ASTContext.cpp revision 227737
1189251Ssam//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2189251Ssam//
3189251Ssam//                     The LLVM Compiler Infrastructure
4189251Ssam//
5252726Srpaulo// This file is distributed under the University of Illinois Open Source
6252726Srpaulo// License. See LICENSE.TXT for details.
7189251Ssam//
8189251Ssam//===----------------------------------------------------------------------===//
9189251Ssam//
10189251Ssam//  This file implements the ASTContext interface.
11189251Ssam//
12189251Ssam//===----------------------------------------------------------------------===//
13189251Ssam
14189251Ssam#include "clang/AST/ASTContext.h"
15189251Ssam#include "clang/AST/CharUnits.h"
16189251Ssam#include "clang/AST/DeclCXX.h"
17189251Ssam#include "clang/AST/DeclObjC.h"
18214734Srpaulo#include "clang/AST/DeclTemplate.h"
19214734Srpaulo#include "clang/AST/TypeLoc.h"
20214734Srpaulo#include "clang/AST/Expr.h"
21214734Srpaulo#include "clang/AST/ExprCXX.h"
22214734Srpaulo#include "clang/AST/ExternalASTSource.h"
23214734Srpaulo#include "clang/AST/ASTMutationListener.h"
24214734Srpaulo#include "clang/AST/RecordLayout.h"
25189251Ssam#include "clang/AST/Mangle.h"
26189251Ssam#include "clang/Basic/Builtins.h"
27189251Ssam#include "clang/Basic/SourceManager.h"
28189251Ssam#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
82          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
83      } else
84        ID.AddBoolean(false);
85      continue;
86    }
87
88    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
89    ID.AddInteger(2);
90    Profile(ID, TTP);
91  }
92}
93
94TemplateTemplateParmDecl *
95ASTContext::getCanonicalTemplateTemplateParmDecl(
96                                          TemplateTemplateParmDecl *TTP) const {
97  // Check if we already have a canonical template template parameter.
98  llvm::FoldingSetNodeID ID;
99  CanonicalTemplateTemplateParm::Profile(ID, TTP);
100  void *InsertPos = 0;
101  CanonicalTemplateTemplateParm *Canonical
102    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
103  if (Canonical)
104    return Canonical->getParam();
105
106  // Build a canonical template parameter list.
107  TemplateParameterList *Params = TTP->getTemplateParameters();
108  SmallVector<NamedDecl *, 4> CanonParams;
109  CanonParams.reserve(Params->size());
110  for (TemplateParameterList::const_iterator P = Params->begin(),
111                                          PEnd = Params->end();
112       P != PEnd; ++P) {
113    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
114      CanonParams.push_back(
115                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
116                                               SourceLocation(),
117                                               SourceLocation(),
118                                               TTP->getDepth(),
119                                               TTP->getIndex(), 0, false,
120                                               TTP->isParameterPack()));
121    else if (NonTypeTemplateParmDecl *NTTP
122             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
123      QualType T = getCanonicalType(NTTP->getType());
124      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
125      NonTypeTemplateParmDecl *Param;
126      if (NTTP->isExpandedParameterPack()) {
127        SmallVector<QualType, 2> ExpandedTypes;
128        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
129        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
130          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
131          ExpandedTInfos.push_back(
132                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
133        }
134
135        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
136                                                SourceLocation(),
137                                                SourceLocation(),
138                                                NTTP->getDepth(),
139                                                NTTP->getPosition(), 0,
140                                                T,
141                                                TInfo,
142                                                ExpandedTypes.data(),
143                                                ExpandedTypes.size(),
144                                                ExpandedTInfos.data());
145      } else {
146        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
147                                                SourceLocation(),
148                                                SourceLocation(),
149                                                NTTP->getDepth(),
150                                                NTTP->getPosition(), 0,
151                                                T,
152                                                NTTP->isParameterPack(),
153                                                TInfo);
154      }
155      CanonParams.push_back(Param);
156
157    } else
158      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
159                                           cast<TemplateTemplateParmDecl>(*P)));
160  }
161
162  TemplateTemplateParmDecl *CanonTTP
163    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
164                                       SourceLocation(), TTP->getDepth(),
165                                       TTP->getPosition(),
166                                       TTP->isParameterPack(),
167                                       0,
168                         TemplateParameterList::Create(*this, SourceLocation(),
169                                                       SourceLocation(),
170                                                       CanonParams.data(),
171                                                       CanonParams.size(),
172                                                       SourceLocation()));
173
174  // Get the new insert position for the node we care about.
175  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
176  assert(Canonical == 0 && "Shouldn't be in the map!");
177  (void)Canonical;
178
179  // Create the canonical template template parameter entry.
180  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
181  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
182  return CanonTTP;
183}
184
185CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
186  if (!LangOpts.CPlusPlus) return 0;
187
188  switch (T.getCXXABI()) {
189  case CXXABI_ARM:
190    return CreateARMCXXABI(*this);
191  case CXXABI_Itanium:
192    return CreateItaniumCXXABI(*this);
193  case CXXABI_Microsoft:
194    return CreateMicrosoftCXXABI(*this);
195  }
196  return 0;
197}
198
199static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
200                                             const LangOptions &LOpts) {
201  if (LOpts.FakeAddressSpaceMap) {
202    // The fake address space map must have a distinct entry for each
203    // language-specific address space.
204    static const unsigned FakeAddrSpaceMap[] = {
205      1, // opencl_global
206      2, // opencl_local
207      3  // opencl_constant
208    };
209    return &FakeAddrSpaceMap;
210  } else {
211    return &T.getAddressSpaceMap();
212  }
213}
214
215ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
216                       const TargetInfo *t,
217                       IdentifierTable &idents, SelectorTable &sels,
218                       Builtin::Context &builtins,
219                       unsigned size_reserve,
220                       bool DelayInitialization)
221  : FunctionProtoTypes(this_()),
222    TemplateSpecializationTypes(this_()),
223    DependentTemplateSpecializationTypes(this_()),
224    SubstTemplateTemplateParmPacks(this_()),
225    GlobalNestedNameSpecifier(0),
226    Int128Decl(0), UInt128Decl(0),
227    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0),
228    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
229    FILEDecl(0),
230    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
231    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
232    cudaConfigureCallDecl(0),
233    NullTypeSourceInfo(QualType()),
234    SourceMgr(SM), LangOpts(LOpts),
235    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
236    Idents(idents), Selectors(sels),
237    BuiltinInfo(builtins),
238    DeclarationNames(*this),
239    ExternalSource(0), Listener(0),
240    LastSDM(0, 0),
241    UniqueBlockByRefTypeID(0)
242{
243  if (size_reserve > 0) Types.reserve(size_reserve);
244  TUDecl = TranslationUnitDecl::Create(*this);
245
246  if (!DelayInitialization) {
247    assert(t && "No target supplied for ASTContext initialization");
248    InitBuiltinTypes(*t);
249  }
250}
251
252ASTContext::~ASTContext() {
253  // Release the DenseMaps associated with DeclContext objects.
254  // FIXME: Is this the ideal solution?
255  ReleaseDeclContextMaps();
256
257  // Call all of the deallocation functions.
258  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
259    Deallocations[I].first(Deallocations[I].second);
260
261  // Release all of the memory associated with overridden C++ methods.
262  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
263         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
264       OM != OMEnd; ++OM)
265    OM->second.Destroy();
266
267  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
268  // because they can contain DenseMaps.
269  for (llvm::DenseMap<const ObjCContainerDecl*,
270       const ASTRecordLayout*>::iterator
271       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
272    // Increment in loop to prevent using deallocated memory.
273    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
274      R->Destroy(*this);
275
276  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
277       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
278    // Increment in loop to prevent using deallocated memory.
279    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
280      R->Destroy(*this);
281  }
282
283  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
284                                                    AEnd = DeclAttrs.end();
285       A != AEnd; ++A)
286    A->second->~AttrVec();
287}
288
289void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
290  Deallocations.push_back(std::make_pair(Callback, Data));
291}
292
293void
294ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
295  ExternalSource.reset(Source.take());
296}
297
298void ASTContext::PrintStats() const {
299  llvm::errs() << "\n*** AST Context Stats:\n";
300  llvm::errs() << "  " << Types.size() << " types total.\n";
301
302  unsigned counts[] = {
303#define TYPE(Name, Parent) 0,
304#define ABSTRACT_TYPE(Name, Parent)
305#include "clang/AST/TypeNodes.def"
306    0 // Extra
307  };
308
309  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
310    Type *T = Types[i];
311    counts[(unsigned)T->getTypeClass()]++;
312  }
313
314  unsigned Idx = 0;
315  unsigned TotalBytes = 0;
316#define TYPE(Name, Parent)                                              \
317  if (counts[Idx])                                                      \
318    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
319                 << " types\n";                                         \
320  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
321  ++Idx;
322#define ABSTRACT_TYPE(Name, Parent)
323#include "clang/AST/TypeNodes.def"
324
325  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
326
327  // Implicit special member functions.
328  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
329               << NumImplicitDefaultConstructors
330               << " implicit default constructors created\n";
331  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
332               << NumImplicitCopyConstructors
333               << " implicit copy constructors created\n";
334  if (getLangOptions().CPlusPlus)
335    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
336                 << NumImplicitMoveConstructors
337                 << " implicit move constructors created\n";
338  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
339               << NumImplicitCopyAssignmentOperators
340               << " implicit copy assignment operators created\n";
341  if (getLangOptions().CPlusPlus)
342    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
343                 << NumImplicitMoveAssignmentOperators
344                 << " implicit move assignment operators created\n";
345  llvm::errs() << NumImplicitDestructorsDeclared << "/"
346               << NumImplicitDestructors
347               << " implicit destructors created\n";
348
349  if (ExternalSource.get()) {
350    llvm::errs() << "\n";
351    ExternalSource->PrintStats();
352  }
353
354  BumpAlloc.PrintStats();
355}
356
357TypedefDecl *ASTContext::getInt128Decl() const {
358  if (!Int128Decl) {
359    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
360    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
361                                     getTranslationUnitDecl(),
362                                     SourceLocation(),
363                                     SourceLocation(),
364                                     &Idents.get("__int128_t"),
365                                     TInfo);
366  }
367
368  return Int128Decl;
369}
370
371TypedefDecl *ASTContext::getUInt128Decl() const {
372  if (!UInt128Decl) {
373    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
374    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
375                                     getTranslationUnitDecl(),
376                                     SourceLocation(),
377                                     SourceLocation(),
378                                     &Idents.get("__uint128_t"),
379                                     TInfo);
380  }
381
382  return UInt128Decl;
383}
384
385void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
386  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
387  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
388  Types.push_back(Ty);
389}
390
391void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
392  assert((!this->Target || this->Target == &Target) &&
393         "Incorrect target reinitialization");
394  assert(VoidTy.isNull() && "Context reinitialized?");
395
396  this->Target = &Target;
397
398  ABI.reset(createCXXABI(Target));
399  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
400
401  // C99 6.2.5p19.
402  InitBuiltinType(VoidTy,              BuiltinType::Void);
403
404  // C99 6.2.5p2.
405  InitBuiltinType(BoolTy,              BuiltinType::Bool);
406  // C99 6.2.5p3.
407  if (LangOpts.CharIsSigned)
408    InitBuiltinType(CharTy,            BuiltinType::Char_S);
409  else
410    InitBuiltinType(CharTy,            BuiltinType::Char_U);
411  // C99 6.2.5p4.
412  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
413  InitBuiltinType(ShortTy,             BuiltinType::Short);
414  InitBuiltinType(IntTy,               BuiltinType::Int);
415  InitBuiltinType(LongTy,              BuiltinType::Long);
416  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
417
418  // C99 6.2.5p6.
419  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
420  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
421  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
422  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
423  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
424
425  // C99 6.2.5p10.
426  InitBuiltinType(FloatTy,             BuiltinType::Float);
427  InitBuiltinType(DoubleTy,            BuiltinType::Double);
428  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
429
430  // GNU extension, 128-bit integers.
431  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
432  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
433
434  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
435    if (TargetInfo::isTypeSigned(Target.getWCharType()))
436      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
437    else  // -fshort-wchar makes wchar_t be unsigned.
438      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
439  } else // C99
440    WCharTy = getFromTargetType(Target.getWCharType());
441
442  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
443    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
444  else // C99
445    Char16Ty = getFromTargetType(Target.getChar16Type());
446
447  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
448    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
449  else // C99
450    Char32Ty = getFromTargetType(Target.getChar32Type());
451
452  // Placeholder type for type-dependent expressions whose type is
453  // completely unknown. No code should ever check a type against
454  // DependentTy and users should never see it; however, it is here to
455  // help diagnose failures to properly check for type-dependent
456  // expressions.
457  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
458
459  // Placeholder type for functions.
460  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
461
462  // Placeholder type for bound members.
463  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
464
465  // "any" type; useful for debugger-like clients.
466  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
467
468  // C99 6.2.5p11.
469  FloatComplexTy      = getComplexType(FloatTy);
470  DoubleComplexTy     = getComplexType(DoubleTy);
471  LongDoubleComplexTy = getComplexType(LongDoubleTy);
472
473  BuiltinVaListType = QualType();
474
475  // Builtin types for 'id', 'Class', and 'SEL'.
476  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
477  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
478  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
479
480  ObjCConstantStringType = QualType();
481
482  // void * type
483  VoidPtrTy = getPointerType(VoidTy);
484
485  // nullptr type (C++0x 2.14.7)
486  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
487
488  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
489  InitBuiltinType(HalfTy, BuiltinType::Half);
490}
491
492DiagnosticsEngine &ASTContext::getDiagnostics() const {
493  return SourceMgr.getDiagnostics();
494}
495
496AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
497  AttrVec *&Result = DeclAttrs[D];
498  if (!Result) {
499    void *Mem = Allocate(sizeof(AttrVec));
500    Result = new (Mem) AttrVec;
501  }
502
503  return *Result;
504}
505
506/// \brief Erase the attributes corresponding to the given declaration.
507void ASTContext::eraseDeclAttrs(const Decl *D) {
508  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
509  if (Pos != DeclAttrs.end()) {
510    Pos->second->~AttrVec();
511    DeclAttrs.erase(Pos);
512  }
513}
514
515MemberSpecializationInfo *
516ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
517  assert(Var->isStaticDataMember() && "Not a static data member");
518  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
519    = InstantiatedFromStaticDataMember.find(Var);
520  if (Pos == InstantiatedFromStaticDataMember.end())
521    return 0;
522
523  return Pos->second;
524}
525
526void
527ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
528                                                TemplateSpecializationKind TSK,
529                                          SourceLocation PointOfInstantiation) {
530  assert(Inst->isStaticDataMember() && "Not a static data member");
531  assert(Tmpl->isStaticDataMember() && "Not a static data member");
532  assert(!InstantiatedFromStaticDataMember[Inst] &&
533         "Already noted what static data member was instantiated from");
534  InstantiatedFromStaticDataMember[Inst]
535    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
536}
537
538FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
539                                                     const FunctionDecl *FD){
540  assert(FD && "Specialization is 0");
541  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
542    = ClassScopeSpecializationPattern.find(FD);
543  if (Pos == ClassScopeSpecializationPattern.end())
544    return 0;
545
546  return Pos->second;
547}
548
549void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
550                                        FunctionDecl *Pattern) {
551  assert(FD && "Specialization is 0");
552  assert(Pattern && "Class scope specialization pattern is 0");
553  ClassScopeSpecializationPattern[FD] = Pattern;
554}
555
556NamedDecl *
557ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
558  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
559    = InstantiatedFromUsingDecl.find(UUD);
560  if (Pos == InstantiatedFromUsingDecl.end())
561    return 0;
562
563  return Pos->second;
564}
565
566void
567ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
568  assert((isa<UsingDecl>(Pattern) ||
569          isa<UnresolvedUsingValueDecl>(Pattern) ||
570          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
571         "pattern decl is not a using decl");
572  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
573  InstantiatedFromUsingDecl[Inst] = Pattern;
574}
575
576UsingShadowDecl *
577ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
578  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
579    = InstantiatedFromUsingShadowDecl.find(Inst);
580  if (Pos == InstantiatedFromUsingShadowDecl.end())
581    return 0;
582
583  return Pos->second;
584}
585
586void
587ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
588                                               UsingShadowDecl *Pattern) {
589  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
590  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
591}
592
593FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
594  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
595    = InstantiatedFromUnnamedFieldDecl.find(Field);
596  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
597    return 0;
598
599  return Pos->second;
600}
601
602void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
603                                                     FieldDecl *Tmpl) {
604  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
605  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
606  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
607         "Already noted what unnamed field was instantiated from");
608
609  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
610}
611
612bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
613                                    const FieldDecl *LastFD) const {
614  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
615          FD->getBitWidthValue(*this) == 0);
616}
617
618bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
619                                             const FieldDecl *LastFD) const {
620  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
621          FD->getBitWidthValue(*this) == 0 &&
622          LastFD->getBitWidthValue(*this) != 0);
623}
624
625bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
626                                         const FieldDecl *LastFD) const {
627  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
628          FD->getBitWidthValue(*this) &&
629          LastFD->getBitWidthValue(*this));
630}
631
632bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
633                                         const FieldDecl *LastFD) const {
634  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
635          LastFD->getBitWidthValue(*this));
636}
637
638bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
639                                             const FieldDecl *LastFD) const {
640  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
641          FD->getBitWidthValue(*this));
642}
643
644ASTContext::overridden_cxx_method_iterator
645ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
646  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
647    = OverriddenMethods.find(Method);
648  if (Pos == OverriddenMethods.end())
649    return 0;
650
651  return Pos->second.begin();
652}
653
654ASTContext::overridden_cxx_method_iterator
655ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
656  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
657    = OverriddenMethods.find(Method);
658  if (Pos == OverriddenMethods.end())
659    return 0;
660
661  return Pos->second.end();
662}
663
664unsigned
665ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
666  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
667    = OverriddenMethods.find(Method);
668  if (Pos == OverriddenMethods.end())
669    return 0;
670
671  return Pos->second.size();
672}
673
674void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
675                                     const CXXMethodDecl *Overridden) {
676  OverriddenMethods[Method].push_back(Overridden);
677}
678
679//===----------------------------------------------------------------------===//
680//                         Type Sizing and Analysis
681//===----------------------------------------------------------------------===//
682
683/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
684/// scalar floating point type.
685const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
686  const BuiltinType *BT = T->getAs<BuiltinType>();
687  assert(BT && "Not a floating point type!");
688  switch (BT->getKind()) {
689  default: llvm_unreachable("Not a floating point type!");
690  case BuiltinType::Half:       return Target->getHalfFormat();
691  case BuiltinType::Float:      return Target->getFloatFormat();
692  case BuiltinType::Double:     return Target->getDoubleFormat();
693  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
694  }
695}
696
697/// getDeclAlign - Return a conservative estimate of the alignment of the
698/// specified decl.  Note that bitfields do not have a valid alignment, so
699/// this method will assert on them.
700/// If @p RefAsPointee, references are treated like their underlying type
701/// (for alignof), else they're treated like pointers (for CodeGen).
702CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
703  unsigned Align = Target->getCharWidth();
704
705  bool UseAlignAttrOnly = false;
706  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
707    Align = AlignFromAttr;
708
709    // __attribute__((aligned)) can increase or decrease alignment
710    // *except* on a struct or struct member, where it only increases
711    // alignment unless 'packed' is also specified.
712    //
713    // It is an error for alignas to decrease alignment, so we can
714    // ignore that possibility;  Sema should diagnose it.
715    if (isa<FieldDecl>(D)) {
716      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
717        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
718    } else {
719      UseAlignAttrOnly = true;
720    }
721  }
722  else if (isa<FieldDecl>(D))
723      UseAlignAttrOnly =
724        D->hasAttr<PackedAttr>() ||
725        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
726
727  // If we're using the align attribute only, just ignore everything
728  // else about the declaration and its type.
729  if (UseAlignAttrOnly) {
730    // do nothing
731
732  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
733    QualType T = VD->getType();
734    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
735      if (RefAsPointee)
736        T = RT->getPointeeType();
737      else
738        T = getPointerType(RT->getPointeeType());
739    }
740    if (!T->isIncompleteType() && !T->isFunctionType()) {
741      // Adjust alignments of declarations with array type by the
742      // large-array alignment on the target.
743      unsigned MinWidth = Target->getLargeArrayMinWidth();
744      const ArrayType *arrayType;
745      if (MinWidth && (arrayType = getAsArrayType(T))) {
746        if (isa<VariableArrayType>(arrayType))
747          Align = std::max(Align, Target->getLargeArrayAlign());
748        else if (isa<ConstantArrayType>(arrayType) &&
749                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
750          Align = std::max(Align, Target->getLargeArrayAlign());
751
752        // Walk through any array types while we're at it.
753        T = getBaseElementType(arrayType);
754      }
755      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
756    }
757
758    // Fields can be subject to extra alignment constraints, like if
759    // the field is packed, the struct is packed, or the struct has a
760    // a max-field-alignment constraint (#pragma pack).  So calculate
761    // the actual alignment of the field within the struct, and then
762    // (as we're expected to) constrain that by the alignment of the type.
763    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
764      // So calculate the alignment of the field.
765      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
766
767      // Start with the record's overall alignment.
768      unsigned fieldAlign = toBits(layout.getAlignment());
769
770      // Use the GCD of that and the offset within the record.
771      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
772      if (offset > 0) {
773        // Alignment is always a power of 2, so the GCD will be a power of 2,
774        // which means we get to do this crazy thing instead of Euclid's.
775        uint64_t lowBitOfOffset = offset & (~offset + 1);
776        if (lowBitOfOffset < fieldAlign)
777          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
778      }
779
780      Align = std::min(Align, fieldAlign);
781    }
782  }
783
784  return toCharUnitsFromBits(Align);
785}
786
787std::pair<CharUnits, CharUnits>
788ASTContext::getTypeInfoInChars(const Type *T) const {
789  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
790  return std::make_pair(toCharUnitsFromBits(Info.first),
791                        toCharUnitsFromBits(Info.second));
792}
793
794std::pair<CharUnits, CharUnits>
795ASTContext::getTypeInfoInChars(QualType T) const {
796  return getTypeInfoInChars(T.getTypePtr());
797}
798
799/// getTypeSize - Return the size of the specified type, in bits.  This method
800/// does not work on incomplete types.
801///
802/// FIXME: Pointers into different addr spaces could have different sizes and
803/// alignment requirements: getPointerInfo should take an AddrSpace, this
804/// should take a QualType, &c.
805std::pair<uint64_t, unsigned>
806ASTContext::getTypeInfo(const Type *T) const {
807  uint64_t Width=0;
808  unsigned Align=8;
809  switch (T->getTypeClass()) {
810#define TYPE(Class, Base)
811#define ABSTRACT_TYPE(Class, Base)
812#define NON_CANONICAL_TYPE(Class, Base)
813#define DEPENDENT_TYPE(Class, Base) case Type::Class:
814#include "clang/AST/TypeNodes.def"
815    llvm_unreachable("Should not see dependent types");
816    break;
817
818  case Type::FunctionNoProto:
819  case Type::FunctionProto:
820    // GCC extension: alignof(function) = 32 bits
821    Width = 0;
822    Align = 32;
823    break;
824
825  case Type::IncompleteArray:
826  case Type::VariableArray:
827    Width = 0;
828    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
829    break;
830
831  case Type::ConstantArray: {
832    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
833
834    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
835    Width = EltInfo.first*CAT->getSize().getZExtValue();
836    Align = EltInfo.second;
837    Width = llvm::RoundUpToAlignment(Width, Align);
838    break;
839  }
840  case Type::ExtVector:
841  case Type::Vector: {
842    const VectorType *VT = cast<VectorType>(T);
843    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
844    Width = EltInfo.first*VT->getNumElements();
845    Align = Width;
846    // If the alignment is not a power of 2, round up to the next power of 2.
847    // This happens for non-power-of-2 length vectors.
848    if (Align & (Align-1)) {
849      Align = llvm::NextPowerOf2(Align);
850      Width = llvm::RoundUpToAlignment(Width, Align);
851    }
852    break;
853  }
854
855  case Type::Builtin:
856    switch (cast<BuiltinType>(T)->getKind()) {
857    default: llvm_unreachable("Unknown builtin type!");
858    case BuiltinType::Void:
859      // GCC extension: alignof(void) = 8 bits.
860      Width = 0;
861      Align = 8;
862      break;
863
864    case BuiltinType::Bool:
865      Width = Target->getBoolWidth();
866      Align = Target->getBoolAlign();
867      break;
868    case BuiltinType::Char_S:
869    case BuiltinType::Char_U:
870    case BuiltinType::UChar:
871    case BuiltinType::SChar:
872      Width = Target->getCharWidth();
873      Align = Target->getCharAlign();
874      break;
875    case BuiltinType::WChar_S:
876    case BuiltinType::WChar_U:
877      Width = Target->getWCharWidth();
878      Align = Target->getWCharAlign();
879      break;
880    case BuiltinType::Char16:
881      Width = Target->getChar16Width();
882      Align = Target->getChar16Align();
883      break;
884    case BuiltinType::Char32:
885      Width = Target->getChar32Width();
886      Align = Target->getChar32Align();
887      break;
888    case BuiltinType::UShort:
889    case BuiltinType::Short:
890      Width = Target->getShortWidth();
891      Align = Target->getShortAlign();
892      break;
893    case BuiltinType::UInt:
894    case BuiltinType::Int:
895      Width = Target->getIntWidth();
896      Align = Target->getIntAlign();
897      break;
898    case BuiltinType::ULong:
899    case BuiltinType::Long:
900      Width = Target->getLongWidth();
901      Align = Target->getLongAlign();
902      break;
903    case BuiltinType::ULongLong:
904    case BuiltinType::LongLong:
905      Width = Target->getLongLongWidth();
906      Align = Target->getLongLongAlign();
907      break;
908    case BuiltinType::Int128:
909    case BuiltinType::UInt128:
910      Width = 128;
911      Align = 128; // int128_t is 128-bit aligned on all targets.
912      break;
913    case BuiltinType::Half:
914      Width = Target->getHalfWidth();
915      Align = Target->getHalfAlign();
916      break;
917    case BuiltinType::Float:
918      Width = Target->getFloatWidth();
919      Align = Target->getFloatAlign();
920      break;
921    case BuiltinType::Double:
922      Width = Target->getDoubleWidth();
923      Align = Target->getDoubleAlign();
924      break;
925    case BuiltinType::LongDouble:
926      Width = Target->getLongDoubleWidth();
927      Align = Target->getLongDoubleAlign();
928      break;
929    case BuiltinType::NullPtr:
930      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
931      Align = Target->getPointerAlign(0); //   == sizeof(void*)
932      break;
933    case BuiltinType::ObjCId:
934    case BuiltinType::ObjCClass:
935    case BuiltinType::ObjCSel:
936      Width = Target->getPointerWidth(0);
937      Align = Target->getPointerAlign(0);
938      break;
939    }
940    break;
941  case Type::ObjCObjectPointer:
942    Width = Target->getPointerWidth(0);
943    Align = Target->getPointerAlign(0);
944    break;
945  case Type::BlockPointer: {
946    unsigned AS = getTargetAddressSpace(
947        cast<BlockPointerType>(T)->getPointeeType());
948    Width = Target->getPointerWidth(AS);
949    Align = Target->getPointerAlign(AS);
950    break;
951  }
952  case Type::LValueReference:
953  case Type::RValueReference: {
954    // alignof and sizeof should never enter this code path here, so we go
955    // the pointer route.
956    unsigned AS = getTargetAddressSpace(
957        cast<ReferenceType>(T)->getPointeeType());
958    Width = Target->getPointerWidth(AS);
959    Align = Target->getPointerAlign(AS);
960    break;
961  }
962  case Type::Pointer: {
963    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
964    Width = Target->getPointerWidth(AS);
965    Align = Target->getPointerAlign(AS);
966    break;
967  }
968  case Type::MemberPointer: {
969    const MemberPointerType *MPT = cast<MemberPointerType>(T);
970    std::pair<uint64_t, unsigned> PtrDiffInfo =
971      getTypeInfo(getPointerDiffType());
972    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
973    Align = PtrDiffInfo.second;
974    break;
975  }
976  case Type::Complex: {
977    // Complex types have the same alignment as their elements, but twice the
978    // size.
979    std::pair<uint64_t, unsigned> EltInfo =
980      getTypeInfo(cast<ComplexType>(T)->getElementType());
981    Width = EltInfo.first*2;
982    Align = EltInfo.second;
983    break;
984  }
985  case Type::ObjCObject:
986    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
987  case Type::ObjCInterface: {
988    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
989    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
990    Width = toBits(Layout.getSize());
991    Align = toBits(Layout.getAlignment());
992    break;
993  }
994  case Type::Record:
995  case Type::Enum: {
996    const TagType *TT = cast<TagType>(T);
997
998    if (TT->getDecl()->isInvalidDecl()) {
999      Width = 8;
1000      Align = 8;
1001      break;
1002    }
1003
1004    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1005      return getTypeInfo(ET->getDecl()->getIntegerType());
1006
1007    const RecordType *RT = cast<RecordType>(TT);
1008    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1009    Width = toBits(Layout.getSize());
1010    Align = toBits(Layout.getAlignment());
1011    break;
1012  }
1013
1014  case Type::SubstTemplateTypeParm:
1015    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1016                       getReplacementType().getTypePtr());
1017
1018  case Type::Auto: {
1019    const AutoType *A = cast<AutoType>(T);
1020    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1021    return getTypeInfo(A->getDeducedType().getTypePtr());
1022  }
1023
1024  case Type::Paren:
1025    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1026
1027  case Type::Typedef: {
1028    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1029    std::pair<uint64_t, unsigned> Info
1030      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1031    // If the typedef has an aligned attribute on it, it overrides any computed
1032    // alignment we have.  This violates the GCC documentation (which says that
1033    // attribute(aligned) can only round up) but matches its implementation.
1034    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1035      Align = AttrAlign;
1036    else
1037      Align = Info.second;
1038    Width = Info.first;
1039    break;
1040  }
1041
1042  case Type::TypeOfExpr:
1043    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1044                         .getTypePtr());
1045
1046  case Type::TypeOf:
1047    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1048
1049  case Type::Decltype:
1050    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1051                        .getTypePtr());
1052
1053  case Type::UnaryTransform:
1054    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1055
1056  case Type::Elaborated:
1057    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1058
1059  case Type::Attributed:
1060    return getTypeInfo(
1061                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1062
1063  case Type::TemplateSpecialization: {
1064    assert(getCanonicalType(T) != T &&
1065           "Cannot request the size of a dependent type");
1066    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1067    // A type alias template specialization may refer to a typedef with the
1068    // aligned attribute on it.
1069    if (TST->isTypeAlias())
1070      return getTypeInfo(TST->getAliasedType().getTypePtr());
1071    else
1072      return getTypeInfo(getCanonicalType(T));
1073  }
1074
1075  case Type::Atomic: {
1076    std::pair<uint64_t, unsigned> Info
1077      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1078    Width = Info.first;
1079    Align = Info.second;
1080    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1081        llvm::isPowerOf2_64(Width)) {
1082      // We can potentially perform lock-free atomic operations for this
1083      // type; promote the alignment appropriately.
1084      // FIXME: We could potentially promote the width here as well...
1085      // is that worthwhile?  (Non-struct atomic types generally have
1086      // power-of-two size anyway, but structs might not.  Requires a bit
1087      // of implementation work to make sure we zero out the extra bits.)
1088      Align = static_cast<unsigned>(Width);
1089    }
1090  }
1091
1092  }
1093
1094  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1095  return std::make_pair(Width, Align);
1096}
1097
1098/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1099CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1100  return CharUnits::fromQuantity(BitSize / getCharWidth());
1101}
1102
1103/// toBits - Convert a size in characters to a size in characters.
1104int64_t ASTContext::toBits(CharUnits CharSize) const {
1105  return CharSize.getQuantity() * getCharWidth();
1106}
1107
1108/// getTypeSizeInChars - Return the size of the specified type, in characters.
1109/// This method does not work on incomplete types.
1110CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1111  return toCharUnitsFromBits(getTypeSize(T));
1112}
1113CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1114  return toCharUnitsFromBits(getTypeSize(T));
1115}
1116
1117/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1118/// characters. This method does not work on incomplete types.
1119CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1120  return toCharUnitsFromBits(getTypeAlign(T));
1121}
1122CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1123  return toCharUnitsFromBits(getTypeAlign(T));
1124}
1125
1126/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1127/// type for the current target in bits.  This can be different than the ABI
1128/// alignment in cases where it is beneficial for performance to overalign
1129/// a data type.
1130unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1131  unsigned ABIAlign = getTypeAlign(T);
1132
1133  // Double and long long should be naturally aligned if possible.
1134  if (const ComplexType* CT = T->getAs<ComplexType>())
1135    T = CT->getElementType().getTypePtr();
1136  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1137      T->isSpecificBuiltinType(BuiltinType::LongLong))
1138    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1139
1140  return ABIAlign;
1141}
1142
1143/// DeepCollectObjCIvars -
1144/// This routine first collects all declared, but not synthesized, ivars in
1145/// super class and then collects all ivars, including those synthesized for
1146/// current class. This routine is used for implementation of current class
1147/// when all ivars, declared and synthesized are known.
1148///
1149void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1150                                      bool leafClass,
1151                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1152  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1153    DeepCollectObjCIvars(SuperClass, false, Ivars);
1154  if (!leafClass) {
1155    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1156         E = OI->ivar_end(); I != E; ++I)
1157      Ivars.push_back(*I);
1158  } else {
1159    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1160    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1161         Iv= Iv->getNextIvar())
1162      Ivars.push_back(Iv);
1163  }
1164}
1165
1166/// CollectInheritedProtocols - Collect all protocols in current class and
1167/// those inherited by it.
1168void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1169                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1170  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1171    // We can use protocol_iterator here instead of
1172    // all_referenced_protocol_iterator since we are walking all categories.
1173    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1174         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1175      ObjCProtocolDecl *Proto = (*P);
1176      Protocols.insert(Proto);
1177      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1178           PE = Proto->protocol_end(); P != PE; ++P) {
1179        Protocols.insert(*P);
1180        CollectInheritedProtocols(*P, Protocols);
1181      }
1182    }
1183
1184    // Categories of this Interface.
1185    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1186         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1187      CollectInheritedProtocols(CDeclChain, Protocols);
1188    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1189      while (SD) {
1190        CollectInheritedProtocols(SD, Protocols);
1191        SD = SD->getSuperClass();
1192      }
1193  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1194    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1195         PE = OC->protocol_end(); P != PE; ++P) {
1196      ObjCProtocolDecl *Proto = (*P);
1197      Protocols.insert(Proto);
1198      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1199           PE = Proto->protocol_end(); P != PE; ++P)
1200        CollectInheritedProtocols(*P, Protocols);
1201    }
1202  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1203    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1204         PE = OP->protocol_end(); P != PE; ++P) {
1205      ObjCProtocolDecl *Proto = (*P);
1206      Protocols.insert(Proto);
1207      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1208           PE = Proto->protocol_end(); P != PE; ++P)
1209        CollectInheritedProtocols(*P, Protocols);
1210    }
1211  }
1212}
1213
1214unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1215  unsigned count = 0;
1216  // Count ivars declared in class extension.
1217  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1218       CDecl = CDecl->getNextClassExtension())
1219    count += CDecl->ivar_size();
1220
1221  // Count ivar defined in this class's implementation.  This
1222  // includes synthesized ivars.
1223  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1224    count += ImplDecl->ivar_size();
1225
1226  return count;
1227}
1228
1229/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1230ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1231  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1232    I = ObjCImpls.find(D);
1233  if (I != ObjCImpls.end())
1234    return cast<ObjCImplementationDecl>(I->second);
1235  return 0;
1236}
1237/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1238ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1239  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1240    I = ObjCImpls.find(D);
1241  if (I != ObjCImpls.end())
1242    return cast<ObjCCategoryImplDecl>(I->second);
1243  return 0;
1244}
1245
1246/// \brief Set the implementation of ObjCInterfaceDecl.
1247void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1248                           ObjCImplementationDecl *ImplD) {
1249  assert(IFaceD && ImplD && "Passed null params");
1250  ObjCImpls[IFaceD] = ImplD;
1251}
1252/// \brief Set the implementation of ObjCCategoryDecl.
1253void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1254                           ObjCCategoryImplDecl *ImplD) {
1255  assert(CatD && ImplD && "Passed null params");
1256  ObjCImpls[CatD] = ImplD;
1257}
1258
1259/// \brief Get the copy initialization expression of VarDecl,or NULL if
1260/// none exists.
1261Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1262  assert(VD && "Passed null params");
1263  assert(VD->hasAttr<BlocksAttr>() &&
1264         "getBlockVarCopyInits - not __block var");
1265  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1266    I = BlockVarCopyInits.find(VD);
1267  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1268}
1269
1270/// \brief Set the copy inialization expression of a block var decl.
1271void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1272  assert(VD && Init && "Passed null params");
1273  assert(VD->hasAttr<BlocksAttr>() &&
1274         "setBlockVarCopyInits - not __block var");
1275  BlockVarCopyInits[VD] = Init;
1276}
1277
1278/// \brief Allocate an uninitialized TypeSourceInfo.
1279///
1280/// The caller should initialize the memory held by TypeSourceInfo using
1281/// the TypeLoc wrappers.
1282///
1283/// \param T the type that will be the basis for type source info. This type
1284/// should refer to how the declarator was written in source code, not to
1285/// what type semantic analysis resolved the declarator to.
1286TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1287                                                 unsigned DataSize) const {
1288  if (!DataSize)
1289    DataSize = TypeLoc::getFullDataSizeForType(T);
1290  else
1291    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1292           "incorrect data size provided to CreateTypeSourceInfo!");
1293
1294  TypeSourceInfo *TInfo =
1295    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1296  new (TInfo) TypeSourceInfo(T);
1297  return TInfo;
1298}
1299
1300TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1301                                                     SourceLocation L) const {
1302  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1303  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1304  return DI;
1305}
1306
1307const ASTRecordLayout &
1308ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1309  return getObjCLayout(D, 0);
1310}
1311
1312const ASTRecordLayout &
1313ASTContext::getASTObjCImplementationLayout(
1314                                        const ObjCImplementationDecl *D) const {
1315  return getObjCLayout(D->getClassInterface(), D);
1316}
1317
1318//===----------------------------------------------------------------------===//
1319//                   Type creation/memoization methods
1320//===----------------------------------------------------------------------===//
1321
1322QualType
1323ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1324  unsigned fastQuals = quals.getFastQualifiers();
1325  quals.removeFastQualifiers();
1326
1327  // Check if we've already instantiated this type.
1328  llvm::FoldingSetNodeID ID;
1329  ExtQuals::Profile(ID, baseType, quals);
1330  void *insertPos = 0;
1331  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1332    assert(eq->getQualifiers() == quals);
1333    return QualType(eq, fastQuals);
1334  }
1335
1336  // If the base type is not canonical, make the appropriate canonical type.
1337  QualType canon;
1338  if (!baseType->isCanonicalUnqualified()) {
1339    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1340    canonSplit.second.addConsistentQualifiers(quals);
1341    canon = getExtQualType(canonSplit.first, canonSplit.second);
1342
1343    // Re-find the insert position.
1344    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1345  }
1346
1347  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1348  ExtQualNodes.InsertNode(eq, insertPos);
1349  return QualType(eq, fastQuals);
1350}
1351
1352QualType
1353ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1354  QualType CanT = getCanonicalType(T);
1355  if (CanT.getAddressSpace() == AddressSpace)
1356    return T;
1357
1358  // If we are composing extended qualifiers together, merge together
1359  // into one ExtQuals node.
1360  QualifierCollector Quals;
1361  const Type *TypeNode = Quals.strip(T);
1362
1363  // If this type already has an address space specified, it cannot get
1364  // another one.
1365  assert(!Quals.hasAddressSpace() &&
1366         "Type cannot be in multiple addr spaces!");
1367  Quals.addAddressSpace(AddressSpace);
1368
1369  return getExtQualType(TypeNode, Quals);
1370}
1371
1372QualType ASTContext::getObjCGCQualType(QualType T,
1373                                       Qualifiers::GC GCAttr) const {
1374  QualType CanT = getCanonicalType(T);
1375  if (CanT.getObjCGCAttr() == GCAttr)
1376    return T;
1377
1378  if (const PointerType *ptr = T->getAs<PointerType>()) {
1379    QualType Pointee = ptr->getPointeeType();
1380    if (Pointee->isAnyPointerType()) {
1381      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1382      return getPointerType(ResultType);
1383    }
1384  }
1385
1386  // If we are composing extended qualifiers together, merge together
1387  // into one ExtQuals node.
1388  QualifierCollector Quals;
1389  const Type *TypeNode = Quals.strip(T);
1390
1391  // If this type already has an ObjCGC specified, it cannot get
1392  // another one.
1393  assert(!Quals.hasObjCGCAttr() &&
1394         "Type cannot have multiple ObjCGCs!");
1395  Quals.addObjCGCAttr(GCAttr);
1396
1397  return getExtQualType(TypeNode, Quals);
1398}
1399
1400const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1401                                                   FunctionType::ExtInfo Info) {
1402  if (T->getExtInfo() == Info)
1403    return T;
1404
1405  QualType Result;
1406  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1407    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1408  } else {
1409    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1410    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1411    EPI.ExtInfo = Info;
1412    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1413                             FPT->getNumArgs(), EPI);
1414  }
1415
1416  return cast<FunctionType>(Result.getTypePtr());
1417}
1418
1419/// getComplexType - Return the uniqued reference to the type for a complex
1420/// number with the specified element type.
1421QualType ASTContext::getComplexType(QualType T) const {
1422  // Unique pointers, to guarantee there is only one pointer of a particular
1423  // structure.
1424  llvm::FoldingSetNodeID ID;
1425  ComplexType::Profile(ID, T);
1426
1427  void *InsertPos = 0;
1428  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1429    return QualType(CT, 0);
1430
1431  // If the pointee type isn't canonical, this won't be a canonical type either,
1432  // so fill in the canonical type field.
1433  QualType Canonical;
1434  if (!T.isCanonical()) {
1435    Canonical = getComplexType(getCanonicalType(T));
1436
1437    // Get the new insert position for the node we care about.
1438    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1439    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1440  }
1441  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1442  Types.push_back(New);
1443  ComplexTypes.InsertNode(New, InsertPos);
1444  return QualType(New, 0);
1445}
1446
1447/// getPointerType - Return the uniqued reference to the type for a pointer to
1448/// the specified type.
1449QualType ASTContext::getPointerType(QualType T) const {
1450  // Unique pointers, to guarantee there is only one pointer of a particular
1451  // structure.
1452  llvm::FoldingSetNodeID ID;
1453  PointerType::Profile(ID, T);
1454
1455  void *InsertPos = 0;
1456  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1457    return QualType(PT, 0);
1458
1459  // If the pointee type isn't canonical, this won't be a canonical type either,
1460  // so fill in the canonical type field.
1461  QualType Canonical;
1462  if (!T.isCanonical()) {
1463    Canonical = getPointerType(getCanonicalType(T));
1464
1465    // Get the new insert position for the node we care about.
1466    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1467    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1468  }
1469  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1470  Types.push_back(New);
1471  PointerTypes.InsertNode(New, InsertPos);
1472  return QualType(New, 0);
1473}
1474
1475/// getBlockPointerType - Return the uniqued reference to the type for
1476/// a pointer to the specified block.
1477QualType ASTContext::getBlockPointerType(QualType T) const {
1478  assert(T->isFunctionType() && "block of function types only");
1479  // Unique pointers, to guarantee there is only one block of a particular
1480  // structure.
1481  llvm::FoldingSetNodeID ID;
1482  BlockPointerType::Profile(ID, T);
1483
1484  void *InsertPos = 0;
1485  if (BlockPointerType *PT =
1486        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1487    return QualType(PT, 0);
1488
1489  // If the block pointee type isn't canonical, this won't be a canonical
1490  // type either so fill in the canonical type field.
1491  QualType Canonical;
1492  if (!T.isCanonical()) {
1493    Canonical = getBlockPointerType(getCanonicalType(T));
1494
1495    // Get the new insert position for the node we care about.
1496    BlockPointerType *NewIP =
1497      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1498    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1499  }
1500  BlockPointerType *New
1501    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1502  Types.push_back(New);
1503  BlockPointerTypes.InsertNode(New, InsertPos);
1504  return QualType(New, 0);
1505}
1506
1507/// getLValueReferenceType - Return the uniqued reference to the type for an
1508/// lvalue reference to the specified type.
1509QualType
1510ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1511  assert(getCanonicalType(T) != OverloadTy &&
1512         "Unresolved overloaded function type");
1513
1514  // Unique pointers, to guarantee there is only one pointer of a particular
1515  // structure.
1516  llvm::FoldingSetNodeID ID;
1517  ReferenceType::Profile(ID, T, SpelledAsLValue);
1518
1519  void *InsertPos = 0;
1520  if (LValueReferenceType *RT =
1521        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1522    return QualType(RT, 0);
1523
1524  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1525
1526  // If the referencee type isn't canonical, this won't be a canonical type
1527  // either, so fill in the canonical type field.
1528  QualType Canonical;
1529  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1530    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1531    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1532
1533    // Get the new insert position for the node we care about.
1534    LValueReferenceType *NewIP =
1535      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1536    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1537  }
1538
1539  LValueReferenceType *New
1540    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1541                                                     SpelledAsLValue);
1542  Types.push_back(New);
1543  LValueReferenceTypes.InsertNode(New, InsertPos);
1544
1545  return QualType(New, 0);
1546}
1547
1548/// getRValueReferenceType - Return the uniqued reference to the type for an
1549/// rvalue reference to the specified type.
1550QualType ASTContext::getRValueReferenceType(QualType T) const {
1551  // Unique pointers, to guarantee there is only one pointer of a particular
1552  // structure.
1553  llvm::FoldingSetNodeID ID;
1554  ReferenceType::Profile(ID, T, false);
1555
1556  void *InsertPos = 0;
1557  if (RValueReferenceType *RT =
1558        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1559    return QualType(RT, 0);
1560
1561  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1562
1563  // If the referencee type isn't canonical, this won't be a canonical type
1564  // either, so fill in the canonical type field.
1565  QualType Canonical;
1566  if (InnerRef || !T.isCanonical()) {
1567    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1568    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1569
1570    // Get the new insert position for the node we care about.
1571    RValueReferenceType *NewIP =
1572      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1573    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1574  }
1575
1576  RValueReferenceType *New
1577    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1578  Types.push_back(New);
1579  RValueReferenceTypes.InsertNode(New, InsertPos);
1580  return QualType(New, 0);
1581}
1582
1583/// getMemberPointerType - Return the uniqued reference to the type for a
1584/// member pointer to the specified type, in the specified class.
1585QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1586  // Unique pointers, to guarantee there is only one pointer of a particular
1587  // structure.
1588  llvm::FoldingSetNodeID ID;
1589  MemberPointerType::Profile(ID, T, Cls);
1590
1591  void *InsertPos = 0;
1592  if (MemberPointerType *PT =
1593      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1594    return QualType(PT, 0);
1595
1596  // If the pointee or class type isn't canonical, this won't be a canonical
1597  // type either, so fill in the canonical type field.
1598  QualType Canonical;
1599  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1600    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1601
1602    // Get the new insert position for the node we care about.
1603    MemberPointerType *NewIP =
1604      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1605    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1606  }
1607  MemberPointerType *New
1608    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1609  Types.push_back(New);
1610  MemberPointerTypes.InsertNode(New, InsertPos);
1611  return QualType(New, 0);
1612}
1613
1614/// getConstantArrayType - Return the unique reference to the type for an
1615/// array of the specified element type.
1616QualType ASTContext::getConstantArrayType(QualType EltTy,
1617                                          const llvm::APInt &ArySizeIn,
1618                                          ArrayType::ArraySizeModifier ASM,
1619                                          unsigned IndexTypeQuals) const {
1620  assert((EltTy->isDependentType() ||
1621          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1622         "Constant array of VLAs is illegal!");
1623
1624  // Convert the array size into a canonical width matching the pointer size for
1625  // the target.
1626  llvm::APInt ArySize(ArySizeIn);
1627  ArySize =
1628    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1629
1630  llvm::FoldingSetNodeID ID;
1631  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1632
1633  void *InsertPos = 0;
1634  if (ConstantArrayType *ATP =
1635      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1636    return QualType(ATP, 0);
1637
1638  // If the element type isn't canonical or has qualifiers, this won't
1639  // be a canonical type either, so fill in the canonical type field.
1640  QualType Canon;
1641  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1642    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1643    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1644                                 ASM, IndexTypeQuals);
1645    Canon = getQualifiedType(Canon, canonSplit.second);
1646
1647    // Get the new insert position for the node we care about.
1648    ConstantArrayType *NewIP =
1649      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1650    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1651  }
1652
1653  ConstantArrayType *New = new(*this,TypeAlignment)
1654    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1655  ConstantArrayTypes.InsertNode(New, InsertPos);
1656  Types.push_back(New);
1657  return QualType(New, 0);
1658}
1659
1660/// getVariableArrayDecayedType - Turns the given type, which may be
1661/// variably-modified, into the corresponding type with all the known
1662/// sizes replaced with [*].
1663QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1664  // Vastly most common case.
1665  if (!type->isVariablyModifiedType()) return type;
1666
1667  QualType result;
1668
1669  SplitQualType split = type.getSplitDesugaredType();
1670  const Type *ty = split.first;
1671  switch (ty->getTypeClass()) {
1672#define TYPE(Class, Base)
1673#define ABSTRACT_TYPE(Class, Base)
1674#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1675#include "clang/AST/TypeNodes.def"
1676    llvm_unreachable("didn't desugar past all non-canonical types?");
1677
1678  // These types should never be variably-modified.
1679  case Type::Builtin:
1680  case Type::Complex:
1681  case Type::Vector:
1682  case Type::ExtVector:
1683  case Type::DependentSizedExtVector:
1684  case Type::ObjCObject:
1685  case Type::ObjCInterface:
1686  case Type::ObjCObjectPointer:
1687  case Type::Record:
1688  case Type::Enum:
1689  case Type::UnresolvedUsing:
1690  case Type::TypeOfExpr:
1691  case Type::TypeOf:
1692  case Type::Decltype:
1693  case Type::UnaryTransform:
1694  case Type::DependentName:
1695  case Type::InjectedClassName:
1696  case Type::TemplateSpecialization:
1697  case Type::DependentTemplateSpecialization:
1698  case Type::TemplateTypeParm:
1699  case Type::SubstTemplateTypeParmPack:
1700  case Type::Auto:
1701  case Type::PackExpansion:
1702    llvm_unreachable("type should never be variably-modified");
1703
1704  // These types can be variably-modified but should never need to
1705  // further decay.
1706  case Type::FunctionNoProto:
1707  case Type::FunctionProto:
1708  case Type::BlockPointer:
1709  case Type::MemberPointer:
1710    return type;
1711
1712  // These types can be variably-modified.  All these modifications
1713  // preserve structure except as noted by comments.
1714  // TODO: if we ever care about optimizing VLAs, there are no-op
1715  // optimizations available here.
1716  case Type::Pointer:
1717    result = getPointerType(getVariableArrayDecayedType(
1718                              cast<PointerType>(ty)->getPointeeType()));
1719    break;
1720
1721  case Type::LValueReference: {
1722    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1723    result = getLValueReferenceType(
1724                 getVariableArrayDecayedType(lv->getPointeeType()),
1725                                    lv->isSpelledAsLValue());
1726    break;
1727  }
1728
1729  case Type::RValueReference: {
1730    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1731    result = getRValueReferenceType(
1732                 getVariableArrayDecayedType(lv->getPointeeType()));
1733    break;
1734  }
1735
1736  case Type::Atomic: {
1737    const AtomicType *at = cast<AtomicType>(ty);
1738    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1739    break;
1740  }
1741
1742  case Type::ConstantArray: {
1743    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1744    result = getConstantArrayType(
1745                 getVariableArrayDecayedType(cat->getElementType()),
1746                                  cat->getSize(),
1747                                  cat->getSizeModifier(),
1748                                  cat->getIndexTypeCVRQualifiers());
1749    break;
1750  }
1751
1752  case Type::DependentSizedArray: {
1753    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1754    result = getDependentSizedArrayType(
1755                 getVariableArrayDecayedType(dat->getElementType()),
1756                                        dat->getSizeExpr(),
1757                                        dat->getSizeModifier(),
1758                                        dat->getIndexTypeCVRQualifiers(),
1759                                        dat->getBracketsRange());
1760    break;
1761  }
1762
1763  // Turn incomplete types into [*] types.
1764  case Type::IncompleteArray: {
1765    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1766    result = getVariableArrayType(
1767                 getVariableArrayDecayedType(iat->getElementType()),
1768                                  /*size*/ 0,
1769                                  ArrayType::Normal,
1770                                  iat->getIndexTypeCVRQualifiers(),
1771                                  SourceRange());
1772    break;
1773  }
1774
1775  // Turn VLA types into [*] types.
1776  case Type::VariableArray: {
1777    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1778    result = getVariableArrayType(
1779                 getVariableArrayDecayedType(vat->getElementType()),
1780                                  /*size*/ 0,
1781                                  ArrayType::Star,
1782                                  vat->getIndexTypeCVRQualifiers(),
1783                                  vat->getBracketsRange());
1784    break;
1785  }
1786  }
1787
1788  // Apply the top-level qualifiers from the original.
1789  return getQualifiedType(result, split.second);
1790}
1791
1792/// getVariableArrayType - Returns a non-unique reference to the type for a
1793/// variable array of the specified element type.
1794QualType ASTContext::getVariableArrayType(QualType EltTy,
1795                                          Expr *NumElts,
1796                                          ArrayType::ArraySizeModifier ASM,
1797                                          unsigned IndexTypeQuals,
1798                                          SourceRange Brackets) const {
1799  // Since we don't unique expressions, it isn't possible to unique VLA's
1800  // that have an expression provided for their size.
1801  QualType Canon;
1802
1803  // Be sure to pull qualifiers off the element type.
1804  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1805    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1806    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1807                                 IndexTypeQuals, Brackets);
1808    Canon = getQualifiedType(Canon, canonSplit.second);
1809  }
1810
1811  VariableArrayType *New = new(*this, TypeAlignment)
1812    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1813
1814  VariableArrayTypes.push_back(New);
1815  Types.push_back(New);
1816  return QualType(New, 0);
1817}
1818
1819/// getDependentSizedArrayType - Returns a non-unique reference to
1820/// the type for a dependently-sized array of the specified element
1821/// type.
1822QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1823                                                Expr *numElements,
1824                                                ArrayType::ArraySizeModifier ASM,
1825                                                unsigned elementTypeQuals,
1826                                                SourceRange brackets) const {
1827  assert((!numElements || numElements->isTypeDependent() ||
1828          numElements->isValueDependent()) &&
1829         "Size must be type- or value-dependent!");
1830
1831  // Dependently-sized array types that do not have a specified number
1832  // of elements will have their sizes deduced from a dependent
1833  // initializer.  We do no canonicalization here at all, which is okay
1834  // because they can't be used in most locations.
1835  if (!numElements) {
1836    DependentSizedArrayType *newType
1837      = new (*this, TypeAlignment)
1838          DependentSizedArrayType(*this, elementType, QualType(),
1839                                  numElements, ASM, elementTypeQuals,
1840                                  brackets);
1841    Types.push_back(newType);
1842    return QualType(newType, 0);
1843  }
1844
1845  // Otherwise, we actually build a new type every time, but we
1846  // also build a canonical type.
1847
1848  SplitQualType canonElementType = getCanonicalType(elementType).split();
1849
1850  void *insertPos = 0;
1851  llvm::FoldingSetNodeID ID;
1852  DependentSizedArrayType::Profile(ID, *this,
1853                                   QualType(canonElementType.first, 0),
1854                                   ASM, elementTypeQuals, numElements);
1855
1856  // Look for an existing type with these properties.
1857  DependentSizedArrayType *canonTy =
1858    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1859
1860  // If we don't have one, build one.
1861  if (!canonTy) {
1862    canonTy = new (*this, TypeAlignment)
1863      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1864                              QualType(), numElements, ASM, elementTypeQuals,
1865                              brackets);
1866    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1867    Types.push_back(canonTy);
1868  }
1869
1870  // Apply qualifiers from the element type to the array.
1871  QualType canon = getQualifiedType(QualType(canonTy,0),
1872                                    canonElementType.second);
1873
1874  // If we didn't need extra canonicalization for the element type,
1875  // then just use that as our result.
1876  if (QualType(canonElementType.first, 0) == elementType)
1877    return canon;
1878
1879  // Otherwise, we need to build a type which follows the spelling
1880  // of the element type.
1881  DependentSizedArrayType *sugaredType
1882    = new (*this, TypeAlignment)
1883        DependentSizedArrayType(*this, elementType, canon, numElements,
1884                                ASM, elementTypeQuals, brackets);
1885  Types.push_back(sugaredType);
1886  return QualType(sugaredType, 0);
1887}
1888
1889QualType ASTContext::getIncompleteArrayType(QualType elementType,
1890                                            ArrayType::ArraySizeModifier ASM,
1891                                            unsigned elementTypeQuals) const {
1892  llvm::FoldingSetNodeID ID;
1893  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1894
1895  void *insertPos = 0;
1896  if (IncompleteArrayType *iat =
1897       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1898    return QualType(iat, 0);
1899
1900  // If the element type isn't canonical, this won't be a canonical type
1901  // either, so fill in the canonical type field.  We also have to pull
1902  // qualifiers off the element type.
1903  QualType canon;
1904
1905  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1906    SplitQualType canonSplit = getCanonicalType(elementType).split();
1907    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1908                                   ASM, elementTypeQuals);
1909    canon = getQualifiedType(canon, canonSplit.second);
1910
1911    // Get the new insert position for the node we care about.
1912    IncompleteArrayType *existing =
1913      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1914    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1915  }
1916
1917  IncompleteArrayType *newType = new (*this, TypeAlignment)
1918    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1919
1920  IncompleteArrayTypes.InsertNode(newType, insertPos);
1921  Types.push_back(newType);
1922  return QualType(newType, 0);
1923}
1924
1925/// getVectorType - Return the unique reference to a vector type of
1926/// the specified element type and size. VectorType must be a built-in type.
1927QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1928                                   VectorType::VectorKind VecKind) const {
1929  assert(vecType->isBuiltinType());
1930
1931  // Check if we've already instantiated a vector of this type.
1932  llvm::FoldingSetNodeID ID;
1933  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1934
1935  void *InsertPos = 0;
1936  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1937    return QualType(VTP, 0);
1938
1939  // If the element type isn't canonical, this won't be a canonical type either,
1940  // so fill in the canonical type field.
1941  QualType Canonical;
1942  if (!vecType.isCanonical()) {
1943    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1944
1945    // Get the new insert position for the node we care about.
1946    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1947    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1948  }
1949  VectorType *New = new (*this, TypeAlignment)
1950    VectorType(vecType, NumElts, Canonical, VecKind);
1951  VectorTypes.InsertNode(New, InsertPos);
1952  Types.push_back(New);
1953  return QualType(New, 0);
1954}
1955
1956/// getExtVectorType - Return the unique reference to an extended vector type of
1957/// the specified element type and size. VectorType must be a built-in type.
1958QualType
1959ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1960  assert(vecType->isBuiltinType() || vecType->isDependentType());
1961
1962  // Check if we've already instantiated a vector of this type.
1963  llvm::FoldingSetNodeID ID;
1964  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1965                      VectorType::GenericVector);
1966  void *InsertPos = 0;
1967  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1968    return QualType(VTP, 0);
1969
1970  // If the element type isn't canonical, this won't be a canonical type either,
1971  // so fill in the canonical type field.
1972  QualType Canonical;
1973  if (!vecType.isCanonical()) {
1974    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1975
1976    // Get the new insert position for the node we care about.
1977    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1978    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1979  }
1980  ExtVectorType *New = new (*this, TypeAlignment)
1981    ExtVectorType(vecType, NumElts, Canonical);
1982  VectorTypes.InsertNode(New, InsertPos);
1983  Types.push_back(New);
1984  return QualType(New, 0);
1985}
1986
1987QualType
1988ASTContext::getDependentSizedExtVectorType(QualType vecType,
1989                                           Expr *SizeExpr,
1990                                           SourceLocation AttrLoc) const {
1991  llvm::FoldingSetNodeID ID;
1992  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1993                                       SizeExpr);
1994
1995  void *InsertPos = 0;
1996  DependentSizedExtVectorType *Canon
1997    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1998  DependentSizedExtVectorType *New;
1999  if (Canon) {
2000    // We already have a canonical version of this array type; use it as
2001    // the canonical type for a newly-built type.
2002    New = new (*this, TypeAlignment)
2003      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2004                                  SizeExpr, AttrLoc);
2005  } else {
2006    QualType CanonVecTy = getCanonicalType(vecType);
2007    if (CanonVecTy == vecType) {
2008      New = new (*this, TypeAlignment)
2009        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2010                                    AttrLoc);
2011
2012      DependentSizedExtVectorType *CanonCheck
2013        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2014      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2015      (void)CanonCheck;
2016      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2017    } else {
2018      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2019                                                      SourceLocation());
2020      New = new (*this, TypeAlignment)
2021        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2022    }
2023  }
2024
2025  Types.push_back(New);
2026  return QualType(New, 0);
2027}
2028
2029/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2030///
2031QualType
2032ASTContext::getFunctionNoProtoType(QualType ResultTy,
2033                                   const FunctionType::ExtInfo &Info) const {
2034  const CallingConv DefaultCC = Info.getCC();
2035  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2036                               CC_X86StdCall : DefaultCC;
2037  // Unique functions, to guarantee there is only one function of a particular
2038  // structure.
2039  llvm::FoldingSetNodeID ID;
2040  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2041
2042  void *InsertPos = 0;
2043  if (FunctionNoProtoType *FT =
2044        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2045    return QualType(FT, 0);
2046
2047  QualType Canonical;
2048  if (!ResultTy.isCanonical() ||
2049      getCanonicalCallConv(CallConv) != CallConv) {
2050    Canonical =
2051      getFunctionNoProtoType(getCanonicalType(ResultTy),
2052                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2053
2054    // Get the new insert position for the node we care about.
2055    FunctionNoProtoType *NewIP =
2056      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2057    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2058  }
2059
2060  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2061  FunctionNoProtoType *New = new (*this, TypeAlignment)
2062    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2063  Types.push_back(New);
2064  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2065  return QualType(New, 0);
2066}
2067
2068/// getFunctionType - Return a normal function type with a typed argument
2069/// list.  isVariadic indicates whether the argument list includes '...'.
2070QualType
2071ASTContext::getFunctionType(QualType ResultTy,
2072                            const QualType *ArgArray, unsigned NumArgs,
2073                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2074  // Unique functions, to guarantee there is only one function of a particular
2075  // structure.
2076  llvm::FoldingSetNodeID ID;
2077  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2078
2079  void *InsertPos = 0;
2080  if (FunctionProtoType *FTP =
2081        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2082    return QualType(FTP, 0);
2083
2084  // Determine whether the type being created is already canonical or not.
2085  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2086  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2087    if (!ArgArray[i].isCanonicalAsParam())
2088      isCanonical = false;
2089
2090  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2091  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2092                               CC_X86StdCall : DefaultCC;
2093
2094  // If this type isn't canonical, get the canonical version of it.
2095  // The exception spec is not part of the canonical type.
2096  QualType Canonical;
2097  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2098    SmallVector<QualType, 16> CanonicalArgs;
2099    CanonicalArgs.reserve(NumArgs);
2100    for (unsigned i = 0; i != NumArgs; ++i)
2101      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2102
2103    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2104    CanonicalEPI.ExceptionSpecType = EST_None;
2105    CanonicalEPI.NumExceptions = 0;
2106    CanonicalEPI.ExtInfo
2107      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2108
2109    Canonical = getFunctionType(getCanonicalType(ResultTy),
2110                                CanonicalArgs.data(), NumArgs,
2111                                CanonicalEPI);
2112
2113    // Get the new insert position for the node we care about.
2114    FunctionProtoType *NewIP =
2115      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2116    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2117  }
2118
2119  // FunctionProtoType objects are allocated with extra bytes after
2120  // them for three variable size arrays at the end:
2121  //  - parameter types
2122  //  - exception types
2123  //  - consumed-arguments flags
2124  // Instead of the exception types, there could be a noexcept
2125  // expression.
2126  size_t Size = sizeof(FunctionProtoType) +
2127                NumArgs * sizeof(QualType);
2128  if (EPI.ExceptionSpecType == EST_Dynamic)
2129    Size += EPI.NumExceptions * sizeof(QualType);
2130  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2131    Size += sizeof(Expr*);
2132  }
2133  if (EPI.ConsumedArguments)
2134    Size += NumArgs * sizeof(bool);
2135
2136  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2137  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2138  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2139  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2140  Types.push_back(FTP);
2141  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2142  return QualType(FTP, 0);
2143}
2144
2145#ifndef NDEBUG
2146static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2147  if (!isa<CXXRecordDecl>(D)) return false;
2148  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2149  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2150    return true;
2151  if (RD->getDescribedClassTemplate() &&
2152      !isa<ClassTemplateSpecializationDecl>(RD))
2153    return true;
2154  return false;
2155}
2156#endif
2157
2158/// getInjectedClassNameType - Return the unique reference to the
2159/// injected class name type for the specified templated declaration.
2160QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2161                                              QualType TST) const {
2162  assert(NeedsInjectedClassNameType(Decl));
2163  if (Decl->TypeForDecl) {
2164    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2165  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2166    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2167    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2168    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2169  } else {
2170    Type *newType =
2171      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2172    Decl->TypeForDecl = newType;
2173    Types.push_back(newType);
2174  }
2175  return QualType(Decl->TypeForDecl, 0);
2176}
2177
2178/// getTypeDeclType - Return the unique reference to the type for the
2179/// specified type declaration.
2180QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2181  assert(Decl && "Passed null for Decl param");
2182  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2183
2184  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2185    return getTypedefType(Typedef);
2186
2187  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2188         "Template type parameter types are always available.");
2189
2190  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2191    assert(!Record->getPreviousDeclaration() &&
2192           "struct/union has previous declaration");
2193    assert(!NeedsInjectedClassNameType(Record));
2194    return getRecordType(Record);
2195  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2196    assert(!Enum->getPreviousDeclaration() &&
2197           "enum has previous declaration");
2198    return getEnumType(Enum);
2199  } else if (const UnresolvedUsingTypenameDecl *Using =
2200               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2201    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2202    Decl->TypeForDecl = newType;
2203    Types.push_back(newType);
2204  } else
2205    llvm_unreachable("TypeDecl without a type?");
2206
2207  return QualType(Decl->TypeForDecl, 0);
2208}
2209
2210/// getTypedefType - Return the unique reference to the type for the
2211/// specified typedef name decl.
2212QualType
2213ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2214                           QualType Canonical) const {
2215  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2216
2217  if (Canonical.isNull())
2218    Canonical = getCanonicalType(Decl->getUnderlyingType());
2219  TypedefType *newType = new(*this, TypeAlignment)
2220    TypedefType(Type::Typedef, Decl, Canonical);
2221  Decl->TypeForDecl = newType;
2222  Types.push_back(newType);
2223  return QualType(newType, 0);
2224}
2225
2226QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2227  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2228
2229  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2230    if (PrevDecl->TypeForDecl)
2231      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2232
2233  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2234  Decl->TypeForDecl = newType;
2235  Types.push_back(newType);
2236  return QualType(newType, 0);
2237}
2238
2239QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2240  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2241
2242  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2243    if (PrevDecl->TypeForDecl)
2244      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2245
2246  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2247  Decl->TypeForDecl = newType;
2248  Types.push_back(newType);
2249  return QualType(newType, 0);
2250}
2251
2252QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2253                                       QualType modifiedType,
2254                                       QualType equivalentType) {
2255  llvm::FoldingSetNodeID id;
2256  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2257
2258  void *insertPos = 0;
2259  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2260  if (type) return QualType(type, 0);
2261
2262  QualType canon = getCanonicalType(equivalentType);
2263  type = new (*this, TypeAlignment)
2264           AttributedType(canon, attrKind, modifiedType, equivalentType);
2265
2266  Types.push_back(type);
2267  AttributedTypes.InsertNode(type, insertPos);
2268
2269  return QualType(type, 0);
2270}
2271
2272
2273/// \brief Retrieve a substitution-result type.
2274QualType
2275ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2276                                         QualType Replacement) const {
2277  assert(Replacement.isCanonical()
2278         && "replacement types must always be canonical");
2279
2280  llvm::FoldingSetNodeID ID;
2281  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2282  void *InsertPos = 0;
2283  SubstTemplateTypeParmType *SubstParm
2284    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2285
2286  if (!SubstParm) {
2287    SubstParm = new (*this, TypeAlignment)
2288      SubstTemplateTypeParmType(Parm, Replacement);
2289    Types.push_back(SubstParm);
2290    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2291  }
2292
2293  return QualType(SubstParm, 0);
2294}
2295
2296/// \brief Retrieve a
2297QualType ASTContext::getSubstTemplateTypeParmPackType(
2298                                          const TemplateTypeParmType *Parm,
2299                                              const TemplateArgument &ArgPack) {
2300#ifndef NDEBUG
2301  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2302                                    PEnd = ArgPack.pack_end();
2303       P != PEnd; ++P) {
2304    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2305    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2306  }
2307#endif
2308
2309  llvm::FoldingSetNodeID ID;
2310  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2311  void *InsertPos = 0;
2312  if (SubstTemplateTypeParmPackType *SubstParm
2313        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2314    return QualType(SubstParm, 0);
2315
2316  QualType Canon;
2317  if (!Parm->isCanonicalUnqualified()) {
2318    Canon = getCanonicalType(QualType(Parm, 0));
2319    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2320                                             ArgPack);
2321    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2322  }
2323
2324  SubstTemplateTypeParmPackType *SubstParm
2325    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2326                                                               ArgPack);
2327  Types.push_back(SubstParm);
2328  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2329  return QualType(SubstParm, 0);
2330}
2331
2332/// \brief Retrieve the template type parameter type for a template
2333/// parameter or parameter pack with the given depth, index, and (optionally)
2334/// name.
2335QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2336                                             bool ParameterPack,
2337                                             TemplateTypeParmDecl *TTPDecl) const {
2338  llvm::FoldingSetNodeID ID;
2339  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2340  void *InsertPos = 0;
2341  TemplateTypeParmType *TypeParm
2342    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2343
2344  if (TypeParm)
2345    return QualType(TypeParm, 0);
2346
2347  if (TTPDecl) {
2348    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2349    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2350
2351    TemplateTypeParmType *TypeCheck
2352      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2353    assert(!TypeCheck && "Template type parameter canonical type broken");
2354    (void)TypeCheck;
2355  } else
2356    TypeParm = new (*this, TypeAlignment)
2357      TemplateTypeParmType(Depth, Index, ParameterPack);
2358
2359  Types.push_back(TypeParm);
2360  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2361
2362  return QualType(TypeParm, 0);
2363}
2364
2365TypeSourceInfo *
2366ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2367                                              SourceLocation NameLoc,
2368                                        const TemplateArgumentListInfo &Args,
2369                                              QualType Underlying) const {
2370  assert(!Name.getAsDependentTemplateName() &&
2371         "No dependent template names here!");
2372  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2373
2374  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2375  TemplateSpecializationTypeLoc TL
2376    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2377  TL.setTemplateNameLoc(NameLoc);
2378  TL.setLAngleLoc(Args.getLAngleLoc());
2379  TL.setRAngleLoc(Args.getRAngleLoc());
2380  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2381    TL.setArgLocInfo(i, Args[i].getLocInfo());
2382  return DI;
2383}
2384
2385QualType
2386ASTContext::getTemplateSpecializationType(TemplateName Template,
2387                                          const TemplateArgumentListInfo &Args,
2388                                          QualType Underlying) const {
2389  assert(!Template.getAsDependentTemplateName() &&
2390         "No dependent template names here!");
2391
2392  unsigned NumArgs = Args.size();
2393
2394  SmallVector<TemplateArgument, 4> ArgVec;
2395  ArgVec.reserve(NumArgs);
2396  for (unsigned i = 0; i != NumArgs; ++i)
2397    ArgVec.push_back(Args[i].getArgument());
2398
2399  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2400                                       Underlying);
2401}
2402
2403QualType
2404ASTContext::getTemplateSpecializationType(TemplateName Template,
2405                                          const TemplateArgument *Args,
2406                                          unsigned NumArgs,
2407                                          QualType Underlying) const {
2408  assert(!Template.getAsDependentTemplateName() &&
2409         "No dependent template names here!");
2410  // Look through qualified template names.
2411  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2412    Template = TemplateName(QTN->getTemplateDecl());
2413
2414  bool isTypeAlias =
2415    Template.getAsTemplateDecl() &&
2416    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2417
2418  QualType CanonType;
2419  if (!Underlying.isNull())
2420    CanonType = getCanonicalType(Underlying);
2421  else {
2422    assert(!isTypeAlias &&
2423           "Underlying type for template alias must be computed by caller");
2424    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2425                                                       NumArgs);
2426  }
2427
2428  // Allocate the (non-canonical) template specialization type, but don't
2429  // try to unique it: these types typically have location information that
2430  // we don't unique and don't want to lose.
2431  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2432                       sizeof(TemplateArgument) * NumArgs +
2433                       (isTypeAlias ? sizeof(QualType) : 0),
2434                       TypeAlignment);
2435  TemplateSpecializationType *Spec
2436    = new (Mem) TemplateSpecializationType(Template,
2437                                           Args, NumArgs,
2438                                           CanonType,
2439                                         isTypeAlias ? Underlying : QualType());
2440
2441  Types.push_back(Spec);
2442  return QualType(Spec, 0);
2443}
2444
2445QualType
2446ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2447                                                   const TemplateArgument *Args,
2448                                                   unsigned NumArgs) const {
2449  assert(!Template.getAsDependentTemplateName() &&
2450         "No dependent template names here!");
2451  assert((!Template.getAsTemplateDecl() ||
2452          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2453         "Underlying type for template alias must be computed by caller");
2454
2455  // Look through qualified template names.
2456  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2457    Template = TemplateName(QTN->getTemplateDecl());
2458
2459  // Build the canonical template specialization type.
2460  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2461  SmallVector<TemplateArgument, 4> CanonArgs;
2462  CanonArgs.reserve(NumArgs);
2463  for (unsigned I = 0; I != NumArgs; ++I)
2464    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2465
2466  // Determine whether this canonical template specialization type already
2467  // exists.
2468  llvm::FoldingSetNodeID ID;
2469  TemplateSpecializationType::Profile(ID, CanonTemplate,
2470                                      CanonArgs.data(), NumArgs, *this);
2471
2472  void *InsertPos = 0;
2473  TemplateSpecializationType *Spec
2474    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2475
2476  if (!Spec) {
2477    // Allocate a new canonical template specialization type.
2478    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2479                          sizeof(TemplateArgument) * NumArgs),
2480                         TypeAlignment);
2481    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2482                                                CanonArgs.data(), NumArgs,
2483                                                QualType(), QualType());
2484    Types.push_back(Spec);
2485    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2486  }
2487
2488  assert(Spec->isDependentType() &&
2489         "Non-dependent template-id type must have a canonical type");
2490  return QualType(Spec, 0);
2491}
2492
2493QualType
2494ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2495                              NestedNameSpecifier *NNS,
2496                              QualType NamedType) const {
2497  llvm::FoldingSetNodeID ID;
2498  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2499
2500  void *InsertPos = 0;
2501  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2502  if (T)
2503    return QualType(T, 0);
2504
2505  QualType Canon = NamedType;
2506  if (!Canon.isCanonical()) {
2507    Canon = getCanonicalType(NamedType);
2508    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2509    assert(!CheckT && "Elaborated canonical type broken");
2510    (void)CheckT;
2511  }
2512
2513  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2514  Types.push_back(T);
2515  ElaboratedTypes.InsertNode(T, InsertPos);
2516  return QualType(T, 0);
2517}
2518
2519QualType
2520ASTContext::getParenType(QualType InnerType) const {
2521  llvm::FoldingSetNodeID ID;
2522  ParenType::Profile(ID, InnerType);
2523
2524  void *InsertPos = 0;
2525  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2526  if (T)
2527    return QualType(T, 0);
2528
2529  QualType Canon = InnerType;
2530  if (!Canon.isCanonical()) {
2531    Canon = getCanonicalType(InnerType);
2532    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2533    assert(!CheckT && "Paren canonical type broken");
2534    (void)CheckT;
2535  }
2536
2537  T = new (*this) ParenType(InnerType, Canon);
2538  Types.push_back(T);
2539  ParenTypes.InsertNode(T, InsertPos);
2540  return QualType(T, 0);
2541}
2542
2543QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2544                                          NestedNameSpecifier *NNS,
2545                                          const IdentifierInfo *Name,
2546                                          QualType Canon) const {
2547  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2548
2549  if (Canon.isNull()) {
2550    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2551    ElaboratedTypeKeyword CanonKeyword = Keyword;
2552    if (Keyword == ETK_None)
2553      CanonKeyword = ETK_Typename;
2554
2555    if (CanonNNS != NNS || CanonKeyword != Keyword)
2556      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2557  }
2558
2559  llvm::FoldingSetNodeID ID;
2560  DependentNameType::Profile(ID, Keyword, NNS, Name);
2561
2562  void *InsertPos = 0;
2563  DependentNameType *T
2564    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2565  if (T)
2566    return QualType(T, 0);
2567
2568  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2569  Types.push_back(T);
2570  DependentNameTypes.InsertNode(T, InsertPos);
2571  return QualType(T, 0);
2572}
2573
2574QualType
2575ASTContext::getDependentTemplateSpecializationType(
2576                                 ElaboratedTypeKeyword Keyword,
2577                                 NestedNameSpecifier *NNS,
2578                                 const IdentifierInfo *Name,
2579                                 const TemplateArgumentListInfo &Args) const {
2580  // TODO: avoid this copy
2581  SmallVector<TemplateArgument, 16> ArgCopy;
2582  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2583    ArgCopy.push_back(Args[I].getArgument());
2584  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2585                                                ArgCopy.size(),
2586                                                ArgCopy.data());
2587}
2588
2589QualType
2590ASTContext::getDependentTemplateSpecializationType(
2591                                 ElaboratedTypeKeyword Keyword,
2592                                 NestedNameSpecifier *NNS,
2593                                 const IdentifierInfo *Name,
2594                                 unsigned NumArgs,
2595                                 const TemplateArgument *Args) const {
2596  assert((!NNS || NNS->isDependent()) &&
2597         "nested-name-specifier must be dependent");
2598
2599  llvm::FoldingSetNodeID ID;
2600  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2601                                               Name, NumArgs, Args);
2602
2603  void *InsertPos = 0;
2604  DependentTemplateSpecializationType *T
2605    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2606  if (T)
2607    return QualType(T, 0);
2608
2609  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2610
2611  ElaboratedTypeKeyword CanonKeyword = Keyword;
2612  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2613
2614  bool AnyNonCanonArgs = false;
2615  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2616  for (unsigned I = 0; I != NumArgs; ++I) {
2617    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2618    if (!CanonArgs[I].structurallyEquals(Args[I]))
2619      AnyNonCanonArgs = true;
2620  }
2621
2622  QualType Canon;
2623  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2624    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2625                                                   Name, NumArgs,
2626                                                   CanonArgs.data());
2627
2628    // Find the insert position again.
2629    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2630  }
2631
2632  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2633                        sizeof(TemplateArgument) * NumArgs),
2634                       TypeAlignment);
2635  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2636                                                    Name, NumArgs, Args, Canon);
2637  Types.push_back(T);
2638  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2639  return QualType(T, 0);
2640}
2641
2642QualType ASTContext::getPackExpansionType(QualType Pattern,
2643                                      llvm::Optional<unsigned> NumExpansions) {
2644  llvm::FoldingSetNodeID ID;
2645  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2646
2647  assert(Pattern->containsUnexpandedParameterPack() &&
2648         "Pack expansions must expand one or more parameter packs");
2649  void *InsertPos = 0;
2650  PackExpansionType *T
2651    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2652  if (T)
2653    return QualType(T, 0);
2654
2655  QualType Canon;
2656  if (!Pattern.isCanonical()) {
2657    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2658
2659    // Find the insert position again.
2660    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2661  }
2662
2663  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2664  Types.push_back(T);
2665  PackExpansionTypes.InsertNode(T, InsertPos);
2666  return QualType(T, 0);
2667}
2668
2669/// CmpProtocolNames - Comparison predicate for sorting protocols
2670/// alphabetically.
2671static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2672                            const ObjCProtocolDecl *RHS) {
2673  return LHS->getDeclName() < RHS->getDeclName();
2674}
2675
2676static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2677                                unsigned NumProtocols) {
2678  if (NumProtocols == 0) return true;
2679
2680  for (unsigned i = 1; i != NumProtocols; ++i)
2681    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2682      return false;
2683  return true;
2684}
2685
2686static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2687                                   unsigned &NumProtocols) {
2688  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2689
2690  // Sort protocols, keyed by name.
2691  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2692
2693  // Remove duplicates.
2694  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2695  NumProtocols = ProtocolsEnd-Protocols;
2696}
2697
2698QualType ASTContext::getObjCObjectType(QualType BaseType,
2699                                       ObjCProtocolDecl * const *Protocols,
2700                                       unsigned NumProtocols) const {
2701  // If the base type is an interface and there aren't any protocols
2702  // to add, then the interface type will do just fine.
2703  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2704    return BaseType;
2705
2706  // Look in the folding set for an existing type.
2707  llvm::FoldingSetNodeID ID;
2708  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2709  void *InsertPos = 0;
2710  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2711    return QualType(QT, 0);
2712
2713  // Build the canonical type, which has the canonical base type and
2714  // a sorted-and-uniqued list of protocols.
2715  QualType Canonical;
2716  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2717  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2718    if (!ProtocolsSorted) {
2719      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2720                                                     Protocols + NumProtocols);
2721      unsigned UniqueCount = NumProtocols;
2722
2723      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2724      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2725                                    &Sorted[0], UniqueCount);
2726    } else {
2727      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2728                                    Protocols, NumProtocols);
2729    }
2730
2731    // Regenerate InsertPos.
2732    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2733  }
2734
2735  unsigned Size = sizeof(ObjCObjectTypeImpl);
2736  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2737  void *Mem = Allocate(Size, TypeAlignment);
2738  ObjCObjectTypeImpl *T =
2739    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2740
2741  Types.push_back(T);
2742  ObjCObjectTypes.InsertNode(T, InsertPos);
2743  return QualType(T, 0);
2744}
2745
2746/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2747/// the given object type.
2748QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2749  llvm::FoldingSetNodeID ID;
2750  ObjCObjectPointerType::Profile(ID, ObjectT);
2751
2752  void *InsertPos = 0;
2753  if (ObjCObjectPointerType *QT =
2754              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2755    return QualType(QT, 0);
2756
2757  // Find the canonical object type.
2758  QualType Canonical;
2759  if (!ObjectT.isCanonical()) {
2760    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2761
2762    // Regenerate InsertPos.
2763    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2764  }
2765
2766  // No match.
2767  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2768  ObjCObjectPointerType *QType =
2769    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2770
2771  Types.push_back(QType);
2772  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2773  return QualType(QType, 0);
2774}
2775
2776/// getObjCInterfaceType - Return the unique reference to the type for the
2777/// specified ObjC interface decl. The list of protocols is optional.
2778QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2779  if (Decl->TypeForDecl)
2780    return QualType(Decl->TypeForDecl, 0);
2781
2782  // FIXME: redeclarations?
2783  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2784  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2785  Decl->TypeForDecl = T;
2786  Types.push_back(T);
2787  return QualType(T, 0);
2788}
2789
2790/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2791/// TypeOfExprType AST's (since expression's are never shared). For example,
2792/// multiple declarations that refer to "typeof(x)" all contain different
2793/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2794/// on canonical type's (which are always unique).
2795QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2796  TypeOfExprType *toe;
2797  if (tofExpr->isTypeDependent()) {
2798    llvm::FoldingSetNodeID ID;
2799    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2800
2801    void *InsertPos = 0;
2802    DependentTypeOfExprType *Canon
2803      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2804    if (Canon) {
2805      // We already have a "canonical" version of an identical, dependent
2806      // typeof(expr) type. Use that as our canonical type.
2807      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2808                                          QualType((TypeOfExprType*)Canon, 0));
2809    } else {
2810      // Build a new, canonical typeof(expr) type.
2811      Canon
2812        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2813      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2814      toe = Canon;
2815    }
2816  } else {
2817    QualType Canonical = getCanonicalType(tofExpr->getType());
2818    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2819  }
2820  Types.push_back(toe);
2821  return QualType(toe, 0);
2822}
2823
2824/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2825/// TypeOfType AST's. The only motivation to unique these nodes would be
2826/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2827/// an issue. This doesn't effect the type checker, since it operates
2828/// on canonical type's (which are always unique).
2829QualType ASTContext::getTypeOfType(QualType tofType) const {
2830  QualType Canonical = getCanonicalType(tofType);
2831  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2832  Types.push_back(tot);
2833  return QualType(tot, 0);
2834}
2835
2836/// getDecltypeForExpr - Given an expr, will return the decltype for that
2837/// expression, according to the rules in C++0x [dcl.type.simple]p4
2838static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2839  if (e->isTypeDependent())
2840    return Context.DependentTy;
2841
2842  // If e is an id expression or a class member access, decltype(e) is defined
2843  // as the type of the entity named by e.
2844  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2845    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2846      return VD->getType();
2847  }
2848  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2849    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2850      return FD->getType();
2851  }
2852  // If e is a function call or an invocation of an overloaded operator,
2853  // (parentheses around e are ignored), decltype(e) is defined as the
2854  // return type of that function.
2855  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2856    return CE->getCallReturnType();
2857
2858  QualType T = e->getType();
2859
2860  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2861  // defined as T&, otherwise decltype(e) is defined as T.
2862  if (e->isLValue())
2863    T = Context.getLValueReferenceType(T);
2864
2865  return T;
2866}
2867
2868/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2869/// DecltypeType AST's. The only motivation to unique these nodes would be
2870/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2871/// an issue. This doesn't effect the type checker, since it operates
2872/// on canonical type's (which are always unique).
2873QualType ASTContext::getDecltypeType(Expr *e) const {
2874  DecltypeType *dt;
2875
2876  // C++0x [temp.type]p2:
2877  //   If an expression e involves a template parameter, decltype(e) denotes a
2878  //   unique dependent type. Two such decltype-specifiers refer to the same
2879  //   type only if their expressions are equivalent (14.5.6.1).
2880  if (e->isInstantiationDependent()) {
2881    llvm::FoldingSetNodeID ID;
2882    DependentDecltypeType::Profile(ID, *this, e);
2883
2884    void *InsertPos = 0;
2885    DependentDecltypeType *Canon
2886      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2887    if (Canon) {
2888      // We already have a "canonical" version of an equivalent, dependent
2889      // decltype type. Use that as our canonical type.
2890      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2891                                       QualType((DecltypeType*)Canon, 0));
2892    } else {
2893      // Build a new, canonical typeof(expr) type.
2894      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2895      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2896      dt = Canon;
2897    }
2898  } else {
2899    QualType T = getDecltypeForExpr(e, *this);
2900    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2901  }
2902  Types.push_back(dt);
2903  return QualType(dt, 0);
2904}
2905
2906/// getUnaryTransformationType - We don't unique these, since the memory
2907/// savings are minimal and these are rare.
2908QualType ASTContext::getUnaryTransformType(QualType BaseType,
2909                                           QualType UnderlyingType,
2910                                           UnaryTransformType::UTTKind Kind)
2911    const {
2912  UnaryTransformType *Ty =
2913    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2914                                                   Kind,
2915                                 UnderlyingType->isDependentType() ?
2916                                    QualType() : UnderlyingType);
2917  Types.push_back(Ty);
2918  return QualType(Ty, 0);
2919}
2920
2921/// getAutoType - We only unique auto types after they've been deduced.
2922QualType ASTContext::getAutoType(QualType DeducedType) const {
2923  void *InsertPos = 0;
2924  if (!DeducedType.isNull()) {
2925    // Look in the folding set for an existing type.
2926    llvm::FoldingSetNodeID ID;
2927    AutoType::Profile(ID, DeducedType);
2928    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2929      return QualType(AT, 0);
2930  }
2931
2932  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2933  Types.push_back(AT);
2934  if (InsertPos)
2935    AutoTypes.InsertNode(AT, InsertPos);
2936  return QualType(AT, 0);
2937}
2938
2939/// getAtomicType - Return the uniqued reference to the atomic type for
2940/// the given value type.
2941QualType ASTContext::getAtomicType(QualType T) const {
2942  // Unique pointers, to guarantee there is only one pointer of a particular
2943  // structure.
2944  llvm::FoldingSetNodeID ID;
2945  AtomicType::Profile(ID, T);
2946
2947  void *InsertPos = 0;
2948  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
2949    return QualType(AT, 0);
2950
2951  // If the atomic value type isn't canonical, this won't be a canonical type
2952  // either, so fill in the canonical type field.
2953  QualType Canonical;
2954  if (!T.isCanonical()) {
2955    Canonical = getAtomicType(getCanonicalType(T));
2956
2957    // Get the new insert position for the node we care about.
2958    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
2959    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2960  }
2961  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
2962  Types.push_back(New);
2963  AtomicTypes.InsertNode(New, InsertPos);
2964  return QualType(New, 0);
2965}
2966
2967/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2968QualType ASTContext::getAutoDeductType() const {
2969  if (AutoDeductTy.isNull())
2970    AutoDeductTy = getAutoType(QualType());
2971  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2972  return AutoDeductTy;
2973}
2974
2975/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2976QualType ASTContext::getAutoRRefDeductType() const {
2977  if (AutoRRefDeductTy.isNull())
2978    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2979  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2980  return AutoRRefDeductTy;
2981}
2982
2983/// getTagDeclType - Return the unique reference to the type for the
2984/// specified TagDecl (struct/union/class/enum) decl.
2985QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2986  assert (Decl);
2987  // FIXME: What is the design on getTagDeclType when it requires casting
2988  // away const?  mutable?
2989  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2990}
2991
2992/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2993/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2994/// needs to agree with the definition in <stddef.h>.
2995CanQualType ASTContext::getSizeType() const {
2996  return getFromTargetType(Target->getSizeType());
2997}
2998
2999/// getSignedWCharType - Return the type of "signed wchar_t".
3000/// Used when in C++, as a GCC extension.
3001QualType ASTContext::getSignedWCharType() const {
3002  // FIXME: derive from "Target" ?
3003  return WCharTy;
3004}
3005
3006/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3007/// Used when in C++, as a GCC extension.
3008QualType ASTContext::getUnsignedWCharType() const {
3009  // FIXME: derive from "Target" ?
3010  return UnsignedIntTy;
3011}
3012
3013/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
3014/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3015QualType ASTContext::getPointerDiffType() const {
3016  return getFromTargetType(Target->getPtrDiffType(0));
3017}
3018
3019//===----------------------------------------------------------------------===//
3020//                              Type Operators
3021//===----------------------------------------------------------------------===//
3022
3023CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3024  // Push qualifiers into arrays, and then discard any remaining
3025  // qualifiers.
3026  T = getCanonicalType(T);
3027  T = getVariableArrayDecayedType(T);
3028  const Type *Ty = T.getTypePtr();
3029  QualType Result;
3030  if (isa<ArrayType>(Ty)) {
3031    Result = getArrayDecayedType(QualType(Ty,0));
3032  } else if (isa<FunctionType>(Ty)) {
3033    Result = getPointerType(QualType(Ty, 0));
3034  } else {
3035    Result = QualType(Ty, 0);
3036  }
3037
3038  return CanQualType::CreateUnsafe(Result);
3039}
3040
3041QualType ASTContext::getUnqualifiedArrayType(QualType type,
3042                                             Qualifiers &quals) {
3043  SplitQualType splitType = type.getSplitUnqualifiedType();
3044
3045  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3046  // the unqualified desugared type and then drops it on the floor.
3047  // We then have to strip that sugar back off with
3048  // getUnqualifiedDesugaredType(), which is silly.
3049  const ArrayType *AT =
3050    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
3051
3052  // If we don't have an array, just use the results in splitType.
3053  if (!AT) {
3054    quals = splitType.second;
3055    return QualType(splitType.first, 0);
3056  }
3057
3058  // Otherwise, recurse on the array's element type.
3059  QualType elementType = AT->getElementType();
3060  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3061
3062  // If that didn't change the element type, AT has no qualifiers, so we
3063  // can just use the results in splitType.
3064  if (elementType == unqualElementType) {
3065    assert(quals.empty()); // from the recursive call
3066    quals = splitType.second;
3067    return QualType(splitType.first, 0);
3068  }
3069
3070  // Otherwise, add in the qualifiers from the outermost type, then
3071  // build the type back up.
3072  quals.addConsistentQualifiers(splitType.second);
3073
3074  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3075    return getConstantArrayType(unqualElementType, CAT->getSize(),
3076                                CAT->getSizeModifier(), 0);
3077  }
3078
3079  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3080    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3081  }
3082
3083  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3084    return getVariableArrayType(unqualElementType,
3085                                VAT->getSizeExpr(),
3086                                VAT->getSizeModifier(),
3087                                VAT->getIndexTypeCVRQualifiers(),
3088                                VAT->getBracketsRange());
3089  }
3090
3091  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3092  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3093                                    DSAT->getSizeModifier(), 0,
3094                                    SourceRange());
3095}
3096
3097/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3098/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3099/// they point to and return true. If T1 and T2 aren't pointer types
3100/// or pointer-to-member types, or if they are not similar at this
3101/// level, returns false and leaves T1 and T2 unchanged. Top-level
3102/// qualifiers on T1 and T2 are ignored. This function will typically
3103/// be called in a loop that successively "unwraps" pointer and
3104/// pointer-to-member types to compare them at each level.
3105bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3106  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3107                    *T2PtrType = T2->getAs<PointerType>();
3108  if (T1PtrType && T2PtrType) {
3109    T1 = T1PtrType->getPointeeType();
3110    T2 = T2PtrType->getPointeeType();
3111    return true;
3112  }
3113
3114  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3115                          *T2MPType = T2->getAs<MemberPointerType>();
3116  if (T1MPType && T2MPType &&
3117      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3118                             QualType(T2MPType->getClass(), 0))) {
3119    T1 = T1MPType->getPointeeType();
3120    T2 = T2MPType->getPointeeType();
3121    return true;
3122  }
3123
3124  if (getLangOptions().ObjC1) {
3125    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3126                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3127    if (T1OPType && T2OPType) {
3128      T1 = T1OPType->getPointeeType();
3129      T2 = T2OPType->getPointeeType();
3130      return true;
3131    }
3132  }
3133
3134  // FIXME: Block pointers, too?
3135
3136  return false;
3137}
3138
3139DeclarationNameInfo
3140ASTContext::getNameForTemplate(TemplateName Name,
3141                               SourceLocation NameLoc) const {
3142  switch (Name.getKind()) {
3143  case TemplateName::QualifiedTemplate:
3144  case TemplateName::Template:
3145    // DNInfo work in progress: CHECKME: what about DNLoc?
3146    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3147                               NameLoc);
3148
3149  case TemplateName::OverloadedTemplate: {
3150    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3151    // DNInfo work in progress: CHECKME: what about DNLoc?
3152    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3153  }
3154
3155  case TemplateName::DependentTemplate: {
3156    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3157    DeclarationName DName;
3158    if (DTN->isIdentifier()) {
3159      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3160      return DeclarationNameInfo(DName, NameLoc);
3161    } else {
3162      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3163      // DNInfo work in progress: FIXME: source locations?
3164      DeclarationNameLoc DNLoc;
3165      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3166      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3167      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3168    }
3169  }
3170
3171  case TemplateName::SubstTemplateTemplateParm: {
3172    SubstTemplateTemplateParmStorage *subst
3173      = Name.getAsSubstTemplateTemplateParm();
3174    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3175                               NameLoc);
3176  }
3177
3178  case TemplateName::SubstTemplateTemplateParmPack: {
3179    SubstTemplateTemplateParmPackStorage *subst
3180      = Name.getAsSubstTemplateTemplateParmPack();
3181    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3182                               NameLoc);
3183  }
3184  }
3185
3186  llvm_unreachable("bad template name kind!");
3187}
3188
3189TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3190  switch (Name.getKind()) {
3191  case TemplateName::QualifiedTemplate:
3192  case TemplateName::Template: {
3193    TemplateDecl *Template = Name.getAsTemplateDecl();
3194    if (TemplateTemplateParmDecl *TTP
3195          = dyn_cast<TemplateTemplateParmDecl>(Template))
3196      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3197
3198    // The canonical template name is the canonical template declaration.
3199    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3200  }
3201
3202  case TemplateName::OverloadedTemplate:
3203    llvm_unreachable("cannot canonicalize overloaded template");
3204
3205  case TemplateName::DependentTemplate: {
3206    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3207    assert(DTN && "Non-dependent template names must refer to template decls.");
3208    return DTN->CanonicalTemplateName;
3209  }
3210
3211  case TemplateName::SubstTemplateTemplateParm: {
3212    SubstTemplateTemplateParmStorage *subst
3213      = Name.getAsSubstTemplateTemplateParm();
3214    return getCanonicalTemplateName(subst->getReplacement());
3215  }
3216
3217  case TemplateName::SubstTemplateTemplateParmPack: {
3218    SubstTemplateTemplateParmPackStorage *subst
3219                                  = Name.getAsSubstTemplateTemplateParmPack();
3220    TemplateTemplateParmDecl *canonParameter
3221      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3222    TemplateArgument canonArgPack
3223      = getCanonicalTemplateArgument(subst->getArgumentPack());
3224    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3225  }
3226  }
3227
3228  llvm_unreachable("bad template name!");
3229}
3230
3231bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3232  X = getCanonicalTemplateName(X);
3233  Y = getCanonicalTemplateName(Y);
3234  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3235}
3236
3237TemplateArgument
3238ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3239  switch (Arg.getKind()) {
3240    case TemplateArgument::Null:
3241      return Arg;
3242
3243    case TemplateArgument::Expression:
3244      return Arg;
3245
3246    case TemplateArgument::Declaration:
3247      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3248
3249    case TemplateArgument::Template:
3250      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3251
3252    case TemplateArgument::TemplateExpansion:
3253      return TemplateArgument(getCanonicalTemplateName(
3254                                         Arg.getAsTemplateOrTemplatePattern()),
3255                              Arg.getNumTemplateExpansions());
3256
3257    case TemplateArgument::Integral:
3258      return TemplateArgument(*Arg.getAsIntegral(),
3259                              getCanonicalType(Arg.getIntegralType()));
3260
3261    case TemplateArgument::Type:
3262      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3263
3264    case TemplateArgument::Pack: {
3265      if (Arg.pack_size() == 0)
3266        return Arg;
3267
3268      TemplateArgument *CanonArgs
3269        = new (*this) TemplateArgument[Arg.pack_size()];
3270      unsigned Idx = 0;
3271      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3272                                        AEnd = Arg.pack_end();
3273           A != AEnd; (void)++A, ++Idx)
3274        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3275
3276      return TemplateArgument(CanonArgs, Arg.pack_size());
3277    }
3278  }
3279
3280  // Silence GCC warning
3281  llvm_unreachable("Unhandled template argument kind");
3282}
3283
3284NestedNameSpecifier *
3285ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3286  if (!NNS)
3287    return 0;
3288
3289  switch (NNS->getKind()) {
3290  case NestedNameSpecifier::Identifier:
3291    // Canonicalize the prefix but keep the identifier the same.
3292    return NestedNameSpecifier::Create(*this,
3293                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3294                                       NNS->getAsIdentifier());
3295
3296  case NestedNameSpecifier::Namespace:
3297    // A namespace is canonical; build a nested-name-specifier with
3298    // this namespace and no prefix.
3299    return NestedNameSpecifier::Create(*this, 0,
3300                                 NNS->getAsNamespace()->getOriginalNamespace());
3301
3302  case NestedNameSpecifier::NamespaceAlias:
3303    // A namespace is canonical; build a nested-name-specifier with
3304    // this namespace and no prefix.
3305    return NestedNameSpecifier::Create(*this, 0,
3306                                    NNS->getAsNamespaceAlias()->getNamespace()
3307                                                      ->getOriginalNamespace());
3308
3309  case NestedNameSpecifier::TypeSpec:
3310  case NestedNameSpecifier::TypeSpecWithTemplate: {
3311    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3312
3313    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3314    // break it apart into its prefix and identifier, then reconsititute those
3315    // as the canonical nested-name-specifier. This is required to canonicalize
3316    // a dependent nested-name-specifier involving typedefs of dependent-name
3317    // types, e.g.,
3318    //   typedef typename T::type T1;
3319    //   typedef typename T1::type T2;
3320    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3321      NestedNameSpecifier *Prefix
3322        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3323      return NestedNameSpecifier::Create(*this, Prefix,
3324                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3325    }
3326
3327    // Do the same thing as above, but with dependent-named specializations.
3328    if (const DependentTemplateSpecializationType *DTST
3329          = T->getAs<DependentTemplateSpecializationType>()) {
3330      NestedNameSpecifier *Prefix
3331        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3332
3333      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3334                                                 Prefix, DTST->getIdentifier(),
3335                                                 DTST->getNumArgs(),
3336                                                 DTST->getArgs());
3337      T = getCanonicalType(T);
3338    }
3339
3340    return NestedNameSpecifier::Create(*this, 0, false,
3341                                       const_cast<Type*>(T.getTypePtr()));
3342  }
3343
3344  case NestedNameSpecifier::Global:
3345    // The global specifier is canonical and unique.
3346    return NNS;
3347  }
3348
3349  // Required to silence a GCC warning
3350  return 0;
3351}
3352
3353
3354const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3355  // Handle the non-qualified case efficiently.
3356  if (!T.hasLocalQualifiers()) {
3357    // Handle the common positive case fast.
3358    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3359      return AT;
3360  }
3361
3362  // Handle the common negative case fast.
3363  if (!isa<ArrayType>(T.getCanonicalType()))
3364    return 0;
3365
3366  // Apply any qualifiers from the array type to the element type.  This
3367  // implements C99 6.7.3p8: "If the specification of an array type includes
3368  // any type qualifiers, the element type is so qualified, not the array type."
3369
3370  // If we get here, we either have type qualifiers on the type, or we have
3371  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3372  // we must propagate them down into the element type.
3373
3374  SplitQualType split = T.getSplitDesugaredType();
3375  Qualifiers qs = split.second;
3376
3377  // If we have a simple case, just return now.
3378  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3379  if (ATy == 0 || qs.empty())
3380    return ATy;
3381
3382  // Otherwise, we have an array and we have qualifiers on it.  Push the
3383  // qualifiers into the array element type and return a new array type.
3384  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3385
3386  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3387    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3388                                                CAT->getSizeModifier(),
3389                                           CAT->getIndexTypeCVRQualifiers()));
3390  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3391    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3392                                                  IAT->getSizeModifier(),
3393                                           IAT->getIndexTypeCVRQualifiers()));
3394
3395  if (const DependentSizedArrayType *DSAT
3396        = dyn_cast<DependentSizedArrayType>(ATy))
3397    return cast<ArrayType>(
3398                     getDependentSizedArrayType(NewEltTy,
3399                                                DSAT->getSizeExpr(),
3400                                                DSAT->getSizeModifier(),
3401                                              DSAT->getIndexTypeCVRQualifiers(),
3402                                                DSAT->getBracketsRange()));
3403
3404  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3405  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3406                                              VAT->getSizeExpr(),
3407                                              VAT->getSizeModifier(),
3408                                              VAT->getIndexTypeCVRQualifiers(),
3409                                              VAT->getBracketsRange()));
3410}
3411
3412QualType ASTContext::getAdjustedParameterType(QualType T) {
3413  // C99 6.7.5.3p7:
3414  //   A declaration of a parameter as "array of type" shall be
3415  //   adjusted to "qualified pointer to type", where the type
3416  //   qualifiers (if any) are those specified within the [ and ] of
3417  //   the array type derivation.
3418  if (T->isArrayType())
3419    return getArrayDecayedType(T);
3420
3421  // C99 6.7.5.3p8:
3422  //   A declaration of a parameter as "function returning type"
3423  //   shall be adjusted to "pointer to function returning type", as
3424  //   in 6.3.2.1.
3425  if (T->isFunctionType())
3426    return getPointerType(T);
3427
3428  return T;
3429}
3430
3431QualType ASTContext::getSignatureParameterType(QualType T) {
3432  T = getVariableArrayDecayedType(T);
3433  T = getAdjustedParameterType(T);
3434  return T.getUnqualifiedType();
3435}
3436
3437/// getArrayDecayedType - Return the properly qualified result of decaying the
3438/// specified array type to a pointer.  This operation is non-trivial when
3439/// handling typedefs etc.  The canonical type of "T" must be an array type,
3440/// this returns a pointer to a properly qualified element of the array.
3441///
3442/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3443QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3444  // Get the element type with 'getAsArrayType' so that we don't lose any
3445  // typedefs in the element type of the array.  This also handles propagation
3446  // of type qualifiers from the array type into the element type if present
3447  // (C99 6.7.3p8).
3448  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3449  assert(PrettyArrayType && "Not an array type!");
3450
3451  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3452
3453  // int x[restrict 4] ->  int *restrict
3454  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3455}
3456
3457QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3458  return getBaseElementType(array->getElementType());
3459}
3460
3461QualType ASTContext::getBaseElementType(QualType type) const {
3462  Qualifiers qs;
3463  while (true) {
3464    SplitQualType split = type.getSplitDesugaredType();
3465    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3466    if (!array) break;
3467
3468    type = array->getElementType();
3469    qs.addConsistentQualifiers(split.second);
3470  }
3471
3472  return getQualifiedType(type, qs);
3473}
3474
3475/// getConstantArrayElementCount - Returns number of constant array elements.
3476uint64_t
3477ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3478  uint64_t ElementCount = 1;
3479  do {
3480    ElementCount *= CA->getSize().getZExtValue();
3481    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3482  } while (CA);
3483  return ElementCount;
3484}
3485
3486/// getFloatingRank - Return a relative rank for floating point types.
3487/// This routine will assert if passed a built-in type that isn't a float.
3488static FloatingRank getFloatingRank(QualType T) {
3489  if (const ComplexType *CT = T->getAs<ComplexType>())
3490    return getFloatingRank(CT->getElementType());
3491
3492  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3493  switch (T->getAs<BuiltinType>()->getKind()) {
3494  default: llvm_unreachable("getFloatingRank(): not a floating type");
3495  case BuiltinType::Half:       return HalfRank;
3496  case BuiltinType::Float:      return FloatRank;
3497  case BuiltinType::Double:     return DoubleRank;
3498  case BuiltinType::LongDouble: return LongDoubleRank;
3499  }
3500}
3501
3502/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3503/// point or a complex type (based on typeDomain/typeSize).
3504/// 'typeDomain' is a real floating point or complex type.
3505/// 'typeSize' is a real floating point or complex type.
3506QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3507                                                       QualType Domain) const {
3508  FloatingRank EltRank = getFloatingRank(Size);
3509  if (Domain->isComplexType()) {
3510    switch (EltRank) {
3511    default: llvm_unreachable("getFloatingRank(): illegal value for rank");
3512    case FloatRank:      return FloatComplexTy;
3513    case DoubleRank:     return DoubleComplexTy;
3514    case LongDoubleRank: return LongDoubleComplexTy;
3515    }
3516  }
3517
3518  assert(Domain->isRealFloatingType() && "Unknown domain!");
3519  switch (EltRank) {
3520  default: llvm_unreachable("getFloatingRank(): illegal value for rank");
3521  case FloatRank:      return FloatTy;
3522  case DoubleRank:     return DoubleTy;
3523  case LongDoubleRank: return LongDoubleTy;
3524  }
3525}
3526
3527/// getFloatingTypeOrder - Compare the rank of the two specified floating
3528/// point types, ignoring the domain of the type (i.e. 'double' ==
3529/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3530/// LHS < RHS, return -1.
3531int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3532  FloatingRank LHSR = getFloatingRank(LHS);
3533  FloatingRank RHSR = getFloatingRank(RHS);
3534
3535  if (LHSR == RHSR)
3536    return 0;
3537  if (LHSR > RHSR)
3538    return 1;
3539  return -1;
3540}
3541
3542/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3543/// routine will assert if passed a built-in type that isn't an integer or enum,
3544/// or if it is not canonicalized.
3545unsigned ASTContext::getIntegerRank(const Type *T) const {
3546  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3547  if (const EnumType* ET = dyn_cast<EnumType>(T))
3548    T = ET->getDecl()->getPromotionType().getTypePtr();
3549
3550  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3551      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3552    T = getFromTargetType(Target->getWCharType()).getTypePtr();
3553
3554  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3555    T = getFromTargetType(Target->getChar16Type()).getTypePtr();
3556
3557  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3558    T = getFromTargetType(Target->getChar32Type()).getTypePtr();
3559
3560  switch (cast<BuiltinType>(T)->getKind()) {
3561  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3562  case BuiltinType::Bool:
3563    return 1 + (getIntWidth(BoolTy) << 3);
3564  case BuiltinType::Char_S:
3565  case BuiltinType::Char_U:
3566  case BuiltinType::SChar:
3567  case BuiltinType::UChar:
3568    return 2 + (getIntWidth(CharTy) << 3);
3569  case BuiltinType::Short:
3570  case BuiltinType::UShort:
3571    return 3 + (getIntWidth(ShortTy) << 3);
3572  case BuiltinType::Int:
3573  case BuiltinType::UInt:
3574    return 4 + (getIntWidth(IntTy) << 3);
3575  case BuiltinType::Long:
3576  case BuiltinType::ULong:
3577    return 5 + (getIntWidth(LongTy) << 3);
3578  case BuiltinType::LongLong:
3579  case BuiltinType::ULongLong:
3580    return 6 + (getIntWidth(LongLongTy) << 3);
3581  case BuiltinType::Int128:
3582  case BuiltinType::UInt128:
3583    return 7 + (getIntWidth(Int128Ty) << 3);
3584  }
3585}
3586
3587/// \brief Whether this is a promotable bitfield reference according
3588/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3589///
3590/// \returns the type this bit-field will promote to, or NULL if no
3591/// promotion occurs.
3592QualType ASTContext::isPromotableBitField(Expr *E) const {
3593  if (E->isTypeDependent() || E->isValueDependent())
3594    return QualType();
3595
3596  FieldDecl *Field = E->getBitField();
3597  if (!Field)
3598    return QualType();
3599
3600  QualType FT = Field->getType();
3601
3602  uint64_t BitWidth = Field->getBitWidthValue(*this);
3603  uint64_t IntSize = getTypeSize(IntTy);
3604  // GCC extension compatibility: if the bit-field size is less than or equal
3605  // to the size of int, it gets promoted no matter what its type is.
3606  // For instance, unsigned long bf : 4 gets promoted to signed int.
3607  if (BitWidth < IntSize)
3608    return IntTy;
3609
3610  if (BitWidth == IntSize)
3611    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3612
3613  // Types bigger than int are not subject to promotions, and therefore act
3614  // like the base type.
3615  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3616  // is ridiculous.
3617  return QualType();
3618}
3619
3620/// getPromotedIntegerType - Returns the type that Promotable will
3621/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3622/// integer type.
3623QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3624  assert(!Promotable.isNull());
3625  assert(Promotable->isPromotableIntegerType());
3626  if (const EnumType *ET = Promotable->getAs<EnumType>())
3627    return ET->getDecl()->getPromotionType();
3628  if (Promotable->isSignedIntegerType())
3629    return IntTy;
3630  uint64_t PromotableSize = getTypeSize(Promotable);
3631  uint64_t IntSize = getTypeSize(IntTy);
3632  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3633  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3634}
3635
3636/// \brief Recurses in pointer/array types until it finds an objc retainable
3637/// type and returns its ownership.
3638Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3639  while (!T.isNull()) {
3640    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3641      return T.getObjCLifetime();
3642    if (T->isArrayType())
3643      T = getBaseElementType(T);
3644    else if (const PointerType *PT = T->getAs<PointerType>())
3645      T = PT->getPointeeType();
3646    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3647      T = RT->getPointeeType();
3648    else
3649      break;
3650  }
3651
3652  return Qualifiers::OCL_None;
3653}
3654
3655/// getIntegerTypeOrder - Returns the highest ranked integer type:
3656/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3657/// LHS < RHS, return -1.
3658int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3659  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3660  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3661  if (LHSC == RHSC) return 0;
3662
3663  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3664  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3665
3666  unsigned LHSRank = getIntegerRank(LHSC);
3667  unsigned RHSRank = getIntegerRank(RHSC);
3668
3669  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3670    if (LHSRank == RHSRank) return 0;
3671    return LHSRank > RHSRank ? 1 : -1;
3672  }
3673
3674  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3675  if (LHSUnsigned) {
3676    // If the unsigned [LHS] type is larger, return it.
3677    if (LHSRank >= RHSRank)
3678      return 1;
3679
3680    // If the signed type can represent all values of the unsigned type, it
3681    // wins.  Because we are dealing with 2's complement and types that are
3682    // powers of two larger than each other, this is always safe.
3683    return -1;
3684  }
3685
3686  // If the unsigned [RHS] type is larger, return it.
3687  if (RHSRank >= LHSRank)
3688    return -1;
3689
3690  // If the signed type can represent all values of the unsigned type, it
3691  // wins.  Because we are dealing with 2's complement and types that are
3692  // powers of two larger than each other, this is always safe.
3693  return 1;
3694}
3695
3696static RecordDecl *
3697CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3698                 DeclContext *DC, IdentifierInfo *Id) {
3699  SourceLocation Loc;
3700  if (Ctx.getLangOptions().CPlusPlus)
3701    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3702  else
3703    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3704}
3705
3706// getCFConstantStringType - Return the type used for constant CFStrings.
3707QualType ASTContext::getCFConstantStringType() const {
3708  if (!CFConstantStringTypeDecl) {
3709    CFConstantStringTypeDecl =
3710      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3711                       &Idents.get("NSConstantString"));
3712    CFConstantStringTypeDecl->startDefinition();
3713
3714    QualType FieldTypes[4];
3715
3716    // const int *isa;
3717    FieldTypes[0] = getPointerType(IntTy.withConst());
3718    // int flags;
3719    FieldTypes[1] = IntTy;
3720    // const char *str;
3721    FieldTypes[2] = getPointerType(CharTy.withConst());
3722    // long length;
3723    FieldTypes[3] = LongTy;
3724
3725    // Create fields
3726    for (unsigned i = 0; i < 4; ++i) {
3727      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3728                                           SourceLocation(),
3729                                           SourceLocation(), 0,
3730                                           FieldTypes[i], /*TInfo=*/0,
3731                                           /*BitWidth=*/0,
3732                                           /*Mutable=*/false,
3733                                           /*HasInit=*/false);
3734      Field->setAccess(AS_public);
3735      CFConstantStringTypeDecl->addDecl(Field);
3736    }
3737
3738    CFConstantStringTypeDecl->completeDefinition();
3739  }
3740
3741  return getTagDeclType(CFConstantStringTypeDecl);
3742}
3743
3744void ASTContext::setCFConstantStringType(QualType T) {
3745  const RecordType *Rec = T->getAs<RecordType>();
3746  assert(Rec && "Invalid CFConstantStringType");
3747  CFConstantStringTypeDecl = Rec->getDecl();
3748}
3749
3750QualType ASTContext::getBlockDescriptorType() const {
3751  if (BlockDescriptorType)
3752    return getTagDeclType(BlockDescriptorType);
3753
3754  RecordDecl *T;
3755  // FIXME: Needs the FlagAppleBlock bit.
3756  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3757                       &Idents.get("__block_descriptor"));
3758  T->startDefinition();
3759
3760  QualType FieldTypes[] = {
3761    UnsignedLongTy,
3762    UnsignedLongTy,
3763  };
3764
3765  const char *FieldNames[] = {
3766    "reserved",
3767    "Size"
3768  };
3769
3770  for (size_t i = 0; i < 2; ++i) {
3771    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3772                                         SourceLocation(),
3773                                         &Idents.get(FieldNames[i]),
3774                                         FieldTypes[i], /*TInfo=*/0,
3775                                         /*BitWidth=*/0,
3776                                         /*Mutable=*/false,
3777                                         /*HasInit=*/false);
3778    Field->setAccess(AS_public);
3779    T->addDecl(Field);
3780  }
3781
3782  T->completeDefinition();
3783
3784  BlockDescriptorType = T;
3785
3786  return getTagDeclType(BlockDescriptorType);
3787}
3788
3789QualType ASTContext::getBlockDescriptorExtendedType() const {
3790  if (BlockDescriptorExtendedType)
3791    return getTagDeclType(BlockDescriptorExtendedType);
3792
3793  RecordDecl *T;
3794  // FIXME: Needs the FlagAppleBlock bit.
3795  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3796                       &Idents.get("__block_descriptor_withcopydispose"));
3797  T->startDefinition();
3798
3799  QualType FieldTypes[] = {
3800    UnsignedLongTy,
3801    UnsignedLongTy,
3802    getPointerType(VoidPtrTy),
3803    getPointerType(VoidPtrTy)
3804  };
3805
3806  const char *FieldNames[] = {
3807    "reserved",
3808    "Size",
3809    "CopyFuncPtr",
3810    "DestroyFuncPtr"
3811  };
3812
3813  for (size_t i = 0; i < 4; ++i) {
3814    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3815                                         SourceLocation(),
3816                                         &Idents.get(FieldNames[i]),
3817                                         FieldTypes[i], /*TInfo=*/0,
3818                                         /*BitWidth=*/0,
3819                                         /*Mutable=*/false,
3820                                         /*HasInit=*/false);
3821    Field->setAccess(AS_public);
3822    T->addDecl(Field);
3823  }
3824
3825  T->completeDefinition();
3826
3827  BlockDescriptorExtendedType = T;
3828
3829  return getTagDeclType(BlockDescriptorExtendedType);
3830}
3831
3832bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3833  if (Ty->isObjCRetainableType())
3834    return true;
3835  if (getLangOptions().CPlusPlus) {
3836    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3837      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3838      return RD->hasConstCopyConstructor();
3839
3840    }
3841  }
3842  return false;
3843}
3844
3845QualType
3846ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3847  //  type = struct __Block_byref_1_X {
3848  //    void *__isa;
3849  //    struct __Block_byref_1_X *__forwarding;
3850  //    unsigned int __flags;
3851  //    unsigned int __size;
3852  //    void *__copy_helper;            // as needed
3853  //    void *__destroy_help            // as needed
3854  //    int X;
3855  //  } *
3856
3857  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3858
3859  // FIXME: Move up
3860  llvm::SmallString<36> Name;
3861  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3862                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3863  RecordDecl *T;
3864  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3865  T->startDefinition();
3866  QualType Int32Ty = IntTy;
3867  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3868  QualType FieldTypes[] = {
3869    getPointerType(VoidPtrTy),
3870    getPointerType(getTagDeclType(T)),
3871    Int32Ty,
3872    Int32Ty,
3873    getPointerType(VoidPtrTy),
3874    getPointerType(VoidPtrTy),
3875    Ty
3876  };
3877
3878  StringRef FieldNames[] = {
3879    "__isa",
3880    "__forwarding",
3881    "__flags",
3882    "__size",
3883    "__copy_helper",
3884    "__destroy_helper",
3885    DeclName,
3886  };
3887
3888  for (size_t i = 0; i < 7; ++i) {
3889    if (!HasCopyAndDispose && i >=4 && i <= 5)
3890      continue;
3891    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3892                                         SourceLocation(),
3893                                         &Idents.get(FieldNames[i]),
3894                                         FieldTypes[i], /*TInfo=*/0,
3895                                         /*BitWidth=*/0, /*Mutable=*/false,
3896                                         /*HasInit=*/false);
3897    Field->setAccess(AS_public);
3898    T->addDecl(Field);
3899  }
3900
3901  T->completeDefinition();
3902
3903  return getPointerType(getTagDeclType(T));
3904}
3905
3906TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3907  if (!ObjCInstanceTypeDecl)
3908    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3909                                               getTranslationUnitDecl(),
3910                                               SourceLocation(),
3911                                               SourceLocation(),
3912                                               &Idents.get("instancetype"),
3913                                     getTrivialTypeSourceInfo(getObjCIdType()));
3914  return ObjCInstanceTypeDecl;
3915}
3916
3917// This returns true if a type has been typedefed to BOOL:
3918// typedef <type> BOOL;
3919static bool isTypeTypedefedAsBOOL(QualType T) {
3920  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3921    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3922      return II->isStr("BOOL");
3923
3924  return false;
3925}
3926
3927/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3928/// purpose.
3929CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3930  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3931    return CharUnits::Zero();
3932
3933  CharUnits sz = getTypeSizeInChars(type);
3934
3935  // Make all integer and enum types at least as large as an int
3936  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3937    sz = std::max(sz, getTypeSizeInChars(IntTy));
3938  // Treat arrays as pointers, since that's how they're passed in.
3939  else if (type->isArrayType())
3940    sz = getTypeSizeInChars(VoidPtrTy);
3941  return sz;
3942}
3943
3944static inline
3945std::string charUnitsToString(const CharUnits &CU) {
3946  return llvm::itostr(CU.getQuantity());
3947}
3948
3949/// getObjCEncodingForBlock - Return the encoded type for this block
3950/// declaration.
3951std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3952  std::string S;
3953
3954  const BlockDecl *Decl = Expr->getBlockDecl();
3955  QualType BlockTy =
3956      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3957  // Encode result type.
3958  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3959  // Compute size of all parameters.
3960  // Start with computing size of a pointer in number of bytes.
3961  // FIXME: There might(should) be a better way of doing this computation!
3962  SourceLocation Loc;
3963  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3964  CharUnits ParmOffset = PtrSize;
3965  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3966       E = Decl->param_end(); PI != E; ++PI) {
3967    QualType PType = (*PI)->getType();
3968    CharUnits sz = getObjCEncodingTypeSize(PType);
3969    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3970    ParmOffset += sz;
3971  }
3972  // Size of the argument frame
3973  S += charUnitsToString(ParmOffset);
3974  // Block pointer and offset.
3975  S += "@?0";
3976
3977  // Argument types.
3978  ParmOffset = PtrSize;
3979  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3980       Decl->param_end(); PI != E; ++PI) {
3981    ParmVarDecl *PVDecl = *PI;
3982    QualType PType = PVDecl->getOriginalType();
3983    if (const ArrayType *AT =
3984          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3985      // Use array's original type only if it has known number of
3986      // elements.
3987      if (!isa<ConstantArrayType>(AT))
3988        PType = PVDecl->getType();
3989    } else if (PType->isFunctionType())
3990      PType = PVDecl->getType();
3991    getObjCEncodingForType(PType, S);
3992    S += charUnitsToString(ParmOffset);
3993    ParmOffset += getObjCEncodingTypeSize(PType);
3994  }
3995
3996  return S;
3997}
3998
3999bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4000                                                std::string& S) {
4001  // Encode result type.
4002  getObjCEncodingForType(Decl->getResultType(), S);
4003  CharUnits ParmOffset;
4004  // Compute size of all parameters.
4005  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4006       E = Decl->param_end(); PI != E; ++PI) {
4007    QualType PType = (*PI)->getType();
4008    CharUnits sz = getObjCEncodingTypeSize(PType);
4009    if (sz.isZero())
4010      return true;
4011
4012    assert (sz.isPositive() &&
4013        "getObjCEncodingForFunctionDecl - Incomplete param type");
4014    ParmOffset += sz;
4015  }
4016  S += charUnitsToString(ParmOffset);
4017  ParmOffset = CharUnits::Zero();
4018
4019  // Argument types.
4020  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4021       E = Decl->param_end(); PI != E; ++PI) {
4022    ParmVarDecl *PVDecl = *PI;
4023    QualType PType = PVDecl->getOriginalType();
4024    if (const ArrayType *AT =
4025          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4026      // Use array's original type only if it has known number of
4027      // elements.
4028      if (!isa<ConstantArrayType>(AT))
4029        PType = PVDecl->getType();
4030    } else if (PType->isFunctionType())
4031      PType = PVDecl->getType();
4032    getObjCEncodingForType(PType, S);
4033    S += charUnitsToString(ParmOffset);
4034    ParmOffset += getObjCEncodingTypeSize(PType);
4035  }
4036
4037  return false;
4038}
4039
4040/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4041/// declaration.
4042bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4043                                              std::string& S) const {
4044  // FIXME: This is not very efficient.
4045  // Encode type qualifer, 'in', 'inout', etc. for the return type.
4046  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
4047  // Encode result type.
4048  getObjCEncodingForType(Decl->getResultType(), S);
4049  // Compute size of all parameters.
4050  // Start with computing size of a pointer in number of bytes.
4051  // FIXME: There might(should) be a better way of doing this computation!
4052  SourceLocation Loc;
4053  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4054  // The first two arguments (self and _cmd) are pointers; account for
4055  // their size.
4056  CharUnits ParmOffset = 2 * PtrSize;
4057  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4058       E = Decl->sel_param_end(); PI != E; ++PI) {
4059    QualType PType = (*PI)->getType();
4060    CharUnits sz = getObjCEncodingTypeSize(PType);
4061    if (sz.isZero())
4062      return true;
4063
4064    assert (sz.isPositive() &&
4065        "getObjCEncodingForMethodDecl - Incomplete param type");
4066    ParmOffset += sz;
4067  }
4068  S += charUnitsToString(ParmOffset);
4069  S += "@0:";
4070  S += charUnitsToString(PtrSize);
4071
4072  // Argument types.
4073  ParmOffset = 2 * PtrSize;
4074  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4075       E = Decl->sel_param_end(); PI != E; ++PI) {
4076    const ParmVarDecl *PVDecl = *PI;
4077    QualType PType = PVDecl->getOriginalType();
4078    if (const ArrayType *AT =
4079          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4080      // Use array's original type only if it has known number of
4081      // elements.
4082      if (!isa<ConstantArrayType>(AT))
4083        PType = PVDecl->getType();
4084    } else if (PType->isFunctionType())
4085      PType = PVDecl->getType();
4086    // Process argument qualifiers for user supplied arguments; such as,
4087    // 'in', 'inout', etc.
4088    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
4089    getObjCEncodingForType(PType, S);
4090    S += charUnitsToString(ParmOffset);
4091    ParmOffset += getObjCEncodingTypeSize(PType);
4092  }
4093
4094  return false;
4095}
4096
4097/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4098/// property declaration. If non-NULL, Container must be either an
4099/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4100/// NULL when getting encodings for protocol properties.
4101/// Property attributes are stored as a comma-delimited C string. The simple
4102/// attributes readonly and bycopy are encoded as single characters. The
4103/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4104/// encoded as single characters, followed by an identifier. Property types
4105/// are also encoded as a parametrized attribute. The characters used to encode
4106/// these attributes are defined by the following enumeration:
4107/// @code
4108/// enum PropertyAttributes {
4109/// kPropertyReadOnly = 'R',   // property is read-only.
4110/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4111/// kPropertyByref = '&',  // property is a reference to the value last assigned
4112/// kPropertyDynamic = 'D',    // property is dynamic
4113/// kPropertyGetter = 'G',     // followed by getter selector name
4114/// kPropertySetter = 'S',     // followed by setter selector name
4115/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4116/// kPropertyType = 't'              // followed by old-style type encoding.
4117/// kPropertyWeak = 'W'              // 'weak' property
4118/// kPropertyStrong = 'P'            // property GC'able
4119/// kPropertyNonAtomic = 'N'         // property non-atomic
4120/// };
4121/// @endcode
4122void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4123                                                const Decl *Container,
4124                                                std::string& S) const {
4125  // Collect information from the property implementation decl(s).
4126  bool Dynamic = false;
4127  ObjCPropertyImplDecl *SynthesizePID = 0;
4128
4129  // FIXME: Duplicated code due to poor abstraction.
4130  if (Container) {
4131    if (const ObjCCategoryImplDecl *CID =
4132        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4133      for (ObjCCategoryImplDecl::propimpl_iterator
4134             i = CID->propimpl_begin(), e = CID->propimpl_end();
4135           i != e; ++i) {
4136        ObjCPropertyImplDecl *PID = *i;
4137        if (PID->getPropertyDecl() == PD) {
4138          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4139            Dynamic = true;
4140          } else {
4141            SynthesizePID = PID;
4142          }
4143        }
4144      }
4145    } else {
4146      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4147      for (ObjCCategoryImplDecl::propimpl_iterator
4148             i = OID->propimpl_begin(), e = OID->propimpl_end();
4149           i != e; ++i) {
4150        ObjCPropertyImplDecl *PID = *i;
4151        if (PID->getPropertyDecl() == PD) {
4152          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4153            Dynamic = true;
4154          } else {
4155            SynthesizePID = PID;
4156          }
4157        }
4158      }
4159    }
4160  }
4161
4162  // FIXME: This is not very efficient.
4163  S = "T";
4164
4165  // Encode result type.
4166  // GCC has some special rules regarding encoding of properties which
4167  // closely resembles encoding of ivars.
4168  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4169                             true /* outermost type */,
4170                             true /* encoding for property */);
4171
4172  if (PD->isReadOnly()) {
4173    S += ",R";
4174  } else {
4175    switch (PD->getSetterKind()) {
4176    case ObjCPropertyDecl::Assign: break;
4177    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4178    case ObjCPropertyDecl::Retain: S += ",&"; break;
4179    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4180    }
4181  }
4182
4183  // It really isn't clear at all what this means, since properties
4184  // are "dynamic by default".
4185  if (Dynamic)
4186    S += ",D";
4187
4188  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4189    S += ",N";
4190
4191  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4192    S += ",G";
4193    S += PD->getGetterName().getAsString();
4194  }
4195
4196  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4197    S += ",S";
4198    S += PD->getSetterName().getAsString();
4199  }
4200
4201  if (SynthesizePID) {
4202    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4203    S += ",V";
4204    S += OID->getNameAsString();
4205  }
4206
4207  // FIXME: OBJCGC: weak & strong
4208}
4209
4210/// getLegacyIntegralTypeEncoding -
4211/// Another legacy compatibility encoding: 32-bit longs are encoded as
4212/// 'l' or 'L' , but not always.  For typedefs, we need to use
4213/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4214///
4215void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4216  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4217    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4218      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4219        PointeeTy = UnsignedIntTy;
4220      else
4221        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4222          PointeeTy = IntTy;
4223    }
4224  }
4225}
4226
4227void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4228                                        const FieldDecl *Field) const {
4229  // We follow the behavior of gcc, expanding structures which are
4230  // directly pointed to, and expanding embedded structures. Note that
4231  // these rules are sufficient to prevent recursive encoding of the
4232  // same type.
4233  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4234                             true /* outermost type */);
4235}
4236
4237static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4238    switch (T->getAs<BuiltinType>()->getKind()) {
4239    default: llvm_unreachable("Unhandled builtin type kind");
4240    case BuiltinType::Void:       return 'v';
4241    case BuiltinType::Bool:       return 'B';
4242    case BuiltinType::Char_U:
4243    case BuiltinType::UChar:      return 'C';
4244    case BuiltinType::UShort:     return 'S';
4245    case BuiltinType::UInt:       return 'I';
4246    case BuiltinType::ULong:
4247        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4248    case BuiltinType::UInt128:    return 'T';
4249    case BuiltinType::ULongLong:  return 'Q';
4250    case BuiltinType::Char_S:
4251    case BuiltinType::SChar:      return 'c';
4252    case BuiltinType::Short:      return 's';
4253    case BuiltinType::WChar_S:
4254    case BuiltinType::WChar_U:
4255    case BuiltinType::Int:        return 'i';
4256    case BuiltinType::Long:
4257      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4258    case BuiltinType::LongLong:   return 'q';
4259    case BuiltinType::Int128:     return 't';
4260    case BuiltinType::Float:      return 'f';
4261    case BuiltinType::Double:     return 'd';
4262    case BuiltinType::LongDouble: return 'D';
4263    }
4264}
4265
4266static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4267  EnumDecl *Enum = ET->getDecl();
4268
4269  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4270  if (!Enum->isFixed())
4271    return 'i';
4272
4273  // The encoding of a fixed enum type matches its fixed underlying type.
4274  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4275}
4276
4277static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4278                           QualType T, const FieldDecl *FD) {
4279  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4280  S += 'b';
4281  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4282  // The GNU runtime requires more information; bitfields are encoded as b,
4283  // then the offset (in bits) of the first element, then the type of the
4284  // bitfield, then the size in bits.  For example, in this structure:
4285  //
4286  // struct
4287  // {
4288  //    int integer;
4289  //    int flags:2;
4290  // };
4291  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4292  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4293  // information is not especially sensible, but we're stuck with it for
4294  // compatibility with GCC, although providing it breaks anything that
4295  // actually uses runtime introspection and wants to work on both runtimes...
4296  if (!Ctx->getLangOptions().NeXTRuntime) {
4297    const RecordDecl *RD = FD->getParent();
4298    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4299    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4300    if (const EnumType *ET = T->getAs<EnumType>())
4301      S += ObjCEncodingForEnumType(Ctx, ET);
4302    else
4303      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4304  }
4305  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4306}
4307
4308// FIXME: Use SmallString for accumulating string.
4309void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4310                                            bool ExpandPointedToStructures,
4311                                            bool ExpandStructures,
4312                                            const FieldDecl *FD,
4313                                            bool OutermostType,
4314                                            bool EncodingProperty,
4315                                            bool StructField) const {
4316  if (T->getAs<BuiltinType>()) {
4317    if (FD && FD->isBitField())
4318      return EncodeBitField(this, S, T, FD);
4319    S += ObjCEncodingForPrimitiveKind(this, T);
4320    return;
4321  }
4322
4323  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4324    S += 'j';
4325    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4326                               false);
4327    return;
4328  }
4329
4330  // encoding for pointer or r3eference types.
4331  QualType PointeeTy;
4332  if (const PointerType *PT = T->getAs<PointerType>()) {
4333    if (PT->isObjCSelType()) {
4334      S += ':';
4335      return;
4336    }
4337    PointeeTy = PT->getPointeeType();
4338  }
4339  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4340    PointeeTy = RT->getPointeeType();
4341  if (!PointeeTy.isNull()) {
4342    bool isReadOnly = false;
4343    // For historical/compatibility reasons, the read-only qualifier of the
4344    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4345    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4346    // Also, do not emit the 'r' for anything but the outermost type!
4347    if (isa<TypedefType>(T.getTypePtr())) {
4348      if (OutermostType && T.isConstQualified()) {
4349        isReadOnly = true;
4350        S += 'r';
4351      }
4352    } else if (OutermostType) {
4353      QualType P = PointeeTy;
4354      while (P->getAs<PointerType>())
4355        P = P->getAs<PointerType>()->getPointeeType();
4356      if (P.isConstQualified()) {
4357        isReadOnly = true;
4358        S += 'r';
4359      }
4360    }
4361    if (isReadOnly) {
4362      // Another legacy compatibility encoding. Some ObjC qualifier and type
4363      // combinations need to be rearranged.
4364      // Rewrite "in const" from "nr" to "rn"
4365      if (StringRef(S).endswith("nr"))
4366        S.replace(S.end()-2, S.end(), "rn");
4367    }
4368
4369    if (PointeeTy->isCharType()) {
4370      // char pointer types should be encoded as '*' unless it is a
4371      // type that has been typedef'd to 'BOOL'.
4372      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4373        S += '*';
4374        return;
4375      }
4376    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4377      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4378      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4379        S += '#';
4380        return;
4381      }
4382      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4383      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4384        S += '@';
4385        return;
4386      }
4387      // fall through...
4388    }
4389    S += '^';
4390    getLegacyIntegralTypeEncoding(PointeeTy);
4391
4392    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4393                               NULL);
4394    return;
4395  }
4396
4397  if (const ArrayType *AT =
4398      // Ignore type qualifiers etc.
4399        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4400    if (isa<IncompleteArrayType>(AT) && !StructField) {
4401      // Incomplete arrays are encoded as a pointer to the array element.
4402      S += '^';
4403
4404      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4405                                 false, ExpandStructures, FD);
4406    } else {
4407      S += '[';
4408
4409      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4410        if (getTypeSize(CAT->getElementType()) == 0)
4411          S += '0';
4412        else
4413          S += llvm::utostr(CAT->getSize().getZExtValue());
4414      } else {
4415        //Variable length arrays are encoded as a regular array with 0 elements.
4416        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4417               "Unknown array type!");
4418        S += '0';
4419      }
4420
4421      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4422                                 false, ExpandStructures, FD);
4423      S += ']';
4424    }
4425    return;
4426  }
4427
4428  if (T->getAs<FunctionType>()) {
4429    S += '?';
4430    return;
4431  }
4432
4433  if (const RecordType *RTy = T->getAs<RecordType>()) {
4434    RecordDecl *RDecl = RTy->getDecl();
4435    S += RDecl->isUnion() ? '(' : '{';
4436    // Anonymous structures print as '?'
4437    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4438      S += II->getName();
4439      if (ClassTemplateSpecializationDecl *Spec
4440          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4441        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4442        std::string TemplateArgsStr
4443          = TemplateSpecializationType::PrintTemplateArgumentList(
4444                                            TemplateArgs.data(),
4445                                            TemplateArgs.size(),
4446                                            (*this).getPrintingPolicy());
4447
4448        S += TemplateArgsStr;
4449      }
4450    } else {
4451      S += '?';
4452    }
4453    if (ExpandStructures) {
4454      S += '=';
4455      if (!RDecl->isUnion()) {
4456        getObjCEncodingForStructureImpl(RDecl, S, FD);
4457      } else {
4458        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4459                                     FieldEnd = RDecl->field_end();
4460             Field != FieldEnd; ++Field) {
4461          if (FD) {
4462            S += '"';
4463            S += Field->getNameAsString();
4464            S += '"';
4465          }
4466
4467          // Special case bit-fields.
4468          if (Field->isBitField()) {
4469            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4470                                       (*Field));
4471          } else {
4472            QualType qt = Field->getType();
4473            getLegacyIntegralTypeEncoding(qt);
4474            getObjCEncodingForTypeImpl(qt, S, false, true,
4475                                       FD, /*OutermostType*/false,
4476                                       /*EncodingProperty*/false,
4477                                       /*StructField*/true);
4478          }
4479        }
4480      }
4481    }
4482    S += RDecl->isUnion() ? ')' : '}';
4483    return;
4484  }
4485
4486  if (const EnumType *ET = T->getAs<EnumType>()) {
4487    if (FD && FD->isBitField())
4488      EncodeBitField(this, S, T, FD);
4489    else
4490      S += ObjCEncodingForEnumType(this, ET);
4491    return;
4492  }
4493
4494  if (T->isBlockPointerType()) {
4495    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4496    return;
4497  }
4498
4499  // Ignore protocol qualifiers when mangling at this level.
4500  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4501    T = OT->getBaseType();
4502
4503  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4504    // @encode(class_name)
4505    ObjCInterfaceDecl *OI = OIT->getDecl();
4506    S += '{';
4507    const IdentifierInfo *II = OI->getIdentifier();
4508    S += II->getName();
4509    S += '=';
4510    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4511    DeepCollectObjCIvars(OI, true, Ivars);
4512    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4513      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4514      if (Field->isBitField())
4515        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4516      else
4517        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4518    }
4519    S += '}';
4520    return;
4521  }
4522
4523  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4524    if (OPT->isObjCIdType()) {
4525      S += '@';
4526      return;
4527    }
4528
4529    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4530      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4531      // Since this is a binary compatibility issue, need to consult with runtime
4532      // folks. Fortunately, this is a *very* obsure construct.
4533      S += '#';
4534      return;
4535    }
4536
4537    if (OPT->isObjCQualifiedIdType()) {
4538      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4539                                 ExpandPointedToStructures,
4540                                 ExpandStructures, FD);
4541      if (FD || EncodingProperty) {
4542        // Note that we do extended encoding of protocol qualifer list
4543        // Only when doing ivar or property encoding.
4544        S += '"';
4545        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4546             E = OPT->qual_end(); I != E; ++I) {
4547          S += '<';
4548          S += (*I)->getNameAsString();
4549          S += '>';
4550        }
4551        S += '"';
4552      }
4553      return;
4554    }
4555
4556    QualType PointeeTy = OPT->getPointeeType();
4557    if (!EncodingProperty &&
4558        isa<TypedefType>(PointeeTy.getTypePtr())) {
4559      // Another historical/compatibility reason.
4560      // We encode the underlying type which comes out as
4561      // {...};
4562      S += '^';
4563      getObjCEncodingForTypeImpl(PointeeTy, S,
4564                                 false, ExpandPointedToStructures,
4565                                 NULL);
4566      return;
4567    }
4568
4569    S += '@';
4570    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4571      S += '"';
4572      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4573      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4574           E = OPT->qual_end(); I != E; ++I) {
4575        S += '<';
4576        S += (*I)->getNameAsString();
4577        S += '>';
4578      }
4579      S += '"';
4580    }
4581    return;
4582  }
4583
4584  // gcc just blithely ignores member pointers.
4585  // TODO: maybe there should be a mangling for these
4586  if (T->getAs<MemberPointerType>())
4587    return;
4588
4589  if (T->isVectorType()) {
4590    // This matches gcc's encoding, even though technically it is
4591    // insufficient.
4592    // FIXME. We should do a better job than gcc.
4593    return;
4594  }
4595
4596  llvm_unreachable("@encode for type not implemented!");
4597}
4598
4599void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4600                                                 std::string &S,
4601                                                 const FieldDecl *FD,
4602                                                 bool includeVBases) const {
4603  assert(RDecl && "Expected non-null RecordDecl");
4604  assert(!RDecl->isUnion() && "Should not be called for unions");
4605  if (!RDecl->getDefinition())
4606    return;
4607
4608  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4609  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4610  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4611
4612  if (CXXRec) {
4613    for (CXXRecordDecl::base_class_iterator
4614           BI = CXXRec->bases_begin(),
4615           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4616      if (!BI->isVirtual()) {
4617        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4618        if (base->isEmpty())
4619          continue;
4620        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4621        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4622                                  std::make_pair(offs, base));
4623      }
4624    }
4625  }
4626
4627  unsigned i = 0;
4628  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4629                               FieldEnd = RDecl->field_end();
4630       Field != FieldEnd; ++Field, ++i) {
4631    uint64_t offs = layout.getFieldOffset(i);
4632    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4633                              std::make_pair(offs, *Field));
4634  }
4635
4636  if (CXXRec && includeVBases) {
4637    for (CXXRecordDecl::base_class_iterator
4638           BI = CXXRec->vbases_begin(),
4639           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4640      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4641      if (base->isEmpty())
4642        continue;
4643      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4644      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4645        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4646                                  std::make_pair(offs, base));
4647    }
4648  }
4649
4650  CharUnits size;
4651  if (CXXRec) {
4652    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4653  } else {
4654    size = layout.getSize();
4655  }
4656
4657  uint64_t CurOffs = 0;
4658  std::multimap<uint64_t, NamedDecl *>::iterator
4659    CurLayObj = FieldOrBaseOffsets.begin();
4660
4661  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4662      (CurLayObj == FieldOrBaseOffsets.end() &&
4663         CXXRec && CXXRec->isDynamicClass())) {
4664    assert(CXXRec && CXXRec->isDynamicClass() &&
4665           "Offset 0 was empty but no VTable ?");
4666    if (FD) {
4667      S += "\"_vptr$";
4668      std::string recname = CXXRec->getNameAsString();
4669      if (recname.empty()) recname = "?";
4670      S += recname;
4671      S += '"';
4672    }
4673    S += "^^?";
4674    CurOffs += getTypeSize(VoidPtrTy);
4675  }
4676
4677  if (!RDecl->hasFlexibleArrayMember()) {
4678    // Mark the end of the structure.
4679    uint64_t offs = toBits(size);
4680    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4681                              std::make_pair(offs, (NamedDecl*)0));
4682  }
4683
4684  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4685    assert(CurOffs <= CurLayObj->first);
4686
4687    if (CurOffs < CurLayObj->first) {
4688      uint64_t padding = CurLayObj->first - CurOffs;
4689      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4690      // packing/alignment of members is different that normal, in which case
4691      // the encoding will be out-of-sync with the real layout.
4692      // If the runtime switches to just consider the size of types without
4693      // taking into account alignment, we could make padding explicit in the
4694      // encoding (e.g. using arrays of chars). The encoding strings would be
4695      // longer then though.
4696      CurOffs += padding;
4697    }
4698
4699    NamedDecl *dcl = CurLayObj->second;
4700    if (dcl == 0)
4701      break; // reached end of structure.
4702
4703    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4704      // We expand the bases without their virtual bases since those are going
4705      // in the initial structure. Note that this differs from gcc which
4706      // expands virtual bases each time one is encountered in the hierarchy,
4707      // making the encoding type bigger than it really is.
4708      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4709      assert(!base->isEmpty());
4710      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4711    } else {
4712      FieldDecl *field = cast<FieldDecl>(dcl);
4713      if (FD) {
4714        S += '"';
4715        S += field->getNameAsString();
4716        S += '"';
4717      }
4718
4719      if (field->isBitField()) {
4720        EncodeBitField(this, S, field->getType(), field);
4721        CurOffs += field->getBitWidthValue(*this);
4722      } else {
4723        QualType qt = field->getType();
4724        getLegacyIntegralTypeEncoding(qt);
4725        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4726                                   /*OutermostType*/false,
4727                                   /*EncodingProperty*/false,
4728                                   /*StructField*/true);
4729        CurOffs += getTypeSize(field->getType());
4730      }
4731    }
4732  }
4733}
4734
4735void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4736                                                 std::string& S) const {
4737  if (QT & Decl::OBJC_TQ_In)
4738    S += 'n';
4739  if (QT & Decl::OBJC_TQ_Inout)
4740    S += 'N';
4741  if (QT & Decl::OBJC_TQ_Out)
4742    S += 'o';
4743  if (QT & Decl::OBJC_TQ_Bycopy)
4744    S += 'O';
4745  if (QT & Decl::OBJC_TQ_Byref)
4746    S += 'R';
4747  if (QT & Decl::OBJC_TQ_Oneway)
4748    S += 'V';
4749}
4750
4751void ASTContext::setBuiltinVaListType(QualType T) {
4752  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4753
4754  BuiltinVaListType = T;
4755}
4756
4757TypedefDecl *ASTContext::getObjCIdDecl() const {
4758  if (!ObjCIdDecl) {
4759    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4760    T = getObjCObjectPointerType(T);
4761    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4762    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4763                                     getTranslationUnitDecl(),
4764                                     SourceLocation(), SourceLocation(),
4765                                     &Idents.get("id"), IdInfo);
4766  }
4767
4768  return ObjCIdDecl;
4769}
4770
4771TypedefDecl *ASTContext::getObjCSelDecl() const {
4772  if (!ObjCSelDecl) {
4773    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4774    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4775    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4776                                      getTranslationUnitDecl(),
4777                                      SourceLocation(), SourceLocation(),
4778                                      &Idents.get("SEL"), SelInfo);
4779  }
4780  return ObjCSelDecl;
4781}
4782
4783void ASTContext::setObjCProtoType(QualType QT) {
4784  ObjCProtoType = QT;
4785}
4786
4787TypedefDecl *ASTContext::getObjCClassDecl() const {
4788  if (!ObjCClassDecl) {
4789    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4790    T = getObjCObjectPointerType(T);
4791    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4792    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4793                                        getTranslationUnitDecl(),
4794                                        SourceLocation(), SourceLocation(),
4795                                        &Idents.get("Class"), ClassInfo);
4796  }
4797
4798  return ObjCClassDecl;
4799}
4800
4801void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4802  assert(ObjCConstantStringType.isNull() &&
4803         "'NSConstantString' type already set!");
4804
4805  ObjCConstantStringType = getObjCInterfaceType(Decl);
4806}
4807
4808/// \brief Retrieve the template name that corresponds to a non-empty
4809/// lookup.
4810TemplateName
4811ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4812                                      UnresolvedSetIterator End) const {
4813  unsigned size = End - Begin;
4814  assert(size > 1 && "set is not overloaded!");
4815
4816  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4817                          size * sizeof(FunctionTemplateDecl*));
4818  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4819
4820  NamedDecl **Storage = OT->getStorage();
4821  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4822    NamedDecl *D = *I;
4823    assert(isa<FunctionTemplateDecl>(D) ||
4824           (isa<UsingShadowDecl>(D) &&
4825            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4826    *Storage++ = D;
4827  }
4828
4829  return TemplateName(OT);
4830}
4831
4832/// \brief Retrieve the template name that represents a qualified
4833/// template name such as \c std::vector.
4834TemplateName
4835ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4836                                     bool TemplateKeyword,
4837                                     TemplateDecl *Template) const {
4838  assert(NNS && "Missing nested-name-specifier in qualified template name");
4839
4840  // FIXME: Canonicalization?
4841  llvm::FoldingSetNodeID ID;
4842  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4843
4844  void *InsertPos = 0;
4845  QualifiedTemplateName *QTN =
4846    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4847  if (!QTN) {
4848    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4849    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4850  }
4851
4852  return TemplateName(QTN);
4853}
4854
4855/// \brief Retrieve the template name that represents a dependent
4856/// template name such as \c MetaFun::template apply.
4857TemplateName
4858ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4859                                     const IdentifierInfo *Name) const {
4860  assert((!NNS || NNS->isDependent()) &&
4861         "Nested name specifier must be dependent");
4862
4863  llvm::FoldingSetNodeID ID;
4864  DependentTemplateName::Profile(ID, NNS, Name);
4865
4866  void *InsertPos = 0;
4867  DependentTemplateName *QTN =
4868    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4869
4870  if (QTN)
4871    return TemplateName(QTN);
4872
4873  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4874  if (CanonNNS == NNS) {
4875    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4876  } else {
4877    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4878    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4879    DependentTemplateName *CheckQTN =
4880      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4881    assert(!CheckQTN && "Dependent type name canonicalization broken");
4882    (void)CheckQTN;
4883  }
4884
4885  DependentTemplateNames.InsertNode(QTN, InsertPos);
4886  return TemplateName(QTN);
4887}
4888
4889/// \brief Retrieve the template name that represents a dependent
4890/// template name such as \c MetaFun::template operator+.
4891TemplateName
4892ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4893                                     OverloadedOperatorKind Operator) const {
4894  assert((!NNS || NNS->isDependent()) &&
4895         "Nested name specifier must be dependent");
4896
4897  llvm::FoldingSetNodeID ID;
4898  DependentTemplateName::Profile(ID, NNS, Operator);
4899
4900  void *InsertPos = 0;
4901  DependentTemplateName *QTN
4902    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4903
4904  if (QTN)
4905    return TemplateName(QTN);
4906
4907  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4908  if (CanonNNS == NNS) {
4909    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4910  } else {
4911    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4912    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4913
4914    DependentTemplateName *CheckQTN
4915      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4916    assert(!CheckQTN && "Dependent template name canonicalization broken");
4917    (void)CheckQTN;
4918  }
4919
4920  DependentTemplateNames.InsertNode(QTN, InsertPos);
4921  return TemplateName(QTN);
4922}
4923
4924TemplateName
4925ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
4926                                         TemplateName replacement) const {
4927  llvm::FoldingSetNodeID ID;
4928  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
4929
4930  void *insertPos = 0;
4931  SubstTemplateTemplateParmStorage *subst
4932    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
4933
4934  if (!subst) {
4935    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
4936    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
4937  }
4938
4939  return TemplateName(subst);
4940}
4941
4942TemplateName
4943ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4944                                       const TemplateArgument &ArgPack) const {
4945  ASTContext &Self = const_cast<ASTContext &>(*this);
4946  llvm::FoldingSetNodeID ID;
4947  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4948
4949  void *InsertPos = 0;
4950  SubstTemplateTemplateParmPackStorage *Subst
4951    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4952
4953  if (!Subst) {
4954    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
4955                                                           ArgPack.pack_size(),
4956                                                         ArgPack.pack_begin());
4957    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4958  }
4959
4960  return TemplateName(Subst);
4961}
4962
4963/// getFromTargetType - Given one of the integer types provided by
4964/// TargetInfo, produce the corresponding type. The unsigned @p Type
4965/// is actually a value of type @c TargetInfo::IntType.
4966CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4967  switch (Type) {
4968  case TargetInfo::NoInt: return CanQualType();
4969  case TargetInfo::SignedShort: return ShortTy;
4970  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4971  case TargetInfo::SignedInt: return IntTy;
4972  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4973  case TargetInfo::SignedLong: return LongTy;
4974  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4975  case TargetInfo::SignedLongLong: return LongLongTy;
4976  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4977  }
4978
4979  llvm_unreachable("Unhandled TargetInfo::IntType value");
4980}
4981
4982//===----------------------------------------------------------------------===//
4983//                        Type Predicates.
4984//===----------------------------------------------------------------------===//
4985
4986/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4987/// garbage collection attribute.
4988///
4989Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4990  if (getLangOptions().getGC() == LangOptions::NonGC)
4991    return Qualifiers::GCNone;
4992
4993  assert(getLangOptions().ObjC1);
4994  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4995
4996  // Default behaviour under objective-C's gc is for ObjC pointers
4997  // (or pointers to them) be treated as though they were declared
4998  // as __strong.
4999  if (GCAttrs == Qualifiers::GCNone) {
5000    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5001      return Qualifiers::Strong;
5002    else if (Ty->isPointerType())
5003      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5004  } else {
5005    // It's not valid to set GC attributes on anything that isn't a
5006    // pointer.
5007#ifndef NDEBUG
5008    QualType CT = Ty->getCanonicalTypeInternal();
5009    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5010      CT = AT->getElementType();
5011    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5012#endif
5013  }
5014  return GCAttrs;
5015}
5016
5017//===----------------------------------------------------------------------===//
5018//                        Type Compatibility Testing
5019//===----------------------------------------------------------------------===//
5020
5021/// areCompatVectorTypes - Return true if the two specified vector types are
5022/// compatible.
5023static bool areCompatVectorTypes(const VectorType *LHS,
5024                                 const VectorType *RHS) {
5025  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5026  return LHS->getElementType() == RHS->getElementType() &&
5027         LHS->getNumElements() == RHS->getNumElements();
5028}
5029
5030bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5031                                          QualType SecondVec) {
5032  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5033  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5034
5035  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5036    return true;
5037
5038  // Treat Neon vector types and most AltiVec vector types as if they are the
5039  // equivalent GCC vector types.
5040  const VectorType *First = FirstVec->getAs<VectorType>();
5041  const VectorType *Second = SecondVec->getAs<VectorType>();
5042  if (First->getNumElements() == Second->getNumElements() &&
5043      hasSameType(First->getElementType(), Second->getElementType()) &&
5044      First->getVectorKind() != VectorType::AltiVecPixel &&
5045      First->getVectorKind() != VectorType::AltiVecBool &&
5046      Second->getVectorKind() != VectorType::AltiVecPixel &&
5047      Second->getVectorKind() != VectorType::AltiVecBool)
5048    return true;
5049
5050  return false;
5051}
5052
5053//===----------------------------------------------------------------------===//
5054// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5055//===----------------------------------------------------------------------===//
5056
5057/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5058/// inheritance hierarchy of 'rProto'.
5059bool
5060ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5061                                           ObjCProtocolDecl *rProto) const {
5062  if (lProto == rProto)
5063    return true;
5064  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5065       E = rProto->protocol_end(); PI != E; ++PI)
5066    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5067      return true;
5068  return false;
5069}
5070
5071/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5072/// return true if lhs's protocols conform to rhs's protocol; false
5073/// otherwise.
5074bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5075  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5076    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5077  return false;
5078}
5079
5080/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5081/// Class<p1, ...>.
5082bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5083                                                      QualType rhs) {
5084  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5085  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5086  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5087
5088  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5089       E = lhsQID->qual_end(); I != E; ++I) {
5090    bool match = false;
5091    ObjCProtocolDecl *lhsProto = *I;
5092    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5093         E = rhsOPT->qual_end(); J != E; ++J) {
5094      ObjCProtocolDecl *rhsProto = *J;
5095      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5096        match = true;
5097        break;
5098      }
5099    }
5100    if (!match)
5101      return false;
5102  }
5103  return true;
5104}
5105
5106/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5107/// ObjCQualifiedIDType.
5108bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5109                                                   bool compare) {
5110  // Allow id<P..> and an 'id' or void* type in all cases.
5111  if (lhs->isVoidPointerType() ||
5112      lhs->isObjCIdType() || lhs->isObjCClassType())
5113    return true;
5114  else if (rhs->isVoidPointerType() ||
5115           rhs->isObjCIdType() || rhs->isObjCClassType())
5116    return true;
5117
5118  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5119    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5120
5121    if (!rhsOPT) return false;
5122
5123    if (rhsOPT->qual_empty()) {
5124      // If the RHS is a unqualified interface pointer "NSString*",
5125      // make sure we check the class hierarchy.
5126      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5127        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5128             E = lhsQID->qual_end(); I != E; ++I) {
5129          // when comparing an id<P> on lhs with a static type on rhs,
5130          // see if static class implements all of id's protocols, directly or
5131          // through its super class and categories.
5132          if (!rhsID->ClassImplementsProtocol(*I, true))
5133            return false;
5134        }
5135      }
5136      // If there are no qualifiers and no interface, we have an 'id'.
5137      return true;
5138    }
5139    // Both the right and left sides have qualifiers.
5140    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5141         E = lhsQID->qual_end(); I != E; ++I) {
5142      ObjCProtocolDecl *lhsProto = *I;
5143      bool match = false;
5144
5145      // when comparing an id<P> on lhs with a static type on rhs,
5146      // see if static class implements all of id's protocols, directly or
5147      // through its super class and categories.
5148      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5149           E = rhsOPT->qual_end(); J != E; ++J) {
5150        ObjCProtocolDecl *rhsProto = *J;
5151        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5152            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5153          match = true;
5154          break;
5155        }
5156      }
5157      // If the RHS is a qualified interface pointer "NSString<P>*",
5158      // make sure we check the class hierarchy.
5159      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5160        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5161             E = lhsQID->qual_end(); I != E; ++I) {
5162          // when comparing an id<P> on lhs with a static type on rhs,
5163          // see if static class implements all of id's protocols, directly or
5164          // through its super class and categories.
5165          if (rhsID->ClassImplementsProtocol(*I, true)) {
5166            match = true;
5167            break;
5168          }
5169        }
5170      }
5171      if (!match)
5172        return false;
5173    }
5174
5175    return true;
5176  }
5177
5178  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5179  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5180
5181  if (const ObjCObjectPointerType *lhsOPT =
5182        lhs->getAsObjCInterfacePointerType()) {
5183    // If both the right and left sides have qualifiers.
5184    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5185         E = lhsOPT->qual_end(); I != E; ++I) {
5186      ObjCProtocolDecl *lhsProto = *I;
5187      bool match = false;
5188
5189      // when comparing an id<P> on rhs with a static type on lhs,
5190      // see if static class implements all of id's protocols, directly or
5191      // through its super class and categories.
5192      // First, lhs protocols in the qualifier list must be found, direct
5193      // or indirect in rhs's qualifier list or it is a mismatch.
5194      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5195           E = rhsQID->qual_end(); J != E; ++J) {
5196        ObjCProtocolDecl *rhsProto = *J;
5197        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5198            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5199          match = true;
5200          break;
5201        }
5202      }
5203      if (!match)
5204        return false;
5205    }
5206
5207    // Static class's protocols, or its super class or category protocols
5208    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5209    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5210      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5211      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5212      // This is rather dubious but matches gcc's behavior. If lhs has
5213      // no type qualifier and its class has no static protocol(s)
5214      // assume that it is mismatch.
5215      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5216        return false;
5217      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5218           LHSInheritedProtocols.begin(),
5219           E = LHSInheritedProtocols.end(); I != E; ++I) {
5220        bool match = false;
5221        ObjCProtocolDecl *lhsProto = (*I);
5222        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5223             E = rhsQID->qual_end(); J != E; ++J) {
5224          ObjCProtocolDecl *rhsProto = *J;
5225          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5226              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5227            match = true;
5228            break;
5229          }
5230        }
5231        if (!match)
5232          return false;
5233      }
5234    }
5235    return true;
5236  }
5237  return false;
5238}
5239
5240/// canAssignObjCInterfaces - Return true if the two interface types are
5241/// compatible for assignment from RHS to LHS.  This handles validation of any
5242/// protocol qualifiers on the LHS or RHS.
5243///
5244bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5245                                         const ObjCObjectPointerType *RHSOPT) {
5246  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5247  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5248
5249  // If either type represents the built-in 'id' or 'Class' types, return true.
5250  if (LHS->isObjCUnqualifiedIdOrClass() ||
5251      RHS->isObjCUnqualifiedIdOrClass())
5252    return true;
5253
5254  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5255    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5256                                             QualType(RHSOPT,0),
5257                                             false);
5258
5259  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5260    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5261                                                QualType(RHSOPT,0));
5262
5263  // If we have 2 user-defined types, fall into that path.
5264  if (LHS->getInterface() && RHS->getInterface())
5265    return canAssignObjCInterfaces(LHS, RHS);
5266
5267  return false;
5268}
5269
5270/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5271/// for providing type-safety for objective-c pointers used to pass/return
5272/// arguments in block literals. When passed as arguments, passing 'A*' where
5273/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5274/// not OK. For the return type, the opposite is not OK.
5275bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5276                                         const ObjCObjectPointerType *LHSOPT,
5277                                         const ObjCObjectPointerType *RHSOPT,
5278                                         bool BlockReturnType) {
5279  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5280    return true;
5281
5282  if (LHSOPT->isObjCBuiltinType()) {
5283    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5284  }
5285
5286  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5287    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5288                                             QualType(RHSOPT,0),
5289                                             false);
5290
5291  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5292  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5293  if (LHS && RHS)  { // We have 2 user-defined types.
5294    if (LHS != RHS) {
5295      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5296        return BlockReturnType;
5297      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5298        return !BlockReturnType;
5299    }
5300    else
5301      return true;
5302  }
5303  return false;
5304}
5305
5306/// getIntersectionOfProtocols - This routine finds the intersection of set
5307/// of protocols inherited from two distinct objective-c pointer objects.
5308/// It is used to build composite qualifier list of the composite type of
5309/// the conditional expression involving two objective-c pointer objects.
5310static
5311void getIntersectionOfProtocols(ASTContext &Context,
5312                                const ObjCObjectPointerType *LHSOPT,
5313                                const ObjCObjectPointerType *RHSOPT,
5314      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5315
5316  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5317  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5318  assert(LHS->getInterface() && "LHS must have an interface base");
5319  assert(RHS->getInterface() && "RHS must have an interface base");
5320
5321  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5322  unsigned LHSNumProtocols = LHS->getNumProtocols();
5323  if (LHSNumProtocols > 0)
5324    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5325  else {
5326    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5327    Context.CollectInheritedProtocols(LHS->getInterface(),
5328                                      LHSInheritedProtocols);
5329    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5330                                LHSInheritedProtocols.end());
5331  }
5332
5333  unsigned RHSNumProtocols = RHS->getNumProtocols();
5334  if (RHSNumProtocols > 0) {
5335    ObjCProtocolDecl **RHSProtocols =
5336      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5337    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5338      if (InheritedProtocolSet.count(RHSProtocols[i]))
5339        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5340  } else {
5341    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5342    Context.CollectInheritedProtocols(RHS->getInterface(),
5343                                      RHSInheritedProtocols);
5344    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5345         RHSInheritedProtocols.begin(),
5346         E = RHSInheritedProtocols.end(); I != E; ++I)
5347      if (InheritedProtocolSet.count((*I)))
5348        IntersectionOfProtocols.push_back((*I));
5349  }
5350}
5351
5352/// areCommonBaseCompatible - Returns common base class of the two classes if
5353/// one found. Note that this is O'2 algorithm. But it will be called as the
5354/// last type comparison in a ?-exp of ObjC pointer types before a
5355/// warning is issued. So, its invokation is extremely rare.
5356QualType ASTContext::areCommonBaseCompatible(
5357                                          const ObjCObjectPointerType *Lptr,
5358                                          const ObjCObjectPointerType *Rptr) {
5359  const ObjCObjectType *LHS = Lptr->getObjectType();
5360  const ObjCObjectType *RHS = Rptr->getObjectType();
5361  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5362  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5363  if (!LDecl || !RDecl || (LDecl == RDecl))
5364    return QualType();
5365
5366  do {
5367    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5368    if (canAssignObjCInterfaces(LHS, RHS)) {
5369      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5370      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5371
5372      QualType Result = QualType(LHS, 0);
5373      if (!Protocols.empty())
5374        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5375      Result = getObjCObjectPointerType(Result);
5376      return Result;
5377    }
5378  } while ((LDecl = LDecl->getSuperClass()));
5379
5380  return QualType();
5381}
5382
5383bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5384                                         const ObjCObjectType *RHS) {
5385  assert(LHS->getInterface() && "LHS is not an interface type");
5386  assert(RHS->getInterface() && "RHS is not an interface type");
5387
5388  // Verify that the base decls are compatible: the RHS must be a subclass of
5389  // the LHS.
5390  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5391    return false;
5392
5393  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5394  // protocol qualified at all, then we are good.
5395  if (LHS->getNumProtocols() == 0)
5396    return true;
5397
5398  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5399  // more detailed analysis is required.
5400  if (RHS->getNumProtocols() == 0) {
5401    // OK, if LHS is a superclass of RHS *and*
5402    // this superclass is assignment compatible with LHS.
5403    // false otherwise.
5404    bool IsSuperClass =
5405      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5406    if (IsSuperClass) {
5407      // OK if conversion of LHS to SuperClass results in narrowing of types
5408      // ; i.e., SuperClass may implement at least one of the protocols
5409      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5410      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5411      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5412      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5413      // If super class has no protocols, it is not a match.
5414      if (SuperClassInheritedProtocols.empty())
5415        return false;
5416
5417      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5418           LHSPE = LHS->qual_end();
5419           LHSPI != LHSPE; LHSPI++) {
5420        bool SuperImplementsProtocol = false;
5421        ObjCProtocolDecl *LHSProto = (*LHSPI);
5422
5423        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5424             SuperClassInheritedProtocols.begin(),
5425             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5426          ObjCProtocolDecl *SuperClassProto = (*I);
5427          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5428            SuperImplementsProtocol = true;
5429            break;
5430          }
5431        }
5432        if (!SuperImplementsProtocol)
5433          return false;
5434      }
5435      return true;
5436    }
5437    return false;
5438  }
5439
5440  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5441                                     LHSPE = LHS->qual_end();
5442       LHSPI != LHSPE; LHSPI++) {
5443    bool RHSImplementsProtocol = false;
5444
5445    // If the RHS doesn't implement the protocol on the left, the types
5446    // are incompatible.
5447    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5448                                       RHSPE = RHS->qual_end();
5449         RHSPI != RHSPE; RHSPI++) {
5450      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5451        RHSImplementsProtocol = true;
5452        break;
5453      }
5454    }
5455    // FIXME: For better diagnostics, consider passing back the protocol name.
5456    if (!RHSImplementsProtocol)
5457      return false;
5458  }
5459  // The RHS implements all protocols listed on the LHS.
5460  return true;
5461}
5462
5463bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5464  // get the "pointed to" types
5465  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5466  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5467
5468  if (!LHSOPT || !RHSOPT)
5469    return false;
5470
5471  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5472         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5473}
5474
5475bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5476  return canAssignObjCInterfaces(
5477                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5478                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5479}
5480
5481/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5482/// both shall have the identically qualified version of a compatible type.
5483/// C99 6.2.7p1: Two types have compatible types if their types are the
5484/// same. See 6.7.[2,3,5] for additional rules.
5485bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5486                                    bool CompareUnqualified) {
5487  if (getLangOptions().CPlusPlus)
5488    return hasSameType(LHS, RHS);
5489
5490  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5491}
5492
5493bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5494  return typesAreCompatible(LHS, RHS);
5495}
5496
5497bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5498  return !mergeTypes(LHS, RHS, true).isNull();
5499}
5500
5501/// mergeTransparentUnionType - if T is a transparent union type and a member
5502/// of T is compatible with SubType, return the merged type, else return
5503/// QualType()
5504QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5505                                               bool OfBlockPointer,
5506                                               bool Unqualified) {
5507  if (const RecordType *UT = T->getAsUnionType()) {
5508    RecordDecl *UD = UT->getDecl();
5509    if (UD->hasAttr<TransparentUnionAttr>()) {
5510      for (RecordDecl::field_iterator it = UD->field_begin(),
5511           itend = UD->field_end(); it != itend; ++it) {
5512        QualType ET = it->getType().getUnqualifiedType();
5513        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5514        if (!MT.isNull())
5515          return MT;
5516      }
5517    }
5518  }
5519
5520  return QualType();
5521}
5522
5523/// mergeFunctionArgumentTypes - merge two types which appear as function
5524/// argument types
5525QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5526                                                bool OfBlockPointer,
5527                                                bool Unqualified) {
5528  // GNU extension: two types are compatible if they appear as a function
5529  // argument, one of the types is a transparent union type and the other
5530  // type is compatible with a union member
5531  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5532                                              Unqualified);
5533  if (!lmerge.isNull())
5534    return lmerge;
5535
5536  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5537                                              Unqualified);
5538  if (!rmerge.isNull())
5539    return rmerge;
5540
5541  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5542}
5543
5544QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5545                                        bool OfBlockPointer,
5546                                        bool Unqualified) {
5547  const FunctionType *lbase = lhs->getAs<FunctionType>();
5548  const FunctionType *rbase = rhs->getAs<FunctionType>();
5549  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5550  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5551  bool allLTypes = true;
5552  bool allRTypes = true;
5553
5554  // Check return type
5555  QualType retType;
5556  if (OfBlockPointer) {
5557    QualType RHS = rbase->getResultType();
5558    QualType LHS = lbase->getResultType();
5559    bool UnqualifiedResult = Unqualified;
5560    if (!UnqualifiedResult)
5561      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5562    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5563  }
5564  else
5565    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5566                         Unqualified);
5567  if (retType.isNull()) return QualType();
5568
5569  if (Unqualified)
5570    retType = retType.getUnqualifiedType();
5571
5572  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5573  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5574  if (Unqualified) {
5575    LRetType = LRetType.getUnqualifiedType();
5576    RRetType = RRetType.getUnqualifiedType();
5577  }
5578
5579  if (getCanonicalType(retType) != LRetType)
5580    allLTypes = false;
5581  if (getCanonicalType(retType) != RRetType)
5582    allRTypes = false;
5583
5584  // FIXME: double check this
5585  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5586  //                           rbase->getRegParmAttr() != 0 &&
5587  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5588  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5589  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5590
5591  // Compatible functions must have compatible calling conventions
5592  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5593    return QualType();
5594
5595  // Regparm is part of the calling convention.
5596  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5597    return QualType();
5598  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5599    return QualType();
5600
5601  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5602    return QualType();
5603
5604  // functypes which return are preferred over those that do not.
5605  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5606    allLTypes = false;
5607  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5608    allRTypes = false;
5609  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5610  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5611
5612  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5613
5614  if (lproto && rproto) { // two C99 style function prototypes
5615    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5616           "C++ shouldn't be here");
5617    unsigned lproto_nargs = lproto->getNumArgs();
5618    unsigned rproto_nargs = rproto->getNumArgs();
5619
5620    // Compatible functions must have the same number of arguments
5621    if (lproto_nargs != rproto_nargs)
5622      return QualType();
5623
5624    // Variadic and non-variadic functions aren't compatible
5625    if (lproto->isVariadic() != rproto->isVariadic())
5626      return QualType();
5627
5628    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5629      return QualType();
5630
5631    if (LangOpts.ObjCAutoRefCount &&
5632        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5633      return QualType();
5634
5635    // Check argument compatibility
5636    SmallVector<QualType, 10> types;
5637    for (unsigned i = 0; i < lproto_nargs; i++) {
5638      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5639      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5640      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5641                                                    OfBlockPointer,
5642                                                    Unqualified);
5643      if (argtype.isNull()) return QualType();
5644
5645      if (Unqualified)
5646        argtype = argtype.getUnqualifiedType();
5647
5648      types.push_back(argtype);
5649      if (Unqualified) {
5650        largtype = largtype.getUnqualifiedType();
5651        rargtype = rargtype.getUnqualifiedType();
5652      }
5653
5654      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5655        allLTypes = false;
5656      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5657        allRTypes = false;
5658    }
5659
5660    if (allLTypes) return lhs;
5661    if (allRTypes) return rhs;
5662
5663    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5664    EPI.ExtInfo = einfo;
5665    return getFunctionType(retType, types.begin(), types.size(), EPI);
5666  }
5667
5668  if (lproto) allRTypes = false;
5669  if (rproto) allLTypes = false;
5670
5671  const FunctionProtoType *proto = lproto ? lproto : rproto;
5672  if (proto) {
5673    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5674    if (proto->isVariadic()) return QualType();
5675    // Check that the types are compatible with the types that
5676    // would result from default argument promotions (C99 6.7.5.3p15).
5677    // The only types actually affected are promotable integer
5678    // types and floats, which would be passed as a different
5679    // type depending on whether the prototype is visible.
5680    unsigned proto_nargs = proto->getNumArgs();
5681    for (unsigned i = 0; i < proto_nargs; ++i) {
5682      QualType argTy = proto->getArgType(i);
5683
5684      // Look at the promotion type of enum types, since that is the type used
5685      // to pass enum values.
5686      if (const EnumType *Enum = argTy->getAs<EnumType>())
5687        argTy = Enum->getDecl()->getPromotionType();
5688
5689      if (argTy->isPromotableIntegerType() ||
5690          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5691        return QualType();
5692    }
5693
5694    if (allLTypes) return lhs;
5695    if (allRTypes) return rhs;
5696
5697    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5698    EPI.ExtInfo = einfo;
5699    return getFunctionType(retType, proto->arg_type_begin(),
5700                           proto->getNumArgs(), EPI);
5701  }
5702
5703  if (allLTypes) return lhs;
5704  if (allRTypes) return rhs;
5705  return getFunctionNoProtoType(retType, einfo);
5706}
5707
5708QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5709                                bool OfBlockPointer,
5710                                bool Unqualified, bool BlockReturnType) {
5711  // C++ [expr]: If an expression initially has the type "reference to T", the
5712  // type is adjusted to "T" prior to any further analysis, the expression
5713  // designates the object or function denoted by the reference, and the
5714  // expression is an lvalue unless the reference is an rvalue reference and
5715  // the expression is a function call (possibly inside parentheses).
5716  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5717  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5718
5719  if (Unqualified) {
5720    LHS = LHS.getUnqualifiedType();
5721    RHS = RHS.getUnqualifiedType();
5722  }
5723
5724  QualType LHSCan = getCanonicalType(LHS),
5725           RHSCan = getCanonicalType(RHS);
5726
5727  // If two types are identical, they are compatible.
5728  if (LHSCan == RHSCan)
5729    return LHS;
5730
5731  // If the qualifiers are different, the types aren't compatible... mostly.
5732  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5733  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5734  if (LQuals != RQuals) {
5735    // If any of these qualifiers are different, we have a type
5736    // mismatch.
5737    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5738        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5739        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5740      return QualType();
5741
5742    // Exactly one GC qualifier difference is allowed: __strong is
5743    // okay if the other type has no GC qualifier but is an Objective
5744    // C object pointer (i.e. implicitly strong by default).  We fix
5745    // this by pretending that the unqualified type was actually
5746    // qualified __strong.
5747    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5748    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5749    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5750
5751    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5752      return QualType();
5753
5754    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5755      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5756    }
5757    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5758      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5759    }
5760    return QualType();
5761  }
5762
5763  // Okay, qualifiers are equal.
5764
5765  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5766  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5767
5768  // We want to consider the two function types to be the same for these
5769  // comparisons, just force one to the other.
5770  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5771  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5772
5773  // Same as above for arrays
5774  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5775    LHSClass = Type::ConstantArray;
5776  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5777    RHSClass = Type::ConstantArray;
5778
5779  // ObjCInterfaces are just specialized ObjCObjects.
5780  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5781  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5782
5783  // Canonicalize ExtVector -> Vector.
5784  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5785  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5786
5787  // If the canonical type classes don't match.
5788  if (LHSClass != RHSClass) {
5789    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5790    // a signed integer type, or an unsigned integer type.
5791    // Compatibility is based on the underlying type, not the promotion
5792    // type.
5793    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5794      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5795        return RHS;
5796    }
5797    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5798      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5799        return LHS;
5800    }
5801
5802    return QualType();
5803  }
5804
5805  // The canonical type classes match.
5806  switch (LHSClass) {
5807#define TYPE(Class, Base)
5808#define ABSTRACT_TYPE(Class, Base)
5809#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5810#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5811#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5812#include "clang/AST/TypeNodes.def"
5813    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5814
5815  case Type::LValueReference:
5816  case Type::RValueReference:
5817  case Type::MemberPointer:
5818    llvm_unreachable("C++ should never be in mergeTypes");
5819
5820  case Type::ObjCInterface:
5821  case Type::IncompleteArray:
5822  case Type::VariableArray:
5823  case Type::FunctionProto:
5824  case Type::ExtVector:
5825    llvm_unreachable("Types are eliminated above");
5826
5827  case Type::Pointer:
5828  {
5829    // Merge two pointer types, while trying to preserve typedef info
5830    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5831    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5832    if (Unqualified) {
5833      LHSPointee = LHSPointee.getUnqualifiedType();
5834      RHSPointee = RHSPointee.getUnqualifiedType();
5835    }
5836    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5837                                     Unqualified);
5838    if (ResultType.isNull()) return QualType();
5839    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5840      return LHS;
5841    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5842      return RHS;
5843    return getPointerType(ResultType);
5844  }
5845  case Type::BlockPointer:
5846  {
5847    // Merge two block pointer types, while trying to preserve typedef info
5848    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5849    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5850    if (Unqualified) {
5851      LHSPointee = LHSPointee.getUnqualifiedType();
5852      RHSPointee = RHSPointee.getUnqualifiedType();
5853    }
5854    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5855                                     Unqualified);
5856    if (ResultType.isNull()) return QualType();
5857    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5858      return LHS;
5859    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5860      return RHS;
5861    return getBlockPointerType(ResultType);
5862  }
5863  case Type::Atomic:
5864  {
5865    // Merge two pointer types, while trying to preserve typedef info
5866    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
5867    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
5868    if (Unqualified) {
5869      LHSValue = LHSValue.getUnqualifiedType();
5870      RHSValue = RHSValue.getUnqualifiedType();
5871    }
5872    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
5873                                     Unqualified);
5874    if (ResultType.isNull()) return QualType();
5875    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
5876      return LHS;
5877    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
5878      return RHS;
5879    return getAtomicType(ResultType);
5880  }
5881  case Type::ConstantArray:
5882  {
5883    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5884    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5885    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5886      return QualType();
5887
5888    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5889    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5890    if (Unqualified) {
5891      LHSElem = LHSElem.getUnqualifiedType();
5892      RHSElem = RHSElem.getUnqualifiedType();
5893    }
5894
5895    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5896    if (ResultType.isNull()) return QualType();
5897    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5898      return LHS;
5899    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5900      return RHS;
5901    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5902                                          ArrayType::ArraySizeModifier(), 0);
5903    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5904                                          ArrayType::ArraySizeModifier(), 0);
5905    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5906    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5907    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5908      return LHS;
5909    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5910      return RHS;
5911    if (LVAT) {
5912      // FIXME: This isn't correct! But tricky to implement because
5913      // the array's size has to be the size of LHS, but the type
5914      // has to be different.
5915      return LHS;
5916    }
5917    if (RVAT) {
5918      // FIXME: This isn't correct! But tricky to implement because
5919      // the array's size has to be the size of RHS, but the type
5920      // has to be different.
5921      return RHS;
5922    }
5923    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5924    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5925    return getIncompleteArrayType(ResultType,
5926                                  ArrayType::ArraySizeModifier(), 0);
5927  }
5928  case Type::FunctionNoProto:
5929    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5930  case Type::Record:
5931  case Type::Enum:
5932    return QualType();
5933  case Type::Builtin:
5934    // Only exactly equal builtin types are compatible, which is tested above.
5935    return QualType();
5936  case Type::Complex:
5937    // Distinct complex types are incompatible.
5938    return QualType();
5939  case Type::Vector:
5940    // FIXME: The merged type should be an ExtVector!
5941    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5942                             RHSCan->getAs<VectorType>()))
5943      return LHS;
5944    return QualType();
5945  case Type::ObjCObject: {
5946    // Check if the types are assignment compatible.
5947    // FIXME: This should be type compatibility, e.g. whether
5948    // "LHS x; RHS x;" at global scope is legal.
5949    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5950    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5951    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5952      return LHS;
5953
5954    return QualType();
5955  }
5956  case Type::ObjCObjectPointer: {
5957    if (OfBlockPointer) {
5958      if (canAssignObjCInterfacesInBlockPointer(
5959                                          LHS->getAs<ObjCObjectPointerType>(),
5960                                          RHS->getAs<ObjCObjectPointerType>(),
5961                                          BlockReturnType))
5962      return LHS;
5963      return QualType();
5964    }
5965    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5966                                RHS->getAs<ObjCObjectPointerType>()))
5967      return LHS;
5968
5969    return QualType();
5970    }
5971  }
5972
5973  return QualType();
5974}
5975
5976bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
5977                   const FunctionProtoType *FromFunctionType,
5978                   const FunctionProtoType *ToFunctionType) {
5979  if (FromFunctionType->hasAnyConsumedArgs() !=
5980      ToFunctionType->hasAnyConsumedArgs())
5981    return false;
5982  FunctionProtoType::ExtProtoInfo FromEPI =
5983    FromFunctionType->getExtProtoInfo();
5984  FunctionProtoType::ExtProtoInfo ToEPI =
5985    ToFunctionType->getExtProtoInfo();
5986  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
5987    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
5988         ArgIdx != NumArgs; ++ArgIdx)  {
5989      if (FromEPI.ConsumedArguments[ArgIdx] !=
5990          ToEPI.ConsumedArguments[ArgIdx])
5991        return false;
5992    }
5993  return true;
5994}
5995
5996/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5997/// 'RHS' attributes and returns the merged version; including for function
5998/// return types.
5999QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6000  QualType LHSCan = getCanonicalType(LHS),
6001  RHSCan = getCanonicalType(RHS);
6002  // If two types are identical, they are compatible.
6003  if (LHSCan == RHSCan)
6004    return LHS;
6005  if (RHSCan->isFunctionType()) {
6006    if (!LHSCan->isFunctionType())
6007      return QualType();
6008    QualType OldReturnType =
6009      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6010    QualType NewReturnType =
6011      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6012    QualType ResReturnType =
6013      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6014    if (ResReturnType.isNull())
6015      return QualType();
6016    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6017      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6018      // In either case, use OldReturnType to build the new function type.
6019      const FunctionType *F = LHS->getAs<FunctionType>();
6020      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6021        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6022        EPI.ExtInfo = getFunctionExtInfo(LHS);
6023        QualType ResultType
6024          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6025                            FPT->getNumArgs(), EPI);
6026        return ResultType;
6027      }
6028    }
6029    return QualType();
6030  }
6031
6032  // If the qualifiers are different, the types can still be merged.
6033  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6034  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6035  if (LQuals != RQuals) {
6036    // If any of these qualifiers are different, we have a type mismatch.
6037    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6038        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6039      return QualType();
6040
6041    // Exactly one GC qualifier difference is allowed: __strong is
6042    // okay if the other type has no GC qualifier but is an Objective
6043    // C object pointer (i.e. implicitly strong by default).  We fix
6044    // this by pretending that the unqualified type was actually
6045    // qualified __strong.
6046    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6047    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6048    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6049
6050    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6051      return QualType();
6052
6053    if (GC_L == Qualifiers::Strong)
6054      return LHS;
6055    if (GC_R == Qualifiers::Strong)
6056      return RHS;
6057    return QualType();
6058  }
6059
6060  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6061    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6062    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6063    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6064    if (ResQT == LHSBaseQT)
6065      return LHS;
6066    if (ResQT == RHSBaseQT)
6067      return RHS;
6068  }
6069  return QualType();
6070}
6071
6072//===----------------------------------------------------------------------===//
6073//                         Integer Predicates
6074//===----------------------------------------------------------------------===//
6075
6076unsigned ASTContext::getIntWidth(QualType T) const {
6077  if (const EnumType *ET = dyn_cast<EnumType>(T))
6078    T = ET->getDecl()->getIntegerType();
6079  if (T->isBooleanType())
6080    return 1;
6081  // For builtin types, just use the standard type sizing method
6082  return (unsigned)getTypeSize(T);
6083}
6084
6085QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6086  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6087
6088  // Turn <4 x signed int> -> <4 x unsigned int>
6089  if (const VectorType *VTy = T->getAs<VectorType>())
6090    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6091                         VTy->getNumElements(), VTy->getVectorKind());
6092
6093  // For enums, we return the unsigned version of the base type.
6094  if (const EnumType *ETy = T->getAs<EnumType>())
6095    T = ETy->getDecl()->getIntegerType();
6096
6097  const BuiltinType *BTy = T->getAs<BuiltinType>();
6098  assert(BTy && "Unexpected signed integer type");
6099  switch (BTy->getKind()) {
6100  case BuiltinType::Char_S:
6101  case BuiltinType::SChar:
6102    return UnsignedCharTy;
6103  case BuiltinType::Short:
6104    return UnsignedShortTy;
6105  case BuiltinType::Int:
6106    return UnsignedIntTy;
6107  case BuiltinType::Long:
6108    return UnsignedLongTy;
6109  case BuiltinType::LongLong:
6110    return UnsignedLongLongTy;
6111  case BuiltinType::Int128:
6112    return UnsignedInt128Ty;
6113  default:
6114    llvm_unreachable("Unexpected signed integer type");
6115  }
6116}
6117
6118ASTMutationListener::~ASTMutationListener() { }
6119
6120
6121//===----------------------------------------------------------------------===//
6122//                          Builtin Type Computation
6123//===----------------------------------------------------------------------===//
6124
6125/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6126/// pointer over the consumed characters.  This returns the resultant type.  If
6127/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6128/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6129/// a vector of "i*".
6130///
6131/// RequiresICE is filled in on return to indicate whether the value is required
6132/// to be an Integer Constant Expression.
6133static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6134                                  ASTContext::GetBuiltinTypeError &Error,
6135                                  bool &RequiresICE,
6136                                  bool AllowTypeModifiers) {
6137  // Modifiers.
6138  int HowLong = 0;
6139  bool Signed = false, Unsigned = false;
6140  RequiresICE = false;
6141
6142  // Read the prefixed modifiers first.
6143  bool Done = false;
6144  while (!Done) {
6145    switch (*Str++) {
6146    default: Done = true; --Str; break;
6147    case 'I':
6148      RequiresICE = true;
6149      break;
6150    case 'S':
6151      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6152      assert(!Signed && "Can't use 'S' modifier multiple times!");
6153      Signed = true;
6154      break;
6155    case 'U':
6156      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6157      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6158      Unsigned = true;
6159      break;
6160    case 'L':
6161      assert(HowLong <= 2 && "Can't have LLLL modifier");
6162      ++HowLong;
6163      break;
6164    }
6165  }
6166
6167  QualType Type;
6168
6169  // Read the base type.
6170  switch (*Str++) {
6171  default: llvm_unreachable("Unknown builtin type letter!");
6172  case 'v':
6173    assert(HowLong == 0 && !Signed && !Unsigned &&
6174           "Bad modifiers used with 'v'!");
6175    Type = Context.VoidTy;
6176    break;
6177  case 'f':
6178    assert(HowLong == 0 && !Signed && !Unsigned &&
6179           "Bad modifiers used with 'f'!");
6180    Type = Context.FloatTy;
6181    break;
6182  case 'd':
6183    assert(HowLong < 2 && !Signed && !Unsigned &&
6184           "Bad modifiers used with 'd'!");
6185    if (HowLong)
6186      Type = Context.LongDoubleTy;
6187    else
6188      Type = Context.DoubleTy;
6189    break;
6190  case 's':
6191    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6192    if (Unsigned)
6193      Type = Context.UnsignedShortTy;
6194    else
6195      Type = Context.ShortTy;
6196    break;
6197  case 'i':
6198    if (HowLong == 3)
6199      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6200    else if (HowLong == 2)
6201      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6202    else if (HowLong == 1)
6203      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6204    else
6205      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6206    break;
6207  case 'c':
6208    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6209    if (Signed)
6210      Type = Context.SignedCharTy;
6211    else if (Unsigned)
6212      Type = Context.UnsignedCharTy;
6213    else
6214      Type = Context.CharTy;
6215    break;
6216  case 'b': // boolean
6217    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6218    Type = Context.BoolTy;
6219    break;
6220  case 'z':  // size_t.
6221    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6222    Type = Context.getSizeType();
6223    break;
6224  case 'F':
6225    Type = Context.getCFConstantStringType();
6226    break;
6227  case 'G':
6228    Type = Context.getObjCIdType();
6229    break;
6230  case 'H':
6231    Type = Context.getObjCSelType();
6232    break;
6233  case 'a':
6234    Type = Context.getBuiltinVaListType();
6235    assert(!Type.isNull() && "builtin va list type not initialized!");
6236    break;
6237  case 'A':
6238    // This is a "reference" to a va_list; however, what exactly
6239    // this means depends on how va_list is defined. There are two
6240    // different kinds of va_list: ones passed by value, and ones
6241    // passed by reference.  An example of a by-value va_list is
6242    // x86, where va_list is a char*. An example of by-ref va_list
6243    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6244    // we want this argument to be a char*&; for x86-64, we want
6245    // it to be a __va_list_tag*.
6246    Type = Context.getBuiltinVaListType();
6247    assert(!Type.isNull() && "builtin va list type not initialized!");
6248    if (Type->isArrayType())
6249      Type = Context.getArrayDecayedType(Type);
6250    else
6251      Type = Context.getLValueReferenceType(Type);
6252    break;
6253  case 'V': {
6254    char *End;
6255    unsigned NumElements = strtoul(Str, &End, 10);
6256    assert(End != Str && "Missing vector size");
6257    Str = End;
6258
6259    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6260                                             RequiresICE, false);
6261    assert(!RequiresICE && "Can't require vector ICE");
6262
6263    // TODO: No way to make AltiVec vectors in builtins yet.
6264    Type = Context.getVectorType(ElementType, NumElements,
6265                                 VectorType::GenericVector);
6266    break;
6267  }
6268  case 'X': {
6269    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6270                                             false);
6271    assert(!RequiresICE && "Can't require complex ICE");
6272    Type = Context.getComplexType(ElementType);
6273    break;
6274  }
6275  case 'Y' : {
6276    Type = Context.getPointerDiffType();
6277    break;
6278  }
6279  case 'P':
6280    Type = Context.getFILEType();
6281    if (Type.isNull()) {
6282      Error = ASTContext::GE_Missing_stdio;
6283      return QualType();
6284    }
6285    break;
6286  case 'J':
6287    if (Signed)
6288      Type = Context.getsigjmp_bufType();
6289    else
6290      Type = Context.getjmp_bufType();
6291
6292    if (Type.isNull()) {
6293      Error = ASTContext::GE_Missing_setjmp;
6294      return QualType();
6295    }
6296    break;
6297  case 'K':
6298    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6299    Type = Context.getucontext_tType();
6300
6301    if (Type.isNull()) {
6302      Error = ASTContext::GE_Missing_ucontext;
6303      return QualType();
6304    }
6305    break;
6306  }
6307
6308  // If there are modifiers and if we're allowed to parse them, go for it.
6309  Done = !AllowTypeModifiers;
6310  while (!Done) {
6311    switch (char c = *Str++) {
6312    default: Done = true; --Str; break;
6313    case '*':
6314    case '&': {
6315      // Both pointers and references can have their pointee types
6316      // qualified with an address space.
6317      char *End;
6318      unsigned AddrSpace = strtoul(Str, &End, 10);
6319      if (End != Str && AddrSpace != 0) {
6320        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6321        Str = End;
6322      }
6323      if (c == '*')
6324        Type = Context.getPointerType(Type);
6325      else
6326        Type = Context.getLValueReferenceType(Type);
6327      break;
6328    }
6329    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6330    case 'C':
6331      Type = Type.withConst();
6332      break;
6333    case 'D':
6334      Type = Context.getVolatileType(Type);
6335      break;
6336    }
6337  }
6338
6339  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6340         "Integer constant 'I' type must be an integer");
6341
6342  return Type;
6343}
6344
6345/// GetBuiltinType - Return the type for the specified builtin.
6346QualType ASTContext::GetBuiltinType(unsigned Id,
6347                                    GetBuiltinTypeError &Error,
6348                                    unsigned *IntegerConstantArgs) const {
6349  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6350
6351  SmallVector<QualType, 8> ArgTypes;
6352
6353  bool RequiresICE = false;
6354  Error = GE_None;
6355  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6356                                       RequiresICE, true);
6357  if (Error != GE_None)
6358    return QualType();
6359
6360  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6361
6362  while (TypeStr[0] && TypeStr[0] != '.') {
6363    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6364    if (Error != GE_None)
6365      return QualType();
6366
6367    // If this argument is required to be an IntegerConstantExpression and the
6368    // caller cares, fill in the bitmask we return.
6369    if (RequiresICE && IntegerConstantArgs)
6370      *IntegerConstantArgs |= 1 << ArgTypes.size();
6371
6372    // Do array -> pointer decay.  The builtin should use the decayed type.
6373    if (Ty->isArrayType())
6374      Ty = getArrayDecayedType(Ty);
6375
6376    ArgTypes.push_back(Ty);
6377  }
6378
6379  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6380         "'.' should only occur at end of builtin type list!");
6381
6382  FunctionType::ExtInfo EI;
6383  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6384
6385  bool Variadic = (TypeStr[0] == '.');
6386
6387  // We really shouldn't be making a no-proto type here, especially in C++.
6388  if (ArgTypes.empty() && Variadic)
6389    return getFunctionNoProtoType(ResType, EI);
6390
6391  FunctionProtoType::ExtProtoInfo EPI;
6392  EPI.ExtInfo = EI;
6393  EPI.Variadic = Variadic;
6394
6395  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6396}
6397
6398GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6399  GVALinkage External = GVA_StrongExternal;
6400
6401  Linkage L = FD->getLinkage();
6402  switch (L) {
6403  case NoLinkage:
6404  case InternalLinkage:
6405  case UniqueExternalLinkage:
6406    return GVA_Internal;
6407
6408  case ExternalLinkage:
6409    switch (FD->getTemplateSpecializationKind()) {
6410    case TSK_Undeclared:
6411    case TSK_ExplicitSpecialization:
6412      External = GVA_StrongExternal;
6413      break;
6414
6415    case TSK_ExplicitInstantiationDefinition:
6416      return GVA_ExplicitTemplateInstantiation;
6417
6418    case TSK_ExplicitInstantiationDeclaration:
6419    case TSK_ImplicitInstantiation:
6420      External = GVA_TemplateInstantiation;
6421      break;
6422    }
6423  }
6424
6425  if (!FD->isInlined())
6426    return External;
6427
6428  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6429    // GNU or C99 inline semantics. Determine whether this symbol should be
6430    // externally visible.
6431    if (FD->isInlineDefinitionExternallyVisible())
6432      return External;
6433
6434    // C99 inline semantics, where the symbol is not externally visible.
6435    return GVA_C99Inline;
6436  }
6437
6438  // C++0x [temp.explicit]p9:
6439  //   [ Note: The intent is that an inline function that is the subject of
6440  //   an explicit instantiation declaration will still be implicitly
6441  //   instantiated when used so that the body can be considered for
6442  //   inlining, but that no out-of-line copy of the inline function would be
6443  //   generated in the translation unit. -- end note ]
6444  if (FD->getTemplateSpecializationKind()
6445                                       == TSK_ExplicitInstantiationDeclaration)
6446    return GVA_C99Inline;
6447
6448  return GVA_CXXInline;
6449}
6450
6451GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6452  // If this is a static data member, compute the kind of template
6453  // specialization. Otherwise, this variable is not part of a
6454  // template.
6455  TemplateSpecializationKind TSK = TSK_Undeclared;
6456  if (VD->isStaticDataMember())
6457    TSK = VD->getTemplateSpecializationKind();
6458
6459  Linkage L = VD->getLinkage();
6460  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6461      VD->getType()->getLinkage() == UniqueExternalLinkage)
6462    L = UniqueExternalLinkage;
6463
6464  switch (L) {
6465  case NoLinkage:
6466  case InternalLinkage:
6467  case UniqueExternalLinkage:
6468    return GVA_Internal;
6469
6470  case ExternalLinkage:
6471    switch (TSK) {
6472    case TSK_Undeclared:
6473    case TSK_ExplicitSpecialization:
6474      return GVA_StrongExternal;
6475
6476    case TSK_ExplicitInstantiationDeclaration:
6477      llvm_unreachable("Variable should not be instantiated");
6478      // Fall through to treat this like any other instantiation.
6479
6480    case TSK_ExplicitInstantiationDefinition:
6481      return GVA_ExplicitTemplateInstantiation;
6482
6483    case TSK_ImplicitInstantiation:
6484      return GVA_TemplateInstantiation;
6485    }
6486  }
6487
6488  return GVA_StrongExternal;
6489}
6490
6491bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6492  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6493    if (!VD->isFileVarDecl())
6494      return false;
6495  } else if (!isa<FunctionDecl>(D))
6496    return false;
6497
6498  // Weak references don't produce any output by themselves.
6499  if (D->hasAttr<WeakRefAttr>())
6500    return false;
6501
6502  // Aliases and used decls are required.
6503  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6504    return true;
6505
6506  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6507    // Forward declarations aren't required.
6508    if (!FD->doesThisDeclarationHaveABody())
6509      return FD->doesDeclarationForceExternallyVisibleDefinition();
6510
6511    // Constructors and destructors are required.
6512    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6513      return true;
6514
6515    // The key function for a class is required.
6516    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6517      const CXXRecordDecl *RD = MD->getParent();
6518      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6519        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6520        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6521          return true;
6522      }
6523    }
6524
6525    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6526
6527    // static, static inline, always_inline, and extern inline functions can
6528    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6529    // Implicit template instantiations can also be deferred in C++.
6530    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6531        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6532      return false;
6533    return true;
6534  }
6535
6536  const VarDecl *VD = cast<VarDecl>(D);
6537  assert(VD->isFileVarDecl() && "Expected file scoped var");
6538
6539  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6540    return false;
6541
6542  // Structs that have non-trivial constructors or destructors are required.
6543
6544  // FIXME: Handle references.
6545  // FIXME: Be more selective about which constructors we care about.
6546  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6547    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6548      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6549                                   RD->hasTrivialCopyConstructor() &&
6550                                   RD->hasTrivialMoveConstructor() &&
6551                                   RD->hasTrivialDestructor()))
6552        return true;
6553    }
6554  }
6555
6556  GVALinkage L = GetGVALinkageForVariable(VD);
6557  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6558    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6559      return false;
6560  }
6561
6562  return true;
6563}
6564
6565CallingConv ASTContext::getDefaultMethodCallConv() {
6566  // Pass through to the C++ ABI object
6567  return ABI->getDefaultMethodCallConv();
6568}
6569
6570bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6571  // Pass through to the C++ ABI object
6572  return ABI->isNearlyEmpty(RD);
6573}
6574
6575MangleContext *ASTContext::createMangleContext() {
6576  switch (Target->getCXXABI()) {
6577  case CXXABI_ARM:
6578  case CXXABI_Itanium:
6579    return createItaniumMangleContext(*this, getDiagnostics());
6580  case CXXABI_Microsoft:
6581    return createMicrosoftMangleContext(*this, getDiagnostics());
6582  }
6583  llvm_unreachable("Unsupported ABI");
6584}
6585
6586CXXABI::~CXXABI() {}
6587
6588size_t ASTContext::getSideTableAllocatedMemory() const {
6589  return ASTRecordLayouts.getMemorySize()
6590    + llvm::capacity_in_bytes(ObjCLayouts)
6591    + llvm::capacity_in_bytes(KeyFunctions)
6592    + llvm::capacity_in_bytes(ObjCImpls)
6593    + llvm::capacity_in_bytes(BlockVarCopyInits)
6594    + llvm::capacity_in_bytes(DeclAttrs)
6595    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6596    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6597    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6598    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6599    + llvm::capacity_in_bytes(OverriddenMethods)
6600    + llvm::capacity_in_bytes(Types)
6601    + llvm::capacity_in_bytes(VariableArrayTypes)
6602    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6603}
6604
6605void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6606  ParamIndices[D] = index;
6607}
6608
6609unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6610  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6611  assert(I != ParamIndices.end() &&
6612         "ParmIndices lacks entry set by ParmVarDecl");
6613  return I->second;
6614}
6615