CodeGenFunction.h revision 226633
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/Basic/ABI.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/ValueHandle.h"
28#include "CodeGenModule.h"
29#include "CGBuilder.h"
30#include "CGValue.h"
31
32namespace llvm {
33  class BasicBlock;
34  class LLVMContext;
35  class MDNode;
36  class Module;
37  class SwitchInst;
38  class Twine;
39  class Value;
40  class CallSite;
41}
42
43namespace clang {
44  class APValue;
45  class ASTContext;
46  class CXXDestructorDecl;
47  class CXXForRangeStmt;
48  class CXXTryStmt;
49  class Decl;
50  class LabelDecl;
51  class EnumConstantDecl;
52  class FunctionDecl;
53  class FunctionProtoType;
54  class LabelStmt;
55  class ObjCContainerDecl;
56  class ObjCInterfaceDecl;
57  class ObjCIvarDecl;
58  class ObjCMethodDecl;
59  class ObjCImplementationDecl;
60  class ObjCPropertyImplDecl;
61  class TargetInfo;
62  class TargetCodeGenInfo;
63  class VarDecl;
64  class ObjCForCollectionStmt;
65  class ObjCAtTryStmt;
66  class ObjCAtThrowStmt;
67  class ObjCAtSynchronizedStmt;
68  class ObjCAutoreleasePoolStmt;
69
70namespace CodeGen {
71  class CodeGenTypes;
72  class CGDebugInfo;
73  class CGFunctionInfo;
74  class CGRecordLayout;
75  class CGBlockInfo;
76  class CGCXXABI;
77  class BlockFlags;
78  class BlockFieldFlags;
79
80/// A branch fixup.  These are required when emitting a goto to a
81/// label which hasn't been emitted yet.  The goto is optimistically
82/// emitted as a branch to the basic block for the label, and (if it
83/// occurs in a scope with non-trivial cleanups) a fixup is added to
84/// the innermost cleanup.  When a (normal) cleanup is popped, any
85/// unresolved fixups in that scope are threaded through the cleanup.
86struct BranchFixup {
87  /// The block containing the terminator which needs to be modified
88  /// into a switch if this fixup is resolved into the current scope.
89  /// If null, LatestBranch points directly to the destination.
90  llvm::BasicBlock *OptimisticBranchBlock;
91
92  /// The ultimate destination of the branch.
93  ///
94  /// This can be set to null to indicate that this fixup was
95  /// successfully resolved.
96  llvm::BasicBlock *Destination;
97
98  /// The destination index value.
99  unsigned DestinationIndex;
100
101  /// The initial branch of the fixup.
102  llvm::BranchInst *InitialBranch;
103};
104
105template <class T> struct InvariantValue {
106  typedef T type;
107  typedef T saved_type;
108  static bool needsSaving(type value) { return false; }
109  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
110  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
111};
112
113/// A metaprogramming class for ensuring that a value will dominate an
114/// arbitrary position in a function.
115template <class T> struct DominatingValue : InvariantValue<T> {};
116
117template <class T, bool mightBeInstruction =
118            llvm::is_base_of<llvm::Value, T>::value &&
119            !llvm::is_base_of<llvm::Constant, T>::value &&
120            !llvm::is_base_of<llvm::BasicBlock, T>::value>
121struct DominatingPointer;
122template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
123// template <class T> struct DominatingPointer<T,true> at end of file
124
125template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
126
127enum CleanupKind {
128  EHCleanup = 0x1,
129  NormalCleanup = 0x2,
130  NormalAndEHCleanup = EHCleanup | NormalCleanup,
131
132  InactiveCleanup = 0x4,
133  InactiveEHCleanup = EHCleanup | InactiveCleanup,
134  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
135  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
136};
137
138/// A stack of scopes which respond to exceptions, including cleanups
139/// and catch blocks.
140class EHScopeStack {
141public:
142  /// A saved depth on the scope stack.  This is necessary because
143  /// pushing scopes onto the stack invalidates iterators.
144  class stable_iterator {
145    friend class EHScopeStack;
146
147    /// Offset from StartOfData to EndOfBuffer.
148    ptrdiff_t Size;
149
150    stable_iterator(ptrdiff_t Size) : Size(Size) {}
151
152  public:
153    static stable_iterator invalid() { return stable_iterator(-1); }
154    stable_iterator() : Size(-1) {}
155
156    bool isValid() const { return Size >= 0; }
157
158    /// Returns true if this scope encloses I.
159    /// Returns false if I is invalid.
160    /// This scope must be valid.
161    bool encloses(stable_iterator I) const { return Size <= I.Size; }
162
163    /// Returns true if this scope strictly encloses I: that is,
164    /// if it encloses I and is not I.
165    /// Returns false is I is invalid.
166    /// This scope must be valid.
167    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
168
169    friend bool operator==(stable_iterator A, stable_iterator B) {
170      return A.Size == B.Size;
171    }
172    friend bool operator!=(stable_iterator A, stable_iterator B) {
173      return A.Size != B.Size;
174    }
175  };
176
177  /// Information for lazily generating a cleanup.  Subclasses must be
178  /// POD-like: cleanups will not be destructed, and they will be
179  /// allocated on the cleanup stack and freely copied and moved
180  /// around.
181  ///
182  /// Cleanup implementations should generally be declared in an
183  /// anonymous namespace.
184  class Cleanup {
185    // Anchor the construction vtable.
186    virtual void anchor();
187  public:
188    /// Generation flags.
189    class Flags {
190      enum {
191        F_IsForEH             = 0x1,
192        F_IsNormalCleanupKind = 0x2,
193        F_IsEHCleanupKind     = 0x4
194      };
195      unsigned flags;
196
197    public:
198      Flags() : flags(0) {}
199
200      /// isForEH - true if the current emission is for an EH cleanup.
201      bool isForEHCleanup() const { return flags & F_IsForEH; }
202      bool isForNormalCleanup() const { return !isForEHCleanup(); }
203      void setIsForEHCleanup() { flags |= F_IsForEH; }
204
205      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
206      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
207
208      /// isEHCleanupKind - true if the cleanup was pushed as an EH
209      /// cleanup.
210      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
211      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
212    };
213
214    // Provide a virtual destructor to suppress a very common warning
215    // that unfortunately cannot be suppressed without this.  Cleanups
216    // should not rely on this destructor ever being called.
217    virtual ~Cleanup() {}
218
219    /// Emit the cleanup.  For normal cleanups, this is run in the
220    /// same EH context as when the cleanup was pushed, i.e. the
221    /// immediately-enclosing context of the cleanup scope.  For
222    /// EH cleanups, this is run in a terminate context.
223    ///
224    // \param IsForEHCleanup true if this is for an EH cleanup, false
225    ///  if for a normal cleanup.
226    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
227  };
228
229  /// ConditionalCleanupN stores the saved form of its N parameters,
230  /// then restores them and performs the cleanup.
231  template <class T, class A0>
232  class ConditionalCleanup1 : public Cleanup {
233    typedef typename DominatingValue<A0>::saved_type A0_saved;
234    A0_saved a0_saved;
235
236    void Emit(CodeGenFunction &CGF, Flags flags) {
237      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
238      T(a0).Emit(CGF, flags);
239    }
240
241  public:
242    ConditionalCleanup1(A0_saved a0)
243      : a0_saved(a0) {}
244  };
245
246  template <class T, class A0, class A1>
247  class ConditionalCleanup2 : public Cleanup {
248    typedef typename DominatingValue<A0>::saved_type A0_saved;
249    typedef typename DominatingValue<A1>::saved_type A1_saved;
250    A0_saved a0_saved;
251    A1_saved a1_saved;
252
253    void Emit(CodeGenFunction &CGF, Flags flags) {
254      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
255      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
256      T(a0, a1).Emit(CGF, flags);
257    }
258
259  public:
260    ConditionalCleanup2(A0_saved a0, A1_saved a1)
261      : a0_saved(a0), a1_saved(a1) {}
262  };
263
264  template <class T, class A0, class A1, class A2>
265  class ConditionalCleanup3 : public Cleanup {
266    typedef typename DominatingValue<A0>::saved_type A0_saved;
267    typedef typename DominatingValue<A1>::saved_type A1_saved;
268    typedef typename DominatingValue<A2>::saved_type A2_saved;
269    A0_saved a0_saved;
270    A1_saved a1_saved;
271    A2_saved a2_saved;
272
273    void Emit(CodeGenFunction &CGF, Flags flags) {
274      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
275      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
276      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
277      T(a0, a1, a2).Emit(CGF, flags);
278    }
279
280  public:
281    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
282      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
283  };
284
285  template <class T, class A0, class A1, class A2, class A3>
286  class ConditionalCleanup4 : public Cleanup {
287    typedef typename DominatingValue<A0>::saved_type A0_saved;
288    typedef typename DominatingValue<A1>::saved_type A1_saved;
289    typedef typename DominatingValue<A2>::saved_type A2_saved;
290    typedef typename DominatingValue<A3>::saved_type A3_saved;
291    A0_saved a0_saved;
292    A1_saved a1_saved;
293    A2_saved a2_saved;
294    A3_saved a3_saved;
295
296    void Emit(CodeGenFunction &CGF, Flags flags) {
297      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
298      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
299      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
300      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
301      T(a0, a1, a2, a3).Emit(CGF, flags);
302    }
303
304  public:
305    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
306      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
307  };
308
309private:
310  // The implementation for this class is in CGException.h and
311  // CGException.cpp; the definition is here because it's used as a
312  // member of CodeGenFunction.
313
314  /// The start of the scope-stack buffer, i.e. the allocated pointer
315  /// for the buffer.  All of these pointers are either simultaneously
316  /// null or simultaneously valid.
317  char *StartOfBuffer;
318
319  /// The end of the buffer.
320  char *EndOfBuffer;
321
322  /// The first valid entry in the buffer.
323  char *StartOfData;
324
325  /// The innermost normal cleanup on the stack.
326  stable_iterator InnermostNormalCleanup;
327
328  /// The innermost EH scope on the stack.
329  stable_iterator InnermostEHScope;
330
331  /// The current set of branch fixups.  A branch fixup is a jump to
332  /// an as-yet unemitted label, i.e. a label for which we don't yet
333  /// know the EH stack depth.  Whenever we pop a cleanup, we have
334  /// to thread all the current branch fixups through it.
335  ///
336  /// Fixups are recorded as the Use of the respective branch or
337  /// switch statement.  The use points to the final destination.
338  /// When popping out of a cleanup, these uses are threaded through
339  /// the cleanup and adjusted to point to the new cleanup.
340  ///
341  /// Note that branches are allowed to jump into protected scopes
342  /// in certain situations;  e.g. the following code is legal:
343  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
344  ///     goto foo;
345  ///     A a;
346  ///    foo:
347  ///     bar();
348  SmallVector<BranchFixup, 8> BranchFixups;
349
350  char *allocate(size_t Size);
351
352  void *pushCleanup(CleanupKind K, size_t DataSize);
353
354public:
355  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
356                   InnermostNormalCleanup(stable_end()),
357                   InnermostEHScope(stable_end()) {}
358  ~EHScopeStack() { delete[] StartOfBuffer; }
359
360  // Variadic templates would make this not terrible.
361
362  /// Push a lazily-created cleanup on the stack.
363  template <class T>
364  void pushCleanup(CleanupKind Kind) {
365    void *Buffer = pushCleanup(Kind, sizeof(T));
366    Cleanup *Obj = new(Buffer) T();
367    (void) Obj;
368  }
369
370  /// Push a lazily-created cleanup on the stack.
371  template <class T, class A0>
372  void pushCleanup(CleanupKind Kind, A0 a0) {
373    void *Buffer = pushCleanup(Kind, sizeof(T));
374    Cleanup *Obj = new(Buffer) T(a0);
375    (void) Obj;
376  }
377
378  /// Push a lazily-created cleanup on the stack.
379  template <class T, class A0, class A1>
380  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
381    void *Buffer = pushCleanup(Kind, sizeof(T));
382    Cleanup *Obj = new(Buffer) T(a0, a1);
383    (void) Obj;
384  }
385
386  /// Push a lazily-created cleanup on the stack.
387  template <class T, class A0, class A1, class A2>
388  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
389    void *Buffer = pushCleanup(Kind, sizeof(T));
390    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
391    (void) Obj;
392  }
393
394  /// Push a lazily-created cleanup on the stack.
395  template <class T, class A0, class A1, class A2, class A3>
396  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
397    void *Buffer = pushCleanup(Kind, sizeof(T));
398    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
399    (void) Obj;
400  }
401
402  /// Push a lazily-created cleanup on the stack.
403  template <class T, class A0, class A1, class A2, class A3, class A4>
404  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
405    void *Buffer = pushCleanup(Kind, sizeof(T));
406    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
407    (void) Obj;
408  }
409
410  // Feel free to add more variants of the following:
411
412  /// Push a cleanup with non-constant storage requirements on the
413  /// stack.  The cleanup type must provide an additional static method:
414  ///   static size_t getExtraSize(size_t);
415  /// The argument to this method will be the value N, which will also
416  /// be passed as the first argument to the constructor.
417  ///
418  /// The data stored in the extra storage must obey the same
419  /// restrictions as normal cleanup member data.
420  ///
421  /// The pointer returned from this method is valid until the cleanup
422  /// stack is modified.
423  template <class T, class A0, class A1, class A2>
424  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
425    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
426    return new (Buffer) T(N, a0, a1, a2);
427  }
428
429  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
430  void popCleanup();
431
432  /// Push a set of catch handlers on the stack.  The catch is
433  /// uninitialized and will need to have the given number of handlers
434  /// set on it.
435  class EHCatchScope *pushCatch(unsigned NumHandlers);
436
437  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
438  void popCatch();
439
440  /// Push an exceptions filter on the stack.
441  class EHFilterScope *pushFilter(unsigned NumFilters);
442
443  /// Pops an exceptions filter off the stack.
444  void popFilter();
445
446  /// Push a terminate handler on the stack.
447  void pushTerminate();
448
449  /// Pops a terminate handler off the stack.
450  void popTerminate();
451
452  /// Determines whether the exception-scopes stack is empty.
453  bool empty() const { return StartOfData == EndOfBuffer; }
454
455  bool requiresLandingPad() const {
456    return InnermostEHScope != stable_end();
457  }
458
459  /// Determines whether there are any normal cleanups on the stack.
460  bool hasNormalCleanups() const {
461    return InnermostNormalCleanup != stable_end();
462  }
463
464  /// Returns the innermost normal cleanup on the stack, or
465  /// stable_end() if there are no normal cleanups.
466  stable_iterator getInnermostNormalCleanup() const {
467    return InnermostNormalCleanup;
468  }
469  stable_iterator getInnermostActiveNormalCleanup() const;
470
471  stable_iterator getInnermostEHScope() const {
472    return InnermostEHScope;
473  }
474
475  stable_iterator getInnermostActiveEHScope() const;
476
477  /// An unstable reference to a scope-stack depth.  Invalidated by
478  /// pushes but not pops.
479  class iterator;
480
481  /// Returns an iterator pointing to the innermost EH scope.
482  iterator begin() const;
483
484  /// Returns an iterator pointing to the outermost EH scope.
485  iterator end() const;
486
487  /// Create a stable reference to the top of the EH stack.  The
488  /// returned reference is valid until that scope is popped off the
489  /// stack.
490  stable_iterator stable_begin() const {
491    return stable_iterator(EndOfBuffer - StartOfData);
492  }
493
494  /// Create a stable reference to the bottom of the EH stack.
495  static stable_iterator stable_end() {
496    return stable_iterator(0);
497  }
498
499  /// Translates an iterator into a stable_iterator.
500  stable_iterator stabilize(iterator it) const;
501
502  /// Turn a stable reference to a scope depth into a unstable pointer
503  /// to the EH stack.
504  iterator find(stable_iterator save) const;
505
506  /// Removes the cleanup pointed to by the given stable_iterator.
507  void removeCleanup(stable_iterator save);
508
509  /// Add a branch fixup to the current cleanup scope.
510  BranchFixup &addBranchFixup() {
511    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
512    BranchFixups.push_back(BranchFixup());
513    return BranchFixups.back();
514  }
515
516  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
517  BranchFixup &getBranchFixup(unsigned I) {
518    assert(I < getNumBranchFixups());
519    return BranchFixups[I];
520  }
521
522  /// Pops lazily-removed fixups from the end of the list.  This
523  /// should only be called by procedures which have just popped a
524  /// cleanup or resolved one or more fixups.
525  void popNullFixups();
526
527  /// Clears the branch-fixups list.  This should only be called by
528  /// ResolveAllBranchFixups.
529  void clearFixups() { BranchFixups.clear(); }
530};
531
532/// CodeGenFunction - This class organizes the per-function state that is used
533/// while generating LLVM code.
534class CodeGenFunction : public CodeGenTypeCache {
535  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
536  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
537
538  friend class CGCXXABI;
539public:
540  /// A jump destination is an abstract label, branching to which may
541  /// require a jump out through normal cleanups.
542  struct JumpDest {
543    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
544    JumpDest(llvm::BasicBlock *Block,
545             EHScopeStack::stable_iterator Depth,
546             unsigned Index)
547      : Block(Block), ScopeDepth(Depth), Index(Index) {}
548
549    bool isValid() const { return Block != 0; }
550    llvm::BasicBlock *getBlock() const { return Block; }
551    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
552    unsigned getDestIndex() const { return Index; }
553
554  private:
555    llvm::BasicBlock *Block;
556    EHScopeStack::stable_iterator ScopeDepth;
557    unsigned Index;
558  };
559
560  CodeGenModule &CGM;  // Per-module state.
561  const TargetInfo &Target;
562
563  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
564  CGBuilderTy Builder;
565
566  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
567  /// This excludes BlockDecls.
568  const Decl *CurFuncDecl;
569  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
570  const Decl *CurCodeDecl;
571  const CGFunctionInfo *CurFnInfo;
572  QualType FnRetTy;
573  llvm::Function *CurFn;
574
575  /// CurGD - The GlobalDecl for the current function being compiled.
576  GlobalDecl CurGD;
577
578  /// PrologueCleanupDepth - The cleanup depth enclosing all the
579  /// cleanups associated with the parameters.
580  EHScopeStack::stable_iterator PrologueCleanupDepth;
581
582  /// ReturnBlock - Unified return block.
583  JumpDest ReturnBlock;
584
585  /// ReturnValue - The temporary alloca to hold the return value. This is null
586  /// iff the function has no return value.
587  llvm::Value *ReturnValue;
588
589  /// AllocaInsertPoint - This is an instruction in the entry block before which
590  /// we prefer to insert allocas.
591  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
592
593  bool CatchUndefined;
594
595  /// In ARC, whether we should autorelease the return value.
596  bool AutoreleaseResult;
597
598  const CodeGen::CGBlockInfo *BlockInfo;
599  llvm::Value *BlockPointer;
600
601  /// \brief A mapping from NRVO variables to the flags used to indicate
602  /// when the NRVO has been applied to this variable.
603  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
604
605  EHScopeStack EHStack;
606
607  /// i32s containing the indexes of the cleanup destinations.
608  llvm::AllocaInst *NormalCleanupDest;
609
610  unsigned NextCleanupDestIndex;
611
612  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
613  llvm::BasicBlock *EHResumeBlock;
614
615  /// The exception slot.  All landing pads write the current exception pointer
616  /// into this alloca.
617  llvm::Value *ExceptionSlot;
618
619  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
620  /// write the current selector value into this alloca.
621  llvm::AllocaInst *EHSelectorSlot;
622
623  /// Emits a landing pad for the current EH stack.
624  llvm::BasicBlock *EmitLandingPad();
625
626  llvm::BasicBlock *getInvokeDestImpl();
627
628  /// Set up the last cleaup that was pushed as a conditional
629  /// full-expression cleanup.
630  void initFullExprCleanup();
631
632  template <class T>
633  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
634    return DominatingValue<T>::save(*this, value);
635  }
636
637public:
638  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
639  /// rethrows.
640  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
641
642  /// A class controlling the emission of a finally block.
643  class FinallyInfo {
644    /// Where the catchall's edge through the cleanup should go.
645    JumpDest RethrowDest;
646
647    /// A function to call to enter the catch.
648    llvm::Constant *BeginCatchFn;
649
650    /// An i1 variable indicating whether or not the @finally is
651    /// running for an exception.
652    llvm::AllocaInst *ForEHVar;
653
654    /// An i8* variable into which the exception pointer to rethrow
655    /// has been saved.
656    llvm::AllocaInst *SavedExnVar;
657
658  public:
659    void enter(CodeGenFunction &CGF, const Stmt *Finally,
660               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
661               llvm::Constant *rethrowFn);
662    void exit(CodeGenFunction &CGF);
663  };
664
665  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
666  /// current full-expression.  Safe against the possibility that
667  /// we're currently inside a conditionally-evaluated expression.
668  template <class T, class A0>
669  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
670    // If we're not in a conditional branch, or if none of the
671    // arguments requires saving, then use the unconditional cleanup.
672    if (!isInConditionalBranch())
673      return EHStack.pushCleanup<T>(kind, a0);
674
675    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
676
677    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
678    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
679    initFullExprCleanup();
680  }
681
682  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
683  /// current full-expression.  Safe against the possibility that
684  /// we're currently inside a conditionally-evaluated expression.
685  template <class T, class A0, class A1>
686  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
687    // If we're not in a conditional branch, or if none of the
688    // arguments requires saving, then use the unconditional cleanup.
689    if (!isInConditionalBranch())
690      return EHStack.pushCleanup<T>(kind, a0, a1);
691
692    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
693    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
694
695    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
696    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
697    initFullExprCleanup();
698  }
699
700  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
701  /// current full-expression.  Safe against the possibility that
702  /// we're currently inside a conditionally-evaluated expression.
703  template <class T, class A0, class A1, class A2>
704  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
705    // If we're not in a conditional branch, or if none of the
706    // arguments requires saving, then use the unconditional cleanup.
707    if (!isInConditionalBranch()) {
708      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
709    }
710
711    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
712    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
713    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
714
715    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
716    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
717    initFullExprCleanup();
718  }
719
720  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
721  /// current full-expression.  Safe against the possibility that
722  /// we're currently inside a conditionally-evaluated expression.
723  template <class T, class A0, class A1, class A2, class A3>
724  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
725    // If we're not in a conditional branch, or if none of the
726    // arguments requires saving, then use the unconditional cleanup.
727    if (!isInConditionalBranch()) {
728      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
729    }
730
731    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
732    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
733    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
734    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
735
736    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
737    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
738                                     a2_saved, a3_saved);
739    initFullExprCleanup();
740  }
741
742  /// PushDestructorCleanup - Push a cleanup to call the
743  /// complete-object destructor of an object of the given type at the
744  /// given address.  Does nothing if T is not a C++ class type with a
745  /// non-trivial destructor.
746  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
747
748  /// PushDestructorCleanup - Push a cleanup to call the
749  /// complete-object variant of the given destructor on the object at
750  /// the given address.
751  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
752                             llvm::Value *Addr);
753
754  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
755  /// process all branch fixups.
756  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
757
758  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
759  /// The block cannot be reactivated.  Pops it if it's the top of the
760  /// stack.
761  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
762
763  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
764  /// Cannot be used to resurrect a deactivated cleanup.
765  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
766
767  /// \brief Enters a new scope for capturing cleanups, all of which
768  /// will be executed once the scope is exited.
769  class RunCleanupsScope {
770    CodeGenFunction& CGF;
771    EHScopeStack::stable_iterator CleanupStackDepth;
772    bool OldDidCallStackSave;
773    bool PerformCleanup;
774
775    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
776    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
777
778  public:
779    /// \brief Enter a new cleanup scope.
780    explicit RunCleanupsScope(CodeGenFunction &CGF)
781      : CGF(CGF), PerformCleanup(true)
782    {
783      CleanupStackDepth = CGF.EHStack.stable_begin();
784      OldDidCallStackSave = CGF.DidCallStackSave;
785      CGF.DidCallStackSave = false;
786    }
787
788    /// \brief Exit this cleanup scope, emitting any accumulated
789    /// cleanups.
790    ~RunCleanupsScope() {
791      if (PerformCleanup) {
792        CGF.DidCallStackSave = OldDidCallStackSave;
793        CGF.PopCleanupBlocks(CleanupStackDepth);
794      }
795    }
796
797    /// \brief Determine whether this scope requires any cleanups.
798    bool requiresCleanups() const {
799      return CGF.EHStack.stable_begin() != CleanupStackDepth;
800    }
801
802    /// \brief Force the emission of cleanups now, instead of waiting
803    /// until this object is destroyed.
804    void ForceCleanup() {
805      assert(PerformCleanup && "Already forced cleanup");
806      CGF.DidCallStackSave = OldDidCallStackSave;
807      CGF.PopCleanupBlocks(CleanupStackDepth);
808      PerformCleanup = false;
809    }
810  };
811
812
813  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
814  /// the cleanup blocks that have been added.
815  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
816
817  void ResolveBranchFixups(llvm::BasicBlock *Target);
818
819  /// The given basic block lies in the current EH scope, but may be a
820  /// target of a potentially scope-crossing jump; get a stable handle
821  /// to which we can perform this jump later.
822  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
823    return JumpDest(Target,
824                    EHStack.getInnermostNormalCleanup(),
825                    NextCleanupDestIndex++);
826  }
827
828  /// The given basic block lies in the current EH scope, but may be a
829  /// target of a potentially scope-crossing jump; get a stable handle
830  /// to which we can perform this jump later.
831  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
832    return getJumpDestInCurrentScope(createBasicBlock(Name));
833  }
834
835  /// EmitBranchThroughCleanup - Emit a branch from the current insert
836  /// block through the normal cleanup handling code (if any) and then
837  /// on to \arg Dest.
838  void EmitBranchThroughCleanup(JumpDest Dest);
839
840  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
841  /// specified destination obviously has no cleanups to run.  'false' is always
842  /// a conservatively correct answer for this method.
843  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
844
845  /// popCatchScope - Pops the catch scope at the top of the EHScope
846  /// stack, emitting any required code (other than the catch handlers
847  /// themselves).
848  void popCatchScope();
849
850  llvm::BasicBlock *getEHResumeBlock();
851  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
852
853  /// An object to manage conditionally-evaluated expressions.
854  class ConditionalEvaluation {
855    llvm::BasicBlock *StartBB;
856
857  public:
858    ConditionalEvaluation(CodeGenFunction &CGF)
859      : StartBB(CGF.Builder.GetInsertBlock()) {}
860
861    void begin(CodeGenFunction &CGF) {
862      assert(CGF.OutermostConditional != this);
863      if (!CGF.OutermostConditional)
864        CGF.OutermostConditional = this;
865    }
866
867    void end(CodeGenFunction &CGF) {
868      assert(CGF.OutermostConditional != 0);
869      if (CGF.OutermostConditional == this)
870        CGF.OutermostConditional = 0;
871    }
872
873    /// Returns a block which will be executed prior to each
874    /// evaluation of the conditional code.
875    llvm::BasicBlock *getStartingBlock() const {
876      return StartBB;
877    }
878  };
879
880  /// isInConditionalBranch - Return true if we're currently emitting
881  /// one branch or the other of a conditional expression.
882  bool isInConditionalBranch() const { return OutermostConditional != 0; }
883
884  /// An RAII object to record that we're evaluating a statement
885  /// expression.
886  class StmtExprEvaluation {
887    CodeGenFunction &CGF;
888
889    /// We have to save the outermost conditional: cleanups in a
890    /// statement expression aren't conditional just because the
891    /// StmtExpr is.
892    ConditionalEvaluation *SavedOutermostConditional;
893
894  public:
895    StmtExprEvaluation(CodeGenFunction &CGF)
896      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
897      CGF.OutermostConditional = 0;
898    }
899
900    ~StmtExprEvaluation() {
901      CGF.OutermostConditional = SavedOutermostConditional;
902      CGF.EnsureInsertPoint();
903    }
904  };
905
906  /// An object which temporarily prevents a value from being
907  /// destroyed by aggressive peephole optimizations that assume that
908  /// all uses of a value have been realized in the IR.
909  class PeepholeProtection {
910    llvm::Instruction *Inst;
911    friend class CodeGenFunction;
912
913  public:
914    PeepholeProtection() : Inst(0) {}
915  };
916
917  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
918  class OpaqueValueMapping {
919    CodeGenFunction &CGF;
920    const OpaqueValueExpr *OpaqueValue;
921    bool BoundLValue;
922    CodeGenFunction::PeepholeProtection Protection;
923
924  public:
925    static bool shouldBindAsLValue(const Expr *expr) {
926      return expr->isGLValue() || expr->getType()->isRecordType();
927    }
928
929    /// Build the opaque value mapping for the given conditional
930    /// operator if it's the GNU ?: extension.  This is a common
931    /// enough pattern that the convenience operator is really
932    /// helpful.
933    ///
934    OpaqueValueMapping(CodeGenFunction &CGF,
935                       const AbstractConditionalOperator *op) : CGF(CGF) {
936      if (isa<ConditionalOperator>(op)) {
937        OpaqueValue = 0;
938        BoundLValue = false;
939        return;
940      }
941
942      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
943      init(e->getOpaqueValue(), e->getCommon());
944    }
945
946    OpaqueValueMapping(CodeGenFunction &CGF,
947                       const OpaqueValueExpr *opaqueValue,
948                       LValue lvalue)
949      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
950      assert(opaqueValue && "no opaque value expression!");
951      assert(shouldBindAsLValue(opaqueValue));
952      initLValue(lvalue);
953    }
954
955    OpaqueValueMapping(CodeGenFunction &CGF,
956                       const OpaqueValueExpr *opaqueValue,
957                       RValue rvalue)
958      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
959      assert(opaqueValue && "no opaque value expression!");
960      assert(!shouldBindAsLValue(opaqueValue));
961      initRValue(rvalue);
962    }
963
964    void pop() {
965      assert(OpaqueValue && "mapping already popped!");
966      popImpl();
967      OpaqueValue = 0;
968    }
969
970    ~OpaqueValueMapping() {
971      if (OpaqueValue) popImpl();
972    }
973
974  private:
975    void popImpl() {
976      if (BoundLValue)
977        CGF.OpaqueLValues.erase(OpaqueValue);
978      else {
979        CGF.OpaqueRValues.erase(OpaqueValue);
980        CGF.unprotectFromPeepholes(Protection);
981      }
982    }
983
984    void init(const OpaqueValueExpr *ov, const Expr *e) {
985      OpaqueValue = ov;
986      BoundLValue = shouldBindAsLValue(ov);
987      assert(BoundLValue == shouldBindAsLValue(e)
988             && "inconsistent expression value kinds!");
989      if (BoundLValue)
990        initLValue(CGF.EmitLValue(e));
991      else
992        initRValue(CGF.EmitAnyExpr(e));
993    }
994
995    void initLValue(const LValue &lv) {
996      CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
997    }
998
999    void initRValue(const RValue &rv) {
1000      // Work around an extremely aggressive peephole optimization in
1001      // EmitScalarConversion which assumes that all other uses of a
1002      // value are extant.
1003      Protection = CGF.protectFromPeepholes(rv);
1004      CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
1005    }
1006  };
1007
1008  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1009  /// number that holds the value.
1010  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1011
1012  /// BuildBlockByrefAddress - Computes address location of the
1013  /// variable which is declared as __block.
1014  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1015                                      const VarDecl *V);
1016private:
1017  CGDebugInfo *DebugInfo;
1018  bool DisableDebugInfo;
1019
1020  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1021  /// calling llvm.stacksave for multiple VLAs in the same scope.
1022  bool DidCallStackSave;
1023
1024  /// IndirectBranch - The first time an indirect goto is seen we create a block
1025  /// with an indirect branch.  Every time we see the address of a label taken,
1026  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1027  /// codegen'd as a jump to the IndirectBranch's basic block.
1028  llvm::IndirectBrInst *IndirectBranch;
1029
1030  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1031  /// decls.
1032  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1033  DeclMapTy LocalDeclMap;
1034
1035  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1036  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1037
1038  // BreakContinueStack - This keeps track of where break and continue
1039  // statements should jump to.
1040  struct BreakContinue {
1041    BreakContinue(JumpDest Break, JumpDest Continue)
1042      : BreakBlock(Break), ContinueBlock(Continue) {}
1043
1044    JumpDest BreakBlock;
1045    JumpDest ContinueBlock;
1046  };
1047  SmallVector<BreakContinue, 8> BreakContinueStack;
1048
1049  /// SwitchInsn - This is nearest current switch instruction. It is null if if
1050  /// current context is not in a switch.
1051  llvm::SwitchInst *SwitchInsn;
1052
1053  /// CaseRangeBlock - This block holds if condition check for last case
1054  /// statement range in current switch instruction.
1055  llvm::BasicBlock *CaseRangeBlock;
1056
1057  /// OpaqueLValues - Keeps track of the current set of opaque value
1058  /// expressions.
1059  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1060  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1061
1062  // VLASizeMap - This keeps track of the associated size for each VLA type.
1063  // We track this by the size expression rather than the type itself because
1064  // in certain situations, like a const qualifier applied to an VLA typedef,
1065  // multiple VLA types can share the same size expression.
1066  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1067  // enter/leave scopes.
1068  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1069
1070  /// A block containing a single 'unreachable' instruction.  Created
1071  /// lazily by getUnreachableBlock().
1072  llvm::BasicBlock *UnreachableBlock;
1073
1074  /// CXXThisDecl - When generating code for a C++ member function,
1075  /// this will hold the implicit 'this' declaration.
1076  ImplicitParamDecl *CXXThisDecl;
1077  llvm::Value *CXXThisValue;
1078
1079  /// CXXVTTDecl - When generating code for a base object constructor or
1080  /// base object destructor with virtual bases, this will hold the implicit
1081  /// VTT parameter.
1082  ImplicitParamDecl *CXXVTTDecl;
1083  llvm::Value *CXXVTTValue;
1084
1085  /// OutermostConditional - Points to the outermost active
1086  /// conditional control.  This is used so that we know if a
1087  /// temporary should be destroyed conditionally.
1088  ConditionalEvaluation *OutermostConditional;
1089
1090
1091  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1092  /// type as well as the field number that contains the actual data.
1093  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1094                                              unsigned> > ByRefValueInfo;
1095
1096  llvm::BasicBlock *TerminateLandingPad;
1097  llvm::BasicBlock *TerminateHandler;
1098  llvm::BasicBlock *TrapBB;
1099
1100public:
1101  CodeGenFunction(CodeGenModule &cgm);
1102
1103  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1104  ASTContext &getContext() const { return CGM.getContext(); }
1105  CGDebugInfo *getDebugInfo() {
1106    if (DisableDebugInfo)
1107      return NULL;
1108    return DebugInfo;
1109  }
1110  void disableDebugInfo() { DisableDebugInfo = true; }
1111  void enableDebugInfo() { DisableDebugInfo = false; }
1112
1113  bool shouldUseFusedARCCalls() {
1114    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1115  }
1116
1117  const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1118
1119  /// Returns a pointer to the function's exception object and selector slot,
1120  /// which is assigned in every landing pad.
1121  llvm::Value *getExceptionSlot();
1122  llvm::Value *getEHSelectorSlot();
1123
1124  /// Returns the contents of the function's exception object and selector
1125  /// slots.
1126  llvm::Value *getExceptionFromSlot();
1127  llvm::Value *getSelectorFromSlot();
1128
1129  llvm::Value *getNormalCleanupDestSlot();
1130
1131  llvm::BasicBlock *getUnreachableBlock() {
1132    if (!UnreachableBlock) {
1133      UnreachableBlock = createBasicBlock("unreachable");
1134      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1135    }
1136    return UnreachableBlock;
1137  }
1138
1139  llvm::BasicBlock *getInvokeDest() {
1140    if (!EHStack.requiresLandingPad()) return 0;
1141    return getInvokeDestImpl();
1142  }
1143
1144  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1145
1146  //===--------------------------------------------------------------------===//
1147  //                                  Cleanups
1148  //===--------------------------------------------------------------------===//
1149
1150  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1151
1152  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1153                                        llvm::Value *arrayEndPointer,
1154                                        QualType elementType,
1155                                        Destroyer &destroyer);
1156  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1157                                      llvm::Value *arrayEnd,
1158                                      QualType elementType,
1159                                      Destroyer &destroyer);
1160
1161  void pushDestroy(QualType::DestructionKind dtorKind,
1162                   llvm::Value *addr, QualType type);
1163  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1164                   Destroyer &destroyer, bool useEHCleanupForArray);
1165  void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
1166                   bool useEHCleanupForArray);
1167  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1168                                        QualType type,
1169                                        Destroyer &destroyer,
1170                                        bool useEHCleanupForArray);
1171  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1172                        QualType type, Destroyer &destroyer,
1173                        bool checkZeroLength, bool useEHCleanup);
1174
1175  Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
1176
1177  /// Determines whether an EH cleanup is required to destroy a type
1178  /// with the given destruction kind.
1179  bool needsEHCleanup(QualType::DestructionKind kind) {
1180    switch (kind) {
1181    case QualType::DK_none:
1182      return false;
1183    case QualType::DK_cxx_destructor:
1184    case QualType::DK_objc_weak_lifetime:
1185      return getLangOptions().Exceptions;
1186    case QualType::DK_objc_strong_lifetime:
1187      return getLangOptions().Exceptions &&
1188             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1189    }
1190    llvm_unreachable("bad destruction kind");
1191  }
1192
1193  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1194    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1195  }
1196
1197  //===--------------------------------------------------------------------===//
1198  //                                  Objective-C
1199  //===--------------------------------------------------------------------===//
1200
1201  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1202
1203  void StartObjCMethod(const ObjCMethodDecl *MD,
1204                       const ObjCContainerDecl *CD,
1205                       SourceLocation StartLoc);
1206
1207  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1208  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1209                          const ObjCPropertyImplDecl *PID);
1210  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1211                              const ObjCPropertyImplDecl *propImpl);
1212
1213  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1214                                  ObjCMethodDecl *MD, bool ctor);
1215
1216  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1217  /// for the given property.
1218  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1219                          const ObjCPropertyImplDecl *PID);
1220  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1221                              const ObjCPropertyImplDecl *propImpl);
1222  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1223  bool IvarTypeWithAggrGCObjects(QualType Ty);
1224
1225  //===--------------------------------------------------------------------===//
1226  //                                  Block Bits
1227  //===--------------------------------------------------------------------===//
1228
1229  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1230  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1231                                           const CGBlockInfo &Info,
1232                                           llvm::StructType *,
1233                                           llvm::Constant *BlockVarLayout);
1234
1235  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1236                                        const CGBlockInfo &Info,
1237                                        const Decl *OuterFuncDecl,
1238                                        const DeclMapTy &ldm);
1239
1240  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1241  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1242
1243  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1244
1245  class AutoVarEmission;
1246
1247  void emitByrefStructureInit(const AutoVarEmission &emission);
1248  void enterByrefCleanup(const AutoVarEmission &emission);
1249
1250  llvm::Value *LoadBlockStruct() {
1251    assert(BlockPointer && "no block pointer set!");
1252    return BlockPointer;
1253  }
1254
1255  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1256  void AllocateBlockDecl(const BlockDeclRefExpr *E);
1257  llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1258    return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1259  }
1260  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1261  llvm::Type *BuildByRefType(const VarDecl *var);
1262
1263  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1264                    const CGFunctionInfo &FnInfo);
1265  void StartFunction(GlobalDecl GD, QualType RetTy,
1266                     llvm::Function *Fn,
1267                     const CGFunctionInfo &FnInfo,
1268                     const FunctionArgList &Args,
1269                     SourceLocation StartLoc);
1270
1271  void EmitConstructorBody(FunctionArgList &Args);
1272  void EmitDestructorBody(FunctionArgList &Args);
1273  void EmitFunctionBody(FunctionArgList &Args);
1274
1275  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1276  /// emission when possible.
1277  void EmitReturnBlock();
1278
1279  /// FinishFunction - Complete IR generation of the current function. It is
1280  /// legal to call this function even if there is no current insertion point.
1281  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1282
1283  /// GenerateThunk - Generate a thunk for the given method.
1284  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1285                     GlobalDecl GD, const ThunkInfo &Thunk);
1286
1287  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1288                            GlobalDecl GD, const ThunkInfo &Thunk);
1289
1290  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1291                        FunctionArgList &Args);
1292
1293  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1294  /// subobject.
1295  ///
1296  void InitializeVTablePointer(BaseSubobject Base,
1297                               const CXXRecordDecl *NearestVBase,
1298                               CharUnits OffsetFromNearestVBase,
1299                               llvm::Constant *VTable,
1300                               const CXXRecordDecl *VTableClass);
1301
1302  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1303  void InitializeVTablePointers(BaseSubobject Base,
1304                                const CXXRecordDecl *NearestVBase,
1305                                CharUnits OffsetFromNearestVBase,
1306                                bool BaseIsNonVirtualPrimaryBase,
1307                                llvm::Constant *VTable,
1308                                const CXXRecordDecl *VTableClass,
1309                                VisitedVirtualBasesSetTy& VBases);
1310
1311  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1312
1313  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1314  /// to by This.
1315  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1316
1317  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1318  /// given phase of destruction for a destructor.  The end result
1319  /// should call destructors on members and base classes in reverse
1320  /// order of their construction.
1321  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1322
1323  /// ShouldInstrumentFunction - Return true if the current function should be
1324  /// instrumented with __cyg_profile_func_* calls
1325  bool ShouldInstrumentFunction();
1326
1327  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1328  /// instrumentation function with the current function and the call site, if
1329  /// function instrumentation is enabled.
1330  void EmitFunctionInstrumentation(const char *Fn);
1331
1332  /// EmitMCountInstrumentation - Emit call to .mcount.
1333  void EmitMCountInstrumentation();
1334
1335  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1336  /// arguments for the given function. This is also responsible for naming the
1337  /// LLVM function arguments.
1338  void EmitFunctionProlog(const CGFunctionInfo &FI,
1339                          llvm::Function *Fn,
1340                          const FunctionArgList &Args);
1341
1342  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1343  /// given temporary.
1344  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1345
1346  /// EmitStartEHSpec - Emit the start of the exception spec.
1347  void EmitStartEHSpec(const Decl *D);
1348
1349  /// EmitEndEHSpec - Emit the end of the exception spec.
1350  void EmitEndEHSpec(const Decl *D);
1351
1352  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1353  llvm::BasicBlock *getTerminateLandingPad();
1354
1355  /// getTerminateHandler - Return a handler (not a landing pad, just
1356  /// a catch handler) that just calls terminate.  This is used when
1357  /// a terminate scope encloses a try.
1358  llvm::BasicBlock *getTerminateHandler();
1359
1360  llvm::Type *ConvertTypeForMem(QualType T);
1361  llvm::Type *ConvertType(QualType T);
1362  llvm::Type *ConvertType(const TypeDecl *T) {
1363    return ConvertType(getContext().getTypeDeclType(T));
1364  }
1365
1366  /// LoadObjCSelf - Load the value of self. This function is only valid while
1367  /// generating code for an Objective-C method.
1368  llvm::Value *LoadObjCSelf();
1369
1370  /// TypeOfSelfObject - Return type of object that this self represents.
1371  QualType TypeOfSelfObject();
1372
1373  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1374  /// an aggregate LLVM type or is void.
1375  static bool hasAggregateLLVMType(QualType T);
1376
1377  /// createBasicBlock - Create an LLVM basic block.
1378  llvm::BasicBlock *createBasicBlock(StringRef name = "",
1379                                     llvm::Function *parent = 0,
1380                                     llvm::BasicBlock *before = 0) {
1381#ifdef NDEBUG
1382    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1383#else
1384    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1385#endif
1386  }
1387
1388  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1389  /// label maps to.
1390  JumpDest getJumpDestForLabel(const LabelDecl *S);
1391
1392  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1393  /// another basic block, simplify it. This assumes that no other code could
1394  /// potentially reference the basic block.
1395  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1396
1397  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1398  /// adding a fall-through branch from the current insert block if
1399  /// necessary. It is legal to call this function even if there is no current
1400  /// insertion point.
1401  ///
1402  /// IsFinished - If true, indicates that the caller has finished emitting
1403  /// branches to the given block and does not expect to emit code into it. This
1404  /// means the block can be ignored if it is unreachable.
1405  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1406
1407  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1408  /// near its uses, and leave the insertion point in it.
1409  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1410
1411  /// EmitBranch - Emit a branch to the specified basic block from the current
1412  /// insert block, taking care to avoid creation of branches from dummy
1413  /// blocks. It is legal to call this function even if there is no current
1414  /// insertion point.
1415  ///
1416  /// This function clears the current insertion point. The caller should follow
1417  /// calls to this function with calls to Emit*Block prior to generation new
1418  /// code.
1419  void EmitBranch(llvm::BasicBlock *Block);
1420
1421  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1422  /// indicates that the current code being emitted is unreachable.
1423  bool HaveInsertPoint() const {
1424    return Builder.GetInsertBlock() != 0;
1425  }
1426
1427  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1428  /// emitted IR has a place to go. Note that by definition, if this function
1429  /// creates a block then that block is unreachable; callers may do better to
1430  /// detect when no insertion point is defined and simply skip IR generation.
1431  void EnsureInsertPoint() {
1432    if (!HaveInsertPoint())
1433      EmitBlock(createBasicBlock());
1434  }
1435
1436  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1437  /// specified stmt yet.
1438  void ErrorUnsupported(const Stmt *S, const char *Type,
1439                        bool OmitOnError=false);
1440
1441  //===--------------------------------------------------------------------===//
1442  //                                  Helpers
1443  //===--------------------------------------------------------------------===//
1444
1445  LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1446    return LValue::MakeAddr(V, T, Alignment, getContext(),
1447                            CGM.getTBAAInfo(T));
1448  }
1449
1450  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1451  /// block. The caller is responsible for setting an appropriate alignment on
1452  /// the alloca.
1453  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1454                                     const Twine &Name = "tmp");
1455
1456  /// InitTempAlloca - Provide an initial value for the given alloca.
1457  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1458
1459  /// CreateIRTemp - Create a temporary IR object of the given type, with
1460  /// appropriate alignment. This routine should only be used when an temporary
1461  /// value needs to be stored into an alloca (for example, to avoid explicit
1462  /// PHI construction), but the type is the IR type, not the type appropriate
1463  /// for storing in memory.
1464  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1465
1466  /// CreateMemTemp - Create a temporary memory object of the given type, with
1467  /// appropriate alignment.
1468  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1469
1470  /// CreateAggTemp - Create a temporary memory object for the given
1471  /// aggregate type.
1472  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1473    return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(),
1474                                 AggValueSlot::IsNotDestructed,
1475                                 AggValueSlot::DoesNotNeedGCBarriers,
1476                                 AggValueSlot::IsNotAliased);
1477  }
1478
1479  /// Emit a cast to void* in the appropriate address space.
1480  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1481
1482  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1483  /// expression and compare the result against zero, returning an Int1Ty value.
1484  llvm::Value *EvaluateExprAsBool(const Expr *E);
1485
1486  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1487  void EmitIgnoredExpr(const Expr *E);
1488
1489  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1490  /// any type.  The result is returned as an RValue struct.  If this is an
1491  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1492  /// the result should be returned.
1493  ///
1494  /// \param IgnoreResult - True if the resulting value isn't used.
1495  RValue EmitAnyExpr(const Expr *E,
1496                     AggValueSlot AggSlot = AggValueSlot::ignored(),
1497                     bool IgnoreResult = false);
1498
1499  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1500  // or the value of the expression, depending on how va_list is defined.
1501  llvm::Value *EmitVAListRef(const Expr *E);
1502
1503  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1504  /// always be accessible even if no aggregate location is provided.
1505  RValue EmitAnyExprToTemp(const Expr *E);
1506
1507  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1508  /// arbitrary expression into the given memory location.
1509  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1510                        Qualifiers Quals, bool IsInitializer);
1511
1512  /// EmitExprAsInit - Emits the code necessary to initialize a
1513  /// location in memory with the given initializer.
1514  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1515                      LValue lvalue, bool capturedByInit);
1516
1517  /// EmitAggregateCopy - Emit an aggrate copy.
1518  ///
1519  /// \param isVolatile - True iff either the source or the destination is
1520  /// volatile.
1521  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1522                         QualType EltTy, bool isVolatile=false);
1523
1524  /// StartBlock - Start new block named N. If insert block is a dummy block
1525  /// then reuse it.
1526  void StartBlock(const char *N);
1527
1528  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1529  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1530    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1531  }
1532
1533  /// GetAddrOfLocalVar - Return the address of a local variable.
1534  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1535    llvm::Value *Res = LocalDeclMap[VD];
1536    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1537    return Res;
1538  }
1539
1540  /// getOpaqueLValueMapping - Given an opaque value expression (which
1541  /// must be mapped to an l-value), return its mapping.
1542  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1543    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1544
1545    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1546      it = OpaqueLValues.find(e);
1547    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1548    return it->second;
1549  }
1550
1551  /// getOpaqueRValueMapping - Given an opaque value expression (which
1552  /// must be mapped to an r-value), return its mapping.
1553  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1554    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1555
1556    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1557      it = OpaqueRValues.find(e);
1558    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1559    return it->second;
1560  }
1561
1562  /// getAccessedFieldNo - Given an encoded value and a result number, return
1563  /// the input field number being accessed.
1564  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1565
1566  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1567  llvm::BasicBlock *GetIndirectGotoBlock();
1568
1569  /// EmitNullInitialization - Generate code to set a value of the given type to
1570  /// null, If the type contains data member pointers, they will be initialized
1571  /// to -1 in accordance with the Itanium C++ ABI.
1572  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1573
1574  // EmitVAArg - Generate code to get an argument from the passed in pointer
1575  // and update it accordingly. The return value is a pointer to the argument.
1576  // FIXME: We should be able to get rid of this method and use the va_arg
1577  // instruction in LLVM instead once it works well enough.
1578  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1579
1580  /// emitArrayLength - Compute the length of an array, even if it's a
1581  /// VLA, and drill down to the base element type.
1582  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1583                               QualType &baseType,
1584                               llvm::Value *&addr);
1585
1586  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1587  /// the given variably-modified type and store them in the VLASizeMap.
1588  ///
1589  /// This function can be called with a null (unreachable) insert point.
1590  void EmitVariablyModifiedType(QualType Ty);
1591
1592  /// getVLASize - Returns an LLVM value that corresponds to the size,
1593  /// in non-variably-sized elements, of a variable length array type,
1594  /// plus that largest non-variably-sized element type.  Assumes that
1595  /// the type has already been emitted with EmitVariablyModifiedType.
1596  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1597  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1598
1599  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1600  /// generating code for an C++ member function.
1601  llvm::Value *LoadCXXThis() {
1602    assert(CXXThisValue && "no 'this' value for this function");
1603    return CXXThisValue;
1604  }
1605
1606  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1607  /// virtual bases.
1608  llvm::Value *LoadCXXVTT() {
1609    assert(CXXVTTValue && "no VTT value for this function");
1610    return CXXVTTValue;
1611  }
1612
1613  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1614  /// complete class to the given direct base.
1615  llvm::Value *
1616  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1617                                        const CXXRecordDecl *Derived,
1618                                        const CXXRecordDecl *Base,
1619                                        bool BaseIsVirtual);
1620
1621  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1622  /// load of 'this' and returns address of the base class.
1623  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1624                                     const CXXRecordDecl *Derived,
1625                                     CastExpr::path_const_iterator PathBegin,
1626                                     CastExpr::path_const_iterator PathEnd,
1627                                     bool NullCheckValue);
1628
1629  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1630                                        const CXXRecordDecl *Derived,
1631                                        CastExpr::path_const_iterator PathBegin,
1632                                        CastExpr::path_const_iterator PathEnd,
1633                                        bool NullCheckValue);
1634
1635  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1636                                         const CXXRecordDecl *ClassDecl,
1637                                         const CXXRecordDecl *BaseClassDecl);
1638
1639  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1640                                      CXXCtorType CtorType,
1641                                      const FunctionArgList &Args);
1642  // It's important not to confuse this and the previous function. Delegating
1643  // constructors are the C++0x feature. The constructor delegate optimization
1644  // is used to reduce duplication in the base and complete consturctors where
1645  // they are substantially the same.
1646  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1647                                        const FunctionArgList &Args);
1648  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1649                              bool ForVirtualBase, llvm::Value *This,
1650                              CallExpr::const_arg_iterator ArgBeg,
1651                              CallExpr::const_arg_iterator ArgEnd);
1652
1653  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1654                              llvm::Value *This, llvm::Value *Src,
1655                              CallExpr::const_arg_iterator ArgBeg,
1656                              CallExpr::const_arg_iterator ArgEnd);
1657
1658  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1659                                  const ConstantArrayType *ArrayTy,
1660                                  llvm::Value *ArrayPtr,
1661                                  CallExpr::const_arg_iterator ArgBeg,
1662                                  CallExpr::const_arg_iterator ArgEnd,
1663                                  bool ZeroInitialization = false);
1664
1665  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1666                                  llvm::Value *NumElements,
1667                                  llvm::Value *ArrayPtr,
1668                                  CallExpr::const_arg_iterator ArgBeg,
1669                                  CallExpr::const_arg_iterator ArgEnd,
1670                                  bool ZeroInitialization = false);
1671
1672  static Destroyer destroyCXXObject;
1673
1674  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1675                             bool ForVirtualBase, llvm::Value *This);
1676
1677  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1678                               llvm::Value *NewPtr, llvm::Value *NumElements);
1679
1680  void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1681
1682  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1683  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1684
1685  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1686                      QualType DeleteTy);
1687
1688  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1689  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1690
1691  void EmitCheck(llvm::Value *, unsigned Size);
1692
1693  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1694                                       bool isInc, bool isPre);
1695  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1696                                         bool isInc, bool isPre);
1697  //===--------------------------------------------------------------------===//
1698  //                            Declaration Emission
1699  //===--------------------------------------------------------------------===//
1700
1701  /// EmitDecl - Emit a declaration.
1702  ///
1703  /// This function can be called with a null (unreachable) insert point.
1704  void EmitDecl(const Decl &D);
1705
1706  /// EmitVarDecl - Emit a local variable declaration.
1707  ///
1708  /// This function can be called with a null (unreachable) insert point.
1709  void EmitVarDecl(const VarDecl &D);
1710
1711  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1712                      LValue lvalue, bool capturedByInit);
1713  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1714
1715  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1716                             llvm::Value *Address);
1717
1718  /// EmitAutoVarDecl - Emit an auto variable declaration.
1719  ///
1720  /// This function can be called with a null (unreachable) insert point.
1721  void EmitAutoVarDecl(const VarDecl &D);
1722
1723  class AutoVarEmission {
1724    friend class CodeGenFunction;
1725
1726    const VarDecl *Variable;
1727
1728    /// The alignment of the variable.
1729    CharUnits Alignment;
1730
1731    /// The address of the alloca.  Null if the variable was emitted
1732    /// as a global constant.
1733    llvm::Value *Address;
1734
1735    llvm::Value *NRVOFlag;
1736
1737    /// True if the variable is a __block variable.
1738    bool IsByRef;
1739
1740    /// True if the variable is of aggregate type and has a constant
1741    /// initializer.
1742    bool IsConstantAggregate;
1743
1744    struct Invalid {};
1745    AutoVarEmission(Invalid) : Variable(0) {}
1746
1747    AutoVarEmission(const VarDecl &variable)
1748      : Variable(&variable), Address(0), NRVOFlag(0),
1749        IsByRef(false), IsConstantAggregate(false) {}
1750
1751    bool wasEmittedAsGlobal() const { return Address == 0; }
1752
1753  public:
1754    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1755
1756    /// Returns the address of the object within this declaration.
1757    /// Note that this does not chase the forwarding pointer for
1758    /// __block decls.
1759    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1760      if (!IsByRef) return Address;
1761
1762      return CGF.Builder.CreateStructGEP(Address,
1763                                         CGF.getByRefValueLLVMField(Variable),
1764                                         Variable->getNameAsString());
1765    }
1766  };
1767  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1768  void EmitAutoVarInit(const AutoVarEmission &emission);
1769  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1770  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1771                              QualType::DestructionKind dtorKind);
1772
1773  void EmitStaticVarDecl(const VarDecl &D,
1774                         llvm::GlobalValue::LinkageTypes Linkage);
1775
1776  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1777  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1778
1779  /// protectFromPeepholes - Protect a value that we're intending to
1780  /// store to the side, but which will probably be used later, from
1781  /// aggressive peepholing optimizations that might delete it.
1782  ///
1783  /// Pass the result to unprotectFromPeepholes to declare that
1784  /// protection is no longer required.
1785  ///
1786  /// There's no particular reason why this shouldn't apply to
1787  /// l-values, it's just that no existing peepholes work on pointers.
1788  PeepholeProtection protectFromPeepholes(RValue rvalue);
1789  void unprotectFromPeepholes(PeepholeProtection protection);
1790
1791  //===--------------------------------------------------------------------===//
1792  //                             Statement Emission
1793  //===--------------------------------------------------------------------===//
1794
1795  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1796  void EmitStopPoint(const Stmt *S);
1797
1798  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1799  /// this function even if there is no current insertion point.
1800  ///
1801  /// This function may clear the current insertion point; callers should use
1802  /// EnsureInsertPoint if they wish to subsequently generate code without first
1803  /// calling EmitBlock, EmitBranch, or EmitStmt.
1804  void EmitStmt(const Stmt *S);
1805
1806  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1807  /// necessarily require an insertion point or debug information; typically
1808  /// because the statement amounts to a jump or a container of other
1809  /// statements.
1810  ///
1811  /// \return True if the statement was handled.
1812  bool EmitSimpleStmt(const Stmt *S);
1813
1814  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1815                          AggValueSlot AVS = AggValueSlot::ignored());
1816
1817  /// EmitLabel - Emit the block for the given label. It is legal to call this
1818  /// function even if there is no current insertion point.
1819  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1820
1821  void EmitLabelStmt(const LabelStmt &S);
1822  void EmitGotoStmt(const GotoStmt &S);
1823  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1824  void EmitIfStmt(const IfStmt &S);
1825  void EmitWhileStmt(const WhileStmt &S);
1826  void EmitDoStmt(const DoStmt &S);
1827  void EmitForStmt(const ForStmt &S);
1828  void EmitReturnStmt(const ReturnStmt &S);
1829  void EmitDeclStmt(const DeclStmt &S);
1830  void EmitBreakStmt(const BreakStmt &S);
1831  void EmitContinueStmt(const ContinueStmt &S);
1832  void EmitSwitchStmt(const SwitchStmt &S);
1833  void EmitDefaultStmt(const DefaultStmt &S);
1834  void EmitCaseStmt(const CaseStmt &S);
1835  void EmitCaseStmtRange(const CaseStmt &S);
1836  void EmitAsmStmt(const AsmStmt &S);
1837
1838  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1839  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1840  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1841  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1842  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1843
1844  llvm::Constant *getUnwindResumeFn();
1845  llvm::Constant *getUnwindResumeOrRethrowFn();
1846  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1847  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1848
1849  void EmitCXXTryStmt(const CXXTryStmt &S);
1850  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1851
1852  //===--------------------------------------------------------------------===//
1853  //                         LValue Expression Emission
1854  //===--------------------------------------------------------------------===//
1855
1856  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1857  RValue GetUndefRValue(QualType Ty);
1858
1859  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1860  /// and issue an ErrorUnsupported style diagnostic (using the
1861  /// provided Name).
1862  RValue EmitUnsupportedRValue(const Expr *E,
1863                               const char *Name);
1864
1865  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1866  /// an ErrorUnsupported style diagnostic (using the provided Name).
1867  LValue EmitUnsupportedLValue(const Expr *E,
1868                               const char *Name);
1869
1870  /// EmitLValue - Emit code to compute a designator that specifies the location
1871  /// of the expression.
1872  ///
1873  /// This can return one of two things: a simple address or a bitfield
1874  /// reference.  In either case, the LLVM Value* in the LValue structure is
1875  /// guaranteed to be an LLVM pointer type.
1876  ///
1877  /// If this returns a bitfield reference, nothing about the pointee type of
1878  /// the LLVM value is known: For example, it may not be a pointer to an
1879  /// integer.
1880  ///
1881  /// If this returns a normal address, and if the lvalue's C type is fixed
1882  /// size, this method guarantees that the returned pointer type will point to
1883  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1884  /// variable length type, this is not possible.
1885  ///
1886  LValue EmitLValue(const Expr *E);
1887
1888  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1889  /// checking code to guard against undefined behavior.  This is only
1890  /// suitable when we know that the address will be used to access the
1891  /// object.
1892  LValue EmitCheckedLValue(const Expr *E);
1893
1894  /// EmitToMemory - Change a scalar value from its value
1895  /// representation to its in-memory representation.
1896  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1897
1898  /// EmitFromMemory - Change a scalar value from its memory
1899  /// representation to its value representation.
1900  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1901
1902  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1903  /// care to appropriately convert from the memory representation to
1904  /// the LLVM value representation.
1905  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1906                                unsigned Alignment, QualType Ty,
1907                                llvm::MDNode *TBAAInfo = 0);
1908
1909  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1910  /// care to appropriately convert from the memory representation to
1911  /// the LLVM value representation.  The l-value must be a simple
1912  /// l-value.
1913  llvm::Value *EmitLoadOfScalar(LValue lvalue);
1914
1915  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1916  /// care to appropriately convert from the memory representation to
1917  /// the LLVM value representation.
1918  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1919                         bool Volatile, unsigned Alignment, QualType Ty,
1920                         llvm::MDNode *TBAAInfo = 0);
1921
1922  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1923  /// care to appropriately convert from the memory representation to
1924  /// the LLVM value representation.  The l-value must be a simple
1925  /// l-value.
1926  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
1927
1928  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1929  /// this method emits the address of the lvalue, then loads the result as an
1930  /// rvalue, returning the rvalue.
1931  RValue EmitLoadOfLValue(LValue V);
1932  RValue EmitLoadOfExtVectorElementLValue(LValue V);
1933  RValue EmitLoadOfBitfieldLValue(LValue LV);
1934  RValue EmitLoadOfPropertyRefLValue(LValue LV,
1935                                 ReturnValueSlot Return = ReturnValueSlot());
1936
1937  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1938  /// lvalue, where both are guaranteed to the have the same type, and that type
1939  /// is 'Ty'.
1940  void EmitStoreThroughLValue(RValue Src, LValue Dst);
1941  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1942  void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1943
1944  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1945  /// EmitStoreThroughLValue.
1946  ///
1947  /// \param Result [out] - If non-null, this will be set to a Value* for the
1948  /// bit-field contents after the store, appropriate for use as the result of
1949  /// an assignment to the bit-field.
1950  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1951                                      llvm::Value **Result=0);
1952
1953  /// Emit an l-value for an assignment (simple or compound) of complex type.
1954  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1955  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1956
1957  // Note: only available for agg return types
1958  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1959  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1960  // Note: only available for agg return types
1961  LValue EmitCallExprLValue(const CallExpr *E);
1962  // Note: only available for agg return types
1963  LValue EmitVAArgExprLValue(const VAArgExpr *E);
1964  LValue EmitDeclRefLValue(const DeclRefExpr *E);
1965  LValue EmitStringLiteralLValue(const StringLiteral *E);
1966  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1967  LValue EmitPredefinedLValue(const PredefinedExpr *E);
1968  LValue EmitUnaryOpLValue(const UnaryOperator *E);
1969  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1970  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1971  LValue EmitMemberExpr(const MemberExpr *E);
1972  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1973  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1974  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1975  LValue EmitCastLValue(const CastExpr *E);
1976  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1977  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
1978  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1979
1980  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1981                              const ObjCIvarDecl *Ivar);
1982  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1983                                      const IndirectFieldDecl* Field,
1984                                      unsigned CVRQualifiers);
1985  LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1986                            unsigned CVRQualifiers);
1987
1988  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1989  /// if the Field is a reference, this will return the address of the reference
1990  /// and not the address of the value stored in the reference.
1991  LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1992                                          const FieldDecl* Field,
1993                                          unsigned CVRQualifiers);
1994
1995  LValue EmitLValueForIvar(QualType ObjectTy,
1996                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
1997                           unsigned CVRQualifiers);
1998
1999  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
2000                                unsigned CVRQualifiers);
2001
2002  LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
2003
2004  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2005  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2006  LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
2007  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2008
2009  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2010  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2011  LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
2012  LValue EmitStmtExprLValue(const StmtExpr *E);
2013  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2014  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2015  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2016
2017  //===--------------------------------------------------------------------===//
2018  //                         Scalar Expression Emission
2019  //===--------------------------------------------------------------------===//
2020
2021  /// EmitCall - Generate a call of the given function, expecting the given
2022  /// result type, and using the given argument list which specifies both the
2023  /// LLVM arguments and the types they were derived from.
2024  ///
2025  /// \param TargetDecl - If given, the decl of the function in a direct call;
2026  /// used to set attributes on the call (noreturn, etc.).
2027  RValue EmitCall(const CGFunctionInfo &FnInfo,
2028                  llvm::Value *Callee,
2029                  ReturnValueSlot ReturnValue,
2030                  const CallArgList &Args,
2031                  const Decl *TargetDecl = 0,
2032                  llvm::Instruction **callOrInvoke = 0);
2033
2034  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2035                  ReturnValueSlot ReturnValue,
2036                  CallExpr::const_arg_iterator ArgBeg,
2037                  CallExpr::const_arg_iterator ArgEnd,
2038                  const Decl *TargetDecl = 0);
2039  RValue EmitCallExpr(const CallExpr *E,
2040                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2041
2042  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2043                                  ArrayRef<llvm::Value *> Args,
2044                                  const Twine &Name = "");
2045  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2046                                  const Twine &Name = "");
2047
2048  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2049                                llvm::Type *Ty);
2050  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2051                                llvm::Value *This, llvm::Type *Ty);
2052  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2053                                         NestedNameSpecifier *Qual,
2054                                         llvm::Type *Ty);
2055
2056  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2057                                                   CXXDtorType Type,
2058                                                   const CXXRecordDecl *RD);
2059
2060  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2061                           llvm::Value *Callee,
2062                           ReturnValueSlot ReturnValue,
2063                           llvm::Value *This,
2064                           llvm::Value *VTT,
2065                           CallExpr::const_arg_iterator ArgBeg,
2066                           CallExpr::const_arg_iterator ArgEnd);
2067  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2068                               ReturnValueSlot ReturnValue);
2069  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2070                                      ReturnValueSlot ReturnValue);
2071
2072  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2073                                           const CXXMethodDecl *MD,
2074                                           llvm::Value *This);
2075  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2076                                       const CXXMethodDecl *MD,
2077                                       ReturnValueSlot ReturnValue);
2078
2079  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2080                                ReturnValueSlot ReturnValue);
2081
2082
2083  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2084                         unsigned BuiltinID, const CallExpr *E);
2085
2086  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2087
2088  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2089  /// is unhandled by the current target.
2090  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2091
2092  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2093  llvm::Value *EmitNeonCall(llvm::Function *F,
2094                            SmallVectorImpl<llvm::Value*> &O,
2095                            const char *name,
2096                            unsigned shift = 0, bool rightshift = false);
2097  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2098  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2099                                   bool negateForRightShift);
2100
2101  llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops);
2102  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2103  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2104
2105  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2106  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2107  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2108  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2109                             ReturnValueSlot Return = ReturnValueSlot());
2110
2111  /// Retrieves the default cleanup kind for an ARC cleanup.
2112  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2113  CleanupKind getARCCleanupKind() {
2114    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2115             ? NormalAndEHCleanup : NormalCleanup;
2116  }
2117
2118  // ARC primitives.
2119  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2120  void EmitARCDestroyWeak(llvm::Value *addr);
2121  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2122  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2123  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2124                                bool ignored);
2125  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2126  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2127  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2128  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2129  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2130                                  bool ignored);
2131  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2132                                      bool ignored);
2133  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2134  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2135  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2136  void EmitARCRelease(llvm::Value *value, bool precise);
2137  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2138  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2139  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2140  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2141
2142  std::pair<LValue,llvm::Value*>
2143  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2144  std::pair<LValue,llvm::Value*>
2145  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2146
2147  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2148
2149  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2150  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2151  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2152
2153  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2154  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2155  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2156
2157  static Destroyer destroyARCStrongImprecise;
2158  static Destroyer destroyARCStrongPrecise;
2159  static Destroyer destroyARCWeak;
2160
2161  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2162  llvm::Value *EmitObjCAutoreleasePoolPush();
2163  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2164  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2165  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2166
2167  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2168  /// expression. Will emit a temporary variable if E is not an LValue.
2169  RValue EmitReferenceBindingToExpr(const Expr* E,
2170                                    const NamedDecl *InitializedDecl);
2171
2172  //===--------------------------------------------------------------------===//
2173  //                           Expression Emission
2174  //===--------------------------------------------------------------------===//
2175
2176  // Expressions are broken into three classes: scalar, complex, aggregate.
2177
2178  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2179  /// scalar type, returning the result.
2180  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2181
2182  /// EmitScalarConversion - Emit a conversion from the specified type to the
2183  /// specified destination type, both of which are LLVM scalar types.
2184  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2185                                    QualType DstTy);
2186
2187  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2188  /// complex type to the specified destination type, where the destination type
2189  /// is an LLVM scalar type.
2190  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2191                                             QualType DstTy);
2192
2193
2194  /// EmitAggExpr - Emit the computation of the specified expression
2195  /// of aggregate type.  The result is computed into the given slot,
2196  /// which may be null to indicate that the value is not needed.
2197  void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2198
2199  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2200  /// aggregate type into a temporary LValue.
2201  LValue EmitAggExprToLValue(const Expr *E);
2202
2203  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2204  /// pointers.
2205  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2206                                QualType Ty);
2207
2208  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2209  /// make sure it survives garbage collection until this point.
2210  void EmitExtendGCLifetime(llvm::Value *object);
2211
2212  /// EmitComplexExpr - Emit the computation of the specified expression of
2213  /// complex type, returning the result.
2214  ComplexPairTy EmitComplexExpr(const Expr *E,
2215                                bool IgnoreReal = false,
2216                                bool IgnoreImag = false);
2217
2218  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2219  /// of complex type, storing into the specified Value*.
2220  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2221                               bool DestIsVolatile);
2222
2223  /// StoreComplexToAddr - Store a complex number into the specified address.
2224  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2225                          bool DestIsVolatile);
2226  /// LoadComplexFromAddr - Load a complex number from the specified address.
2227  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2228
2229  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2230  /// a static local variable.
2231  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2232                                            const char *Separator,
2233                                       llvm::GlobalValue::LinkageTypes Linkage);
2234
2235  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2236  /// global variable that has already been created for it.  If the initializer
2237  /// has a different type than GV does, this may free GV and return a different
2238  /// one.  Otherwise it just returns GV.
2239  llvm::GlobalVariable *
2240  AddInitializerToStaticVarDecl(const VarDecl &D,
2241                                llvm::GlobalVariable *GV);
2242
2243
2244  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2245  /// variable with global storage.
2246  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2247
2248  /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2249  /// with the C++ runtime so that its destructor will be called at exit.
2250  void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2251                                     llvm::Constant *DeclPtr);
2252
2253  /// Emit code in this function to perform a guarded variable
2254  /// initialization.  Guarded initializations are used when it's not
2255  /// possible to prove that an initialization will be done exactly
2256  /// once, e.g. with a static local variable or a static data member
2257  /// of a class template.
2258  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2259
2260  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2261  /// variables.
2262  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2263                                 llvm::Constant **Decls,
2264                                 unsigned NumDecls);
2265
2266  /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2267  /// variables.
2268  void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2269                                 const std::vector<std::pair<llvm::WeakVH,
2270                                   llvm::Constant*> > &DtorsAndObjects);
2271
2272  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2273                                        const VarDecl *D,
2274                                        llvm::GlobalVariable *Addr);
2275
2276  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2277
2278  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2279                                  const Expr *Exp);
2280
2281  RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2282                              AggValueSlot Slot =AggValueSlot::ignored());
2283
2284  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2285
2286  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2287
2288  //===--------------------------------------------------------------------===//
2289  //                         Annotations Emission
2290  //===--------------------------------------------------------------------===//
2291
2292  /// Emit an annotation call (intrinsic or builtin).
2293  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2294                                  llvm::Value *AnnotatedVal,
2295                                  llvm::StringRef AnnotationStr,
2296                                  SourceLocation Location);
2297
2298  /// Emit local annotations for the local variable V, declared by D.
2299  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2300
2301  /// Emit field annotations for the given field & value. Returns the
2302  /// annotation result.
2303  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2304
2305  //===--------------------------------------------------------------------===//
2306  //                             Internal Helpers
2307  //===--------------------------------------------------------------------===//
2308
2309  /// ContainsLabel - Return true if the statement contains a label in it.  If
2310  /// this statement is not executed normally, it not containing a label means
2311  /// that we can just remove the code.
2312  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2313
2314  /// containsBreak - Return true if the statement contains a break out of it.
2315  /// If the statement (recursively) contains a switch or loop with a break
2316  /// inside of it, this is fine.
2317  static bool containsBreak(const Stmt *S);
2318
2319  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2320  /// to a constant, or if it does but contains a label, return false.  If it
2321  /// constant folds return true and set the boolean result in Result.
2322  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2323
2324  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2325  /// to a constant, or if it does but contains a label, return false.  If it
2326  /// constant folds return true and set the folded value.
2327  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2328
2329  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2330  /// if statement) to the specified blocks.  Based on the condition, this might
2331  /// try to simplify the codegen of the conditional based on the branch.
2332  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2333                            llvm::BasicBlock *FalseBlock);
2334
2335  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2336  /// generate a branch around the created basic block as necessary.
2337  llvm::BasicBlock *getTrapBB();
2338
2339  /// EmitCallArg - Emit a single call argument.
2340  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2341
2342  /// EmitDelegateCallArg - We are performing a delegate call; that
2343  /// is, the current function is delegating to another one.  Produce
2344  /// a r-value suitable for passing the given parameter.
2345  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2346
2347private:
2348  void EmitReturnOfRValue(RValue RV, QualType Ty);
2349
2350  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2351  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2352  ///
2353  /// \param AI - The first function argument of the expansion.
2354  /// \return The argument following the last expanded function
2355  /// argument.
2356  llvm::Function::arg_iterator
2357  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2358                     llvm::Function::arg_iterator AI);
2359
2360  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2361  /// Ty, into individual arguments on the provided vector \arg Args. See
2362  /// ABIArgInfo::Expand.
2363  void ExpandTypeToArgs(QualType Ty, RValue Src,
2364                        SmallVector<llvm::Value*, 16> &Args,
2365                        llvm::FunctionType *IRFuncTy);
2366
2367  llvm::Value* EmitAsmInput(const AsmStmt &S,
2368                            const TargetInfo::ConstraintInfo &Info,
2369                            const Expr *InputExpr, std::string &ConstraintStr);
2370
2371  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2372                                  const TargetInfo::ConstraintInfo &Info,
2373                                  LValue InputValue, QualType InputType,
2374                                  std::string &ConstraintStr);
2375
2376  /// EmitCallArgs - Emit call arguments for a function.
2377  /// The CallArgTypeInfo parameter is used for iterating over the known
2378  /// argument types of the function being called.
2379  template<typename T>
2380  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2381                    CallExpr::const_arg_iterator ArgBeg,
2382                    CallExpr::const_arg_iterator ArgEnd) {
2383      CallExpr::const_arg_iterator Arg = ArgBeg;
2384
2385    // First, use the argument types that the type info knows about
2386    if (CallArgTypeInfo) {
2387      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2388           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2389        assert(Arg != ArgEnd && "Running over edge of argument list!");
2390        QualType ArgType = *I;
2391#ifndef NDEBUG
2392        QualType ActualArgType = Arg->getType();
2393        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2394          QualType ActualBaseType =
2395            ActualArgType->getAs<PointerType>()->getPointeeType();
2396          QualType ArgBaseType =
2397            ArgType->getAs<PointerType>()->getPointeeType();
2398          if (ArgBaseType->isVariableArrayType()) {
2399            if (const VariableArrayType *VAT =
2400                getContext().getAsVariableArrayType(ActualBaseType)) {
2401              if (!VAT->getSizeExpr())
2402                ActualArgType = ArgType;
2403            }
2404          }
2405        }
2406        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2407               getTypePtr() ==
2408               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2409               "type mismatch in call argument!");
2410#endif
2411        EmitCallArg(Args, *Arg, ArgType);
2412      }
2413
2414      // Either we've emitted all the call args, or we have a call to a
2415      // variadic function.
2416      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2417             "Extra arguments in non-variadic function!");
2418
2419    }
2420
2421    // If we still have any arguments, emit them using the type of the argument.
2422    for (; Arg != ArgEnd; ++Arg)
2423      EmitCallArg(Args, *Arg, Arg->getType());
2424  }
2425
2426  const TargetCodeGenInfo &getTargetHooks() const {
2427    return CGM.getTargetCodeGenInfo();
2428  }
2429
2430  void EmitDeclMetadata();
2431
2432  CodeGenModule::ByrefHelpers *
2433  buildByrefHelpers(llvm::StructType &byrefType,
2434                    const AutoVarEmission &emission);
2435};
2436
2437/// Helper class with most of the code for saving a value for a
2438/// conditional expression cleanup.
2439struct DominatingLLVMValue {
2440  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2441
2442  /// Answer whether the given value needs extra work to be saved.
2443  static bool needsSaving(llvm::Value *value) {
2444    // If it's not an instruction, we don't need to save.
2445    if (!isa<llvm::Instruction>(value)) return false;
2446
2447    // If it's an instruction in the entry block, we don't need to save.
2448    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2449    return (block != &block->getParent()->getEntryBlock());
2450  }
2451
2452  /// Try to save the given value.
2453  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2454    if (!needsSaving(value)) return saved_type(value, false);
2455
2456    // Otherwise we need an alloca.
2457    llvm::Value *alloca =
2458      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2459    CGF.Builder.CreateStore(value, alloca);
2460
2461    return saved_type(alloca, true);
2462  }
2463
2464  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2465    if (!value.getInt()) return value.getPointer();
2466    return CGF.Builder.CreateLoad(value.getPointer());
2467  }
2468};
2469
2470/// A partial specialization of DominatingValue for llvm::Values that
2471/// might be llvm::Instructions.
2472template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2473  typedef T *type;
2474  static type restore(CodeGenFunction &CGF, saved_type value) {
2475    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2476  }
2477};
2478
2479/// A specialization of DominatingValue for RValue.
2480template <> struct DominatingValue<RValue> {
2481  typedef RValue type;
2482  class saved_type {
2483    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2484                AggregateAddress, ComplexAddress };
2485
2486    llvm::Value *Value;
2487    Kind K;
2488    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2489
2490  public:
2491    static bool needsSaving(RValue value);
2492    static saved_type save(CodeGenFunction &CGF, RValue value);
2493    RValue restore(CodeGenFunction &CGF);
2494
2495    // implementations in CGExprCXX.cpp
2496  };
2497
2498  static bool needsSaving(type value) {
2499    return saved_type::needsSaving(value);
2500  }
2501  static saved_type save(CodeGenFunction &CGF, type value) {
2502    return saved_type::save(CGF, value);
2503  }
2504  static type restore(CodeGenFunction &CGF, saved_type value) {
2505    return value.restore(CGF);
2506  }
2507};
2508
2509}  // end namespace CodeGen
2510}  // end namespace clang
2511
2512#endif
2513