CGRecordLayoutBuilder.cpp revision 224145
1//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Builder implementation for CGRecordLayout objects.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGRecordLayout.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "CodeGenTypes.h"
23#include "CGCXXABI.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Type.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetData.h"
29using namespace clang;
30using namespace CodeGen;
31
32namespace {
33
34class CGRecordLayoutBuilder {
35public:
36  /// FieldTypes - Holds the LLVM types that the struct is created from.
37  ///
38  llvm::SmallVector<llvm::Type *, 16> FieldTypes;
39
40  /// BaseSubobjectType - Holds the LLVM type for the non-virtual part
41  /// of the struct. For example, consider:
42  ///
43  /// struct A { int i; };
44  /// struct B { void *v; };
45  /// struct C : virtual A, B { };
46  ///
47  /// The LLVM type of C will be
48  /// %struct.C = type { i32 (...)**, %struct.A, i32, %struct.B }
49  ///
50  /// And the LLVM type of the non-virtual base struct will be
51  /// %struct.C.base = type { i32 (...)**, %struct.A, i32 }
52  ///
53  /// This only gets initialized if the base subobject type is
54  /// different from the complete-object type.
55  llvm::StructType *BaseSubobjectType;
56
57  /// FieldInfo - Holds a field and its corresponding LLVM field number.
58  llvm::DenseMap<const FieldDecl *, unsigned> Fields;
59
60  /// BitFieldInfo - Holds location and size information about a bit field.
61  llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
62
63  llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
64  llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
65
66  /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
67  /// primary base classes for some other direct or indirect base class.
68  CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
69
70  /// LaidOutVirtualBases - A set of all laid out virtual bases, used to avoid
71  /// avoid laying out virtual bases more than once.
72  llvm::SmallPtrSet<const CXXRecordDecl *, 4> LaidOutVirtualBases;
73
74  /// IsZeroInitializable - Whether this struct can be C++
75  /// zero-initialized with an LLVM zeroinitializer.
76  bool IsZeroInitializable;
77  bool IsZeroInitializableAsBase;
78
79  /// Packed - Whether the resulting LLVM struct will be packed or not.
80  bool Packed;
81
82  /// IsMsStruct - Whether ms_struct is in effect or not
83  bool IsMsStruct;
84
85private:
86  CodeGenTypes &Types;
87
88  /// LastLaidOutBaseInfo - Contains the offset and non-virtual size of the
89  /// last base laid out. Used so that we can replace the last laid out base
90  /// type with an i8 array if needed.
91  struct LastLaidOutBaseInfo {
92    CharUnits Offset;
93    CharUnits NonVirtualSize;
94
95    bool isValid() const { return !NonVirtualSize.isZero(); }
96    void invalidate() { NonVirtualSize = CharUnits::Zero(); }
97
98  } LastLaidOutBase;
99
100  /// Alignment - Contains the alignment of the RecordDecl.
101  CharUnits Alignment;
102
103  /// BitsAvailableInLastField - If a bit field spans only part of a LLVM field,
104  /// this will have the number of bits still available in the field.
105  char BitsAvailableInLastField;
106
107  /// NextFieldOffset - Holds the next field offset.
108  CharUnits NextFieldOffset;
109
110  /// LayoutUnionField - Will layout a field in an union and return the type
111  /// that the field will have.
112  llvm::Type *LayoutUnionField(const FieldDecl *Field,
113                               const ASTRecordLayout &Layout);
114
115  /// LayoutUnion - Will layout a union RecordDecl.
116  void LayoutUnion(const RecordDecl *D);
117
118  /// LayoutField - try to layout all fields in the record decl.
119  /// Returns false if the operation failed because the struct is not packed.
120  bool LayoutFields(const RecordDecl *D);
121
122  /// Layout a single base, virtual or non-virtual
123  void LayoutBase(const CXXRecordDecl *base,
124                  const CGRecordLayout &baseLayout,
125                  CharUnits baseOffset);
126
127  /// LayoutVirtualBase - layout a single virtual base.
128  void LayoutVirtualBase(const CXXRecordDecl *base,
129                         CharUnits baseOffset);
130
131  /// LayoutVirtualBases - layout the virtual bases of a record decl.
132  void LayoutVirtualBases(const CXXRecordDecl *RD,
133                          const ASTRecordLayout &Layout);
134
135  /// LayoutNonVirtualBase - layout a single non-virtual base.
136  void LayoutNonVirtualBase(const CXXRecordDecl *base,
137                            CharUnits baseOffset);
138
139  /// LayoutNonVirtualBases - layout the virtual bases of a record decl.
140  void LayoutNonVirtualBases(const CXXRecordDecl *RD,
141                             const ASTRecordLayout &Layout);
142
143  /// ComputeNonVirtualBaseType - Compute the non-virtual base field types.
144  bool ComputeNonVirtualBaseType(const CXXRecordDecl *RD);
145
146  /// LayoutField - layout a single field. Returns false if the operation failed
147  /// because the current struct is not packed.
148  bool LayoutField(const FieldDecl *D, uint64_t FieldOffset);
149
150  /// LayoutBitField - layout a single bit field.
151  void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset);
152
153  /// AppendField - Appends a field with the given offset and type.
154  void AppendField(CharUnits fieldOffset, llvm::Type *FieldTy);
155
156  /// AppendPadding - Appends enough padding bytes so that the total
157  /// struct size is a multiple of the field alignment.
158  void AppendPadding(CharUnits fieldOffset, CharUnits fieldAlignment);
159
160  /// ResizeLastBaseFieldIfNecessary - Fields and bases can be laid out in the
161  /// tail padding of a previous base. If this happens, the type of the previous
162  /// base needs to be changed to an array of i8. Returns true if the last
163  /// laid out base was resized.
164  bool ResizeLastBaseFieldIfNecessary(CharUnits offset);
165
166  /// getByteArrayType - Returns a byte array type with the given number of
167  /// elements.
168  llvm::Type *getByteArrayType(CharUnits NumBytes);
169
170  /// AppendBytes - Append a given number of bytes to the record.
171  void AppendBytes(CharUnits numBytes);
172
173  /// AppendTailPadding - Append enough tail padding so that the type will have
174  /// the passed size.
175  void AppendTailPadding(CharUnits RecordSize);
176
177  CharUnits getTypeAlignment(const llvm::Type *Ty) const;
178
179  /// getAlignmentAsLLVMStruct - Returns the maximum alignment of all the
180  /// LLVM element types.
181  CharUnits getAlignmentAsLLVMStruct() const;
182
183  /// CheckZeroInitializable - Check if the given type contains a pointer
184  /// to data member.
185  void CheckZeroInitializable(QualType T);
186
187public:
188  CGRecordLayoutBuilder(CodeGenTypes &Types)
189    : BaseSubobjectType(0),
190      IsZeroInitializable(true), IsZeroInitializableAsBase(true),
191      Packed(false), IsMsStruct(false),
192      Types(Types), BitsAvailableInLastField(0) { }
193
194  /// Layout - Will layout a RecordDecl.
195  void Layout(const RecordDecl *D);
196};
197
198}
199
200void CGRecordLayoutBuilder::Layout(const RecordDecl *D) {
201  Alignment = Types.getContext().getASTRecordLayout(D).getAlignment();
202  Packed = D->hasAttr<PackedAttr>();
203
204  IsMsStruct = D->hasAttr<MsStructAttr>();
205
206  if (D->isUnion()) {
207    LayoutUnion(D);
208    return;
209  }
210
211  if (LayoutFields(D))
212    return;
213
214  // We weren't able to layout the struct. Try again with a packed struct
215  Packed = true;
216  LastLaidOutBase.invalidate();
217  NextFieldOffset = CharUnits::Zero();
218  FieldTypes.clear();
219  Fields.clear();
220  BitFields.clear();
221  NonVirtualBases.clear();
222  VirtualBases.clear();
223
224  LayoutFields(D);
225}
226
227CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
228                               const FieldDecl *FD,
229                               uint64_t FieldOffset,
230                               uint64_t FieldSize,
231                               uint64_t ContainingTypeSizeInBits,
232                               unsigned ContainingTypeAlign) {
233  const llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
234  CharUnits TypeSizeInBytes =
235    CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(Ty));
236  uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
237
238  bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
239
240  if (FieldSize > TypeSizeInBits) {
241    // We have a wide bit-field. The extra bits are only used for padding, so
242    // if we have a bitfield of type T, with size N:
243    //
244    // T t : N;
245    //
246    // We can just assume that it's:
247    //
248    // T t : sizeof(T);
249    //
250    FieldSize = TypeSizeInBits;
251  }
252
253  // in big-endian machines the first fields are in higher bit positions,
254  // so revert the offset. The byte offsets are reversed(back) later.
255  if (Types.getTargetData().isBigEndian()) {
256    FieldOffset = ((ContainingTypeSizeInBits)-FieldOffset-FieldSize);
257  }
258
259  // Compute the access components. The policy we use is to start by attempting
260  // to access using the width of the bit-field type itself and to always access
261  // at aligned indices of that type. If such an access would fail because it
262  // extends past the bound of the type, then we reduce size to the next smaller
263  // power of two and retry. The current algorithm assumes pow2 sized types,
264  // although this is easy to fix.
265  //
266  assert(llvm::isPowerOf2_32(TypeSizeInBits) && "Unexpected type size!");
267  CGBitFieldInfo::AccessInfo Components[3];
268  unsigned NumComponents = 0;
269  unsigned AccessedTargetBits = 0;       // The number of target bits accessed.
270  unsigned AccessWidth = TypeSizeInBits; // The current access width to attempt.
271
272  // If requested, widen the initial bit-field access to be register sized. The
273  // theory is that this is most likely to allow multiple accesses into the same
274  // structure to be coalesced, and that the backend should be smart enough to
275  // narrow the store if no coalescing is ever done.
276  //
277  // The subsequent code will handle align these access to common boundaries and
278  // guaranteeing that we do not access past the end of the structure.
279  if (Types.getCodeGenOpts().UseRegisterSizedBitfieldAccess) {
280    if (AccessWidth < Types.getTarget().getRegisterWidth())
281      AccessWidth = Types.getTarget().getRegisterWidth();
282  }
283
284  // Round down from the field offset to find the first access position that is
285  // at an aligned offset of the initial access type.
286  uint64_t AccessStart = FieldOffset - (FieldOffset % AccessWidth);
287
288  // Adjust initial access size to fit within record.
289  while (AccessWidth > Types.getTarget().getCharWidth() &&
290         AccessStart + AccessWidth > ContainingTypeSizeInBits) {
291    AccessWidth >>= 1;
292    AccessStart = FieldOffset - (FieldOffset % AccessWidth);
293  }
294
295  while (AccessedTargetBits < FieldSize) {
296    // Check that we can access using a type of this size, without reading off
297    // the end of the structure. This can occur with packed structures and
298    // -fno-bitfield-type-align, for example.
299    if (AccessStart + AccessWidth > ContainingTypeSizeInBits) {
300      // If so, reduce access size to the next smaller power-of-two and retry.
301      AccessWidth >>= 1;
302      assert(AccessWidth >= Types.getTarget().getCharWidth()
303             && "Cannot access under byte size!");
304      continue;
305    }
306
307    // Otherwise, add an access component.
308
309    // First, compute the bits inside this access which are part of the
310    // target. We are reading bits [AccessStart, AccessStart + AccessWidth); the
311    // intersection with [FieldOffset, FieldOffset + FieldSize) gives the bits
312    // in the target that we are reading.
313    assert(FieldOffset < AccessStart + AccessWidth && "Invalid access start!");
314    assert(AccessStart < FieldOffset + FieldSize && "Invalid access start!");
315    uint64_t AccessBitsInFieldStart = std::max(AccessStart, FieldOffset);
316    uint64_t AccessBitsInFieldSize =
317      std::min(AccessWidth + AccessStart,
318               FieldOffset + FieldSize) - AccessBitsInFieldStart;
319
320    assert(NumComponents < 3 && "Unexpected number of components!");
321    CGBitFieldInfo::AccessInfo &AI = Components[NumComponents++];
322    AI.FieldIndex = 0;
323    // FIXME: We still follow the old access pattern of only using the field
324    // byte offset. We should switch this once we fix the struct layout to be
325    // pretty.
326
327    // on big-endian machines we reverted the bit offset because first fields are
328    // in higher bits. But this also reverts the bytes, so fix this here by reverting
329    // the byte offset on big-endian machines.
330    if (Types.getTargetData().isBigEndian()) {
331      AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(
332          ContainingTypeSizeInBits - AccessStart - AccessWidth);
333    } else {
334      AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(AccessStart);
335    }
336    AI.FieldBitStart = AccessBitsInFieldStart - AccessStart;
337    AI.AccessWidth = AccessWidth;
338    AI.AccessAlignment = Types.getContext().toCharUnitsFromBits(
339        llvm::MinAlign(ContainingTypeAlign, AccessStart));
340    AI.TargetBitOffset = AccessedTargetBits;
341    AI.TargetBitWidth = AccessBitsInFieldSize;
342
343    AccessStart += AccessWidth;
344    AccessedTargetBits += AI.TargetBitWidth;
345  }
346
347  assert(AccessedTargetBits == FieldSize && "Invalid bit-field access!");
348  return CGBitFieldInfo(FieldSize, NumComponents, Components, IsSigned);
349}
350
351CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
352                                        const FieldDecl *FD,
353                                        uint64_t FieldOffset,
354                                        uint64_t FieldSize) {
355  const RecordDecl *RD = FD->getParent();
356  const ASTRecordLayout &RL = Types.getContext().getASTRecordLayout(RD);
357  uint64_t ContainingTypeSizeInBits = Types.getContext().toBits(RL.getSize());
358  unsigned ContainingTypeAlign = Types.getContext().toBits(RL.getAlignment());
359
360  return MakeInfo(Types, FD, FieldOffset, FieldSize, ContainingTypeSizeInBits,
361                  ContainingTypeAlign);
362}
363
364void CGRecordLayoutBuilder::LayoutBitField(const FieldDecl *D,
365                                           uint64_t fieldOffset) {
366  uint64_t fieldSize =
367    D->getBitWidth()->EvaluateAsInt(Types.getContext()).getZExtValue();
368
369  if (fieldSize == 0)
370    return;
371
372  uint64_t nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
373  CharUnits numBytesToAppend;
374  unsigned charAlign = Types.getContext().Target.getCharAlign();
375
376  if (fieldOffset < nextFieldOffsetInBits && !BitsAvailableInLastField) {
377    assert(fieldOffset % charAlign == 0 &&
378           "Field offset not aligned correctly");
379
380    CharUnits fieldOffsetInCharUnits =
381      Types.getContext().toCharUnitsFromBits(fieldOffset);
382
383    // Try to resize the last base field.
384    if (ResizeLastBaseFieldIfNecessary(fieldOffsetInCharUnits))
385      nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
386  }
387
388  if (fieldOffset < nextFieldOffsetInBits) {
389    assert(BitsAvailableInLastField && "Bitfield size mismatch!");
390    assert(!NextFieldOffset.isZero() && "Must have laid out at least one byte");
391
392    // The bitfield begins in the previous bit-field.
393    numBytesToAppend = Types.getContext().toCharUnitsFromBits(
394      llvm::RoundUpToAlignment(fieldSize - BitsAvailableInLastField,
395                               charAlign));
396  } else {
397    assert(fieldOffset % charAlign == 0 &&
398           "Field offset not aligned correctly");
399
400    // Append padding if necessary.
401    AppendPadding(Types.getContext().toCharUnitsFromBits(fieldOffset),
402                  CharUnits::One());
403
404    numBytesToAppend = Types.getContext().toCharUnitsFromBits(
405        llvm::RoundUpToAlignment(fieldSize, charAlign));
406
407    assert(!numBytesToAppend.isZero() && "No bytes to append!");
408  }
409
410  // Add the bit field info.
411  BitFields.insert(std::make_pair(D,
412                   CGBitFieldInfo::MakeInfo(Types, D, fieldOffset, fieldSize)));
413
414  AppendBytes(numBytesToAppend);
415
416  BitsAvailableInLastField =
417    Types.getContext().toBits(NextFieldOffset) - (fieldOffset + fieldSize);
418}
419
420bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D,
421                                        uint64_t fieldOffset) {
422  // If the field is packed, then we need a packed struct.
423  if (!Packed && D->hasAttr<PackedAttr>())
424    return false;
425
426  if (D->isBitField()) {
427    // We must use packed structs for unnamed bit fields since they
428    // don't affect the struct alignment.
429    if (!Packed && !D->getDeclName())
430      return false;
431
432    LayoutBitField(D, fieldOffset);
433    return true;
434  }
435
436  CheckZeroInitializable(D->getType());
437
438  assert(fieldOffset % Types.getTarget().getCharWidth() == 0
439         && "field offset is not on a byte boundary!");
440  CharUnits fieldOffsetInBytes
441    = Types.getContext().toCharUnitsFromBits(fieldOffset);
442
443  llvm::Type *Ty = Types.ConvertTypeForMem(D->getType());
444  CharUnits typeAlignment = getTypeAlignment(Ty);
445
446  // If the type alignment is larger then the struct alignment, we must use
447  // a packed struct.
448  if (typeAlignment > Alignment) {
449    assert(!Packed && "Alignment is wrong even with packed struct!");
450    return false;
451  }
452
453  if (!Packed) {
454    if (const RecordType *RT = D->getType()->getAs<RecordType>()) {
455      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
456      if (const MaxFieldAlignmentAttr *MFAA =
457            RD->getAttr<MaxFieldAlignmentAttr>()) {
458        if (MFAA->getAlignment() != Types.getContext().toBits(typeAlignment))
459          return false;
460      }
461    }
462  }
463
464  // Round up the field offset to the alignment of the field type.
465  CharUnits alignedNextFieldOffsetInBytes =
466    NextFieldOffset.RoundUpToAlignment(typeAlignment);
467
468  if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
469    // Try to resize the last base field.
470    if (ResizeLastBaseFieldIfNecessary(fieldOffsetInBytes)) {
471      alignedNextFieldOffsetInBytes =
472        NextFieldOffset.RoundUpToAlignment(typeAlignment);
473    }
474  }
475
476  if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
477    assert(!Packed && "Could not place field even with packed struct!");
478    return false;
479  }
480
481  AppendPadding(fieldOffsetInBytes, typeAlignment);
482
483  // Now append the field.
484  Fields[D] = FieldTypes.size();
485  AppendField(fieldOffsetInBytes, Ty);
486
487  LastLaidOutBase.invalidate();
488  return true;
489}
490
491llvm::Type *
492CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field,
493                                        const ASTRecordLayout &Layout) {
494  if (Field->isBitField()) {
495    uint64_t FieldSize =
496      Field->getBitWidth()->EvaluateAsInt(Types.getContext()).getZExtValue();
497
498    // Ignore zero sized bit fields.
499    if (FieldSize == 0)
500      return 0;
501
502    llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext());
503    CharUnits NumBytesToAppend = Types.getContext().toCharUnitsFromBits(
504      llvm::RoundUpToAlignment(FieldSize,
505                               Types.getContext().Target.getCharAlign()));
506
507    if (NumBytesToAppend > CharUnits::One())
508      FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend.getQuantity());
509
510    // Add the bit field info.
511    BitFields.insert(std::make_pair(Field,
512                         CGBitFieldInfo::MakeInfo(Types, Field, 0, FieldSize)));
513    return FieldTy;
514  }
515
516  // This is a regular union field.
517  Fields[Field] = 0;
518  return Types.ConvertTypeForMem(Field->getType());
519}
520
521void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) {
522  assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!");
523
524  const ASTRecordLayout &layout = Types.getContext().getASTRecordLayout(D);
525
526  llvm::Type *unionType = 0;
527  CharUnits unionSize = CharUnits::Zero();
528  CharUnits unionAlign = CharUnits::Zero();
529
530  bool hasOnlyZeroSizedBitFields = true;
531
532  unsigned fieldNo = 0;
533  for (RecordDecl::field_iterator field = D->field_begin(),
534       fieldEnd = D->field_end(); field != fieldEnd; ++field, ++fieldNo) {
535    assert(layout.getFieldOffset(fieldNo) == 0 &&
536          "Union field offset did not start at the beginning of record!");
537    llvm::Type *fieldType = LayoutUnionField(*field, layout);
538
539    if (!fieldType)
540      continue;
541
542    hasOnlyZeroSizedBitFields = false;
543
544    CharUnits fieldAlign = CharUnits::fromQuantity(
545                          Types.getTargetData().getABITypeAlignment(fieldType));
546    CharUnits fieldSize = CharUnits::fromQuantity(
547                             Types.getTargetData().getTypeAllocSize(fieldType));
548
549    if (fieldAlign < unionAlign)
550      continue;
551
552    if (fieldAlign > unionAlign || fieldSize > unionSize) {
553      unionType = fieldType;
554      unionAlign = fieldAlign;
555      unionSize = fieldSize;
556    }
557  }
558
559  // Now add our field.
560  if (unionType) {
561    AppendField(CharUnits::Zero(), unionType);
562
563    if (getTypeAlignment(unionType) > layout.getAlignment()) {
564      // We need a packed struct.
565      Packed = true;
566      unionAlign = CharUnits::One();
567    }
568  }
569  if (unionAlign.isZero()) {
570    assert(hasOnlyZeroSizedBitFields &&
571           "0-align record did not have all zero-sized bit-fields!");
572    unionAlign = CharUnits::One();
573  }
574
575  // Append tail padding.
576  CharUnits recordSize = layout.getSize();
577  if (recordSize > unionSize)
578    AppendPadding(recordSize, unionAlign);
579}
580
581void CGRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *base,
582                                       const CGRecordLayout &baseLayout,
583                                       CharUnits baseOffset) {
584  ResizeLastBaseFieldIfNecessary(baseOffset);
585
586  AppendPadding(baseOffset, CharUnits::One());
587
588  const ASTRecordLayout &baseASTLayout
589    = Types.getContext().getASTRecordLayout(base);
590
591  LastLaidOutBase.Offset = NextFieldOffset;
592  LastLaidOutBase.NonVirtualSize = baseASTLayout.getNonVirtualSize();
593
594  // Fields and bases can be laid out in the tail padding of previous
595  // bases.  If this happens, we need to allocate the base as an i8
596  // array; otherwise, we can use the subobject type.  However,
597  // actually doing that would require knowledge of what immediately
598  // follows this base in the layout, so instead we do a conservative
599  // approximation, which is to use the base subobject type if it
600  // has the same LLVM storage size as the nvsize.
601
602  llvm::StructType *subobjectType = baseLayout.getBaseSubobjectLLVMType();
603  AppendField(baseOffset, subobjectType);
604}
605
606void CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *base,
607                                                 CharUnits baseOffset) {
608  // Ignore empty bases.
609  if (base->isEmpty()) return;
610
611  const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
612  if (IsZeroInitializableAsBase) {
613    assert(IsZeroInitializable &&
614           "class zero-initializable as base but not as complete object");
615
616    IsZeroInitializable = IsZeroInitializableAsBase =
617      baseLayout.isZeroInitializableAsBase();
618  }
619
620  LayoutBase(base, baseLayout, baseOffset);
621  NonVirtualBases[base] = (FieldTypes.size() - 1);
622}
623
624void
625CGRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *base,
626                                         CharUnits baseOffset) {
627  // Ignore empty bases.
628  if (base->isEmpty()) return;
629
630  const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
631  if (IsZeroInitializable)
632    IsZeroInitializable = baseLayout.isZeroInitializableAsBase();
633
634  LayoutBase(base, baseLayout, baseOffset);
635  VirtualBases[base] = (FieldTypes.size() - 1);
636}
637
638/// LayoutVirtualBases - layout the non-virtual bases of a record decl.
639void
640CGRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
641                                          const ASTRecordLayout &Layout) {
642  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
643       E = RD->bases_end(); I != E; ++I) {
644    const CXXRecordDecl *BaseDecl =
645      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
646
647    // We only want to lay out virtual bases that aren't indirect primary bases
648    // of some other base.
649    if (I->isVirtual() && !IndirectPrimaryBases.count(BaseDecl)) {
650      // Only lay out the base once.
651      if (!LaidOutVirtualBases.insert(BaseDecl))
652        continue;
653
654      CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
655      LayoutVirtualBase(BaseDecl, vbaseOffset);
656    }
657
658    if (!BaseDecl->getNumVBases()) {
659      // This base isn't interesting since it doesn't have any virtual bases.
660      continue;
661    }
662
663    LayoutVirtualBases(BaseDecl, Layout);
664  }
665}
666
667void
668CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD,
669                                             const ASTRecordLayout &Layout) {
670  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
671
672  // Check if we need to add a vtable pointer.
673  if (RD->isDynamicClass()) {
674    if (!PrimaryBase) {
675      const llvm::Type *FunctionType =
676        llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()),
677                                /*isVarArg=*/true);
678      const llvm::Type *VTableTy = FunctionType->getPointerTo();
679
680      assert(NextFieldOffset.isZero() &&
681             "VTable pointer must come first!");
682      AppendField(CharUnits::Zero(), VTableTy->getPointerTo());
683    } else {
684      if (!Layout.isPrimaryBaseVirtual())
685        LayoutNonVirtualBase(PrimaryBase, CharUnits::Zero());
686      else
687        LayoutVirtualBase(PrimaryBase, CharUnits::Zero());
688    }
689  }
690
691  // Layout the non-virtual bases.
692  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
693       E = RD->bases_end(); I != E; ++I) {
694    if (I->isVirtual())
695      continue;
696
697    const CXXRecordDecl *BaseDecl =
698      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
699
700    // We've already laid out the primary base.
701    if (BaseDecl == PrimaryBase && !Layout.isPrimaryBaseVirtual())
702      continue;
703
704    LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffset(BaseDecl));
705  }
706}
707
708bool
709CGRecordLayoutBuilder::ComputeNonVirtualBaseType(const CXXRecordDecl *RD) {
710  const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(RD);
711
712  CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
713  CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
714  CharUnits AlignedNonVirtualTypeSize =
715    NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
716
717  // First check if we can use the same fields as for the complete class.
718  CharUnits RecordSize = Layout.getSize();
719  if (AlignedNonVirtualTypeSize == RecordSize)
720    return true;
721
722  // Check if we need padding.
723  CharUnits AlignedNextFieldOffset =
724    NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
725
726  if (AlignedNextFieldOffset > AlignedNonVirtualTypeSize) {
727    assert(!Packed && "cannot layout even as packed struct");
728    return false; // Needs packing.
729  }
730
731  bool needsPadding = (AlignedNonVirtualTypeSize != AlignedNextFieldOffset);
732  if (needsPadding) {
733    CharUnits NumBytes = AlignedNonVirtualTypeSize - AlignedNextFieldOffset;
734    FieldTypes.push_back(getByteArrayType(NumBytes));
735  }
736
737
738  BaseSubobjectType = llvm::StructType::createNamed(Types.getLLVMContext(), "",
739                                                    FieldTypes, Packed);
740  Types.addRecordTypeName(RD, BaseSubobjectType, ".base");
741
742  // Pull the padding back off.
743  if (needsPadding)
744    FieldTypes.pop_back();
745
746  return true;
747}
748
749bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
750  assert(!D->isUnion() && "Can't call LayoutFields on a union!");
751  assert(!Alignment.isZero() && "Did not set alignment!");
752
753  const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
754
755  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
756  if (RD)
757    LayoutNonVirtualBases(RD, Layout);
758
759  unsigned FieldNo = 0;
760  const FieldDecl *LastFD = 0;
761
762  for (RecordDecl::field_iterator Field = D->field_begin(),
763       FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
764    if (IsMsStruct) {
765      // Zero-length bitfields following non-bitfield members are
766      // ignored:
767      const FieldDecl *FD =  (*Field);
768      if (Types.getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
769        --FieldNo;
770        continue;
771      }
772      LastFD = FD;
773    }
774
775    if (!LayoutField(*Field, Layout.getFieldOffset(FieldNo))) {
776      assert(!Packed &&
777             "Could not layout fields even with a packed LLVM struct!");
778      return false;
779    }
780  }
781
782  if (RD) {
783    // We've laid out the non-virtual bases and the fields, now compute the
784    // non-virtual base field types.
785    if (!ComputeNonVirtualBaseType(RD)) {
786      assert(!Packed && "Could not layout even with a packed LLVM struct!");
787      return false;
788    }
789
790    // And lay out the virtual bases.
791    RD->getIndirectPrimaryBases(IndirectPrimaryBases);
792    if (Layout.isPrimaryBaseVirtual())
793      IndirectPrimaryBases.insert(Layout.getPrimaryBase());
794    LayoutVirtualBases(RD, Layout);
795  }
796
797  // Append tail padding if necessary.
798  AppendTailPadding(Layout.getSize());
799
800  return true;
801}
802
803void CGRecordLayoutBuilder::AppendTailPadding(CharUnits RecordSize) {
804  ResizeLastBaseFieldIfNecessary(RecordSize);
805
806  assert(NextFieldOffset <= RecordSize && "Size mismatch!");
807
808  CharUnits AlignedNextFieldOffset =
809    NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
810
811  if (AlignedNextFieldOffset == RecordSize) {
812    // We don't need any padding.
813    return;
814  }
815
816  CharUnits NumPadBytes = RecordSize - NextFieldOffset;
817  AppendBytes(NumPadBytes);
818}
819
820void CGRecordLayoutBuilder::AppendField(CharUnits fieldOffset,
821                                        llvm::Type *fieldType) {
822  CharUnits fieldSize =
823    CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(fieldType));
824
825  FieldTypes.push_back(fieldType);
826
827  NextFieldOffset = fieldOffset + fieldSize;
828  BitsAvailableInLastField = 0;
829}
830
831void CGRecordLayoutBuilder::AppendPadding(CharUnits fieldOffset,
832                                          CharUnits fieldAlignment) {
833  assert(NextFieldOffset <= fieldOffset &&
834         "Incorrect field layout!");
835
836  // Round up the field offset to the alignment of the field type.
837  CharUnits alignedNextFieldOffset =
838    NextFieldOffset.RoundUpToAlignment(fieldAlignment);
839
840  if (alignedNextFieldOffset < fieldOffset) {
841    // Even with alignment, the field offset is not at the right place,
842    // insert padding.
843    CharUnits padding = fieldOffset - NextFieldOffset;
844
845    AppendBytes(padding);
846  }
847}
848
849bool CGRecordLayoutBuilder::ResizeLastBaseFieldIfNecessary(CharUnits offset) {
850  // Check if we have a base to resize.
851  if (!LastLaidOutBase.isValid())
852    return false;
853
854  // This offset does not overlap with the tail padding.
855  if (offset >= NextFieldOffset)
856    return false;
857
858  // Restore the field offset and append an i8 array instead.
859  FieldTypes.pop_back();
860  NextFieldOffset = LastLaidOutBase.Offset;
861  AppendBytes(LastLaidOutBase.NonVirtualSize);
862  LastLaidOutBase.invalidate();
863
864  return true;
865}
866
867llvm::Type *CGRecordLayoutBuilder::getByteArrayType(CharUnits numBytes) {
868  assert(!numBytes.isZero() && "Empty byte arrays aren't allowed.");
869
870  llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext());
871  if (numBytes > CharUnits::One())
872    Ty = llvm::ArrayType::get(Ty, numBytes.getQuantity());
873
874  return Ty;
875}
876
877void CGRecordLayoutBuilder::AppendBytes(CharUnits numBytes) {
878  if (numBytes.isZero())
879    return;
880
881  // Append the padding field
882  AppendField(NextFieldOffset, getByteArrayType(numBytes));
883}
884
885CharUnits CGRecordLayoutBuilder::getTypeAlignment(const llvm::Type *Ty) const {
886  if (Packed)
887    return CharUnits::One();
888
889  return CharUnits::fromQuantity(Types.getTargetData().getABITypeAlignment(Ty));
890}
891
892CharUnits CGRecordLayoutBuilder::getAlignmentAsLLVMStruct() const {
893  if (Packed)
894    return CharUnits::One();
895
896  CharUnits maxAlignment = CharUnits::One();
897  for (size_t i = 0; i != FieldTypes.size(); ++i)
898    maxAlignment = std::max(maxAlignment, getTypeAlignment(FieldTypes[i]));
899
900  return maxAlignment;
901}
902
903/// Merge in whether a field of the given type is zero-initializable.
904void CGRecordLayoutBuilder::CheckZeroInitializable(QualType T) {
905  // This record already contains a member pointer.
906  if (!IsZeroInitializableAsBase)
907    return;
908
909  // Can only have member pointers if we're compiling C++.
910  if (!Types.getContext().getLangOptions().CPlusPlus)
911    return;
912
913  const Type *elementType = T->getBaseElementTypeUnsafe();
914
915  if (const MemberPointerType *MPT = elementType->getAs<MemberPointerType>()) {
916    if (!Types.getCXXABI().isZeroInitializable(MPT))
917      IsZeroInitializable = IsZeroInitializableAsBase = false;
918  } else if (const RecordType *RT = elementType->getAs<RecordType>()) {
919    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
920    const CGRecordLayout &Layout = Types.getCGRecordLayout(RD);
921    if (!Layout.isZeroInitializable())
922      IsZeroInitializable = IsZeroInitializableAsBase = false;
923  }
924}
925
926CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
927                                                  llvm::StructType *Ty) {
928  CGRecordLayoutBuilder Builder(*this);
929
930  Builder.Layout(D);
931
932  Ty->setBody(Builder.FieldTypes, Builder.Packed);
933
934  // If we're in C++, compute the base subobject type.
935  llvm::StructType *BaseTy = 0;
936  if (isa<CXXRecordDecl>(D)) {
937    BaseTy = Builder.BaseSubobjectType;
938    if (!BaseTy) BaseTy = Ty;
939  }
940
941  CGRecordLayout *RL =
942    new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
943                       Builder.IsZeroInitializableAsBase);
944
945  RL->NonVirtualBases.swap(Builder.NonVirtualBases);
946  RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
947
948  // Add all the field numbers.
949  RL->FieldInfo.swap(Builder.Fields);
950
951  // Add bitfield info.
952  RL->BitFields.swap(Builder.BitFields);
953
954  // Dump the layout, if requested.
955  if (getContext().getLangOptions().DumpRecordLayouts) {
956    llvm::errs() << "\n*** Dumping IRgen Record Layout\n";
957    llvm::errs() << "Record: ";
958    D->dump();
959    llvm::errs() << "\nLayout: ";
960    RL->dump();
961  }
962
963#ifndef NDEBUG
964  // Verify that the computed LLVM struct size matches the AST layout size.
965  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
966
967  uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
968  assert(TypeSizeInBits == getTargetData().getTypeAllocSizeInBits(Ty) &&
969         "Type size mismatch!");
970
971  if (BaseTy) {
972    CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
973    CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
974    CharUnits AlignedNonVirtualTypeSize =
975      NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
976
977    uint64_t AlignedNonVirtualTypeSizeInBits =
978      getContext().toBits(AlignedNonVirtualTypeSize);
979
980    assert(AlignedNonVirtualTypeSizeInBits ==
981           getTargetData().getTypeAllocSizeInBits(BaseTy) &&
982           "Type size mismatch!");
983  }
984
985  // Verify that the LLVM and AST field offsets agree.
986  const llvm::StructType *ST =
987    dyn_cast<llvm::StructType>(RL->getLLVMType());
988  const llvm::StructLayout *SL = getTargetData().getStructLayout(ST);
989
990  const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
991  RecordDecl::field_iterator it = D->field_begin();
992  const FieldDecl *LastFD = 0;
993  bool IsMsStruct = D->hasAttr<MsStructAttr>();
994  for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
995    const FieldDecl *FD = *it;
996
997    // For non-bit-fields, just check that the LLVM struct offset matches the
998    // AST offset.
999    if (!FD->isBitField()) {
1000      unsigned FieldNo = RL->getLLVMFieldNo(FD);
1001      assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
1002             "Invalid field offset!");
1003      LastFD = FD;
1004      continue;
1005    }
1006
1007    if (IsMsStruct) {
1008      // Zero-length bitfields following non-bitfield members are
1009      // ignored:
1010      if (getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
1011        --i;
1012        continue;
1013      }
1014      LastFD = FD;
1015    }
1016
1017    // Ignore unnamed bit-fields.
1018    if (!FD->getDeclName()) {
1019      LastFD = FD;
1020      continue;
1021    }
1022
1023    const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
1024    for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1025      const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1026
1027      // Verify that every component access is within the structure.
1028      uint64_t FieldOffset = SL->getElementOffsetInBits(AI.FieldIndex);
1029      uint64_t AccessBitOffset = FieldOffset +
1030        getContext().toBits(AI.FieldByteOffset);
1031      assert(AccessBitOffset + AI.AccessWidth <= TypeSizeInBits &&
1032             "Invalid bit-field access (out of range)!");
1033    }
1034  }
1035#endif
1036
1037  return RL;
1038}
1039
1040void CGRecordLayout::print(llvm::raw_ostream &OS) const {
1041  OS << "<CGRecordLayout\n";
1042  OS << "  LLVMType:" << *CompleteObjectType << "\n";
1043  if (BaseSubobjectType)
1044    OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
1045  OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
1046  OS << "  BitFields:[\n";
1047
1048  // Print bit-field infos in declaration order.
1049  std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
1050  for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
1051         it = BitFields.begin(), ie = BitFields.end();
1052       it != ie; ++it) {
1053    const RecordDecl *RD = it->first->getParent();
1054    unsigned Index = 0;
1055    for (RecordDecl::field_iterator
1056           it2 = RD->field_begin(); *it2 != it->first; ++it2)
1057      ++Index;
1058    BFIs.push_back(std::make_pair(Index, &it->second));
1059  }
1060  llvm::array_pod_sort(BFIs.begin(), BFIs.end());
1061  for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
1062    OS.indent(4);
1063    BFIs[i].second->print(OS);
1064    OS << "\n";
1065  }
1066
1067  OS << "]>\n";
1068}
1069
1070void CGRecordLayout::dump() const {
1071  print(llvm::errs());
1072}
1073
1074void CGBitFieldInfo::print(llvm::raw_ostream &OS) const {
1075  OS << "<CGBitFieldInfo";
1076  OS << " Size:" << Size;
1077  OS << " IsSigned:" << IsSigned << "\n";
1078
1079  OS.indent(4 + strlen("<CGBitFieldInfo"));
1080  OS << " NumComponents:" << getNumComponents();
1081  OS << " Components: [";
1082  if (getNumComponents()) {
1083    OS << "\n";
1084    for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
1085      const AccessInfo &AI = getComponent(i);
1086      OS.indent(8);
1087      OS << "<AccessInfo"
1088         << " FieldIndex:" << AI.FieldIndex
1089         << " FieldByteOffset:" << AI.FieldByteOffset.getQuantity()
1090         << " FieldBitStart:" << AI.FieldBitStart
1091         << " AccessWidth:" << AI.AccessWidth << "\n";
1092      OS.indent(8 + strlen("<AccessInfo"));
1093      OS << " AccessAlignment:" << AI.AccessAlignment.getQuantity()
1094         << " TargetBitOffset:" << AI.TargetBitOffset
1095         << " TargetBitWidth:" << AI.TargetBitWidth
1096         << ">\n";
1097    }
1098    OS.indent(4);
1099  }
1100  OS << "]>";
1101}
1102
1103void CGBitFieldInfo::dump() const {
1104  print(llvm::errs());
1105}
1106