CGDecl.cpp revision 251662
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Decl nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGDebugInfo.h"
16#include "CGOpenCLRuntime.h"
17#include "CodeGenModule.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Type.h"
29using namespace clang;
30using namespace CodeGen;
31
32
33void CodeGenFunction::EmitDecl(const Decl &D) {
34  switch (D.getKind()) {
35  case Decl::TranslationUnit:
36  case Decl::Namespace:
37  case Decl::UnresolvedUsingTypename:
38  case Decl::ClassTemplateSpecialization:
39  case Decl::ClassTemplatePartialSpecialization:
40  case Decl::TemplateTypeParm:
41  case Decl::UnresolvedUsingValue:
42  case Decl::NonTypeTemplateParm:
43  case Decl::CXXMethod:
44  case Decl::CXXConstructor:
45  case Decl::CXXDestructor:
46  case Decl::CXXConversion:
47  case Decl::Field:
48  case Decl::MSProperty:
49  case Decl::IndirectField:
50  case Decl::ObjCIvar:
51  case Decl::ObjCAtDefsField:
52  case Decl::ParmVar:
53  case Decl::ImplicitParam:
54  case Decl::ClassTemplate:
55  case Decl::FunctionTemplate:
56  case Decl::TypeAliasTemplate:
57  case Decl::TemplateTemplateParm:
58  case Decl::ObjCMethod:
59  case Decl::ObjCCategory:
60  case Decl::ObjCProtocol:
61  case Decl::ObjCInterface:
62  case Decl::ObjCCategoryImpl:
63  case Decl::ObjCImplementation:
64  case Decl::ObjCProperty:
65  case Decl::ObjCCompatibleAlias:
66  case Decl::AccessSpec:
67  case Decl::LinkageSpec:
68  case Decl::ObjCPropertyImpl:
69  case Decl::FileScopeAsm:
70  case Decl::Friend:
71  case Decl::FriendTemplate:
72  case Decl::Block:
73  case Decl::Captured:
74  case Decl::ClassScopeFunctionSpecialization:
75    llvm_unreachable("Declaration should not be in declstmts!");
76  case Decl::Function:  // void X();
77  case Decl::Record:    // struct/union/class X;
78  case Decl::Enum:      // enum X;
79  case Decl::EnumConstant: // enum ? { X = ? }
80  case Decl::CXXRecord: // struct/union/class X; [C++]
81  case Decl::Using:          // using X; [C++]
82  case Decl::UsingShadow:
83  case Decl::NamespaceAlias:
84  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
85  case Decl::Label:        // __label__ x;
86  case Decl::Import:
87  case Decl::OMPThreadPrivate:
88  case Decl::Empty:
89    // None of these decls require codegen support.
90    return;
91
92  case Decl::UsingDirective: // using namespace X; [C++]
93    if (CGDebugInfo *DI = getDebugInfo())
94      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
95    return;
96  case Decl::Var: {
97    const VarDecl &VD = cast<VarDecl>(D);
98    assert(VD.isLocalVarDecl() &&
99           "Should not see file-scope variables inside a function!");
100    return EmitVarDecl(VD);
101  }
102
103  case Decl::Typedef:      // typedef int X;
104  case Decl::TypeAlias: {  // using X = int; [C++0x]
105    const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
106    QualType Ty = TD.getUnderlyingType();
107
108    if (Ty->isVariablyModifiedType())
109      EmitVariablyModifiedType(Ty);
110  }
111  }
112}
113
114/// EmitVarDecl - This method handles emission of any variable declaration
115/// inside a function, including static vars etc.
116void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
117  switch (D.getStorageClass()) {
118  case SC_None:
119  case SC_Auto:
120  case SC_Register:
121    return EmitAutoVarDecl(D);
122  case SC_Static: {
123    llvm::GlobalValue::LinkageTypes Linkage =
124      llvm::GlobalValue::InternalLinkage;
125
126    // If the function definition has some sort of weak linkage, its
127    // static variables should also be weak so that they get properly
128    // uniqued.  We can't do this in C, though, because there's no
129    // standard way to agree on which variables are the same (i.e.
130    // there's no mangling).
131    if (getLangOpts().CPlusPlus)
132      if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
133        Linkage = CurFn->getLinkage();
134
135    return EmitStaticVarDecl(D, Linkage);
136  }
137  case SC_Extern:
138  case SC_PrivateExtern:
139    // Don't emit it now, allow it to be emitted lazily on its first use.
140    return;
141  case SC_OpenCLWorkGroupLocal:
142    return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
143  }
144
145  llvm_unreachable("Unknown storage class");
146}
147
148static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
149                                     const char *Separator) {
150  CodeGenModule &CGM = CGF.CGM;
151  if (CGF.getLangOpts().CPlusPlus) {
152    StringRef Name = CGM.getMangledName(&D);
153    return Name.str();
154  }
155
156  std::string ContextName;
157  if (!CGF.CurFuncDecl) {
158    // Better be in a block declared in global scope.
159    const NamedDecl *ND = cast<NamedDecl>(&D);
160    const DeclContext *DC = ND->getDeclContext();
161    if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
162      MangleBuffer Name;
163      CGM.getBlockMangledName(GlobalDecl(), Name, BD);
164      ContextName = Name.getString();
165    }
166    else
167      llvm_unreachable("Unknown context for block static var decl");
168  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
169    StringRef Name = CGM.getMangledName(FD);
170    ContextName = Name.str();
171  } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
172    ContextName = CGF.CurFn->getName();
173  else
174    llvm_unreachable("Unknown context for static var decl");
175
176  return ContextName + Separator + D.getNameAsString();
177}
178
179llvm::GlobalVariable *
180CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
181                                     const char *Separator,
182                                     llvm::GlobalValue::LinkageTypes Linkage) {
183  QualType Ty = D.getType();
184  assert(Ty->isConstantSizeType() && "VLAs can't be static");
185
186  // Use the label if the variable is renamed with the asm-label extension.
187  std::string Name;
188  if (D.hasAttr<AsmLabelAttr>())
189    Name = CGM.getMangledName(&D);
190  else
191    Name = GetStaticDeclName(*this, D, Separator);
192
193  llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
194  unsigned AddrSpace =
195   CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
196  llvm::GlobalVariable *GV =
197    new llvm::GlobalVariable(CGM.getModule(), LTy,
198                             Ty.isConstant(getContext()), Linkage,
199                             CGM.EmitNullConstant(D.getType()), Name, 0,
200                             llvm::GlobalVariable::NotThreadLocal,
201                             AddrSpace);
202  GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
203  if (Linkage != llvm::GlobalValue::InternalLinkage)
204    GV->setVisibility(CurFn->getVisibility());
205
206  if (D.getTLSKind())
207    CGM.setTLSMode(GV, D);
208
209  return GV;
210}
211
212/// hasNontrivialDestruction - Determine whether a type's destruction is
213/// non-trivial. If so, and the variable uses static initialization, we must
214/// register its destructor to run on exit.
215static bool hasNontrivialDestruction(QualType T) {
216  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
217  return RD && !RD->hasTrivialDestructor();
218}
219
220/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
221/// global variable that has already been created for it.  If the initializer
222/// has a different type than GV does, this may free GV and return a different
223/// one.  Otherwise it just returns GV.
224llvm::GlobalVariable *
225CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
226                                               llvm::GlobalVariable *GV) {
227  llvm::Constant *Init = CGM.EmitConstantInit(D, this);
228
229  // If constant emission failed, then this should be a C++ static
230  // initializer.
231  if (!Init) {
232    if (!getLangOpts().CPlusPlus)
233      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
234    else if (Builder.GetInsertBlock()) {
235      // Since we have a static initializer, this global variable can't
236      // be constant.
237      GV->setConstant(false);
238
239      EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
240    }
241    return GV;
242  }
243
244  // The initializer may differ in type from the global. Rewrite
245  // the global to match the initializer.  (We have to do this
246  // because some types, like unions, can't be completely represented
247  // in the LLVM type system.)
248  if (GV->getType()->getElementType() != Init->getType()) {
249    llvm::GlobalVariable *OldGV = GV;
250
251    GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
252                                  OldGV->isConstant(),
253                                  OldGV->getLinkage(), Init, "",
254                                  /*InsertBefore*/ OldGV,
255                                  OldGV->getThreadLocalMode(),
256                           CGM.getContext().getTargetAddressSpace(D.getType()));
257    GV->setVisibility(OldGV->getVisibility());
258
259    // Steal the name of the old global
260    GV->takeName(OldGV);
261
262    // Replace all uses of the old global with the new global
263    llvm::Constant *NewPtrForOldDecl =
264    llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
265    OldGV->replaceAllUsesWith(NewPtrForOldDecl);
266
267    // Erase the old global, since it is no longer used.
268    OldGV->eraseFromParent();
269  }
270
271  GV->setConstant(CGM.isTypeConstant(D.getType(), true));
272  GV->setInitializer(Init);
273
274  if (hasNontrivialDestruction(D.getType())) {
275    // We have a constant initializer, but a nontrivial destructor. We still
276    // need to perform a guarded "initialization" in order to register the
277    // destructor.
278    EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
279  }
280
281  return GV;
282}
283
284void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
285                                      llvm::GlobalValue::LinkageTypes Linkage) {
286  llvm::Value *&DMEntry = LocalDeclMap[&D];
287  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
288
289  // Check to see if we already have a global variable for this
290  // declaration.  This can happen when double-emitting function
291  // bodies, e.g. with complete and base constructors.
292  llvm::Constant *addr =
293    CGM.getStaticLocalDeclAddress(&D);
294
295  llvm::GlobalVariable *var;
296  if (addr) {
297    var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
298  } else {
299    addr = var = CreateStaticVarDecl(D, ".", Linkage);
300  }
301
302  // Store into LocalDeclMap before generating initializer to handle
303  // circular references.
304  DMEntry = addr;
305  CGM.setStaticLocalDeclAddress(&D, addr);
306
307  // We can't have a VLA here, but we can have a pointer to a VLA,
308  // even though that doesn't really make any sense.
309  // Make sure to evaluate VLA bounds now so that we have them for later.
310  if (D.getType()->isVariablyModifiedType())
311    EmitVariablyModifiedType(D.getType());
312
313  // Save the type in case adding the initializer forces a type change.
314  llvm::Type *expectedType = addr->getType();
315
316  // If this value has an initializer, emit it.
317  if (D.getInit())
318    var = AddInitializerToStaticVarDecl(D, var);
319
320  var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
321
322  if (D.hasAttr<AnnotateAttr>())
323    CGM.AddGlobalAnnotations(&D, var);
324
325  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
326    var->setSection(SA->getName());
327
328  if (D.hasAttr<UsedAttr>())
329    CGM.AddUsedGlobal(var);
330
331  // We may have to cast the constant because of the initializer
332  // mismatch above.
333  //
334  // FIXME: It is really dangerous to store this in the map; if anyone
335  // RAUW's the GV uses of this constant will be invalid.
336  llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
337  DMEntry = castedAddr;
338  CGM.setStaticLocalDeclAddress(&D, castedAddr);
339
340  // Emit global variable debug descriptor for static vars.
341  CGDebugInfo *DI = getDebugInfo();
342  if (DI &&
343      CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
344    DI->setLocation(D.getLocation());
345    DI->EmitGlobalVariable(var, &D);
346  }
347}
348
349namespace {
350  struct DestroyObject : EHScopeStack::Cleanup {
351    DestroyObject(llvm::Value *addr, QualType type,
352                  CodeGenFunction::Destroyer *destroyer,
353                  bool useEHCleanupForArray)
354      : addr(addr), type(type), destroyer(destroyer),
355        useEHCleanupForArray(useEHCleanupForArray) {}
356
357    llvm::Value *addr;
358    QualType type;
359    CodeGenFunction::Destroyer *destroyer;
360    bool useEHCleanupForArray;
361
362    void Emit(CodeGenFunction &CGF, Flags flags) {
363      // Don't use an EH cleanup recursively from an EH cleanup.
364      bool useEHCleanupForArray =
365        flags.isForNormalCleanup() && this->useEHCleanupForArray;
366
367      CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
368    }
369  };
370
371  struct DestroyNRVOVariable : EHScopeStack::Cleanup {
372    DestroyNRVOVariable(llvm::Value *addr,
373                        const CXXDestructorDecl *Dtor,
374                        llvm::Value *NRVOFlag)
375      : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
376
377    const CXXDestructorDecl *Dtor;
378    llvm::Value *NRVOFlag;
379    llvm::Value *Loc;
380
381    void Emit(CodeGenFunction &CGF, Flags flags) {
382      // Along the exceptions path we always execute the dtor.
383      bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
384
385      llvm::BasicBlock *SkipDtorBB = 0;
386      if (NRVO) {
387        // If we exited via NRVO, we skip the destructor call.
388        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
389        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
390        llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
391        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
392        CGF.EmitBlock(RunDtorBB);
393      }
394
395      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
396                                /*ForVirtualBase=*/false,
397                                /*Delegating=*/false,
398                                Loc);
399
400      if (NRVO) CGF.EmitBlock(SkipDtorBB);
401    }
402  };
403
404  struct CallStackRestore : EHScopeStack::Cleanup {
405    llvm::Value *Stack;
406    CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
407    void Emit(CodeGenFunction &CGF, Flags flags) {
408      llvm::Value *V = CGF.Builder.CreateLoad(Stack);
409      llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
410      CGF.Builder.CreateCall(F, V);
411    }
412  };
413
414  struct ExtendGCLifetime : EHScopeStack::Cleanup {
415    const VarDecl &Var;
416    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
417
418    void Emit(CodeGenFunction &CGF, Flags flags) {
419      // Compute the address of the local variable, in case it's a
420      // byref or something.
421      DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
422                      Var.getType(), VK_LValue, SourceLocation());
423      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
424      CGF.EmitExtendGCLifetime(value);
425    }
426  };
427
428  struct CallCleanupFunction : EHScopeStack::Cleanup {
429    llvm::Constant *CleanupFn;
430    const CGFunctionInfo &FnInfo;
431    const VarDecl &Var;
432
433    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
434                        const VarDecl *Var)
435      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
436
437    void Emit(CodeGenFunction &CGF, Flags flags) {
438      DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
439                      Var.getType(), VK_LValue, SourceLocation());
440      // Compute the address of the local variable, in case it's a byref
441      // or something.
442      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
443
444      // In some cases, the type of the function argument will be different from
445      // the type of the pointer. An example of this is
446      // void f(void* arg);
447      // __attribute__((cleanup(f))) void *g;
448      //
449      // To fix this we insert a bitcast here.
450      QualType ArgTy = FnInfo.arg_begin()->type;
451      llvm::Value *Arg =
452        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
453
454      CallArgList Args;
455      Args.add(RValue::get(Arg),
456               CGF.getContext().getPointerType(Var.getType()));
457      CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
458    }
459  };
460
461  /// A cleanup to call @llvm.lifetime.end.
462  class CallLifetimeEnd : public EHScopeStack::Cleanup {
463    llvm::Value *Addr;
464    llvm::Value *Size;
465  public:
466    CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
467      : Addr(addr), Size(size) {}
468
469    void Emit(CodeGenFunction &CGF, Flags flags) {
470      llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
471      CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
472                              Size, castAddr)
473        ->setDoesNotThrow();
474    }
475  };
476}
477
478/// EmitAutoVarWithLifetime - Does the setup required for an automatic
479/// variable with lifetime.
480static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
481                                    llvm::Value *addr,
482                                    Qualifiers::ObjCLifetime lifetime) {
483  switch (lifetime) {
484  case Qualifiers::OCL_None:
485    llvm_unreachable("present but none");
486
487  case Qualifiers::OCL_ExplicitNone:
488    // nothing to do
489    break;
490
491  case Qualifiers::OCL_Strong: {
492    CodeGenFunction::Destroyer *destroyer =
493      (var.hasAttr<ObjCPreciseLifetimeAttr>()
494       ? CodeGenFunction::destroyARCStrongPrecise
495       : CodeGenFunction::destroyARCStrongImprecise);
496
497    CleanupKind cleanupKind = CGF.getARCCleanupKind();
498    CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
499                    cleanupKind & EHCleanup);
500    break;
501  }
502  case Qualifiers::OCL_Autoreleasing:
503    // nothing to do
504    break;
505
506  case Qualifiers::OCL_Weak:
507    // __weak objects always get EH cleanups; otherwise, exceptions
508    // could cause really nasty crashes instead of mere leaks.
509    CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
510                    CodeGenFunction::destroyARCWeak,
511                    /*useEHCleanup*/ true);
512    break;
513  }
514}
515
516static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
517  if (const Expr *e = dyn_cast<Expr>(s)) {
518    // Skip the most common kinds of expressions that make
519    // hierarchy-walking expensive.
520    s = e = e->IgnoreParenCasts();
521
522    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
523      return (ref->getDecl() == &var);
524    if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
525      const BlockDecl *block = be->getBlockDecl();
526      for (BlockDecl::capture_const_iterator i = block->capture_begin(),
527           e = block->capture_end(); i != e; ++i) {
528        if (i->getVariable() == &var)
529          return true;
530      }
531    }
532  }
533
534  for (Stmt::const_child_range children = s->children(); children; ++children)
535    // children might be null; as in missing decl or conditional of an if-stmt.
536    if ((*children) && isAccessedBy(var, *children))
537      return true;
538
539  return false;
540}
541
542static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
543  if (!decl) return false;
544  if (!isa<VarDecl>(decl)) return false;
545  const VarDecl *var = cast<VarDecl>(decl);
546  return isAccessedBy(*var, e);
547}
548
549static void drillIntoBlockVariable(CodeGenFunction &CGF,
550                                   LValue &lvalue,
551                                   const VarDecl *var) {
552  lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
553}
554
555void CodeGenFunction::EmitScalarInit(const Expr *init,
556                                     const ValueDecl *D,
557                                     LValue lvalue,
558                                     bool capturedByInit) {
559  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
560  if (!lifetime) {
561    llvm::Value *value = EmitScalarExpr(init);
562    if (capturedByInit)
563      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
564    EmitStoreThroughLValue(RValue::get(value), lvalue, true);
565    return;
566  }
567
568  // If we're emitting a value with lifetime, we have to do the
569  // initialization *before* we leave the cleanup scopes.
570  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
571    enterFullExpression(ewc);
572    init = ewc->getSubExpr();
573  }
574  CodeGenFunction::RunCleanupsScope Scope(*this);
575
576  // We have to maintain the illusion that the variable is
577  // zero-initialized.  If the variable might be accessed in its
578  // initializer, zero-initialize before running the initializer, then
579  // actually perform the initialization with an assign.
580  bool accessedByInit = false;
581  if (lifetime != Qualifiers::OCL_ExplicitNone)
582    accessedByInit = (capturedByInit || isAccessedBy(D, init));
583  if (accessedByInit) {
584    LValue tempLV = lvalue;
585    // Drill down to the __block object if necessary.
586    if (capturedByInit) {
587      // We can use a simple GEP for this because it can't have been
588      // moved yet.
589      tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
590                                   getByRefValueLLVMField(cast<VarDecl>(D))));
591    }
592
593    llvm::PointerType *ty
594      = cast<llvm::PointerType>(tempLV.getAddress()->getType());
595    ty = cast<llvm::PointerType>(ty->getElementType());
596
597    llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
598
599    // If __weak, we want to use a barrier under certain conditions.
600    if (lifetime == Qualifiers::OCL_Weak)
601      EmitARCInitWeak(tempLV.getAddress(), zero);
602
603    // Otherwise just do a simple store.
604    else
605      EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
606  }
607
608  // Emit the initializer.
609  llvm::Value *value = 0;
610
611  switch (lifetime) {
612  case Qualifiers::OCL_None:
613    llvm_unreachable("present but none");
614
615  case Qualifiers::OCL_ExplicitNone:
616    // nothing to do
617    value = EmitScalarExpr(init);
618    break;
619
620  case Qualifiers::OCL_Strong: {
621    value = EmitARCRetainScalarExpr(init);
622    break;
623  }
624
625  case Qualifiers::OCL_Weak: {
626    // No way to optimize a producing initializer into this.  It's not
627    // worth optimizing for, because the value will immediately
628    // disappear in the common case.
629    value = EmitScalarExpr(init);
630
631    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
632    if (accessedByInit)
633      EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
634    else
635      EmitARCInitWeak(lvalue.getAddress(), value);
636    return;
637  }
638
639  case Qualifiers::OCL_Autoreleasing:
640    value = EmitARCRetainAutoreleaseScalarExpr(init);
641    break;
642  }
643
644  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
645
646  // If the variable might have been accessed by its initializer, we
647  // might have to initialize with a barrier.  We have to do this for
648  // both __weak and __strong, but __weak got filtered out above.
649  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
650    llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
651    EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
652    EmitARCRelease(oldValue, ARCImpreciseLifetime);
653    return;
654  }
655
656  EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
657}
658
659/// EmitScalarInit - Initialize the given lvalue with the given object.
660void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
661  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
662  if (!lifetime)
663    return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
664
665  switch (lifetime) {
666  case Qualifiers::OCL_None:
667    llvm_unreachable("present but none");
668
669  case Qualifiers::OCL_ExplicitNone:
670    // nothing to do
671    break;
672
673  case Qualifiers::OCL_Strong:
674    init = EmitARCRetain(lvalue.getType(), init);
675    break;
676
677  case Qualifiers::OCL_Weak:
678    // Initialize and then skip the primitive store.
679    EmitARCInitWeak(lvalue.getAddress(), init);
680    return;
681
682  case Qualifiers::OCL_Autoreleasing:
683    init = EmitARCRetainAutorelease(lvalue.getType(), init);
684    break;
685  }
686
687  EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
688}
689
690/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
691/// non-zero parts of the specified initializer with equal or fewer than
692/// NumStores scalar stores.
693static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
694                                                unsigned &NumStores) {
695  // Zero and Undef never requires any extra stores.
696  if (isa<llvm::ConstantAggregateZero>(Init) ||
697      isa<llvm::ConstantPointerNull>(Init) ||
698      isa<llvm::UndefValue>(Init))
699    return true;
700  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
701      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
702      isa<llvm::ConstantExpr>(Init))
703    return Init->isNullValue() || NumStores--;
704
705  // See if we can emit each element.
706  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
707    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
708      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
709      if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
710        return false;
711    }
712    return true;
713  }
714
715  if (llvm::ConstantDataSequential *CDS =
716        dyn_cast<llvm::ConstantDataSequential>(Init)) {
717    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
718      llvm::Constant *Elt = CDS->getElementAsConstant(i);
719      if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
720        return false;
721    }
722    return true;
723  }
724
725  // Anything else is hard and scary.
726  return false;
727}
728
729/// emitStoresForInitAfterMemset - For inits that
730/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
731/// stores that would be required.
732static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
733                                         bool isVolatile, CGBuilderTy &Builder) {
734  assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
735         "called emitStoresForInitAfterMemset for zero or undef value.");
736
737  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
738      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
739      isa<llvm::ConstantExpr>(Init)) {
740    Builder.CreateStore(Init, Loc, isVolatile);
741    return;
742  }
743
744  if (llvm::ConstantDataSequential *CDS =
745        dyn_cast<llvm::ConstantDataSequential>(Init)) {
746    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
747      llvm::Constant *Elt = CDS->getElementAsConstant(i);
748
749      // If necessary, get a pointer to the element and emit it.
750      if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
751        emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
752                                     isVolatile, Builder);
753    }
754    return;
755  }
756
757  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
758         "Unknown value type!");
759
760  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
761    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
762
763    // If necessary, get a pointer to the element and emit it.
764    if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
765      emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
766                                   isVolatile, Builder);
767  }
768}
769
770
771/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
772/// plus some stores to initialize a local variable instead of using a memcpy
773/// from a constant global.  It is beneficial to use memset if the global is all
774/// zeros, or mostly zeros and large.
775static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
776                                                  uint64_t GlobalSize) {
777  // If a global is all zeros, always use a memset.
778  if (isa<llvm::ConstantAggregateZero>(Init)) return true;
779
780  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
781  // do it if it will require 6 or fewer scalar stores.
782  // TODO: Should budget depends on the size?  Avoiding a large global warrants
783  // plopping in more stores.
784  unsigned StoreBudget = 6;
785  uint64_t SizeLimit = 32;
786
787  return GlobalSize > SizeLimit &&
788         canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
789}
790
791/// Should we use the LLVM lifetime intrinsics for the given local variable?
792static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
793                                     unsigned Size) {
794  // Always emit lifetime markers in -fsanitize=use-after-scope mode.
795  if (CGF.getLangOpts().Sanitize.UseAfterScope)
796    return true;
797  // For now, only in optimized builds.
798  if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
799    return false;
800
801  // Limit the size of marked objects to 32 bytes. We don't want to increase
802  // compile time by marking tiny objects.
803  unsigned SizeThreshold = 32;
804
805  return Size > SizeThreshold;
806}
807
808
809/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
810/// variable declaration with auto, register, or no storage class specifier.
811/// These turn into simple stack objects, or GlobalValues depending on target.
812void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
813  AutoVarEmission emission = EmitAutoVarAlloca(D);
814  EmitAutoVarInit(emission);
815  EmitAutoVarCleanups(emission);
816}
817
818/// EmitAutoVarAlloca - Emit the alloca and debug information for a
819/// local variable.  Does not emit initalization or destruction.
820CodeGenFunction::AutoVarEmission
821CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
822  QualType Ty = D.getType();
823
824  AutoVarEmission emission(D);
825
826  bool isByRef = D.hasAttr<BlocksAttr>();
827  emission.IsByRef = isByRef;
828
829  CharUnits alignment = getContext().getDeclAlign(&D);
830  emission.Alignment = alignment;
831
832  // If the type is variably-modified, emit all the VLA sizes for it.
833  if (Ty->isVariablyModifiedType())
834    EmitVariablyModifiedType(Ty);
835
836  llvm::Value *DeclPtr;
837  if (Ty->isConstantSizeType()) {
838    bool NRVO = getLangOpts().ElideConstructors &&
839      D.isNRVOVariable();
840
841    // If this value is a POD array or struct with a statically
842    // determinable constant initializer, there are optimizations we can do.
843    //
844    // TODO: We should constant-evaluate the initializer of any variable,
845    // as long as it is initialized by a constant expression. Currently,
846    // isConstantInitializer produces wrong answers for structs with
847    // reference or bitfield members, and a few other cases, and checking
848    // for POD-ness protects us from some of these.
849    if (D.getInit() &&
850        (Ty->isArrayType() || Ty->isRecordType()) &&
851        (Ty.isPODType(getContext()) ||
852         getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
853        D.getInit()->isConstantInitializer(getContext(), false)) {
854
855      // If the variable's a const type, and it's neither an NRVO
856      // candidate nor a __block variable and has no mutable members,
857      // emit it as a global instead.
858      if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
859          CGM.isTypeConstant(Ty, true)) {
860        EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
861
862        emission.Address = 0; // signal this condition to later callbacks
863        assert(emission.wasEmittedAsGlobal());
864        return emission;
865      }
866
867      // Otherwise, tell the initialization code that we're in this case.
868      emission.IsConstantAggregate = true;
869    }
870
871    // A normal fixed sized variable becomes an alloca in the entry block,
872    // unless it's an NRVO variable.
873    llvm::Type *LTy = ConvertTypeForMem(Ty);
874
875    if (NRVO) {
876      // The named return value optimization: allocate this variable in the
877      // return slot, so that we can elide the copy when returning this
878      // variable (C++0x [class.copy]p34).
879      DeclPtr = ReturnValue;
880
881      if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
882        if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
883          // Create a flag that is used to indicate when the NRVO was applied
884          // to this variable. Set it to zero to indicate that NRVO was not
885          // applied.
886          llvm::Value *Zero = Builder.getFalse();
887          llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
888          EnsureInsertPoint();
889          Builder.CreateStore(Zero, NRVOFlag);
890
891          // Record the NRVO flag for this variable.
892          NRVOFlags[&D] = NRVOFlag;
893          emission.NRVOFlag = NRVOFlag;
894        }
895      }
896    } else {
897      if (isByRef)
898        LTy = BuildByRefType(&D);
899
900      llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
901      Alloc->setName(D.getName());
902
903      CharUnits allocaAlignment = alignment;
904      if (isByRef)
905        allocaAlignment = std::max(allocaAlignment,
906            getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
907      Alloc->setAlignment(allocaAlignment.getQuantity());
908      DeclPtr = Alloc;
909
910      // Emit a lifetime intrinsic if meaningful.  There's no point
911      // in doing this if we don't have a valid insertion point (?).
912      uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
913      if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
914        llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
915
916        emission.SizeForLifetimeMarkers = sizeV;
917        llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
918        Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
919          ->setDoesNotThrow();
920      } else {
921        assert(!emission.useLifetimeMarkers());
922      }
923    }
924  } else {
925    EnsureInsertPoint();
926
927    if (!DidCallStackSave) {
928      // Save the stack.
929      llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
930
931      llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
932      llvm::Value *V = Builder.CreateCall(F);
933
934      Builder.CreateStore(V, Stack);
935
936      DidCallStackSave = true;
937
938      // Push a cleanup block and restore the stack there.
939      // FIXME: in general circumstances, this should be an EH cleanup.
940      EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
941    }
942
943    llvm::Value *elementCount;
944    QualType elementType;
945    llvm::tie(elementCount, elementType) = getVLASize(Ty);
946
947    llvm::Type *llvmTy = ConvertTypeForMem(elementType);
948
949    // Allocate memory for the array.
950    llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
951    vla->setAlignment(alignment.getQuantity());
952
953    DeclPtr = vla;
954  }
955
956  llvm::Value *&DMEntry = LocalDeclMap[&D];
957  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
958  DMEntry = DeclPtr;
959  emission.Address = DeclPtr;
960
961  // Emit debug info for local var declaration.
962  if (HaveInsertPoint())
963    if (CGDebugInfo *DI = getDebugInfo()) {
964      if (CGM.getCodeGenOpts().getDebugInfo()
965            >= CodeGenOptions::LimitedDebugInfo) {
966        DI->setLocation(D.getLocation());
967        DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
968      }
969    }
970
971  if (D.hasAttr<AnnotateAttr>())
972      EmitVarAnnotations(&D, emission.Address);
973
974  return emission;
975}
976
977/// Determines whether the given __block variable is potentially
978/// captured by the given expression.
979static bool isCapturedBy(const VarDecl &var, const Expr *e) {
980  // Skip the most common kinds of expressions that make
981  // hierarchy-walking expensive.
982  e = e->IgnoreParenCasts();
983
984  if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
985    const BlockDecl *block = be->getBlockDecl();
986    for (BlockDecl::capture_const_iterator i = block->capture_begin(),
987           e = block->capture_end(); i != e; ++i) {
988      if (i->getVariable() == &var)
989        return true;
990    }
991
992    // No need to walk into the subexpressions.
993    return false;
994  }
995
996  if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
997    const CompoundStmt *CS = SE->getSubStmt();
998    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
999	   BE = CS->body_end(); BI != BE; ++BI)
1000      if (Expr *E = dyn_cast<Expr>((*BI))) {
1001        if (isCapturedBy(var, E))
1002            return true;
1003      }
1004      else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
1005          // special case declarations
1006          for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1007               I != E; ++I) {
1008              if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
1009                Expr *Init = VD->getInit();
1010                if (Init && isCapturedBy(var, Init))
1011                  return true;
1012              }
1013          }
1014      }
1015      else
1016        // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1017        // Later, provide code to poke into statements for capture analysis.
1018        return true;
1019    return false;
1020  }
1021
1022  for (Stmt::const_child_range children = e->children(); children; ++children)
1023    if (isCapturedBy(var, cast<Expr>(*children)))
1024      return true;
1025
1026  return false;
1027}
1028
1029/// \brief Determine whether the given initializer is trivial in the sense
1030/// that it requires no code to be generated.
1031static bool isTrivialInitializer(const Expr *Init) {
1032  if (!Init)
1033    return true;
1034
1035  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1036    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1037      if (Constructor->isTrivial() &&
1038          Constructor->isDefaultConstructor() &&
1039          !Construct->requiresZeroInitialization())
1040        return true;
1041
1042  return false;
1043}
1044void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1045  assert(emission.Variable && "emission was not valid!");
1046
1047  // If this was emitted as a global constant, we're done.
1048  if (emission.wasEmittedAsGlobal()) return;
1049
1050  const VarDecl &D = *emission.Variable;
1051  QualType type = D.getType();
1052
1053  // If this local has an initializer, emit it now.
1054  const Expr *Init = D.getInit();
1055
1056  // If we are at an unreachable point, we don't need to emit the initializer
1057  // unless it contains a label.
1058  if (!HaveInsertPoint()) {
1059    if (!Init || !ContainsLabel(Init)) return;
1060    EnsureInsertPoint();
1061  }
1062
1063  // Initialize the structure of a __block variable.
1064  if (emission.IsByRef)
1065    emitByrefStructureInit(emission);
1066
1067  if (isTrivialInitializer(Init))
1068    return;
1069
1070  CharUnits alignment = emission.Alignment;
1071
1072  // Check whether this is a byref variable that's potentially
1073  // captured and moved by its own initializer.  If so, we'll need to
1074  // emit the initializer first, then copy into the variable.
1075  bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1076
1077  llvm::Value *Loc =
1078    capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1079
1080  llvm::Constant *constant = 0;
1081  if (emission.IsConstantAggregate) {
1082    assert(!capturedByInit && "constant init contains a capturing block?");
1083    constant = CGM.EmitConstantInit(D, this);
1084  }
1085
1086  if (!constant) {
1087    LValue lv = MakeAddrLValue(Loc, type, alignment);
1088    lv.setNonGC(true);
1089    return EmitExprAsInit(Init, &D, lv, capturedByInit);
1090  }
1091
1092  // If this is a simple aggregate initialization, we can optimize it
1093  // in various ways.
1094  bool isVolatile = type.isVolatileQualified();
1095
1096  llvm::Value *SizeVal =
1097    llvm::ConstantInt::get(IntPtrTy,
1098                           getContext().getTypeSizeInChars(type).getQuantity());
1099
1100  llvm::Type *BP = Int8PtrTy;
1101  if (Loc->getType() != BP)
1102    Loc = Builder.CreateBitCast(Loc, BP);
1103
1104  // If the initializer is all or mostly zeros, codegen with memset then do
1105  // a few stores afterward.
1106  if (shouldUseMemSetPlusStoresToInitialize(constant,
1107                CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1108    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1109                         alignment.getQuantity(), isVolatile);
1110    // Zero and undef don't require a stores.
1111    if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1112      Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1113      emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1114    }
1115  } else {
1116    // Otherwise, create a temporary global with the initializer then
1117    // memcpy from the global to the alloca.
1118    std::string Name = GetStaticDeclName(*this, D, ".");
1119    llvm::GlobalVariable *GV =
1120      new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1121                               llvm::GlobalValue::PrivateLinkage,
1122                               constant, Name);
1123    GV->setAlignment(alignment.getQuantity());
1124    GV->setUnnamedAddr(true);
1125
1126    llvm::Value *SrcPtr = GV;
1127    if (SrcPtr->getType() != BP)
1128      SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1129
1130    Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1131                         isVolatile);
1132  }
1133}
1134
1135/// Emit an expression as an initializer for a variable at the given
1136/// location.  The expression is not necessarily the normal
1137/// initializer for the variable, and the address is not necessarily
1138/// its normal location.
1139///
1140/// \param init the initializing expression
1141/// \param var the variable to act as if we're initializing
1142/// \param loc the address to initialize; its type is a pointer
1143///   to the LLVM mapping of the variable's type
1144/// \param alignment the alignment of the address
1145/// \param capturedByInit true if the variable is a __block variable
1146///   whose address is potentially changed by the initializer
1147void CodeGenFunction::EmitExprAsInit(const Expr *init,
1148                                     const ValueDecl *D,
1149                                     LValue lvalue,
1150                                     bool capturedByInit) {
1151  QualType type = D->getType();
1152
1153  if (type->isReferenceType()) {
1154    RValue rvalue = EmitReferenceBindingToExpr(init, D);
1155    if (capturedByInit)
1156      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1157    EmitStoreThroughLValue(rvalue, lvalue, true);
1158    return;
1159  }
1160  switch (getEvaluationKind(type)) {
1161  case TEK_Scalar:
1162    EmitScalarInit(init, D, lvalue, capturedByInit);
1163    return;
1164  case TEK_Complex: {
1165    ComplexPairTy complex = EmitComplexExpr(init);
1166    if (capturedByInit)
1167      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1168    EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1169    return;
1170  }
1171  case TEK_Aggregate:
1172    if (type->isAtomicType()) {
1173      EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1174    } else {
1175      // TODO: how can we delay here if D is captured by its initializer?
1176      EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1177                                              AggValueSlot::IsDestructed,
1178                                         AggValueSlot::DoesNotNeedGCBarriers,
1179                                              AggValueSlot::IsNotAliased));
1180    }
1181    MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init);
1182    return;
1183  }
1184  llvm_unreachable("bad evaluation kind");
1185}
1186
1187/// Enter a destroy cleanup for the given local variable.
1188void CodeGenFunction::emitAutoVarTypeCleanup(
1189                            const CodeGenFunction::AutoVarEmission &emission,
1190                            QualType::DestructionKind dtorKind) {
1191  assert(dtorKind != QualType::DK_none);
1192
1193  // Note that for __block variables, we want to destroy the
1194  // original stack object, not the possibly forwarded object.
1195  llvm::Value *addr = emission.getObjectAddress(*this);
1196
1197  const VarDecl *var = emission.Variable;
1198  QualType type = var->getType();
1199
1200  CleanupKind cleanupKind = NormalAndEHCleanup;
1201  CodeGenFunction::Destroyer *destroyer = 0;
1202
1203  switch (dtorKind) {
1204  case QualType::DK_none:
1205    llvm_unreachable("no cleanup for trivially-destructible variable");
1206
1207  case QualType::DK_cxx_destructor:
1208    // If there's an NRVO flag on the emission, we need a different
1209    // cleanup.
1210    if (emission.NRVOFlag) {
1211      assert(!type->isArrayType());
1212      CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1213      EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1214                                               emission.NRVOFlag);
1215      return;
1216    }
1217    break;
1218
1219  case QualType::DK_objc_strong_lifetime:
1220    // Suppress cleanups for pseudo-strong variables.
1221    if (var->isARCPseudoStrong()) return;
1222
1223    // Otherwise, consider whether to use an EH cleanup or not.
1224    cleanupKind = getARCCleanupKind();
1225
1226    // Use the imprecise destroyer by default.
1227    if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1228      destroyer = CodeGenFunction::destroyARCStrongImprecise;
1229    break;
1230
1231  case QualType::DK_objc_weak_lifetime:
1232    break;
1233  }
1234
1235  // If we haven't chosen a more specific destroyer, use the default.
1236  if (!destroyer) destroyer = getDestroyer(dtorKind);
1237
1238  // Use an EH cleanup in array destructors iff the destructor itself
1239  // is being pushed as an EH cleanup.
1240  bool useEHCleanup = (cleanupKind & EHCleanup);
1241  EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1242                                     useEHCleanup);
1243}
1244
1245void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1246  assert(emission.Variable && "emission was not valid!");
1247
1248  // If this was emitted as a global constant, we're done.
1249  if (emission.wasEmittedAsGlobal()) return;
1250
1251  // If we don't have an insertion point, we're done.  Sema prevents
1252  // us from jumping into any of these scopes anyway.
1253  if (!HaveInsertPoint()) return;
1254
1255  const VarDecl &D = *emission.Variable;
1256
1257  // Make sure we call @llvm.lifetime.end.  This needs to happen
1258  // *last*, so the cleanup needs to be pushed *first*.
1259  if (emission.useLifetimeMarkers()) {
1260    EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1261                                         emission.getAllocatedAddress(),
1262                                         emission.getSizeForLifetimeMarkers());
1263  }
1264
1265  // Check the type for a cleanup.
1266  if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1267    emitAutoVarTypeCleanup(emission, dtorKind);
1268
1269  // In GC mode, honor objc_precise_lifetime.
1270  if (getLangOpts().getGC() != LangOptions::NonGC &&
1271      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1272    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1273  }
1274
1275  // Handle the cleanup attribute.
1276  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1277    const FunctionDecl *FD = CA->getFunctionDecl();
1278
1279    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1280    assert(F && "Could not find function!");
1281
1282    const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1283    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1284  }
1285
1286  // If this is a block variable, call _Block_object_destroy
1287  // (on the unforwarded address).
1288  if (emission.IsByRef)
1289    enterByrefCleanup(emission);
1290}
1291
1292CodeGenFunction::Destroyer *
1293CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1294  switch (kind) {
1295  case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1296  case QualType::DK_cxx_destructor:
1297    return destroyCXXObject;
1298  case QualType::DK_objc_strong_lifetime:
1299    return destroyARCStrongPrecise;
1300  case QualType::DK_objc_weak_lifetime:
1301    return destroyARCWeak;
1302  }
1303  llvm_unreachable("Unknown DestructionKind");
1304}
1305
1306/// pushEHDestroy - Push the standard destructor for the given type as
1307/// an EH-only cleanup.
1308void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1309                                  llvm::Value *addr, QualType type) {
1310  assert(dtorKind && "cannot push destructor for trivial type");
1311  assert(needsEHCleanup(dtorKind));
1312
1313  pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1314}
1315
1316/// pushDestroy - Push the standard destructor for the given type as
1317/// at least a normal cleanup.
1318void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1319                                  llvm::Value *addr, QualType type) {
1320  assert(dtorKind && "cannot push destructor for trivial type");
1321
1322  CleanupKind cleanupKind = getCleanupKind(dtorKind);
1323  pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1324              cleanupKind & EHCleanup);
1325}
1326
1327void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1328                                  QualType type, Destroyer *destroyer,
1329                                  bool useEHCleanupForArray) {
1330  pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1331                                     destroyer, useEHCleanupForArray);
1332}
1333
1334/// emitDestroy - Immediately perform the destruction of the given
1335/// object.
1336///
1337/// \param addr - the address of the object; a type*
1338/// \param type - the type of the object; if an array type, all
1339///   objects are destroyed in reverse order
1340/// \param destroyer - the function to call to destroy individual
1341///   elements
1342/// \param useEHCleanupForArray - whether an EH cleanup should be
1343///   used when destroying array elements, in case one of the
1344///   destructions throws an exception
1345void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1346                                  Destroyer *destroyer,
1347                                  bool useEHCleanupForArray) {
1348  const ArrayType *arrayType = getContext().getAsArrayType(type);
1349  if (!arrayType)
1350    return destroyer(*this, addr, type);
1351
1352  llvm::Value *begin = addr;
1353  llvm::Value *length = emitArrayLength(arrayType, type, begin);
1354
1355  // Normally we have to check whether the array is zero-length.
1356  bool checkZeroLength = true;
1357
1358  // But if the array length is constant, we can suppress that.
1359  if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1360    // ...and if it's constant zero, we can just skip the entire thing.
1361    if (constLength->isZero()) return;
1362    checkZeroLength = false;
1363  }
1364
1365  llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1366  emitArrayDestroy(begin, end, type, destroyer,
1367                   checkZeroLength, useEHCleanupForArray);
1368}
1369
1370/// emitArrayDestroy - Destroys all the elements of the given array,
1371/// beginning from last to first.  The array cannot be zero-length.
1372///
1373/// \param begin - a type* denoting the first element of the array
1374/// \param end - a type* denoting one past the end of the array
1375/// \param type - the element type of the array
1376/// \param destroyer - the function to call to destroy elements
1377/// \param useEHCleanup - whether to push an EH cleanup to destroy
1378///   the remaining elements in case the destruction of a single
1379///   element throws
1380void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1381                                       llvm::Value *end,
1382                                       QualType type,
1383                                       Destroyer *destroyer,
1384                                       bool checkZeroLength,
1385                                       bool useEHCleanup) {
1386  assert(!type->isArrayType());
1387
1388  // The basic structure here is a do-while loop, because we don't
1389  // need to check for the zero-element case.
1390  llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1391  llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1392
1393  if (checkZeroLength) {
1394    llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1395                                                "arraydestroy.isempty");
1396    Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1397  }
1398
1399  // Enter the loop body, making that address the current address.
1400  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1401  EmitBlock(bodyBB);
1402  llvm::PHINode *elementPast =
1403    Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1404  elementPast->addIncoming(end, entryBB);
1405
1406  // Shift the address back by one element.
1407  llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1408  llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1409                                                   "arraydestroy.element");
1410
1411  if (useEHCleanup)
1412    pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1413
1414  // Perform the actual destruction there.
1415  destroyer(*this, element, type);
1416
1417  if (useEHCleanup)
1418    PopCleanupBlock();
1419
1420  // Check whether we've reached the end.
1421  llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1422  Builder.CreateCondBr(done, doneBB, bodyBB);
1423  elementPast->addIncoming(element, Builder.GetInsertBlock());
1424
1425  // Done.
1426  EmitBlock(doneBB);
1427}
1428
1429/// Perform partial array destruction as if in an EH cleanup.  Unlike
1430/// emitArrayDestroy, the element type here may still be an array type.
1431static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1432                                    llvm::Value *begin, llvm::Value *end,
1433                                    QualType type,
1434                                    CodeGenFunction::Destroyer *destroyer) {
1435  // If the element type is itself an array, drill down.
1436  unsigned arrayDepth = 0;
1437  while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1438    // VLAs don't require a GEP index to walk into.
1439    if (!isa<VariableArrayType>(arrayType))
1440      arrayDepth++;
1441    type = arrayType->getElementType();
1442  }
1443
1444  if (arrayDepth) {
1445    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1446
1447    SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1448    begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1449    end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1450  }
1451
1452  // Destroy the array.  We don't ever need an EH cleanup because we
1453  // assume that we're in an EH cleanup ourselves, so a throwing
1454  // destructor causes an immediate terminate.
1455  CGF.emitArrayDestroy(begin, end, type, destroyer,
1456                       /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1457}
1458
1459namespace {
1460  /// RegularPartialArrayDestroy - a cleanup which performs a partial
1461  /// array destroy where the end pointer is regularly determined and
1462  /// does not need to be loaded from a local.
1463  class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1464    llvm::Value *ArrayBegin;
1465    llvm::Value *ArrayEnd;
1466    QualType ElementType;
1467    CodeGenFunction::Destroyer *Destroyer;
1468  public:
1469    RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1470                               QualType elementType,
1471                               CodeGenFunction::Destroyer *destroyer)
1472      : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1473        ElementType(elementType), Destroyer(destroyer) {}
1474
1475    void Emit(CodeGenFunction &CGF, Flags flags) {
1476      emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1477                              ElementType, Destroyer);
1478    }
1479  };
1480
1481  /// IrregularPartialArrayDestroy - a cleanup which performs a
1482  /// partial array destroy where the end pointer is irregularly
1483  /// determined and must be loaded from a local.
1484  class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1485    llvm::Value *ArrayBegin;
1486    llvm::Value *ArrayEndPointer;
1487    QualType ElementType;
1488    CodeGenFunction::Destroyer *Destroyer;
1489  public:
1490    IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1491                                 llvm::Value *arrayEndPointer,
1492                                 QualType elementType,
1493                                 CodeGenFunction::Destroyer *destroyer)
1494      : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1495        ElementType(elementType), Destroyer(destroyer) {}
1496
1497    void Emit(CodeGenFunction &CGF, Flags flags) {
1498      llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1499      emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1500                              ElementType, Destroyer);
1501    }
1502  };
1503}
1504
1505/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1506/// already-constructed elements of the given array.  The cleanup
1507/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1508///
1509/// \param elementType - the immediate element type of the array;
1510///   possibly still an array type
1511void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1512                                                 llvm::Value *arrayEndPointer,
1513                                                       QualType elementType,
1514                                                       Destroyer *destroyer) {
1515  pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1516                                                    arrayBegin, arrayEndPointer,
1517                                                    elementType, destroyer);
1518}
1519
1520/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1521/// already-constructed elements of the given array.  The cleanup
1522/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1523///
1524/// \param elementType - the immediate element type of the array;
1525///   possibly still an array type
1526void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1527                                                     llvm::Value *arrayEnd,
1528                                                     QualType elementType,
1529                                                     Destroyer *destroyer) {
1530  pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1531                                                  arrayBegin, arrayEnd,
1532                                                  elementType, destroyer);
1533}
1534
1535/// Lazily declare the @llvm.lifetime.start intrinsic.
1536llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1537  if (LifetimeStartFn) return LifetimeStartFn;
1538  LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1539                                            llvm::Intrinsic::lifetime_start);
1540  return LifetimeStartFn;
1541}
1542
1543/// Lazily declare the @llvm.lifetime.end intrinsic.
1544llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1545  if (LifetimeEndFn) return LifetimeEndFn;
1546  LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1547                                              llvm::Intrinsic::lifetime_end);
1548  return LifetimeEndFn;
1549}
1550
1551namespace {
1552  /// A cleanup to perform a release of an object at the end of a
1553  /// function.  This is used to balance out the incoming +1 of a
1554  /// ns_consumed argument when we can't reasonably do that just by
1555  /// not doing the initial retain for a __block argument.
1556  struct ConsumeARCParameter : EHScopeStack::Cleanup {
1557    ConsumeARCParameter(llvm::Value *param,
1558                        ARCPreciseLifetime_t precise)
1559      : Param(param), Precise(precise) {}
1560
1561    llvm::Value *Param;
1562    ARCPreciseLifetime_t Precise;
1563
1564    void Emit(CodeGenFunction &CGF, Flags flags) {
1565      CGF.EmitARCRelease(Param, Precise);
1566    }
1567  };
1568}
1569
1570/// Emit an alloca (or GlobalValue depending on target)
1571/// for the specified parameter and set up LocalDeclMap.
1572void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1573                                   unsigned ArgNo) {
1574  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1575  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1576         "Invalid argument to EmitParmDecl");
1577
1578  Arg->setName(D.getName());
1579
1580  QualType Ty = D.getType();
1581
1582  // Use better IR generation for certain implicit parameters.
1583  if (isa<ImplicitParamDecl>(D)) {
1584    // The only implicit argument a block has is its literal.
1585    if (BlockInfo) {
1586      LocalDeclMap[&D] = Arg;
1587      llvm::Value *LocalAddr = 0;
1588      if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1589        // Allocate a stack slot to let the debug info survive the RA.
1590        llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1591                                                   D.getName() + ".addr");
1592        Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1593        LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1594        EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1595        LocalAddr = Builder.CreateLoad(Alloc);
1596      }
1597
1598      if (CGDebugInfo *DI = getDebugInfo()) {
1599        if (CGM.getCodeGenOpts().getDebugInfo()
1600              >= CodeGenOptions::LimitedDebugInfo) {
1601          DI->setLocation(D.getLocation());
1602          DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1603        }
1604      }
1605
1606      return;
1607    }
1608  }
1609
1610  llvm::Value *DeclPtr;
1611  // If this is an aggregate or variable sized value, reuse the input pointer.
1612  if (!Ty->isConstantSizeType() ||
1613      !CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1614    DeclPtr = Arg;
1615  } else {
1616    // Otherwise, create a temporary to hold the value.
1617    llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1618                                               D.getName() + ".addr");
1619    CharUnits Align = getContext().getDeclAlign(&D);
1620    Alloc->setAlignment(Align.getQuantity());
1621    DeclPtr = Alloc;
1622
1623    bool doStore = true;
1624
1625    Qualifiers qs = Ty.getQualifiers();
1626    LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1627    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1628      // We honor __attribute__((ns_consumed)) for types with lifetime.
1629      // For __strong, it's handled by just skipping the initial retain;
1630      // otherwise we have to balance out the initial +1 with an extra
1631      // cleanup to do the release at the end of the function.
1632      bool isConsumed = D.hasAttr<NSConsumedAttr>();
1633
1634      // 'self' is always formally __strong, but if this is not an
1635      // init method then we don't want to retain it.
1636      if (D.isARCPseudoStrong()) {
1637        const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1638        assert(&D == method->getSelfDecl());
1639        assert(lt == Qualifiers::OCL_Strong);
1640        assert(qs.hasConst());
1641        assert(method->getMethodFamily() != OMF_init);
1642        (void) method;
1643        lt = Qualifiers::OCL_ExplicitNone;
1644      }
1645
1646      if (lt == Qualifiers::OCL_Strong) {
1647        if (!isConsumed) {
1648          if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1649            // use objc_storeStrong(&dest, value) for retaining the
1650            // object. But first, store a null into 'dest' because
1651            // objc_storeStrong attempts to release its old value.
1652            llvm::Value * Null = CGM.EmitNullConstant(D.getType());
1653            EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1654            EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1655            doStore = false;
1656          }
1657          else
1658          // Don't use objc_retainBlock for block pointers, because we
1659          // don't want to Block_copy something just because we got it
1660          // as a parameter.
1661            Arg = EmitARCRetainNonBlock(Arg);
1662        }
1663      } else {
1664        // Push the cleanup for a consumed parameter.
1665        if (isConsumed) {
1666          ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1667                                ? ARCPreciseLifetime : ARCImpreciseLifetime);
1668          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1669                                                   precise);
1670        }
1671
1672        if (lt == Qualifiers::OCL_Weak) {
1673          EmitARCInitWeak(DeclPtr, Arg);
1674          doStore = false; // The weak init is a store, no need to do two.
1675        }
1676      }
1677
1678      // Enter the cleanup scope.
1679      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1680    }
1681
1682    // Store the initial value into the alloca.
1683    if (doStore)
1684      EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1685  }
1686
1687  llvm::Value *&DMEntry = LocalDeclMap[&D];
1688  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1689  DMEntry = DeclPtr;
1690
1691  // Emit debug info for param declaration.
1692  if (CGDebugInfo *DI = getDebugInfo()) {
1693    if (CGM.getCodeGenOpts().getDebugInfo()
1694          >= CodeGenOptions::LimitedDebugInfo) {
1695      DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1696    }
1697  }
1698
1699  if (D.hasAttr<AnnotateAttr>())
1700      EmitVarAnnotations(&D, DeclPtr);
1701}
1702