:
1266      // If we see identifier: after an expression, and we're not already in a
1267      // message send, then this is probably a message send with a missing
1268      // opening bracket '['.
1269      if (getLangOpts().ObjC1 && !InMessageExpression &&
1270          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1271        LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1272                                             ParsedType(), LHS.get());
1273        break;
1274      }
1275
1276      // Fall through; this isn't a message send.
1277
1278    default:  // Not a postfix-expression suffix.
1279      return move(LHS);
1280    case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1281      // If we have a array postfix expression that starts on a new line and
1282      // Objective-C is enabled, it is highly likely that the user forgot a
1283      // semicolon after the base expression and that the array postfix-expr is
1284      // actually another message send.  In this case, do some look-ahead to see
1285      // if the contents of the square brackets are obviously not a valid
1286      // expression and recover by pretending there is no suffix.
1287      if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1288          isSimpleObjCMessageExpression())
1289        return move(LHS);
1290
1291      // Reject array indices starting with a lambda-expression. '[[' is
1292      // reserved for attributes.
1293      if (CheckProhibitedCXX11Attribute())
1294        return ExprError();
1295
1296      BalancedDelimiterTracker T(*this, tok::l_square);
1297      T.consumeOpen();
1298      Loc = T.getOpenLocation();
1299      ExprResult Idx;
1300      if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1301        Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1302        Idx = ParseBraceInitializer();
1303      } else
1304        Idx = ParseExpression();
1305
1306      SourceLocation RLoc = Tok.getLocation();
1307
1308      if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1309        LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.take(), Loc,
1310                                              Idx.take(), RLoc);
1311      } else
1312        LHS = ExprError();
1313
1314      // Match the ']'.
1315      T.consumeClose();
1316      break;
1317    }
1318
1319    case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1320    case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1321                               //   '(' argument-expression-list[opt] ')'
1322      tok::TokenKind OpKind = Tok.getKind();
1323      InMessageExpressionRAIIObject InMessage(*this, false);
1324
1325      Expr *ExecConfig = 0;
1326
1327      BalancedDelimiterTracker PT(*this, tok::l_paren);
1328
1329      if (OpKind == tok::lesslessless) {
1330        ExprVector ExecConfigExprs(Actions);
1331        CommaLocsTy ExecConfigCommaLocs;
1332        SourceLocation OpenLoc = ConsumeToken();
1333
1334        if (ParseExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1335          LHS = ExprError();
1336        }
1337
1338        SourceLocation CloseLoc = Tok.getLocation();
1339        if (Tok.is(tok::greatergreatergreater)) {
1340          ConsumeToken();
1341        } else if (LHS.isInvalid()) {
1342          SkipUntil(tok::greatergreatergreater);
1343        } else {
1344          // There was an error closing the brackets
1345          Diag(Tok, diag::err_expected_ggg);
1346          Diag(OpenLoc, diag::note_matching) << "<<<";
1347          SkipUntil(tok::greatergreatergreater);
1348          LHS = ExprError();
1349        }
1350
1351        if (!LHS.isInvalid()) {
1352          if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen, ""))
1353            LHS = ExprError();
1354          else
1355            Loc = PrevTokLocation;
1356        }
1357
1358        if (!LHS.isInvalid()) {
1359          ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1360                                    OpenLoc,
1361                                    move_arg(ExecConfigExprs),
1362                                    CloseLoc);
1363          if (ECResult.isInvalid())
1364            LHS = ExprError();
1365          else
1366            ExecConfig = ECResult.get();
1367        }
1368      } else {
1369        PT.consumeOpen();
1370        Loc = PT.getOpenLocation();
1371      }
1372
1373      ExprVector ArgExprs(Actions);
1374      CommaLocsTy CommaLocs;
1375
1376      if (Tok.is(tok::code_completion)) {
1377        Actions.CodeCompleteCall(getCurScope(), LHS.get(),
1378                                 llvm::ArrayRef<Expr *>());
1379        cutOffParsing();
1380        return ExprError();
1381      }
1382
1383      if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1384        if (Tok.isNot(tok::r_paren)) {
1385          if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall,
1386                                  LHS.get())) {
1387            LHS = ExprError();
1388          }
1389        }
1390      }
1391
1392      // Match the ')'.
1393      if (LHS.isInvalid()) {
1394        SkipUntil(tok::r_paren);
1395      } else if (Tok.isNot(tok::r_paren)) {
1396        PT.consumeClose();
1397        LHS = ExprError();
1398      } else {
1399        assert((ArgExprs.size() == 0 ||
1400                ArgExprs.size()-1 == CommaLocs.size())&&
1401               "Unexpected number of commas!");
1402        LHS = Actions.ActOnCallExpr(getCurScope(), LHS.take(), Loc,
1403                                    move_arg(ArgExprs), Tok.getLocation(),
1404                                    ExecConfig);
1405        PT.consumeClose();
1406      }
1407
1408      break;
1409    }
1410    case tok::arrow:
1411    case tok::period: {
1412      // postfix-expression: p-e '->' template[opt] id-expression
1413      // postfix-expression: p-e '.' template[opt] id-expression
1414      tok::TokenKind OpKind = Tok.getKind();
1415      SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
1416
1417      CXXScopeSpec SS;
1418      ParsedType ObjectType;
1419      bool MayBePseudoDestructor = false;
1420      if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1421        LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), LHS.take(),
1422                                                   OpLoc, OpKind, ObjectType,
1423                                                   MayBePseudoDestructor);
1424        if (LHS.isInvalid())
1425          break;
1426
1427        ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1428                                       /*EnteringContext=*/false,
1429                                       &MayBePseudoDestructor);
1430        if (SS.isNotEmpty())
1431          ObjectType = ParsedType();
1432      }
1433
1434      if (Tok.is(tok::code_completion)) {
1435        // Code completion for a member access expression.
1436        Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1437                                                OpLoc, OpKind == tok::arrow);
1438
1439        cutOffParsing();
1440        return ExprError();
1441      }
1442
1443      if (MayBePseudoDestructor && !LHS.isInvalid()) {
1444        LHS = ParseCXXPseudoDestructor(LHS.take(), OpLoc, OpKind, SS,
1445                                       ObjectType);
1446        break;
1447      }
1448
1449      // Either the action has told is that this cannot be a
1450      // pseudo-destructor expression (based on the type of base
1451      // expression), or we didn't see a '~' in the right place. We
1452      // can still parse a destructor name here, but in that case it
1453      // names a real destructor.
1454      // Allow explicit constructor calls in Microsoft mode.
1455      // FIXME: Add support for explicit call of template constructor.
1456      SourceLocation TemplateKWLoc;
1457      UnqualifiedId Name;
1458      if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) {
1459        // Objective-C++:
1460        //   After a '.' in a member access expression, treat the keyword
1461        //   'class' as if it were an identifier.
1462        //
1463        // This hack allows property access to the 'class' method because it is
1464        // such a common method name. For other C++ keywords that are
1465        // Objective-C method names, one must use the message send syntax.
1466        IdentifierInfo *Id = Tok.getIdentifierInfo();
1467        SourceLocation Loc = ConsumeToken();
1468        Name.setIdentifier(Id, Loc);
1469      } else if (ParseUnqualifiedId(SS,
1470                                    /*EnteringContext=*/false,
1471                                    /*AllowDestructorName=*/true,
1472                                    /*AllowConstructorName=*/
1473                                      getLangOpts().MicrosoftExt,
1474                                    ObjectType, TemplateKWLoc, Name))
1475        LHS = ExprError();
1476
1477      if (!LHS.isInvalid())
1478        LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.take(), OpLoc,
1479                                            OpKind, SS, TemplateKWLoc, Name,
1480                                 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl : 0,
1481                                            Tok.is(tok::l_paren));
1482      break;
1483    }
1484    case tok::plusplus:    // postfix-expression: postfix-expression '++'
1485    case tok::minusminus:  // postfix-expression: postfix-expression '--'
1486      if (!LHS.isInvalid()) {
1487        LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1488                                          Tok.getKind(), LHS.take());
1489      }
1490      ConsumeToken();
1491      break;
1492    }
1493  }
1494}
1495
1496/// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1497/// vec_step and we are at the start of an expression or a parenthesized
1498/// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1499/// expression (isCastExpr == false) or the type (isCastExpr == true).
1500///
1501///       unary-expression:  [C99 6.5.3]
1502///         'sizeof' unary-expression
1503///         'sizeof' '(' type-name ')'
1504/// [GNU]   '__alignof' unary-expression
1505/// [GNU]   '__alignof' '(' type-name ')'
1506/// [C++0x] 'alignof' '(' type-id ')'
1507///
1508/// [GNU]   typeof-specifier:
1509///           typeof ( expressions )
1510///           typeof ( type-name )
1511/// [GNU/C++] typeof unary-expression
1512///
1513/// [OpenCL 1.1 6.11.12] vec_step built-in function:
1514///           vec_step ( expressions )
1515///           vec_step ( type-name )
1516///
1517ExprResult
1518Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1519                                           bool &isCastExpr,
1520                                           ParsedType &CastTy,
1521                                           SourceRange &CastRange) {
1522
1523  assert((OpTok.is(tok::kw_typeof)    || OpTok.is(tok::kw_sizeof) ||
1524          OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1525          OpTok.is(tok::kw_vec_step)) &&
1526          "Not a typeof/sizeof/alignof/vec_step expression!");
1527
1528  ExprResult Operand;
1529
1530  // If the operand doesn't start with an '(', it must be an expression.
1531  if (Tok.isNot(tok::l_paren)) {
1532    isCastExpr = false;
1533    if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1534      Diag(Tok,diag::err_expected_lparen_after_id) << OpTok.getIdentifierInfo();
1535      return ExprError();
1536    }
1537
1538    Operand = ParseCastExpression(true/*isUnaryExpression*/);
1539  } else {
1540    // If it starts with a '(', we know that it is either a parenthesized
1541    // type-name, or it is a unary-expression that starts with a compound
1542    // literal, or starts with a primary-expression that is a parenthesized
1543    // expression.
1544    ParenParseOption ExprType = CastExpr;
1545    SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1546
1547    Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1548                                   false, CastTy, RParenLoc);
1549    CastRange = SourceRange(LParenLoc, RParenLoc);
1550
1551    // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1552    // a type.
1553    if (ExprType == CastExpr) {
1554      isCastExpr = true;
1555      return ExprEmpty();
1556    }
1557
1558    if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1559      // GNU typeof in C requires the expression to be parenthesized. Not so for
1560      // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1561      // the start of a unary-expression, but doesn't include any postfix
1562      // pieces. Parse these now if present.
1563      if (!Operand.isInvalid())
1564        Operand = ParsePostfixExpressionSuffix(Operand.get());
1565    }
1566  }
1567
1568  // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1569  isCastExpr = false;
1570  return move(Operand);
1571}
1572
1573
1574/// ParseUnaryExprOrTypeTraitExpression - Parse a sizeof or alignof expression.
1575///       unary-expression:  [C99 6.5.3]
1576///         'sizeof' unary-expression
1577///         'sizeof' '(' type-name ')'
1578/// [C++0x] 'sizeof' '...' '(' identifier ')'
1579/// [GNU]   '__alignof' unary-expression
1580/// [GNU]   '__alignof' '(' type-name ')'
1581/// [C++0x] 'alignof' '(' type-id ')'
1582ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1583  assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof)
1584          || Tok.is(tok::kw_alignof) || Tok.is(tok::kw_vec_step)) &&
1585         "Not a sizeof/alignof/vec_step expression!");
1586  Token OpTok = Tok;
1587  ConsumeToken();
1588
1589  // [C++0x] 'sizeof' '...' '(' identifier ')'
1590  if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1591    SourceLocation EllipsisLoc = ConsumeToken();
1592    SourceLocation LParenLoc, RParenLoc;
1593    IdentifierInfo *Name = 0;
1594    SourceLocation NameLoc;
1595    if (Tok.is(tok::l_paren)) {
1596      BalancedDelimiterTracker T(*this, tok::l_paren);
1597      T.consumeOpen();
1598      LParenLoc = T.getOpenLocation();
1599      if (Tok.is(tok::identifier)) {
1600        Name = Tok.getIdentifierInfo();
1601        NameLoc = ConsumeToken();
1602        T.consumeClose();
1603        RParenLoc = T.getCloseLocation();
1604        if (RParenLoc.isInvalid())
1605          RParenLoc = PP.getLocForEndOfToken(NameLoc);
1606      } else {
1607        Diag(Tok, diag::err_expected_parameter_pack);
1608        SkipUntil(tok::r_paren);
1609      }
1610    } else if (Tok.is(tok::identifier)) {
1611      Name = Tok.getIdentifierInfo();
1612      NameLoc = ConsumeToken();
1613      LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1614      RParenLoc = PP.getLocForEndOfToken(NameLoc);
1615      Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1616        << Name
1617        << FixItHint::CreateInsertion(LParenLoc, "(")
1618        << FixItHint::CreateInsertion(RParenLoc, ")");
1619    } else {
1620      Diag(Tok, diag::err_sizeof_parameter_pack);
1621    }
1622
1623    if (!Name)
1624      return ExprError();
1625
1626    return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1627                                                OpTok.getLocation(),
1628                                                *Name, NameLoc,
1629                                                RParenLoc);
1630  }
1631
1632  if (OpTok.is(tok::kw_alignof))
1633    Diag(OpTok, diag::warn_cxx98_compat_alignof);
1634
1635  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1636
1637  bool isCastExpr;
1638  ParsedType CastTy;
1639  SourceRange CastRange;
1640  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1641                                                          isCastExpr,
1642                                                          CastTy,
1643                                                          CastRange);
1644
1645  UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1646  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof))
1647    ExprKind = UETT_AlignOf;
1648  else if (OpTok.is(tok::kw_vec_step))
1649    ExprKind = UETT_VecStep;
1650
1651  if (isCastExpr)
1652    return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1653                                                 ExprKind,
1654                                                 /*isType=*/true,
1655                                                 CastTy.getAsOpaquePtr(),
1656                                                 CastRange);
1657
1658  // If we get here, the operand to the sizeof/alignof was an expresion.
1659  if (!Operand.isInvalid())
1660    Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1661                                                    ExprKind,
1662                                                    /*isType=*/false,
1663                                                    Operand.release(),
1664                                                    CastRange);
1665  return move(Operand);
1666}
1667
1668/// ParseBuiltinPrimaryExpression
1669///
1670///       primary-expression: [C99 6.5.1]
1671/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1672/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1673/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1674///                                     assign-expr ')'
1675/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1676/// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
1677///
1678/// [GNU] offsetof-member-designator:
1679/// [GNU]   identifier
1680/// [GNU]   offsetof-member-designator '.' identifier
1681/// [GNU]   offsetof-member-designator '[' expression ']'
1682///
1683ExprResult Parser::ParseBuiltinPrimaryExpression() {
1684  ExprResult Res;
1685  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1686
1687  tok::TokenKind T = Tok.getKind();
1688  SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
1689
1690  // All of these start with an open paren.
1691  if (Tok.isNot(tok::l_paren))
1692    return ExprError(Diag(Tok, diag::err_expected_lparen_after_id)
1693                       << BuiltinII);
1694
1695  BalancedDelimiterTracker PT(*this, tok::l_paren);
1696  PT.consumeOpen();
1697
1698  // TODO: Build AST.
1699
1700  switch (T) {
1701  default: llvm_unreachable("Not a builtin primary expression!");
1702  case tok::kw___builtin_va_arg: {
1703    ExprResult Expr(ParseAssignmentExpression());
1704
1705    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1706      Expr = ExprError();
1707
1708    TypeResult Ty = ParseTypeName();
1709
1710    if (Tok.isNot(tok::r_paren)) {
1711      Diag(Tok, diag::err_expected_rparen);
1712      Expr = ExprError();
1713    }
1714
1715    if (Expr.isInvalid() || Ty.isInvalid())
1716      Res = ExprError();
1717    else
1718      Res = Actions.ActOnVAArg(StartLoc, Expr.take(), Ty.get(), ConsumeParen());
1719    break;
1720  }
1721  case tok::kw___builtin_offsetof: {
1722    SourceLocation TypeLoc = Tok.getLocation();
1723    TypeResult Ty = ParseTypeName();
1724    if (Ty.isInvalid()) {
1725      SkipUntil(tok::r_paren);
1726      return ExprError();
1727    }
1728
1729    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1730      return ExprError();
1731
1732    // We must have at least one identifier here.
1733    if (Tok.isNot(tok::identifier)) {
1734      Diag(Tok, diag::err_expected_ident);
1735      SkipUntil(tok::r_paren);
1736      return ExprError();
1737    }
1738
1739    // Keep track of the various subcomponents we see.
1740    SmallVector<Sema::OffsetOfComponent, 4> Comps;
1741
1742    Comps.push_back(Sema::OffsetOfComponent());
1743    Comps.back().isBrackets = false;
1744    Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1745    Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1746
1747    // FIXME: This loop leaks the index expressions on error.
1748    while (1) {
1749      if (Tok.is(tok::period)) {
1750        // offsetof-member-designator: offsetof-member-designator '.' identifier
1751        Comps.push_back(Sema::OffsetOfComponent());
1752        Comps.back().isBrackets = false;
1753        Comps.back().LocStart = ConsumeToken();
1754
1755        if (Tok.isNot(tok::identifier)) {
1756          Diag(Tok, diag::err_expected_ident);
1757          SkipUntil(tok::r_paren);
1758          return ExprError();
1759        }
1760        Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1761        Comps.back().LocEnd = ConsumeToken();
1762
1763      } else if (Tok.is(tok::l_square)) {
1764        if (CheckProhibitedCXX11Attribute())
1765          return ExprError();
1766
1767        // offsetof-member-designator: offsetof-member-design '[' expression ']'
1768        Comps.push_back(Sema::OffsetOfComponent());
1769        Comps.back().isBrackets = true;
1770        BalancedDelimiterTracker ST(*this, tok::l_square);
1771        ST.consumeOpen();
1772        Comps.back().LocStart = ST.getOpenLocation();
1773        Res = ParseExpression();
1774        if (Res.isInvalid()) {
1775          SkipUntil(tok::r_paren);
1776          return move(Res);
1777        }
1778        Comps.back().U.E = Res.release();
1779
1780        ST.consumeClose();
1781        Comps.back().LocEnd = ST.getCloseLocation();
1782      } else {
1783        if (Tok.isNot(tok::r_paren)) {
1784          PT.consumeClose();
1785          Res = ExprError();
1786        } else if (Ty.isInvalid()) {
1787          Res = ExprError();
1788        } else {
1789          PT.consumeClose();
1790          Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1791                                             Ty.get(), &Comps[0], Comps.size(),
1792                                             PT.getCloseLocation());
1793        }
1794        break;
1795      }
1796    }
1797    break;
1798  }
1799  case tok::kw___builtin_choose_expr: {
1800    ExprResult Cond(ParseAssignmentExpression());
1801    if (Cond.isInvalid()) {
1802      SkipUntil(tok::r_paren);
1803      return move(Cond);
1804    }
1805    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1806      return ExprError();
1807
1808    ExprResult Expr1(ParseAssignmentExpression());
1809    if (Expr1.isInvalid()) {
1810      SkipUntil(tok::r_paren);
1811      return move(Expr1);
1812    }
1813    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1814      return ExprError();
1815
1816    ExprResult Expr2(ParseAssignmentExpression());
1817    if (Expr2.isInvalid()) {
1818      SkipUntil(tok::r_paren);
1819      return move(Expr2);
1820    }
1821    if (Tok.isNot(tok::r_paren)) {
1822      Diag(Tok, diag::err_expected_rparen);
1823      return ExprError();
1824    }
1825    Res = Actions.ActOnChooseExpr(StartLoc, Cond.take(), Expr1.take(),
1826                                  Expr2.take(), ConsumeParen());
1827    break;
1828  }
1829  case tok::kw___builtin_astype: {
1830    // The first argument is an expression to be converted, followed by a comma.
1831    ExprResult Expr(ParseAssignmentExpression());
1832    if (Expr.isInvalid()) {
1833      SkipUntil(tok::r_paren);
1834      return ExprError();
1835    }
1836
1837    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",
1838                         tok::r_paren))
1839      return ExprError();
1840
1841    // Second argument is the type to bitcast to.
1842    TypeResult DestTy = ParseTypeName();
1843    if (DestTy.isInvalid())
1844      return ExprError();
1845
1846    // Attempt to consume the r-paren.
1847    if (Tok.isNot(tok::r_paren)) {
1848      Diag(Tok, diag::err_expected_rparen);
1849      SkipUntil(tok::r_paren);
1850      return ExprError();
1851    }
1852
1853    Res = Actions.ActOnAsTypeExpr(Expr.take(), DestTy.get(), StartLoc,
1854                                  ConsumeParen());
1855    break;
1856  }
1857  }
1858
1859  if (Res.isInvalid())
1860    return ExprError();
1861
1862  // These can be followed by postfix-expr pieces because they are
1863  // primary-expressions.
1864  return ParsePostfixExpressionSuffix(Res.take());
1865}
1866
1867/// ParseParenExpression - This parses the unit that starts with a '(' token,
1868/// based on what is allowed by ExprType.  The actual thing parsed is returned
1869/// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
1870/// not the parsed cast-expression.
1871///
1872///       primary-expression: [C99 6.5.1]
1873///         '(' expression ')'
1874/// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
1875///       postfix-expression: [C99 6.5.2]
1876///         '(' type-name ')' '{' initializer-list '}'
1877///         '(' type-name ')' '{' initializer-list ',' '}'
1878///       cast-expression: [C99 6.5.4]
1879///         '(' type-name ')' cast-expression
1880/// [ARC]   bridged-cast-expression
1881///
1882/// [ARC] bridged-cast-expression:
1883///         (__bridge type-name) cast-expression
1884///         (__bridge_transfer type-name) cast-expression
1885///         (__bridge_retained type-name) cast-expression
1886ExprResult
1887Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
1888                             bool isTypeCast, ParsedType &CastTy,
1889                             SourceLocation &RParenLoc) {
1890  assert(Tok.is(tok::l_paren) && "Not a paren expr!");
1891  GreaterThanIsOperatorScope G(GreaterThanIsOperator, true);
1892  BalancedDelimiterTracker T(*this, tok::l_paren);
1893  if (T.consumeOpen())
1894    return ExprError();
1895  SourceLocation OpenLoc = T.getOpenLocation();
1896
1897  ExprResult Result(true);
1898  bool isAmbiguousTypeId;
1899  CastTy = ParsedType();
1900
1901  if (Tok.is(tok::code_completion)) {
1902    Actions.CodeCompleteOrdinaryName(getCurScope(),
1903                 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
1904                                            : Sema::PCC_Expression);
1905    cutOffParsing();
1906    return ExprError();
1907  }
1908
1909  // Diagnose use of bridge casts in non-arc mode.
1910  bool BridgeCast = (getLangOpts().ObjC2 &&
1911                     (Tok.is(tok::kw___bridge) ||
1912                      Tok.is(tok::kw___bridge_transfer) ||
1913                      Tok.is(tok::kw___bridge_retained) ||
1914                      Tok.is(tok::kw___bridge_retain)));
1915  if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
1916    StringRef BridgeCastName = Tok.getName();
1917    SourceLocation BridgeKeywordLoc = ConsumeToken();
1918    if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
1919      Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
1920        << BridgeCastName
1921        << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
1922    BridgeCast = false;
1923  }
1924
1925  // None of these cases should fall through with an invalid Result
1926  // unless they've already reported an error.
1927  if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
1928    Diag(Tok, diag::ext_gnu_statement_expr);
1929    Actions.ActOnStartStmtExpr();
1930
1931    StmtResult Stmt(ParseCompoundStatement(true));
1932    ExprType = CompoundStmt;
1933
1934    // If the substmt parsed correctly, build the AST node.
1935    if (!Stmt.isInvalid()) {
1936      Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.take(), Tok.getLocation());
1937    } else {
1938      Actions.ActOnStmtExprError();
1939    }
1940  } else if (ExprType >= CompoundLiteral && BridgeCast) {
1941    tok::TokenKind tokenKind = Tok.getKind();
1942    SourceLocation BridgeKeywordLoc = ConsumeToken();
1943
1944    // Parse an Objective-C ARC ownership cast expression.
1945    ObjCBridgeCastKind Kind;
1946    if (tokenKind == tok::kw___bridge)
1947      Kind = OBC_Bridge;
1948    else if (tokenKind == tok::kw___bridge_transfer)
1949      Kind = OBC_BridgeTransfer;
1950    else if (tokenKind == tok::kw___bridge_retained)
1951      Kind = OBC_BridgeRetained;
1952    else {
1953      // As a hopefully temporary workaround, allow __bridge_retain as
1954      // a synonym for __bridge_retained, but only in system headers.
1955      assert(tokenKind == tok::kw___bridge_retain);
1956      Kind = OBC_BridgeRetained;
1957      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
1958        Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
1959          << FixItHint::CreateReplacement(BridgeKeywordLoc,
1960                                          "__bridge_retained");
1961    }
1962
1963    TypeResult Ty = ParseTypeName();
1964    T.consumeClose();
1965    RParenLoc = T.getCloseLocation();
1966    ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
1967
1968    if (Ty.isInvalid() || SubExpr.isInvalid())
1969      return ExprError();
1970
1971    return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
1972                                        BridgeKeywordLoc, Ty.get(),
1973                                        RParenLoc, SubExpr.get());
1974  } else if (ExprType >= CompoundLiteral &&
1975             isTypeIdInParens(isAmbiguousTypeId)) {
1976
1977    // Otherwise, this is a compound literal expression or cast expression.
1978
1979    // In C++, if the type-id is ambiguous we disambiguate based on context.
1980    // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
1981    // in which case we should treat it as type-id.
1982    // if stopIfCastExpr is false, we need to determine the context past the
1983    // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
1984    if (isAmbiguousTypeId && !stopIfCastExpr) {
1985      ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T);
1986      RParenLoc = T.getCloseLocation();
1987      return res;
1988    }
1989
1990    // Parse the type declarator.
1991    DeclSpec DS(AttrFactory);
1992    ParseSpecifierQualifierList(DS);
1993    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1994    ParseDeclarator(DeclaratorInfo);
1995
1996    // If our type is followed by an identifier and either ':' or ']', then
1997    // this is probably an Objective-C message send where the leading '[' is
1998    // missing. Recover as if that were the case.
1999    if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2000        !InMessageExpression && getLangOpts().ObjC1 &&
2001        (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2002      TypeResult Ty;
2003      {
2004        InMessageExpressionRAIIObject InMessage(*this, false);
2005        Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2006      }
2007      Result = ParseObjCMessageExpressionBody(SourceLocation(),
2008                                              SourceLocation(),
2009                                              Ty.get(), 0);
2010    } else {
2011      // Match the ')'.
2012      T.consumeClose();
2013      RParenLoc = T.getCloseLocation();
2014      if (Tok.is(tok::l_brace)) {
2015        ExprType = CompoundLiteral;
2016        TypeResult Ty;
2017        {
2018          InMessageExpressionRAIIObject InMessage(*this, false);
2019          Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2020        }
2021        return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2022      }
2023
2024      if (ExprType == CastExpr) {
2025        // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2026
2027        if (DeclaratorInfo.isInvalidType())
2028          return ExprError();
2029
2030        // Note that this doesn't parse the subsequent cast-expression, it just
2031        // returns the parsed type to the callee.
2032        if (stopIfCastExpr) {
2033          TypeResult Ty;
2034          {
2035            InMessageExpressionRAIIObject InMessage(*this, false);
2036            Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2037          }
2038          CastTy = Ty.get();
2039          return ExprResult();
2040        }
2041
2042        // Reject the cast of super idiom in ObjC.
2043        if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2044            Tok.getIdentifierInfo() == Ident_super &&
2045            getCurScope()->isInObjcMethodScope() &&
2046            GetLookAheadToken(1).isNot(tok::period)) {
2047          Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2048            << SourceRange(OpenLoc, RParenLoc);
2049          return ExprError();
2050        }
2051
2052        // Parse the cast-expression that follows it next.
2053        // TODO: For cast expression with CastTy.
2054        Result = ParseCastExpression(/*isUnaryExpression=*/false,
2055                                     /*isAddressOfOperand=*/false,
2056                                     /*isTypeCast=*/IsTypeCast);
2057        if (!Result.isInvalid()) {
2058          Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2059                                         DeclaratorInfo, CastTy,
2060                                         RParenLoc, Result.take());
2061        }
2062        return move(Result);
2063      }
2064
2065      Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2066      return ExprError();
2067    }
2068  } else if (isTypeCast) {
2069    // Parse the expression-list.
2070    InMessageExpressionRAIIObject InMessage(*this, false);
2071
2072    ExprVector ArgExprs(Actions);
2073    CommaLocsTy CommaLocs;
2074
2075    if (!ParseExpressionList(ArgExprs, CommaLocs)) {
2076      ExprType = SimpleExpr;
2077      Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2078                                          move_arg(ArgExprs));
2079    }
2080  } else {
2081    InMessageExpressionRAIIObject InMessage(*this, false);
2082
2083    Result = ParseExpression(MaybeTypeCast);
2084    ExprType = SimpleExpr;
2085
2086    // Don't build a paren expression unless we actually match a ')'.
2087    if (!Result.isInvalid() && Tok.is(tok::r_paren))
2088      Result = Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.take());
2089  }
2090
2091  // Match the ')'.
2092  if (Result.isInvalid()) {
2093    SkipUntil(tok::r_paren);
2094    return ExprError();
2095  }
2096
2097  T.consumeClose();
2098  RParenLoc = T.getCloseLocation();
2099  return move(Result);
2100}
2101
2102/// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2103/// and we are at the left brace.
2104///
2105///       postfix-expression: [C99 6.5.2]
2106///         '(' type-name ')' '{' initializer-list '}'
2107///         '(' type-name ')' '{' initializer-list ',' '}'
2108///
2109ExprResult
2110Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2111                                       SourceLocation LParenLoc,
2112                                       SourceLocation RParenLoc) {
2113  assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2114  if (!getLangOpts().C99)   // Compound literals don't exist in C90.
2115    Diag(LParenLoc, diag::ext_c99_compound_literal);
2116  ExprResult Result = ParseInitializer();
2117  if (!Result.isInvalid() && Ty)
2118    return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.take());
2119  return move(Result);
2120}
2121
2122/// ParseStringLiteralExpression - This handles the various token types that
2123/// form string literals, and also handles string concatenation [C99 5.1.1.2,
2124/// translation phase #6].
2125///
2126///       primary-expression: [C99 6.5.1]
2127///         string-literal
2128ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2129  assert(isTokenStringLiteral() && "Not a string literal!");
2130
2131  // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
2132  // considered to be strings for concatenation purposes.
2133  SmallVector<Token, 4> StringToks;
2134
2135  do {
2136    StringToks.push_back(Tok);
2137    ConsumeStringToken();
2138  } while (isTokenStringLiteral());
2139
2140  // Pass the set of string tokens, ready for concatenation, to the actions.
2141  return Actions.ActOnStringLiteral(&StringToks[0], StringToks.size(),
2142                                   AllowUserDefinedLiteral ? getCurScope() : 0);
2143}
2144
2145/// ParseGenericSelectionExpression - Parse a C11 generic-selection
2146/// [C11 6.5.1.1].
2147///
2148///    generic-selection:
2149///           _Generic ( assignment-expression , generic-assoc-list )
2150///    generic-assoc-list:
2151///           generic-association
2152///           generic-assoc-list , generic-association
2153///    generic-association:
2154///           type-name : assignment-expression
2155///           default : assignment-expression
2156ExprResult Parser::ParseGenericSelectionExpression() {
2157  assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2158  SourceLocation KeyLoc = ConsumeToken();
2159
2160  if (!getLangOpts().C11)
2161    Diag(KeyLoc, diag::ext_c11_generic_selection);
2162
2163  BalancedDelimiterTracker T(*this, tok::l_paren);
2164  if (T.expectAndConsume(diag::err_expected_lparen))
2165    return ExprError();
2166
2167  ExprResult ControllingExpr;
2168  {
2169    // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2170    // not evaluated."
2171    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2172    ControllingExpr = ParseAssignmentExpression();
2173    if (ControllingExpr.isInvalid()) {
2174      SkipUntil(tok::r_paren);
2175      return ExprError();
2176    }
2177  }
2178
2179  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "")) {
2180    SkipUntil(tok::r_paren);
2181    return ExprError();
2182  }
2183
2184  SourceLocation DefaultLoc;
2185  TypeVector Types(Actions);
2186  ExprVector Exprs(Actions);
2187  while (1) {
2188    ParsedType Ty;
2189    if (Tok.is(tok::kw_default)) {
2190      // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2191      // generic association."
2192      if (!DefaultLoc.isInvalid()) {
2193        Diag(Tok, diag::err_duplicate_default_assoc);
2194        Diag(DefaultLoc, diag::note_previous_default_assoc);
2195        SkipUntil(tok::r_paren);
2196        return ExprError();
2197      }
2198      DefaultLoc = ConsumeToken();
2199      Ty = ParsedType();
2200    } else {
2201      ColonProtectionRAIIObject X(*this);
2202      TypeResult TR = ParseTypeName();
2203      if (TR.isInvalid()) {
2204        SkipUntil(tok::r_paren);
2205        return ExprError();
2206      }
2207      Ty = TR.release();
2208    }
2209    Types.push_back(Ty);
2210
2211    if (ExpectAndConsume(tok::colon, diag::err_expected_colon, "")) {
2212      SkipUntil(tok::r_paren);
2213      return ExprError();
2214    }
2215
2216    // FIXME: These expressions should be parsed in a potentially potentially
2217    // evaluated context.
2218    ExprResult ER(ParseAssignmentExpression());
2219    if (ER.isInvalid()) {
2220      SkipUntil(tok::r_paren);
2221      return ExprError();
2222    }
2223    Exprs.push_back(ER.release());
2224
2225    if (Tok.isNot(tok::comma))
2226      break;
2227    ConsumeToken();
2228  }
2229
2230  T.consumeClose();
2231  if (T.getCloseLocation().isInvalid())
2232    return ExprError();
2233
2234  return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2235                                           T.getCloseLocation(),
2236                                           ControllingExpr.release(),
2237                                           move_arg(Types), move_arg(Exprs));
2238}
2239
2240/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2241///
2242///       argument-expression-list:
2243///         assignment-expression
2244///         argument-expression-list , assignment-expression
2245///
2246/// [C++] expression-list:
2247/// [C++]   assignment-expression
2248/// [C++]   expression-list , assignment-expression
2249///
2250/// [C++0x] expression-list:
2251/// [C++0x]   initializer-list
2252///
2253/// [C++0x] initializer-list
2254/// [C++0x]   initializer-clause ...[opt]
2255/// [C++0x]   initializer-list , initializer-clause ...[opt]
2256///
2257/// [C++0x] initializer-clause:
2258/// [C++0x]   assignment-expression
2259/// [C++0x]   braced-init-list
2260///
2261bool Parser::ParseExpressionList(SmallVectorImpl<Expr*> &Exprs,
2262                            SmallVectorImpl<SourceLocation> &CommaLocs,
2263                                 void (Sema::*Completer)(Scope *S,
2264                                                           Expr *Data,
2265                                                   llvm::ArrayRef<Expr *> Args),
2266                                 Expr *Data) {
2267  while (1) {
2268    if (Tok.is(tok::code_completion)) {
2269      if (Completer)
2270        (Actions.*Completer)(getCurScope(), Data, Exprs);
2271      else
2272        Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2273      cutOffParsing();
2274      return true;
2275    }
2276
2277    ExprResult Expr;
2278    if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
2279      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2280      Expr = ParseBraceInitializer();
2281    } else
2282      Expr = ParseAssignmentExpression();
2283
2284    if (Tok.is(tok::ellipsis))
2285      Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2286    if (Expr.isInvalid())
2287      return true;
2288
2289    Exprs.push_back(Expr.release());
2290
2291    if (Tok.isNot(tok::comma))
2292      return false;
2293    // Move to the next argument, remember where the comma was.
2294    CommaLocs.push_back(ConsumeToken());
2295  }
2296}
2297
2298/// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2299///
2300/// [clang] block-id:
2301/// [clang]   specifier-qualifier-list block-declarator
2302///
2303void Parser::ParseBlockId() {
2304  if (Tok.is(tok::code_completion)) {
2305    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2306    return cutOffParsing();
2307  }
2308
2309  // Parse the specifier-qualifier-list piece.
2310  DeclSpec DS(AttrFactory);
2311  ParseSpecifierQualifierList(DS);
2312
2313  // Parse the block-declarator.
2314  Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2315  ParseDeclarator(DeclaratorInfo);
2316
2317  // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2318  DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2319
2320  MaybeParseGNUAttributes(DeclaratorInfo);
2321
2322  // Inform sema that we are starting a block.
2323  Actions.ActOnBlockArguments(DeclaratorInfo, getCurScope());
2324}
2325
2326/// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2327/// like ^(int x){ return x+1; }
2328///
2329///         block-literal:
2330/// [clang]   '^' block-args[opt] compound-statement
2331/// [clang]   '^' block-id compound-statement
2332/// [clang] block-args:
2333/// [clang]   '(' parameter-list ')'
2334///
2335ExprResult Parser::ParseBlockLiteralExpression() {
2336  assert(Tok.is(tok::caret) && "block literal starts with ^");
2337  SourceLocation CaretLoc = ConsumeToken();
2338
2339  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2340                                "block literal parsing");
2341
2342  // Enter a scope to hold everything within the block.  This includes the
2343  // argument decls, decls within the compound expression, etc.  This also
2344  // allows determining whether a variable reference inside the block is
2345  // within or outside of the block.
2346  ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2347                              Scope::DeclScope);
2348
2349  // Inform sema that we are starting a block.
2350  Actions.ActOnBlockStart(CaretLoc, getCurScope());
2351
2352  // Parse the return type if present.
2353  DeclSpec DS(AttrFactory);
2354  Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2355  // FIXME: Since the return type isn't actually parsed, it can't be used to
2356  // fill ParamInfo with an initial valid range, so do it manually.
2357  ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2358
2359  // If this block has arguments, parse them.  There is no ambiguity here with
2360  // the expression case, because the expression case requires a parameter list.
2361  if (Tok.is(tok::l_paren)) {
2362    ParseParenDeclarator(ParamInfo);
2363    // Parse the pieces after the identifier as if we had "int(...)".
2364    // SetIdentifier sets the source range end, but in this case we're past
2365    // that location.
2366    SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2367    ParamInfo.SetIdentifier(0, CaretLoc);
2368    ParamInfo.SetRangeEnd(Tmp);
2369    if (ParamInfo.isInvalidType()) {
2370      // If there was an error parsing the arguments, they may have
2371      // tried to use ^(x+y) which requires an argument list.  Just
2372      // skip the whole block literal.
2373      Actions.ActOnBlockError(CaretLoc, getCurScope());
2374      return ExprError();
2375    }
2376
2377    MaybeParseGNUAttributes(ParamInfo);
2378
2379    // Inform sema that we are starting a block.
2380    Actions.ActOnBlockArguments(ParamInfo, getCurScope());
2381  } else if (!Tok.is(tok::l_brace)) {
2382    ParseBlockId();
2383  } else {
2384    // Otherwise, pretend we saw (void).
2385    ParsedAttributes attrs(AttrFactory);
2386    ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(true, false,
2387                                                       SourceLocation(),
2388                                                       0, 0, 0,
2389                                                       true, SourceLocation(),
2390                                                       SourceLocation(),
2391                                                       SourceLocation(),
2392                                                       SourceLocation(),
2393                                                       EST_None,
2394                                                       SourceLocation(),
2395                                                       0, 0, 0, 0, 0,
2396                                                       CaretLoc, CaretLoc,
2397                                                       ParamInfo),
2398                          attrs, CaretLoc);
2399
2400    MaybeParseGNUAttributes(ParamInfo);
2401
2402    // Inform sema that we are starting a block.
2403    Actions.ActOnBlockArguments(ParamInfo, getCurScope());
2404  }
2405
2406
2407  ExprResult Result(true);
2408  if (!Tok.is(tok::l_brace)) {
2409    // Saw something like: ^expr
2410    Diag(Tok, diag::err_expected_expression);
2411    Actions.ActOnBlockError(CaretLoc, getCurScope());
2412    return ExprError();
2413  }
2414
2415  StmtResult Stmt(ParseCompoundStatementBody());
2416  BlockScope.Exit();
2417  if (!Stmt.isInvalid())
2418    Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.take(), getCurScope());
2419  else
2420    Actions.ActOnBlockError(CaretLoc, getCurScope());
2421  return move(Result);
2422}
2423
2424/// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2425///
2426///         '__objc_yes'
2427///         '__objc_no'
2428ExprResult Parser::ParseObjCBoolLiteral() {
2429  tok::TokenKind Kind = Tok.getKind();
2430  return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2431}
2432