CGExprScalar.cpp revision 206084
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  const BinaryOperator *E;
44};
45
46namespace {
47class ScalarExprEmitter
48  : public StmtVisitor<ScalarExprEmitter, Value*> {
49  CodeGenFunction &CGF;
50  CGBuilderTy &Builder;
51  bool IgnoreResultAssign;
52  llvm::LLVMContext &VMContext;
53public:
54
55  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57      VMContext(cgf.getLLVMContext()) {
58  }
59
60  //===--------------------------------------------------------------------===//
61  //                               Utilities
62  //===--------------------------------------------------------------------===//
63
64  bool TestAndClearIgnoreResultAssign() {
65    bool I = IgnoreResultAssign;
66    IgnoreResultAssign = false;
67    return I;
68  }
69
70  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
73
74  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76  }
77
78  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79  /// value l-value, this method emits the address of the l-value, then loads
80  /// and returns the result.
81  Value *EmitLoadOfLValue(const Expr *E) {
82    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
83  }
84
85  /// EmitConversionToBool - Convert the specified expression value to a
86  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88
89  /// EmitScalarConversion - Emit a conversion from the specified type to the
90  /// specified destination type, both of which are LLVM scalar types.
91  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92
93  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94  /// complex type to the specified destination type, where the destination type
95  /// is an LLVM scalar type.
96  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97                                       QualType SrcTy, QualType DstTy);
98
99  //===--------------------------------------------------------------------===//
100  //                            Visitor Methods
101  //===--------------------------------------------------------------------===//
102
103  Value *VisitStmt(Stmt *S) {
104    S->dump(CGF.getContext().getSourceManager());
105    assert(0 && "Stmt can't have complex result type!");
106    return 0;
107  }
108  Value *VisitExpr(Expr *S);
109
110  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
111
112  // Leaves.
113  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
114    return llvm::ConstantInt::get(VMContext, E->getValue());
115  }
116  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
117    return llvm::ConstantFP::get(VMContext, E->getValue());
118  }
119  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
120    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
121  }
122  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
123    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124  }
125  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
126    return llvm::Constant::getNullValue(ConvertType(E->getType()));
127  }
128  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
129    return llvm::Constant::getNullValue(ConvertType(E->getType()));
130  }
131  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
132    return llvm::ConstantInt::get(ConvertType(E->getType()),
133                                  CGF.getContext().typesAreCompatible(
134                                    E->getArgType1(), E->getArgType2()));
135  }
136  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
137  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
138    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
139    return Builder.CreateBitCast(V, ConvertType(E->getType()));
140  }
141
142  // l-values.
143  Value *VisitDeclRefExpr(DeclRefExpr *E) {
144    Expr::EvalResult Result;
145    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
146      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
147      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
148    }
149    return EmitLoadOfLValue(E);
150  }
151  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
152    return CGF.EmitObjCSelectorExpr(E);
153  }
154  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
155    return CGF.EmitObjCProtocolExpr(E);
156  }
157  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
158    return EmitLoadOfLValue(E);
159  }
160  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
161    return EmitLoadOfLValue(E);
162  }
163  Value *VisitObjCImplicitSetterGetterRefExpr(
164                        ObjCImplicitSetterGetterRefExpr *E) {
165    return EmitLoadOfLValue(E);
166  }
167  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
168    return CGF.EmitObjCMessageExpr(E).getScalarVal();
169  }
170
171  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
172    LValue LV = CGF.EmitObjCIsaExpr(E);
173    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
174    return V;
175  }
176
177  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
178  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
179  Value *VisitMemberExpr(MemberExpr *E);
180  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
181  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
182    return EmitLoadOfLValue(E);
183  }
184
185  Value *VisitInitListExpr(InitListExpr *E);
186
187  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
188    return llvm::Constant::getNullValue(ConvertType(E->getType()));
189  }
190  Value *VisitCastExpr(CastExpr *E) {
191    // Make sure to evaluate VLA bounds now so that we have them for later.
192    if (E->getType()->isVariablyModifiedType())
193      CGF.EmitVLASize(E->getType());
194
195    return EmitCastExpr(E);
196  }
197  Value *EmitCastExpr(CastExpr *E);
198
199  Value *VisitCallExpr(const CallExpr *E) {
200    if (E->getCallReturnType()->isReferenceType())
201      return EmitLoadOfLValue(E);
202
203    return CGF.EmitCallExpr(E).getScalarVal();
204  }
205
206  Value *VisitStmtExpr(const StmtExpr *E);
207
208  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
209
210  // Unary Operators.
211  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) {
212    LValue LV = EmitLValue(E->getSubExpr());
213    return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre);
214  }
215  Value *VisitUnaryPostDec(const UnaryOperator *E) {
216    return VisitPrePostIncDec(E, false, false);
217  }
218  Value *VisitUnaryPostInc(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, true, false);
220  }
221  Value *VisitUnaryPreDec(const UnaryOperator *E) {
222    return VisitPrePostIncDec(E, false, true);
223  }
224  Value *VisitUnaryPreInc(const UnaryOperator *E) {
225    return VisitPrePostIncDec(E, true, true);
226  }
227  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
228    return EmitLValue(E->getSubExpr()).getAddress();
229  }
230  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
231  Value *VisitUnaryPlus(const UnaryOperator *E) {
232    // This differs from gcc, though, most likely due to a bug in gcc.
233    TestAndClearIgnoreResultAssign();
234    return Visit(E->getSubExpr());
235  }
236  Value *VisitUnaryMinus    (const UnaryOperator *E);
237  Value *VisitUnaryNot      (const UnaryOperator *E);
238  Value *VisitUnaryLNot     (const UnaryOperator *E);
239  Value *VisitUnaryReal     (const UnaryOperator *E);
240  Value *VisitUnaryImag     (const UnaryOperator *E);
241  Value *VisitUnaryExtension(const UnaryOperator *E) {
242    return Visit(E->getSubExpr());
243  }
244  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
245
246  // C++
247  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
248    return Visit(DAE->getExpr());
249  }
250  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
251    return CGF.LoadCXXThis();
252  }
253
254  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
255    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
256  }
257  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
258    return CGF.EmitCXXNewExpr(E);
259  }
260  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
261    CGF.EmitCXXDeleteExpr(E);
262    return 0;
263  }
264  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
265    return llvm::ConstantInt::get(Builder.getInt1Ty(),
266                                  E->EvaluateTrait(CGF.getContext()));
267  }
268
269  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
270    // C++ [expr.pseudo]p1:
271    //   The result shall only be used as the operand for the function call
272    //   operator (), and the result of such a call has type void. The only
273    //   effect is the evaluation of the postfix-expression before the dot or
274    //   arrow.
275    CGF.EmitScalarExpr(E->getBase());
276    return 0;
277  }
278
279  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
280    return llvm::Constant::getNullValue(ConvertType(E->getType()));
281  }
282
283  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
284    CGF.EmitCXXThrowExpr(E);
285    return 0;
286  }
287
288  // Binary Operators.
289  Value *EmitMul(const BinOpInfo &Ops) {
290    if (CGF.getContext().getLangOptions().OverflowChecking
291        && Ops.Ty->isSignedIntegerType())
292      return EmitOverflowCheckedBinOp(Ops);
293    if (Ops.LHS->getType()->isFPOrFPVectorTy())
294      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
295    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
296  }
297  /// Create a binary op that checks for overflow.
298  /// Currently only supports +, - and *.
299  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
300  Value *EmitDiv(const BinOpInfo &Ops);
301  Value *EmitRem(const BinOpInfo &Ops);
302  Value *EmitAdd(const BinOpInfo &Ops);
303  Value *EmitSub(const BinOpInfo &Ops);
304  Value *EmitShl(const BinOpInfo &Ops);
305  Value *EmitShr(const BinOpInfo &Ops);
306  Value *EmitAnd(const BinOpInfo &Ops) {
307    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
308  }
309  Value *EmitXor(const BinOpInfo &Ops) {
310    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
311  }
312  Value *EmitOr (const BinOpInfo &Ops) {
313    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
314  }
315
316  BinOpInfo EmitBinOps(const BinaryOperator *E);
317  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
318                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
319
320  // Binary operators and binary compound assignment operators.
321#define HANDLEBINOP(OP) \
322  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
323    return Emit ## OP(EmitBinOps(E));                                      \
324  }                                                                        \
325  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
326    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
327  }
328  HANDLEBINOP(Mul)
329  HANDLEBINOP(Div)
330  HANDLEBINOP(Rem)
331  HANDLEBINOP(Add)
332  HANDLEBINOP(Sub)
333  HANDLEBINOP(Shl)
334  HANDLEBINOP(Shr)
335  HANDLEBINOP(And)
336  HANDLEBINOP(Xor)
337  HANDLEBINOP(Or)
338#undef HANDLEBINOP
339
340  // Comparisons.
341  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
342                     unsigned SICmpOpc, unsigned FCmpOpc);
343#define VISITCOMP(CODE, UI, SI, FP) \
344    Value *VisitBin##CODE(const BinaryOperator *E) { \
345      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
346                         llvm::FCmpInst::FP); }
347  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
348  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
349  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
350  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
351  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
352  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
353#undef VISITCOMP
354
355  Value *VisitBinAssign     (const BinaryOperator *E);
356
357  Value *VisitBinLAnd       (const BinaryOperator *E);
358  Value *VisitBinLOr        (const BinaryOperator *E);
359  Value *VisitBinComma      (const BinaryOperator *E);
360
361  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
362  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
363
364  // Other Operators.
365  Value *VisitBlockExpr(const BlockExpr *BE);
366  Value *VisitConditionalOperator(const ConditionalOperator *CO);
367  Value *VisitChooseExpr(ChooseExpr *CE);
368  Value *VisitVAArgExpr(VAArgExpr *VE);
369  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
370    return CGF.EmitObjCStringLiteral(E);
371  }
372};
373}  // end anonymous namespace.
374
375//===----------------------------------------------------------------------===//
376//                                Utilities
377//===----------------------------------------------------------------------===//
378
379/// EmitConversionToBool - Convert the specified expression value to a
380/// boolean (i1) truth value.  This is equivalent to "Val != 0".
381Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
382  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
383
384  if (SrcType->isRealFloatingType()) {
385    // Compare against 0.0 for fp scalars.
386    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
387    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
388  }
389
390  if (SrcType->isMemberPointerType()) {
391    // Compare against -1.
392    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
393    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
394  }
395
396  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
397         "Unknown scalar type to convert");
398
399  // Because of the type rules of C, we often end up computing a logical value,
400  // then zero extending it to int, then wanting it as a logical value again.
401  // Optimize this common case.
402  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
403    if (ZI->getOperand(0)->getType() ==
404        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
405      Value *Result = ZI->getOperand(0);
406      // If there aren't any more uses, zap the instruction to save space.
407      // Note that there can be more uses, for example if this
408      // is the result of an assignment.
409      if (ZI->use_empty())
410        ZI->eraseFromParent();
411      return Result;
412    }
413  }
414
415  // Compare against an integer or pointer null.
416  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
417  return Builder.CreateICmpNE(Src, Zero, "tobool");
418}
419
420/// EmitScalarConversion - Emit a conversion from the specified type to the
421/// specified destination type, both of which are LLVM scalar types.
422Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
423                                               QualType DstType) {
424  SrcType = CGF.getContext().getCanonicalType(SrcType);
425  DstType = CGF.getContext().getCanonicalType(DstType);
426  if (SrcType == DstType) return Src;
427
428  if (DstType->isVoidType()) return 0;
429
430  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
431
432  // Handle conversions to bool first, they are special: comparisons against 0.
433  if (DstType->isBooleanType())
434    return EmitConversionToBool(Src, SrcType);
435
436  const llvm::Type *DstTy = ConvertType(DstType);
437
438  // Ignore conversions like int -> uint.
439  if (Src->getType() == DstTy)
440    return Src;
441
442  // Handle pointer conversions next: pointers can only be converted to/from
443  // other pointers and integers. Check for pointer types in terms of LLVM, as
444  // some native types (like Obj-C id) may map to a pointer type.
445  if (isa<llvm::PointerType>(DstTy)) {
446    // The source value may be an integer, or a pointer.
447    if (isa<llvm::PointerType>(Src->getType()))
448      return Builder.CreateBitCast(Src, DstTy, "conv");
449
450    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
451    // First, convert to the correct width so that we control the kind of
452    // extension.
453    const llvm::Type *MiddleTy =
454          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
455    bool InputSigned = SrcType->isSignedIntegerType();
456    llvm::Value* IntResult =
457        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
458    // Then, cast to pointer.
459    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
460  }
461
462  if (isa<llvm::PointerType>(Src->getType())) {
463    // Must be an ptr to int cast.
464    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
465    return Builder.CreatePtrToInt(Src, DstTy, "conv");
466  }
467
468  // A scalar can be splatted to an extended vector of the same element type
469  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
470    // Cast the scalar to element type
471    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
472    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
473
474    // Insert the element in element zero of an undef vector
475    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
476    llvm::Value *Idx =
477        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
478    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
479
480    // Splat the element across to all elements
481    llvm::SmallVector<llvm::Constant*, 16> Args;
482    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
483    for (unsigned i = 0; i < NumElements; i++)
484      Args.push_back(llvm::ConstantInt::get(
485                                        llvm::Type::getInt32Ty(VMContext), 0));
486
487    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
488    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
489    return Yay;
490  }
491
492  // Allow bitcast from vector to integer/fp of the same size.
493  if (isa<llvm::VectorType>(Src->getType()) ||
494      isa<llvm::VectorType>(DstTy))
495    return Builder.CreateBitCast(Src, DstTy, "conv");
496
497  // Finally, we have the arithmetic types: real int/float.
498  if (isa<llvm::IntegerType>(Src->getType())) {
499    bool InputSigned = SrcType->isSignedIntegerType();
500    if (isa<llvm::IntegerType>(DstTy))
501      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
502    else if (InputSigned)
503      return Builder.CreateSIToFP(Src, DstTy, "conv");
504    else
505      return Builder.CreateUIToFP(Src, DstTy, "conv");
506  }
507
508  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
509  if (isa<llvm::IntegerType>(DstTy)) {
510    if (DstType->isSignedIntegerType())
511      return Builder.CreateFPToSI(Src, DstTy, "conv");
512    else
513      return Builder.CreateFPToUI(Src, DstTy, "conv");
514  }
515
516  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
517  if (DstTy->getTypeID() < Src->getType()->getTypeID())
518    return Builder.CreateFPTrunc(Src, DstTy, "conv");
519  else
520    return Builder.CreateFPExt(Src, DstTy, "conv");
521}
522
523/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
524/// type to the specified destination type, where the destination type is an
525/// LLVM scalar type.
526Value *ScalarExprEmitter::
527EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
528                              QualType SrcTy, QualType DstTy) {
529  // Get the source element type.
530  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
531
532  // Handle conversions to bool first, they are special: comparisons against 0.
533  if (DstTy->isBooleanType()) {
534    //  Complex != 0  -> (Real != 0) | (Imag != 0)
535    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
536    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
537    return Builder.CreateOr(Src.first, Src.second, "tobool");
538  }
539
540  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
541  // the imaginary part of the complex value is discarded and the value of the
542  // real part is converted according to the conversion rules for the
543  // corresponding real type.
544  return EmitScalarConversion(Src.first, SrcTy, DstTy);
545}
546
547
548//===----------------------------------------------------------------------===//
549//                            Visitor Methods
550//===----------------------------------------------------------------------===//
551
552Value *ScalarExprEmitter::VisitExpr(Expr *E) {
553  CGF.ErrorUnsupported(E, "scalar expression");
554  if (E->getType()->isVoidType())
555    return 0;
556  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
557}
558
559Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
560  llvm::SmallVector<llvm::Constant*, 32> indices;
561  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
562    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
563  }
564  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
565  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
566  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
567  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
568}
569Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
570  Expr::EvalResult Result;
571  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
572    if (E->isArrow())
573      CGF.EmitScalarExpr(E->getBase());
574    else
575      EmitLValue(E->getBase());
576    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
577  }
578  return EmitLoadOfLValue(E);
579}
580
581Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
582  TestAndClearIgnoreResultAssign();
583
584  // Emit subscript expressions in rvalue context's.  For most cases, this just
585  // loads the lvalue formed by the subscript expr.  However, we have to be
586  // careful, because the base of a vector subscript is occasionally an rvalue,
587  // so we can't get it as an lvalue.
588  if (!E->getBase()->getType()->isVectorType())
589    return EmitLoadOfLValue(E);
590
591  // Handle the vector case.  The base must be a vector, the index must be an
592  // integer value.
593  Value *Base = Visit(E->getBase());
594  Value *Idx  = Visit(E->getIdx());
595  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
596  Idx = Builder.CreateIntCast(Idx,
597                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
598                              IdxSigned,
599                              "vecidxcast");
600  return Builder.CreateExtractElement(Base, Idx, "vecext");
601}
602
603static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
604                                  unsigned Off, const llvm::Type *I32Ty) {
605  int MV = SVI->getMaskValue(Idx);
606  if (MV == -1)
607    return llvm::UndefValue::get(I32Ty);
608  return llvm::ConstantInt::get(I32Ty, Off+MV);
609}
610
611Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
612  bool Ignore = TestAndClearIgnoreResultAssign();
613  (void)Ignore;
614  assert (Ignore == false && "init list ignored");
615  unsigned NumInitElements = E->getNumInits();
616
617  if (E->hadArrayRangeDesignator())
618    CGF.ErrorUnsupported(E, "GNU array range designator extension");
619
620  const llvm::VectorType *VType =
621    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
622
623  // We have a scalar in braces. Just use the first element.
624  if (!VType)
625    return Visit(E->getInit(0));
626
627  unsigned ResElts = VType->getNumElements();
628  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
629
630  // Loop over initializers collecting the Value for each, and remembering
631  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
632  // us to fold the shuffle for the swizzle into the shuffle for the vector
633  // initializer, since LLVM optimizers generally do not want to touch
634  // shuffles.
635  unsigned CurIdx = 0;
636  bool VIsUndefShuffle = false;
637  llvm::Value *V = llvm::UndefValue::get(VType);
638  for (unsigned i = 0; i != NumInitElements; ++i) {
639    Expr *IE = E->getInit(i);
640    Value *Init = Visit(IE);
641    llvm::SmallVector<llvm::Constant*, 16> Args;
642
643    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
644
645    // Handle scalar elements.  If the scalar initializer is actually one
646    // element of a different vector of the same width, use shuffle instead of
647    // extract+insert.
648    if (!VVT) {
649      if (isa<ExtVectorElementExpr>(IE)) {
650        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
651
652        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
653          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
654          Value *LHS = 0, *RHS = 0;
655          if (CurIdx == 0) {
656            // insert into undef -> shuffle (src, undef)
657            Args.push_back(C);
658            for (unsigned j = 1; j != ResElts; ++j)
659              Args.push_back(llvm::UndefValue::get(I32Ty));
660
661            LHS = EI->getVectorOperand();
662            RHS = V;
663            VIsUndefShuffle = true;
664          } else if (VIsUndefShuffle) {
665            // insert into undefshuffle && size match -> shuffle (v, src)
666            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
667            for (unsigned j = 0; j != CurIdx; ++j)
668              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
669            Args.push_back(llvm::ConstantInt::get(I32Ty,
670                                                  ResElts + C->getZExtValue()));
671            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
672              Args.push_back(llvm::UndefValue::get(I32Ty));
673
674            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
675            RHS = EI->getVectorOperand();
676            VIsUndefShuffle = false;
677          }
678          if (!Args.empty()) {
679            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
680            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
681            ++CurIdx;
682            continue;
683          }
684        }
685      }
686      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
687      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
688      VIsUndefShuffle = false;
689      ++CurIdx;
690      continue;
691    }
692
693    unsigned InitElts = VVT->getNumElements();
694
695    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
696    // input is the same width as the vector being constructed, generate an
697    // optimized shuffle of the swizzle input into the result.
698    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
699    if (isa<ExtVectorElementExpr>(IE)) {
700      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
701      Value *SVOp = SVI->getOperand(0);
702      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
703
704      if (OpTy->getNumElements() == ResElts) {
705        for (unsigned j = 0; j != CurIdx; ++j) {
706          // If the current vector initializer is a shuffle with undef, merge
707          // this shuffle directly into it.
708          if (VIsUndefShuffle) {
709            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
710                                      I32Ty));
711          } else {
712            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
713          }
714        }
715        for (unsigned j = 0, je = InitElts; j != je; ++j)
716          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
717        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
718          Args.push_back(llvm::UndefValue::get(I32Ty));
719
720        if (VIsUndefShuffle)
721          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
722
723        Init = SVOp;
724      }
725    }
726
727    // Extend init to result vector length, and then shuffle its contribution
728    // to the vector initializer into V.
729    if (Args.empty()) {
730      for (unsigned j = 0; j != InitElts; ++j)
731        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
732      for (unsigned j = InitElts; j != ResElts; ++j)
733        Args.push_back(llvm::UndefValue::get(I32Ty));
734      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
735      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
736                                         Mask, "vext");
737
738      Args.clear();
739      for (unsigned j = 0; j != CurIdx; ++j)
740        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
741      for (unsigned j = 0; j != InitElts; ++j)
742        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
743      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
744        Args.push_back(llvm::UndefValue::get(I32Ty));
745    }
746
747    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
748    // merging subsequent shuffles into this one.
749    if (CurIdx == 0)
750      std::swap(V, Init);
751    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
752    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
753    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
754    CurIdx += InitElts;
755  }
756
757  // FIXME: evaluate codegen vs. shuffling against constant null vector.
758  // Emit remaining default initializers.
759  const llvm::Type *EltTy = VType->getElementType();
760
761  // Emit remaining default initializers
762  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
763    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
764    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
765    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
766  }
767  return V;
768}
769
770static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
771  const Expr *E = CE->getSubExpr();
772
773  if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase)
774    return false;
775
776  if (isa<CXXThisExpr>(E)) {
777    // We always assume that 'this' is never null.
778    return false;
779  }
780
781  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
782    // And that lvalue casts are never null.
783    if (ICE->isLvalueCast())
784      return false;
785  }
786
787  return true;
788}
789
790// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
791// have to handle a more broad range of conversions than explicit casts, as they
792// handle things like function to ptr-to-function decay etc.
793Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
794  Expr *E = CE->getSubExpr();
795  QualType DestTy = CE->getType();
796  CastExpr::CastKind Kind = CE->getCastKind();
797
798  if (!DestTy->isVoidType())
799    TestAndClearIgnoreResultAssign();
800
801  // Since almost all cast kinds apply to scalars, this switch doesn't have
802  // a default case, so the compiler will warn on a missing case.  The cases
803  // are in the same order as in the CastKind enum.
804  switch (Kind) {
805  case CastExpr::CK_Unknown:
806    // FIXME: All casts should have a known kind!
807    //assert(0 && "Unknown cast kind!");
808    break;
809
810  case CastExpr::CK_AnyPointerToObjCPointerCast:
811  case CastExpr::CK_AnyPointerToBlockPointerCast:
812  case CastExpr::CK_BitCast: {
813    Value *Src = Visit(const_cast<Expr*>(E));
814    return Builder.CreateBitCast(Src, ConvertType(DestTy));
815  }
816  case CastExpr::CK_NoOp:
817  case CastExpr::CK_UserDefinedConversion:
818    return Visit(const_cast<Expr*>(E));
819
820  case CastExpr::CK_BaseToDerived: {
821    const CXXRecordDecl *BaseClassDecl =
822      E->getType()->getCXXRecordDeclForPointerType();
823    const CXXRecordDecl *DerivedClassDecl =
824      DestTy->getCXXRecordDeclForPointerType();
825
826    Value *Src = Visit(const_cast<Expr*>(E));
827
828    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
829    return CGF.GetAddressOfDerivedClass(Src, BaseClassDecl, DerivedClassDecl,
830                                        NullCheckValue);
831  }
832  case CastExpr::CK_UncheckedDerivedToBase:
833  case CastExpr::CK_DerivedToBase: {
834    const RecordType *DerivedClassTy =
835      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
836    CXXRecordDecl *DerivedClassDecl =
837      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
838
839    const RecordType *BaseClassTy =
840      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
841    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
842
843    Value *Src = Visit(const_cast<Expr*>(E));
844
845    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
846    return CGF.GetAddressOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
847                                     NullCheckValue);
848  }
849  case CastExpr::CK_Dynamic: {
850    Value *V = Visit(const_cast<Expr*>(E));
851    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
852    return CGF.EmitDynamicCast(V, DCE);
853  }
854  case CastExpr::CK_ToUnion:
855    assert(0 && "Should be unreachable!");
856    break;
857
858  case CastExpr::CK_ArrayToPointerDecay: {
859    assert(E->getType()->isArrayType() &&
860           "Array to pointer decay must have array source type!");
861
862    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
863
864    // Note that VLA pointers are always decayed, so we don't need to do
865    // anything here.
866    if (!E->getType()->isVariableArrayType()) {
867      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
868      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
869                                 ->getElementType()) &&
870             "Expected pointer to array");
871      V = Builder.CreateStructGEP(V, 0, "arraydecay");
872    }
873
874    return V;
875  }
876  case CastExpr::CK_FunctionToPointerDecay:
877    return EmitLValue(E).getAddress();
878
879  case CastExpr::CK_NullToMemberPointer:
880    return CGF.CGM.EmitNullConstant(DestTy);
881
882  case CastExpr::CK_BaseToDerivedMemberPointer:
883  case CastExpr::CK_DerivedToBaseMemberPointer: {
884    Value *Src = Visit(E);
885
886    // See if we need to adjust the pointer.
887    const CXXRecordDecl *BaseDecl =
888      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
889                          getClass()->getAs<RecordType>()->getDecl());
890    const CXXRecordDecl *DerivedDecl =
891      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
892                          getClass()->getAs<RecordType>()->getDecl());
893    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
894      std::swap(DerivedDecl, BaseDecl);
895
896    if (llvm::Constant *Adj =
897          CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, BaseDecl)) {
898      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
899        Src = Builder.CreateSub(Src, Adj, "adj");
900      else
901        Src = Builder.CreateAdd(Src, Adj, "adj");
902    }
903    return Src;
904  }
905
906  case CastExpr::CK_ConstructorConversion:
907    assert(0 && "Should be unreachable!");
908    break;
909
910  case CastExpr::CK_IntegralToPointer: {
911    Value *Src = Visit(const_cast<Expr*>(E));
912
913    // First, convert to the correct width so that we control the kind of
914    // extension.
915    const llvm::Type *MiddleTy =
916      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
917    bool InputSigned = E->getType()->isSignedIntegerType();
918    llvm::Value* IntResult =
919      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
920
921    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
922  }
923  case CastExpr::CK_PointerToIntegral: {
924    Value *Src = Visit(const_cast<Expr*>(E));
925    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
926  }
927  case CastExpr::CK_ToVoid: {
928    CGF.EmitAnyExpr(E, 0, false, true);
929    return 0;
930  }
931  case CastExpr::CK_VectorSplat: {
932    const llvm::Type *DstTy = ConvertType(DestTy);
933    Value *Elt = Visit(const_cast<Expr*>(E));
934
935    // Insert the element in element zero of an undef vector
936    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
937    llvm::Value *Idx =
938        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
939    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
940
941    // Splat the element across to all elements
942    llvm::SmallVector<llvm::Constant*, 16> Args;
943    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
944    for (unsigned i = 0; i < NumElements; i++)
945      Args.push_back(llvm::ConstantInt::get(
946                                        llvm::Type::getInt32Ty(VMContext), 0));
947
948    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
949    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
950    return Yay;
951  }
952  case CastExpr::CK_IntegralCast:
953  case CastExpr::CK_IntegralToFloating:
954  case CastExpr::CK_FloatingToIntegral:
955  case CastExpr::CK_FloatingCast:
956    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
957
958  case CastExpr::CK_MemberPointerToBoolean:
959    return CGF.EvaluateExprAsBool(E);
960  }
961
962  // Handle cases where the source is an non-complex type.
963
964  if (!CGF.hasAggregateLLVMType(E->getType())) {
965    Value *Src = Visit(const_cast<Expr*>(E));
966
967    // Use EmitScalarConversion to perform the conversion.
968    return EmitScalarConversion(Src, E->getType(), DestTy);
969  }
970
971  if (E->getType()->isAnyComplexType()) {
972    // Handle cases where the source is a complex type.
973    bool IgnoreImag = true;
974    bool IgnoreImagAssign = true;
975    bool IgnoreReal = IgnoreResultAssign;
976    bool IgnoreRealAssign = IgnoreResultAssign;
977    if (DestTy->isBooleanType())
978      IgnoreImagAssign = IgnoreImag = false;
979    else if (DestTy->isVoidType()) {
980      IgnoreReal = IgnoreImag = false;
981      IgnoreRealAssign = IgnoreImagAssign = true;
982    }
983    CodeGenFunction::ComplexPairTy V
984      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
985                            IgnoreImagAssign);
986    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
987  }
988
989  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
990  // evaluate the result and return.
991  CGF.EmitAggExpr(E, 0, false, true);
992  return 0;
993}
994
995Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
996  return CGF.EmitCompoundStmt(*E->getSubStmt(),
997                              !E->getType()->isVoidType()).getScalarVal();
998}
999
1000Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1001  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1002  if (E->getType().isObjCGCWeak())
1003    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1004  return Builder.CreateLoad(V, "tmp");
1005}
1006
1007//===----------------------------------------------------------------------===//
1008//                             Unary Operators
1009//===----------------------------------------------------------------------===//
1010
1011Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1012  TestAndClearIgnoreResultAssign();
1013  Value *Op = Visit(E->getSubExpr());
1014  if (Op->getType()->isFPOrFPVectorTy())
1015    return Builder.CreateFNeg(Op, "neg");
1016  return Builder.CreateNeg(Op, "neg");
1017}
1018
1019Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1020  TestAndClearIgnoreResultAssign();
1021  Value *Op = Visit(E->getSubExpr());
1022  return Builder.CreateNot(Op, "neg");
1023}
1024
1025Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1026  // Compare operand to zero.
1027  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1028
1029  // Invert value.
1030  // TODO: Could dynamically modify easy computations here.  For example, if
1031  // the operand is an icmp ne, turn into icmp eq.
1032  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1033
1034  // ZExt result to the expr type.
1035  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1036}
1037
1038/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1039/// argument of the sizeof expression as an integer.
1040Value *
1041ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1042  QualType TypeToSize = E->getTypeOfArgument();
1043  if (E->isSizeOf()) {
1044    if (const VariableArrayType *VAT =
1045          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1046      if (E->isArgumentType()) {
1047        // sizeof(type) - make sure to emit the VLA size.
1048        CGF.EmitVLASize(TypeToSize);
1049      } else {
1050        // C99 6.5.3.4p2: If the argument is an expression of type
1051        // VLA, it is evaluated.
1052        CGF.EmitAnyExpr(E->getArgumentExpr());
1053      }
1054
1055      return CGF.GetVLASize(VAT);
1056    }
1057  }
1058
1059  // If this isn't sizeof(vla), the result must be constant; use the constant
1060  // folding logic so we don't have to duplicate it here.
1061  Expr::EvalResult Result;
1062  E->Evaluate(Result, CGF.getContext());
1063  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1064}
1065
1066Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1067  Expr *Op = E->getSubExpr();
1068  if (Op->getType()->isAnyComplexType())
1069    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1070  return Visit(Op);
1071}
1072Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1073  Expr *Op = E->getSubExpr();
1074  if (Op->getType()->isAnyComplexType())
1075    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1076
1077  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1078  // effects are evaluated, but not the actual value.
1079  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1080    CGF.EmitLValue(Op);
1081  else
1082    CGF.EmitScalarExpr(Op, true);
1083  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1084}
1085
1086Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1087  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1088  const llvm::Type* ResultType = ConvertType(E->getType());
1089  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1090}
1091
1092//===----------------------------------------------------------------------===//
1093//                           Binary Operators
1094//===----------------------------------------------------------------------===//
1095
1096BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1097  TestAndClearIgnoreResultAssign();
1098  BinOpInfo Result;
1099  Result.LHS = Visit(E->getLHS());
1100  Result.RHS = Visit(E->getRHS());
1101  Result.Ty  = E->getType();
1102  Result.E = E;
1103  return Result;
1104}
1105
1106Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1107                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1108  bool Ignore = TestAndClearIgnoreResultAssign();
1109  QualType LHSTy = E->getLHS()->getType();
1110
1111  BinOpInfo OpInfo;
1112
1113  if (E->getComputationResultType()->isAnyComplexType()) {
1114    // This needs to go through the complex expression emitter, but it's a tad
1115    // complicated to do that... I'm leaving it out for now.  (Note that we do
1116    // actually need the imaginary part of the RHS for multiplication and
1117    // division.)
1118    CGF.ErrorUnsupported(E, "complex compound assignment");
1119    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1120  }
1121
1122  // Emit the RHS first.  __block variables need to have the rhs evaluated
1123  // first, plus this should improve codegen a little.
1124  OpInfo.RHS = Visit(E->getRHS());
1125  OpInfo.Ty = E->getComputationResultType();
1126  OpInfo.E = E;
1127  // Load/convert the LHS.
1128  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1129  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1130  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1131                                    E->getComputationLHSType());
1132
1133  // Expand the binary operator.
1134  Value *Result = (this->*Func)(OpInfo);
1135
1136  // Convert the result back to the LHS type.
1137  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1138
1139  // Store the result value into the LHS lvalue. Bit-fields are handled
1140  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1141  // 'An assignment expression has the value of the left operand after the
1142  // assignment...'.
1143  if (LHSLV.isBitfield()) {
1144    if (!LHSLV.isVolatileQualified()) {
1145      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1146                                         &Result);
1147      return Result;
1148    } else
1149      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1150  } else
1151    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1152  if (Ignore)
1153    return 0;
1154  return EmitLoadOfLValue(LHSLV, E->getType());
1155}
1156
1157
1158Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1159  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1160    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1161  else if (Ops.Ty->isUnsignedIntegerType())
1162    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1163  else
1164    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1165}
1166
1167Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1168  // Rem in C can't be a floating point type: C99 6.5.5p2.
1169  if (Ops.Ty->isUnsignedIntegerType())
1170    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1171  else
1172    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1173}
1174
1175Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1176  unsigned IID;
1177  unsigned OpID = 0;
1178
1179  switch (Ops.E->getOpcode()) {
1180  case BinaryOperator::Add:
1181  case BinaryOperator::AddAssign:
1182    OpID = 1;
1183    IID = llvm::Intrinsic::sadd_with_overflow;
1184    break;
1185  case BinaryOperator::Sub:
1186  case BinaryOperator::SubAssign:
1187    OpID = 2;
1188    IID = llvm::Intrinsic::ssub_with_overflow;
1189    break;
1190  case BinaryOperator::Mul:
1191  case BinaryOperator::MulAssign:
1192    OpID = 3;
1193    IID = llvm::Intrinsic::smul_with_overflow;
1194    break;
1195  default:
1196    assert(false && "Unsupported operation for overflow detection");
1197    IID = 0;
1198  }
1199  OpID <<= 1;
1200  OpID |= 1;
1201
1202  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1203
1204  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1205
1206  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1207  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1208  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1209
1210  // Branch in case of overflow.
1211  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1212  llvm::BasicBlock *overflowBB =
1213    CGF.createBasicBlock("overflow", CGF.CurFn);
1214  llvm::BasicBlock *continueBB =
1215    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1216
1217  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1218
1219  // Handle overflow
1220
1221  Builder.SetInsertPoint(overflowBB);
1222
1223  // Handler is:
1224  // long long *__overflow_handler)(long long a, long long b, char op,
1225  // char width)
1226  std::vector<const llvm::Type*> handerArgTypes;
1227  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1228  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1229  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1230  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1231  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1232      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1233  llvm::Value *handlerFunction =
1234    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1235        llvm::PointerType::getUnqual(handlerTy));
1236  handlerFunction = Builder.CreateLoad(handlerFunction);
1237
1238  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1239      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1240      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1241      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1242      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1243        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1244
1245  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1246
1247  Builder.CreateBr(continueBB);
1248
1249  // Set up the continuation
1250  Builder.SetInsertPoint(continueBB);
1251  // Get the correct result
1252  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1253  phi->reserveOperandSpace(2);
1254  phi->addIncoming(result, initialBB);
1255  phi->addIncoming(handlerResult, overflowBB);
1256
1257  return phi;
1258}
1259
1260Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1261  if (!Ops.Ty->isAnyPointerType()) {
1262    if (CGF.getContext().getLangOptions().OverflowChecking &&
1263        Ops.Ty->isSignedIntegerType())
1264      return EmitOverflowCheckedBinOp(Ops);
1265
1266    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1267      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1268
1269    // Signed integer overflow is undefined behavior.
1270    if (Ops.Ty->isSignedIntegerType())
1271      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1272
1273    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1274  }
1275
1276  if (Ops.Ty->isPointerType() &&
1277      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1278    // The amount of the addition needs to account for the VLA size
1279    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1280  }
1281  Value *Ptr, *Idx;
1282  Expr *IdxExp;
1283  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1284  const ObjCObjectPointerType *OPT =
1285    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1286  if (PT || OPT) {
1287    Ptr = Ops.LHS;
1288    Idx = Ops.RHS;
1289    IdxExp = Ops.E->getRHS();
1290  } else {  // int + pointer
1291    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1292    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1293    assert((PT || OPT) && "Invalid add expr");
1294    Ptr = Ops.RHS;
1295    Idx = Ops.LHS;
1296    IdxExp = Ops.E->getLHS();
1297  }
1298
1299  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1300  if (Width < CGF.LLVMPointerWidth) {
1301    // Zero or sign extend the pointer value based on whether the index is
1302    // signed or not.
1303    const llvm::Type *IdxType =
1304        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1305    if (IdxExp->getType()->isSignedIntegerType())
1306      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1307    else
1308      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1309  }
1310  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1311  // Handle interface types, which are not represented with a concrete type.
1312  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1313    llvm::Value *InterfaceSize =
1314      llvm::ConstantInt::get(Idx->getType(),
1315          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1316    Idx = Builder.CreateMul(Idx, InterfaceSize);
1317    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1318    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1319    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1320    return Builder.CreateBitCast(Res, Ptr->getType());
1321  }
1322
1323  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1324  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1325  // future proof.
1326  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1327    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1328    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1329    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1330    return Builder.CreateBitCast(Res, Ptr->getType());
1331  }
1332
1333  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1334}
1335
1336Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1337  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1338    if (CGF.getContext().getLangOptions().OverflowChecking
1339        && Ops.Ty->isSignedIntegerType())
1340      return EmitOverflowCheckedBinOp(Ops);
1341
1342    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1343      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1344
1345    // Signed integer overflow is undefined behavior.
1346    if (Ops.Ty->isSignedIntegerType())
1347      return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1348
1349    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1350  }
1351
1352  if (Ops.E->getLHS()->getType()->isPointerType() &&
1353      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1354    // The amount of the addition needs to account for the VLA size for
1355    // ptr-int
1356    // The amount of the division needs to account for the VLA size for
1357    // ptr-ptr.
1358    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1359  }
1360
1361  const QualType LHSType = Ops.E->getLHS()->getType();
1362  const QualType LHSElementType = LHSType->getPointeeType();
1363  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1364    // pointer - int
1365    Value *Idx = Ops.RHS;
1366    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1367    if (Width < CGF.LLVMPointerWidth) {
1368      // Zero or sign extend the pointer value based on whether the index is
1369      // signed or not.
1370      const llvm::Type *IdxType =
1371          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1372      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1373        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1374      else
1375        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1376    }
1377    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1378
1379    // Handle interface types, which are not represented with a concrete type.
1380    if (const ObjCInterfaceType *OIT =
1381        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1382      llvm::Value *InterfaceSize =
1383        llvm::ConstantInt::get(Idx->getType(),
1384                               CGF.getContext().
1385                                 getTypeSizeInChars(OIT).getQuantity());
1386      Idx = Builder.CreateMul(Idx, InterfaceSize);
1387      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1388      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1389      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1390      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1391    }
1392
1393    // Explicitly handle GNU void* and function pointer arithmetic
1394    // extensions. The GNU void* casts amount to no-ops since our void* type is
1395    // i8*, but this is future proof.
1396    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1397      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1398      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1399      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1400      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1401    }
1402
1403    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1404  } else {
1405    // pointer - pointer
1406    Value *LHS = Ops.LHS;
1407    Value *RHS = Ops.RHS;
1408
1409    CharUnits ElementSize;
1410
1411    // Handle GCC extension for pointer arithmetic on void* and function pointer
1412    // types.
1413    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1414      ElementSize = CharUnits::One();
1415    } else {
1416      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1417    }
1418
1419    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1420    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1421    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1422    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1423
1424    // Optimize out the shift for element size of 1.
1425    if (ElementSize.isOne())
1426      return BytesBetween;
1427
1428    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1429    // pointer difference in C is only defined in the case where both operands
1430    // are pointing to elements of an array.
1431    Value *BytesPerElt =
1432        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1433    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1434  }
1435}
1436
1437Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1438  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1439  // RHS to the same size as the LHS.
1440  Value *RHS = Ops.RHS;
1441  if (Ops.LHS->getType() != RHS->getType())
1442    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1443
1444  if (CGF.CatchUndefined
1445      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1446    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1447    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1448    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1449                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1450                             Cont, CGF.getTrapBB());
1451    CGF.EmitBlock(Cont);
1452  }
1453
1454  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1455}
1456
1457Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1458  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1459  // RHS to the same size as the LHS.
1460  Value *RHS = Ops.RHS;
1461  if (Ops.LHS->getType() != RHS->getType())
1462    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1463
1464  if (CGF.CatchUndefined
1465      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1466    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1467    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1468    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1469                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1470                             Cont, CGF.getTrapBB());
1471    CGF.EmitBlock(Cont);
1472  }
1473
1474  if (Ops.Ty->isUnsignedIntegerType())
1475    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1476  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1477}
1478
1479Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1480                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1481  TestAndClearIgnoreResultAssign();
1482  Value *Result;
1483  QualType LHSTy = E->getLHS()->getType();
1484  if (LHSTy->isMemberFunctionPointerType()) {
1485    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
1486    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
1487    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
1488    LHSFunc = Builder.CreateLoad(LHSFunc);
1489    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
1490    RHSFunc = Builder.CreateLoad(RHSFunc);
1491    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1492                                        LHSFunc, RHSFunc, "cmp.func");
1493    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
1494    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1495                                           LHSFunc, NullPtr, "cmp.null");
1496    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
1497    LHSAdj = Builder.CreateLoad(LHSAdj);
1498    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
1499    RHSAdj = Builder.CreateLoad(RHSAdj);
1500    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1501                                        LHSAdj, RHSAdj, "cmp.adj");
1502    if (E->getOpcode() == BinaryOperator::EQ) {
1503      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
1504      Result = Builder.CreateAnd(Result, ResultF, "and.f");
1505    } else {
1506      assert(E->getOpcode() == BinaryOperator::NE &&
1507             "Member pointer comparison other than == or != ?");
1508      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
1509      Result = Builder.CreateOr(Result, ResultF, "or.f");
1510    }
1511  } else if (!LHSTy->isAnyComplexType()) {
1512    Value *LHS = Visit(E->getLHS());
1513    Value *RHS = Visit(E->getRHS());
1514
1515    if (LHS->getType()->isFPOrFPVectorTy()) {
1516      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1517                                  LHS, RHS, "cmp");
1518    } else if (LHSTy->isSignedIntegerType()) {
1519      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1520                                  LHS, RHS, "cmp");
1521    } else {
1522      // Unsigned integers and pointers.
1523      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1524                                  LHS, RHS, "cmp");
1525    }
1526
1527    // If this is a vector comparison, sign extend the result to the appropriate
1528    // vector integer type and return it (don't convert to bool).
1529    if (LHSTy->isVectorType())
1530      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1531
1532  } else {
1533    // Complex Comparison: can only be an equality comparison.
1534    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1535    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1536
1537    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1538
1539    Value *ResultR, *ResultI;
1540    if (CETy->isRealFloatingType()) {
1541      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1542                                   LHS.first, RHS.first, "cmp.r");
1543      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1544                                   LHS.second, RHS.second, "cmp.i");
1545    } else {
1546      // Complex comparisons can only be equality comparisons.  As such, signed
1547      // and unsigned opcodes are the same.
1548      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1549                                   LHS.first, RHS.first, "cmp.r");
1550      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1551                                   LHS.second, RHS.second, "cmp.i");
1552    }
1553
1554    if (E->getOpcode() == BinaryOperator::EQ) {
1555      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1556    } else {
1557      assert(E->getOpcode() == BinaryOperator::NE &&
1558             "Complex comparison other than == or != ?");
1559      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1560    }
1561  }
1562
1563  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1564}
1565
1566Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1567  bool Ignore = TestAndClearIgnoreResultAssign();
1568
1569  // __block variables need to have the rhs evaluated first, plus this should
1570  // improve codegen just a little.
1571  Value *RHS = Visit(E->getRHS());
1572  LValue LHS = EmitCheckedLValue(E->getLHS());
1573
1574  // Store the value into the LHS.  Bit-fields are handled specially
1575  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1576  // 'An assignment expression has the value of the left operand after
1577  // the assignment...'.
1578  if (LHS.isBitfield()) {
1579    if (!LHS.isVolatileQualified()) {
1580      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1581                                         &RHS);
1582      return RHS;
1583    } else
1584      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1585  } else
1586    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1587  if (Ignore)
1588    return 0;
1589  return EmitLoadOfLValue(LHS, E->getType());
1590}
1591
1592Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1593  const llvm::Type *ResTy = ConvertType(E->getType());
1594
1595  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1596  // If we have 1 && X, just emit X without inserting the control flow.
1597  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1598    if (Cond == 1) { // If we have 1 && X, just emit X.
1599      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1600      // ZExt result to int or bool.
1601      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1602    }
1603
1604    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1605    if (!CGF.ContainsLabel(E->getRHS()))
1606      return llvm::Constant::getNullValue(ResTy);
1607  }
1608
1609  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1610  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1611
1612  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1613  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1614
1615  // Any edges into the ContBlock are now from an (indeterminate number of)
1616  // edges from this first condition.  All of these values will be false.  Start
1617  // setting up the PHI node in the Cont Block for this.
1618  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1619                                            "", ContBlock);
1620  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1621  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1622       PI != PE; ++PI)
1623    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1624
1625  CGF.BeginConditionalBranch();
1626  CGF.EmitBlock(RHSBlock);
1627  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1628  CGF.EndConditionalBranch();
1629
1630  // Reaquire the RHS block, as there may be subblocks inserted.
1631  RHSBlock = Builder.GetInsertBlock();
1632
1633  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1634  // into the phi node for the edge with the value of RHSCond.
1635  CGF.EmitBlock(ContBlock);
1636  PN->addIncoming(RHSCond, RHSBlock);
1637
1638  // ZExt result to int.
1639  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1640}
1641
1642Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1643  const llvm::Type *ResTy = ConvertType(E->getType());
1644
1645  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1646  // If we have 0 || X, just emit X without inserting the control flow.
1647  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1648    if (Cond == -1) { // If we have 0 || X, just emit X.
1649      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1650      // ZExt result to int or bool.
1651      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1652    }
1653
1654    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1655    if (!CGF.ContainsLabel(E->getRHS()))
1656      return llvm::ConstantInt::get(ResTy, 1);
1657  }
1658
1659  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1660  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1661
1662  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1663  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1664
1665  // Any edges into the ContBlock are now from an (indeterminate number of)
1666  // edges from this first condition.  All of these values will be true.  Start
1667  // setting up the PHI node in the Cont Block for this.
1668  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1669                                            "", ContBlock);
1670  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1671  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1672       PI != PE; ++PI)
1673    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1674
1675  CGF.BeginConditionalBranch();
1676
1677  // Emit the RHS condition as a bool value.
1678  CGF.EmitBlock(RHSBlock);
1679  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1680
1681  CGF.EndConditionalBranch();
1682
1683  // Reaquire the RHS block, as there may be subblocks inserted.
1684  RHSBlock = Builder.GetInsertBlock();
1685
1686  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1687  // into the phi node for the edge with the value of RHSCond.
1688  CGF.EmitBlock(ContBlock);
1689  PN->addIncoming(RHSCond, RHSBlock);
1690
1691  // ZExt result to int.
1692  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1693}
1694
1695Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1696  CGF.EmitStmt(E->getLHS());
1697  CGF.EnsureInsertPoint();
1698  return Visit(E->getRHS());
1699}
1700
1701//===----------------------------------------------------------------------===//
1702//                             Other Operators
1703//===----------------------------------------------------------------------===//
1704
1705/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1706/// expression is cheap enough and side-effect-free enough to evaluate
1707/// unconditionally instead of conditionally.  This is used to convert control
1708/// flow into selects in some cases.
1709static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1710                                                   CodeGenFunction &CGF) {
1711  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1712    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1713
1714  // TODO: Allow anything we can constant fold to an integer or fp constant.
1715  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1716      isa<FloatingLiteral>(E))
1717    return true;
1718
1719  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1720  // X and Y are local variables.
1721  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1722    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1723      if (VD->hasLocalStorage() && !(CGF.getContext()
1724                                     .getCanonicalType(VD->getType())
1725                                     .isVolatileQualified()))
1726        return true;
1727
1728  return false;
1729}
1730
1731
1732Value *ScalarExprEmitter::
1733VisitConditionalOperator(const ConditionalOperator *E) {
1734  TestAndClearIgnoreResultAssign();
1735  // If the condition constant folds and can be elided, try to avoid emitting
1736  // the condition and the dead arm.
1737  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1738    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1739    if (Cond == -1)
1740      std::swap(Live, Dead);
1741
1742    // If the dead side doesn't have labels we need, and if the Live side isn't
1743    // the gnu missing ?: extension (which we could handle, but don't bother
1744    // to), just emit the Live part.
1745    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1746        Live)                                   // Live part isn't missing.
1747      return Visit(Live);
1748  }
1749
1750
1751  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1752  // select instead of as control flow.  We can only do this if it is cheap and
1753  // safe to evaluate the LHS and RHS unconditionally.
1754  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1755                                                            CGF) &&
1756      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1757    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1758    llvm::Value *LHS = Visit(E->getLHS());
1759    llvm::Value *RHS = Visit(E->getRHS());
1760    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1761  }
1762
1763
1764  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1765  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1766  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1767  Value *CondVal = 0;
1768
1769  // If we don't have the GNU missing condition extension, emit a branch on bool
1770  // the normal way.
1771  if (E->getLHS()) {
1772    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1773    // the branch on bool.
1774    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1775  } else {
1776    // Otherwise, for the ?: extension, evaluate the conditional and then
1777    // convert it to bool the hard way.  We do this explicitly because we need
1778    // the unconverted value for the missing middle value of the ?:.
1779    CondVal = CGF.EmitScalarExpr(E->getCond());
1780
1781    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1782    // if there are no extra uses (an optimization).  Inhibit this by making an
1783    // extra dead use, because we're going to add a use of CondVal later.  We
1784    // don't use the builder for this, because we don't want it to get optimized
1785    // away.  This leaves dead code, but the ?: extension isn't common.
1786    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1787                          Builder.GetInsertBlock());
1788
1789    Value *CondBoolVal =
1790      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1791                               CGF.getContext().BoolTy);
1792    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1793  }
1794
1795  CGF.BeginConditionalBranch();
1796  CGF.EmitBlock(LHSBlock);
1797
1798  // Handle the GNU extension for missing LHS.
1799  Value *LHS;
1800  if (E->getLHS())
1801    LHS = Visit(E->getLHS());
1802  else    // Perform promotions, to handle cases like "short ?: int"
1803    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1804
1805  CGF.EndConditionalBranch();
1806  LHSBlock = Builder.GetInsertBlock();
1807  CGF.EmitBranch(ContBlock);
1808
1809  CGF.BeginConditionalBranch();
1810  CGF.EmitBlock(RHSBlock);
1811
1812  Value *RHS = Visit(E->getRHS());
1813  CGF.EndConditionalBranch();
1814  RHSBlock = Builder.GetInsertBlock();
1815  CGF.EmitBranch(ContBlock);
1816
1817  CGF.EmitBlock(ContBlock);
1818
1819  // If the LHS or RHS is a throw expression, it will be legitimately null.
1820  if (!LHS)
1821    return RHS;
1822  if (!RHS)
1823    return LHS;
1824
1825  // Create a PHI node for the real part.
1826  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1827  PN->reserveOperandSpace(2);
1828  PN->addIncoming(LHS, LHSBlock);
1829  PN->addIncoming(RHS, RHSBlock);
1830  return PN;
1831}
1832
1833Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1834  return Visit(E->getChosenSubExpr(CGF.getContext()));
1835}
1836
1837Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1838  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1839  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1840
1841  // If EmitVAArg fails, we fall back to the LLVM instruction.
1842  if (!ArgPtr)
1843    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1844
1845  // FIXME Volatility.
1846  return Builder.CreateLoad(ArgPtr);
1847}
1848
1849Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1850  return CGF.BuildBlockLiteralTmp(BE);
1851}
1852
1853//===----------------------------------------------------------------------===//
1854//                         Entry Point into this File
1855//===----------------------------------------------------------------------===//
1856
1857/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1858/// type, ignoring the result.
1859Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1860  assert(E && !hasAggregateLLVMType(E->getType()) &&
1861         "Invalid scalar expression to emit");
1862
1863  return ScalarExprEmitter(*this, IgnoreResultAssign)
1864    .Visit(const_cast<Expr*>(E));
1865}
1866
1867/// EmitScalarConversion - Emit a conversion from the specified type to the
1868/// specified destination type, both of which are LLVM scalar types.
1869Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1870                                             QualType DstTy) {
1871  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1872         "Invalid scalar expression to emit");
1873  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1874}
1875
1876/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1877/// type to the specified destination type, where the destination type is an
1878/// LLVM scalar type.
1879Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1880                                                      QualType SrcTy,
1881                                                      QualType DstTy) {
1882  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1883         "Invalid complex -> scalar conversion");
1884  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1885                                                                DstTy);
1886}
1887
1888LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
1889  llvm::Value *V;
1890  // object->isa or (*object).isa
1891  // Generate code as for: *(Class*)object
1892  // build Class* type
1893  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
1894
1895  Expr *BaseExpr = E->getBase();
1896  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
1897    V = CreateTempAlloca(ClassPtrTy, "resval");
1898    llvm::Value *Src = EmitScalarExpr(BaseExpr);
1899    Builder.CreateStore(Src, V);
1900    LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1901    V = ScalarExprEmitter(*this).EmitLoadOfLValue(LV, E->getType());
1902  }
1903  else {
1904      if (E->isArrow())
1905        V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
1906      else
1907        V  = EmitLValue(BaseExpr).getAddress();
1908  }
1909
1910  // build Class* type
1911  ClassPtrTy = ClassPtrTy->getPointerTo();
1912  V = Builder.CreateBitCast(V, ClassPtrTy);
1913  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1914  return LV;
1915}
1916
1917